WorldWideScience

Sample records for decomposing foliage litter

  1. Species-specific effects of live roots and shoot litter on soil decomposer abundances do not forecast plant litter-nitrogen uptake.

    Science.gov (United States)

    Saj, Stéphane; Mikola, Juha; Ekelund, Flemming

    2009-08-01

    Plant species produce litter of varying quality and differ in the quality and quantity of compounds they release from live roots, which both can induce different decomposer growth in the soil. To test whether differences in decomposer growth can forecast the amount of N species acquire from plant litter, as suggested by theory, we grew individuals of three grassland plants-Holcus lanatus, Plantago lanceolata and Lotus corniculatus-in soils into which (15)N-labelled litter of either Holcus, Plantago or Lotus was added. We measured the effects of live roots and litter of each species on soil microbes and their protozoan and nematode feeders, and to link decomposer growth and plant nutrient uptake, we measured the amount of N taken up by plants from the added litter. We hypothesised that those species that induce the highest growth of microbes, and especially that of microbial feeders, will also take up the highest amount of N from the litter. We found, however, that although numbers of bacterial-feeding Protozoa and nematodes were on average lower after addition of Holcus than Plantago or Lotus litter, N uptake was higher from Holcus litter. Further, although the effects on Protozoa and bacterial- and fungal-feeding nematodes did not differ between the live plants, litter-N uptake differed, with Holcus being the most efficient compared to Plantago and Lotus. Hence, although microbes and their feeders unquestionably control N mineralization in the soil, and their growth differs among plant species, these differences cannot predict differences in litter-N uptake among plant species. A likely reason is that for nutrient uptake, other species-specific plant traits, such as litter chemistry, root proliferation ability and competitiveness for soil N, override in significance the species-specific ability of plants to induce decomposer growth.

  2. Species-specific effects of live roots and shoot litter on soil decomposer abundances do not forecast plant litter-nitrogen uptake

    DEFF Research Database (Denmark)

    Saj, Stéphane; Mikola, Juha; Ekelund, Flemming

    2009-01-01

    and bacterial- and fungal-feeding nematodes did not differ between the live plants, litter-N uptake differed, with Holcus being the most efficient compared to Plantago and Lotus. Hence, although microbes and their feeders unquestionably control N mineralization in the soil, and their growth differs among plant......Plant species produce litter of varying quality and differ in the quality and quantity of compounds they release from live roots, which both can induce different decomposer growth in the soil. To test whether differences in decomposer growth can forecast the amount of N species acquire from plant...... litter, as suggested by theory, we grew individuals of three grassland plants-Holcus lanatus, Plantago lanceolata and Lotus corniculatus-in soils into which (15)N-labelled litter of either Holcus, Plantago or Lotus was added. We measured the effects of live roots and litter of each species on soil...

  3. Climatic effects on decomposing litter and substrate chemistry along climatological gradients.

    Science.gov (United States)

    Berg, B.

    2009-04-01

    Climatic effects on decomposing litter and substrate chemistry along climatological gradients. B. Berg, Dipartimento Biologia Strutturale e Funzionale, Complesso Universitario, Monte San Angelo, via Cintia, I-80126 Napoli, Italy and Department of Forest Ecology, P.O. Box 27, University of Helsinki, FIN-00014, Helsinki, Finland. Studies of several processes, using climatic gradients do provide new information as compared with studies at e.g. a single site. Decomposition of plant litter in such gradients give response in decomposition rates to natural climate conditions. Thus Scots pine needle litter incubated in a climate gradient with annual average temperature (AVGT) ranging from -0.5 to 6.8oC had a highly significant increase in initial mass-loss rate with R2 = 0.591 (p<0.001) and a 5o increase in temperature doubled the mass-loss rate. As a contrast - needle litter of Norway spruce incubated in the same transect had no significant response to climate and for initial litter a 5o increase increased mass-loss rate c. 6%. For more decomposed Scots pine litter we could see that the effect of temperature on mass-loss rate gradually decreased until it disappeared. Long-term decomposition studies revealed differences in litter decomposition patterns along a gradient, even for the same type of litter. This could be followed by using an asymptotic function that gave, (i) a measure a maximum level of decomposition, (ii) the initial decomposition rate. Over a gradient the calculated maximum level of decomposition decreased with increasing AVGT. Other gradient studies revealed an effect of AVGT on litter chemical composition. Pine needle litter from stands under different climate conditions had nutrient concentrations related to AVGT. Thus N, P, K, and S were positively related to AVGT and Mn negatively, all of them significantly. This information may be used to explain the changing pattern in decomposition over the gradient.

  4. Metal and nutrient dynamics in decomposing tree litter on a metal contaminated site

    International Nuclear Information System (INIS)

    Van Nevel, Lotte; Mertens, Jan; Demey, Andreas; De Schrijver, An; De Neve, Stefaan; Tack, Filip M.G.; Verheyen, Kris

    2014-01-01

    In a forest on sandy, metal polluted soil, we examined effects of six tree species on litter decomposition rates and accompanied changes in metal (Cd, Zn) and nutrient (base cations, N, C) amounts. Decomposition dynamics were studied by means of a litterbag experiment lasting for 30 months. The decomposition peak occurred within the first year for all tree species, except for aspen. During litter decomposition, high metal litter types released part of their accumulated metals, whereas low metal litter types were characterized by a metal enrichment. Base cations, N and C were released from all litter types. Metal release from contaminated litter might involve risks for metal dispersion towards the soil. On the other hand, metal enrichment of uncontaminated litter may be ecologically relevant as it can be easily transported or serve as food source. - Highlights: • Litter decomposition peak occurred within the first year for all tree species, except for aspen. • Base cations, N and C were released from all litter types during decomposition. • Cd and Zn were released from the high metal litter types. • Low metal litter types were characterized by a net Cd and Zn enrichment. • Metal and nutrient releases were reflected in topsoil characteristics. - Litter decomposition rates, as well as enrichment and release dynamics of metals and nutrients in decomposing litter were divergent under the different tree species

  5. Litter decomposing fungi in sal (Shorea robusta forests of central India

    Directory of Open Access Journals (Sweden)

    RAM KEERTI VERMA

    2011-11-01

    Full Text Available Soni KK, Pyasi A, Verma RK. 2011. Litter decomposing fungi in sal (Shorea robusta forests of central India. Nusantara Bioscience 3: 136-144. The present study aim on isolation and identification of fungi associated with decomposition of litter of sal forest in central India. Season wise successional changes in litter mycoflora were determined for four main seasons of the year namely, March-May, June-August, September-November and December-February. Fungi like Aspergillus flavus, A. niger and Rhizopus stolonifer were associated with litter decomposition throughout the year, while Aspergillus fumigatus, Cladosporium cladosporioides, C. oxysporum, Curvularia indica, and C. lunata were recorded in three seasons. Some fungi including ectomycorrhiza forming occur only in the rainy season (June-August these are Astraeus hygrometricus, Boletus fallax, Calvatia elata, Colletotrichum dematium, Corticium rolfsii, Mycena roseus, Periconia minutissima, Russula emetica, Scleroderma bovista, S. geaster, S. verrucosum, Scopulariopsis alba and four sterile fungi. Fungi like Alternaria citri, Gleocladium virens, Helicosporium phragmitis and Pithomyces cortarum were rarely recorded only in one season.

  6. How does litter quality and site heterogeneity interact on decomposer food webs of a semi-natural forest?

    DEFF Research Database (Denmark)

    Strandmark, Lisa Bjørnlund; Christensen, Søren

    2005-01-01

    The relative importance of litter quality and site heterogeneity on population dynamics of decomposer food webs was investigated in a semi-natural mixed deciduous forest in Denmark. Litterbags containing beech or ash leaves were placed in four plots. Plots were located within gaps and under closed...... at the end of the study period. At the first sampling, where bacterial activity prevailed, the relative abundance of the two dominant bacterial-feeders, Rhabditidae (fast growing) and Plectus spp. (slower growing), depended more on site than litter type. At the second sampling where fungal activity became...... in the decomposer food web, site effects were also detected and nematode functional groups responded more to site than to litter quality early on in the decomposition process....

  7. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter.

    Science.gov (United States)

    Mooshammer, Maria; Wanek, Wolfgang; Schnecker, Jörg; Wild, Birgit; Leitner, Sonja; Hofhansl, Florian; Blöchl, Andreas; Hämmerle, Ieda; Frank, Alexander H; Fuchslueger, Lucia; Keiblinger, Katharina M; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2012-04-01

    Resource stoichiometry (C:N:P) is an important determinant of litter decomposition. However, the effect of elemental stoichiometry on the gross rates of microbial N and P cycling processes during litter decomposition is unknown. In a mesocosm experiment, beech (Fagus sylvatica L.) litter with natural differences in elemental stoichiometry (C:N:P) was incubated under constant environmental conditions. After three and six months, we measured various aspects of nitrogen and phosphorus cycling. We found that gross protein depolymerization, N mineralization (ammonification), and nitrification rates were negatively related to litter C:N. Rates of P mineralization were negatively correlated with litter C:P. The negative correlations with litter C:N were stronger for inorganic N cycling processes than for gross protein depolymerization, indicating that the effect of resource stoichiometry on intracellular processes was stronger than on processes catalyzed by extracellular enzymes. Consistent with this, extracellular protein depolymerization was mainly limited by substrate availability and less so by the amount of protease. Strong positive correlations between the interconnected N and P pools and the respective production and consumption processes pointed to feed-forward control of microbial litter N and P cycling. A negative relationship between litter C:N and phosphatase activity (and between litter C:P and protease activity) demonstrated that microbes tended to allocate carbon and nutrients in ample supply into the production of extracellular enzymes to mine for the nutrient that is more limiting. Overall, the study demonstrated a strong effect of litter stoichiometry (C:N:P) on gross processes of microbial N and P cycling in decomposing litter; mineralization of N and P were tightly coupled to assist in maintaining cellular homeostasis of litter microbial communities.

  8. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh.

    Science.gov (United States)

    Flury, Sabine; Gessner, Mark O

    2011-02-01

    Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had an influence on bacterial community structure, with the apparent number of dominant genotypes increasing from spring to summer. Microbial respiration was unaffected by any treatment, and nitrogen enrichment had no clear effect on any of the microbial parameters considered. Overall, these results suggest that microbes associated with decomposing plant litter in nutrient-rich freshwater marshes are resistant to extra nitrogen supplies but are likely to respond to temperature increases projected for this century.

  9. Biochemical and molecular characterization of an atypical manganese peroxidase of the litter-decomposing fungus Agrocybe praecox.

    Science.gov (United States)

    Hildén, Kristiina; Mäkelä, Miia R; Steffen, Kari T; Hofrichter, Martin; Hatakka, Annele; Archer, David B; Lundell, Taina K

    2014-11-01

    Agrocybe praecox is a litter-decomposing Basidiomycota species of the order Agaricales, and is frequently found in forests and open woodlands. A. praecox grows in leaf-litter and the upper soil and is able to colonize bark mulch and wood chips. It produces extracellular manganese peroxidase (MnP) activities and mineralizes synthetic lignin. In this study, the A. praecox MnP1 isozyme was purified, cloned and enzymatically characterized. The enzyme catalysed the oxidation of Mn(2+) to Mn(3+), which is the specific reaction for manganese-dependent class II heme-peroxidases, in the presence of malonate as chelator with an activity maximum at pH 4.5; detectable activity was observed even at pH 7.0. The coding sequence of the mnp1 gene demonstrates a short-type of MnP protein with a slightly modified Mn(2+) binding site. Thus, A. praecox MnP1 may represent a novel group of atypical short-MnP enzymes. In lignocellulose-containing cultures composed of cereal bran or forest litter, transcription of mnp1 gene was followed by quantitative real-time RT-PCR. On spruce needle litter, mnp1 expression was more abundant than on leaf litter after three weeks cultivation. However, the expression was constitutive in wheat and rye bran cultures. Our data show that the atypical MnP of A. praecox is able to catalyse Mn(2+) oxidation, which suggests its involvement in lignocellulose decay by this litter-decomposer. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Kemampuan Ganoderma dan Trichoderma Mendekomposisi Serasah Acacia mangium (The Ability of Ganoderma and Trichoderma to Decompose Acacia mangium Litter)

    OpenAIRE

    SAMINGAN, Samingan

    2015-01-01

    Litter decomposition ability of fungi has an important role in forest floor ecosystem. The abilities of Ganoderma sp and Trichoderma sp to decompose Acacia mangium leaf litters at laboratory scale were observed. Litters from L and F layers in the field ca. 100 g were used as substrates in plastic bags. Each fungus was inoculating onto substrates and incubates at room temperature, then observed each month during six months. Weight losses (WL) of litter, lignin and cellulose contents during dec...

  11. Community structure and estimated contribution of primary consumers (Nematodes and Copepods) of decomposing plant litter (Juncus roemerianus and Rhizophora mangle) in South Florida

    Energy Technology Data Exchange (ETDEWEB)

    Fell, J.W.; Cefalu, R.

    1984-01-01

    The paper discusses the meiofauna associated with decomposing leaf litter from two species of coastal marshland plants: the black needle rush, Juncus roemerianus and the red mangrove, Rhizophora mangle. The following aspects were investigated: (1) types of meiofauna present, especially nematodes; (2) changes in meiofaunal community structures with regard to season, station location, and type of plant litter; (3) amount of nematode and copepod biomass present on the decomposing plant litter; and (4) an estimation of the possible role of the nematodes in the decomposition process. 28 references, 5 figures, 9 tables. (ACR)

  12. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh

    DEFF Research Database (Denmark)

    Flury, Sabine; Gessner, Mark

    2011-01-01

    obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had......Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions...... of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles...

  13. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water level regimes

    Science.gov (United States)

    Straková, P.; Niemi, R. M.; Freeman, C.; Peltoniemi, K.; Toberman, H.; Heiskanen, I.; Fritze, H.; Laiho, R.

    2011-02-01

    Peatlands are carbon (C) storage ecosystems sustained by a high water level (WL). High WL creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WL drawdown caused by land-use and/or climate change. Aerobic decomposers are directly affected by WL drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WL drawdown on aerobic decomposer activity in plant litter. We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen, phosphorus and sulphur. Our study sites represented a three-stage chronosequence from pristine (undrained) to short-term (years) and long-term (decades) WL drawdown conditions under two nutrient regimes. The litter types included reflected the prevalent vegetation, i.e., Sphagnum mosses, graminoids, shrubs and trees. WL drawdown had a direct and positive effect on microbial activity. Enzyme allocation shifted towards C acquisition, which caused an increase in the rate of decomposition. However, litter type overruled the direct effects of WL drawdown and was the main factor shaping microbial activity patterns. Our results imply that changes in plant community composition in response to persistent WL drawdown will strongly affect the C dynamics of peatlands.

  14. Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi.

    Science.gov (United States)

    Steffen, K T; Hofrichter, M; Hatakka, A

    2000-12-01

    Within a screening program, 27 soil litter-decomposing basidiomycetes were tested for ligninolytic enzyme activities using agar-media containing 2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonate), a humic acid or Mn2+ ions as indicator substrates. Most active species were found within the family Strophariaceae (Agrocybe praecox, Stropharia coronilla, S. rugosoannulata) and used for mineralisation experiments with a 14C-ring-labelled synthetic lignin (14C-DHP). The fungi mineralised around 25% of the lignin to 14CO2 within 12 weeks of incubation in a straw environment; about 20% of the lignin was converted to water-soluble fragments. Mn-peroxidase was found to be the predominant ligninolytic enzyme of all three fungi in liquid culture and its production was strongly enhanced in the presence of Mn2+ ions. The results of this study demonstrate that certain ubiquitous litter-decomposing basidiomycetes possess ligninolytic activities similar to the wood-decaying white-rot fungi, the most efficient lignin degraders in nature.

  15. Interactions between warming, nutrient enrichment and detritivores on litter decomposition and associated microbial decomposers

    OpenAIRE

    Sanaei Moghadam, Fatemeh

    2013-01-01

    Leaf litter decomposition constitutes an important source of energy in many aquatic environments that is controlled by the joint action of microbial decomposers such as bacteria and fungi and also animal detritivores. In view of current scenarios of global environmental change, it is predicted that rapid temperature increases could directly affect most ecosystems including freshwaters. Additionally, human activities and industrial development have impacted water quality of many streams and ri...

  16. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    Directory of Open Access Journals (Sweden)

    P. Straková

    2011-09-01

    Full Text Available Peatlands are carbon (C storage ecosystems sustained by a high water table (WT. High WT creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WT drawdown caused by climate and/or land-use change. Aerobic decomposers are directly affected by WT drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WT drawdown on aerobic decomposer activity in plant litter at two stages of decomposition (incubated in the field for 1 or 2 years. We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen (N, phosphorus (P and sulphur. Our study sites represented a three-stage chronosequence from pristine to short-term (years and long-term (decades WT drawdown conditions under two nutrient regimes (bog and fen. The litter types included reflected the prevalent vegetation: Sphagnum mosses, graminoids, shrubs and trees.

    Litter type was the main factor shaping microbial activity patterns and explained about 30 % of the variation in enzyme activities and activity allocation. Overall, enzyme activities were higher in vascular plant litters compared to Sphagnum litters, and the allocation of enzyme activities towards C or nutrient acquisition was related to the initial litter quality (chemical composition. Direct effects of WT regime, site nutrient regime and litter decomposition stage (length of incubation period summed to only about 40 % of the litter type effect. WT regime alone explained about 5 % of the variation in enzyme activities and activity allocation. Generally, enzyme activity increased following the long-term WT drawdown and the activity allocation turned from P

  17. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    Science.gov (United States)

    Straková, P.; Niemi, R. M.; Freeman, C.; Peltoniemi, K.; Toberman, H.; Heiskanen, I.; Fritze, H.; Laiho, R.

    2011-09-01

    Peatlands are carbon (C) storage ecosystems sustained by a high water table (WT). High WT creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WT drawdown caused by climate and/or land-use change. Aerobic decomposers are directly affected by WT drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WT drawdown on aerobic decomposer activity in plant litter at two stages of decomposition (incubated in the field for 1 or 2 years). We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen (N), phosphorus (P) and sulphur. Our study sites represented a three-stage chronosequence from pristine to short-term (years) and long-term (decades) WT drawdown conditions under two nutrient regimes (bog and fen). The litter types included reflected the prevalent vegetation: Sphagnum mosses, graminoids, shrubs and trees. Litter type was the main factor shaping microbial activity patterns and explained about 30 % of the variation in enzyme activities and activity allocation. Overall, enzyme activities were higher in vascular plant litters compared to Sphagnum litters, and the allocation of enzyme activities towards C or nutrient acquisition was related to the initial litter quality (chemical composition). Direct effects of WT regime, site nutrient regime and litter decomposition stage (length of incubation period) summed to only about 40 % of the litter type effect. WT regime alone explained about 5 % of the variation in enzyme activities and activity allocation. Generally, enzyme activity increased following the long-term WT drawdown and the activity allocation turned from P and N acquisition towards C

  18. Effects of stream water chemistry and tree species on release and methylation of mercury during litter decomposition.

    Science.gov (United States)

    Tsui, Martin Tsz Ki; Finlay, Jacques C; Nater, Edward A

    2008-12-01

    Foliage of terrestrial plants provides an important energy and nutrient source to aquatic ecosystems but also represents a potential source of contaminants, such as mercury (Hg). In this study, we examined how different stream water types and terrestrial tree species influenced the release of Hg from senesced litter to the water and its subsequent methylation during hypoxic litter decomposition. After laboratory incubations of maple leaf litter for 66 days, we observed 10-fold differences in dissolved Hg (DHg, tree species collected at the same site and incubated with the same source water, litter from slower decomposing species (e.g., cedar and pine) yielded higher DHg concentrations than those with more labile carbon (e.g., maple and birch). Percent MeHg, however, was relatively similar among different leaf species (i.e., 61-86%). Our study is the first to demonstrate that stream water chemistry and terrestrial plant litter characteristics are important factors determining Hg release and methylation during hypoxic litter decomposition. These results suggest that certain watershed and aquatic ecosystem properties can determine the levels of MeHg inputs during litterfall events.

  19. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe

    Czech Academy of Sciences Publication Activity Database

    Fortunel, C.; Garnier, E.; Joffre, R.; Kazakou, E.; Quested, H.; Grigulis, K.; Lavorel, S.; Ansquer, P.; Castro, H.; Cruz, P.; Doležal, Jiří; Eriksson, O.; Freitas, H.; Golodets, C.; Jouany, C.; Kigel, J.; Kleyer, M.; Lehsten, V.; Lepš, J.; Meier, T.; Pakeman, R.; Papadimitriou, M.; Papanastasis, V. P.; Quétier, F.; Robson, M.; Sternberg, M.; Theau, J.-P.; Thébault, A.; Zarovali, M.

    2009-01-01

    Roč. 90, č. 3 (2009), s. 598-611 ISSN 0012-9658 Grant - others:EU(XE) EVK2-2001-000356 Institutional research plan: CEZ:AV0Z60050516 Keywords : litter decomposability * disturbance * leaf traits Subject RIV: EF - Botanics Impact factor: 4.411, year: 2009

  20. Monoterpene concentrations in fresh, senescent, and decaying foliage of singleleaf pinyon (Pinus monophylla Torr. & Frem.: Pinaceae) from the western Great Basin.

    Science.gov (United States)

    Wilt, F M; Miller, G C; Everett, R L; Hackett, M

    1993-02-01

    Senescent foliage from pines is potentially a large contributor to the total monoterpene content of the litter layer, and the availability of these compounds as phytotoxins may result from release of these compounds into the vapor phase. In order to determine the fate of several monoterpene hydrocarbons in the natural environment, we examined their concentrations in fresh, senescent, and decaying needles from 32 single-leaf pinyon pine (Pinus monophylla Torr. & Frem.: Pinaceae) trees growing at two different locations. Total monoterpene content was highest in the fresh needles (mean=5.6 ± 2.2 mg/g extracted air dry weight), but also remained relatively high in senescent needles (mean=3.6 ±1.8 mg/g extracted air dry weight), either still attached to the tree or forming the freshest layer of understory litter. Decaying needles within a dark decomposing layer of litter material 5-20 cm from the surface were found to contain much lower amounts of total monoterpenes (average: =0.12 ±0.06 mg/g extracted air dry weight). Further investigation of the fate of these compounds in the pinyon understory is required to determine if these hydrocarbons are indeed exerting phytotoxic characteristics.

  1. Traits determining the digestibility-decomposability relationships in species from Mediterranean rangelands.

    Science.gov (United States)

    Bumb, Iris; Garnier, Eric; Coq, Sylvain; Nahmani, Johanne; Del Rey Granado, Maria; Gimenez, Olivier; Kazakou, Elena

    2018-03-05

    Forage quality for herbivores and litter quality for decomposers are two key plant properties affecting ecosystem carbon and nutrient cycling. Although there is a positive relationship between palatability and decomposition, very few studies have focused on larger vertebrate herbivores while considering links between the digestibility of living leaves and stems and the decomposability of litter and associated traits. The hypothesis tested is that some defences of living organs would reduce their digestibility and, as a consequence, their litter decomposability, through 'afterlife' effects. Additionally in high-fertility conditions the presence of intense herbivory would select for communities dominated by fast-growing plants, which are able to compensate for tissue loss by herbivory, producing both highly digestible organs and easily decomposable litter. Relationships between dry matter digestibility and decomposability were quantified in 16 dominant species from Mediterranean rangelands, which are subject to management regimes that differ in grazing intensity and fertilization. The digestibility and decomposability of leaves and stems were estimated at peak standing biomass, in plots that were either fertilized and intensively grazed or unfertilized and moderately grazed. Several traits were measured on living and senesced organs: fibre content, dry matter content and nitrogen, phosphorus and tannin concentrations. Digestibility was positively related to decomposability, both properties being influenced in the same direction by management regime, organ and growth forms. Digestibility of leaves and stems was negatively related to their fibre concentrations, and positively related to their nitrogen concentration. Decomposability was more strongly related to traits measured on living organs than on litter. Digestibility and decomposition were governed by similar structural traits, in particular fibre concentration, affecting both herbivores and micro

  2. The global stoichiometry of litter nitrogen mineralization.

    Science.gov (United States)

    Manzoni, Stefano; Jackson, Robert B; Trofymow, John A; Porporato, Amilcare

    2008-08-01

    Plant residue decomposition and the nutrient release to the soil play a major role in global carbon and nutrient cycling. Although decomposition rates vary strongly with climate, nitrogen immobilization into litter and its release in mineral forms are mainly controlled by the initial chemical composition of the residues. We used a data set of approximately 2800 observations to show that these global nitrogen-release patterns can be explained by fundamental stoichiometric relationships of decomposer activity. We show how litter quality controls the transition from nitrogen accumulation into the litter to release and alters decomposers' respiration patterns. Our results suggest that decomposers lower their carbon-use efficiency to exploit residues with low initial nitrogen concentration, a strategy used broadly by bacteria and consumers across trophic levels.

  3. Litter cover as an index of nitrogen availability in rehabilitated mine sites

    International Nuclear Information System (INIS)

    Todd, M.C.L.; Grierson, P.F.; Adams, M.A.

    2000-01-01

    The spatial heterogeneity of litter cover and bioavailability of nitrogen within a 9-year-old rehabilitated bauxite mine in south Western Australia was examined. Three replicate plots (6 m by 6 m) were each divided into 100 quadrats. Litter cover, vegetation distribution, and projected foliage cover were mapped, and litter (overstorey leaves, understorey leaves, and other assorted fractions) and soil (depth: 0-5, 5-10, and 10-30 cm) were sampled from within each quadrat. Litter distribution reflected projected foliage cover, and accumulated within microtopographic depressions. Distribution of soil nitrate (NO 3 - ) reflected the distribution of litter. The 15 N natural abundance (δ 15 N) values of soil (0-5 cm) and the understorey litter fraction were significantly correlated (R 2 = 0.529, P 13 C) of soil (0-5 cm) was significantly correlated with the distribution of the assorted litter fraction (R 2 0.296, P < 0.05). It is concluded that site preparation practices that effect microtopography, such as contour ripping and revegetation along contours, will have a significant impact on nitrogen (N) distribution and bioavailability within rehabilitated mine sites. Copyright (2000) CSIRO Australia

  4. Microbial Decomposers Not Constrained by Climate History Along a Mediterranean Climate Gradient

    Science.gov (United States)

    Baker, N. R.; Khalili, B.; Martiny, J. B. H.; Allison, S. D.

    2017-12-01

    The return of organic carbon to the atmosphere through terrestrial decomposition is mediated through the breakdown of complex organic polymers by extracellular enzymes produced by microbial decomposer communities. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. To address this question, we deployed fine-pore nylon mesh "microbial cage" litterbags containing grassland litter with and without local inoculum across five sites in southern California, spanning a gradient of 10.3-22.8° C in mean annual temperature and 100-400+ mm mean annual precipitation. Litterbags were deployed in October 2014 and collected four times over the course of 14 months. Recovered litter was assayed for mass loss, litter chemistry, microbial biomass, extracellular enzymes (Vmax and Km­), and enzyme temperature sensitivities. We hypothesized that grassland litter would decompose most rapidly in the grassland site, and that access to local microbial communities would enhance litter decomposition rates and microbial activity in the other sites along the gradient. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbes were not restricted in their ability to decompose litter under different climate conditions. Although we observed a strong correlation between bacterial biomass and mass loss across the gradient, litter that was inoculated with local microbial communities lost less mass despite having greater bacterial biomass and potentially accumulating more microbial residues. Our results suggest that microbial community composition may not constrain C-cycling rates under climate change in our system. However, there may be community constraints on decomposition if climate change alters litter chemistry, a

  5. Influence of litter diversity on dissolved organic matter release and soil carbon formation in a mixed beech forest.

    Science.gov (United States)

    Scheibe, Andrea; Gleixner, Gerd

    2014-01-01

    We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow.

  6. Correlation between the morphogenetic types of litter and their properties in bog birch forests

    Science.gov (United States)

    Efremova, T. T.; Efremov, S. P.; Avrova, A. F.

    2010-08-01

    A formalized arrangement of morphogenetic types of litter according to the physicochemical parameters provided their significant grouping in three genetic associations. The litter group (highly decomposed + moderately decomposed) is confined to the tall-grass group of bog birch forests. The rhizomatous (roughly decomposed) litter is formed in the sedge-reed grass bog birch forests. The litter group (peaty + peatified + peat) is associated with the bog-herbaceous-moss group of forest types. The genetic associations of the litters (a) reliably characterize the edaphic conditions of bog birch forests and (b)correspond to formation of the peat of certain ecological groups. We found highly informative the acid-base parameters, the exchangeable cations (Ca2+ + Mg2+) and the total potential acidity, which differentiated the genetic associations of litter practically with 100% probability. The expediency of studying litters under groups of forest types rather than under separate types of bog birch forests was demonstrated.

  7. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model.

    Science.gov (United States)

    Miki, Takeshi; Ushio, Masayuki; Fukui, Shin; Kondoh, Michio

    2010-08-10

    Theory and empirical evidence suggest that plant-soil feedback (PSF) determines the structure of a plant community and nutrient cycling in terrestrial ecosystems. The plant community alters the nutrient pool size in soil by affecting litter decomposition processes, which in turn shapes the plant community, forming a PSF system. However, the role of microbial decomposers in PSF function is often overlooked, and it remains unclear whether decomposers reinforce or weaken litter-mediated plant control over nutrient cycling. Here, we present a theoretical model incorporating the functional diversity of both plants and microbial decomposers. Two fundamental microbial processes are included that control nutrient mineralization from plant litter: (i) assimilation of mineralized nutrient into the microbial biomass (microbial immobilization), and (ii) release of the microbial nutrients into the inorganic nutrient pool (net mineralization). With this model, we show that microbial diversity may act as a buffer that weakens plant control over the soil nutrient pool, reversing the sign of PSF from positive to negative and facilitating plant coexistence. This is explained by the decoupling of litter decomposability and nutrient pool size arising from a flexible change in the microbial community composition and decomposition processes in response to variations in plant litter decomposability. Our results suggest that the microbial community plays a central role in PSF function and the plant community structure. Furthermore, the results strongly imply that the plant-centered view of nutrient cycling should be changed to a plant-microbe-soil feedback system, by incorporating the community ecology of microbial decomposers and their functional diversity.

  8. Increased site fertility and litter decomposition rate in high-pollution sites in the San Bernardino Mountains

    Science.gov (United States)

    Mark E. Fenn

    1991-01-01

    Some possible factors causing enhanced litter decomposition in high-pollution sites in the San Bernardino Mountains of southern California were investigated. Nitrogen concentration of soil, as well as foliage and litter of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) were greater in...

  9. Foliage litter quality and annual net N mineralization: comparison across North American forest sites.

    Science.gov (United States)

    Scott, Neal A; Binkley, Dan

    1997-07-01

    The feedback between plant litterfall and nutrient cycling processes plays a major role in the regulation of nutrient availability and net primary production in terrestrial ecosystems. While several studies have examined site-specific feedbacks between litter chemistry and nitrogen (N) availability, little is known about the interaction between climate, litter chemistry, and N availability across different ecosystems. We assembled data from several studies spanning a wide range of vegetation, soils, and climatic regimes to examine the relationship between aboveground litter chemistry and annual net N mineralization. Net N mineralization declined strongly and non-linearly as the litter lignin:N ratio increased in forest ecosystems (r 2  = 0.74, P mineralization decreased linearly as litter lignin concentration increased, but the relationship was significant (r 2  = 0.63, P mineralization across this range of sites (r 2  litter lignin:N ratio and net N mineralization from forest floor and mineral soil was similar. The litter lignin:N ratio explained more of the variation in net N mineralization than climatic factors over a wide range of forest age classes, suggesting that litter quality (lignin:N ratio) may exert more than a proximal control over net N mineralization by influencing soil organic matter quality throughout the soil profile independent of climate.

  10. Toxicity to woodlice of zinc and lead oxides added to soil litter

    Science.gov (United States)

    Beyer, W.N.; Anderson, A.

    1985-01-01

    Previous studies have shown that high concentrations of metals in soil are associated with reductions in decomposer populations. We have here determined the relation between the concentrations of lead and zinc added as oxides to soil litter and the survival and reproduction of a decomposer population under controlled conditions. Laboratory populations of woodlice (Porcellio scaber Latr) were fed soil litter treated with lead or zinc at concentrations that ranged from 100 to 12,800 ppm. The survival of the adults, the maximum number of young alive, and the average number of young alive, were recorded over 64 weeks. Lead at 12,800 ppm and zinc at 1,600 ppm or more had statistically significant (p zinc have reduced populations of decomposers in contaminated forest soil litter, and concentrations are similar to those reported to be associated with reductions in natural populations of decomposers. Poisoning of decomposers may disrupt nutrient cycling, reduce the numbers of invertebrates available to other wildlife for food, and contribute to the contamination of food chains.

  11. A Greener Arctic: Vascular Plant Litter Input in Subarctic Peat Bogs Changes Soil Invertebrate Diets and Decomposition Patterns

    Science.gov (United States)

    Krab, E. J.; Berg, M. P.; Aerts, R.; van Logtestijn, R. S. P.; Cornelissen, H. H. C.

    2014-12-01

    Climate-change-induced trends towards shrub dominance in subarctic, moss-dominated peatlands will most likely have large effects on soil carbon (C) dynamics through an input of more easily decomposable litter. The mechanisms by which this increase in vascular litter input interacts with the abundance and diet-choice of the decomposer community to alter C-processing have, however, not yet been unraveled. We used a novel 13C tracer approach to link invertebrate species composition (Collembola), abundance and species-specific feeding behavior to C-processing of vascular and peat moss litters. We incubated different litter mixtures, 100% Sphagnum moss litter, 100% Betula leaf litter, and a 50/50 mixture of both, in mesocosms for 406 days. We revealed the transfer of C from the litters to the soil invertebrate species by 13C labeling of each of the litter types and assessed 13C signatures of the invertebrates Collembola species composition differed significantly between Sphagnum and Betula litter. Within the 'single type litter' mesocosms, Collembola species showed different 13C signatures, implying species-specific differences in diet choice. Surprisingly, the species composition and Collembola abundance changed relatively little as a consequence of Betula input to a Sphagnum based system. Their diet choice, however, changed drastically; species-specific differences in diet choice disappeared and approximately 67% of the food ingested by all Collembola originated from Betula litter. Furthermore, litter decomposition patterns corresponded to these findings; mass loss of Betula increased from 16.1% to 26.2% when decomposing in combination with Sphagnum, while Sphagnum decomposed even slower in combination with Betula litter (1.9%) than alone (4.7%). This study is the first to empirically show that collective diet shifts of the peatland decomposer community from mosses towards vascular plant litter may drive altered decomposition patterns. In addition, we showed that

  12. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition.

    Science.gov (United States)

    Joly, François-Xavier; Kurupas, Kelsey L; Throop, Heather L

    2017-09-01

    Macroclimate has traditionally been considered the predominant driver of litter decomposition. However, in drylands, cumulative monthly or annual precipitation typically fails to predict decomposition. In these systems, the windows of opportunity for decomposer activity may rather depend on the precipitation frequency and local factors affecting litter desiccation, such as soil-litter mixing. We used a full-factorial microcosm experiment to disentangle the relative importance of cumulative precipitation, pulse frequency, and soil-litter mixing on litter decomposition. Decomposition, measured as litter carbon loss, saturated with increasing cumulative precipitation when pulses were large and infrequent, suggesting that litter moisture no longer increased and/or microbial activity was no longer limited by water availability above a certain pulse size. More frequent precipitation pulses led to increased decomposition at high levels of cumulative precipitation. Soil-litter mixing consistently increased decomposition, with greatest relative increase (+194%) under the driest conditions. Collectively, our results highlight the need to consider precipitation at finer temporal scale and incorporate soil-litter mixing as key driver of decomposition in drylands. © 2017 by the Ecological Society of America.

  13. Functional breadth and home-field advantage generate functional differences among soil microbial decomposers.

    Science.gov (United States)

    Fanin, Nicolas; Fromin, Nathalie; Bertrand, Isabelle

    2016-04-01

    In addition to the effect of litter quality (LQ) on decomposition, increasing evidence is demonstrating that carbon mineralization can be influenced by the past resource history, mainly through following two processes: (1) decomposer communities from recalcitrant litter environments may have a wider functional ability to decompose a wide range of litter species than those originating from richer environments, i.e., the functional breadth (FB) hypothesis; and/or (2) decomposer communities may be specialized towards the litter they most frequently encounter, i.e., the home-field advantage (HFA) hypothesis. Nevertheless, the functional dissimilarities among contrasting microbial communities, which are generated by the FB and the HFA, have rarely been simultaneously quantified in the same experiment, and their relative contributions over time have never been assessed. To test these hypotheses, we conducted a reciprocal transplant decomposition experiment under controlled conditions using litter and soil originating from four ecosystems along a land-use gradient (forest, plantation, grassland, and cropland) and one additional treatment using 13C-labelled flax litter allowing us to assess the priming effect (PE) in each ecosystem. We found substantial effects of LQ on carbon mineralization (more than two-thirds of the explained variance), whereas the contribution of the soil type was fairly low (less than one-tenth), suggesting that the contrasting soil microbial communities play only a minor role in regulating decomposition rates. Although the results on PE showed that we overestimated litter-derived CO2 fluxes, litter-microbe interactions contributed significantly to the unexplained variance observed in carbon mineralization models. The magnitudes of FB and HFA were relatively similar, but the directions of these mechanisms were sometimes opposite depending on the litter and soil types. FB and HFA estimates calculated on parietal sugar mass loss were positively

  14. Limited Effects of Variable-Retention Harvesting on Fungal Communities Decomposing Fine Roots in Coastal Temperate Rainforests.

    Science.gov (United States)

    Philpott, Timothy J; Barker, Jason S; Prescott, Cindy E; Grayston, Sue J

    2018-02-01

    Fine root litter is the principal source of carbon stored in forest soils and a dominant source of carbon for fungal decomposers. Differences in decomposer capacity between fungal species may be important determinants of fine-root decomposition rates. Variable-retention harvesting (VRH) provides refuge for ectomycorrhizal fungi, but its influence on fine-root decomposers is unknown, as are the effects of functional shifts in these fungal communities on carbon cycling. We compared fungal communities decomposing fine roots (in litter bags) under VRH, clear-cut, and uncut stands at two sites (6 and 13 years postharvest) and two decay stages (43 days and 1 year after burial) in Douglas fir forests in coastal British Columbia, Canada. Fungal species and guilds were identified from decomposed fine roots using high-throughput sequencing. Variable retention had short-term effects on β-diversity; harvest treatment modified the fungal community composition at the 6-year-postharvest site, but not at the 13-year-postharvest site. Ericoid and ectomycorrhizal guilds were not more abundant under VRH, but stand age significantly structured species composition. Guild composition varied by decay stage, with ruderal species later replaced by saprotrophs and ectomycorrhizae. Ectomycorrhizal abundance on decomposing fine roots may partially explain why fine roots typically decompose more slowly than surface litter. Our results indicate that stand age structures fine-root decomposers but that decay stage is more important in structuring the fungal community than shifts caused by harvesting. The rapid postharvest recovery of fungal communities decomposing fine roots suggests resiliency within this community, at least in these young regenerating stands in coastal British Columbia. IMPORTANCE Globally, fine roots are a dominant source of carbon in forest soils, yet the fungi that decompose this material and that drive the sequestration or respiration of this carbon remain largely

  15. Microbial decomposers not constrained by climate history along a Mediterranean climate gradient in southern California.

    Science.gov (United States)

    Baker, Nameer R; Khalili, Banafshe; Martiny, Jennifer B H; Allison, Steven D

    2018-06-01

    Microbial decomposers mediate the return of CO 2 to the atmosphere by producing extracellular enzymes to degrade complex plant polymers, making plant carbon available for metabolism. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. We analyzed mass loss, litter chemistry, microbial biomass, extracellular enzyme activities, and enzyme temperature sensitivities in grassland litter transplanted along a Mediterranean climate gradient in southern California. Microbial community composition was manipulated by caging litter within bags made of nylon membrane that prevent microbial immigration. To test whether grassland microbes were constrained by climate history, half of the bags were inoculated with local microbial communities native to each gradient site. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbial communities were not restricted in their ability to decompose litter under different climate conditions across the gradient, although microbial communities across our gradient may be restricted in their ability to degrade different types of litter. We did find some evidence that local microbial communities were optimized based on climate, but local microbial taxa that proliferated after inoculation into litterbags did not enhance litter decomposition. Our results suggest that microbial community composition does not constrain C-cycling rates under climate change in our system, but optimization to particular resource environments may act as more general constraints on microbial communities. © 2018 by the Ecological Society of America.

  16. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2

    International Nuclear Information System (INIS)

    Schlesinger, W.H.; Lichter, J.

    2001-01-01

    The current rise in atmospheric CO 2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO 2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO 2 concentrations (565 μ l 1 ). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely. (author)

  17. Fungal mycelium and decomposition of needle litter in three contrasting coniferous forests

    Science.gov (United States)

    Virzo De Santo, Amalia; Rutigliano, Flora Angela; Berg, Björn; Fioretto, Antonietta; Puppi, Gigliola; Alfani, Anna

    2002-08-01

    The fungal mycelium ingrowth and the rates of mass loss and respiration of needle litter of Pinus pinea, Pinus laricio, Pinus sylvestris, and Abies alba were investigated, in three coniferous forests, over a 3-year period by means of a composite set of incubations. In the early stages, the fungal flora of the decomposing needles was dominated by dematiaceous hyphomycetes and coelomycetes. Basidiomycetes reached a peak after 6 months on pine needles, but were absent from the N-rich needles of A. alba. Soil fungi ( Penicillium, Trichoderma, Absidia, Mucor sp. pl.) became most frequent in later stages. At the end of the study period, the total mycelium amount showed the lowest values in all pine needles incubated in the P. laricio forest and the highest ones in P. pinea needles incubated in the P. pinea forest. In all data sets, as in data for boreal forests examined for comparison, the concentration of litter fungal mycelium versus litter mass loss followed a common exponential model. However, in later stages, the amount of litter fungal mycelium was very close to that of the humus at the incubation site, thus supporting the hypothesis of a logistic growth pattern. Respiration rates of decomposing litters varied with season and decreased with litter age to values close to those of the humus at the incubation site. Respiration of water-saturated litter was negatively correlated with the total mycelium concentration, and this was consistent with the observation that in far-decomposed litter only a minor fraction of the total mycelium is alive.

  18. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Bonzom, Jean-Marc, E-mail: jean-marc.bonzom@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS, Cadarache, Bât. 183, BP 3, 13115 St Paul-lez-Durance (France); Hättenschwiler, Stephan [Centre d' Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293 Montpellier (France); Lecomte-Pradines, Catherine [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS, Cadarache, Bât. 183, BP 3, 13115 St Paul-lez-Durance (France); Chauvet, Eric [EcoLab, Université de Toulouse, CNRS, UPS, INPT, 118 Route de Narbonne, 31062 Toulouse cedex (France); Gaschak, Sergey [Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych (Ukraine); Beaugelin-Seiller, Karine; Della-Vedova, Claire; Dubourg, Nicolas [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS, Cadarache, Bât. 183, BP 3, 13115 St Paul-lez-Durance (France); Maksimenko, Andrey [Chernobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, 07100 Slavutych (Ukraine); and others

    2016-08-15

    The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely unknown. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the functioning of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22–15 μGy h{sup −1}) and (ii) along a short distance gradient of radioactive contamination (1.2–29 μGy h{sup −1}) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimated the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced ecological consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150 μGy h{sup −1}. This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the uncontaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes. - Highlights: • The effects of radioactivity on

  19. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    Bonzom, Jean-Marc; Hättenschwiler, Stephan; Lecomte-Pradines, Catherine; Chauvet, Eric; Gaschak, Sergey; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Dubourg, Nicolas; Maksimenko, Andrey

    2016-01-01

    The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely unknown. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the functioning of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22–15 μGy h −1 ) and (ii) along a short distance gradient of radioactive contamination (1.2–29 μGy h −1 ) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimated the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced ecological consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150 μGy h −1 . This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the uncontaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes. - Highlights: • The effects of radioactivity on ecosystem processes

  20. Are nitrate exports in stream water linked to nitrogen fluxes in decomposing foliar litter?

    Science.gov (United States)

    Kathryn B. Piatek; Mary Beth. Adams

    2011-01-01

    The central hardwood forest receives some of the highest rates of atmospheric nitrogen (N) deposition, which results in nitrate leaching to surface waters. Immobilization of N in foliar litter during litter decomposition represents a potential mechanism for temporal retention of atmospherically deposited N in forest ecosystems. When litter N dynamics switch to the N-...

  1. Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, K T; Hatakka, A [Dept. of Applied Chemistry and Microbiology, Univ. of Helsinki (Finland); Hofrichter, M [Unit of Environmental Biotechnology, International Graduate School Zittau, Zittau (Germany)

    2003-07-01

    Nine strains of litter-decomposing fungi, representing eight species of agaric basidiomycetes, were tested for their ability to remove a mixture of three polycyclic aromatic hydrocarbons (PAHs) (total 60 mg l{sup -1}) comprising anthracene, pyrene and benzo(a)pyrene (BaP) in liquid culture. All strains were able to convert this mixture to some extent, but considerable differences in degradative activity were observed depending on the species, the Mn(II) concentration, and the particular PAH. Stropharia rugosoannulata was the most efficient degrader, removing or transforming BaP almost completely and about 95% of anthracene and 85% of pyrene, in cultures supplemented with 200 {mu}M Mn(II), within 6 weeks. In contrast less than 40, 18, and 50% BaP, anthracene and pyrene, respectively, were degraded in the absence of supplemental Mn(II). In the case of Stropharia coronilla, the presence of Mn(II) led to a 20-fold increase of anthracene conversion. The effect of manganese could be attributed to the stimulation of manganese peroxidase (MnP). The maximum activity of MnP increased in S. rugosoannulata cultures from 10 U l{sup -1} in the absence of Mn(II) to 320 U l{sup -1} in Mn(II)-supplemented cultures. The latter degraded about 6% of a {sup 14}C-labeled BaP into {sup 14}CO{sub 2} whereas only 0.7% was mineralized in the absence of Mn(II). In solid-state straw cultures, S. rugosoannulata, S. coronilla and Agrocybe praecox mineralized between 4 and 6% of {sup 14}C-labeled BaP within 12 weeks. (orig.)

  2. Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi.

    Science.gov (United States)

    Steffen, K T; Hatakka, A; Hofrichter, M

    2002-10-01

    Nine strains of litter-decomposing fungi, representing eight species of agaric basidiomycetes, were tested for their ability to remove a mixture of three polycyclic aromatic hydrocarbons (PAHs) (total 60 mg l(-1)) comprising anthracene, pyrene and benzo(a)pyrene (BaP) in liquid culture. All strains were able to convert this mixture to some extent, but considerable differences in degradative activity were observed depending on the species, the Mn(II) concentration, and the particular PAH. Stropharia rugosoannulata was the most efficient degrader, removing or transforming BaP almost completely and about 95% of anthracene and 85% of pyrene, in cultures supplemented with 200 micro M Mn(II), within 6 weeks. In contrast less than 40, 18, and 50% BaP, anthracene and pyrene, respectively, were degraded in the absence of supplemental Mn(II). In the case of Stropharia coronilla, the presence of Mn(II) led to a 20-fold increase of anthracene conversion. The effect of manganese could be attributed to the stimulation of manganese peroxidase (MnP). The maximum activity of MnP increased in S. rugosoannulata cultures from 10 U l(-1) in the absence of Mn(II) to 320 U l(-1) in Mn(II)-supplemented cultures. The latter degraded about 6% of a (14)C-labeled BaP into (14)CO(2) whereas only 0.7% was mineralized in the absence of Mn(II). In solid-state straw cultures, S. rugosoannulata, S. coronilla and Agrocybe praecox mineralized between 4 and 6% of (14)C-labeled BaP within 12 weeks.

  3. Relocation of carbon from decomposition of {sup 14}C-labelled needle and fine root litter in peat soil

    Energy Technology Data Exchange (ETDEWEB)

    Domish, T; Laine, J; Laiho, R [Helsinki Univ. (Finland). Dept. of Forest Ecology; Finer, L [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Karsisto, M [Finnish Forest Research Inst. (Finland). Dept. of Forest Ecology

    1997-12-31

    Drainage of peatlands promotes a shift of biomass and production from the ground vegetation to the trees. Thus, the above-ground (e.g. needles) and below-ground (roots) litter production of trees increases. Fine roots in particular are an important factor in the carbon and nutrient cycle in forest ecosystems. A major part of the annual net primary production of trees may be allocated below ground, the relative proportion being smaller on fertile sites than on less fertile ones. For modelling the carbon balance of drained peatlands, it is important to know the fate of carbon from newly introduced and decomposing litter. Newly added and fertilised tree litter material may be decomposed at a rate different than litter from the ground vegetation. The objectives of this study are to study the pathways of decomposing litter carbon in peat soil and to evaluate the use of the litterbag method in a controlled environment. (9 refs.)

  4. Relocation of carbon from decomposition of {sup 14}C-labelled needle and fine root litter in peat soil

    Energy Technology Data Exchange (ETDEWEB)

    Domish, T.; Laine, J.; Laiho, R. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Finer, L. [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Karsisto, M. [Finnish Forest Research Inst. (Finland). Dept. of Forest Ecology

    1996-12-31

    Drainage of peatlands promotes a shift of biomass and production from the ground vegetation to the trees. Thus, the above-ground (e.g. needles) and below-ground (roots) litter production of trees increases. Fine roots in particular are an important factor in the carbon and nutrient cycle in forest ecosystems. A major part of the annual net primary production of trees may be allocated below ground, the relative proportion being smaller on fertile sites than on less fertile ones. For modelling the carbon balance of drained peatlands, it is important to know the fate of carbon from newly introduced and decomposing litter. Newly added and fertilised tree litter material may be decomposed at a rate different than litter from the ground vegetation. The objectives of this study are to study the pathways of decomposing litter carbon in peat soil and to evaluate the use of the litterbag method in a controlled environment. (9 refs.)

  5. Are litter decomposition and fire linked through plant species traits?

    Science.gov (United States)

    Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien

    2017-11-01

    Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Carbon dynamics in peatlands under changing hydrology. Effects of water level drawdown on litter quality, microbial enzyme activities and litter decomposition rates

    Energy Technology Data Exchange (ETDEWEB)

    Strakova, P.

    2010-07-01

    Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the 'old C' (peat) sequestered under prior anoxic conditions. Responses of the 'new C' (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the 'new C' by measuring the relative importance of (1) environmental parameters (WL depth, temperature, soil chemistry) and (2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and

  7. [Relationships between decomposition rate of leaf litter and initial quality across the alpine timberline ecotone in Western Sichuan, China].

    Science.gov (United States)

    Yang, Lin; Deng, Chang-chun; Chen Ya-mei; He, Run-lian; Zhang, Jian; Liu, Yang

    2015-12-01

    The relationships between litter decomposition rate and their initial quality of 14 representative plants in the alpine forest ecotone of western Sichuan were investigated in this paper. The decomposition rate k of the litter ranged from 0.16 to 1.70. Woody leaf litter and moss litter decomposed much slower, and shrubby litter decomposed a little faster. Then, herbaceous litters decomposed fastest among all plant forms. There were significant linear regression relationships between the litter decomposition rate and the N content, lignin content, phenolics content, C/N, C/P and lignin/N. Lignin/N and hemicellulose content could explain 78.4% variation of the litter decomposition rate (k) by path analysis. The lignin/N could explain 69.5% variation of k alone, and the direct path coefficient of lignin/N on k was -0.913. Principal component analysis (PCA) showed that the contribution rate of the first sort axis to k and the decomposition time (t) reached 99.2%. Significant positive correlations existed between lignin/N, lignin content, C/N, C/P and the first sort axis, and the closest relationship existed between lignin/N and the first sort axis (r = 0.923). Lignin/N was the key quality factor affecting plant litter decomposition rate across the alpine timberline ecotone, with the higher the initial lignin/N, the lower the decomposition rate of leaf litter.

  8. Competition of Scleroconidioma sphagnicola with fungi decomposing spruce litter needles

    Czech Academy of Sciences Publication Activity Database

    Koukol, Ondřej; Mrnka, Libor; Kulhánková, A.; Vosátka, Miroslav

    2006-01-01

    Roč. 84, - (2006), s. 469-476 ISSN 0008-4026 R&D Projects: GA ČR(CZ) GA206/05/0269 Institutional research plan: CEZ:AV0Z60050516 Keywords : litter needles * competition * agar pairing Subject RIV: EF - Botanics Impact factor: 1.193, year: 2006

  9. Fungal communities influence decomposition rates of plant litter from two dominant tree species

    NARCIS (Netherlands)

    Asplund, Johan; Kauserud, Håvard; Bokhorst, Stef; Lie, Marit H.; Ohlson, Mikael; Nybakken, Line

    The home-field advantage hypothesis (HFA) predicts that plant litter decomposes faster than expected underneath the plant from which it originates. We tested this hypothesis in a decomposition experiment where litters were incubated reciprocally in neighbouring European beech and Norway spruce

  10. Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China.

    Science.gov (United States)

    Sun, Zhigao; Mou, Xiaojie

    2016-03-01

    From April 2008 to November 2009, a field decomposition experiment was conducted to investigate the effects of sediment burial on macro (C, N) and microelement (Pb, Cr, Cu, Zn, Ni, and Mn) variations in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary. Three one-off sediment burial treatments [no sediment burial (0 mm year(-1), S0), current sediment burial (100 mm year(-1), S10), and strong sediment burial (200 mm year(-1), S20)] were laid in different decomposition sites. Results showed that sediment burials showed significant influence on the decomposition rate of P. australis, in the order of S10 (0.001990 day(-1)) ≈ S20 (0.001710 day(-1)) > S0 (0.000768 day(-1)) (p macro and microelement in decomposing litters of the three burial depths exhibited different temporal variations except for Cu, Zn, and Ni. No significant differences in C, N, Pb, Cr, Zn, and Mn concentrations were observed among the three burial treatments except for Cu and Ni (p > 0.05). With increasing burial depth, N, Cr, Cu, Ni, and Mn concentrations generally increased, while C, Pb, and Zn concentrations varied insignificantly. Sediment burial was favorable for C and N release from P. australis, and, with increasing burial depth, the C release from litter significantly increased, and the N in litter shifted from accumulation to release. With a few exceptions, Pb, Cr, Zn, and Mn stocks in P. australis in the three treatments evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. Stocks of Cu and Ni in P. australis in the S10 and S20 treatments were generally positive, evidencing incorporation of the two metals in most sampling times. Except for Ni, the variations of C, N, Pb, Cr, Cu, Zn, and Mn stocks in P. australis in the S10 and S20 treatments were approximated, indicating that the strong burial episodes (S20) occurred in P. australis marsh in the future

  11. Decomposition of belowground litter and metal dynamics in salt marshes (Tagus Estuary, Portugal)

    International Nuclear Information System (INIS)

    Pereira, Patricia; Cacador, Isabel; Vale, Carlos; Caetano, Miguel; Costa, Ana Luisa

    2007-01-01

    The concentrations of C, Fe, Mn, Zn, Cu, Pb and Cd were determined monthly in decomposing roots of Halimione portulacoides, using litterbag experiments, in two salt marshes of the Tagus estuary with different levels of contamination. Although carbon concentrations varied within a narrow interval during the experiment, litter decomposed rapidly in the first month (weight loss between 0.051 and 0.065 g d -1 ). The time variation of metals was examined in terms of Me/C ratios and metal stocks. Ratios of Fe/C and Mn/C and their metal stocks increased in spring, presumably due to the precipitation of oxides in the surface of decomposing roots. Subsequent decrease of Fe/C and Mn/C ratios suggests the use of Fe and Mn oxides, as electron acceptors, in the organic matter oxidation. Zinc, Cu, Pb and Cd ratios to C were, in general, higher than at initial conditions implying that metal that leached out was slower than carbon. However, metal stocks decreased during the experiment indicating that incorporation or sorption of metals in Fe and Mn oxides did not counterbalance the amount of Zn, Pb and Cd released from decomposing litter. An exception was observed for Cu, since stock in the less contaminated marsh (Pancas) increased during the decomposition, indicating that litter was efficient on Cu binding under more oxidising conditions. These results emphasize the importance of litter decomposition and sediment characteristics on metal cycling in salt marshes

  12. Fungal community on decomposing leaf litter undergoes rapid successional changes

    Czech Academy of Sciences Publication Activity Database

    Voříšková, Jana; Baldrian, Petr

    2013-01-01

    Roč. 7, č. 3 (2013), s. 477-486 ISSN 1751-7362 R&D Projects: GA MŠk(CZ) ME10152; GA MŠk LD12050; GA ČR GAP504/12/0709 Institutional support: RVO:61388971 Keywords : fungi * litter decomposition * cellulose Subject RIV: EE - Microbiology , Virology Impact factor: 9.267, year: 2013

  13. Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection.

    Science.gov (United States)

    Clarke, Peter J; Prior, Lynda D; French, Ben J; Vincent, Ben; Knox, Kirsten J E; Bowman, David M J S

    2014-12-01

    We used a mosaic of infrequently burnt temperate rainforest and adjacent, frequently burnt eucalypt forests in temperate eastern Australia to test whether: (1) there were differences in flammability of fresh and dried foliage amongst congeners from contrasting habitats, (2) habitat flammability was related to regeneration strategy, (3) litter fuels were more flammable in frequently burnt forests, (4) the severity of a recent fire influenced the flammability of litter (as this would suggest fire feedbacks), and (5) microclimate contributed to differences in fire hazard amongst habitats. Leaf-level comparisons were made among 11 congeneric pairs from rainforest and eucalypt forests. Leaf-level ignitability, combustibility and sustainability were not consistently higher for taxa from frequently burnt eucalypt forests, nor were they higher for species with fire-driven recruitment. The bulk density of litter-bed fuels strongly influenced flammability, but eucalypt forest litter was not less dense than rainforest litter. Ignitability, combustibility and flame sustainability of community surface fuels (litter) were compared using fuel arrays with standardized fuel mass and moisture content. Forests previously burned at high fire severity did not have consistently higher litter flammability than those burned at lower severity or long unburned. Thus, contrary to the Mutch hypothesis, there was no evidence of higher flammability of litter fuels or leaves from frequently burnt eucalypt forests compared with infrequently burnt rainforests. We suggest the manifest pyrogenicity of eucalypt forests is not due to natural selection for more flammable foliage, but better explained by differences in crown openness and associated microclimatic differences.

  14. Impacts of elevated atmospheric CO2 on litter quality, litter decomposability and nitrogen turnover rate of two oak species in a Mediterranean forest ecosystem

    NARCIS (Netherlands)

    Fayez Raiesi Gahrooee,

    1998-01-01

    Elevated CO2 may affect litter quality of plants, and subsequently C and N cycling in terrestrial ecosystems, but changes in litter quality associated with elevated CO2 are poorly known. Abscised leaf litter of two oak species (Quercus cerris L., and Q. pubescens Willd.) exposed to long-term

  15. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone.

    Science.gov (United States)

    Bonzom, Jean-Marc; Hättenschwiler, Stephan; Lecomte-Pradines, Catherine; Chauvet, Eric; Gaschak, Sergey; Beaugelin-Seiller, Karine; Della-Vedova, Claire; Dubourg, Nicolas; Maksimenko, Andrey; Garnier-Laplace, Jacqueline; Adam-Guillermin, Christelle

    2016-08-15

    The effects of radioactive contamination on ecosystem processes such as litter decomposition remain largely unknown. Because radionuclides accumulated in soil and plant biomass can be harmful for organisms, the functioning of ecosystems may be altered by radioactive contamination. Here, we tested the hypothesis that decomposition is impaired by increasing levels of radioactivity in the environment by exposing uncontaminated leaf litter from silver birch and black alder at (i) eleven distant forest sites differing in ambient radiation levels (0.22-15μGyh(-1)) and (ii) along a short distance gradient of radioactive contamination (1.2-29μGyh(-1)) within a single forest in the Chernobyl exclusion zone. In addition to measuring ambient external dose rates, we estimated the average total dose rates (ATDRs) absorbed by decomposers for an accurate estimate of dose-induced ecological consequences of radioactive pollution. Taking into account potential confounding factors (soil pH, moisture, texture, and organic carbon content), the results from the eleven distant forest sites, and from the single forest, showed increased litter mass loss with increasing ATDRs from 0.3 to 150μGyh(-1). This unexpected result may be due to (i) overcompensation of decomposer organisms exposed to radionuclides leading to a higher decomposer abundance (hormetic effect), and/or (ii) from preferred feeding by decomposers on the uncontaminated leaf litter used for our experiment compared to locally produced, contaminated leaf litter. Our data indicate that radio-contamination of forest ecosystems over more than two decades does not necessarily have detrimental effects on organic matter decay. However, further studies are needed to unravel the underlying mechanisms of the results reported here, in order to draw firmer conclusions on how radio-contamination affects decomposition and associated ecosystem processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Above and belowground controls on litter decomposition in semiarid ecosystems: effects of solar radiation, water availability and litter quality

    Science.gov (United States)

    Austin, A. T.; Araujo, P. I.; Leva, P. E.; Ballare, C. L.

    2008-12-01

    The integrated controls on soil organic matter formation in arid and semiarid ecosystems are not well understood and appear to stem from a number of interacting controls affecting above- and belowground carbon turnover. While solar radiation has recently been shown to have an important direct effect on carbon loss in semiarid ecosystems as a result of photochemical mineralization of aboveground plant material, the mechanistic basis for photodegradative losses is poorly understood. In addition, there are large potential differences in major controls on above- and belowground decomposition in low rainfall ecosystems. We report on a mesocosm and field study designed to examine the relative importance of different wavelengths of solar radiation, water availability, position of senescent material above- and belowground and the importance of carbon litter quality in determining rates of abiotic and biotic decomposition. In a factorial experiment of mesocosms, we incubated leaf and root litter simultaneously above- and belowground and manipulated water availability with large and small pulses. Significant interactions between position-litter type and position-pulse sizes demonstrated interactive controls on organic mass loss. Aboveground decomposition showed no response to pulse size or litter type, as roots and leaves decomposed equally rapidly under all circumstances. In contrast, belowground decomposition was significantly altered by litter type and water pulses, with roots decomposing significantly slower and small water pulses reducing belowground decomposition. In the field site, using plastic filters which attenuated different wavelengths of natural solar radiation, we found a highly significant effect of radiation exclusion on mass loss and demonstrated that both UV-A and short-wave visible light can have important impacts on photodegradative carbon losses. The combination of position and litter quality effects on litter decomposition appear to be critical for the

  17. Solar ultraviolet radiation alters alder and birch litter chemistry that in turn affects decomposers and soil respiration.

    Science.gov (United States)

    Kotilainen, Titta; Haimi, Jari; Tegelberg, Riitta; Julkunen-Tiitto, Riitta; Vapaavuori, Elina; Aphalo, Pedro Jose

    2009-10-01

    Solar ultraviolet (UV)-A and UV-B radiation were excluded from branches of grey alder (Alnus incana) and white birch (Betula pubescens) trees in a field experiment. Leaf litter collected from these trees was used in microcosm experiments under laboratory conditions. The aim was to evaluate the effects of the different UV treatments on litter chemical quality (phenolic compounds, C, N and lignin) and the subsequent effects of these changes on soil fauna and decomposition processes. We measured the decomposition rate of litter, growth of woodlice (Porcellio scaber), soil microbial respiration and abundance of nematodes and enchytraeid worms. In addition, the chemical quality of woodlice feces was analyzed. The exclusion of both UV-A and UV-B had several effects on litter chemistry. Exclusion of UV-B radiation decreased the C content in litter in both tree species. In alder litter, UV exclusion affected concentration of phenolic groups variably, whereas in birch litter there were no significant differences in phenolic compounds. Moreover, further effects on microbial respiration and chemical quality of woodlice feces were apparent. In both tree species, microbial CO(2) evolution was lower in soil with litter produced under exclusion of both UV-A and UV-B radiation when compared to soil with control litter. The N content was higher in the feces of woodlice eating alder litter produced under exclusion of both UV-A and UV-B compared to the control. In addition, there were small changes in the concentration of individual phenolic compounds analyzed from woodlice feces. Our results demonstrate that both UV-A and UV-B alter litter chemistry which in turn affects decomposition processes.

  18. Effects of terrestrial isopods (Crustacea: Oniscidea on leaf litter decomposition processes

    Directory of Open Access Journals (Sweden)

    Khaleid F. Abd El-Wakeil

    2015-03-01

    Full Text Available The leaf litter decomposition is carried out by the combined action of microorganisms and decomposer invertebrates such as earthworms, diplopods and isopods. The present work aimed to evaluate the impact of terrestrial isopod on leaf litter decomposition process. In Lab experimental food sources from oak and magnolia leaves litter were prepared. Air dried leaf litter were cut to 9 mm discs and sterilized in an autoclave then soaked in distilled water or water percolated through soil and left to decompose for 2, 4 and 6 weeks. 12 groups from two isopods species Porcellio scaber and Armadillidium vulgare, were prepared with each one containing 9 isopods. They were fed individually on the prepared food for 2 weeks. The prepared food differed in Carbon stable isotope ratio (δ13C, C%, N% and C/N ratios. At the end of the experiment, isopods were dissected and separated into gut, gut content and rest of the body. The δ13C for the prepared food, faecal pellets, remaining food, gut content, gut and rest of isopod were compared. The feeding activities of the two isopods were significantly different among isopods groups. Consumption and egestion ratios of magnolia leaf were higher than oak leaf. P. scaber consumed and egested litter higher than A. vulgare. The present results suggested that the impact of isopods and decomposition processes is species and litter specific.

  19. Tree leaf and root traits mediate soil faunal contribution to litter decomposition across an elevational gradient

    NARCIS (Netherlands)

    Fujii, Saori; Cornelissen, Johannes H.C.; Berg, Matty P.; Mori, Akira S.

    2018-01-01

    © 2018 British Ecological Society. Plant litter decomposition is key to carbon and nutrient cycling in terrestrial ecosystems. Soil fauna are important litter decomposers, but how their contribution to decomposition changes with alterations in plant composition and climate is not well established.

  20. Flexible Carbon-Use Efficiency across Litter Types and during Decomposition Partly Compensates Nutrient Imbalances-Results from Analytical Stoichiometric Models.

    Science.gov (United States)

    Manzoni, Stefano

    2017-01-01

    Mathematical models involving explicit representations of microbial processes have been developed to infer microbial community properties from laboratory and field measurements. While this approach has been used to estimate the kinetic constants related to microbial activity, it has not been fully exploited for inference of stoichiometric traits, such as carbon-use efficiency (CUE). Here, a hierarchy of analytically-solvable mass-balance models of litter carbon (C) and nitrogen (N) dynamics is developed, to infer decomposer CUE from measured C and N contents during litter decomposition. The models are solved in the phase space-expressing litter remaining N as a function of remaining C-rather than in time, thus focusing on the stoichiometric relations during decomposition rather than the kinetics of degradation. This approach leads to explicit formulas that depend on CUE and other microbial properties, which can then be treated as model parameters and retrieved via nonlinear regression. CUE is either assumed time-invariant or as a function of the fraction of remaining litter C as a substitute for time. In all models, CUE tends to increase with increasing litter N availability across a range of litter types. When temporal trends in CUE are considered, CUE increases during decomposition of N-poor litter cohorts, in which decomposers are initially N-limited, but decreases in N-rich litter possibly due to C-limitation. These patterns of flexible CUE that partly compensate stoichiometric imbalances are robust to moderate shifts in decomposer C:N ratio and hold across wide climatic gradients.

  1. Flexible Carbon-Use Efficiency across Litter Types and during Decomposition Partly Compensates Nutrient Imbalances—Results from Analytical Stoichiometric Models

    Science.gov (United States)

    Manzoni, Stefano

    2017-01-01

    Mathematical models involving explicit representations of microbial processes have been developed to infer microbial community properties from laboratory and field measurements. While this approach has been used to estimate the kinetic constants related to microbial activity, it has not been fully exploited for inference of stoichiometric traits, such as carbon-use efficiency (CUE). Here, a hierarchy of analytically-solvable mass-balance models of litter carbon (C) and nitrogen (N) dynamics is developed, to infer decomposer CUE from measured C and N contents during litter decomposition. The models are solved in the phase space—expressing litter remaining N as a function of remaining C—rather than in time, thus focusing on the stoichiometric relations during decomposition rather than the kinetics of degradation. This approach leads to explicit formulas that depend on CUE and other microbial properties, which can then be treated as model parameters and retrieved via nonlinear regression. CUE is either assumed time-invariant or as a function of the fraction of remaining litter C as a substitute for time. In all models, CUE tends to increase with increasing litter N availability across a range of litter types. When temporal trends in CUE are considered, CUE increases during decomposition of N-poor litter cohorts, in which decomposers are initially N-limited, but decreases in N-rich litter possibly due to C-limitation. These patterns of flexible CUE that partly compensate stoichiometric imbalances are robust to moderate shifts in decomposer C:N ratio and hold across wide climatic gradients. PMID:28491054

  2. Flexible Carbon-Use Efficiency across Litter Types and during Decomposition Partly Compensates Nutrient Imbalances—Results from Analytical Stoichiometric Models

    Directory of Open Access Journals (Sweden)

    Stefano Manzoni

    2017-04-01

    Full Text Available Mathematical models involving explicit representations of microbial processes have been developed to infer microbial community properties from laboratory and field measurements. While this approach has been used to estimate the kinetic constants related to microbial activity, it has not been fully exploited for inference of stoichiometric traits, such as carbon-use efficiency (CUE. Here, a hierarchy of analytically-solvable mass-balance models of litter carbon (C and nitrogen (N dynamics is developed, to infer decomposer CUE from measured C and N contents during litter decomposition. The models are solved in the phase space—expressing litter remaining N as a function of remaining C—rather than in time, thus focusing on the stoichiometric relations during decomposition rather than the kinetics of degradation. This approach leads to explicit formulas that depend on CUE and other microbial properties, which can then be treated as model parameters and retrieved via nonlinear regression. CUE is either assumed time-invariant or as a function of the fraction of remaining litter C as a substitute for time. In all models, CUE tends to increase with increasing litter N availability across a range of litter types. When temporal trends in CUE are considered, CUE increases during decomposition of N-poor litter cohorts, in which decomposers are initially N-limited, but decreases in N-rich litter possibly due to C-limitation. These patterns of flexible CUE that partly compensate stoichiometric imbalances are robust to moderate shifts in decomposer C:N ratio and hold across wide climatic gradients.

  3. Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized with ectomycorrhizal or litter decomposing basidiomycetes

    OpenAIRE

    COLPAERT, Jan; VAN TICHELEN, Katia

    1996-01-01

    The decomposition and the nitrogen and phosphorus mineralization of fresh beech (Fagus sylvatica L.) leaf litter are described. Leaves were buried for up to 6 months in plant containers in which Scots pine (Pinus sylvestris L.) seedlings were cultivated at a low rate of nutrient addition. The saprotrophic abilities of three ectomycorrhizal fungi, Thelephora terrestris Ehrh.: Fr., Suillus bovinus (L.: Fr.) O. Kuntze and Paxillus involutes (Batsch: Fr) Fr., were compared with the degradation ca...

  4. Climate history shapes contemporary leaf litter decomposition

    Science.gov (United States)

    Michael S. Strickland; Ashley D. Keiser; Mark A. Bradford

    2015-01-01

    Litter decomposition is mediated by multiple variables, of which climate is expected to be a dominant factor at global scales. However, like other organisms, traits of decomposers and their communities are shaped not just by the contemporary climate but also their climate history. Whether or not this affects decomposition rates is underexplored. Here we source...

  5. A test of the hierarchical model of litter decomposition

    DEFF Research Database (Denmark)

    Bradford, Mark A.; Veen, G. F.; Bonis, Anne

    2017-01-01

    Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls...... regulating the rate at which plant biomass is decomposed into products such as CO2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature...

  6. The influence of litter composition across the litter–soil interface on mass loss, nitrogen dynamics and the decomposer community

    Science.gov (United States)

    Many studies have investigated the influence of plant litter species composition on decomposition, but results have been context-dependent. Litter and soil are considered to constitute a decomposition continuum, but whether litter and soil ecosystems respond to litter identity an...

  7. The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the Subarctic

    International Nuclear Information System (INIS)

    Gehrke, C.; Johanson, U.; Callaghan, T.V.; Chadwick, D.; Robinson, C.H.

    1995-01-01

    The aim of this study was to investigate how UV-B radiation will affect 1) the quality of plant litter grown under different UV-B levels in the Subarctic and 2) decomposition under different UV-B levels. The deciduous dwarf shrubs Vaccinium uliginosum and V. myrtillus grew under ambient and enhanced UV-B (corresponding to 15% ozone depletion) in a natural heath ecosystem in the Subarctic. After two growing seasons senesced leaves were collected and decomposed in a 2 × 2 factorial experiment under both laboratory conditions for 62 d (V. uliginosum: no UV-B and 10 kJ m -2 d -1 UV- B BE ) and under field conditions for twelve months (V. myrtillus: ambient and enhanced UV-B corresponding 15% ozone depletion). Additionally, colonization and growth of decomposing fungi were studied on leaves decomposed without and with UV-B in the laboratory. The enhanced UV-B during growth changed the litter quality (decrease in α-cellulose, increase in tannins). Subsequently the microbial respiration was decreased. This and the decreased cellulose/lignin ratio may have led to the lower relative mass loss due to treatments as detected both after 62 d decomposition in the laboratory and after twelve months decomposition in the field. The UV-B during decomposition decreased the proportion of lignin in the plant residues, which is possibly due to photodegradation by UV-B. Total microbial respiration decreased, indicating the decomposers' sensitivity to UV-B. In general, the litter decomposing under UV-B was less colonized by fungal decomposers. Mucor hiemalis and Truncatella truncata were significantly more abundant in the control, indicating sensitivity to UV-B radiation, while Penicillium brevicompactum was equally abundant in the UV-B and control. There is strong indication of a change in decomposer fungal community structure due to UV-B. Just one of the three fungal species common on the control litter was dominant on leaves decomposed under UV-B. (author)

  8. The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the Subarctic

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, C.; Johanson, U. [Lund Univ. (Sweden); Callaghan, T. V.; Chadwick, D.; Robinson, C. H.

    1995-03-15

    The aim of this study was to investigate how UV-B radiation will affect 1) the quality of plant litter grown under different UV-B levels in the Subarctic and 2) decomposition under different UV-B levels. The deciduous dwarf shrubs Vaccinium uliginosum and V. myrtillus grew under ambient and enhanced UV-B (corresponding to 15% ozone depletion) in a natural heath ecosystem in the Subarctic. After two growing seasons senesced leaves were collected and decomposed in a 2 × 2 factorial experiment under both laboratory conditions for 62 d (V. uliginosum: no UV-B and 10 kJ m{sup -2} d{sup -1} UV- B{sub BE}) and under field conditions for twelve months (V. myrtillus: ambient and enhanced UV-B corresponding 15% ozone depletion). Additionally, colonization and growth of decomposing fungi were studied on leaves decomposed without and with UV-B in the laboratory. The enhanced UV-B during growth changed the litter quality (decrease in α-cellulose, increase in tannins). Subsequently the microbial respiration was decreased. This and the decreased cellulose/lignin ratio may have led to the lower relative mass loss due to treatments as detected both after 62 d decomposition in the laboratory and after twelve months decomposition in the field. The UV-B during decomposition decreased the proportion of lignin in the plant residues, which is possibly due to photodegradation by UV-B. Total microbial respiration decreased, indicating the decomposers' sensitivity to UV-B. In general, the litter decomposing under UV-B was less colonized by fungal decomposers. Mucor hiemalis and Truncatella truncata were significantly more abundant in the control, indicating sensitivity to UV-B radiation, while Penicillium brevicompactum was equally abundant in the UV-B and control. There is strong indication of a change in decomposer fungal community structure due to UV-B. Just one of the three fungal species common on the control litter was dominant on leaves decomposed under UV-B. (author)

  9. The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the Subarctic

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, C [Lund Univ., Dept. of Plant Ecology, Lund (Sweden); Johanson, U [Lund Univ., Dept. of Plant Physiology, Lund (Sweden); Callaghan, T V; Chadwick, D; Robinson, C H [Merlewood Research Station, Inst. of Terrestrial Ecology, Cumbira (United Kingdom)

    1995-05-01

    The aim of this study was to investigate how UV-B radiation will affect (1) the quality of plant litter grown under differente UV-B levels in the Subarctic and (2) decomposition under different UV-B levels. The deciduous dwarf shrubs Vaccinium uliginosum and V. myrtillus grew under ambient and enchanced UV-B (corresponding to 15% ozone depletion) in a natural health ecosystem in the Subarctic. After two growing seasons senesced leaves were collected and decomposed in a 2 x 2 factorial experiment under both laboratory conditions for 62 d (V. uliginosum: no UV-B and 10 kJ m{sup -2} d{sup -1} UV-B{sub BE}) and under field conditions for twelve months (V. myrtillus: ambient and enhanced UV-B corresponding 15% ozone depletion). Additionally, colonization and growth of decomposing fungi were studied on leaves decomposed without and with UV-B in the laboratory. The enhanced UV-B during growth changed the litter quality (decrease in {alpha}-cellulose, increase in tannins). Subsequently the microbial respiration was decreased. This and the decreased cellulose/lignin ratio may have led to the lower relative mass loss due to treatments as detected both after 62 d decomposition in the laboratory and after twelve months decompositon in the field. The UV-B during decomposition decreased the proportion of lignin in the plant residues, which is possibly due to photodegradation by UV-B. Total microbial respiration decreased, indicating the decomposers` sensitivity to UV-B. In general, the litter decomposing under UV-B was less colonized by fungal decomposers. Mucor hiemalis and Truncatella truncata were significantly more abundant in the control, indicating sensitivity to UV-B radiation, while Penicillium brevicompactum was equally abundant in the UV-B and control. There is strong indication of a change in decomposer fungal community structure due to UV-B. Just one of the three fungal species common on the control litter was dominant on leaves decomposed under UV-B. (au) (44 refs.)

  10. Insight into litter decomposition driven by nutrient demands of symbiosis system through the hypha bridge of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Kong, Xiangshi; Jia, Yanyan; Song, Fuqiang; Tian, Kai; Lin, Hong; Bei, Zhanlin; Jia, Xiuqin; Yao, Bei; Guo, Peng; Tian, Xingjun

    2018-02-01

    Arbuscular mycorrhizal fungi (AMF) play an important role in litter decomposition. This study investigated how soil nutrient level affected the process. Results showed that AMF colonization had no significant effect on litter decomposition under normal soil nutrient conditions. However, litter decomposition was accelerated significantly under lower nutrient conditions. Soil microbial biomass in decomposition system was significantly increased. Especially, in moderate lower nutrient treatment (condition of half-normal soil nutrient), litters exhibited the highest decomposition rate, AMF hypha revealed the greatest density, and enzymes (especially nitrate reductase) showed the highest activities as well. Meanwhile, the immobilization of nitrogen (N) in the decomposing litter remarkably decreased. Our results suggested that the roles AMF played in ecosystem were largely affected by soil nutrient levels. At normal soil nutrient level, AMF exhibited limited effects in promoting decomposition. When soil nutrient level decreased, the promoting effect of AMF on litter decomposition began to appear, especially on N mobilization. However, under extremely low nutrient conditions, AMF showed less influence on decomposition and may even compete with decomposer microorganisms for nutrients.

  11. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Lori D. Bothwell; Paul C. Selmants; Christian P. Giardina; Creighton M. Litton

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivityof leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical...

  12. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?

    Science.gov (United States)

    Danger, Michael; Cornut, Julien; Chauvet, Eric; Chavez, Paola; Elger, Arnaud; Lecerf, Antoine

    2013-07-01

    In detritus-based ecosystems, autochthonous primary production contributes very little to the detritus pool. Yet primary producers may still influence the functioning of these ecosystems through complex interactions with decomposers and detritivores. Recent studies have suggested that, in aquatic systems, small amounts of labile carbon (C) (e.g., producer exudates), could increase the mineralization of more recalcitrant organic-matter pools (e.g., leaf litter). This process, called priming effect, should be exacerbated under low-nutrient conditions and may alter the nature of interactions among microbial groups, from competition under low-nutrient conditions to indirect mutualism under high-nutrient conditions. Theoretical models further predict that primary producers may be competitively excluded when allochthonous C sources enter an ecosystem. In this study, the effects of a benthic diatom on aquatic hyphomycetes, bacteria, and leaf litter decomposition were investigated under two nutrient levels in a factorial microcosm experiment simulating detritus-based, headwater stream ecosystems. Contrary to theoretical expectations, diatoms and decomposers were able to coexist under both nutrient conditions. Under low-nutrient conditions, diatoms increased leaf litter decomposition rate by 20% compared to treatments where they were absent. No effect was observed under high-nutrient conditions. The increase in leaf litter mineralization rate induced a positive feedback on diatom densities. We attribute these results to the priming effect of labile C exudates from primary producers. The presence of diatoms in combination with fungal decomposers also promoted decomposer diversity and, under low-nutrient conditions, led to a significant decrease in leaf litter C:P ratio that could improve secondary production. Results from our microcosm experiment suggest new mechanisms by which primary producers may influence organic matter dynamics even in ecosystems where autochthonous

  13. Microbial plant litter decomposition in aquatic and terrestrial boreal systems along a natural fertility gradient

    Science.gov (United States)

    Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes

    2017-04-01

    Plant litter decomposition is a global ecosystem process, with a crucial role in carbon and nutrient cycling. The majority of litter processing occurs in terrestrial systems, but an important fraction also takes place in inland waters. Among environmental factors, pH impacts the litter decomposition through its selective influence on microbial decomposers. Fungal communities are less affected by pH than bacteria, possibly owing to a wider pH tolerance by this group. On the other hand, bacterial pH optima are constrained to a narrower range of pH values. The microbial decomposition of litter is universally nutrient limited; but few comparisons exist between terrestrial and aquatic systems. We investigated the microbial colonisation and decomposition of plant litter along a fertility gradient, which varied in both pH and N availability in both soil and adjacent water. To do this we installed litterbags with birch (Betula pendula) in streams and corresponding soils in adjacent riparian areas in a boreal system, in Krycklan, Sweden. During the four months covering the ice-free growth season we monitored the successional dynamics of fungal (acetate incorporation into ergosterol) and bacterial growth (thymidine incorporation), microbial respiration in leaf litter, and quantitative and qualitative changes in litter over time. We observed that bacterial growth rates were initially higher in litter decomposing in streams than those in soils, but differences between terrestrial and aquatic bacterial production converged towards the end of the experiment. In litter bags installed in soils, bacterial growth was lower at sites with more acidic pH and lower N availability, while aquatic bacteria were relatively unaffected by the fertility level. Fungal growth rates were two-fold higher for litter decomposing in streams than in soils. In aquatic systems, fungal growth was initially lower in low fertility sites, but differences gradually disappeared over the time course. Fungal

  14. Links between plant litter chemistry, species diversity, and below-ground ecosystem function

    OpenAIRE

    Meier, Courtney L.; Bowman, William D.

    2008-01-01

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics...

  15. Impacts of warming on aquatic decomposers along a gradient of cadmium stress

    International Nuclear Information System (INIS)

    Batista, D.; Pascoal, C.; Cássio, F.

    2012-01-01

    We evaluated the effects of cadmium and temperature on plant-litter decomposition by examining diversity and activity of aquatic fungi and leaf consumption by Limnephilus sp., a typical invertebrate shredder of Iberian streams. Freshly fallen leaves were immersed in a stream to allow microbial colonization, and were exposed in microcosms to a gradient of cadmium (≤11 levels, ≤35 mg L −1 ). Microcosms were kept at 15 °C, a temperature typically found in Iberian streams in autumn, and at 21 °C to simulate a warming scenario. The increase in temperature stimulated leaf decomposition by microbes, fungal reproduction and leaf consumption by the shredder. Conversely, increased cadmium concentrations inhibited fungal reproduction and diversity, and leaf consumption by the invertebrate. Cadmium concentration inhibiting 50% of fungal reproduction, microbial decomposition and leaf consumption by the shredder was higher at 15 °C than at 21 °C, suggesting that higher temperatures can lead to increased metal toxicity to aquatic decomposers. - Highlights: ► We examined the effects of temperature and cadmium on aquatic detritus food-webs. ► Effects were assessed on plant-litter decomposition, fungi and invertebrate shredders. ► Results suggest that warming may increase cadmium toxicity to freshwater decomposers. - Global warming may increase cadmium toxicity to freshwater decomposers with implications to ecosystem processes.

  16. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia

    Czech Academy of Sciences Publication Activity Database

    Tláskal, Vojtěch; Voříšková, Jana; Baldrian, Petr

    2016-01-01

    Roč. 92, č. 11 (2016), fiw177 ISSN 0168-6496 R&D Projects: GA ČR GAP504/12/1288; GA MŠk(CZ) LM2015055 Institutional support: RVO:61388971 Keywords : bacteria * leaf litter * decomposition Subject RIV: EE - Microbiology, Virology Impact factor: 3.720, year: 2016

  17. Long-term litter decomposition controlled by manganese redox cycling.

    Science.gov (United States)

    Keiluweit, Marco; Nico, Peter; Harmon, Mark E; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus

    2015-09-22

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn(2+) provided by fresh plant litter to produce oxidative Mn(3+) species at sites of active decay, with Mn eventually accumulating as insoluble Mn(3+/4+) oxides. Formation of reactive Mn(3+) species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn(3+)-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn(3+) species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant-soil system may have a profound impact on litter decomposition rates.

  18. Responses of primary production, leaf litter decomposition and associated communities to stream eutrophication

    International Nuclear Information System (INIS)

    Dunck, Bárbara; Lima-Fernandes, Eva; Cássio, Fernanda; Cunha, Ana; Rodrigues, Liliana; Pascoal, Cláudia

    2015-01-01

    We assessed the eutrophication effects on leaf litter decomposition and primary production, and on periphytic algae, fungi and invertebrates. According to the subsidy-stress model, we expected that when algae and decomposers were nutrient limited, their activity and diversity would increase at moderate levels of nutrient enrichment, but decrease at high levels of nutrients, because eutrophication would lead to the presence of other stressors and overwhelm the subsidy effect. Chestnut leaves (Castanea sativa Mill) were enclosed in mesh bags and immersed in five streams of the Ave River basin (northwest Portugal) to assess leaf decomposition and colonization by invertebrates and fungi. In parallel, polyethylene slides were attached to the mesh bags to allow colonization by algae and to assess primary production. Communities of periphytic algae and decomposers discriminated the streams according to the trophic state. Primary production decomposition and biodiversity were lower in streams at both ends of the trophic gradient. - Highlights: • Algae and decomposers discriminated the streams according to the eutrophication level. • Primary production and litter decomposition are stimulated by moderate eutrophication. • Biodiversity and process rates were reduced in highly eutrophic streams. • Subsidy-stress model explained biodiversity and process rates under eutrophication. - Rates of leaf litter decomposition, primary production and richness of periphytic algae, fungi and invertebrates were lower in streams at both ends of the trophic gradient

  19. Early-stage changes in natural (13)C and (15)N abundance and nutrient dynamics during different litter decomposition.

    Science.gov (United States)

    Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik

    2016-05-01

    Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems.

  20. A model of seasonal foliage dynamics of the subtropical mangrove species Rhizophora stylosa Griff. growing at the northern limit of its distribution

    Directory of Open Access Journals (Sweden)

    Sahadev Sharma

    2014-08-01

    Full Text Available Background Progress of forest production in response to the environment requires a quantitative understanding of leaf area development. Therefore, it is necessary to investigate the dynamics of seasonal crown foliage in order to understand the productivity of mangroves, which play an important role in the subtropical and tropical coastlines of the world. Method Crown foliage dynamics of the mangrove Rhizophora stylosa were studies to reveal patterns of leaf recruitment, survival and seasonal leaf area growth. Results Flushing of leaves occurred throughout the year, but both flushing and leaf area growth pattern of leaves varied with season. Maximum flushing occurred in summer, but leaf areas did not differ significantly with season. The half-expansion period is longer, and the intrinsic rate of increase was lower in winter. Summer flushed leaves grew faster at their initial stage and reached their maximum area over a shorter period of time. The difference in temperature and air vapor pressure deficit (VPD between summer and winter contributed to the present dynamics of foliage patterns. The mean leaf longevity was estimated to be 13.1 month. The crown foliage area was almost stable throughout the year. Conclusions Homeostatic control of the crown foliage area may be accompanied by the existence of ecophysiological mechanisms in R. stylosa. Integrating crown foliage dynamics into forest models represents an important step towards incorporating physiological mechanisms into the models for predicting growth responses to environmental changes and for understanding the complex responses of tree growth and litter production.

  1. Litter decay controlled by temperature, not soil properties, affecting future soil carbon.

    Science.gov (United States)

    Gregorich, Edward G; Janzen, Henry; Ellert, Benjamin H; Helgason, Bobbi L; Qian, Budong; Zebarth, Bernie J; Angers, Denis A; Beyaert, Ronald P; Drury, Craig F; Duguid, Scott D; May, William E; McConkey, Brian G; Dyck, Miles F

    2017-04-01

    Widespread global changes, including rising atmospheric CO 2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon-cycle feedbacks on atmospheric CO 2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied 13 C-labelled plant litter to soil at ten sites spanning a 3500-km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two-pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R 2  = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1-4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties. © 2016 Her Majesty

  2. Irrigation, fertilization and initial substrate quality effects on decomposing Loblolly pine litter chemistry

    Science.gov (United States)

    Felipe G. Sanchez

    2004-01-01

    Changes in carbon chemistry (i.e., carbon compound classes such as aromatics, phenolics, etc.) of loblolly pine (Pinus taeda L.) litter were examined during three years of decomposition under factorial combinations of irrigation and fertilization treatments. Cross polarization magic angle spinning 13C nuclear magnetic resonance...

  3. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Directory of Open Access Journals (Sweden)

    Lori D. Bothwell

    2014-12-01

    Full Text Available Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5 across a broad range of ecosystems. The percentage of leaf litter nitrogen (N remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  4. Influence of nitrogen additions on litter decomposition, nutrient dynamics, and enzymatic activity of two plant species in a peatland in Northeast China.

    Science.gov (United States)

    Song, Yanyu; Song, Changchun; Ren, Jiusheng; Tan, Wenwen; Jin, Shaofei; Jiang, Lei

    2018-06-01

    Nitrogen (N) availability affects litter decomposition and nutrient dynamics, especially in N-limited ecosystems. We investigated the response of litter decomposition to N additions in Eriophorum vaginatum and Vaccinium uliginosum peatlands. These two species dominate peatlands in Northeast China. In 2012, mesh bags containing senesced leaf litter of Eriophorum vaginatum and Vaccinium uliginosum were placed in N addition plots and sprayed monthly for two years with NH 4 NO 3 solution at dose rates of 0, 6, 12, and 24gNm -2 year -1 (CK, N1, N2 and N3, respectively). Mass loss, N and phosphorus (P) content, and enzymatic activity were measured over time as litter decomposed. In the control plots, V. uliginosum litter decomposed faster than E. vaginatum litter. N1, N2, and N3 treatments increased the mass losses of V. uliginosum litter by 6%, 9%, and 4% respectively, when compared with control. No significant influence of N additions was found on the decomposition of E. vaginatum litter. However, N and P content in E. vaginatum litter and V. uliginosum litter significantly increased with N additions. Moreover, N additions significantly promoted invertase and β-glucosidase activity in E. vaginatum and V. uliginosum litter. However, only in V. uliginosum litter was polyphenol oxidase activity significantly enhanced. Our results showed that initial litter quality and polyphenol oxidase activity influence the response of plant litter to N additions in peatland ecosystems. Increased N availability may change peatland soil N and P cycling by enhancing N and P immobilization during litter decomposition. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. HS-SPME analysis of volatile organic compounds of coniferous needle litter

    Science.gov (United States)

    Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.

    The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.

  6. Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition

    International Nuclear Information System (INIS)

    Nikula, Suvi; Vapaavuori, Elina; Manninen, Sirkku

    2010-01-01

    We investigated foliar and litter responses of European aspen (Populus tremula L.) to urbanization, including factors such as increased temperature, moisture stress and nitrogen (N) deposition. Leaf samples were collected in 2006-2008 from three urban and three rural forest stands in the Helsinki Metropolitan Area, southern Finland, and reciprocal litter transplantations were established between urban and rural sites. Urban leaves exhibited a higher amount of epicuticular waxes and N concentration, and a lower C:N ratio than rural ones, but there was no difference in specific leaf area. Urban litter had a slightly higher N concentration, lower concentrations of lignin and total phenolics, and was more palatable to a macrofaunal decomposer. Moreover, litter decay was faster at the urban site and for urban litter. Urbanization thus resulted in foliar acclimatization in terms of increased amount of epicuticular waxes, as well as in accelerated decomposition of the N-richer leaf litter. - Urbanization can modify leaf traits of aspen and accelerate litter decomposition through changes in litter traits as well as in environmental conditions at the decomposition site.

  7. Effect of Leaf Litters and Soils on Viability of Entomopathogenic Fungi Beauveria bassiana (Bals. Vuill

    Directory of Open Access Journals (Sweden)

    LISDAR IDWAN SUDIRMAN

    2008-09-01

    Full Text Available Viability of Beauveria bassiana is extremely low due to toxic compounds in soils. This research was aimed to study the effect of four groups of media on viability of B. bassiana Bb-Pb2. The first group was leaf litters of onion, flowering white cabbage, cabbage, and chinese mustard, respectively; the second group was the soils containing decomposed residues of each plant of the first group; the third group was the mixtures of each media of both groups above (1:1, and the fourth group was natural top soil as a control. Each plastic bag filled with one kg of each medium was inoculated with ten ml of B. bassiana conidia (106/ml of concentration and incubated in open area for 8 weeks. The results showed that all leaf litters of those plants and their compost soils affected the fungal viability. The highest decreasing number of colony was found on onion's leaf litters, soil containing of decomposed onion, and the mixtures of both media. The treated B. bassiana showed significant reducing abilities of growth, conidia production and conidia germination on PDA media, except the one of control. It is suggested that the Bb-Pb2 isolate might not be effective as bioinsecticide in the soils containing either those leaf litters or composts.

  8. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    Science.gov (United States)

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  9. Allelopathic activity and chemical constituents of walnut (Juglans regia) leaf litter in walnut-winter vegetable agroforestry system.

    Science.gov (United States)

    Wang, Qian; Xu, Zheng; Hu, Tingxing; Rehman, Hafeez Ur; Chen, Hong; Li, Zhongbin; Ding, Bo; Hu, Hongling

    2014-01-01

    Walnut agroforestry systems have many ecological and economic benefits when intercropped with cool-season species. However, decomposing leaf litter is one of the main sources of allelochemicals in such systems. In this study, lettuce (Lactuca sativa var. angustata) was grown in the soil incorporated with walnut leaf litter to assess its allelopathic activity. Lettuce growth and physiological processes were inhibited by walnut leaf litter, especially during early growth stage (1-2 euphylla period) or with large amount of litter addition. The plants treated by small amount of leaf litter recovered their growth afterwards, while the inhibition for 180 g leaf litter persisted until harvest. Twenty-eight compounds were identified in the leaf litter, and several of them were reported to be phytotoxic, which may be responsible for the stress induced by walnut leaf litter. Thus, for highest economic value of vegetables such as lettuce, excessive incorporation of leaf litter should be discouraged.

  10. Ephemeroptera, Plecoptera and Trichoptera (Insecta) Abundance, Diversity and Role in Leaf Litter Breakdown in Tropical Headwater River.

    Science.gov (United States)

    Ab Hamid, Suhaila; Md Rawi, Che Salmah

    2017-07-01

    Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT.

  11. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie.

    Science.gov (United States)

    Schuster, Michael J

    2016-03-01

    Anthropogenic nitrogen deposition and projected increases in rainfall variability (the frequency of drought and heavy rainfall events) are expected to strongly influence ecosystem processes such as litter decomposition. However, how these two global change factors interact to influence litter decomposition is largely unknown. I examined how increased rainfall variability and nitrogen addition affected mass and nitrogen loss of litter from two tallgrass prairie species, Schizachyrium scoparium and Solidago canadensis, and isolated the effects of each during plant growth and during litter decomposition. I increased rainfall variability by consolidating ambient rainfall into larger events and simulated chronic nitrogen deposition using a slow-release urea fertilizer. S. scoparium litter decay was more strongly regulated by the treatments applied during plant growth than by those applied during decomposition. During plant growth, increased rainfall variability resulted in S. scoparium litter that subsequently decomposed more slowly and immobilized more nitrogen than litter grown under ambient conditions, whereas nitrogen addition during plant growth accelerated subsequent mass loss of S. scoparium litter. In contrast, S. canadensis litter mass and N losses were enhanced under either N addition or increased rainfall variability both during plant growth and during decomposition. These results suggest that ongoing changes in rainfall variability and nitrogen availability are accelerating nutrient cycling in tallgrass prairies through their combined effects on litter quality, environmental conditions, and plant community composition.

  12. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  13. Mercury distribution in the foliage and soil profiles of the Tibetan forest: Processes and implications for regional cycling

    International Nuclear Information System (INIS)

    Gong, Ping; Wang, Xiao-ping; Xue, Yong-gang; Xu, Bai-qing; Yao, Tan-dong

    2014-01-01

    Remote forests are considered a pool of Mercury (Hg) in the global Hg cycle. However, notably few studies have investigated the fate of Hg in the Tibetan forest. In this study, fifty-two foliage samples and seven litter/soil profiles were collected throughout the Tibetan forest. The concentrations of total Hg (THg) in foliage were positively correlated with longitude and negatively correlated with altitude, indicating that the emission of Hg is expected to decrease with increasing distance from emission sources to the Tibetan forest. The deposition flux of THg in the Tibetan forest (with an air-to-forest ground flux of 9.2 μg/m 2 /year) is ∼2 times the flux in clearings, which is suggestive of enhanced Hg deposition by the forest. The depositional Hg is eventually stored in the forest soil, and the soil acts as a net ‘sink’ for Hg. - Highlights: • Foliage can be used as bio-indicator for monitoring the spatial Hg distribution. • The Tibetan forest can enhance the atmospheric Hg deposition to the ground. • The Tibetan forest soil is a pool of Hg that acts to delay the regional cycling of Hg. - The Tibetan forest can accumulate atmospheric Hg, which undergoes long-range transport, and the soil of Tibetan forest acts as the final Hg ‘sink’

  14. Litter Production and Decomposition Rate in the Reclaimed Mined Land under Albizia and Sesbania Stands and Their Effects on some Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    Hery Suhartoyo

    2011-01-01

    Full Text Available Vegetation establishment is considered as a critical step of mined land rehabilitation. The growing plants do not only prevent soil erosion, but also play important roles in soil ecosystem development. Their litterfall is the main process of transferring organic matter and nutrients from aboveground tree biomass to soil. Thus, its quantification would aid in understanding biomass and nutrient dynamics of the ecosystem. This study was aimed to investigate the litter production and its decomposition rate in a reclaimed mined land using albizia and sesbania, and their effects on some soil properties. The litter under each stand was biweekly collected for four months. At the same time litter samples were decomposed in mesh nylon bags in soils and the remaining litters were biweekly measured. Soil samples were taken from 0-15 cm depths from each stand for analyses of soil organic C, total N, and cation exchange capacity (CEC. The results demonstrated that total litter production under albizia (10.58 t ha-1 yr-1 was almost twice as much as that under sesbania stands (5.43 t ha-1 yr-1. Albizia litter was dominated by leaf litter (49.26% and least as understory vegetation (23.31%, whereas sesbania litter was more evenly distributed among litter types. Decomposition rates of all litters were fastest in the initial stage and then gradually decreased. Sesbania leaf litters decomposed fastest, while albizia twigs slowest. Differences in the litter production and decomposition rates of the two species had not sufficiently caused significant effects on organic-C, total N, and CEC of the soils after one year of revegetation.

  15. Effect of Leaf Litters and Soils on Viability of Entomopathogenic Fungi Beauveria bassiana (Bals. Vuill

    Directory of Open Access Journals (Sweden)

    LISDAR IDWAN SUDIRMAN

    2008-09-01

    Full Text Available Viability of Beauveria bassiana is extremely low due to toxic compounds in soils. This research was aimed to study the effect of four groups of media on viability of B. bassiana Bb-Pb2. The first group was leaf litters of onion, flowering white cabbage, cabbage, and chinese mustard, respectively; the second group was the soils containing decomposed residues of each plant of the first group; the third group was the mixtures of each media of both groups above (1:1, and the fourth group was natural top soil as a control. Each plastic bag filled with one kg of each medium was inoculated with ten ml of B. bassiana conidia (106/ml of concentration and incubated in open area for 8 weeks. The results showed that all leaf litters of those plants and their compost soils affected the fungal viability. The highest decreasing number of colony was found on onion’s leaf litters, soil containing of decomposed onion, and the mixtures of both media. The treated B. bassiana showed significant reducing abilities of growth, conidia production and conidia germination on PDA media, except the one of control. It is suggested that the Bb-Pb2 isolate might not be effective as bioinsecticide in the soils containing either those leaf litters or composts.

  16. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect

    Science.gov (United States)

    Zhang, Ling; Zhang, Yaojun; Zou, Jianwen; Siemann, Evan

    2014-06-01

    Solidago canadensis is an aggressive invader in China. Solidago invasion success is partially attributed to allelopathic compounds release and more benefits from AM fungi, which potentially makes the properties of Solidago litter different from co-occurring natives. These properties may comprehensively affect litter decomposition of co-occurring natives. We conducted a field experiment to examine litter mixing effects in a Phragmites australis dominated community invaded by Solidago in southeast China. Solidago had more rapid mass and N loss rate than Phragmites when they decomposed separately. Litter mixing decreased N loss rate in Phragmites litter and increased that of Solidago. Large decreases in Phragmites mass loss and smaller increases in Solidago mass loss caused negative non-additive effect. Solidago litter extracts reduced soil C decomposition and N processes, suggested an inhibitory effect of Solidago secondary compounds. These results are consistent with the idea that nutrient transfer and secondary compounds both affected litter mixtures decomposition.

  17. A Propagation Environment Modeling in Foliage

    Directory of Open Access Journals (Sweden)

    Samn SherwoodW

    2010-01-01

    Full Text Available Foliage clutter, which can be very large and mask targets in backscattered signals, is a crucial factor that degrades the performance of target detection, tracking, and recognition. Previous literature has intensively investigated land clutter and sea clutter, whereas foliage clutter is still an open-research area. In this paper, we propose that foliage clutter should be more accurately described by a log-logistic model. On a basis of pragmatic data collected by ultra-wideband (UWB radars, we analyze two different datasets by means of maximum likelihood (ML parameter estimation as well as the root mean square error (RMSE performance. We not only investigate log-logistic model, but also compare it with other popular clutter models, namely, log-normal, Weibull, and Nakagami. It shows that the log-logistic model achieves the smallest standard deviation (STD error in parameter estimation, as well as the best goodness-of-fit and smallest RMSE for both poor and good foliage clutter signals.

  18. Direct and indirect effects of ammonia, ammonium and nitrate on phosphatase activity and carbon fluxes from decomposing litter in peatland

    International Nuclear Information System (INIS)

    Johnson, David; Moore, Lucy; Green, Samuel; Leith, Ian D.; Sheppard, Lucy J.

    2010-01-01

    Here we investigate the response of soils and litter to 5 years of experimental additions of ammonium (NH 4 ), nitrate (NO 3 ), and ammonia (NH 3 ) to an ombrotrophic peatland. We test the importance of direct (via soil) and indirect (via litter) effects on phosphatase activity and efflux of CO 2 . We also determined how species representing different functional types responded to the nitrogen treatments. Our results demonstrate that additions of NO 3 , NH 4 and NH 3 all stimulated phosphatase activity but the effects were dependent on species of litter and mechanism (direct or indirect). Deposition of NH 3 had no effect on efflux of CO 2 from Calluna vulgaris litter, despite it showing signs of stress in the field, whereas both NO 3 and NH 4 reduced CO 2 fluxes. Our results show that the collective impacts on peatlands of the three principal forms of nitrogen in atmospheric deposition are a result of differential effects and mechanisms on individual components. - We found that nitrogen deposition affects microbial activity associated with litter through both indirect and direct mechanisms, but these effects were dependent on the chemical form of inorganic nitrogen compounds.

  19. Decomposition rate of Rhizopora stylosa litter in Tanjung Rejo Village, Deli Serdang Regency, North Sumatera Province

    Science.gov (United States)

    Rambey, R.; Delvian; Sianturi, S. D.

    2018-02-01

    Research on the decomposition rate of Rhizopora stylosa litter in Tanjung Rejo village, Deli Serdang Regency, North Sumatera Province was conducted from September 2016 to May 2017. The objectives of this research were (1) to measure the decomposition rate of Rhizophora stylosa litter and (2) to determine the type of functional fungi in decomposition of litter. R. stylosa litter decomposition is characterized by a reduction in litter weight per observation period. Decomposition rate tended to increase every week, which was from 0.238 in the seventh day and reached 0.302 on the fiftysixthth day. The decomposition rate of R. stylosa litter of leaf was high with the value of k per day > 0,01 caused by macrobentos and fungi, and also the decomposition of R. stylosa litter conducted in the pond area which is classified far from the coast. Therefore, to enable the high population of fungi which affect the decomposition rate of the litter. The types of fungi decomposers were: Aspergillus sp.-1, Aspergillus sp.-2, Aspergillus sp.-3, Rhizophus sp.-1., Rhizophus sp.-2, Penicillium sp., Syncephalastrum sp. and Fusarium sp.

  20. Potential sources of methylmercury in tree foliage

    International Nuclear Information System (INIS)

    Tabatchnick, Melissa D.; Nogaro, Géraldine; Hammerschmidt, Chad R.

    2012-01-01

    Litterfall is a major source of mercury (Hg) and toxic methylmercury (MeHg) to forest soils and influences exposures of wildlife in terrestrial and aquatic ecosystems. However, the origin of MeHg associated with tree foliage is largely unknown. We tested the hypothesis that leaf MeHg is influenced by root uptake and thereby related to MeHg levels in soils. Concentrations of MeHg and total Hg in deciduous and coniferous foliage were unrelated to those in soil at 30 urban and rural forested locations in southwest Ohio. In contrast, tree genera and trunk diameter were significant variables influencing Hg in leaves. The fraction of total Hg as MeHg averaged 0.4% and did not differ among tree genera. Given that uptake of atmospheric Hg 0 appears to be the dominant source of total Hg in foliage, we infer that MeHg is formed by in vivo transformation of Hg in proportion to the amount accumulated. - Highlights: ► Levels of methylmercury and total Hg in foliage were unrelated to those in soil. ► Methylmercury:total Hg ratio in leaves did not differ among nine tree genera. ► Hg in foliage varied inversely with trunk diameter, a proxy for respiration. ► Methylmercury in leaves may result from in vivo methylation of atmospheric Hg. - Methylmercury in tree foliage appears to result from in vivo methylation of mercury accumulated from the atmosphere.

  1. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.

    Science.gov (United States)

    Wood, Tana E; Lawrence, Deborah; Clark, Deborah A; Chazdon, Robin L

    2009-01-01

    Litter-induced pulses of nutrient availability could play an important role in the productivity and nutrient cycling of forested ecosystems, especially tropical forests. Tropical forests experience such pulses as a result of wet-dry seasonality and during major climatic events, such as strong El Niños. We hypothesized that (1) an increase in the quantity and quality of litter inputs would stimulate leaf litter production, woody growth, and leaf litter nutrient cycling, and (2) the timing and magnitude of this response would be influenced by soil fertility and forest age. To test these hypotheses in a Costa Rican wet tropical forest, we established a large-scale litter manipulation experiment in two secondary forest sites and four old-growth forest sites of differing soil fertility. In replicated plots at each site, leaves and twigs (forest floor. We analyzed leaf litter mass, [N] and [P], and N and P inputs for addition, removal, and control plots over a two-year period. We also evaluated basal area increment of trees in removal and addition plots. There was no response of forest productivity or nutrient cycling to litter removal; however, litter addition significantly increased leaf litter production and N and P inputs 4-5 months following litter application. Litter production increased as much as 92%, and P and N inputs as much as 85% and 156%, respectively. In contrast, litter manipulation had no significant effect on woody growth. The increase in leaf litter production and N and P inputs were significantly positively related to the total P that was applied in litter form. Neither litter treatment nor forest type influenced the temporal pattern of any of the variables measured. Thus, environmental factors such as rainfall drive temporal variability in litter and nutrient inputs, while nutrient release from decomposing litter influences the magnitude. Seasonal or annual variation in leaf litter mass, such as occurs in strong El Niño events, could positively

  2. Responses of the soil decomposer community to the radioactive contamination

    International Nuclear Information System (INIS)

    Svetlana, Maksimova

    2004-01-01

    The knowledge about biodiversity and about reasons and laws of dynamics of decomposer invertebrates has exclusively important (rather applied, or theoretical) significance for soil science. Earthworms and millipedes are probably the most important members of the soil biota and major contributors to total zoo-mass. Their activities are such that they are extremely important in maintaining soil fertility in a variety of ways. They play an important part in the redistribution of radionuclides accumulated in the natural biogeocenoses and accumulation of radionuclides in their bodies depends on their concentration in the habitat. Since radionuclides can limit biological activity, studies to estimate the tolerance of decomposer community to potentially toxic radiators are needed. The effect of radioactive contamination on the soil invertebrates and decomposition processes in the different biogeocenoses we intensively studied during 17 years after Chernobyl accident. The soil invertebrates were collected according to generally accepted method by M. Ghilyarov. Soil samples were 0,25 m 2 and animals were extracted from samples by hand sorting. Usually decomposition was affected by the presence of decomposer fauna. Considerable differences were found in the species number. The species composition of sites differed clearly. The study showed that the fauna was poorer under increasing levels of radioactive contamination. The higher radionuclide content was found to result in suppression of decomposer community. The results showed a vertical migration of earthworms to deeper soil layers with increasing of radioactive contamination. With the absence of decomposer fauna due to migration to the deeper layer and mortality, the layer of litter increased. The results show that the earthworms were of small size. Cocoon production decreased. Radioactive contamination altered the process of reproduction and age structure of decomposer fauna. The invertebrates collected from the

  3. Responses of the soil decomposer community to the radioactive contamination

    Energy Technology Data Exchange (ETDEWEB)

    Svetlana, Maksimova [Institute of Zoology of National Academy of Sciences of Belarus, Minsk (Belarus)

    2004-07-01

    The knowledge about biodiversity and about reasons and laws of dynamics of decomposer invertebrates has exclusively important (rather applied, or theoretical) significance for soil science. Earthworms and millipedes are probably the most important members of the soil biota and major contributors to total zoo-mass. Their activities are such that they are extremely important in maintaining soil fertility in a variety of ways. They play an important part in the redistribution of radionuclides accumulated in the natural biogeocenoses and accumulation of radionuclides in their bodies depends on their concentration in the habitat. Since radionuclides can limit biological activity, studies to estimate the tolerance of decomposer community to potentially toxic radiators are needed. The effect of radioactive contamination on the soil invertebrates and decomposition processes in the different biogeocenoses we intensively studied during 17 years after Chernobyl accident. The soil invertebrates were collected according to generally accepted method by M. Ghilyarov. Soil samples were 0,25 m{sup 2} and animals were extracted from samples by hand sorting. Usually decomposition was affected by the presence of decomposer fauna. Considerable differences were found in the species number. The species composition of sites differed clearly. The study showed that the fauna was poorer under increasing levels of radioactive contamination. The higher radionuclide content was found to result in suppression of decomposer community. The results showed a vertical migration of earthworms to deeper soil layers with increasing of radioactive contamination. With the absence of decomposer fauna due to migration to the deeper layer and mortality, the layer of litter increased. The results show that the earthworms were of small size. Cocoon production decreased. Radioactive contamination altered the process of reproduction and age structure of decomposer fauna. The invertebrates collected from the

  4. Elevated UV-B radiation increased the decomposition of Cinnamomum camphora and Cyclobalanopsis glauca leaf litter in subtropical China

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xinzhang Z.; Zhang, Huiling L.; Jiang, Hong; Yu, Shuquan Q. [Zhejiang Agriculture and Forestry Univ., Lin' an (China). The Nurturing Station for the State Key Lab. of Subtropical Silviculture; Zhejiang Agriculture and Forestry Univ., Lin' an (China). Zhejiang Provincial Key Lab. of Carbon Cycling and Carbon Sequestration in Forest Ecosystems; Chang, Scott X. [Alberta Univ., Edmonton (Canada). Dept. of Renewable Resources; Peng, Changhui H. [Quebec Univ., Montreal (Canada). Inst. of Environment Sciences

    2012-03-15

    Ultraviolet-B (UV-B) radiation reaching the earth's surface has been increasing due to ozone depletion and can profoundly influence litter decomposition and nutrient cycling in terrestrial ecosystems. The role of UV-B radiation in litter decomposition in humid environments is poorly understood; we thus investigated the effect of UV-B radiation on litter decomposition and nitrogen (N) release in a humid subtropical ecosystem in China. We conducted a field-based experiment using the litterbag method to study litter decomposition and N release under ambient and elevated (31% above ambient) UV-B radiation, using the leaf litter of two common tree species, Cinnamomum camphora and Cyclobalanopsis glauca, native to subtropical China. Elevated UV-B radiation significantly increased the decomposition rate of C. camphora and C. glauca leaf litter by 16.7% and 27.8%, respectively, and increased the N release from the decomposing litter of C. glauca but not C. camphora. Elevated UV-B radiation significantly accelerated the decomposition of litter of two native tree species and the N release from the decomposition litter of C. glauca in humid subtropical China, which has implications for soil carbon flux and forest productivity. (orig.)

  5. Root-induced decomposer growth and plant N uptake are not positively associated among a set of grassland plants

    DEFF Research Database (Denmark)

    Saj, S.; Mikola, J.; Ekelund, Flemming

    2008-01-01

    It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Base...... that plant traits such as competitive ability for soil mineral N were more important for plant uptake of litter-N than those that directly affected the growth of soil decomposers.......It is known that plant species can induce development of different soil decomposer communities and that they differ in their influence on organic matter decomposition and N mineralization in soil. However, no study has so far assessed whether these two observations are related to each other. Based...... on the hypothesis that root-induced growth of soil decomposers leads to accelerated decomposition of SOM and increased plant N availability in soil, we predicted that (1) among a set of grassland plants the abundance of soil decomposers in the plant rhizosphere is positively associated with plant N uptake from soil...

  6. NUTRIENTS DIGESTIBILITY IN Tithonia diversifolia FOLIAGE IN FATTENING RABBITS

    Directory of Open Access Journals (Sweden)

    Duilio Nieves

    2010-10-01

    Full Text Available An experiment was carried out to determine the nutrients digestibility in Tithonia diversifolia foliage in fattening rabbits, 30 animals (1.450 g ± 93.77 initial body weight were distributed according to a completely randomized experimental design in three treatments and ten replicates. The mash diets including 0, 9 and 18 % of tithonia foliage. The dry matter (DMD, organic matter (OMD, crude protein (CPD, neutral detergent fiber (FDND, hemicellulose (HEMD and energy digestibilities (DE were determined using the acid insoluble ash method. The nutrient digestibility in foliage was estimated by the replacing test ingredient method. The DMD, OMD, PCD and HEMD (51.12, 53.45 and 51.25; 51.99, 54.87 and 52.60; 68.57, 60.11 and 64.08, and 44.20, 45.37 and 47.24 % for the three foliage inclusion level, respectively were similar (P>0.05 among diets. The foliage MSD, OMD, PCD, and ED DHEM was 53.80, 55.19, 59.17, 50.00 and 39.18%, while the protein and energy digestible content in tithonia foliage was 109.60 g/kg and 2139.45 kcal/kg. It was concluded that the tithonia foliage has high content of nutrients

  7. A study of lignin degradation in leaf and needle litter using 13C-labelled tetramethylammonium hydroxide (TMAH) thermochemolysis: comparison with CuO oxidation and van Soest methods.

    NARCIS (Netherlands)

    Klotzbücher, T.; Filley, T.R.; Kaiser, K.; Kalbitz, K.

    2011-01-01

    We studied the degradation of lignin in leaf and needle litter of ash, beech, maple, pine and spruce using 13C-labelled tetramethylammonium hydroxide (13C TMAH) thermochemolysis. Samples were allowed to decompose for 27 months in litter bags at a German spruce forest site, resulting in a range of

  8. Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems

    Directory of Open Access Journals (Sweden)

    J. Esperschütz

    2013-07-01

    Full Text Available In initial ecosystems, concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degrader's food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany. Two of this region's dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L. were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, as indicated by its N content, its bioavailability for the degradation process and the development of microbial communities in the detritusphere and soil. The degradation of the L. corniculatus litter, which had a low C / N ratio, was fast and showed pronounced changes in the microbial community structure 1–4 weeks after litter addition. The degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred between 4 and 30 weeks after litter addition to the soil. However, for both litter materials a clear indication of the importance of fungi for the degradation process was observed both in terms of fungal abundance and activity (13C incorporation activity

  9. Effect of stimulation by foliage plant display images on prefrontal cortex activity: a comparison with stimulation using actual foliage plants.

    Science.gov (United States)

    Igarashi, Miho; Song, Chorong; Ikei, Harumi; Miyazaki, Yoshifumi

    2015-01-01

    Natural scenes like forests and flowers evoke neurophysiological responses that can suppress anxiety and relieve stress. We examined whether images of natural objects can elicit neural responses similar to those evoked by real objects by comparing the activation of the prefrontal cortex during presentation of real foliage plants with a projected image of the same foliage plants. Oxy-hemoglobin concentrations in the prefrontal cortex were measured using time-resolved near-infrared spectroscopy while the subjects viewed the real plants or a projected image of the same plants. Compared with a projected image of foliage plants, viewing the actual foliage plants significantly increased oxy-hemoglobin concentrations in the prefrontal cortex. However, using the modified semantic differential method, subjective emotional response ratings ("comfortable vs. uncomfortable" and "relaxed vs. awakening") were similar for both stimuli. The frontal cortex responded differently to presentation of actual plants compared with images of these plants even when the subjective emotional response was similar. These results may help explain the physical and mental health benefits of urban, domestic, and workplace foliage. © 2014 The Authors. Journal of Neuroimaging published by the American Society of Neuroimaging.

  10. Morphogenetic Litter Types of Bog Spruce Forests

    Directory of Open Access Journals (Sweden)

    T. T. Efremova

    2015-02-01

    Full Text Available For the first time the representation of moss litter morphogenetic structure of valley-riverside and streamside spruce forests was determined for the wetland intermountain area of Kuznetsk Alatau. In general, the litter of (green moss-hypnum spruce forest can be characterized as medium thickness (9–17 cm with high storage of organic matter (77–99 t/ha, which differs in neutral environmental conditions pH 6.8–7.0 and high percentage of ash 11–28 %. Formation litter types were identified, which depend on the content of mineral inclusions in organogenic substrate and the degree of its drainage. The differentiation of litter subhorizons was performed, visual diagnostic indicators of fermentative layers were characterized, and additional (indexes to indicate their specificity were developed. Peat- and peaty-fermentative, humified-fermentative and (black mold humus-fermentative layers were selected. Peat- and peaty-fermentative layers are characterized by content of platy peat macroaggregates of coarse vegetable composition, the presence of abundant fungal mycelium and soil animals are the primary decomposers – myriopoda, gastropoda mollusks. Humified-fermentative layers are identified by including the newly formed amorphous humus-like substances, nutty-granular structural parts of humus nature and soil animals’ humificators – enchytraeids and earthworms. (Black mold humus-fermentative layers are diagnosed by indicators with similar humified-fermentative, but differ from them in clay-humus composition of nutty-granular blue-grey parts. The nomenclature and classification of moss litter were developed on the basis of their diagnostic characteristics of fermentative layers – peat, peaty, reduced peaty, (black mold humus-peaty, reduced (black mold humus-peaty. Using the method of discriminant analysis, we revealed that the physical-chemical properties, mainly percentage of ash and decomposition degree of plant substrate, objectively

  11. Leaf Litter Decomposition and Nutrient Dynamics in Woodland and Wetland Conditions along a Forest to Wetland Hillslope

    OpenAIRE

    Qiu, Song; McComb, Arthur J.; Bell, Richard W.

    2012-01-01

    Leaf litters of jarrah (Eucalyptus marginata Donn ex Sm.) and banksia (Banksia menziesii R. Br.) were decomposed at woodland and wetland conditions for two years to test site influence on the rates of decomposition. Weight loss was rapid in early rains but slowed substantially in the following months, resulting in 2/3 to 1/2 weights remaining after two years of field exposure. Litter weight loss was well described by a two-substrate quality decay model (R2=0.97−0.99), and the half-lives were ...

  12. Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Šnajdr, Jaroslav

    2006-01-01

    Roč. 39, - (2006), s. 1023-1029 ISSN 0141-0229 R&D Projects: GA ČR GA526/05/0168 Institutional research plan: CEZ:AV0Z50200510 Keywords : synthetic dyes * decomposing fungi * decolorization Subject RIV: EE - Microbiology, Virology Impact factor: 1.897, year: 2006

  13. Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant-soil feedbacks?

    Science.gov (United States)

    Mazzoleni, Stefano; Bonanomi, Giuliano; Incerti, Guido; Chiusano, Maria Luisa; Termolino, Pasquale; Mingo, Antonio; Senatore, Mauro; Giannino, Francesco; Cartenì, Fabrizio; Rietkerk, Max; Lanzotti, Virginia

    2015-02-01

    Plant-soil negative feedback (NF) is recognized as an important factor affecting plant communities. The objectives of this work were to assess the effects of litter phytotoxicity and autotoxicity on root proliferation, and to test the hypothesis that DNA is a driver of litter autotoxicity and plant-soil NF. The inhibitory effect of decomposed litter was studied in different bioassays. Litter biochemical changes were evaluated with nuclear magnetic resonance (NMR) spectroscopy. DNA accumulation in litter and soil was measured and DNA toxicity was assessed in laboratory experiments. Undecomposed litter caused nonspecific inhibition of root growth, while autotoxicity was produced by aged litter. The addition of activated carbon (AC) removed phytotoxicity, but was ineffective against autotoxicity. Phytotoxicity was related to known labile allelopathic compounds. Restricted (13) C NMR signals related to nucleic acids were the only ones negatively correlated with root growth on conspecific substrates. DNA accumulation was observed in both litter decomposition and soil history experiments. Extracted total DNA showed evident species-specific toxicity. Results indicate a general occurrence of litter autotoxicity related to the exposure to fragmented self-DNA. The evidence also suggests the involvement of accumulated extracellular DNA in plant-soil NF. Further studies are needed to further investigate this unexpected function of extracellular DNA at the ecosystem level and related cellular and molecular mechanisms. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  14. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    Directory of Open Access Journals (Sweden)

    Johanna B Boberg

    Full Text Available Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration, presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  15. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter.

    Science.gov (United States)

    Boberg, Johanna B; Finlay, Roger D; Stenlid, Jan; Ekblad, Alf; Lindahl, Björn D

    2014-01-01

    Boreal forests are characterized by spatially heterogeneous soils with low N availability. The decomposition of coniferous litter in these systems is primarily performed by basidiomycete fungi, which often form large mycelia with a well-developed capacity to reallocate resources spatially- an advantageous trait in heterogeneous environments. In axenic microcosm systems we tested whether fungi increase their biomass production by reallocating N between Pinus sylvestris (Scots pine) needles at different stages of decomposition. We estimated fungal biomass production by analysing the accumulation of the fungal cell wall compound chitin. Monospecific systems were compared with systems with interspecific interactions. We found that the fungi reallocated assimilated N and mycelial growth away from well-degraded litter towards fresh litter components. This redistribution was accompanied by reduced decomposition of older litter. Interconnection of substrates increased over-all fungal C use efficiency (i.e. the allocation of assimilated C to biomass rather than respiration), presumably by enabling fungal translocation of growth-limiting N to litter with higher C quality. Fungal connection between different substrates also restricted N-mineralization and production of dissolved organic N, suggesting that litter saprotrophs in boreal forest ecosystems primarily act to redistribute rather than release N. This spatial integration of different resource qualities was hindered by interspecific interactions, in which litters of contrasting quality were colonised by two different basidiomycete species. The experiments provide a detailed picture of how resource reallocation in two decomposer fungi leads to a more efficient utilisation of spatially separated resources under N-limitation. From an ecosystem point of view, such economic fungal behaviour could potentially contribute to organic matter accumulation in the litter layers of boreal forests.

  16. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    Directory of Open Access Journals (Sweden)

    Sangsub Cha

    Full Text Available The atmospheric carbon dioxide (CO2 level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R and decreased specific leaf area (SLA under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  17. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.

    Science.gov (United States)

    Cha, Sangsub; Chae, Hee-Myung; Lee, Sang-Hoon; Shim, Jae-Kuk

    2017-01-01

    The atmospheric carbon dioxide (CO2) level is expected to increase substantially, which may change the global climate and carbon dynamics in ecosystems. We examined the effects of an elevated atmospheric CO2 level on the growth of Quercus acutissima and Fraxinus rhynchophylla seedlings. We investigated changes in the chemical composition of leaf litter, as well as litter decomposition. Q. acutissima and F. rhynchophylla did not show differences in dry weight between ambient CO2 and enriched CO2 treatments, but they exhibited different patterns of carbon allocation, namely, lower shoot/root ratio (S/R) and decreased specific leaf area (SLA) under CO2-enriched conditions. The elevated CO2 concentration significantly reduced the nitrogen concentration in leaf litter while increasing lignin concentrations and carbon/nitrogen (C/N) and lignin/N ratios. The microbial biomass associated with decomposing Q. acutissima leaf litter was suppressed in CO2 enrichment chambers, while that of F. rhynchophylla was not. The leaf litter of Q. acutissima from the CO2-enriched chambers, in contrast with F. rhynchophylla, contained much lower nutrient concentrations than that of the litter in the ambient air chambers. Consequently, poorer litter quality suppressed decomposition.

  18. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands.

    Science.gov (United States)

    Carrera, Analía Lorena; Bertiller, Mónica Beatriz

    2013-01-15

    The objective of this study was to analyze the combined effects of leaf litter quality and soil properties on litter decomposition and soil nitrogen (N) mineralization at conserved (C) and disturbed by sheep grazing (D) vegetation states in arid rangelands of the Patagonian Monte. It was hypothesized that spatial differences in soil inorganic-N levels have larger impact on decomposition processes of non-recalcitrant than recalcitrant leaf litter (low and high concentration of secondary compounds, respectively). Leaf litter and upper soil were extracted from modal size plant patches (patch microsite) and the associated inter-patch area (inter-patch microsite) in C and D. Leaf litter was pooled per vegetation state and soil was pooled combining vegetation state and microsite. Concentrations of N and secondary compounds in leaf litter and total and inorganic-N in soil were assessed at each pooled sample. Leaf litter decay and soil N mineralization at microsites of C and D were estimated in 160 microcosms incubated at field capacity (16 month). C soils had higher total N than D soils (0.58 and 0.41 mg/g, respectively). Patch soil of C and inter-patch soil of D exhibited the highest values of inorganic-N (8.8 and 8.4 μg/g, respectively). Leaf litter of C was less recalcitrant and decomposed faster than that of D. Non-recalcitrant leaf litter decay and induced soil N mineralization had larger variation among microsites (coefficients of variation = 25 and 41%, respectively) than recalcitrant leaf litter (coefficients of variation = 12 and 32%, respectively). Changes in the canopy structure induced by grazing disturbance increased leaf litter recalcitrance, and reduced litter decay and soil N mineralization, independently of soil N levels. This highlights the importance of the combined effects of soil and leaf litter properties on N cycling probably with consequences for vegetation reestablishment and dynamics, rangeland resistance and resilience with implications

  19. The importance of biotic factors in predicting global change effects on decomposition of temperate forest leaf litter.

    Science.gov (United States)

    Rouifed, Soraya; Handa, I Tanya; David, Jean-François; Hättenschwiler, Stephan

    2010-05-01

    Increasing atmospheric CO(2) and temperature are predicted to alter litter decomposition via changes in litter chemistry and environmental conditions. The extent to which these predictions are influenced by biotic factors such as litter species composition or decomposer activity, and in particular how these different factors interact, is not well understood. In a 5-week laboratory experiment we compared the decomposition of leaf litter from four temperate tree species (Fagus sylvatica, Quercus petraea, Carpinus betulus and Tilia platyphyllos) in response to four interacting factors: elevated CO(2)-induced changes in litter quality, a 3 degrees C warmer environment during decomposition, changes in litter species composition, and presence/absence of a litter-feeding millipede (Glomeris marginata). Elevated CO(2) and temperature had much weaker effects on decomposition than litter species composition and the presence of Glomeris. Mass loss of elevated CO(2)-grown leaf litter was reduced in Fagus and increased in Fagus/Tilia mixtures, but was not affected in any other leaf litter treatment. Warming increased litter mass loss in Carpinus and Tilia, but not in the other two litter species and in none of the mixtures. The CO(2)- and temperature-related differences in decomposition disappeared completely when Glomeris was present. Overall, fauna activity stimulated litter mass loss, but to different degrees depending on litter species composition, with a particularly strong effect on Fagus/Tilia mixtures (+58%). Higher fauna-driven mass loss was not followed by higher C mineralization over the relatively short experimental period. Apart from a strong interaction between litter species composition and fauna, the tested factors had little or no interactive effects on decomposition. We conclude that if global change were to result in substantial shifts in plant community composition and macrofauna abundance in forest ecosystems, these interacting biotic factors could have

  20. VOC emission into the atmosphere by trees and leaf litter in Polish forests

    Science.gov (United States)

    Isidorov, V.; Smolewska, M.; Tyszkiewicz, Z.

    2009-04-01

    It is generally recognized at present that the vegetation of continents is the principal source of reactive volatile organic compounds (VOC) of the atmosphere. The upper limit of the evaluation of global phytogenic VOC is 1100-1500 Tg/yr (Isidorov, 1990; Guenther et al., 1995). Although these global evaluations showing the place of phytogenic emission among of other VOC sources are important, evaluations for individual countries are also very important. This poster represents the results of the estimation of VOC emission from Polish forests. Calculations took into account the composition and age of forests. According to our estimation, the total VOC emission by the arboreal vegetation differs from 190 to 750 kt/yr, depending of weather conditions in different years. There are only few studies conducted on decaying plant material as a source of atmospheric VOCs, but still they are able to give evidence of the importance of this source. For Polish forests, the litter mass is estimated to be (16-19)106 t/yr. These organic materials undergo decomposition by mesofauna and microorganisms. In these processes volatile organic compounds (VOC) stored in the litter and secondary metabolites of litter-destroying fungi are emitted into the atmosphere. The scale of the phenomenon makes leaf litter an important VOC source in the atmosphere. The filling of numerous gaps in researches of VOC emissions from decomposing leaf litter demands carrying out of long term field experiments in various climatic conditions. In this communication we report also the results of 3.5-year experiment on qualitative and quantitative GC-MS investigations of VOC emitted into the gas phase from leaves litter of some species of deciduous and coniferous trees of Polish forests. Apart from terpenes and their oxygenated derivatives, which are usual in plant tissues, leaf litter intensively emits vast amounts of lower alcohols and carbonyl compounds. We suppose that these volatile substances are products

  1. A computational model for biosonar echoes from foliage.

    Directory of Open Access Journals (Sweden)

    Chen Ming

    Full Text Available Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals' sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats.

  2. Technical Note: Reactivity of C1 and C2 organohalogens formation – from plant litter to bacteria

    Directory of Open Access Journals (Sweden)

    J. J. Wang

    2012-10-01

    Full Text Available C1/C2 organohalogens (organohalogens with one or two carbon atoms can have significant environmental toxicity and ecological impact, such as carcinogenesis, ozone depletion and global warming. Natural halogenation processes have been identified for a wide range of natural organic matter, including soils, plant and animal debris, algae, and fungi. Yet, few have considered these organohalogens generated from the ubiquitous bacteria, one of the largest biomass pools on earth. Here, we report and confirm the formation of chloroform (CHCl3 dichloro-acetonitrile (CHCl2CN, chloral hydrate (CCl3CH(OH2 and their brominated analogues by direct halogenation of seven strains of common bacteria and nine cellular monomers. Comparing different major C stocks during litter decomposition stages in terrestrial ecosystems, from plant litter, decomposed litter, to bacteria, we found increasing reactivity for nitrogenous organohalogen yield with decreasing C/N ratio. Our results raise the possibility that natural halogenation of bacteria represents a significant and overlooked contribution to global organohalogen burdens. As bacteria are decomposers that alter the C quality by transforming organic matter pools from high to low C/N ratio and constitute a large organic N pool, the bacterial activity is expected to affect the C, N, and halogen cycling through natural halogenation reactions.

  3. Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland

    International Nuclear Information System (INIS)

    Belyea, L.R.

    1996-01-01

    Decomposition rates, measured as proportion of original ash-free dry mass lost from liter bas, were studied on four microhabitats of an ombrogenous peatland in southwestern Scotland: a Racomitrium lanuginosum hummock (HR), a Sphagnum capilifolium hummock (HS), a Sphagnum papillosum lawn (L), and a Sphagnum cuspidatum hollow (H). Reciprocal transplant experiments, in which litter bags were swapped among depths both within and among microhabitat types, separated the effects of litter quality (litter type and degree of humification of the peat) and microenvironment (water table position and microhabitat type). All were important determinants of mass loss. Decomposability of the litter from different microhabitats increased in the order HR < HS < L < H. Chemical 'ageing' of the peat reduced rates of decay in highly humified peat, although a history of decay was associated with maximum decomposability of peat from HR hummocks. The suitability of hollows for decay was significantly less than for HR and HS hummocks and lawns. Peat lost mass most slowly when placed below the lowest water table, but the highest mass losses were for peat placed in, or slightly above, the zone of water table fluctuation. Mass loss decreased with depth for peat decaying in its natural position in hollows and lawns and the oxic layer of HS hummocks. A peak in mass loss occurred within the zone of water table fluctuation in HS hummocks, and just above the highest water table in HR hummocks. The results support earlier suggestions that differences due to chemical ageing of peat contribute to differences in decomposition rates between hummocks and hollows, and that hummock species are intrinsically more resistant to decay than hollow species. The pattern was complicated further, however, by the effects of water table position and microhabitat type. (Abstract Truncated)

  4. Variations of Mercury Concentrations in American Beech Foliage over a Growing Season

    Science.gov (United States)

    Stinson, I.; Tsui, M. T. K.; Chow, A. T.

    2017-12-01

    Accumulation of atmospheric gaseous mercury (Hg) in foliage is well known, however, a small fraction of Hg always exists as highly bioavailable methylmercury (MeHg) in foliage but the source of MeHg in foliage is unknown. Recent studies suggested in-vivo Hg methylation in foliage while others suggested external inputs (e.g., precipitation) as sources of MeHg in foliage. This study assesses the accumulation of total Hg and MeHg within the foliage of a small sample set of American Beech trees, one of the common tree species in the east coast and the study site is located within the campus of University of North Carolina - Greensboro, over the growing season in 2017 (spring, summer, and fall). In addition, this study evaluates the Hg concentrations in foliage as related to other physiological parameters (e.g., stomatal density, leaf area, chlorophyll, and carbon/nitrogen content) and the changes in environmental characteristics (e.g., sunlight) over the growing season. For this investigation, five American Beech trees with varying characteristics (height, age, and location) were selected. On a biweekly basis, starting late April 2017, foliage samples were collected and composited from different positions on each tree. For the samples processed to date, our results indicate that total Hg accumulation is occurring for all five trees with an initial mean value of 5.79 ng/g, increasing to a mean value of 13.9 ng/g over a ten-week period. Coincidentally, there has been a similar increase in chlorophyll (a+b) concentrations for the foliage, and there is a strong, positive relationship between chlorophyll and total-Hg concentrations. However, we found no relationships between total Hg concentrations and stomatal density of foliage or carbon/nitrogen content. This study is still ongoing and will continue through the end of the growing season in 2017. Additionally, from the same sample sets, besides total Hg analysis and other ancillary parameters in foliage, MeHg analysis

  5. Composition of organic matter in earthworm casts depending on litter quality

    Science.gov (United States)

    Ellerbrock, R. H.; Gerke, H. H.; Schrader, S.; Leue, M.

    2009-04-01

    Earthworms contribute to decomposition and stabilization of organic matter (OM) in soil. The digestion during intestinal passage inside worms may lead to a change in the composition of OM. It is largely unknown if and how the type of litter the earthworm is feeding on is affecting the OM composition in the casts. Fourier Transform infrared spectroscopy (FTIR) is used to determine the hydrophobic CH- (A) and the hydrophilic CO- (B) functional groups in OM. The objective was to compare the A/B- ratios of litter samples with that of (i) the corresponding casts of the primary decomposer Lumbricus terrestris and (ii) the water contact angles of ground cast samples and at intact cast surfaces. Litter from 10 different plant species including leaves of birch, beech, oak, spruce, pear, mustard and wheat straw (3 replicates) was offered separately to L. terrestris in microcosms containing a Luvisol soil. The OM composition of litter and that of casts, collected from the soil surface after 4-weeks was analyzed with FTIR (DRIFT technique). The A/B ratio of casts was generally increased as compared to that of the soil. For most litter types, the A/B ratio of cast was relatively similar except for casts from birch (Betula pendula) and pear (Pyrus communis) where the OM show a 3-times higher A/B ratio as compared to wheat (Triticum aestivum) or beech (Fagus sylvatica) casts. The higher A/B ratios seem to be related to the relative higher C/N ratios in the casts from Betula pendula and Pyrus communis feeding experiments. The results indicate that digestion of litter by the worm may change OM composition. The assumption that earthworm casts may enrich hydrophobic OM components could be verified only partly. However particulate and soluble OM fractions in the earthworm casts could have contributed to such differentiation.

  6. Longevity of contributions to SOC stocks from roots and aboveground plant litter below a Miscanthus plantation

    Science.gov (United States)

    Robertson, Andrew; Smith, Pete; Davies, Christian; Bottoms, Emily; McNamara, Niall

    2013-04-01

    Miscanthus is a lignocellulosic crop that uses the Hatch-Slack (C4) photosynthetic pathway as opposed to most C3 vegetation native to the UK. Miscanthus can be grown for a number of practical end-uses but recently interest has increased in its viability as a bioenergy crop; both providing a renewable source of energy and helping to limit climate change by improving the carbon (C) budgets associated with energy generation. Recent studies have shown that Miscanthus plantations may increase stocks of soil organic carbon (SOC), however the longevity and origin of this 'new' SOC must be assessed. Consequently, we combined an input manipulation experiment with physio-chemical soil fractionation to quantify new SOC and CO2 emissions from Miscanthus roots, decomposing plant litter and soil individually. Further, fractionation of SOC from the top 30 cm gave insight into the longevity of that SOC. In January 2009 twenty-five 2 m2 plots were set up in a three-year old 11 hectare Miscanthus plantation in Lincolnshire, UK; with five replicates of five treatments. These treatments varied plant input to the soil by way of controlled exclusion techniques. Treatments excluded roots only ("No Roots"), surface litter only ("No Litter"), both roots and surface litter ("No Roots or Litter") or had double the litter amount added to the soil surface ("Double Litter"). A fifth treatment was a control with undisturbed roots and an average amount of litter added. Monthly measurements of CO2 emissions were taken at the soil surface from each treatment between March 2009 and March 2013, and soil C from the top 30 cm was monitored in all plots over the same period. Miscanthus-derived SOC was determined using the isotopic discrimination between C4 plant matter and C3 soil, and soil fractionation was then used to establish the longevity of that Miscanthus-derived SOC. Ongoing results for CO2 emissions indicate a strong seasonal variation; litter decomposition forms a large portion of the CO2

  7. Effects of top-dressing recycled broiler litter on litter production, litter characteristics, and nitrogen mass balance.

    Science.gov (United States)

    Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B

    2006-03-01

    Top-dressing is a method of broiler litter management in which a thin layer of new, clean litter material is spread over the top of previously used litter prior to placement of a new flock. This fresh layer of bedding material increases the absorptive capacity of the litter and decreases litter caking. Although this practice has been widely used in the poultry industry for many years, no research has been conducted to quantify the effects the practice has on broiler performance, litter production rates, and nutrient content, or the ability of broiler litter to retain manure N and prevent volatilization. An experiment was conducted to quantify these parameters under simulated commercial conditions in a research facility. Nine consecutive flocks of broilers were reared on recycled broiler litter that had previously been used for 9 flocks. Control pens received no litter treatment whereas top-dressed pens received a thin layer of new rice hulls (1 to 2 cm) before the placement of each flock. Nitrogen loss was calculated using the mass balance method. Average broiler performance was not different between the top-dressed and control pens. Top-dressing of litter significantly (P dressed pens compared with control pens. As a result, litter C:N ratios were significantly higher for pens with top-dressed litter. Differences in N loss between the treatments were not consistent. Average N loss for all flocks was 10.61 and 11.92 g of N/kg of marketed broiler for control and top-dressed pens, respectively, or 20.1 and 22.5% of N inputs, respectively. Based on this experiment, top-dressing of recycled broiler litter would not be recommended as a strategy to reduce the volatilization of N from broiler rearing facilities and, in fact, may actually increase N loss.

  8. Foliage efficiency of forest-forming species in the climatic gradients of Eurasia

    Directory of Open Access Journals (Sweden)

    V. A. Usoltsev

    2017-08-01

    Full Text Available The paperis of the scientific area of biogeography and devoted to a new aspect in the study of biological productivity of forest ecosystems on a geographical basis, expressed indirectly by climate parameters, namely, the foliage efficiency that until now is not investigated at the global level. Foliage efficiency is the ratio of net primary production (NPP to foliage biomass and is expressed in relative units. Some features of change of foliage efficiency of vicarious forest-forming species in Eurasian transcontinental gradients are showed for the first time using the voluminous factual material. The set of published biomass and NPP data (t/ha obtained in a number of 2192 plots is compiled. Using multiple regression analysis technique, the statistically significant changes in foliage efficiency values according to two transcontinental gradients, namely by zonal belts and continentality of climate, are stated for each forest-forming species. The species-specificity of age dynamics of stem volume and foliage efficiency is shown. It is monotonically decreased almost for all tree species in the following order: spruce and fir, pine, birch, oak, larch and aspen-poplar. When climate continentality increasing, foliage efficiency values of mature forests is dropping, most intensively in pines, less intensive in deciduous forests and virtually no changes in spruce-fir communities. In zonal gradient from the northern temperate to the subequatorial belt, foliage efficiency of deciduous species decreases, but it of the evergreen spruce and pine increases in the same direction. One of the possible causes of these opposite zonal trends of foliage efficiency in evergreen and deciduous species consists in different conditions of physiological processes in the year cycle, in particular, in year-round assimilates accumulation in the first and seasonal one in the second.

  9. Composition of Norway spruce litter and foliage in atmospherically acidified and nitrogen-saturated Bohemian Forest stands, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Jiří; Cudlín, Pavel; Svoboda, M.; Chmelíková, Ewa; Kaňa, Jiří; Picek, T.

    2010-01-01

    Roč. 15, č. 4 (2010), s. 413-426 ISSN 1239-6095 R&D Projects: GA ČR(CZ) GA206/07/1200; GA AV ČR(CZ) 1QS600170504 Grant - others:EHS/NO(CZ) CZ-0051 Institutional research plan: CEZ:AV0Z60170517; CEZ:AV0Z60870520 Keywords : litter * acidification * nitrogen-saturation Subject RIV: EH - Ecology, Behaviour Impact factor: 1.296, year: 2010

  10. Litter and dead wood dynamics in ponderosa pine forests along a 160-year chronosequence.

    Science.gov (United States)

    Hall, S A; Burke, I C; Hobbs, N T

    2006-12-01

    Disturbances such as fire play a key role in controlling ecosystem structure. In fire-prone forests, organic detritus comprises a large pool of carbon and can control the frequency and intensity of fire. The ponderosa pine forests of the Colorado Front Range, USA, where fire has been suppressed for a century, provide an ideal system for studying the long-term dynamics of detrital pools. Our objectives were (1) to quantify the long-term temporal dynamics of detrital pools; and (2) to determine to what extent present stand structure, topography, and soils constrain these dynamics. We collected data on downed dead wood, litter, duff (partially decomposed litter on the forest floor), stand structure, topographic position, and soils for 31 sites along a 160-year chronosequence. We developed a compartment model and parameterized it to describe the temporal trends in the detrital pools. We then developed four sets of statistical models, quantifying the hypothesized relationship between pool size and (1) stand structure, (2) topography, (3) soils variables, and (4) time since fire. We contrasted how much support each hypothesis had in the data using Akaike's Information Criterion (AIC). Time since fire explained 39-80% of the variability in dead wood of different size classes. Pool size increased to a peak as material killed by the fire fell, then decomposed rapidly to a minimum (61-85 years after fire for the different pools). It then increased, presumably as new detritus was produced by the regenerating stand. Litter was most strongly related to canopy cover (r2 = 77%), suggesting that litter fall, rather than decomposition, controls its dynamics. The temporal dynamics of duff were the hardest to predict. Detrital pool sizes were more strongly related to time since fire than to environmental variables. Woody debris peak-to-minimum time was 46-67 years, overlapping the range of historical fire return intervals (1 to > 100 years). Fires may therefore have burned under a

  11. Association between litterers' profile and littering behavior: A chi-square approach

    Science.gov (United States)

    Asmui, Mas'udah; Zaki, Suhanom Mohd; Wahid, Sharifah Norhuda Syed; Mokhtar, Noorsuraya Mohd; Harith, Siti Suhaila

    2017-05-01

    Littering is not a novelty, yet a prolonged issue. The solutions have been discussed for a long time; however this issue still remains unresolved. Littering is commonly associated with littering behavior and awareness. The littering behavior is normally influenced by the litter profile such as gender, family income, education level and age. Jengka Street market, which is located in Pahang, is popularly known as a trade market. It offers diversities of wet and dry goods and is awaited by local residents and tourists. This study analyzes association between litterers' profile and littering behavior. Littering behavior is measured based on factors of trash bin facilities, awareness campaign and public littering behavior. 114 respondents were involved in this study with 62 (54.39%) are female aged more than 18 years old and majority of these female respondents are diploma holders. In addition, 78.95% of the respondents have family income below than RM3,000.00 per month. Based on the data analysis, it was found that first-time visitors littered higher than frequent visitors, lack of providing trash bin facilities contributes to positive littering behavior and there is a significant association between litterers' age and littering behavior by using chi-square approach.

  12. Correlation of foliage and litter chemistry of sugar maple, Acer saccharum, as affected by elevated CO2 and varying N availability, and effects on decomposition

    Science.gov (United States)

    J. S. King; K. S. Pregitzer; D. R. Zak; M. E. Kubiske; W. E. Holmes

    2001-01-01

    Rising atmospheric carbon dioxide has the potential to alter leaf litter chemistry, potentially affecting decomposition and rates of carbon and nitrogen cycling in forest ecosystems. This study was conducted to determine whether growth under elevated atmospheric CO2 altered the quality and microbial decomposition of leaf litter of a widely...

  13. Input and turnover of forest tree litter in the Forsmark and Oskarshamn areas

    Energy Technology Data Exchange (ETDEWEB)

    Mjoefors, Kristina; Johansson, Maj-Britt; Nilsson, Aake [Dept. of Forest Soi ls, Swedish Univ. of Agricultural Sciences (Sweden); Hyvoenen, Riitta [Dept. of Eco logy, Swedish Univ. of Agricultural Sciences (Sweden)

    2007-04-15

    Forsmark sites, the N return in litterfall varied between 1.1 and 2.6 gdw/m{sup 2}/yr, the lower figure for site F3 and the higher for site F2. At site F1, about 1.7 gdw N/m{sup 2}/yr was deposited. The decomposition of the individual site litters was monitored over two years in field studies and the decomposition was predicted for up to 10 years using a dynamic decomposition model. At all three sites in the Forsmark area, the spruce needle litter lost around 33% in mass during the first year and after two years the cumulative mass loss amounted to 45%. The alder leaf litter decomposed more rapidly and lost 60% of mass during the first year and had reached a cumulative mass loss of 73% after two years. Generally, minor differences were noted in the decomposition pattern for the spruce and pine needles at sites within the Oskarshamn area. According to the model predictions, after 10 years about 80% of the initial mass was decomposed from needle litters and oak leaves but over 90% of the initial mass of alder leaves was decomposed. Mineralisation of N started immediately from alder leaves, and proceeded at a rapid rate during the first five months, after which it slowed down markedly. Due to its fast initial mineralisation, the alder litter lost about half its original amount of N during these first months. There was also generally a small loss of N from the other litter types during the first months but this loss was minor and never exceeded 10% of the initial N amount in the litter. The first phase of N loss was generally followed by short irregular periods when N was immobilised. Generally, 80-90% of the initial N amount still remained in the coniferous and oak litters after two years of decomposition (100% in the pine needles) whereas alder leaves had lost 60% of their N. The release of phosphorus (P) started immediately from all litter types and was most rapid from the alder leaf litter, which lost about 60% of its initial amount during the first five months. The other

  14. Input and turnover of forest tree litter in the Forsmark and Oskarshamn areas

    International Nuclear Information System (INIS)

    Mjoefors, Kristina; Johansson, Maj-Britt; Nilsson, Aake; Hyvoenen, Riitta

    2007-04-01

    litterfall varied between 1.1 and 2.6 gdw/m 2 /yr, the lower figure for site F3 and the higher for site F2. At site F1, about 1.7 gdw N/m 2 /yr was deposited. The decomposition of the individual site litters was monitored over two years in field studies and the decomposition was predicted for up to 10 years using a dynamic decomposition model. At all three sites in the Forsmark area, the spruce needle litter lost around 33% in mass during the first year and after two years the cumulative mass loss amounted to 45%. The alder leaf litter decomposed more rapidly and lost 60% of mass during the first year and had reached a cumulative mass loss of 73% after two years. Generally, minor differences were noted in the decomposition pattern for the spruce and pine needles at sites within the Oskarshamn area. According to the model predictions, after 10 years about 80% of the initial mass was decomposed from needle litters and oak leaves but over 90% of the initial mass of alder leaves was decomposed. Mineralisation of N started immediately from alder leaves, and proceeded at a rapid rate during the first five months, after which it slowed down markedly. Due to its fast initial mineralisation, the alder litter lost about half its original amount of N during these first months. There was also generally a small loss of N from the other litter types during the first months but this loss was minor and never exceeded 10% of the initial N amount in the litter. The first phase of N loss was generally followed by short irregular periods when N was immobilised. Generally, 80-90% of the initial N amount still remained in the coniferous and oak litters after two years of decomposition (100% in the pine needles) whereas alder leaves had lost 60% of their N. The release of phosphorus (P) started immediately from all litter types and was most rapid from the alder leaf litter, which lost about 60% of its initial amount during the first five months. The other litter types generally lost around 10

  15. Cobalt accumulation and circulation by blackgum trees

    International Nuclear Information System (INIS)

    Thomas, W.A.

    1975-01-01

    Blackgum (Nyssa sylvatica Marsh.) trees accumulate far greater concentrations of cobalt in mature foliage than do other species on the same site (363 ppM in ash of blackgum, compared with about 3 ppM by mockernut hickory and about 1 ppM by red maple, tulip tree, and white oak). Cobalt concentrations in dormant woody tissues of blackgum also significantly exceed those in the other four species. Inoculation of six blackgums with 60 Co revealed that cobalt remains mobile in the trees for at least 3 years. Foliar concentrations of stable cobalt increase uniformly until senescence. In late August, foliage accounts for only 9 percent of total tree weight but 57 percent of total tree cobalt. Losses of cobalt from trees occur almost entirely by leaf abscission, and the loss rates of weight and cobalt from decomposing litter are similar. Retention of cobalt in the biologically active soil layers perpetuates zones of cobalt concentration created by this species in woodlands

  16. Measurement of broiler litter production rates and nutrient content using recycled litter.

    Science.gov (United States)

    Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B

    2006-03-01

    It is important for broiler producers to know litter production rates and litter nutrient content when developing nutrient management plans. Estimation of broiler litter production varies widely in the literature due to factors such as geographical region, type of housing, size of broiler produced, and number of flocks reared on the same litter. Published data for N, P, and K content are also highly variable. In addition, few data are available regarding the rate of production, characteristics, and nutrient content of caked litter (cake). In this study, 18 consecutive flocks of broilers were reared on the same litter in experimental pens under simulated commercial conditions. The mass of litter and cake produced was measured after each flock. Samples of all litter materials were analyzed for pH, moisture, N, P, and K. Average litter and cake moisture content were 26.4 and 46.9%, respectively. Significant variation in litter and cake nutrient content was observed and can largely be attributed to ambient temperature differences. Average litter, cake, and total litter (litter plus cake) production rates were 153.3, 74.8, and 228.2 g of dry litter material per kg of live broiler weight (g/kg) per flock, respectively. Significant variation in litter production rates among flocks was also observed. Cumulative litter, cake, and total litter production rates after 18 flocks were 170.3, 78.7, and 249.0 g/kg, respectively. The data produced from this research can be used by broiler producers to estimate broiler litter and cake production and the nutrient content of these materials.

  17. Role of Reactive Mn Complexes in a Litter Decomposition Model System

    Science.gov (United States)

    Nico, P. S.; Keiluweit, M.; Bougoure, J.; Kleber, M.; Summering, J. A.; Maynard, J. J.; Johnson, M.; Pett-Ridge, J.

    2012-12-01

    The search for controls on litter decomposition rates and pathways has yet to return definitive characteristics that are both statistically robust and can be understood as part of a mechanistic or numerical model. Herein we focus on Mn, an element present in all litter that is likely an active chemical agent of decomposition. Berg and co-workers (2010) found a strong correlation between Mn concentration in litter and the magnitude of litter degradation in boreal forests, suggesting that litter decomposition proceeds more efficiently in the presence of Mn. Although there is much circumstantial evidence for the potential role of Mn in lignin decomposition, few reports exist on mechanistic details of this process. For the current work, we are guided by the hypothesis that the dependence of decomposition on Mn is due to Mn (III)-oxalate complexes act as a 'pretreatment' for structurally intact ligno-carbohydrate complexes (LCC) in fresh plant cell walls (e.g. in litter, root and wood). Manganese (III)-ligand complexes such as Mn (III)-oxalate are known to be potent oxidizers of many different organic and inorganic compounds. In the litter system, the unique property of these complexes may be that they are much smaller than exo-enzymes and therefore more easily able to penetrate LCC complexes in plant cell walls. By acting as 'diffusible oxidizers' and reacting with the organic matrix of the cell wall, these compounds can increase the porosity of fresh litter thereby facilitating access of more specific lignin- and cellulose decomposing enzymes. This possibility was investigated by reacting cell walls of single Zinnia elegans tracheary elements with Mn (III)-oxalate complexes in a continuous flow reactor. The uniformity of these individual plant cells allowed us to examine Mn (III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as IR and X-ray spectromicroscopy. This presentation will

  18. Forensic entomology of decomposing humans and their decomposing pets.

    Science.gov (United States)

    Sanford, Michelle R

    2015-02-01

    Domestic pets are commonly found in the homes of decedents whose deaths are investigated by a medical examiner or coroner. When these pets become trapped with a decomposing decedent they may resort to feeding on the body or succumb to starvation and/or dehydration and begin to decompose as well. In this case report photographic documentation of cases involving pets and decedents were examined from 2009 through the beginning of 2014. This photo review indicated that in many cases the pets were cats and dogs that were trapped with the decedent, died and were discovered in a moderate (bloat to active decay) state of decomposition. In addition three cases involving decomposing humans and their decomposing pets are described as they were processed for time of insect colonization by forensic entomological approach. Differences in timing and species colonizing the human and animal bodies were noted as was the potential for the human or animal derived specimens to contaminate one another at the scene. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Within crown variation in the relationship between foliage biomass and sapwood area in jack pine.

    Science.gov (United States)

    Schneider, Robert; Berninger, Frank; Ung, Chhun-Huor; Mäkelä, Annikki; Swift, D Edwin; Zhang, S Y

    2011-01-01

    The relationship between sapwood area and foliage biomass is the basis for a lot of research on eco-phyisology. In this paper, foliage biomass change between two consecutive whorls is studied, using different variations in the pipe model theory. Linear and non-linear mixed-effect models relating foliage differences to sapwood area increments were tested to take into account whorl location, with the best fit statistics supporting the non-linear formulation. The estimated value of the exponent is 0.5130, which is significantly different from 1, the expected value given by the pipe model theory. When applied to crown stem sapwood taper, the model indicates that foliage biomass distribution influences the foliage biomass to sapwood area at crown base ratio. This result is interpreted as being the consequence of differences in the turnover rates of sapwood and foliage. More importantly, the model explains previously reported trends in jack pine sapwood area at crown base to tree foliage biomass ratio.

  20. Foliage penetration radar detection and characterization of objects under trees

    CERN Document Server

    Davis, Mark

    2011-01-01

    This book covers all aspects of foliage penetration (FOPEN) radar, concentrating on both airborne military radar systems as well as earth resource mapping radars. It is the first concise and thorough treatment of FOPEN, covering the results of a decade-long investment by DARPA in characterizing foliage and earth surface with ultrawideband UHF and VHF synthetic aperture radar (SAR).

  1. Quantifying the effect of plant growth on litter decomposition using a novel, triple-isotope label approach

    Science.gov (United States)

    Ernakovich, J. G.; Baldock, J.; Carter, T.; Davis, R. A.; Kalbitz, K.; Sanderman, J.; Farrell, M.

    2017-12-01

    Microbial degradation of plant detritus is now accepted as a major stabilizing process of organic matter in soils. Most of our understanding of the dynamics of decomposition come from laboratory litter decay studies in the absence of plants, despite the fact that litter decays in the presence of plants in many native and managed systems. There is growing evidence that living plants significantly impact the degradation and stabilization of litter carbon (C) due to changes in the chemical and physical nature of soils in the rhizosphere. For example, mechanistic studies have observed stimulatory effects of root exudates on litter decomposition, and greenhouse studies have shown that living plants accelerate detrital decay. Despite this, we lack a quantitative understanding of the contribution of living plants to litter decomposition and how interactions of these two sources of C build soil organic matter (SOM). We used a novel triple-isotope approach to determine the effect of living plants on litter decomposition and C cycling. In the first stage of the experiment, we grew a temperate grass commonly used for forage, Poa labillardieri, in a continuously-labelled atmosphere of 14CO2 fertilized with K15NO3, such that the grass biomass was uniformly labelled with 14C and 15N. In the second stage, we constructed litter decomposition mescososms with and without a living plant to test for the effect of a growing plant on litter decomposition. The 14C/15N litter was decomposed in a sandy clay loam while a temperate forage grass, Lolium perenne, grew in an atmosphere of enriched 13CO2. The fate of the litter-14C/15N and plant-13C was traced into soil mineral fractions and dissolved organic matter (DOM) over the course of nine weeks using four destructive harvests of the mesocosms. Our preliminary results suggest that living plants play a major role in the degradation of plant litter, as litter decomposition was greater, both in rate and absolute amount, for soil mesocosms

  2. Is litter decomposition 'primed' by primary producer-release of labile carbon in terrestrial and aquatic experimental systems?

    Science.gov (United States)

    Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes

    2015-04-01

    It is possible that recalcitrant organic matter (ROM) can be 'activated' by inputs of labile organic matter (LOM) through the priming effect (PE). Investigating the PE is of major importance to fully understand the microbial use of ROM and its role on carbon (C) and nutrient cycling in both aquatic and terrestrial ecosystems. In aquatic ecosystems it is thought that the PE is triggered by periphytic algae release of LOM. Analogously, in terrestrial systems it is hypothesized that the LOM released in plant rhizospheres, or from the green crusts on the surface of agricultural soils, stimulate the activity and growth of ROM decomposers. Most previous studies on PE have utilised pulse additions of single substrates at high concentrations. However, to achieve an assessment of the true importance of the PE, it is important to simulate a realistic delivery of LOM. We investigated, in a series of 2-week laboratory experiments, how primary producer (PP)-release of LOM influence litter degradation in terrestrial and aquatic experimental systems. We used soil (terrestrial) and pond water (aquatic) microbial communities to which litter was added under light and dark conditions. In addition, glucose was added at PP delivery rates in dark treatments to test if the putative PE in light systems could be reproduced. We observed an initial peak of bacterial growth rate followed by an overall decrease over time with no treatment differences. In light treatments, periphytic algae growth and increased fungal production was stimulated when bacterial growth declined. In contrast, both fungal growth and algal production were negligible in dark treatments. This reveals a direct positive influence of photosynthesis on fungal growth. To investigate if PP LOM supplements, and the associated fungal growth, translate into a modulated litter decomposition, we are using stable isotopes to track the use of litter and algal-derived carbon by determining the δ13C in produced CO2. Fungi and bacteria

  3. Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison.

    Science.gov (United States)

    Godoy, Oscar; Castro-Díez, Pilar; Van Logtestijn, Richard S P; Cornelissen, Johannes H C; Valladares, Fernando

    2010-03-01

    Leaf traits related to the performance of invasive alien species can influence nutrient cycling through litter decomposition. However, there is no consensus yet about whether there are consistent differences in functional leaf traits between invasive and native species that also manifest themselves through their "after life" effects on litter decomposition. When addressing this question it is important to avoid confounding effects of other plant traits related to early phylogenetic divergences and to understand the mechanism underlying the observed results to predict which invasive species will exert larger effects on nutrient cycling. We compared initial leaf litter traits, and their effect on decomposability as tested in standardized incubations, in 19 invasive-native pairs of co-familial species from Spain. They included 12 woody and seven herbaceous alien species representative of the Spanish invasive flora. The predictive power of leaf litter decomposition rates followed the order: growth form > family > status (invasive vs. native) > leaf type. Within species pairs litter decomposition tended to be slower and more dependent on N and P in invaders than in natives. This difference was likely driven by the higher lignin content of invader leaves. Although our study has the limitation of not representing the natural conditions from each invaded community, it suggests a potential slowing down of the nutrient cycle at ecosystem scale upon invasion.

  4. Are leaves that fall from imidacloprid-treated maple trees to control Asian longhorned beetles toxic to non-target decomposer organisms?

    Science.gov (United States)

    Kreutzweiser, David P; Good, Kevin P; Chartrand, Derek T; Scarr, Taylor A; Thompson, Dean G

    2008-01-01

    The systemic insecticide imidacloprid may be applied to deciduous trees for control of the Asian longhorned beetle, an invasive wood-boring insect. Senescent leaves falling from systemically treated trees contain imidacloprid concentrations that could pose a risk to natural decomposer organisms. We examined the effects of foliar imidacloprid concentrations on decomposer organisms by adding leaves from imidacloprid-treated sugar maple trees to aquatic and terrestrial microcosms under controlled laboratory conditions. Imidacloprid in maple leaves at realistic field concentrations (3-11 mg kg(-1)) did not affect survival of aquatic leaf-shredding insects or litter-dwelling earthworms. However, adverse sublethal effects at these concentrations were detected. Feeding rates by aquatic insects and earthworms were reduced, leaf decomposition (mass loss) was decreased, measurable weight losses occurred among earthworms, and aquatic and terrestrial microbial decomposition activity was significantly inhibited. Results of this study suggest that sugar maple trees systemically treated with imidacloprid to control Asian longhorned beetles may yield senescent leaves with residue levels sufficient to reduce natural decomposition processes in aquatic and terrestrial environments through adverse effects on non-target decomposer organisms.

  5. Leaf litter breakdown rates and associated fauna of native and exotic trees used in Neotropical Riparia Reforestation

    International Nuclear Information System (INIS)

    Gutierrez Isaza, Nataly; Blanco, Juan Felipe

    2014-01-01

    A signature of globalization is the prevalence of exotic trees along reforested urban and rural riparian zones in the neotropics, but little is known about the instream processing of its leaf litter. In this study, leaf litter breakdown rates were measured during 35 days using mesh bags within a reference headwater stream for seven exotic and three native tree species commonly used in urban and rural reforestation. Artocarpus altilis, Schefflera actinophylla and Terminalia catappa scored the highest mass loss rates (>85 %; mean life: t50 <15 d), while Cecropia sp. and Cespedesia macrophylla (mass loss =36 and 15 %; t50 =58 and 172 d, respectively) scored the lowest rates. However, a broad range of rates was observed among the ten species studied. The carbon to phosphorus ratio (c:p) and toughness of the leaf litter were the best predictors of breakdown rates. However, these leaf properties were not correlated with the very low values of macro invertebrates abundance and diversity, and the few morpho classified as shredders. Therefore physical rather than biological controls seem to best explain the observed variability of mass loss rates, and thus slow decomposing leaf litter species seems to provide a habitat rather than a food resource, particularly to collectors. This study suggests that riparian reforestation will propagate species-specific ecological influences on instream processes such as leaf litter processing depending on leaf quality properties, therefore ecosystem-wide influences should be considered for improving reforestation strategies. Future studies should test for differences in breakdown rates and colonization by macro invertebrates relative for leaf litter species origin (native vs. exotic).

  6. Chemical Properties, Decomposition, and Methane Production of Tertiary Relict Plant Litters: Implications for Atmospheric Trace Gas Production in the Early Tertiary

    Science.gov (United States)

    Yavitt, J. B.; Bartella, T. M.; Williams, C. J.

    2006-12-01

    Throughout the early Tertiary (ca. 65-38 Ma) Taxodiaceae-dominated (redwood) wetland forests occupied the high latitudes and were circumpolar in their distribution. Many of these forests had high standing biomass with moderate primary productivity. The geographic extent and amount of Tertiary coals and fossil forests throughout Arctic Canada suggests large areas of wetland forests that may have cycled substantial quantities of carbon, particularly methane until they were replaced by cold tolerant Pinus, Picea, and Larix following climatic cooling associated with the Terminal Eocene Event. To test this hypothesis we compared physiochemical properties, decomposition, and trace gas production of litter from extant Metasequoia, Pinus, Picea, and Larix. Initial results from plantation-grown trees indicate Metasequoia litter is a better source of labile organic substrate than pinaceous litter. Metasequoia litter contained the least lignin and highest amounts of water-soluble compounds of the four litter types studied. Analysis of the lignin structure using cupric oxide oxidation indicates that Metasequoia lignin is enriched in 4'-hydroxyacetophenone and 4'- Hydroxy-3'-methoxyacetophenone relative to the pinaceous litter. In a 12-month decomposition study using litterbags, average litter mass loss was greater for Metasequoia litter (62%) compared to the pinaceous species (50%). Moreover, Metasequoia litter incubated under anoxic conditions produced nearly twice as much CO2 (ca. 4.2 umol/g.day) and CH4 (2.1 umol/g.day) as the pinaceous litter (2.4 umol/g.day for CO2; 1.2 umol/g.day for CH4). Our results support the idea of greater decomposability and palatability of Metasequoia litter as compared to Larix, Picea, or Pinus. Provided that the biochemical properties of Metasequoia have remained relatively stable through geologic time, it appears that early Tertiary Metasequoia-dominated wetland forests may have had higher microbial driven trace gas production than the

  7. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter

    Science.gov (United States)

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then...

  8. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    Science.gov (United States)

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  9. Photochemical Transformation and Bacterial Utilization of Dissolved Organic Matter and Disinfection Byproduct Precursors from Foliar Litter

    Science.gov (United States)

    Chow, A. T.; Wong, P.; O'Geen, A. T.; Dahlgren, R. A.

    2009-12-01

    Foliar litter is an important terrestrial source of dissolved organic matter (DOM) in surface water. DOM is a public health concern since it is a precursor of carcinogenic disinfection byproducts (DBPs) during drinking water treatment. Chemical characterization of in-situ water samples for their impact on water treatment may be misleading because DOM characteristics can be altered from their original composition during downstream transport to water treatment plants. In this study, we collected leachate from four fresh litters and decomposed duffs from four dominant vegetation components of California oak woodlands: blue oak (Quercus douglassi), live oak (Quercus wislizenii), foothill pine (Pinus sabiniana), and annual grasses to evaluate their DOM degradability and the reactivity of altered DOM towards DBP formation. Samples were filtered through a sterilized membrane (0.2 micron) and exposed to natural sunlight and Escherichia coli K-12 independently for 14 days. Generally speaking, leachate from decomposed duff was relatively resistant towards biodegradation compared to that from fresh litter, but the former was more susceptible to photo-transformation. Photo-bleaching caused a 30% decrease in ultra-violet absorbance at 254 nm (UVA) but no significant changes in dissolved organic carbon (DOC) concentration. This apparent loss of aromatic carbon in DOM, in terms of specific UVA, did not result in a decrease of specific trihalomethane (THM) formation potential, although aromatic carbon is considered as a major reactive site for THM formation. In addition, there were significant increases (p < 0.05) of chloral hydrate after the 14-day exposure, suggesting that the photolytic products could be a precursor of chloral hydrate. In contrast, samples inoculated with E. coli did not show a significant effect on the DOC concentration, UVA or DBP formation, although the colony counts indicated a 2-log cell growth during the 14-day incubation. Results suggest photolysis is a

  10. The Effect of Litter Position on Ultraviolet Photodegradation of Standing Dead Litter

    Science.gov (United States)

    Lin, Y.; King, J. Y.

    2012-12-01

    In dryland ecosystems, models incorporating only biotic mechanisms usually underestimate the decay rate of plant litter. Photodegradation, an abiotic process through which solar radiation breaks down organic matter, has recently been proposed as an important pathway of litter decomposition in dryland ecosystems, accounting for as much as 25 to 60% of mass loss. However, it remains unclear what factors control the relative importance of photodegradation and biotic decomposition. It is hypothesized that this balance is affected by the location of litter within the litter layer (or thatch): in upper layers of thatch, photodegradation is significant because litter is exposed to sunlight; in lower layers where litter is strongly shaded, photodegradation is negligible compared to biotic decomposition. In August 2011, a field experiment was initiated at the University of California's Sedgwick Reserve, Santa Ynez, CA, in order to understand how ultraviolet (UV) radiation and litter position within the thatch affect litter decomposition. Two levels of UV radiation (280-400 nm) are achieved by screens: "UV-Pass" (transmitting > 81% of UV radiation) and "UV-Block" (transmitting plant litter was 19% higher in UV-Pass than in UV-Block treatments, but there was no difference at the top of the thatch. Because lignin is recalcitrant to biotic decomposition, a greater proportion of lignin could remain in litter where biotic decomposition was faster. Therefore, the pattern of lignin concentration supports the interpretation that greater biotic decomposition occurred under the UV-Pass treatment. Regardless of UV manipulation, litter mass loss was 25% faster at the top of the thatch than at the bottom. Litter at the top of the thatch also had 6% higher cellulose concentration and 13% lower lignin concentration than at the bottom of the thatch after 9 months of field exposure. Photodegradation (by UV and visible light) likely contributed more to decomposition at the top of the thatch

  11. Three-dimensional mapping of light transmittance and foliage distribution using lidar

    International Nuclear Information System (INIS)

    Todd, K.W.; Csillag, F.; Atkinson, P.M.

    2003-01-01

    The horizontal and vertical distributions of light transmittance were evaluated as a function of foliage distribution using lidar (light detection and ranging) observations for a sugar maple (Acer saccharum) stand in the Turkey Lakes Watershed. Along the vertical profile of vegetation, horizontal slices of probability of light transmittance were derived from an Optech ALTM 1225 instrument's return pulses (two discrete, 15-cm diameter returns) using indicator kriging. These predictions were compared with (i) below canopy (1-cm spatial resolution) transect measurements of the fraction of photosynthetically active radiation (FPAR) and (ii) measurements of tree height. A first-order trend was initially removed from the lidar returns. The vertical distribution of vegetation height was then sliced into nine percentiles and indicator variograms were fitted to them. Variogram parameters were found to vary as a function of foliage height above ground. In this paper, we show that the relationship between ground measurements of FPAR and kriged estimates of vegetation cover becomes stronger and tighter at coarser spatial resolutions. Three-dimensional maps of foliage distribution were computed as stacks of the percentile probability surfaces. These probability surfaces showed correspondence with individual tree-based observations and provided a much more detailed characterization of quasi-continuous foliage distribution. These results suggest that discrete-return lidar provides a promising technology to capture variations of foliage characteristics in forests to support the development of functional linkages between biophysical and ecological studies. (author)

  12. Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community.

    Science.gov (United States)

    Patoine, Guillaume; Thakur, Madhav P; Friese, Julia; Nock, Charles; Hönig, Lydia; Haase, Josephine; Scherer-Lorenzen, Michael; Eisenhauer, Nico

    2017-11-01

    A better understanding of the mechanisms driving litter diversity effects on decomposition is needed to predict how biodiversity losses affect this crucial ecosystem process. In a microcosm study, we investigated the effects of litter functional diversity and two major groups of soil macro-detritivores on the mass loss of tree leaf litter mixtures. Furthermore, we tested the effects of litter trait community means and dissimilarity on litter mass loss for seven traits relevant to decomposition. We expected macro-detritivore effects on litter mass loss to be most pronounced in litter mixtures of high functional diversity. We used 24 leaf mixtures differing in functional diversity, which were composed of litter from four species from a pool of 16 common European tree species. Earthworms, isopods, or a combination of both were added to each litter combination for two months. Litter mass loss was significantly higher in the presence of earthworms than in that of isopods, whereas no synergistic effects of macro-detritivore mixtures were found. The effect of functional diversity of the litter material was highest in the presence of both macro-detritivore groups, supporting the notion that litter diversity effects are most pronounced in the presence of different detritivore species. Species-specific litter mass loss was explained by nutrient content, secondary compound concentration, and structural components. Moreover, dissimilarity in N concentrations increased litter mass loss, probably because detritivores having access to nutritionally diverse food sources. Furthermore, strong competition between the two macro-detritivores for soil surface litter resulted in a decrease of survival of both macro-detritivores. These results show that the effects of litter functional diversity on decomposition are contingent upon the macro-detritivore community and composition. We conclude that the temporal dynamics of litter trait diversity effects and their interaction with

  13. DEKOMPOSISI SAMPAH JANUR KELAPA (Cocos nucifera L. DAN NIBUNG (Oncosperma tigillarium (Jack Ridl. DALAM LUBANG RESAPAN BIOPORI

    Directory of Open Access Journals (Sweden)

    I Putu Candra Noviarta

    2017-02-01

    Full Text Available ABSTRACT The increasing volume of garbage of Balinese Hindu’s offering is still a problem. The garbage, when it is decomposed however could be useful for fertilized. This organic litter can be decomposed in biopore. This research ainied to investigated the decomposition rate of C. nucifera and O. tigillarium litter in biopores. This research was conducted between February and July 2015. Garbage were collected from temples in Jembrana city and treated at Dangin Tukadaya village, Jembrana Distric. Sampels were arranged in a Factorial Randomized Blocked Sampling Design 2 factors i.e: treatments and times (1, 2, 3, 4 and 23 weeks. The result showed that decomposition rate 98,63% of cocos litter and 99,23% of oncosperma litter were decomposed in biopore on week 23 compared to 89,06% of cocos and 75,76 % of oncosperma litter in control. Decomposition mean rate is 9,33 %/week of cocos litter and 9,64 %/week of oncosperma litter were decomposed in biopore but in control is 7,85 %/week of cocos and 8,07 %/week of oncosperma litter. Total cocos and oncosperma litter decomposition took about 23,3 and 23,2 weeks in biopore but for control 25,8 and 30,4 weeks The number of millipedes (Harpaphe haydeniana as decomposer was found higher compared to other decomposers such as earth worms and molusca. Keywords: decomposition, biopore, decomposer, bali, cocos litter, oncosperma litter

  14. [Relationship between leaf litter decomposition and colonization of benthic macroinvertebrates during early frost period in a headwater stream in the Changbai Mountains, Northeast China].

    Science.gov (United States)

    Wang, Lu; Yang, Hai Jun; Li, Ling; Nan, Xiao Fei; Zhang, Zhen Xing; Li, Kun

    2017-11-01

    Annually, about 70% of the streams in the Changbai Mountains are frosted during November to April, with manifest seasonal freeze-thaw characters. By using monoculture and mixing leaf litters of Tilia amurensis, Acer mono and Quecus mongolica, this research attempted to disentangle the relationship between leaf litter decomposition and colonization of macroinvertebrates in the stream during early frost period. A 35-day investigation was carried out in a headwater stream of the Changbai Mountains. Nylon bags with two hole sizes (5 mm and 0.3 mm) were used to examine decomposition of the litters. The results showed that the mass losses were significantly different among the three kinds of leaf litters in monoculture, whose decomposition rates descended as A. mono, T. amurensis, and Q. mongolica, however, there existed no significant difference among the litter mixing. Mass losses in both mesh bags all showed little difference, except T. amurensis and the mixed litters. Litter mixing effects occurred in the coarse mesh bags with A. mono and Q. mongolica, but no mixture effects for others. Community structures of the macroinvertebrates colonizing in the litter bags differed with each other, but shredders' density had no significant difference among the three litters, and the mixing effects on shredders were poor. Our results implied that microbes play the major decomposers of leaf litters, and macroinvertebrates contribute little to the decomposition in the early frost period. Despite shredder's density is lower, they determine the mixing effects of litters. Macroinvertebrates are selective to food and habitats, however, due to the short term colonizing, and the influence of leaf litters on shredders is still unsure. Our results might contribute to understanding the cold season ecological processes and related management issues of headwater stream ecosystem.

  15. Viewpoint-Driven Simplification of Plant and Tree Foliage

    Directory of Open Access Journals (Sweden)

    Cristina Gasch

    2018-03-01

    Full Text Available Plants and trees are an essential part of outdoor scenes. They are represented by such a vast number of polygons that performing real-time visualization is still a problem in spite of the advantages of the hardware. Some methods have appeared to solve this drawback based on point- or image-based rendering. However, geometry representation is required in some interactive applications. This work presents a simplification method that deals with the geometry of the foliage, reducing the number of primitives that represent these objects and making their interactive visualization possible. It is based on an image-based simplification that establishes an order of leaf pruning and reduces the complexity of the canopies of trees and plants. The proposed simplification method is viewpoint-driven and uses the mutual information in order to choose the leaf to prune. Moreover, this simplification method avoids the pruned appearance of the tree that is usually produced when a foliage representation is formed by a reduced number of leaves. The error introduced every time a leaf is pruned is compensated for if the size of the nearest leaf is altered to preserve the leafy appearance of the foliage. Results demonstrate the good quality and time performance of the presented work.

  16. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    Directory of Open Access Journals (Sweden)

    Anja Schmidt

    Full Text Available Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  17. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats.

    Science.gov (United States)

    Harner, Mary J; Crenshaw, Chelsea L; Abelho, Manuela; Stursova, Martina; Shah, Jennifer J Follstad; Sinsabaugh, Robert L

    2009-07-01

    decomposing cottonwood litter with a high potential for N immobilization. As a result, retention and mineralization of litter N within these forests is controlled by hydrologic connectivity to the river, which affects litter export and in situ decomposition.

  18. The role of microbial communities in phosphorus cycling during litter decomposition in a tropical forest

    Science.gov (United States)

    Lloret Sevilla, E.; Brodie, E.; Bouskill, N.; Hao, Z.

    2016-12-01

    Phosphorus is an essential nutrient with a reduced availability in tropical forests. In these ecosystems, P is recycled highly efficiently through resorption and mineralization and P immobilization in the microbial biomass prevents its loss through occlusion in the soil mineral fraction. To improve models of ecosystem response to global change, further studies of the above and belowground plant and microbial traits related to P availability and uptake, are required. In tropical forests, high temperature and rainfall lead to some of the highest rates of litter decomposition on earth. Litter decomposition is a complex process mediated by a range of trophic groups: meso and microfauna initiate litter turnover through litter fragmentation facilitating colonization by fungi, and bacteria mediate the mineralization of organic matter and release of nutrients. To determine the important functional traits of these players in the efficient cycling of P in soils with low P availability, we are performing a leaf litter decomposition experiment in a humid tropical forest in Puerto Rico. Nylon litterbags with three mesh sizes (2mm, 20 μm and 0.45 μm) containing litter with different chemistry (tabonuco and palm) will be deployed on soil surface and sampled 6 times throughout 12 months. The use of different mesh sizes will allow us to identify the leading roles in litter turnover by physical allowance and/or exclusion of the decomposers. The 2 mm bags allow meso and microfauna, roots, fungi and bacteria. 20 μm bags will exclude fauna and roots and 0.45 μm only allow some bacteria. We hypothesize that fungi will dominate over bacteria in earlier stages of the decomposition with a higher production of extracellular hydrolytic enzymes. On the other hand, bacterial biomass is expected to increase with time. Qualitative changes in both fungal and bacterial communities along the decomposition process are also expected leading to changes in enzyme activity. We also postulate an

  19. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence.

    Science.gov (United States)

    Zhang, Weidong; Chao, Lin; Yang, Qingpeng; Wang, Qingkui; Fang, Yunting; Wang, Silong

    2016-10-01

    Nitrogen addition has been shown to affect plant litter decomposition in terrestrial ecosystems. The way that nitrogen deposition impacts the relationship between plant litter decomposition and altered soil nitrogen availability is unclear, however. This study examined 18 co-occurring litter types in a subtropical forest in China in terms of their decomposition (1 yr of exposure in the field) with nitrogen addition treatment (0, 0.4, 1.6, and 4.0 mol·N·m -2 ·yr -1 ) and soil fauna exclusion (litter bags with 0.1 and 2 cm mesh size). Results showed that the plant litter decomposition rate is significantly reduced because of nitrogen addition; the strength of the nitrogen addition effect is closely related to the nitrogen addition levels. Plant litters with diverse quality responded to nitrogen addition differently. When soil fauna was present, the nitrogen addition effect on medium-quality or high-quality plant litter decomposition rate was -26% ± 5% and -29% ± 4%, respectively; these values are significantly higher than that of low-quality plant litter decomposition. The pattern is similar when soil fauna is absent. In general, the plant litter decomposition rate is decreased by soil fauna exclusion; an average inhibition of -17% ± 1.5% was exhibited across nitrogen addition treatment and litter quality groups. However, this effect is weakly related to nitrogen addition treatment and plant litter quality. We conclude that the variations in plant litter quality, nitrogen deposition, and soil fauna are important factors of decomposition and nutrient cycling in a subtropical forest ecosystem. © 2016 by the Ecological Society of America.

  20. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species.

    Science.gov (United States)

    Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H C

    2015-08-18

    In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation.

  1. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review

    Directory of Open Access Journals (Sweden)

    Zhao Chen

    2014-01-01

    Full Text Available Chicken litter or chicken litter-based organic fertilizers are usually recycled into the soil to improve the structure and fertility of agricultural land. As an important source of nutrients for crop production, chicken litter may also contain a variety of human pathogens that can threaten humans who consume the contaminated food or water. Composting can inactivate pathogens while creating a soil amendment beneficial for application to arable agricultural land. Some foodborne pathogens may have the potential to survive for long periods of time in raw chicken litter or its composted products after land application, and a small population of pathogenic cells may even regrow to high levels when the conditions are favorable for growth. Thermal processing is a good choice for inactivating pathogens in chicken litter or chicken litter-based organic fertilizers prior to land application. However, some populations may become acclimatized to a hostile environment during build-up or composting and develop heat resistance through cross-protection during subsequent high temperature treatment. Therefore, this paper reviews currently available information on the microbiological safety of chicken litter or chicken litter-based organic fertilizers, and discusses about further research on developing novel and effective disinfection techniques, including physical, chemical, and biological treatments, as an alternative to current methods.

  2. Restoration of Tidal Flow to Impounded Salt Marsh Exerts Mixed Effect on Leaf Litter Decomposition

    Science.gov (United States)

    Henry, B. A.; Schade, J. D.; Foreman, K.

    2015-12-01

    Salt marsh impoundments (e.g. roads, levees) disconnect marshes from ocean tides, which impairs ecosystem services and often promotes invasive species. Numerous restoration projects now focus on removing impoundments. Leaf litter decomposition is a central process in salt marsh carbon and nutrient cycles, and this study investigated the extent to which marsh restoration alters litter decomposition rates. We considered three environmental factors that can potentially change during restoration: salinity, tidal regime, and dominant plant species. A one-month field experiment (Cape Cod, MA) measured decay of litter bags in impounded, restored, and natural marshes under ambient conditions. A two-week lab experiment measured litter decay in controlled incubations under experimental treatments for salinity (1ppt and 30 ppt), tidal regime (inundated and 12 hr wet-dry cycles), and plant species (native Spartina alterniflora and invasive Phragmites australis). S. alterniflora decomposed faster in situ than P. australis (14±1.0% mass loss versus 0.74±0.69%). Corroborating this difference in decomposition, S. alterniflora supported greater microbial respiration during lab incubation, measured as CO2 flux from leaf litter and biological oxygen demand of water containing leached organic matter (OM). However, nutrient analysis of plant tissue and leached OM show P. australis released more nitrogen than S. alterniflora. Low salinity treatments in both lab and field experiments decayed more rapidly than high salinity treatments, suggesting that salinity inhibited microbial activity. Manipulation of inundation regime did not affect decomposition. These findings suggest the reintroduction of tidal flow to an impounded salt marsh can have mixed effects; recolonization by the native cordgrass could supply labile OM to sediment and slow carbon sequestration, while an increase in salinity might inhibit decomposition and accelerate sequestration.

  3. Marine Anthropogenic Litter

    OpenAIRE

    Bergmann, Melanie; Gutow, Lars; Klages, Michael

    2015-01-01

    This book describes how manmade litter, primarily plastic, has spread into the remotest parts of the oceans and covers all aspects of this pollution problem from the impacts on wildlife and human health to socio-economic and political issues. Marine litter is a prime threat to marine wildlife, habitats and food webs worldwide. The book illustrates how advanced technologies from deep-sea research, microbiology and mathematic modelling as well as classic beach litter counts by volunteers co...

  4. Broiler diet modification and litter storage: impacts on phosphorus in litters, soils, and runoff.

    Science.gov (United States)

    McGrath, Joshua M; Sims, J Thomas; Maguire, Rory O; Saylor, William W; Angel, C Roselina; Turner, Benjamin L

    2005-01-01

    Modifying broiler diets to mitigate water quality concerns linked to excess phosphorus (P) in regions of intensive broiler production has recently increased. Our goals were to evaluate the effects of dietary modification, using phytase and reduced non-phytate phosphorus (NPP) supplementation, on P speciation in broiler litters, changes in litter P forms during long-term storage, and subsequent impacts of diets on P in runoff from litter-amended soils. Four diets containing two levels of NPP with and without phytase were fed to broilers in a three-flock floor pen study. After removal of the third flock, litters were stored for 440 d at their initial moisture content (MC; 24%) and at a MC of 40%. Litter P fractions and orthophosphate and phytate P concentrations were determined before and after storage. After storage, litters were incorporated with a sandy and silt loam and simulated rainfall was applied. Phytase and reduced dietary NPP significantly reduced litter total P. Reducing dietary NPP decreased water-extractable inorganic phosphorus (IP) and the addition of dietary phytase reduced NaOH- and HCl-extractable organic P in litter, which correlated well with orthophosphate and phytic acid measured by 31P nuclear magnetic resonance (NMR), respectively. Although dry storage caused little change in P speciation, wet storage increased concentrations of water-soluble IP, which increased reactive P in runoff from litter-amended soils. Therefore, diet modification with phytase and reduced NPP could be effective in reducing P additions on a watershed scale. Moreover, efforts to minimize litter MC during storage may reduce the potential for dissolved P losses in runoff.

  5. Management intensity alters decomposition via biological pathways

    Science.gov (United States)

    Wickings, Kyle; Grandy, A. Stuart; Reed, Sasha; Cleveland, Cory

    2011-01-01

    Current conceptual models predict that changes in plant litter chemistry during decomposition are primarily regulated by both initial litter chemistry and the stage-or extent-of mass loss. Far less is known about how variations in decomposer community structure (e.g., resulting from different ecosystem management types) could influence litter chemistry during decomposition. Given the recent agricultural intensification occurring globally and the importance of litter chemistry in regulating soil organic matter storage, our objectives were to determine the potential effects of agricultural management on plant litter chemistry and decomposition rates, and to investigate possible links between ecosystem management, litter chemistry and decomposition, and decomposer community composition and activity. We measured decomposition rates, changes in litter chemistry, extracellular enzyme activity, microarthropod communities, and bacterial versus fungal relative abundance in replicated conventional-till, no-till, and old field agricultural sites for both corn and grass litter. After one growing season, litter decomposition under conventional-till was 20% greater than in old field communities. However, decomposition rates in no-till were not significantly different from those in old field or conventional-till sites. After decomposition, grass residue in both conventional- and no-till systems was enriched in total polysaccharides relative to initial litter, while grass litter decomposed in old fields was enriched in nitrogen-bearing compounds and lipids. These differences corresponded with differences in decomposer communities, which also exhibited strong responses to both litter and management type. Overall, our results indicate that agricultural intensification can increase litter decomposition rates, alter decomposer communities, and influence litter chemistry in ways that could have important and long-term effects on soil organic matter dynamics. We suggest that future

  6. PERFORMANCE, CARCASS YIELD AND LITTER QUALITY OF BROILERS RAISED ON LITTERS TREATED WITH MICRO-ORGANISMS

    Directory of Open Access Journals (Sweden)

    Dayane Prado da Cruz

    2013-03-01

    Full Text Available The present paper aimed at evaluating the effect of adding beneficial micro-organisms to the litters on litter quality, performance and carcass yield for broilers. A total of 240 one-day chicks were used, and randomly distributed in blocks with four treatments and four replications. The following treatments were carried out in the housing: Treatment 1 – Control with weekly spraying of water on the litters; Treatment 2 – Litter treated with a mixture of inoculated and fermented meal by micro-organisms and weekly spraying of water; Treatment 3 – Litter treated by weekly spraying of micro-organisms; Treatment 4 – Litter treated with the same mixture of meals from treatment two and weekly spraying of micro-organisms. Performance was evaluated by the feed consumption, weight gain, feed conversion, viability and carcass, breast and leg yield. From litter samples, pH, dry matter, ashes and nitrogen were evaluated. No differences were found among the treatments. In the conditions the animals were raised, it can be concluded that the treatment on the litter does not affect performance, carcass yield and quality of the litter for broilers.

  7. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.

    Science.gov (United States)

    García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H

    2013-08-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. © 2013 John Wiley & Sons Ltd/CNRS.

  8. An Approach to Litter Generation and Littering Practices in a Mexico City Neighborhood

    Directory of Open Access Journals (Sweden)

    Cecilia E. Muñoz-Cadena

    2012-08-01

    Full Text Available Urban litter is generated by human societies everywhere. Some litter is recyclable waste. In this study, the acronym RMSW is used to refer to recyclable municipal solid waste generated in streets. Public attitude towards RMSW generation, generators’ perceptions, and quantification of RMSW in streets were examined in a Mexico City neighborhood, where litter presence causes major environmental problems affecting the population year after year. Interviews with neighborhood residents and item counts were carried out from 2010 to 2011. In all, 58% of interviewees reported generating RMSW at variable frequencies while 42% said they did not generate this kind of waste. Laziness, lack of vigilance by municipal authorities, no litter bins in streets, and imitation were the main causes identified by interviewees as reasons for littering. Potential litter generators may be of any age, educational level or income. Interviewees’ perception of RMSW generation was compared with item counts in the neighborhood studied.

  9. Foliage biomass qualitative indices of selected forest forming tree species in Ukrainian Steppe

    Directory of Open Access Journals (Sweden)

    Sytnyk Svitlana

    2017-06-01

    Full Text Available Our study objective was research on the assimilation component of aboveground biomass of trees and its correlation with mensurational indices of trees (age, diameter and height in stands of the main forest forming species in the Ukrainian Northern Steppe zone - Pinus sylvestris L. (Scots pine and Robinia pseudoacacia L. (Black locust. The research was carried out in forest stands subordinated to the State Agency of Forest Resources of Ukraine. We used experimental data collected on sample plots established during years 2014-2016. The main research results prove that the foliage share in the tree greenery biomass structure had a wide range of values. For both investigated species, a positive correlation was found between the dry matter content in the tree foliage and the tree age, height and diameter. The foliage share in tree greenery biomass decreased with increasing mensurational index values. Correlation analysis revealed linear relationships between the mensurational indices and the discussed aboveground live biomass parameters. The closest correlation was observed between the stand age, mean stand diameter, mean stand height and dry matter content in the foliage.

  10. Decomposing the Current

    DEFF Research Database (Denmark)

    Hansen, Tim

    The field of molecular electronics have been shown to span a huge range of properties. In an effort to extract the parameters of the system that governs these properties, a number of methods that decomposes the current have been developed. These methods function not just as tools for data...... extraction, but also serves as the foundation upon which to gain insights into the physics that governs the molecular properties. As such, the understanding of the applicability and the development of new methods to decompose the current may be a goal in it self. In this thesis we will explore some...... of these methods, and use the insights from this study to develop new methods. First, we will compare two methods that decompose the current into the transmission from a single conducting level of the molecular device, by extracting level position and broadening. In general we see that the method that relies on I...

  11. Effects of litter manipulation on litter decomposition in a successional gradients of tropical forests in southern China

    DEFF Research Database (Denmark)

    Chen, Hao; Gurmesa, Geshere A.; Liu, Lei

    2014-01-01

    Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter...... decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF). Results showed that litter removal decreased litter decomposition rates by 27%, 10% and 8...

  12. From the litter up and the sky down: Perspectives on urban ...

    Science.gov (United States)

    The structure of the urban forest represents the complex product of local biophysical conditions, socio-economic milieu, people preferences and management with rare counterparts in rural forests. However, urban forest structure, as similarly observed in rural forests, affects key ecological and hydrological processes as well as the plethora of organisms regulating these processes. This seminar talk will firstly present key mechanisms regulating urban eco-hydrological processes “from a litter up” perspective. In particular, fine scale effects of urban forest structure upon i) organic matter decomposition, and comminution, ii) community-assembly of decomposers, detritivores, and ecosystem engineers (i.e. bacteria, litter-dwelling macrofauna, ants), and iii) stormwater runoff infiltration and interception will be discussed. The second part of this intervention will look at the structure of the urban forest “from a sky down” perspective. Recent findings from large scale LiDAR investigations will be presented to discuss social and biophysical drivers affecting urban forest structure at sub-continental scale, as well as short-term tree loss dynamics across residential landscapes, and how these can potentially affect eco-hydrological processes at large scale. Urban forest structure, as similarly observed in rural forests, affects key ecological and hydrological processes as well as the plethora of organisms regulating these processes.

  13. Cigarette Litter: Smokers’ Attitudes and Behaviors

    Directory of Open Access Journals (Sweden)

    Julia C. Cartwright

    2012-06-01

    Full Text Available Cigarette butts are consistently the most collected items in litter clean-up efforts, which are a costly burden to local economies. In addition, tobacco waste may be detrimental to our natural environment. The tobacco industry has conducted or funded numerous studies on smokers’ littering knowledge and behavior, however, non-industry sponsored research is rare. We sought to examine whether demographics and smokers’ knowledge and beliefs toward cigarette waste as litter predicts littering behavior. Smokers aged 18 and older (n = 1,000 were interviewed about their knowledge and beliefs towards cigarette waste as litter. Respondents were members of the Research Now panel, an online panel of over three million respondents in the United States. Multivariate logistic regressions were conducted to determine factors significantly predictive of ever having littered cigarette butts or having littered cigarette butts within the past month (p-value < 0.05. The majority (74.1% of smokers reported having littered cigarette butts at least once in their life, by disposing of them on the ground or throwing them out of a car window. Over half (55.7% reported disposing of cigarette butts on the ground, in a sewer/gutter, or down a drain in the past month. Those who did not consider cigarette butts to be litter were over three and half times as likely to report having ever littered cigarette butts (OR = 3.68, 95%CI = 2.04, 6.66 and four times as likely to have littered cigarette butts in the past month (OR = 4.00, 95%CI = 2.53, 6.32. Males were significantly more likely to have littered cigarette butts in the past month compared to females (OR = 1.49, 95%CI = 1.14, 1.94. Holding the belief that cigarette butts are not litter was the only belief in this study that predicted ever or past-month littering of cigarette waste. Messages in anti-cigarette-litter campaigns should emphasize that cigarette butts are not just litter but are toxic

  14. Marine litter prediction by artificial intelligence

    International Nuclear Information System (INIS)

    Balas, Can Elmar; Ergin, Aysen; Williams, Allan T.; Koc, Levent

    2004-01-01

    Artificial intelligence techniques of neural network and fuzzy systems were applied as alternative methods to determine beach litter grading, based on litter surveys of the Antalya coastline (the Turkish Riviera). Litter measurements were categorized and assessed by artificial intelligence techniques, which lead to a new litter categorization system. The constructed neural network satisfactorily predicted the grading of the Antalya beaches and litter categories based on the number of litter items in the general litter category. It has been concluded that, neural networks could be used for high-speed predictions of litter items and beach grading, when the characteristics of the main litter category was determined by field studies. This can save on field effort when fast and reliable estimations of litter categories are required for management or research studies of beaches--especially those concerned with health and safety, and it has economic implications. The main advantages in using fuzzy systems are that they consider linguistic adjectival definitions, e.g. many/few, etc. As a result, additional information inherent in linguistic comments/refinements and judgments made during field studies can be incorporated in grading systems

  15. Marine litter prediction by artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Balas, Can Elmar; Ergin, Aysen; Williams, Allan T.; Koc, Levent

    2004-03-01

    Artificial intelligence techniques of neural network and fuzzy systems were applied as alternative methods to determine beach litter grading, based on litter surveys of the Antalya coastline (the Turkish Riviera). Litter measurements were categorized and assessed by artificial intelligence techniques, which lead to a new litter categorization system. The constructed neural network satisfactorily predicted the grading of the Antalya beaches and litter categories based on the number of litter items in the general litter category. It has been concluded that, neural networks could be used for high-speed predictions of litter items and beach grading, when the characteristics of the main litter category was determined by field studies. This can save on field effort when fast and reliable estimations of litter categories are required for management or research studies of beaches--especially those concerned with health and safety, and it has economic implications. The main advantages in using fuzzy systems are that they consider linguistic adjectival definitions, e.g. many/few, etc. As a result, additional information inherent in linguistic comments/refinements and judgments made during field studies can be incorporated in grading systems.

  16. Control of climate and litter quality on leaf litter decomposition in different climatic zones.

    Science.gov (United States)

    Zhang, Xinyue; Wang, Wei

    2015-09-01

    Climate and initial litter quality are the major factors influencing decomposition rates on large scales. We established a comprehensive database of terrestrial leaf litter decomposition, including 785 datasets, to examine the relationship between climate and litter quality and evaluate the factors controlling decomposition on a global scale, the arid and semi-arid (AS) zone, the humid middle and humid low (HL) latitude zones. Initial litter nitrogen (N) and phosphorus (P) concentration only increased with mean annual temperature (MAT) in the AS zone and decreased with mean annual precipitation (MAP) in the HL zone. Compared with nutrient content, MAT imposed less effect on initial litter lignin content than MAP. MAT were the most important decomposition driving factors on a global scale as well as in different climatic zones. MAP only significantly affected decomposition constants in AS zone. Although litter quality parameters also showed significant influence on decomposition, their importance was less than the climatic factors. Besides, different litter quality parameters exerted significant influence on decomposition in different climatic zones. Our results emphasized that climate consistently exerted important effects on decomposition constants across different climatic zones.

  17. The partitioning of litter carbon during litter decomposition under different rainfall patterns: a laboratory study

    Science.gov (United States)

    Yang, X.; Szlavecz, K. A.; Langley, J. A.; Pitz, S.; Chang, C. H.

    2017-12-01

    Quantifying litter C into different C fluxes during litter decomposition is necessary to understand carbon cycling under changing climatic conditions. Rainfall patterns are predicted to change in the future, and their effects on the fate of litter carbon are poorly understood. Soils from deciduous forests in Smithsonian Environmental Research Center (SERC) in Maryland, USA were collected to reconstruct soil columns in the lab. 13C labeled tulip poplar leaf litter was used to trace carbon during litter decomposition. Top 1% and the mean of 15-minute historical precipitation data from nearby weather stations were considered as extreme and control rainfall intensity, respectively. Both intensity and frequency of rainfall were manipulated, while the total amount was kept constant. A pulse of CO2 efflux was detected right after each rainfall event in the soil columns with leaf litter. After the first event, CO2 efflux of the control rainfall treatment soils increased to threefold of the CO2 efflux before rain event and that of the extreme treatment soils increased to fivefold. However, in soils without leaf litter, CO2 efflux was suppressed right after rainfall events. After each rainfall event, the leaf litter contribution to CO2 efflux first showed an increase, decreased sharply in the following two days, and then stayed relatively constant. In soil columns with leaf litter, the order of cumulative CO2 efflux was control > extreme > intermediate. The order of cumulative CO2 efflux in the bare soil treatment was extreme > intermediate > control. The order of volume of leachate from different treatments was extreme > intermediate > control. Our initial results suggest that more intense rainfall events result in larger pulses of CO2, which is rarely measured in the field. Additionally, soils with and without leaf litter respond differently to precipitation events. This is important to consider in temperate regions where leaf litter cover changes throughout the year

  18. Can't See the Wood for the Litter: Evaluation of Litter Behavior Modification in a Forest

    Science.gov (United States)

    Lindemann-Matthies, Petra; Bonigk, Isabel; Benkowitz, Dorothee

    2012-01-01

    This study investigated elementary school children's (n = 171) litter behavior during guided forest tours following two different treatments. Four classes received a verbal appeal not to litter in the forest, while another four classes received both a verbal appeal and a demonstration of the desired litter behavior (picking up litter, putting it…

  19. Method of decomposing radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1986-01-01

    Purpose: To decompose radioactive organic solvent wastes or radioactive hydrocarbon solvents separated therefrom into organic materials under moderate conditions, as well as greatly decrease the amount of secondary wastes generated. Method: Radioactive organic solvent wastes comprising an organic phosphoric acid ester ingredient and a hydrocarbon ingredient as a diluent therefor, or radioactive hydrocarbon solvents separated therefrom are oxidatively decomposed by hydrogen peroxide in an aqueous phosphoric acid solution of phosphoric acid metal salts finally into organic materials to perform decomposing treatment for the radioactive organic solvent wastes. The decomposing reaction is carried out under relatively moderate conditions and cause less burden to facilities or the likes. Further, since the decomposed liquid after the treatment can be reused for the decomposing reaction as a catalyst solution secondary wastes can significantly be decreased. (Yoshihara, H.)

  20. Decomposable log-linear models

    DEFF Research Database (Denmark)

    Eriksen, Poul Svante

    can be characterized by a structured set of conditional independencies between some variables given some other variables. We term the new model class decomposable log-linear models, which is illustrated to be a much richer class than decomposable graphical models.It covers a wide range of non...... The present paper considers discrete probability models with exact computational properties. In relation to contingency tables this means closed form expressions of the maksimum likelihood estimate and its distribution. The model class includes what is known as decomposable graphicalmodels, which......-hierarchical models, models with structural zeroes, models described by quasi independence and models for level merging. Also, they have a very natural interpretation as they may be formulated by a structured set of conditional independencies between two events given some other event. In relation to contingency...

  1. Carbon isotope discrimination during litter decomposition can be explained by selective use of substrate with differing δ13C

    Science.gov (United States)

    Ngao, J.; Cotrufo, M. F.

    2011-01-01

    Temporal dynamics of C isotopic composition (δ13C) of CO2 and leaf litter was monitored during a litter decomposition experiment using Arbutus unedo L., as a slow decomposing model substrate. This allowed us (1) to quantify isotopic discrimination variation during litter decomposition, and (2) to test whether selective substrate use or kinetic fractionation could explain the observed isotopic discrimination. Total cumulative CO2-C loss (CL) comprised 27% of initial litter C. Temporal evolution of CL was simulated following a three-C-pool model. Isotopic composition of respired CO2 (δRL) was higher with respect to that of the bulk litter. The isotopic discrimination Δ(L/R) varied from -2‰ to 0‰ and it is mostly attributed to the variations of δRL. A three-pool model, with the three pools differing in their δ13C, described well the dynamic of Δ(L/R), in the intermediate stage of the process. This suggests that the observed isotopic discrimination between respired CO2 and bulk litter is in good agreement with the hypothesis of successive consumption of C compounds differing in δ13C during decomposition. However, to explain also 13C-CO2 dynamics at the beginning and end of the incubation the model had to be modified, with discrimination factors ranging from -1‰ to -4.6‰ attributed to the labile and the recalcitrance pool, respectively. We propose that this discrimination is also the result of further selective use of specific substrates within the two pools, likely being both the labile and recalcitrant pool of composite nature. In fact, the 2‰ 13C enrichment of the α-cellulose observed by the end of the experiment, and potentially attributable to kinetic fractionation, could not explain the measured Δ(L/R) dynamics.

  2. How does litter cover, litter diversity and fauna affect sediment discharge and runoff?

    Science.gov (United States)

    Goebes, Philipp; Seitz, Steffen; Kühn, Peter; Scholten, Thomas

    2013-04-01

    Litter cover plays a major role in soil erosion processes. It is known that litter cover reduces erosivity of raindrops, decreases sediment discharge and lowers runoff volume compared to bare ground. However, in the context of biodiversity, the composition of litter cover, its effect on sediment discharge and runoff volume and their influence on soil erosion have not yet been analyzed in detail. Focusing on initial soil erosion (splash), our experimental design is designated to get a better understanding of these mechanisms. The experiments were carried out within the DFG research unit "Biodiversity and Ecosystem Functioning (BEF)-China" in subtropical China. The "New Integrated Litter Experiment (NILEx)" used as platform combining different subprojects of BEF-China dealing with "decomposition and nutrient cycling", "mechanisms of soil erosion" and "functional effects of herbivores, predators and saproxylics" in one experiment. In NILEx, 96 40cm x 40cm runoff plots on two hill slopes inside a castanea molissima forest plantation have been installed and filled with seven different types of litter cover. 16 one-species plots, 24 two-species plots, 4 four-species plots and 4 bare ground plots have been set up, each replicated once. We prepared 48 Plots with traps (Renner solution) for soil macrofauna (diplopods and collembola), so half of the plots were kept free from fauna while the other half was accessible for fauna. Rainfall was generated artificially by using a rainfall simulator with a continuous and stable intensity of 60 mm/h. Our experiments included two runs of 20 minutes duration each, both conducted at two different time steps (summer 2012 and autumn 2012). Runoff volume and sediment discharge were measured every 5 minutes during one rainfall run. Litter coverage and litter mass were recorded at the beginning (summer 2012) and at the end of the experiment (autumn 2012). Our results show that sediment discharge as well as runoff volume decreases

  3. Approaches to understanding the semi-stable phase of litter decomposition

    Science.gov (United States)

    Preston, C. M.; Trofymow, J. A.

    2012-12-01

    and Mn concentrations, but continuing increases in Al and Fe may also decrease attractiveness of litter, and P and N availability may be low. Unfortunately, recent advances in understanding the progression of microbial decomposer guilds, and also in modeling have remained largely disconnected from similar advances in organic matter chemistry, especially for the resistant MUC. For example, the emphasis on aryl C and oxidative enzymes for the semi-stable stage ignores its typically high alkyl component and associated hydrophobicity and many "lignin-based" hypotheses fail because AUR does not measure lignin. The past three decades have brought unimaginable advances in SOM chemistry and microbiology, and also in data analysis and ways of networking and collaborating. Substantial new insights into decomposition will require interdisciplinary networks that incorporate application of well-established methods to characterize the changing chemical and physical properties of the substrates.

  4. Pengaruh Berbagai Jenis Bahan Litter terhadap Kualitas Litter Broiler Fase Finisher di Closed House

    OpenAIRE

    Tiwi Metasari; Dian Septinova; Veronica Wanniatie

    2014-01-01

    The aim of this research was to 1) determine the effect of the use of rice husk, wood shavings,rice straw as litter material on litter quality for broiler during the finisher phase in closed house, 2)determine the best type of litter material on litter quality for broiler during the finisher phase in closedhouse. The duration of the research was 26 days. The research was started from 15 April to 10 May2014 in the closed house owned by PT. Rama Jaya Lampung Krawang Sari Village, the District o...

  5. Odour emissions from poultry litter - A review litter properties, odour formation and odorant emissions from porous materials.

    Science.gov (United States)

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2016-07-15

    Odour emissions from meat chicken sheds can at times cause odour impacts on surrounding communities. Litter is seen as the primary source of this odour. Formation and emission of odour from meat chicken litter during the grow-out period are influenced by various factors such as litter conditions, the environment, microbial activity, properties of the odorous gases and management practices. Odour emissions vary spatially and temporally. This variability has made it challenging to understand how specific litter conditions contribute to odour emissions from the litter and production sheds. Existing knowledge on odorants, odour formation mechanisms and emission processes that contribute to odour emissions from litter are reviewed. Litter moisture content and water thermodynamics (i.e. water activity, Aw) are also examined as factors that contribute to microbial odour formation, physical litter conditions and the exchange of individual odorant gases at the air-water interface. Substantial opportunities exist for future research on litter conditions and litter formation mechanisms and how these contribute to odour emissions. Closing this knowledge gap will improve management strategies that intercept and interfere with odour formation and emission processes leading to an overall reduction in the potential to cause community impacts. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  6. HIGH FOLIAR NITROGEN IN DESERT SHRUBS: AN IMPORTANT ECOSYSTEM TRAIT OR DEFECTIVE DESERT DOCTRINE?

    Science.gov (United States)

    Nitrogen concentrations in green and senesced leaves of perennial desert shrubs were compiled from a worldwide literature search to test the validity of the doctrine that desert shrubs produce foliage and leaf litter much richer in nitrogen than that in the foliage of plants from...

  7. Carbon mineralisation in litter and soil organic matter in forests with different nitrogen status

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Patrik

    2000-07-01

    The objective of this thesis was to investigate the effect of both organic and inorganic nitrogen (N) on carbon (C) mineralisation of litter and soil organic matter, in order to increase the understanding of factors affecting decomposition and, ultimately, soil C sequestration. Fresh recently fallen needle litter with three contrasting total N concentrations were sampled, along with litter, humus and mineral soil layers from coniferous and deciduous forest sites in Europe. The sampled substrates were incubated in the laboratory at constant temperature (15 deg C) and near-optimal moisture. The fresh needles further received additions of ammonium and nitrate. Initial C mineralisation rates were higher in fresh N-rich needles than in fresh N-poor needles. However, after a 559-day incubation at 15 deg C cumulative C mineralisation was lower in the fresh N-rich needles than in the fresh N-poor needles. Negative effects of high N on C mineralisation were also found in litter and humus layers in the European forests and at sites with N-fertilisation trials, where low C mineralisation rates were associated with high total N concentrations. During early stages of decomposition, addition of ammonium and nitrate to fresh needles did not increase cumulative C mineralisation, suggesting that the decomposing organisms were not limited by low N supply even in the low-N needles. The initially higher C mineralisation in N-rich compared with N-poor needles is suggested to be a consequence of higher C quality in the N-rich substrates. In later stages of decomposition, the question why N seemed to have a negative effect on decomposition could not be satisfactorily answered, although there were indications that recalcitrant N-containing compounds were formed in fresh needles with high N concentration. This thesis presents some probable explanations of the negative effect on decomposition of high N.

  8. Trophic discrimination factor and the significance of mangrove litter to benthic detritivorous gastropod, Ellobium aurisjudae (Linnaeus)

    Science.gov (United States)

    Teoh, Hong Wooi; Sasekumar, A.; Ismail, Mohamad Hanif; Chong, Ving Ching

    2018-01-01

    In stable isotope analysis, the estimation of proportional contribution of carbon and nitrogen from mangrove to benthic invertebrates requires knowledge of the food-consumer trophic discrimination factor (Δ δ13C and Δ δ15N). This study tested the hypothesis that the mangrove gastropod Ellobium aurisjudae can assimilate low quality refractory mangrove litter and aimed to determine the trophic discrimination values (TDV) of C and N isotopes between gastropod and the mangrove producer. The mean Δ δ13C for gastropods fed senescent leaves of the mangrove Bruguiera parviflora (Roxb) Wight & Arn and decomposing mangrove (unknown species from the same site) wood were estimated at 5.3 ± 0.3‰ and 3.2 ± 0.5‰ respectively, whereas for Δ δ15N, these values were 4.2 ± 0.2‰ and 6.0 ± 0.2‰ respectively. The gastropod assimilated refractory carbon from mangrove leaf and wood litter with 49% and 18% efficiency respectively. Rearing experiment of gastropods (n = 25) fed only mangrove wood litter over 5months in the laboratory, showed mean weight increments of 14.8-74.4% depending on the initial animal weight. Significant deviation of the TDVs for E. aurisjudae from the generalized discrimination values for herbivory underscores the need to use specific TDV for the detritivory link.

  9. Temperature sensitivity of soil respiration is dependent on readily decomposable C substrate concentration

    Science.gov (United States)

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-06-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux by the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half- saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of the data obtained in the incubation experiments with forest and arable soils. Our data confirm the hypothesis and suggest that concentration of readily decomposable C substrate as glucose equivalent is an important factor controlling temperature sensitivity. The highest temperature sensitivity was observed when C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, explaining this phenomenon by changes in concentration of readily decomposable C substrate. It is worth noting that this pattern works regardless of the origin of C substrate: production by SOM decomposition, release into the soil by rhizodeposition, litter fall or drying-rewetting events.

  10. Performance, carcass yield and litter quality of broilers raised on litters treated with micro-organisms

    OpenAIRE

    Cruz,Dayane Prado da; Otutumi,Luciana Kazue; Piau Júnior,Ranulfo; Cervantes,Rodrigo Panucci; Mezalira,Taniara Suelen; Gerônimo,Edson

    2013-01-01

    The present paper aimed at evaluating the effect of adding beneficial micro-organisms to the litters on litter quality, performance and carcass yield for broilers. A total of 240 one-day chicks were used, and randomly distributed in blocks with four treatments and four replications. The following treatments were carried out in the housing: Treatment 1 – Control with weekly spraying of water on the litters; Treatment 2 – Litter treated with a mixture of inoculated and fermented meal by micro-o...

  11. Dissipation and distribution of chlorpyrifos in selected vegetables through foliage and root uptake.

    Science.gov (United States)

    Ge, Jing; Lu, Mengxiao; Wang, Donglan; Zhang, Zhiyong; Liu, Xianjin; Yu, Xiangyang

    2016-02-01

    Dissipation, distribution and uptake pathways of chlorpyrifos were investigated in pakchoi (Brassica chinensis L.) and lettuce (Lactuca sativa) with foliage treatments under a greenhouse trial and root treatments under a hydroponic experiment. The dissipation trends were similar for chlorpyrifos in pakchoi and lettuce with different treatments. More than 94% of chlorpyrifos was degraded in the samples for both of the vegetables 21 days after the foliage treatments. For the root treatment, the dissipation rate of chlorpyrifos in pakchoi and lettuce at the low concentration was greater than 93%, however, for the high concentrations, the dissipation rates were all under 90%. Both shoots and roots of the vegetables were able to absorb chlorpyrifos from the environment and distribute it inside the plants. Root concentration factor (RCF) values at different concentrations with the hydroponic experiment ranged from 5 to 39 for pakchoi, and from 14 to 35 for lettuce. The translocation factor (TF) representing the capability of the vegetables to translocate contaminants was significantly different for pakchoi and lettuce with foliage and root treatments. The values of TF with foliage treatments ranged from 0.003 to 0.22 for pakchoi, and from 0.032 to 1.63 for lettuce. The values of TF with root treatments ranged from 0.01 to 0.17 for pakchoi, and from 0.003 to 0.23 for lettuce. Significant difference of TF was found between pakchoi and lettuce with foliage treatments, and at high concentrations (10 and 50 mg L(-1)) with root treatments as well. However, there was no significant difference of TF between pakchoi and lettuce at 1 mg L(-1) with root treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Interspecific variations in mangrove leaf litter decomposition are related to labile nitrogenous compounds

    Science.gov (United States)

    Nordhaus, Inga; Salewski, Tabea; Jennerjahn, Tim C.

    2017-06-01

    Mangrove leaves form a large pool of carbon, nitrogen and energy that is a major driver of element cycles and detrital food webs inside mangrove forests as well as in adjacent coastal waters. However, there are large gaps in knowledge on the transformation pathways and ultimate fate of leaf nitrogen. Therefore, the main objective of this study was to determine the amount and composition of nitrogenous organic matter and possible species-specific differences during the decomposition of mangrove leaf litter. For that purpose a three month decomposition experiment with litterbags was conducted using leaves of Aegiceras corniculatum, Avicennia alba, Ceriops decandra, Rhizophora apiculata, and Sonneratia caseolaris in the mangrove forest of the Segara Anakan Lagoon, Java, Indonesia. Detrital leaves were analyzed for bulk carbon and total nitrogen (N), stable carbon and nitrogen isotope composition (δ13C, δ15N), total hydrolyzable amino acids (THAA) and total hydrolyzable hexosamines (THHA). Decomposition rates (k d-1) were highest and tM50 values (when 50% of the original mass had been degraded) lowest in S. caseolaris (k = 0.0382 d-1; tM50 = 18 days), followed by A. alba, C. decandra, A. corniculatum, and R. apiculata (k = 0.0098 d-1; tM50 = 71 days). The biochemical composition of detrital leaves differed significantly among species and over time. S. caseolaris and A. alba had higher concentrations of N, THAA and THHA and a lower C/N ratio than the other three species. For most of the species concentrations of N, THAA and THHA increased during decomposition. The hexosamine galactosamine, indicative of bacterial cell walls, was first found in leaves after 5-7 days of decomposition and increased afterwards. Our findings suggest an increasing, but species-specific varying, portion of labile nitrogenous OM and total N in decomposing leaves over time that is partly related to the activity of leaf-colonizing bacteria. Despite a higher relative nitrogen content in the

  13. Cold in the common garden: comparative low-temperature tolerance of boreal and temperate conifer foliage

    Science.gov (United States)

    G. Richard Strimbeck; Trygve D. Kjellsen; Paul G. Schaberg; Paula F. Murakami

    2007-01-01

    Because they maintain green foliage throughout the winter season, evergreen conifers may face special physiological challenges in a warming world. We assessed the midwinter low-temperature (LT) tolerance of foliage from eight temperate and boreal species in each of the genera Abies, Picea, and Pinus growing in an arboretum in...

  14. Feeding of tropical trees and shrub foliages as a strategy to reduce ruminal methanogenesis: studies conducted in Cuba.

    Science.gov (United States)

    Delgado, Denia Caridad; Galindo, Juana; González, Rogelio; González, Niurca; Scull, Idania; Dihigo, Luís; Cairo, Juan; Aldama, Ana Irma; Moreira, Onidia

    2012-06-01

    The aim of this paper was to present the main results obtained in Cuba on the effects of feeding tropical trees and shrubs on rumen methanogenesis in animals fed with low quality fibrous diets. More than 20 tree and shrub foliages were screened for phytochemicals and analyzed for chemical constituents. From these samples, seven promising plants (Samanea saman, Albizia lebbeck, Tithonia diversifolia, Leucaena leucocephala, Trichantera gigantea, Sapindus saponaria, and Morus alba) were evaluated for methane reduction using an in vitro rumen fermentation system. Results indicated that the inclusion levels of 25% of Sapindo, Morus, or Trichantera foliages in the foliages/grass mixtures (grass being Pennisetum purpureum) reduced (P lebbeck, or T. diversifolia accession 23 foliages when mixed at the rate of 30% in Cynodon nlemfuensis grass produced lower methane compared to the grass alone. Inclusion levels of 15% and 25% of a ruminal activator supplement containing 29% of L. leucocehala foliage meal reduced methane by 37% and 42% when compared to the treatment without supplementation. In vivo experiment with sheep showed that inclusion of 27% of L. leucocephala in the diet increased the DM intake but did not show significant difference in methane production compared to control diet without this foliage. The results of these experiments suggest that the feeding of tropical tree and shrub foliages could be an attractive strategy for reduction of ruminal methanogenesis from animals fed with low-quality forage diets and for improving their productivity.

  15. An evaluation of the presence of pathogens on broilers raised on poultry litter treatment-treated litter.

    Science.gov (United States)

    Pope, M J; Cherry, T E

    2000-09-01

    Two trials were conducted to evaluate the presence of salmonella, campylobacter, and generic Escherichia coli on broilers raised on Poultry Litter Treatment (PLT)-enhanced litter in comparison with those raised on untreated litter. Two Company A farms included three houses on each farm as the treated group and three houses per farm as controls. Two complete growouts were evaluated on each farm. The Company B study included 10 farms with two paired houses per farm, one house as the treated group and one house as the control. One growout was evaluated per farm. The pathogen sampling consisted of litter sampling and whole bird rinses on the farm and in the processing plant. Litter pH, ammonia concentration, total litter bacteria, temperatures, and humidity were also recorded. The study with Company A resulted in lower mean levels of pH, ammonia concentration, total litter bacteria, litter E. coli, and bird rinse counts for salmonella and E. coli in houses treated with PLT. The results for Company B closely resembled those for Company A, but also included campylobacter data, which showed no difference between treated and control groups. The data indicate that PLT may be a beneficial component for on-farm pathogen reduction.

  16. Transformation of leaf litter by insect herbivory in the Subarctic: Consequences for soil biogeochemistry under global change

    Science.gov (United States)

    Kristensen, J. A.; Metcalfe, D. B.; Rousk, J.

    2017-12-01

    Climate warming may increase insect herbivore ranges and outbreak intensities in arctic ecosystems. Thorough understanding of the implications of these changes for ecosystem processes is essential to make accurate predictions of surface-atmosphere carbon (C) feedbacks. Yet, we lack a comprehensive understanding of the impacts of herbivore outbreaks on soil microbial underpinnings of C and nitrogen (N) fluxes. Here, we investigate the growth responses of heterotrophic soil decomposers and C and N mineralisation to simulated defoliator outbreaks in Subarctic birch forests. In microcosms, topsoil was incubated with leaf litter, insect frass, mineral N and combinations of the three; all was added in equal amounts of N. A higher fraction of added C and N was mineralised during outbreaks (frass addition) relative to non-outbreak years (litter addition). However, under high mineral N-availability in the soil of the kind likely under longer periods of enhanced insect herbivory (litter+mineral N), the mineralised fraction of added C decreased while the mineralised fraction of N increased substantially, which suggest a shift towards more N-mining of the organic substrates. This shift was accompanied by higher fungal dominance, and may facilitate soil C-accumulation assuming constant quality of C-inputs. Thus, long-term increases of insect herbivory, of the kind observed in some areas and projected by some models, may facilitate higher ecosystem C-sink capacity in this Subarctic ecosystem.

  17. Orange Is the New Green: Exploring the Restorative Capacity of Seasonal Foliage in Schoolyard Trees

    Directory of Open Access Journals (Sweden)

    Eli Paddle

    2016-05-01

    Full Text Available Urban schoolyard environments are increasingly characterized by a proliferation of hard surfaces with little if any greenery. Schoolyard “greening” initiatives are becoming increasingly popular; however, schoolyard designs often fail to realize their restorative potential. In this quasi-experimental study, a proposed schoolyard greening project was used to visualize alternative planting designs and seasonal tree foliage; these design alternatives were subsequently used as visual stimuli in a survey administered to children who will use the schoolyard to assess the perceived restorative capacity of different design features. The findings indicate that seasonal changes in tree foliage enhance the perceived restorative quality of schoolyard environments. Specifically, fall foliage colour, when compared to green foliage, is rated as being perceived to be equally restorative for children. Additionally, seasonal planting, including evergreen conifers, may enhance the restorative quality of the schoolyard especially when deciduous trees are leafless. Landscape design professionals, community-based organizations, and other decision-makers in schoolyard greening efforts should strategically consider their tree choices to maximize year-round support for healthy attention functioning in children through restoration.

  18. Litter decomposition rate and soil organic matter quality in a patchwork heathland of Southern Norway

    Science.gov (United States)

    Certini, G.; Vestgarden, L. S.; Forte, C.; Tau Strand, L.

    2014-07-01

    Norwegian heathland soils, although scant and shallow, are major reservoirs of carbon (C). We aimed at assessing whether vegetation cover and, indirectly, its driving factor soil drainage are good proxies for soil organic matter (SOM) composition and dynamics in a typical heathland area of Southern Norway consisting in a patchwork of three different types of vegetation, dominated by Calluna, Molinia, or Sphagnum. Such vegetation covers were clearly associated to microtopographic differences, which in turn dictated differences in soil moisture regime, Calluna growing in the driest sites, Sphagnum in the wettest, and Molinia in sites with intermediate moisture. Litter decomposition was followed over a period of 1 year, by placing litterbags filled with biomass from each dominant species under each type of vegetation cover. The composition of the living biomass, the bulk SOM and some extractable fractions of SOM were investigated by chemical methods and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Litter decomposition was faster for Molinia and Calluna, irrespective of the vegetation cover of the site where they were placed. Sphagnum litter decomposed very slowly, especially under Calluna, where the soil environment is by far more oxidising than under itself. In terms of SOM quality, Calluna covered areas showed the greatest differences from the others, in particular a much higher contribution from lipids and aliphatic biopolymers, apparently related to biomass composition. Our findings showed that in the studied environment litter decomposition rate and SOM composition are actually dependent on vegetation cover and/or soil drainage. On this basis, monitoring changes in the patchwork of vegetation types in boreal heathlands could be a reliable cost-effective way to account for modifications in the SOM potential to last induced by climate change.

  19. Insects associated with tropical foliage produced in the coffee growing region of Colombia

    Directory of Open Access Journals (Sweden)

    Luis F. Aristizábal

    2013-09-01

    Full Text Available We conducted a survey of insects and pest management practices on 34 farms growing ornamental tropical foliage plants in the central coffee region of Colombia over two years. Tropical foliage provided habitat for a diverse range of insects. In total, phytophagous or detritivorous insects from six orders, 40 families and 62 genera were collected. The most common were Hemiptera (29 genera from 16 families, followed by Coleoptera (17 genera from 4 families, Diptera (5 genera from 5 families, Lepidoptera (5 genera from 4 families, Hymenoptera (3 genera from 2 families and Orthoptera (2 genera from 2 families. The most common phytophagous species were leaf cutting ants (Atta and Acromyrmex spp., leaf beetles (Chrysomelidae, leafhoppers (Cicadellidae, stinkbugs (Pentatomidae, squash bugs (Coreidae, tree hoppers (Membracidae and plant hoppers (Fulgoridae. Beneficial insects identified from tropical foliage included predators and parasitoids amongst 5 orders, 12 families and 22 genera. The most abundant were predators among the Coccinellidae, Chrysopidae, Reduviidae, Lycidae and Formicidae but only low numbers of parasitoids (Ichneumonidae, Braconidae and Tachinidae were collected. A pest management questionnaire given to growers revealed a preponderance of reliance on broad spectrum insecticides with a smaller number of growers (approximately one third also using some biological control methods. Our survey contributes basic information regarding diversity of Neotropical insects associated with ornamental foliage plants.

  20. Spatiotemporal phenological changes in fall foliage peak coloration in deciduous forest and the responses to climatic variation

    Science.gov (United States)

    Xie, Y.; Wilson, A. M.

    2017-12-01

    Plant phenology studies typically focus on the beginning and end of the growing season in temperate forests. We know too little about fall foliage peak coloration, which is a bioindicator of plant response in autumn to environmental changes, an important visual cue in fall associated with animal activities, and a key element in fall foliage ecotourism. Spatiotemporal changes in timing of fall foliage peak coloration of temperate forests and the associated environmental controls are not well understood. In this study, we examined multiple color indices to estimate Land Surface Phenology (LSP) of fall foliage peak coloration of deciduous forest in the northeastern USA using Moderate Resolution Imaging Spectroradiometer (MODIS) daily imagery from 2000 to 2015. We used long term phenology ground observations to validate our estimated LSP, and found that Visible Atmospherically Resistant Index (VARI) and Plant Senescence Reflectance Index (PSRI) were good metrics to estimate peak and end of leaf coloration period of deciduous forest. During the past 16 years, the length of period with peak fall foliage color of deciduous forest at southern New England and northern Appalachian forests regions became longer (0.3 7.7 days), mainly driven by earlier peak coloration. Northern New England, southern Appalachian forests and Ozark and Ouachita mountains areas had shorter period (‒0.2 ‒9.2 days) mainly due to earlier end of leaf coloration. Changes in peak and end of leaf coloration not only were associated with changing temperature in spring and fall, but also to drought and heat in summer, and heavy precipitation in both summer and fall. The associations between leaf peak coloration phenology and climatic variations were not consistent among ecoregions. Our findings suggested divergent change patterns in fall foliage peak coloration phenology in deciduous forests, and improved our understanding in the environmental control on timing of fall foliage color change.

  1. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions.

    Science.gov (United States)

    Ficken, Cari D; Wright, Justin P

    2017-01-01

    Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.

  2. Weaning and separation stress: maternal motivation decreases with litter age and litter size in farmed mink

    DEFF Research Database (Denmark)

    Malmkvist, Jens; Sørensen, Dennis Dam; Larsen, Torben

    2016-01-01

    and maternal motivation around the time of weaning and separation. Therefore, we investigated effects of separating the dam from the litter using brown first-parity farm mink dams (n = 374) taken away from the litter either day 49 ± 1 (7w, n = 185) or day 56 ± 1 (8w, n = 189) after birth. The aim...... was to investigate whether the dams experienced stress/had a different motivation to be reunited with the litter after7 and 8 weeks, estimated by non-invasive determination of cortisol (FCM: Faecal Cortisol Metabolites)and dam behaviour including calls the first week after separation (D0: Day of removal, D1: next.......024). We interpret these results as a higher maternal motivation in dams at 7 weeks than at 8 weeks after birth. Additionally, the separation-induced calling in dams decreased with increasing litter size (P = 0.022). Thus in addition to litter age, the size of the litter is important for the maternal...

  3. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan.

  4. Natural zeolites in diet or litter of broilers.

    Science.gov (United States)

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter.

  5. Decomposability queueing and computer system applications

    CERN Document Server

    Courtois, P J

    1977-01-01

    Decomposability: Queueing and Computer System Applications presents a set of powerful methods for systems analysis. This 10-chapter text covers the theory of nearly completely decomposable systems upon which specific analytic methods are based.The first chapters deal with some of the basic elements of a theory of nearly completely decomposable stochastic matrices, including the Simon-Ando theorems and the perturbation theory. The succeeding chapters are devoted to the analysis of stochastic queuing networks that appear as a type of key model. These chapters also discuss congestion problems in

  6. Interaction of initial litter quality and thinning intensity on litter decomposition rate, nitrogen accumulation and release in a pine plantation

    Science.gov (United States)

    Xiao Chen; Deborah Page-Dumroese; Ruiheng Lv; Weiwei Wang; Guolei Li; Yong. Liu

    2014-01-01

    Thinning alters litter quality and microclimate under forests. Both of these two changes after thinning induce alterations of litter decomposition rates and nutrient cycling. However, a possible interaction between these two changes remains unclear. We placed two types of litter (LN, low N concentration litter; HN, high N concentration litter) in a Chinese pine (Pinus...

  7. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions.

    Directory of Open Access Journals (Sweden)

    Cari D Ficken

    Full Text Available Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression. Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.

  8. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna.

    Science.gov (United States)

    Simon, Edina; Braun, Mihály; Vidic, Andreas; Bogyó, Dávid; Fábián, István; Tóthmérész, Béla

    2011-05-01

    Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Factors affecting arsenic injury to lowbush blueberry foliage

    Energy Technology Data Exchange (ETDEWEB)

    Hall, I V; Lockhart, C L; Newbery, R J; Wood, G W

    1971-01-01

    In a laboratory study calcium arsenate dust applied at 70% relative humidity did not cause any appreciable injury to foliage of lowbush blueberry. At 90% relative humidity there was marked burning and considerable defoliation. There was no apparent difference in the amount of injury when the dust was applied at 8.9, 17.8, or 26.7 kg/ha.

  10. Environmentally friendly animal litter

    Science.gov (United States)

    Chett, Boxley; McKelvie, Jessica

    2013-08-20

    A method of making an animal litter that includes geopolymerized ash, wherein, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control may be accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  11. Influence of poultry litter and plant density on the production and chemical composition of the essential oil of Schinus terebinthifolius Raddi fruits

    Directory of Open Access Journals (Sweden)

    L.A. Tabaldi

    2014-01-01

    Full Text Available The aim of this study was to evaluate the production and chemical composition of the essential oil of Brazilian pepper fruits grown in single and double rows using different doses of semi decomposed poultry litter in two evaluation times. The experiment was carried out at the Federal University of Grande Dourados, in the city of Dourados, state o- Mato Grosso do Sul, Brazil, from October 2009 to November 2010. Brazilian pepper plants were grown in single and double rows in soil with incorporated poultry litter at the doses of 0, 5, 10, 15 and 20 t ha-1. Treatments were arranged as a 2 x 5 factorial experiment in a randomized block design with four replications. Fruits were harvested 180 and 390 days after transplant (DAT. There was a significant interaction for fresh weight of fruits and weight of 50 fruits, being the values higher at 180 DAT in the double rows with increasing poultry litter doses. Fruits harvested 390 DAT showed higher diameter compared with those harvested 180 DAT. The number of fruits per bunch was significantly influenced by the doses of poultry litter, presenting a linear increase with increasing doses. The essential oil of the Brazilian pepper fruits obtained by hydrodistillation and analyzed by Gas chromatography - mass spectrometry exhibited predominance of monoterpenes, highlighting α-pinene (20.14% as the major constituent. The chemical composition of the essential oil was not influenced by the number of plant rows in the plot or by the doses of poultry litter in any evaluation time. Therefore, the cultivation of Brazilian pepper plants is recommended in double rows, with 13.59 t ha-1 of incorporated poultry litter in the soi, and with harvest of 180 DAT for higher fruit production.

  12. Safety considerations for continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour

    International Nuclear Information System (INIS)

    Onuki, Kaoru; Akino, Norio; Shimizu, Saburo; Nakajima, Hayato; Higashi, Shunichi; Kubo, Shinji

    2001-03-01

    Since the thermochemical hydrogen production Iodine-Sulfur process decomposes water into hydrogen and oxygen using toxic chemicals such as sulfuric acid, iodine and hydriodic acid, safety considerations are very important in its research and development. Therefore, before construction of continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour, comprehensive safety considerations were carried out to examine the design and construction works of the test apparatus, and the experimental plans using the apparatus. Emphasis was given on the safety considerations on prevention of breakage of glasswares and presumable abnormalities, accidents and their countermeasures. This report summarizes the results of the considerations. (author)

  13. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Directory of Open Access Journals (Sweden)

    Bing Mao

    Full Text Available Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  14. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling.

    Science.gov (United States)

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.

  15. Influence of Covering Reused Broiler Litter with Plastic Canvas on Litter Characteristics and Bacteriology and the Subsequent Immunity and Microbiology of Broilers

    Directory of Open Access Journals (Sweden)

    D Mesa

    Full Text Available ABSTRACT In broiler production, the litter is reused for consecutives flocks, and it is treated during down time between flocks to reduce its microbial load. Although covering the litter with a plastic canvas is a common litter treatment in the field, there is little scientific information available on its efficacy. The aim of this study was to evaluate the effects of covering broiler litter with a plastic canvas for eight days on litter microbiological, physical, and chemical parameters, and on the intestinal microbiota and immunity of broilers. In the first trial, reused litter from a previous flock was distributed into three treatments, with six replicates each: L1 (negative control, litter free from Salmonella Enteritidis (SE and Eimeria maxima (EM and not covered, L2 (positive control, litter with SE and EM, and not covered, and L3 (litter with SE and EM, and covered with plastic canvas for eight days. Litter total bacteria, Enterobacteria, Lactobacillus, SE, and EM counts, and litter pH, temperature, moisture, and ammonia emission were determined on days 1 and 8. In the second trial, broilers were housed on those litters according to the treatments described above, and their intestinal microbiota, gut CD4+ and CD8+ lymphocytes and macrophages, and liver and intestinal pro-inflammatory interleukin (IFN-γ, IL-1β e IL-18 levels were evaluated on days 14 and 28. A significant reduction of litter bacterial populations was observed in the litter covered with plastic canvas. A significantly higher mRNA IFN-γ gene expression (12.5-fold was observed in the jejunum and liver of broilers reared on the litter with Enterobacteria counts. No EM reduction was observed in the covered litter. Covering reused broiler litter with plastic canvas reduces initial litter bacterial load as a result of the interaction between physical and chemical parameters.

  16. Litter decomposition in southern Appalachian black locust and pine-hardwood stands: litter quality and nitrogen dynamics

    Science.gov (United States)

    David L. White; Bruce L. Haines

    1988-01-01

    The chemical quality of litter, through its interaction with macroclimate and the litter biota, largely regulates the rate of organic matter (OM) and nitrogen (N) turnover in the forest floor (Cromack 1973; Fogel and Cromack 1977; Meentemeyer 1978; Aber and Melillo 1982; Melillo et al. 1982). Litter quality is thought to be related to the N require-ment and...

  17. The fate of nitrogen mineralized from leaf litter — Initial evidence from 15N-labeled litter

    Science.gov (United States)

    Kathryn B. Piatek

    2011-01-01

    Decomposition of leaf litter includes microbial immobilization of nitrogen (N), followed by N mineralization. The fate of N mineralized from leaf litter is unknown. I hypothesized that N mineralized from leaf litter will be re-immobilized into other forms of organic matter, including downed wood. This mechanism may retain N in some forests. To test this hypothesis, oak...

  18. Early developmental responses to seedling environment modulate later plasticity to light spectral quality.

    Directory of Open Access Journals (Sweden)

    Eric J B von Wettberg

    Full Text Available Correlations between developmentally plastic traits may constrain the joint evolution of traits. In plants, both seedling de-etiolation and shade avoidance elongation responses to crowding and foliage shade are mediated by partially overlapping developmental pathways, suggesting the possibility of pleiotropic constraints. To test for such constraints, we exposed inbred lines of Impatiens capensis to factorial combinations of leaf litter (which affects de-etiolation and simulated foliage shade (which affects phytochrome-mediated shade avoidance. Increased elongation of hypocotyls caused by leaf litter phenotypically enhanced subsequent elongation of the first internode in response to low red:far red (R:FR. Trait expression was correlated across litter and shade conditions, suggesting that phenotypic effects of early plasticity on later plasticity may affect variation in elongation traits available to selection in different light environments.

  19. Maternal-Neonatal Pheromone/Interomone Added to Cat Litter Improves Litter Box Use and Reduces Aggression in Pair-Housed Cats.

    Science.gov (United States)

    McGlone, John J; Garcia, Arlene; Thompson, William G; Pirner, Glenna M

    2018-03-27

    Introducing a new cat into a household with one or more resident cats can be a significant source of stress for the cats involved. These studies sought to determine if rabbit maternal-neonatal pheromone (2-methyl-2-butenal [2M2B]) in litter impacted cat social behaviors and litter box use. Study 1 determined that cats preferred to eliminate in litter containing 2M2B; other semiochemicals tested did not change litter box use. Cats prone to aggression were identified in an intermediate pilot study, and eight pairs of these cats were selected for Study 2. In Study 2, cat pairs were provided litter containing either vehicle or 2M2B for 24 hours. Cats experiencing control litter displayed more aggression during the first 6 hours (p cats experiencing litter with 2M2B (p = .02). These results suggest 2M2B-infused cat litter may act as an interomone in cats housed domestically to prevent initial occurrences of aggression and may improve cat welfare in multicat households.

  20. Environmentally-friendly animal litter

    Energy Technology Data Exchange (ETDEWEB)

    Boxley, Chett; McKelvie, Jessica

    2012-08-28

    An animal litter composition including geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with a sufficient quantity of water and an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. After the geopolymerized ash is formed, it is dried, broken into particulates, and sieved to a desired size. These geopolymerized ash particulates are used to make a non-clumping or clumping animal litter. Odor control is accomplished with the addition of a urease inhibitor, pH buffer, an odor eliminating agent, and/or fragrance.

  1. Environmentally-friendly animal litter

    Science.gov (United States)

    Boxley, Chett; McKelvie, Jessica

    2013-09-03

    An animal litter composition that includes geopolymerized ash particulates having a network of repeating aluminum-silicon units is described herein. Generally, the animal litter is made from a quantity of a pozzolanic ash mixed with an alkaline activator to initiate a geopolymerization reaction that forms geopolymerized ash. This geopolymerization reaction may occur within a pelletizer. After the geopolymerized ash is formed, it may be dried and sieved to a desired size. These geopolymerized ash particulates may be used to make a non-clumping or clumping animal litter or other absorbing material. Aluminum sulfate, clinoptilolite, silica gel, sodium alginate and mineral oil may be added as additional ingredients.

  2. Dragon Fruit Foliage Plant-Based Coagulant for Treatment of Concentrated Latex Effluent: Comparison of Treatment with Ferric Sulfate

    Directory of Open Access Journals (Sweden)

    Juferi Idris

    2013-01-01

    Full Text Available The effectiveness of dragon fruit foliage as a natural coagulant for treatment of concentrated latex effluent was investigated and compared with ferric sulfate, a chemical coagulant. Dragon fruit is a round and often red-colored fruit with scales-like texture and is native to south American countries which is also cultivated and heavily marketed in southeast Asian countries. Its foliage represents a part of its overall plant system. Latex effluent is one of the main byproduct from rubber processing factories in Malaysia. Three main parameters investigated were chemical oxygen demand (COD, suspended solids (SS, and turbidity of effluent. Coagulation experiments using jar test were performed with a flocculation system where the effects of latex effluent pH as well as coagulation dosage on coagulation effectiveness were examined. The highest recorded COD, SS, and turbidity removal percentages for foliage were observed for effluent pH 10 at 94.7, 88.9, and 99.7%, respectively. It is concluded that the foliage showed tremendous potential as a natural coagulant for water treatment purposes. The foliage could be used in the pretreatment stage of Malaysian latex effluent prior to secondary treatment.

  3. Further studies in using mangrove foliage as a prawn feed

    Digital Repository Service at National Institute of Oceanography (India)

    Sumitra-Vijayaraghavan; Wafar, S.

    Changes in biochemical composition and energy content of foliage of eight mangrove species at various phases of life and during decay were studied. Decomposition resulted in loss of organic contents, carbon and C:N ratio and increase in calorific...

  4. The role of Juncus effusus litter quality and nutrient availability on organic matter decomposition in restored cutover bogs

    Science.gov (United States)

    Agethen, Svenja; Knorr, Klaus-Holger

    2017-04-01

    aromaticity were higher in "F" litter. Generally, decomposition rates of litter were 5-30 times higher than of peat. Rates in batches amended with "F" were lower compared to "NF" for the respective peat, opposing typically reported observations. Nevertheless, the 13C label suggested that in case of peat I and III preferably the litter was decomposed, decomposition of peat II was apparently stimulated when "NF" was added, albeit this litter was poor in nutrients. Multiple linear regression identified specific absorption at 254 nm (SUVA), a measure of aromaticity representative for an array of inter-correlating spectroscopic features, and enzyme activity as most important predictors for C-mineralization rates. These two parameters explained 88% of the variance. Although enzyme activity and SUVA did not correlate in the mixed assays, this was the case for the pure materials (R2=0.95), suggesting an inhibitory effect of aromatic components on enzyme activity. This study confirms that generally litter quality is a major control for mineralization and hence, carbon storage in peatlands. Interestingly, in the case of Juncus effusus, high nutrient availability in peat and litter did not lead to enhanced degradation of the litter itself or priming of decomposition of the surrounding peat. Furthermore, the results underline the substantial contribution of Juncus biomass to C-cycling and potentially high C-emissions in restored peatlands.

  5. Methane, nitrous oxide and ammonia emissions from pigs housed on litter and from stockpiling of spent litter

    KAUST Repository

    Phillips, F. A.; Wiedemann, S. G.; Naylor, T. A.; McGahan, E. J.; Warren, B. R.; Murphy, C. M.; Parkes, Stephen; Wilson, J.

    2016-01-01

    Mitigation of agricultural greenhouse gas emissions is a target area for the Australian Government and the pork industry. The present study measured methane (CH4), nitrous oxide (N2O) and ammonia (NH3) from a deep-litter piggery and litter stockpile over two trials in southern New South Wales, to compare emissions from housing pigs on deep litter with those of pigs from conventional housing with uncovered anaerobic effluent-treatment ponds. Emissions were measured using open-path Fourier transform infrared spectrometry, in conjunction with a backward Lagrangian stochastic model. Manure excretion was determined by mass balance and emission factors (EFs) were developed to report emissions relative to volatile solids and nitrogen (N) input. Nitrous oxide emissions per animal unit (1 AU ≤ 500 kg liveweight) from deep-litter sheds were negligible in winter, and 8.4 g/AU.day in summer. Ammonia emissions were 39.1 in winter and 52.2 g/AU.day in summer, while CH4 emissions were 16.1 and 21.6 g/AU.day in winter and summer respectively. Emission factors averaged from summer and winter emissions showed a CH4 conversion factor of 3.6%, an NH3-N EF of 10% and a N2O-N EF of 0.01 kg N2O-N/kg N excreted. For the litter stockpile, the simple average of summer and winter showed an EF for NH3-N of 14%, and a N2O-N EF of 0.02 kg N2O-N/kg-N of spent litter added to the stockpile. We observed a 66% and 80% decrease in emissions from the manure excreted in litter-based housing with litter stockpiling or without litter stockpiling, compared with conventional housing with an uncovered anaerobic effluent-treatment pond. This provides a sound basis for mitigation strategies that utilise litter-based housing as an alternative to conventional housing with uncovered anaerobic effluent-treatment ponds. © CSIRO 2016.

  6. Methane, nitrous oxide and ammonia emissions from pigs housed on litter and from stockpiling of spent litter

    KAUST Repository

    Phillips, F. A.

    2016-05-05

    Mitigation of agricultural greenhouse gas emissions is a target area for the Australian Government and the pork industry. The present study measured methane (CH4), nitrous oxide (N2O) and ammonia (NH3) from a deep-litter piggery and litter stockpile over two trials in southern New South Wales, to compare emissions from housing pigs on deep litter with those of pigs from conventional housing with uncovered anaerobic effluent-treatment ponds. Emissions were measured using open-path Fourier transform infrared spectrometry, in conjunction with a backward Lagrangian stochastic model. Manure excretion was determined by mass balance and emission factors (EFs) were developed to report emissions relative to volatile solids and nitrogen (N) input. Nitrous oxide emissions per animal unit (1 AU ≤ 500 kg liveweight) from deep-litter sheds were negligible in winter, and 8.4 g/AU.day in summer. Ammonia emissions were 39.1 in winter and 52.2 g/AU.day in summer, while CH4 emissions were 16.1 and 21.6 g/AU.day in winter and summer respectively. Emission factors averaged from summer and winter emissions showed a CH4 conversion factor of 3.6%, an NH3-N EF of 10% and a N2O-N EF of 0.01 kg N2O-N/kg N excreted. For the litter stockpile, the simple average of summer and winter showed an EF for NH3-N of 14%, and a N2O-N EF of 0.02 kg N2O-N/kg-N of spent litter added to the stockpile. We observed a 66% and 80% decrease in emissions from the manure excreted in litter-based housing with litter stockpiling or without litter stockpiling, compared with conventional housing with an uncovered anaerobic effluent-treatment pond. This provides a sound basis for mitigation strategies that utilise litter-based housing as an alternative to conventional housing with uncovered anaerobic effluent-treatment ponds. © CSIRO 2016.

  7. Plant litter decomposition and carbon sequestration for arable soils. Final report of works. April 2005

    International Nuclear Information System (INIS)

    Recous, S.; Barrois, F.; Coppens, F.; Garnier, P.; Grehan, E.; Balesdent, J.; Dambrine, E.; Zeller, B.; Loiseau, P.; Personeni, E.

    2002-01-01

    The general objective of this project was to contribute to the evaluation of land use and management impacts on C sequestration and nitrogen dynamics in soils. The land used through the presence/absence of crops and their species, and the land management through tillage, localisation of crop residues, fertilizer applications,... are important factors that affect the dynamics of organic matters in soils, particularly the mineralization of C and N, the losses to the atmosphere and hydrosphere, the retention of carbon into the soil. This project was conducted by four research groups, three of them having expertise in nutrient cycling of three major agro-ecosystems (arable crops, grasslands, forests) and the fourth one having expertise in modelling long term effects of land use on C storage into the soils. Within this common project one major objective was to better understand the fate of plant litter entering the soil either as above litter or as root litter. The focus was put on two factors that particularly affect decomposition: the initial biochemical quality of plant litter, and the location of the decomposing litter. One innovative aspect of the project was the use of stable isotope as 13 C for carbon, based on the use of enriched or depleted 13 C material, the only option to assess the dynamics of 'new' C entering the soil on the short term, in order to reveal the effects of decomposition factors. Another aspect was the simultaneous study of C and N. The project consisted in experiments relevant for each agro-ecosystem, in forest, grassland and arable soils for which interactions between residue quality and nitrogen availability on the one hand, residue quality and location on the other hand, was investigated. A common experiment was set up to investigate the potential degradability of the various residue used (beech leaf rape straw, young rye, Lolium and dactylic roots) in a their original soils and in a single soil was assessed. Based on these experiments, the

  8. Evaluation of Nutritive Value, Phenolic Compounds and in vitro Digestion Charactristics of Barberry (Berberis Vulgaris Foliage

    Directory of Open Access Journals (Sweden)

    Seyed Jalal Modaresi

    2016-11-01

    Full Text Available Introduction This study was intended to evaluate the nutritional value, phenolic compounds and digestibility coefficients of barberry leaves. Berberis vulgaris is one of the major crops in the province. The province has more than 70 percent and 95 percent of the total area under cultivation of barberry. Waste and foliage of barberry harvest traditionally used to feed livestock Tannin concentration greater than 3 to 4 percent in food, can have negative effects on digestibility in ruminants and in particular to reduce the absorption of dietary protein. So it can be expected that high amounts of tannins within waste foliage of barberry reduce its efficiency in ruminants to be fed. Several studies have shown that the addition of certain compounds such as urea, polyethylene Due to the high volume of barberry foliage that remains after harvesting and the possibility of its use in animal nutrition, this study tried to determine some nutrient compounds, phenolic compounds and degradation parameters were barberry leaves. In addition, in this study to determine the best additives are effective in reducing the concentration of tannins and phenolic compounds, urea, polyethylene glycol, sodium hydroxide and calcium hydroxide were compared. Materials and method As the samples were dried by the sun for 6 days. The amount of 5% by weight (dry matter basis urea, polyethylene glycol, sodium hydroxide or calcium hydroxide that was prepared with distilled water, was sprayed on 5 kg of the sample and thoroughly mixed. Each of the treatments were prepared in triplicate. Treatments include: 1 control (foliage without additives, 2 foliage with 5% solution of urea, 3 foliage with 5% polyethylene glycol, 4 foliage with 5% sodium hydroxide, 5 with 5% calcium hydroxide was foliage. The sample were kept in anaerobic plastic containers for 3 days and then opened and dried at room temperature. Samples were analyzed for crude protein, neutral detergent fiber, acid detergent

  9. N2-fixing red alder indirectly accelerates ecosystem nitrogen cycling

    Science.gov (United States)

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    Symbiotic N2-fixing tree species can accelerate ecosystem N dynamics through decomposition via direct pathways by producing readily decomposed leaf litter and increasing N supply to decomposers, as well as via indirect pathways by increasing tissue and detrital N in non-fixing vegetation. To evaluate the relative importance of these pathways, we compared three-year decomposition and N dynamics of N2-fixing red alder leaf litter (2.34 %N) to both low-N (0.68 %N) and high-N (1.21 %N) litter of non-fixing Douglas-fir, and decomposed each litter source in four forests dominated by either red alder or Douglas-fir. We also used experimental N fertilization of decomposition plots to assess elevated N availability as a potential mechanism of N2-fixer effects on litter mass loss and N dynamics. Direct effects of N2-fixing red alder on decomposition occurred primarily as faster N release from red alder than Douglas-fir litter, but direct increases in N supply to decomposers via fertilization did not stimulate decomposition of any litter. Fixed N indirectly influenced detrital dynamics by increasing Douglas-fir tissue and litter N concentrations, which accelerated litter N release without accelerating mass loss. By increasing soil N, tissue N, and the rate of N release from litter of non-fixers, we conclude that N2-fixing vegetation can indirectly foster plant-soil feedbacks that contribute to the persistence of elevated N availability in terrestrial ecosystems.

  10. Effects of prescribed burning and litter type on litter decomposition and nutrient release in mixed-grass prairie in Eastern Montana

    Science.gov (United States)

    Fire can affect litter decomposition and carbon (C) and nitrogen (N) dynamics. Here, we examined the effect of summer fire and three litter types on litter decomposition and litter C and N dynamics in a northern mixed-grass prairie over a 24 month period starting ca. 14 months after fire. Over all...

  11. Weaning and separation stress: maternal motivation decreases with litter age and litter size in farmed mink

    DEFF Research Database (Denmark)

    Malmkvist, Jens; Sørensen, Dennis Dam; Larsen, Torben

    2016-01-01

    was to investigate whether the dams experienced stress/had a different motivation to be reunited with the litter after7 and 8 weeks, estimated by non-invasive determination of cortisol (FCM: Faecal Cortisol Metabolites)and dam behaviour including calls the first week after separation (D0: Day of removal, D1: next......The optimal timing of separating the mink dam from the litter is suggested to be a balance between the partly conflicting needs of the mother and the kits. Early removal of the dam or partial removal of the litter may protect the dam against exhaustion. Little is, however, known about dam stress...... and maternal motivation around the time of weaning and separation. Therefore, we investigated effects of separating the dam from the litter using brown first-parity farm mink dams (n = 374) taken away from the litter either day 49 ± 1 (7w, n = 185) or day 56 ± 1 (8w, n = 189) after birth. The aim...

  12. Trees as templates for tropical litter arthropod diversity.

    Science.gov (United States)

    Donoso, David A; Johnston, Mary K; Kaspari, Michael

    2010-09-01

    Increased tree species diversity in the tropics is associated with even greater herbivore diversity, but few tests of tree effects on litter arthropod diversity exist. We studied whether tree species influence patchiness in diversity and abundance of three common soil arthropod taxa (ants, gamasid mites, and oribatid mites) in a Panama forest. The tree specialization hypothesis proposes that tree-driven habitat heterogeneity maintains litter arthropod diversity. We tested whether tree species differed in resource quality and quantity of their leaf litter and whether more heterogeneous litter supports more arthropod species. Alternatively, the abundance-extinction hypothesis states that arthropod diversity increases with arthropod abundance, which in turn tracks resource quantity (e.g., litter depth). We found little support for the hypothesis that tropical trees are templates for litter arthropod diversity. Ten tree species differed in litter depth, chemistry, and structural variability. However, the extent of specialization of invertebrates on particular tree taxa was low and the more heterogeneous litter between trees failed to support higher arthropod diversity. Furthermore, arthropod diversity did not track abundance or litter depth. The lack of association between tree species and litter arthropods suggests that factors other than tree species diversity may better explain the high arthropod diversity in tropical forests.

  13. Study on hydrological functions of litter layers in North China.

    Directory of Open Access Journals (Sweden)

    Xiang Li

    Full Text Available Canopy interception, throughfall, stemflow, and runoff have received considerable attention during the study of water balance and hydrological processes in forested ecosystems. Past research has either neglected or underestimated the role of hydrological functions of litter layers, although some studies have considered the impact of various characteristics of rainfall and litter on litter interception. Based on both simulated rainfall and litter conditions in North China, the effect of litter mass, rainfall intensity and litter type on the maximum water storage capacity of litter (S and litter interception storage capacity (C were investigated under five simulated rainfall intensities and four litter masses for two litter types. The results indicated: 1 the S values increased linearly with litter mass, and the S values of broadleaf litter were on average 2.65 times larger than the S values of needle leaf litter; 2 rainfall intensity rather than litter mass determined the maximum interception storage capacity (Cmax ; Cmax increased linearly with increasing rainfall intensity; by contrast, the minimum interception storage capacity (Cmin showed a linear relationship with litter mass, but a poor correlation with rainfall intensity; 3 litter type impacted Cmax and Cmin ; the values of Cmax and Cmin for broadleaf litter were larger than those of needle leaf litter, which indicated that broadleaf litter could intercepte and store more water than needle leaf litter; 4 a gap existed between Cmax and Cmin , indicating that litter played a significant role by allowing rainwater to infiltrate or to produce runoff rather than intercepting it and allowing it to evaporate after the rainfall event; 5 Cmin was always less than S at the same litter mass, which should be considered in future interception predictions. Vegetation and precipitation characteristics played important roles in hydrological characteristics.

  14. Temperatures below leaf litter during winter prescribed burns: implications for litter-roosting bats

    Science.gov (United States)

    Roger W. Perry; Virginia L. McDaniel

    2015-01-01

    Some bat species, including eastern red bats (Lasiurus borealis), roost for short periods beneath leaf litter on the forest floor during winter in the south-eastern USA, a region subjected to frequent fire. The variability in fuel consumption, the heterogeneous nature of burns, and the effects of litter and duff moisture on forest-floor...

  15. Influence of in-house composting of reused litter on litter quality, ammonia volatilisation and incidence of broiler foot pad dermatitis.

    Science.gov (United States)

    Martins, R S; Hötzel, M J; Poletto, R

    2013-01-01

    1. The objectives of this study were to evaluate the residual effects of two windrow composting methods for reused litter on its quality (pH, moisture, ammonia), ammonia (NH3) volatilisation and the prevalence (scores 0-4) of foot pad dermatitis (FPD) and hock burn (HB) on d 1, 7, 14 and 21 of age in broilers. Litter was allowed to compost for 8 d within a 14-d interval between flocks. 2. The composting methods studied were with or without a PVC plastic sheet. The same procedures were applied for three consecutive flocks, with litter initially having been used for 12 flocks. Data were analysed with a mixed model of repeated measures of day, with main effects and interactions of day, composting method, litter age (block) and house nested within method. 3. At d 1, litter NH3 and NH3 volatilisation were higher in the covered litter method. Litter moisture increased to 45.3% as broilers aged. The incidence of FPD also increased with age. No signs of HB were found in any bird throughout the trials. 4. There was no effect of litter composting methods on the prevalence of FPD or body weight at any age. 5. Litter moisture should be controlled to avoid NH3 volatilisation reaching critical levels. Windrow composting of litter with a PVC plastic sheet may not be required when considering the broiler housing environment.

  16. Nickel Deficiency Disrupts Metabolism of Ureides, Amino Acids, and Organic Acids of Young Pecan Foliage[OA

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C.; Wood, Bruce W.

    2006-01-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  17. Comparing tree foliage biomass models fitted to a multispecies, felled-tree biomass dataset for the United States

    Science.gov (United States)

    Brian J. Clough; Matthew B. Russell; Grant M. Domke; Christopher W. Woodall; Philip J. Radtke

    2016-01-01

    tEstimation of live tree biomass is an important task for both forest carbon accounting and studies of nutri-ent dynamics in forest ecosystems. In this study, we took advantage of an extensive felled-tree database(with 2885 foliage biomass observations) to compare different models and grouping schemes based onphylogenetic and geographic variation for predicting foliage...

  18. Sampling strategies for efficient estimation of tree foliage biomass

    Science.gov (United States)

    Hailemariam Temesgen; Vicente Monleon; Aaron Weiskittel; Duncan Wilson

    2011-01-01

    Conifer crowns can be highly variable both within and between trees, particularly with respect to foliage biomass and leaf area. A variety of sampling schemes have been used to estimate biomass and leaf area at the individual tree and stand scales. Rarely has the effectiveness of these sampling schemes been compared across stands or even across species. In addition,...

  19. Decomposing method for ion exchange resin

    International Nuclear Information System (INIS)

    Sako, Takeshi; Sato, Shinshi; Akai, Yoshie; Moniwa, Shinobu; Yamada, Kazuo

    1998-01-01

    The present invention concerns a method of decomposing ion exchange resins generated in a nuclear power plant to carbon dioxide reliably in a short period of time. (1) The ion exchange resins are mixed with water, and then they are kept for a predetermined period of time in the presence of an inert gas at high temperature and high pressure exceeding the critical point of water to decompose the ion exchange resins. (2) The ion exchange resins is mixed with water, an oxidant is added and they are kept for a predetermined time in the presence of an inert gas at a high temperature and a high pressure exceeding a critical point of water of an inert gas at a high temperature to decompose the ion exchange resins. (3) An alkali or acid is added to ion exchange resins and water to control the hydrogen ion concentration in the solution and the ion exchange resins are decomposed in above-mentioned (1) or (2). Sodium hydroxide is used as the alkali and hydrochloric acid is used as the acid. In addition, oxygen, hydrogen peroxide or ozone is used as an oxidant. (I.S.)

  20. Competence of Litter Ants for Rapid Biodiversity Assessments

    Directory of Open Access Journals (Sweden)

    T. H. Saumya E. Silva

    2017-01-01

    Full Text Available Rapid Biodiversity Assessment approaches associated with focusing taxa have overcome many of the problems related to large scale surveys. This study examined the suitability of litter ants as a focusing taxon by checking whether diversity and species assemblages of litter ants reflect the overall picture of arthropod diversity and assemblages in leaf litter in two vegetation types: secondary forest and pine plantation in Upper Hanthana forest reserve, Sri Lanka. In each vegetation type, arthropods were sampled using three sampling methods (Winkler extraction, hand collection, and pitfall traps along three 100 m line transects. From the two sites, 1887 litter ants (34 species and 3488 litter arthropods (52 species were collected. Species assemblages composition of both ants and other arthropods differed significantly between the two sites (ANOSIM, p=0.001 with both groups generating distinct clusters for the two sites (SIMPROF, p=0.001. But there was no significant correlation (p>0.05 between abundance and richness of litter ants and those of other arthropods in both vegetation types. The overall finding suggests that the litter ants do not reflect the holistic picture of arthropod diversity and assemblages in leaf litter, but the quality of the habitat for the survival of all litter arthropods.

  1. Nutrient Dynamics and Litter Decomposition in Leucaena ...

    African Journals Online (AJOL)

    Nutrient contents and rate of litter decomposition were investigated in Leucaena leucocephala plantation in the University of Agriculture, Abeokuta, Ogun State, Nigeria. Litter bag technique was used to study the pattern and rate of litter decomposition and nutrient release of Leucaena leucocephala. Fifty grams of oven-dried ...

  2. Effects of increasing temperature and, CO2 on quality of litter, shredders, and microorganisms in Amazonian aquatic systems.

    Directory of Open Access Journals (Sweden)

    Renato Tavares Martins

    Full Text Available Climate change may affect the chemical composition of riparian leaf litter and, aquatic organisms and, consequently, leaf breakdown. We evaluated the effects of different scenarios combining increased temperature and carbon dioxide (CO2 on leaf detritus of Hevea spruceana (Benth Müll. and decomposers (insect shredders and microorganisms. We hypothesized that simulated climate change (warming and elevated CO2 would: i decrease leaf-litter quality, ii decrease survival and leaf breakdown by shredders, and iii increase microbial leaf breakdown and fungal biomass. We performed the experiment in four microcosm chambers that simulated air temperature and CO2 changes in relation to a real-time control tracking current conditions in Manaus, Amazonas, Brazil. The experiment lasted seven days. During the experiment mean air temperature and CO2 concentration ranged from 26.96 ± 0.98ºC and 537.86 ± 18.36 ppmv in the control to 31.75 ± 0.50ºC and 1636.96 ± 17.99 ppmv in the extreme chamber, respectively. However, phosphorus concentration in the leaf litter decreased with warming and elevated CO2. Leaf quality (percentage of carbon, nitrogen, phosphorus, cellulose and lignin was not influenced by soil flooding. Fungal biomass and microbial leaf breakdown were positively influenced by temperature and CO2 increase and reached their highest values in the intermediate condition. Both total and shredder leaf breakdown, and shredder survival rate were similar among all climatic conditions. Thus, low leaf-litter quality due to climate change and higher leaf breakdown under intermediate conditions may indicate an increase of riparian metabolism due to temperature and CO2 increase, highlighting the risk (e.g., decreased productivity of global warming for tropical streams.

  3. Water addition, evaporation and water holding capacity of poultry litter.

    Science.gov (United States)

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2015-12-15

    Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison-litres of water per square metre of poultry shed floor area, L/m(2), assuming a litter depth of 5cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2L/m(2)/day. Over a 56day grow-out, the total quantity of water added to the litter was estimated to be 104L/m(2). Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25°C and 50% relative humidity ranged from 0.5 to 10L/m(2)/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  4. Litter as seedbed: interactions between the soil, seedlings and litter of kauri (Agathis australis)

    NARCIS (Netherlands)

    Verkaik, E.

    2006-01-01

    Plants have important impacts upon soil processes such as nutrient mineralisation and organic matter dynamics. They might even enhance their own fitness by improving soil quality or by making the soil less favourable for competing species. In the latter strategy, tannins in plant foliage might be

  5. Influence of Covering Reused Broiler Litter with Plastic Canvas on Litter Characteristics and Bacteriology and the Subsequent Immunity and Microbiology of Broilers

    OpenAIRE

    Mesa, D; Lourenço, M; Souza, A; Bueno, A; Pereira, A; Sfeir, M; Santin, E

    2016-01-01

    ABSTRACT In broiler production, the litter is reused for consecutives flocks, and it is treated during down time between flocks to reduce its microbial load. Although covering the litter with a plastic canvas is a common litter treatment in the field, there is little scientific information available on its efficacy. The aim of this study was to evaluate the effects of covering broiler litter with a plastic canvas for eight days on litter microbiological, physical, and chemical parameters, and...

  6. Radiocesium leaching from contaminated litter in forest streams

    International Nuclear Information System (INIS)

    Sakai, Masaru; Gomi, Takashi; Naito, Risa S.; Negishi, Junjiro N.; Sasaki, Michiko; Toda, Hiroto; Nunokawa, Masanori; Murase, Kaori

    2015-01-01

    In Japanese forests suffering from the Fukushima Daiichi Nuclear Power Plant accident, litter fall provides a large amount of radiocesium from forests to streams. Submerged litter is processed to become a vital food resource for various stream organisms through initial leaching and subsequent decomposition. Although leaching from litter can detach radiocesium similarly to potassium, radiocesium leaching and its migration are poorly understood. We examined both radiocesium and potassium leaching to the water column and radiocesium allocation to minerals (glass beads, silica sand, and vermiculite) in the laboratory using soaked litter with and without minerals on a water column. The mineral types did not affect radiocesium leaching from litter, but soaking in water for 1, 7, and 30 days decreased the radiocesium concentration in litter by ×0.71, ×0.66, and ×0.56, respectively. Meanwhile, the 1-, 7-, and 30-day experiments decreased potassium concentration in litter by ×0.17, ×0.11, and ×0.09, respectively. Leached radiocesium remained in a dissolved form when there was no mineral phases present in the water, whereas there was sorption onto the minerals when they were present. In particular, vermiculite adsorbed radiocesium by two to three orders of magnitude more effectively than the other minerals. Because radiocesium forms (such as that dissolved or adsorbed to organic matter or minerals) can further mobilize to ecosystems, our findings will increase our understanding regarding the dynamics of radiocesium in stream ecosystems. - Highlights: • Radiocesium in contaminated litter was leached when soaked in water. • Radiocesium in litter leached slowly compared to potassium. • Minerals adsorbed dissolved radiocesium that was leached from litter. • Vermiculite effectively adsorbed radiocesium leached from litter

  7. Species diversity and chemical properties of litter influence non-additive effects of litter mixtures on soil carbon and nitrogen cycling

    OpenAIRE

    Mao, Bing; Mao, Rong; Zeng, De-Hui

    2017-01-01

    Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N ...

  8. Phosphorus transformation in poultry litter and litter-treated Oxisol of Brazil assessed by 31P-NMR and wet chemical fractionation

    Directory of Open Access Journals (Sweden)

    César Roriz de Souza

    2012-11-01

    Full Text Available Large quantities of poultry litter are being produced in Brazil, which contain appreciable amounts of phosphorus (P that could be of environmental concern. To assess the immediate environmental threat, five poultry litters composed of diverse bedding material were incubated for 43 days under greenhouse conditions. The litters consisted of: coffee bean husk (CH; wood chips (WC; rice husk (RH; ground corn cobs (CC and ground napier grass (NG (Pennisetum purpureum Schum., in which the change in forms of soluble P was evaluated using 31P NMR spectroscopy. On average, 80.2 and 19.8 % of the total P in the extract, respectively, accounted for the inorganic and organic forms before incubation and 48 % of the organic P was mineralized to inorganic P in 43 days of incubation. Wide variation in the organic P mineralization rate (from 82 % -WC to 4 % - NG was observed among litters. Inorganic orthophosphate (99.9 % and pyrophosphate (0.1 % were the only inorganic P forms, whereas the organic P forms orthophosphate monoesters (76.3 % and diester (23.7 % were detected. Diester P compounds were mineralized almost completely in all litters, except in the CH litter, within the incubation period. Pyrophosphates contributed with less than 0.5% and remained unaltered during the incubation period. Wood-chip litter had a higher organic P (40 % content and a higher diester: monoester ratio; it was therefore mineralized rapidly, within the first 15 days, achieving steady state by the 29th day. Distinct mineralization patterns were observed in the litter when incubated with a clayey Oxisol. The substantial decrease observed in the organic P fraction (Po of the litter types followed the order: CH (45 % > CC (25 % > RH (13 % ≈ NG (12 % > WC (5 %, whereas the Pi fraction increased. Incubation of RH litter in soil slowed down the mineralization of organic P.

  9. Laboratory and field evaluation of broiler litter nitrogen mineralization.

    Science.gov (United States)

    Sistani, K R; Adeli, A; McGowen, S L; Tewolde, H; Brink, G E

    2008-05-01

    Two studies were conducted for this research. First, a laboratory incubation to quantify broiler litter N mineralization with the following treatments: two soil moisture regimes, constant at 60% water fill pore space (WFPS) and fluctuating (60-30% WFPS), three soil types, Brooksville silty clay loam, Ruston sandy loam from Mississippi, and Catlin silt loam from Illinois. Second, a field incubation study to quantify broiler litter N mineralization using similar soils and litter application rates as the laboratory incubation. Broiler litter was applied at an equivalent rate of 350 kg total N ha(-1) for both studies except for control treatments. Subsamples were taken at different timing for both experiments for NO3-N and NH4-N determinations. In the laboratory experiment, soil moisture regimes had no significant impact on litter-derived inorganic N. Total litter-derived inorganic N across all treatments increased from 23 mg kg(-1) at time 0, to 159 mg kg(-1) at 93 d after litter application. Significant differences were observed among the soil types. Net litter-derived inorganic N was greater for Brooksville followed by Ruston and Catlin soils. For both studies and all soils, NH4-N content decreased while NO3-N content increased indicating a rapid nitrification of the mineralized litter N. Litter mineralization in the field study followed the same trend as the laboratory study but resulted in much lower net inorganic N, presumably due to environmental conditions such as precipitation and temperature, which may have resulted in more denitrification and immobilization of mineralized litter N. Litter-derived inorganic N from the field study was greater for Ruston than Brooksville. Due to no impact by soil moisture regimes, additional studies are warranted in order to develop predictive relationships to quantify broiler litter N availability.

  10. A comparative study on nutrient cycling in wet heathland ecosystems : II. Litter decomposition and nutrient mineralization.

    Science.gov (United States)

    Berendse, Frank; Bobbink, Roland; Rouwenhorst, Gerrit

    1989-03-01

    The concept of the relative nutrient requirement (L n ) that was introduced in the first paper of this series is used to analyse the effects of the dominant plant population on nutrient cycling and nutrient mineralization in wet heathland ecosystems. A distinction is made between the effect that the dominant plant species has on (1) the distribution of nutrients over the plant biomass and the soil compartment of the ecosystem and (2) the recirculation rate of nutrients. The first effect of the dominant plant species can be calculated on the basis of the δ/k ratio (which is the ratio of the relative mortality to the decomposition constant). The second effect can be analysed using the relative nutrient requirement (L n ). The mass loss and the changes in the amounts of N and P in decomposing above-ground and below-ground litter produced by Erica tetralix and Molinia caerulea were measured over three years. The rates of mass loss from both above-ground and below-ground litter of Molinia were higher than those from Erica litter. After an initial leaching phase, litter showed either a net release or a net immobilization of nitrogen or phosphorus that depended on the initial concentrations of these nutrients. At the same sites, mineralization of nitrogen and phosphorus were measured for two years both in communities dominated by Molinia and in communities dominated by Erica. There were no clear differences in the nitrogen mineralization, but in one of the two years, phosphate mineralization in the Molinia-community was significantly higher. On the basis of the theory that was developed, mineralization rates and ratios between amounts of nutrients in plant biomass and in the soil were calculated on the basis of parameters that were independently measured. There was a reasonable agreement between predicted and measured values in the Erica-communities. In the Molinia-communities there were large differences between calculated and measured values, which was explained by the

  11. Fate of mercury in tree litter during decomposition

    Science.gov (United States)

    Pokharel, A. K.; Obrist, D.

    2011-09-01

    We performed a controlled laboratory litter incubation study to assess changes in dry mass, carbon (C) mass and concentration, mercury (Hg) mass and concentration, and stoichiometric relations between elements during decomposition. Twenty-five surface litter samples each, collected from four forest stands, were placed in incubation jars open to the atmosphere, and were harvested sequentially at 0, 3, 6, 12, and 18 months. Using a mass balance approach, we observed significant mass losses of Hg during decomposition (5 to 23 % of initial mass after 18 months), which we attribute to gaseous losses of Hg to the atmosphere through a gas-permeable filter covering incubation jars. Percentage mass losses of Hg generally were less than observed dry mass and C mass losses (48 to 63 % Hg loss per unit dry mass loss), although one litter type showed similar losses. A field control study using the same litter types exposed at the original collection locations for one year showed that field litter samples were enriched in Hg concentrations by 8 to 64 % compared to samples incubated for the same time period in the laboratory, indicating strong additional sorption of Hg in the field likely from atmospheric deposition. Solubility of Hg, assessed by exposure of litter to water upon harvest, was very low (associated with plant litter upon decomposition. Results also suggest that Hg accumulation in litter and surface layers in the field is driven mainly by additional sorption of Hg, with minor contributions from "internal" accumulation due to preferential loss of C over Hg. Litter types showed highly species-specific differences in Hg levels during decomposition suggesting that emissions, retention, and sorption of Hg are dependent on litter type.

  12. Gastrointestinal nematode infection does not affect selection of tropical foliage by goats in a cafeteria trial.

    Science.gov (United States)

    Ventura-Cordero, J; González-Pech, P G; Jaimez-Rodriguez, P R; Ortíz-Ocampo, G I; Sandoval-Castro, C A; Torres-Acosta, J F J

    2017-01-01

    It is important to determine whether gastrointestinal nematodes (GINs) affect foliage choice of goats leading to confirm the expression of a self-medication behavior. This study investigated the effect of GIN infection on tropical foliage selection by goats. During experimental stage 1 (10 days), goats had a natural mixed GIN infection, and at stage 2 (10 days), goats were treated with effective anthelmintics to maintain them free of GIN infection. During stage 1 the twelve adult goats (32 ± 2.3 kg live weight [LW]) were assigned to three groups (n = 4) according to their initial GIN infection status: HI group, with fecal egg count (FEC) between 1450 and 2150 eggs per g/feces (EPG); MI group, medium FEC (592-1167 EPG); and the NI group, free from GIN infection. Fresh foliage of four tropical plants were offered to goats ad libitum for 1 h daily: Gymnopodium floribundum (high condensed tannin [CT] content, 37-40 %), Mimosa bahamensis (medium CT content, 16-17 %), Leucaena leucocephala (low CT content, 3-5 %), and Viguiera dentata (negligible CT content, 0.6-0.9 %). Jacobs' selection indexes (JSIs) were estimated for the experimental foliage based on dry matter (DM), CT, or crude protein (CP) intake. During both study stages, individual fecal egg counts were estimated. The JSI patterns of different plant species, based on DM, CT, or CP, were similar irrespective of infection level during stage 1 (HI, MI, and NI) or no GIN infection (stage 2). Thus, irrespective of GIN infection, goats actively selected M. bahamensis (high CT, low CP content) and V. dentata (negligible CT, high CP content) but avoided G. floribundum (high CT, low CP content) and L. leucocephala (medium CT and high CP content). Thus, natural GIN infection did not influence goats' foliage selection.

  13. Method of decomposing treatment for radioactive organic phosphate wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1985-01-01

    Purpose: To decompose the organic phosphoric-acid ester wastes containing radioactive material, which is produced from spent fuel reprocessing facilities, into inorganic materials using a simple device, under moderate conditions and at high decomposing ratio. Method: Radioactive organic phosphate wates are oxidatively decomposed by H 2 O 2 in an aqueous phosphoric-acid solution of metal phosphate salts. Copper phosphates are used as the metal phosphate salts and the decomposed solution of the radioactive organic phosphate wastes is used as the aqueous solution of the copper phosphate. The temperature used for the oxidizing decomposition ranges from 80 to 100 0 C. (Ikeda, J.)

  14. Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    FP. Nunes

    Full Text Available The study of litter decomposition and nutrient cycling is essential to know native forests structure and functioning. Mathematical models can help to understand the local and temporal litter fall variations and their environmental variables relationships. The objective of this study was test the adequacy of mathematical models for leaf litter decomposition in the Atlantic Forest in southeastern Brazil. We study four native forest sites in Parque Estadual do Rio Doce, a Biosphere Reserve of the Atlantic, which were installed 200 bags of litter decomposing with 20×20 cm nylon screen of 2 mm, with 10 grams of litter. Monthly from 09/2007 to 04/2009, 10 litterbags were removed for determination of the mass loss. We compared 3 nonlinear models: 1 – Olson Exponential Model (1963, which considers the constant K, 2 – Model proposed by Fountain and Schowalter (2004, 3 – Model proposed by Coelho and Borges (2005, which considers the variable K through QMR, SQR, SQTC, DMA and Test F. The Fountain and Schowalter (2004 model was inappropriate for this study by overestimating decomposition rate. The decay curve analysis showed that the model with the variable K was more appropriate, although the values of QMR and DMA revealed no significant difference (p> 0.05 between the models. The analysis showed a better adjustment of DMA using K variable, reinforced by the values of the adjustment coefficient (R2. However, convergence problems were observed in this model for estimate study areas outliers, which did not occur with K constant model. This problem can be related to the non-linear fit of mass/time values to K variable generated. The model with K constant shown to be adequate to describe curve decomposition for separately areas and best adjustability without convergence problems. The results demonstrated the adequacy of Olson model to estimate tropical forest litter decomposition. Although use of reduced number of parameters equaling the steps of the

  15. Adequacy assessment of mathematical models in the dynamics of litter decomposition in a tropical forest Mosaic Atlantic, in southeastern Brazil.

    Science.gov (United States)

    Nunes, F P; Garcia, Q S

    2015-05-01

    The study of litter decomposition and nutrient cycling is essential to know native forests structure and functioning. Mathematical models can help to understand the local and temporal litter fall variations and their environmental variables relationships. The objective of this study was test the adequacy of mathematical models for leaf litter decomposition in the Atlantic Forest in southeastern Brazil. We study four native forest sites in Parque Estadual do Rio Doce, a Biosphere Reserve of the Atlantic, which were installed 200 bags of litter decomposing with 20 × 20 cm nylon screen of 2 mm, with 10 grams of litter. Monthly from 09/2007 to 04/2009, 10 litterbags were removed for determination of the mass loss. We compared 3 nonlinear models: 1 - Olson Exponential Model (1963), which considers the constant K, 2 - Model proposed by Fountain and Schowalter (2004), 3 - Model proposed by Coelho and Borges (2005), which considers the variable K through QMR, SQR, SQTC, DMA and Test F. The Fountain and Schowalter (2004) model was inappropriate for this study by overestimating decomposition rate. The decay curve analysis showed that the model with the variable K was more appropriate, although the values of QMR and DMA revealed no significant difference (p > 0.05) between the models. The analysis showed a better adjustment of DMA using K variable, reinforced by the values of the adjustment coefficient (R2). However, convergence problems were observed in this model for estimate study areas outliers, which did not occur with K constant model. This problem can be related to the non-linear fit of mass/time values to K variable generated. The model with K constant shown to be adequate to describe curve decomposition for separately areas and best adjustability without convergence problems. The results demonstrated the adequacy of Olson model to estimate tropical forest litter decomposition. Although use of reduced number of parameters equaling the steps of the decomposition

  16. Can organic matter hide from decomposers in the labyrinth of soil aggregates? Micro-engineered Soil Chips challenging foraging fungi

    Science.gov (United States)

    Hammer, Edith C.; Aleklett, Kristin; Arellano Caicedo, Carlos G.; Bengtsson, Martin; Micaela Mafla Endara, Paola; Ohlsson, Pelle

    2017-04-01

    From the point of view of microorganisms, the soil environment is an enormously complex labyrinth with paths and dead-end streets, where resources and shelters are unevenly distributed. We study foraging strategies of soil organisms, especially fungi, and the possibility of physio-spatial stabilization of organic matter by "hiding" in occluded soil spaces. We manipulate growth habitat microstructure with lab-on-a-chip techniques, where we designed complex environments with channels and obstacle at dimensions of the size of hyphae, and construct them in the transparent, gas-permeable polymer PDMS. We fill those with different nutrient solutions or combine with mineral nutrient gradients, and inoculate them with soil organisms. We analyze organisms and substrates with microscopy, fluorescence microscopy and analytical chemistry. We compared different soil litter decomposers and an arbuscular mycorrhizal fungus for their ability to forage through complex air-gap structures and attempt to classify them into functional traits concerning their mycelium directionality, space-exploring approach and ability to grow through acute angles and narrow constrictions. We identified structures which are very difficult to penetrate for most species, and compounds located behind such features may thus be spatially unavailable for decomposers. We discuss our approach in comparison to soil pore space tomographic analyses and findings we made in the pore space of colonized wood biochar.

  17. Fate of mercury in tree litter during decomposition

    Directory of Open Access Journals (Sweden)

    A. K. Pokharel

    2011-09-01

    Full Text Available We performed a controlled laboratory litter incubation study to assess changes in dry mass, carbon (C mass and concentration, mercury (Hg mass and concentration, and stoichiometric relations between elements during decomposition. Twenty-five surface litter samples each, collected from four forest stands, were placed in incubation jars open to the atmosphere, and were harvested sequentially at 0, 3, 6, 12, and 18 months. Using a mass balance approach, we observed significant mass losses of Hg during decomposition (5 to 23 % of initial mass after 18 months, which we attribute to gaseous losses of Hg to the atmosphere through a gas-permeable filter covering incubation jars. Percentage mass losses of Hg generally were less than observed dry mass and C mass losses (48 to 63 % Hg loss per unit dry mass loss, although one litter type showed similar losses. A field control study using the same litter types exposed at the original collection locations for one year showed that field litter samples were enriched in Hg concentrations by 8 to 64 % compared to samples incubated for the same time period in the laboratory, indicating strong additional sorption of Hg in the field likely from atmospheric deposition. Solubility of Hg, assessed by exposure of litter to water upon harvest, was very low (<0.22 ng Hg g−1 dry mass and decreased with increasing stage of decomposition for all litter types. Our results indicate potentially large gaseous emissions, or re-emissions, of Hg originally associated with plant litter upon decomposition. Results also suggest that Hg accumulation in litter and surface layers in the field is driven mainly by additional sorption of Hg, with minor contributions from "internal" accumulation due to preferential loss of C over Hg. Litter types showed highly species-specific differences in Hg levels during decomposition suggesting that emissions, retention, and sorption of Hg are dependent on litter type.

  18. Evaluation of bifenthrin barrier spray on foliage in a suburban eastern North Carolina neighborhood.

    Science.gov (United States)

    VanDusen, Amberlynne E; Richards, Stephanie L; Balanay, Jo Anne G

    2016-05-01

    Mosquitoes can transmit pathogens through blood feeding. Mosquito control programs conduct surveillance and source reduction, treat mosquito oviposition sites and spray adulticides to protect public health. In some areas, homeowners may contract with private mosquito control companies to address mosquito-related issues. We evaluated the efficacy of barrier sprays by comparing weekly host-seeking mosquito abundance at treatment and control properties in a residential neighborhood. The chemical concentration of bifenthrin residue on foliage was quantified, and field-collected mosquitoes, primarily Aedes albopictus, were tested for bifenthrin resistance using bottle bioassays. Mosquito abundance at treatment properties was significantly (P bifenthrin detected on foliage from treatment properties was not correlated with mosquito abundance. No bifenthrin resistance was detected in captured mosquitoes. Based on the rate of application, we expected that chemical analysis of bifenthrin residue would show similar concentrations of bifenthrin on foliage in treatment areas. Although mosquitoes were not bifenthrin resistant, further studies are needed to evaluate the extent to which resistance changes over time with repeated applications. Findings from this study provide insight into control methods commonly used by mosquito control companies and could potentially be used to guide future mosquito management strategies. © 2015 Society of Chemical Industry.

  19. Black gram ( L. foliage supplementation to crossbred cows: effects on feed intake, nutrient digestibility and milk production

    Directory of Open Access Journals (Sweden)

    Avijit Dey

    2017-02-01

    Full Text Available Objective An experiment was conducted to examine the effect of dietary supplementation of dried and ground foliage of black gram (Vigna mungo L. on feed intake and utilization, and production performance of crossbred lactating cows. Methods Eighteen lactating crossbred (Bos taurus×Bos indicus cows (body weight 330.93± 10.82 kg at their second and mid lactation (milk yield 6.77±0.54 kg/d were randomly divided into three groups of six each in a completely randomized block design. Three supplements were formulated by quantitatively replacing 0, 50, and 100 per cent of dietary wheat bran of concentrate mixture with dried and ground foliage of black gram. The designated supplement was fed to each group with basal diet of rice straw (ad libitum to meet the requirements for maintenance and milk production. Daily feed intake and milk yield was recorded. A digestion trial was conducted to determine the total tract digestibility of various nutrients. Results The daily feed intake was increased (p0.05, the fibre digestibility was increased (p0.05 among the groups, milk yield was increased by 10 per cent with total replacement of wheat bran in concentrate mixture with of black gram foliage. The economics of milk production calculated as feed cost per kg milk yield (INR 10.61 vs 7.98 was reduced by complete replacement of wheat bran with black gram foliage. Conclusion Black gram foliage could be used as complete replacement for wheat bran in concentrate mixture of dairy cows in formulating least cost ration for economic milk production in small holders’ animal production.

  20. ECONOMIC RETURNS FROM REDUCING POULTRY LITTER PHOSPHORUS WITH MICROBIAL PHYTASE

    OpenAIRE

    Bosch, Darrell J.; Zhu, Minkang; Kornegay, Ervin T.

    1997-01-01

    Requiring that crop applications of manure be based on phosphorus content (P-standard) could increase poultry litter disposal costs. Microbial phytase reduces litter P content and could reduce litter disposal costs under a P-standard. For a representative Virginia turkey farm, phytase costs $2,500 and could increase value of litter used for fertilizer on the turkey farm by $390 and reduce supplemental P feed costs by $1,431. Based on assumed litter demand and supply, estimated litter export p...

  1. Earthworms, Collembola and residue management change wheat (Triticum aestivum) and herbivore pest performance (Aphidina: Rhophalosiphum padi).

    Science.gov (United States)

    Ke, Xin; Scheu, Stefan

    2008-10-01

    Management practices of arable systems determine the distribution of soil organic matter thereby changing decomposer animal activity and their impact on nutrient mineralization, plant growth and plant-herbivore interactions. Decomposer-mediated changes in plant growth and insect pest performance were investigated in wheat-aphid model systems in the greenhouse. Three types of litter distribution were established: litter patch at the soil surface (simulating mulching), litter patch deeper in soil (simulating ploughing) and litter homogeneously mixed into soil (simulating disk cultivation). The litter was labelled with (15)N to follow the mineralization and uptake of nutrients by the plants. Earthworms (Aporrectodea caliginosa) and Collembola (Protaphorura armata) were included as representatives of major functional groups of decomposers. Wheat (Triticum aestivum) was planted and aphids (Rhophalosiphum padi) were introduced to leaves as one of the most important pests. Earthworms, Collembola and litter distribution affected plant growth, N acquisition and aphid development in an interactive way. Earthworms and Collembola increased biomass of seeds, shoots and roots of wheat. Increased plant growth by earthworms and Collembola was mainly due to increased transfer of N from soil (rather than litter) into plants. Despite increasing plant growth, earthworms reduced aphid reproduction. Aphid reproduction was not correlated closely with plant N concentrations, but rather with the concentration of litter N in wheat. Unexpectedly, both Collembola and earthworms predominantly affected the mobilization of N from soil organic matter, and by altering the distribution of litter earthworms reduced infestation of crops by aphids via reducing plant capture of litter N, in particular if the litter was concentrated deeper in soil. The results suggest that management practices stimulating a continuous moderate increase in nutrient mobilization from soil organic matter rather than

  2. Marine litter in the Nordic Seas: Distribution composition and abundance.

    Science.gov (United States)

    Buhl-Mortensen, Lene; Buhl-Mortensen, Pål

    2017-12-15

    Litter has been found in all marine environments and is accumulating in seabirds and mammals in the Nordic Seas. These ecosystems are under pressure from climatic change and fisheries while the human population is small. The marine landscapes in the area range from shallow fishing banks to deep-sea canyons. We present density, distribution and composition of litter from the first large-scale mapping of sea bed litter in arctic and subarctic waters. Litter was registered from 1778 video transects, of which 27% contained litter. The background density of litter in the Barents Sea and Norwegian Sea is 202 and 279 items/km 2 respectively, and highest densities were found close to coast and in canyons. Most of the litter originated from the fishing industry and plastic was the second most common litter. Background levels were comparable to European records and areas with most littering had higher densities than in Europe. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Norway spruce fine root dynamics and carbon input into soil in relation to environmental factors

    OpenAIRE

    Leppälammi-Kujansuu, Jaana

    2014-01-01

    Knowledge of the quantity of belowground litter carbon (C) input is scarce but highly valued in C budget calculations. Specifically, the turnover rate of fine roots is considered to be one of the most important parameters in the estimation of changes in soil C stock. In this thesis Norway spruce (Picea abies L. (Karst.)) fine root lifespan and litter production and their responses to nutrient availability and temperature were examined. Aboveground foliage and understory litter C inputs were a...

  4. Interaction between sapwood and foliage area in alpine ash (Eucalyptus delegatensis) trees of different heights.

    Science.gov (United States)

    Mokany, Karel; McMurtrie, Ross E; Atwell, Brian J; Keith, Heather

    2003-10-01

    In native stands of Eucalyptus delegatensis R. T. Baker, sapwood area (As) to foliage area (Af) ratios (As:Af) decreased as tree height increased, contradicting the common interpretation of the Pipe Model Theory as well as the generally observed trend of increasing As:Af ratios with tree height. To clarify this relationship, we estimated sapwood hydraulic conductivity theoretically based on measurements of sapwood vessel diameters and Poiseuille's law for fluid flow through pipes. Despite the observed decrease in As:Af ratios with tree height, leaf specific conductivity increased with total tree height, largely as a result of an increase in the specific conductivity of sapwood. This observation supports the proposition that the stem's ability to supply foliage with water must increase as trees grow taller, to compensate for the increased hydraulic path length. The results presented here highlight the importance of measuring sapwood hydraulic conductivity in analyses of sapwood-foliage interactions, and suggest that measurements of sapwood hydraulic conductivity may help to resolve conflicting observations of how As:Af ratios change as trees grow taller.

  5. Decomposing dynamic profit inefficiency of Belgian dairy farms

    NARCIS (Netherlands)

    Ang, Frederic; Lansink, Alfons Oude

    2018-01-01

    This paper introduces a nonparametric framework for analysing dynamic profit inefficiency and applies this to a sample of Belgian, specialised dairy farms from 1996 to 2008. Profit inefficiency is decomposed into technical and allocative inefficiency. The paper also decomposes profit inefficiency

  6. Effect of Harvesting Frequency, Variety and Leaf Maturity on Nutrient Composition, Hydrogen Cyanide Content and Cassava Foliage Yield

    Directory of Open Access Journals (Sweden)

    Khuc Thi Hue

    2012-12-01

    Full Text Available The experiment studied the effect of harvesting frequencies and varieties on yield, chemical composition and hydrogen cyanide content in cassava foliage. Foliage from three cassava varieties, K94 (very bitter, K98-7 (medium bitter and a local (sweet, were harvested in three different cutting cycles, at 3, 6 and 9 months; 6 and 9 months and 9 months after planting, in a 2-yr experiment carried out in Hanoi, Vietnam. Increasing the harvesting frequency increased dry matter (DM and crude protein (CP production in cassava foliage. The K94 variety produced higher foliage yields than the other two varieties. Dry matter, neutral detergent fibre (NDF, acid detergent fibre (ADF and total tannin content increased with months to the first harvest, whereas CP content decreased. Hydrogen cyanide (HCN content was lower at the first harvest than at later harvests for all cutting cycles. At subsequent harvests the content of total tannins tended to decline, while HCN content increased (p<0.05. Chemical composition differed somewhat across varieties except for total tannins and ash. Dry matter, NDF, ADF and total tannins were higher in fully matured leaves, while CP and HCN were lower in developing leaves.

  7. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna

    International Nuclear Information System (INIS)

    Simon, Edina; Braun, Mihaly; Vidic, Andreas; Bogyo, David; Fabian, Istvan; Tothmeresz, Bela

    2011-01-01

    Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load. - Highlights: → We studied the elements in dust and leaves along an urbanization gradient, Austria. → We analysed 19 elements: Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Na, P, Pb, S, Sr and Zn. → Elemental concentrations were higher in urban area than in the rural area. → Studied areas were separated by CDA based on the elemental concentrations. → Dust and leaves can be useful for monitoring the environmental load. - Studying the elements (Al, Ba, Ca, Cu, Fe, K, Mg, Na, P, S, Sr, Zn) in dust and leaves along an urbanization gradient in Wien, Austria we found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for Al, Ba, Fe, Pb, P and Se, and concentrations of leaves were significantly higher in urban than in rural area for Mn and Sr.

  8. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Edina, E-mail: edina.simon@gmail.com [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary); Braun, Mihaly [Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O. Box 21 (Hungary); Vidic, Andreas [Department fuer Naturschutzbiologie, Vegetations- und Landschaftsoekologie, Universitat Wien, Althanstrasse 14, 1090 Wien (Austria); Bogyo, David [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary); Fabian, Istvan [Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010 Debrecen, P.O. Box 21 (Hungary); Tothmeresz, Bela [Department of Ecology, University of Debrecen, H-4010 Debrecen, P.O. Box 71 (Hungary)

    2011-05-15

    Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load. - Highlights: > We studied the elements in dust and leaves along an urbanization gradient, Austria. > We analysed 19 elements: Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Na, P, Pb, S, Sr and Zn. > Elemental concentrations were higher in urban area than in the rural area. > Studied areas were separated by CDA based on the elemental concentrations. > Dust and leaves can be useful for monitoring the environmental load. - Studying the elements (Al, Ba, Ca, Cu, Fe, K, Mg, Na, P, S, Sr, Zn) in dust and leaves along an urbanization gradient in Wien, Austria we found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for Al, Ba, Fe, Pb, P and Se, and concentrations of leaves were significantly higher in urban than in rural area for Mn and Sr.

  9. Lactobacillus bulgaricus mutants decompose uremic toxins.

    Science.gov (United States)

    Bai, Yun-Huan; Jiang, Ya-Fen; Jiang, Yun-Sheng

    2014-06-01

    We aim to obtain a probiotic strain from Lactobacillus bulgaricus by testing its capability to decompose uremic toxins to provide new intestinal bacteria for the treatment of chronic renal failure. Original L. bulgaricus was cultured with the serum of uremic patients and then mutated by physical (ultraviolet) and chemical (diethyl sulfate) methods repeatedly. Using creatinine decomposition rate as an observed index, we selected the best strains which decreased the most concentration of the creatinine. We then tested its ability to decompose urea, uric acid, serum phosphate, parathyroid hormone, and homocysteine and its genetic stability. After inductive and mutagenic treatment, DUC3-17 was selected. Its decomposition rate of creatinine, urea nitrogen, uric acid, phosphorus, parathyroid hormone, and homocysteine were 17.23%, 36.02%, 9.84%, 15.73%, 78.26%, and 12.69%, respectively. The degrading capacity was sustained over five generations. After directional induction and compound mutation, L. bulgaricus has greater capacity to decompose uremic toxins, with a stable inheritance.

  10. Microbial Composition in Decomposing Pine Litter Shifts in Response to Common Soil Secondary Minerals

    Science.gov (United States)

    Welty-Bernard, A. T.; Heckman, K.; Vazquez, A.; Rasmussen, C.; Chorover, J.; Schwartz, E.

    2011-12-01

    A range of environmental and biotic factors have been identified that drive microbial community structure in soils - carbon substrates, redox conditions, mineral nutrients, salinity, pH, and species interactions. However, soil mineralogy has been largely ignored as a candidate in spite of recent studies that indicate that minerals have a substantial impact on soil organic matter stores and subsequent fluxes from soils. Given that secondary minerals and organic colloids govern a soil's biogeochemical activity due to surface area and electromagnetic charge, we propose that secondary minerals are a strong determinant of the communities that are responsible for process rates. To test this, we created three microcosms to study communities during decomposition using pine forest litter mixed with two common secondary minerals in soils (goethite and gibbsite) and with quartz as a control. Changes in bacterial and fungal communities were tracked over the 154-day incubation by pyrosequencing fragments of the bacterial 16S and fungal 18S rRNA genes. Ordination using nonmetric multidimensional scaling showed that bacterial communities separated on the basis of minerals. Overall, a single generalist - identified as an Acidobacteriaceae isolate - dominated all treatments over the course of the experiment, representing roughly 25% of all communities. Fungal communities discriminated between the quartz control alone and mineral treatments as a whole. Again, several generalists dominated the community. Coniochaeta ligniaria dominated communities with abundances ranging from 29 to 40%. The general stability of generalist populations may explain the similarities between treatment respiration rates. Variation between molecular fingerprints, then, were largely a function of unique minor members with abundances ranging from 0.01 to 8%. Carbon availability did not surface as a possible mechanism responsible for shifts in fingerprints due to the relatively large mass of needles in the

  11. The use of refused tea as litter material for broiler chickens.

    Science.gov (United States)

    Atapattu, N S B M; Wickramasinghe, K P

    2007-05-01

    A completely randomized design experiment was conducted to determine the suitability of refused tea (RT) as a litter material for broiler chickens. Physiochemical properties of RT were compared with paddy husk (PH). Subsequently, broilers were raised on RT- or PH-based litter to compare the performances and litter qualities. Twenty-day-old broiler chicks (n = 150) were randomly allocated into 6 deep litter pens so that each treatment had 3 replicates. Chicks received 0.8 ft(2) of floor spacing until d 28 and 1.3 ft(2) thereafter. Each cage had a feeder and a drinker. Litter materials and litter samples taken on 28, 35, and 39 d were analyzed for bulk density, moisture, ash, and N. Chick mortality was low (1.3%) and similar on 2 types of litters. Live weights on d 28, 35, 39, and weight gains, feed intakes, dressing percentages, and feed conversion ratios were not affected by the type of litter material. The bulk density, moisture level, and pH of the RT were comparable with PH. Even though the water-holding capacity of PH (213%) was significantly higher (P litter had around 10% units higher moisture level than PH litter. By d 39, the moisture content of the RT litter was (48%) significantly higher (P = 0.05) than PH litter (37%). The N contents of RT litter were higher (P litter material for broilers. A higher N content in RT-based spent broiler litter would make it be a better organic fertilizer and ruminant feed compared with PH-based litter.

  12. Effect of feeding Neem (Azadirachta indica) and Acacia (Acacia senegal) tree foliage on nutritional and carcass parameters in short-eared Somali goats.

    Science.gov (United States)

    Hailemariam, Samson; Urge, Mengistu; Menkir, Sissay

    2016-02-01

    The study was conducted to determine the effects of dried foliage of Acacia senegal and Neem (Azadirachta indica) tree supplementations on feed intake, nutrient digestibility, growth, and carcass parameters in short-eared Somali goats. Twenty male intact short-eared Somali goat yearlings with an average live weight of 16.2 ± 1.08 (Mean ± SD) were assigned to four treatment groups, which comprised a basal diet of hay alone (T1) and supplementation with the tree foliages. Supplements consisted Neem tree (T2), A. senegal (T3) and the mixture of the two (1:1 ratio; T4) dried foliages. The crude protein (CP) content of Neem tree foliage, A. senegal, and their mixture were 16.92, 17.5 and 17.01 % of dry matter (DM), respectively. Total DM intake and digestibility of DM and organic matter were significantly (P senegal (67 %). The final body weights were higher (P Senegal. An average daily body weight (BW) gain was higher (P senegal (8.3 kg) among the supplemented groups, all of which are higher than the control (4.9 kg). It is concluded that the supplementation with tree foliage, especially with A. senegal tree foliage, on grass hay encouraged a better utilization of nutrients and animal performance as compared to goats fed on a basal diet of grass hay only.

  13. Marine litter in submarine canyons of the Bay of Biscay

    Science.gov (United States)

    van den Beld, Inge M. J.; Guillaumont, Brigitte; Menot, Lénaïck; Bayle, Christophe; Arnaud-Haond, Sophie; Bourillet, Jean-François

    2017-11-01

    Marine litter is a matter of increasing concern worldwide, from shallow seas to the open ocean and from beaches to the deep-seafloor. Indeed, the deep sea may be the ultimate repository of a large proportion of litter in the ocean. We used footage acquired with a Remotely Operated Vehicle (ROV) and a towed camera to investigate the distribution and composition of litter in the submarine canyons of the Bay of Biscay. This bay contains many submarine canyons housing Vulnerable Marine Ecosystems (VMEs) such as scleractinian coral habitats. VMEs are considered to be important for fish and they increase the local biodiversity. The objectives of the study were to investigate and discuss: (i) litter density, (ii) the principal sources of litter, (iii) the influence of environmental factors on the distribution of litter, and (iv) the impact of litter on benthic communities. Litter was found in all 15 canyons and at three sites on the edge of the continental shelf/canyon, in 25 of 29 dives. The Belle-île and Arcachon Canyons contained the largest amounts of litter, up to 12.6 and 9.5 items per 100 images respectively. Plastic items were the most abundant (42%), followed by fishing-related items (16%). The litter had both a maritime and a terrestrial origin. The main sources could be linked to fishing activities, major shipping lanes and river discharges. Litter appeared to accumulate at water depths of 801-1100 m and 1401-1700 m. In the deeper of these two depth ranges, litter accumulated on a geologically structured area, accounting for its high frequency at this depth. A larger number of images taken in areas of coral in the shallower of these two depth ranges may account for the high frequency of litter detection at this depth. A larger number of litter items, including plastic objects in particular, were observed on geological structures and in coral areas than on areas of bare substratum. The distribution of fishing-related items was similar for the various types of

  14. Urea Hydrolysis and Calcium Carbonate Precipitation in Gypsum-Amended Broiler Litter.

    Science.gov (United States)

    Burt, Christopher D; Cabrera, Miguel L; Rothrock, Michael J; Kissel, D E

    2018-01-01

    Broiler () litter is subject to ammonia (NH) volatilization losses. Previous work has shown that the addition of gypsum to broiler litter can increase nitrogen mineralization and decrease NH losses due to a decrease in pH, but the mechanisms responsible for these effects are not well understood. Therefore, three laboratory studies were conducted to evaluate the effect of gypsum addition to broiler litter on (i) urease activity at three water contents, (ii) calcium carbonate precipitation, and (iii) pH. The addition of gypsum to broiler litter increased ammonium concentrations ( litter pH by 0.43 to 0.49 pH units after 5 d ( litter only increased on Day 0 for broiler litter with low (0.29 g HO g) and high (0.69 g HO g) water contents, and on Day 3 for litter with medium (0.40 g HO g) water content ( litter with gypsum also caused an immediate decrease in litter pH (0.22 pH units) due to the precipitation of calcium carbonate (CaCO) from gypsum-derived calcium and litter bicarbonate. Furthermore, as urea was hydrolyzed, more urea-derived carbon precipitated as CaCO in gypsum-treated litter than in untreated litter ( litter with gypsum favors the precipitation of CaCO, which buffers against increases in litter pH that are known to facilitate NH volatilization. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Monitoring multi-year macro ocean litter dynamics and backward-tracking simulation of litter origins on a remote island in the South China Sea

    Science.gov (United States)

    Ko, Chia-Ying; Hsin, Yi-Chia; Yu, Teng-Lang; Liu, Kuo-Lieh; Shiah, Fuh-Kwo; Jeng, Ming-Shiou

    2018-04-01

    Ocean litter has accumulated rapidly and is becoming a major environmental concern, yet quantitative and regular observations and exploration that track litter origins are limited. By implementing monthly sample collections over five years (2012–2016) at Dongsha Island, a remote island in the northern South China Sea (SCS), we assessed macro ocean litter dynamics, identified source countries of individual plastic bottles, and analyzed the origins of the litter by a backward-tracking model simulation considering both the effects of current velocity and windage. The results showed that large amounts of litter, which varied monthly and annually in weight and quantity, reached the island during the study years, and there were spatial differences in accumulation patterns between the north and south coasts. Styrofoam and plastic bottles were the two primary sources of macro ocean litter both annually and monthly, and most of the litter collected on the island originated from China and Vietnam, which were collectively responsible for approximately 47.5%–63.7% per month. The simulation indicated that current advection at the near-surface depths and low windage at the sea surface showed similar patterns, while medium to high windage exhibited comparable expression patterns in response to potential source regions and drifting time experiments. At either the surface with low windage or current advection at depths of 0.5 m and 1 m, macro ocean litter in the Western Philippine Sea, i.e. through the Luzon Strait between Taiwan and the Philippines, was an important contributor to the litter bulk from October to March, whereas the litter was predicted to mainly originate from the southwestern SCS from April to September. With an increasing windage effect, litter in the Taiwan Strait was predicted to be an additional major potential source. Surprisingly, a small proportion of the macro ocean litter was predicted to continuously travel in the northern SCS for a long duration

  16. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants.

    Science.gov (United States)

    Park, Sin-Ae; Song, Chorong; Oh, Yun-Ah; Miyazaki, Yoshifumi; Son, Ki-Cheol

    2017-09-20

    The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV), prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb) concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD) method and a profile of mood state questionnaire (POMS). Results showed that the natural logarithmic (ln) ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2-3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  17. Analysis of litter size and average litter weight in pigs using a recursive model

    DEFF Research Database (Denmark)

    Varona, Luis; Sorensen, Daniel; Thompson, Robin

    2007-01-01

    An analysis of litter size and average piglet weight at birth in Landrace and Yorkshire using a standard two-trait mixed model (SMM) and a recursive mixed model (RMM) is presented. The RMM establishes a one-way link from litter size to average piglet weight. It is shown that there is a one......-to-one correspondence between the parameters of SMM and RMM and that they generate equivalent likelihoods. As parameterized in this work, the RMM tests for the presence of a recursive relationship between additive genetic values, permanent environmental effects, and specific environmental effects of litter size......, on average piglet weight. The equivalent standard mixed model tests whether or not the covariance matrices of the random effects have a diagonal structure. In Landrace, posterior predictive model checking supports a model without any form of recursion or, alternatively, a SMM with diagonal covariance...

  18. Nonculturability Might Underestimate the Occurrence of Campylobacter in Broiler Litter.

    Science.gov (United States)

    Kassem, Issmat I; Helmy, Yosra A; Kathayat, Dipak; Candelero-Rueda, Rosario A; Kumar, Anand; Deblais, Loic; Huang, Huang-Chi; Sahin, Orhan; Zhang, Qijing; Rajashekara, Gireesh

    2017-08-01

    We investigated the contribution of litter to the occurrence of Campylobacter on three broiler farms, which were known to have low (LO) and high (HI-A and HI-B) Campylobacter prevalence. For this purpose, we collected litter samples (n = 288) during and after two rearing cycles from each farm. We evaluated the occurrence of Campylobacter (using selective enrichment and quantitative real-time polymerase chain reaction [q-PCR] analysis) in the litter samples as well as the litter's pH and moisture content. Ceca from each flock (n = 144) were harvested at slaughter age and used to quantify Campylobacter colony-forming units (CFUs). Campylobacter was only retrieved from 7 litter samples that were collected from HI-A and HI-B during the growing period, but no Campylobacter was isolated from LO farms. The q-PCR analysis detected Campylobacter in pooled litter samples from all three farms. However, in litter collected during the same rotation, Campylobacter levels were significantly higher (p litter samples in comparison to those in LO. Cecal samples from HI-A and HI-B yielded relatively high numbers of Campylobacter CFUs, which were undetectable in LO samples. Litter's pH and moisture did not affect the overall occurrence of Campylobacter in litter and ceca on any of the farms. Our data suggest that Campylobacter was generally more abundant in litter that was collected from farms with highly colonized flocks. Therefore, better approaches for assessing the occurrence of Campylobacter in litter might be warranted in order to reduce the dissemination of these pathogens on and off poultry farms.

  19. Effects of foliage plants on human physiological and psychological responses at different temperatures

    Science.gov (United States)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  20. Revegetation of coal mine soil with forest litter

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Ludeke, K.L.; Thames, J.L.

    1986-11-01

    Forest litter, a good source of organic matter and seeds, was applied on undisturbed soil and on coal mine (spoils) in experiments conducted on the Black Mesa Coal Mine near Kayenta, Arizona over a 2-year period (1977-1978). Germination, seedling establishment, plant height and ground cover were evaluated for two seeding treatments (forest litter and no forest litter) and two soil moisture treatments (natural rainfall and natural rainfall plus irrigation). The forest litter was obtained at random from the Coconino National Forest, broadcast over the surface of the soil materials and incorporated into the surface 5 cm of each soil material. Germination, seedling establishment, plant height and ground cover on undisturbed soil and coal mine soil were higher when forest litter was applied than when it was not applied and when natural rainfall was supplemented with sprinkler irrigation than when rainfall was not supplemented with irrigation. Applications of forest litter and supplemental irrigation may ensure successful establishment of vegetation on areas disturbed by open-pit coal mining.

  1. On conditional decomposability

    Czech Academy of Sciences Publication Activity Database

    Komenda, Jan; Masopust, Tomáš; van Schuppen, J. H.

    2012-01-01

    Roč. 61, č. 12 (2012), s. 1260-1268 ISSN 0167-6911 R&D Projects: GA ČR(CZ) GPP202/11/P028; GA ČR(CZ) GAP103/11/0517 Institutional support: RVO:67985840 Keywords : discrete-event system * coordination control * conditional decomposability Subject RIV: BA - General Mathematics Impact factor: 1.667, year: 2012 http://www.sciencedirect.com/science/article/pii/S0167691112001612

  2. Microbial mineralization of organic nitrogen forms in poultry litters.

    Science.gov (United States)

    Rothrock, Michael J; Cook, Kimberly L; Warren, Jason G; Eiteman, Mark A; Sistani, Karamat

    2010-01-01

    Ammonia volatilization from the mineralization of uric acid and urea has a major impact on the poultry industry and the environment. Dry acids are commonly used to reduce ammonia emissions from poultry houses; however, little is known about how acidification affects the litter biologically. The goal of this laboratory incubation was to compare the microbiological and physiochemical effects of dry acid amendments (Al+Clear, Poultry Litter Treatment, Poultry Guard) on poultry litter to an untreated control litter and to specifically correlate uric acid and urea contents of these litters to the microbes responsible for their mineralization. Although all three acidifiers eventually produced similar effects within the litter, there was at least a 2-wk delay in the microbiological responses using Poultry Litter Treatment. Acidification of the poultry litter resulted in >3 log increases in total fungal concentrations, with both uricolytic (uric acid degrading) and ureolytic (urea degrading) fungi increasing by >2 logs within the first 2 to 4 wk of the incubation. Conversely, total, uricolytic, and ureolytic bacterial populations all significantly declined during this same time period. While uric acid and urea mineralization occurred within the first 2 wk in the untreated control litter, acidification resulted in delayed mineralization events for both uric acid and urea (2 and 4 wk delay, respectively) once fungal cell concentrations exceeded a threshold level. Therefore, fungi, and especially uricolytic fungi, appear to have a vital role in the mineralization of organic N in low-pH, high-N environments, and the activity of these fungi should be considered in best management practices to reduce ammonia volatilization from acidified poultry litter.

  3. Development of piglets raised in a new multi-litter housing system vs. conventional single-litter housing until 9 weeks of age

    NARCIS (Netherlands)

    Nieuwamerongen, van S.E.; Soede, N.M.; Peet-Schwering, van der C.M.C.; Kemp, B.; Bolhuis, J.E.

    2015-01-01

    This study compared the development until 9 wk of age of piglets raised in either a multi-litter (ML) system or a conventional single-litter (SL) system. The ML system consisted of a multi-suckling system with 5 sows and their litters before weaning, followed by housing in a pen with enrichment in a

  4. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants

    Directory of Open Access Journals (Sweden)

    Sin-Ae Park

    2017-09-01

    Full Text Available The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV, prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD method and a profile of mood state questionnaire (POMS. Results showed that the natural logarithmic (ln ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2–3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  5. Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi.

    Science.gov (United States)

    Kähkönen, Mika A; Lankinen, Pauliina; Hatakka, Annele

    2008-06-01

    The impact of Pb contamination was tested to five hydrolytic (beta-glucosidase, beta-xylosidase, beta-cellobiosidase, alpha-glucosidase and sulphatase) and two ligninolytic (manganese peroxidase, MnP and laccase) enzyme activities in the humus layer in the forest soil. The ability of eight selected litter-degrading fungi to grow and produce extracellular enzymes in the heavily Pb (40 g Pb of kg ww soil(-1)) contaminated and non-contaminated soil in the non-sterile conditions was also studied. The Pb content in the test soil was close to that of the shooting range at Hälvälä (37 g Pb of kg ww soil(-1)) in Southern Finland. The fungi were Agaricus bisporus, Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Mycena galericulata, Gymnopilus luteofolius, Stropharia aeruginosa and Stropharia rugosoannulata. The Pb contamination (40 g Pb of kg ww soil(-1)) was deleterious to all five studied hydrolytic enzyme activities after five weeks of incubation. All five hydrolytic enzyme activities were significantly higher in the soil than in the extract of the soil indicating that a considerable part of enzymes were particle bound in the soils. Hydrolytic enzyme activities were higher in the non-contaminated soil than in the Pb contaminated soil. Fungal inocula increased the hydrolytic enzyme activities beta-cellobiosidase and beta-glucosidase in non-contaminated soils. All five hydrolytic enzyme activities were similar with fungi and without fungi in the Pb contaminated soil. This was in line that Pb contamination (40 g Pb of kg ww soil(-1)) depressed the growth of all fungi compared to those grown without Pb in the soil. Laccase and MnP activities were low in both Pb contaminated and non-contaminated soil cultures. MnP activities were higher in soil cultures containing Pb than without Pb. Our results showed that Pb in the shooting ranges decreased fungal growth and microbial functioning in the soil.

  6. Early stage litter decomposition across biomes

    Science.gov (United States)

    Ika Djukic; Sebastian Kepfer-Rojas; Inger Kappel Schmidt; Klaus Steenberg Larsen; Claus Beier; Björn Berg; Kris Verheyen; Adriano Caliman; Alain Paquette; Alba Gutiérrez-Girón; Alberto Humber; Alejandro Valdecantos; Alessandro Petraglia; Heather Alexander; Algirdas Augustaitis; Amélie Saillard; Ana Carolina Ruiz Fernández; Ana I. Sousa; Ana I. Lillebø; Anderson da Rocha Gripp; André-Jean Francez; Andrea Fischer; Andreas Bohner; Andrey Malyshev; Andrijana Andrić; Andy Smith; Angela Stanisci; Anikó Seres; Anja Schmidt; Anna Avila; Anne Probst; Annie Ouin; Anzar A. Khuroo; Arne Verstraeten; Arely N. Palabral-Aguilera; Artur Stefanski; Aurora Gaxiola; Bart Muys; Bernard Bosman; Bernd Ahrends; Bill Parker; Birgit Sattler; Bo Yang; Bohdan Juráni; Brigitta Erschbamer; Carmen Eugenia Rodriguez Ortiz; Casper T. Christiansen; E. Carol Adair; Céline Meredieu; Cendrine Mony; Charles A. Nock; Chi-Ling Chen; Chiao-Ping Wang; Christel Baum; Christian Rixen; Christine Delire; Christophe Piscart; Christopher Andrews; Corinna Rebmann; Cristina Branquinho; Dana Polyanskaya; David Fuentes Delgado; Dirk Wundram; Diyaa Radeideh; Eduardo Ordóñez-Regil; Edward Crawford; Elena Preda; Elena Tropina; Elli Groner; Eric Lucot; Erzsébet Hornung; Esperança Gacia; Esther Lévesque; Evanilde Benedito; Evgeny A. Davydov; Evy Ampoorter; Fabio Padilha Bolzan; Felipe Varela; Ferdinand Kristöfel; Fernando T. Maestre; Florence Maunoury-Danger; Florian Hofhansl; Florian Kitz; Flurin Sutter; Francisco Cuesta; Francisco de Almeida Lobo; Franco Leandro de Souza; Frank Berninger; Franz Zehetner; Georg Wohlfahrt; George Vourlitis; Geovana Carreño-Rocabado; Gina Arena; Gisele Daiane Pinha; Grizelle González; Guylaine Canut; Hanna Lee; Hans Verbeeck; Harald Auge; Harald Pauli; Hassan Bismarck Nacro; Héctor A. Bahamonde; Heike Feldhaar; Heinke Jäger; Helena C. Serrano; Hélène Verheyden; Helge Bruelheide; Henning Meesenburg; Hermann Jungkunst; Hervé Jactel; Hideaki Shibata; Hiroko Kurokawa; Hugo López Rosas; Hugo L. Rojas Villalobos; Ian Yesilonis; Inara Melece; Inge Van Halder; Inmaculada García Quirós; Isaac Makelele; Issaka Senou; István Fekete; Ivan Mihal; Ivika Ostonen; Jana Borovská; Javier Roales; Jawad Shoqeir; Jean-Christophe Lata; Jean-Paul Theurillat; Jean-Luc Probst; Jess Zimmerman; Jeyanny Vijayanathan; Jianwu Tang; Jill Thompson; Jiří Doležal; Joan-Albert Sanchez-Cabeza; Joël Merlet; Joh Henschel; Johan Neirynck; Johannes Knops; John Loehr; Jonathan von Oppen; Jónína Sigríður Þorláksdóttir; Jörg Löffler; José-Gilberto Cardoso-Mohedano; José-Luis Benito-Alonso; Jose Marcelo Torezan; Joseph C. Morina; Juan J. Jiménez; Juan Dario Quinde; Juha Alatalo; Julia Seeber; Jutta Stadler; Kaie Kriiska; Kalifa Coulibaly; Karibu Fukuzawa; Katalin Szlavecz; Katarína Gerhátová; Kate Lajtha; Kathrin Käppeler; Katie A. Jennings; Katja Tielbörger; Kazuhiko Hoshizaki; Ken Green; Lambiénou Yé; Laryssa Helena Ribeiro Pazianoto; Laura Dienstbach; Laura Williams; Laura Yahdjian; Laurel M. Brigham; Liesbeth van den Brink; Lindsey Rustad; al. et

    2018-01-01

    Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies...

  7. Identifying Sources of Marine Litter

    OpenAIRE

    VEIGA Joana Mira; FLEET David; KINSEY Sue; NILSSON Per; VLACHOGIANNI Thomais; WERNER Stefanie; GALGANI Francois; THOMPSON Richard; DAGEVOS Jeroen; GAGO Jesus; SOBRAL Paula; CRONIN Richard

    2016-01-01

    Marine litter is a global problem causing harm to marine wildlife, coastal communities and maritime activities. It also embodies an emerging concern for human health and safety. The reduction of marine litter pollution poses a complex challenge for humankind, requiring adjustments in human behaviour as well as in the different phases of the life-cycle of products and across multiple economic sectors. The Marine Strategy Framework Directive (MSFD) requires European Member States to monitor...

  8. Chemical composition of douglas-fir foliage on mule deer winter range. Research report No. RR 91003-CA

    Energy Technology Data Exchange (ETDEWEB)

    Waterhouse, M J; Armleder, H M; Dawson, R J

    1991-01-01

    In the interior of British Columbia, Douglas-fir litterfall is a major source of mule deer winter food. An earlier study found that preference for Douglas-fir foliage was correlated with tree diameter. This study identified the underlying factors of selection so that wildlife managers might have a wider range of forage enhancement options on mule deer winter range. Samples of Douglas-fir foliage were collected from trees at Knife Creek and Big Lake, and analyzed for minerals, tannins, and in vitro digestible dry matter.

  9. Public perspective towards marine litter in West Aceh City

    Science.gov (United States)

    Kusumawati, I.; Setyowati, M.; Riana, E.; Prartono, T.

    2018-03-01

    Marine litter or marine debris is a man-made solid material discarded, abandoned or lost in coastline or into the sea. To reduce the amount of marine litter in the ocean, raising public awareness is an important way. One of the contributing factors on marine litter is the lack of understanding within the community, but to identify how people notice the problem is required adequate research literature. The purpose of this study is to examine the awareness of West Aceh community on marine litter along western coastal area. The research objectives; 1) to evaluate societal perception towards marine litter; 2) to examine the urgent indicator of public awareness in West Aceh City. This study will employ a survey approach by distributing questionnaires to 383 respondents. It was found that respondents show low awareness on marine litter according to statistical data, but there are some rooms to manage in order to raise the level of public awareness. It concludes that sense of responsibility could be enhanced by involving public in any activities for preventing and eradicating marine litter. Education aspect is also important to increase public understanding about the threats of marine debris on environment, human health and economic income.

  10. Effects of dietary coarsely ground corn and litter type on broiler live performance, litter characteristics, gastrointestinal tract development, apparent ileal digestibility of energy and nitrogen, and intestinal morphology.

    Science.gov (United States)

    Xu, Y; Stark, C R; Ferket, P R; Williams, C M; Auttawong, S; Brake, J

    2015-03-01

    The objectives of this study were to evaluate the effects of the dietary inclusion of 2 coarsely ground corn (CC) levels (0 or 50%) in diets of broilers reared on 2 litter types (new wood shavings or used litter) on live performance, litter characteristics, gastrointestinal tract (GIT) development, apparent ileal digestibility (AID) of energy and nitrogen (N), and intestinal morphology. No interaction effects between CC level and litter type were observed on live performance. No litter effect was observed on live performance. Dietary inclusion of 50% CC increased BW at 35 d (Plitter treatment (litter N) increased absolute and relative proventriculus weight (Plitter type was observed for litter N, where the 50% CC treatment reduced litter N regardless of litter type (Plitter N was reduced by new litter only among birds fed 0% CC (Plitter pH (Plitter increased jejunum villi and ileum villi height (PLitter type affected some GIT traits and functions but did not affect live performance. © 2015 Poultry Science Association Inc.

  11. Temporal dynamics of abiotic and biotic factors on leaf litter of three plant species in relation to decomposition rate along a subalpine elevation gradient.

    Directory of Open Access Journals (Sweden)

    Jianxiao Zhu

    Full Text Available Relationships between abiotic (soil temperature and number of freeze-thaw cycles or biotic factors (chemical elements, microbial biomass, extracellular enzymes, and decomposer communities in litter and litter decomposition rates were investigated over two years in subalpine forests close to the Qinghai-Tibet Plateau in China. Litterbags with senescent birch, fir, and spruce leaves were placed on the forest floor at 2,704 m, 3,023 m, 3,298 m, and 3,582 m elevation. Results showed that the decomposition rate positively correlated with soil mean temperature during the plant growing season, and with the number of soil freeze-thaw cycles during the winter. Concentrations of soluble nitrogen (N, phosphorus (P and potassium (K had positive effects but C:N and lignin:N ratios had negative effects on the decomposition rate (k, especially during the winter. Meanwhile, microbial biomass carbon (MBC, N (MBN, and P (MBP were positively correlated with k values during the first growing season. These biotic factors accounted for 60.0% and 56.4% of the variation in decomposition rate during the winter and the growing season in the first year, respectively. Specifically, litter chemistry (C, N, P, K, lignin, C:N and lignin:N ratio independently explained 29.6% and 13.3%, and the microbe-related factors (MBC, MBN, MBP, bacterial and fungal biomass, sucrase and ACP activity explained 22.9% and 34.9% during the first winter and the first growing season, respectively. We conclude that frequent freeze-thaw cycles and litter chemical properties determine the winter decomposition while microbe-related factors play more important roles in determining decomposition in the subsequent growing season.

  12. The Effect of the Litter Materials on Broiler Chickens Welfare and Performance

    Directory of Open Access Journals (Sweden)

    Serpil Gençoğlan

    2017-12-01

    Full Text Available The aim of this study is to review the quality and types of the litter material and its effect on the welfare and performance of the broiler chickens. Since the most suitable broiler rearing system is on the littered floor, the litter material is of great importance. Demand for litter material is also increasing, depending on the development in broiler production. Straws, wood shavings, and sawdust are widely used as litters material. Beside these, materials such as wheat, barley, rye, oats, sunflower, rice, hazelnut, maize, soya, peanut, cotton and sugarcane are used purely or mixed as a litters material. The quality of the litter is determined with the litter moisture, pH, ammonium nitrate content, caking level and water holding capacity. The ideal litter material should have a moisture content of 20-25%, a pH of 8-10, and ammonia content should not exceed 25 ppm. The thickness of the litter changes between 2 and 10 cm according to the type of the litter, and size of it should not exceed 0.6 cm. Increase in the litter moisture increases pH, NH3 concentration and caking. The type of litter material effects on the performance, welfare, health, behavior and product quality of broiler chickens. In addition, there are negative effects of litter materials on carcass defects, foot-leg problems, breast blisters or bruises, decrease in living power, and increase of microorganism development due to litter moisture, increase of gas and dust formation in poultry. These adverse effects cause large economic losses in intensive enterprises. For this reason, the quality and type of litter material is very important in broiler rearing.

  13. Titration and Spectroscopic Measurements of Poultry Litter pH Buffering Capacity.

    Science.gov (United States)

    Cassity-Duffey, Kate; Cabrera, Miguel; Mowrer, Jake; Kissel, David

    2015-07-01

    The pH value of poultry litter is affected by nitrification, mineralization, and the addition of acidifying chemicals, all acting on the poultry litter pH buffering capacity (pHBC). Increased understanding of poultry litter pHBC will aid in modeling NH volatilization from surface-applied poultry litter as well as estimating rates of alum applications. Our objectives were to (i) determine the pHBC of a wide range of poultry litters; (ii) assess the accuracy of near-infrared reflectance spectroscopy (NIRS) for determining poultry litter pHBC; and (iii) demonstrate the use of poultry litter pHBC to increase the accuracy of alum additions. Litter pHBC was determined by titration and calculated from linear and sigmoidal curves. For the 37 litters measured, linear pHBC ranged from 187 to 537 mmol (pH unit) kg dry litter. The linear and sigmoidal curves provided accurate predictions of pHBC, with most > 0.90. Results from NIRS analysis showed that the linear pHBC expressed on an "as is" water content basis had a NIRS coefficient of calibration (developed using a modified partial least squares procedure) of 0.90 for the 37 poultry litters measured. Using the litter pHBC, an empirical model was derived to determine the amount of alum needed to create a target pH. The model performed well in the range of pH 6.5 to 7.5 (RMSE = 0.07) but underpredicted the amount of alum needed to reach pH litter, which prevented its hydrolysis. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Altered Plant Litter and Microbial Composition Lead to Topsoil Organic Carbon Loss Over a Shrub-encroachment Gradient in an Inner Mongolia Grassland

    Science.gov (United States)

    Zhou, L.; Li, H.; Shen, H.; Xu, Y.; Wang, Y.; Xing, A.; Fang, J.

    2017-12-01

    Over the past 150 years, shrub encroachment has occurred in arid and semi-arid ecosystems resulting from climate change and increased human disturbance. Previous studies have revealed that shrub encroachment has substantial effects on habitat heterogeneity, aboveground biomass and bulk carbon content of grasslands, thereby affecting the regional carbon balance. Soil organic carbon (SOC) is mainly derived from aboveground litter, root litter and root exudates and is metabolized by microorganisms. The quality and quantity of plant litter together with soil microbial biomass are important drivers of SOC accumulation. However, the mechanisms regulating soil carbon accumulation by the shrub encroachment remain unclear and molecular evidence is particularly lacking. We use the data of the chemical composition of plant tissues and SOC, and the soil microbial communities to identify the effects of shrub encroachment on SOC accumulation in the top layer along a gradient of natural shrub cover in the grasslands of Inner Mongolia. Our finding indicates that nitrogen-rich legume-shrub encroachment led to soil carbon accumulation in the shrub patch, with more extensive carbon loss observed in the grassy matrix, which resulted in an overall carbon loss. In the pure grassland, a higher abundance of cutin and suberin and a lower concentration of free lipids were detected, suggesting the preservation of recalcitrant polymers derived from herb inputs. In the shrub-encroached grasslands, the labile shrub leaves did not decompose alone but were mixed with herb litter to promote the degradation of SOC via the priming of microbial activities. The SOC remained unchanged in the shrub patches with the increasing shrub cover, which might have been caused by the replacement of prior carbon decompositions with the fresh input of shrub leaves. Similarly, the SOC decreased significantly with increasing shrub cover in the grassy matrix, which likely resulted from insufficient fresh plant inputs

  15. Intestinal Microbiota of Broiler Chickens As Affected by Litter Management Regimens

    Science.gov (United States)

    Wang, Lingling; Lilburn, Mike; Yu, Zhongtang

    2016-01-01

    Poultry litter is a mixture of bedding materials and enteric bacteria excreted by chickens, and it is typically reused for multiple growth cycles in commercial broiler production. Thus, bacteria can be transmitted from one growth cycle to the next via litter. However, it remains poorly understood how litter reuse affects development and composition of chicken gut microbiota. In this study, the effect of litter reuse on the microbiota in litter and in chicken gut was investigated using 2 litter management regimens: fresh vs. reused litter. Samples of ileal mucosa and cecal digesta were collected from young chicks (10 days of age) and mature birds (35 days of age). Based on analysis using DGGE and pyrosequencing of bacterial 16S rRNA gene amplicons, the microbiota of both the ileal mucosa and the cecal contents was affected by both litter management regimen and age of birds. Faecalibacterium, Oscillospira, Butyricicoccus, and one unclassified candidate genus closely related to Ruminococcus were most predominant in the cecal samples, while Lactobacillus was predominant in the ileal samples at both ages and in the cecal samples collected at day 10. At days 10 and 35, 8 and 3 genera, respectively, in the cecal luminal microbiota differed significantly in relative abundance between the 2 litter management regimens. Compared to the fresh litter, reused litter increased predominance of halotolerant/alkaliphilic bacteria and Faecalibacterium prausnitzii, a butyrate-producing gut bacterium. This study suggests that litter management regimens affect the chicken GI microbiota, which may impact the host nutritional status and intestinal health. PMID:27242676

  16. Extracting Leaf Area Index by Sunlit Foliage Component from Downward-Looking Digital Photography under Clear-Sky Conditions

    Directory of Open Access Journals (Sweden)

    Yelu Zeng

    2015-10-01

    Full Text Available The development of near-surface remote sensing requires the accurate extraction of leaf area index (LAI from networked digital cameras under all illumination conditions. The widely used directional gap fraction model is more suitable for overcast conditions due to the difficulty to discriminate the shaded foliage from the shadowed parts of images acquired on sunny days. In this study, a new LAI extraction method by the sunlit foliage component from downward-looking digital photography under clear-sky conditions is proposed. In this method, the sunlit foliage component was extracted by an automated image classification algorithm named LAB2, the clumping index was estimated by a path length distribution-based method, the LAD and G function were quantified by leveled digital images and, eventually, the LAI was obtained by introducing a geometric-optical (GO model which can quantify the sunlit foliage proportion. The proposed method was evaluated at the YJP site, Canada, by the 3D realistic structural scene constructed based on the field measurements. Results suggest that the LAB2 algorithm makes it possible for the automated image processing and the accurate sunlit foliage extraction with the minimum overall accuracy of 91.4%. The widely-used finite-length method tends to underestimate the clumping index, while the path length distribution-based method can reduce the relative error (RE from 7.8% to 6.6%. Using the directional gap fraction model under sunny conditions can lead to an underestimation of LAI by (1.61; 55.9%, which was significantly outside the accuracy requirement (0.5; 20% by the Global Climate Observation System (GCOS. The proposed LAI extraction method has an RMSE of 0.35 and an RE of 11.4% under sunny conditions, which can meet the accuracy requirement of the GCOS. This method relaxes the required diffuse illumination conditions for the digital photography, and can be applied to extract LAI from downward-looking webcam images

  17. Poultry litter and the environment: Physiochemical properties of litter and soil during successive flock rotations and after remote site deposition.

    Science.gov (United States)

    Crippen, Tawni L; Sheffield, Cynthia L; Byrd, J Allen; Esquivel, Jesus F; Beier, Ross C; Yeater, Kathleen

    2016-05-15

    The U.S. broiler meat market has grown over the past 16 years and destinations for U.S. broiler meat exports expanded to over 150 countries. This market opportunity has spurred a corresponding increase in industrialized poultry production, which due to the confined space in which high numbers of animals are housed, risks accumulating nutrients and pollutants. The purpose of this research was to determine the level of pollutants within poultry litter and the underlying soil within a production facility; and to explore the impact of spent litter deposition into the environment. The study follows a production facility for the first 2.5 years of production. It monitors the effects of successive flocks and management practices on 15 physiochemical parameters: Ca, Cu, electrical conductivity, Fe, K, Mg, Mn, moisture, Na, NO3(-)/N, organic matter, P, pH, S, and Zn. Litter samples were collected in-house, after clean-outs and during stockpiling. The soil before house placement, after the clean-outs and following litter stockpiling was monitored. Management practices markedly altered the physiochemical profiles of the litter in-house. A canonical discriminant analysis was used to describe the relationship between the parameters and sampling times. The litter profiles grouped into five clusters corresponding to time and management practices. The soil in-house exhibited mean increases in all physiochemical parameters (2-297 fold) except Fe, Mg, %M, and pH. The spent litter was followed after deposition onto a field for use as fertilizer. After 20 weeks, the soil beneath the litter exhibited increases in EC, Cu, K, Na, NO3(-)/N, %OM, P, S and Zn; while %M decreased. Understanding the impacts of industrialized poultry farms on the environment is vital as the cumulative ecological impact of this land usage could be substantial if not properly managed to reduce the risk of potential pollutant infiltration into the environment. Published by Elsevier B.V.

  18. Effect of postnatal litter size on adult aggression in the laboratory mouse.

    Science.gov (United States)

    Ryan, V; Wehmer, F

    1975-07-01

    Growth, emotionality, food competition, and aggression were examined in mice nursed in litters of 3 or 9 and reared in isolation until testing. Animals from large litters were lighter at weaning and in adulthood and were more emotional in the open field than subjects from small litters. They did not win more food competition tests than subjects from small litters although their consummatory behavior during food competition tests was greater. Subjects from large litters were more aggressive in initial encounters, but over repeated encounters became more submissive. In a 2nd open-field test, emotionality of large-litter subjects was reduced more than that of subjects from small litters. When later placed in group-living cages, subjects from small litters sustained less long term physical assault than subjects from large litters. High correlations were found between the 4 measures of brief aggression.

  19. Distribution of beach litter along the coastline of Cádiz, Spain.

    Science.gov (United States)

    Williams, Allan Thomas; Randerson, Peter; Di Giacomo, Carlo; Anfuso, Giorgio; Macias, Ana; Perales, José Antonio

    2016-06-15

    A total of 59 categories of litter items were found at 20 beaches (13 mechanically cleaned, 7 non-cleaned) in the Cádiz tourist environment, Spain. Cluster Analysis and Principal Components Analysis were used to highlight similarities and contrasts between sites and/or associations between litter categories. Multivariate analyses separated beaches according to the total numbers of litter items present. Non-cleaned sites showed a variety of litter category abundance with distinct origins and abundant, ubiquitous items (plastic and glass fragments). Of the 7 non-cleaned beaches (49 litter categories) river-mouth sites were distinct due with high numbers of litter items. The sheltered inner part of Cádiz Bay beaches had a wide range of litter type. Many sites were associated with locally deposited recreational litter categories; while industrial/commercial/fishing categories were abundant only at a few sites, indicating items transported onto the shore from the Guadalete river. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Effects of different types of litters on soil organic carbon mineralization].

    Science.gov (United States)

    Shi, Xue-Jun; Pan, Jian-Jun; Chen, Jin-Ying; Yang, Zhi-Qiang; Zhang, Li-Ming; Sun, Bo; Li, Zhong-Pei

    2009-06-15

    Using litter incubation experiment in laboratory, decomposition discrepancies of four typical litters from Zijin Mountain were analyzed. The results show that organic carbon mineralization rates of soil with litters all involve fast and slow decomposition stages, and the differences are that the former has shorter duration,more daily decomposition quantity while the latter is opposite. Organic carbon mineralization rates of soil with litters rapidly reached maximum in the early days of incubation, and the order is soil with Cynodon dactylon litter (CK + BMD) (23.88 +/- 0.62) mg x d(-1), soil with Pinus massoniana litter (CK+ PML) (17.93 +/- 0.99) mg x d(-1), soil with Quercus acutissima litter (CK+ QAC) (15.39 +/- 0.16) mg x d(-1) and soil with Cyclobalanopsis glauca litter (CK + CGO) (7.26 +/- 0.34) mg x d(-1), and with significant difference between each other (p litter initial chemical elements. The amount of organic carbon mineralized accumulation within three months incubation is (CK + BMD) (338.21 +/- 6.99) mg, (CK + QAC) (323.48 +/- 13.68) mg, (CK + PML) (278.34 +/- 13.91) mg and (CK + CGO) (245.21 +/- 4.58) mg. 198.17-297.18 mg CO2-C are released during litter incubation, which occupies 20.29%-31.70% of the total litter organic carbon amounts. Power curve model can describe the trends of organic carbon mineralization rate and mineralized accumulation amount,which has a good correlation with their change.

  1. Characterization of Foliage Mutants for Plant Variety Registration

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Shuhaimi Shamsuddin; Zaiton Ahmad

    2011-01-01

    Breeding for new plant varieties requires a substantial investment in terms of skill, labour, material resources and financing. Thus, registration of new plant variety is important to ensure return of revenue and protection of the breeder's right. Before a new variety is registered, it has to comply certain requirements under Plant Variety Protection Act. One of the most important requirements is, the new species/variety must be morphologically distinguishable from existing plant varieties. This paper discusses detailed leaf characteristics of 4 foliage mutants produced by Malaysian Nuclear Agency as part of the requirement for new variety registration. (author)

  2. Composing and decomposing data types

    DEFF Research Database (Denmark)

    Bahr, Patrick

    2014-01-01

    restrictive, disallowing subtypings that lead to more than one possible injection and should therefore be considered programming errors. Furthermore, from this refined subtyping constraint we derive a new constraint to express type isomorphism. We show how this isomorphism constraint allows us to decompose......Wouter Swierstra's data types à la carte is a technique to modularise data type definitions in Haskell. We give an alternative implementation of data types à la carte that offers more flexibility in composing and decomposing data types. To achieve this, we refine the subtyping constraint, which...... is at the centre of data types à la carte. On the one hand this refinement is more general, allowing subtypings that intuitively should hold but were not derivable beforehand. This aspect of our implementation removes previous restrictions on how data types can be combined. On the other hand our refinement is more...

  3. Experimental evidence that litter size imposes an oxidative challenge to offspring.

    Science.gov (United States)

    Gibson, Alyssa B; Garratt, Michael; Brooks, Robert C

    2015-12-01

    The post-natal environment in which young develop can substantially impact development, adult phenotype and fitness. In wild mice, competition among litter-mates affects development rate and adult behaviour. We manipulated post-natal litter size in a cross-fostering design to investigate the effects of enlarged and reduced litter sizes on sexual signalling, oxidative stress and the links between them. Oxidative stress causes somatic damage that can limit reproductive success and lifespan, and is predicted to mediate investment in life-history traits, including sexual signals. We predicted that litter enlargement would cause an increase in potential oxidative stress, inhibit growth and reduce sexual signalling in male mice. Males reared in enlarged litters were smaller at weaning and, despite rapid growth immediately after weaning, remained smaller at 10 weeks of age than those reared in smaller litters. Females from enlarged litters were consistently smaller throughout post-weaning development and showed no increase in growth rate compared with females from reduced litters. In enlarged litters, protein thiol concentration was lower at weaning in the liver and kidneys, with this trend continuing at 10 weeks of age in the kidneys only. Aconitase enzyme activity was also lower in mice from enlarged litters at weaning and 10 weeks of age in the kidneys. Male mice from enlarged litters scent marked more frequently and had larger preputial glands than those from reduced litters, indicating greater sexual signalling investment irrespective of this increased oxidative challenge. The results of this study are the first to reveal oxidative costs of developmental stress in small mammals. © 2015. Published by The Company of Biologists Ltd.

  4. Influence of Soil Moisture on Litter Respiration in the Semiarid Loess Plateau

    Science.gov (United States)

    Zhang, Yanjun; Guo, Shengli; Liu, Qingfang; Jiang, Jishao

    2014-01-01

    Understanding the response mechanisms of litter respiration to soil moisture in water-limited semi-arid regions is of vital importance to better understanding the interplay between ecological processes and the local carbon cycle. In situ soil respiration was monitored during 2010–2012 under various conditions (normal litter, no litter, and double litter treatments) in a 30-year-old artificial black locust plantation (Robinia pseudoacacia L.) on the Loess Plateau. Litter respiration with normal and double litter treatments exhibited similar seasonal variation, with the maximum value obtained in summer (0.57 and 1.51 μmol m−2 s−1 under normal and double litter conditions, respectively) and the minimum in spring (0.27 and 0.69 μmol m−2 s−1 under normal and double litter conditions, respectively). On average, annual cumulative litter respiration was 115 and 300 g C m−2 y−1 under normal and double litter conditions, respectively. Using a soil temperature of 17°C as the critical point, the relationship between litter respiration and soil moisture was found to follow quadratic functions well, whereas the determination coefficient was much greater at high soil temperature than at low soil temperature (33–35% vs. 22–24%). Litter respiration was significantly higher in 2010 and 2012 than in 2011 under both normal litter (132–165 g C m−2 y−1 vs. 48 g C m−2 y−1) and double litter (389–418 g C m−2 y−1 vs. 93 g C m−2 y−1) conditions. Such significant interannual variations were largely ascribed to the differences in summer rainfall. Our study demonstrates that, apart from soil temperature, moisture also has significant influence on litter respiration in semi-arid regions. PMID:25474633

  5. Influence of breed and environmental factors on litter parameters of ...

    African Journals Online (AJOL)

    Influence of breed and environmental factors on litter parameters of rabbits ... There was a non-significant effect of season on litter site at birth, kits alive at birth and ... to rabbit reproduction as it influenced negatively more litter parameters than ...

  6. Characterization of the exchange of PBDEs in a subtropical paddy field of China: A significant inputs of PBDEs via air–foliage exchange

    International Nuclear Information System (INIS)

    Wang, Yan; Wang, Shaorui; Xu, Yue; Luo, Chunling; Li, Jun; Zhang, Gan

    2015-01-01

    Rice and the distinctive cultivation practices employed in rice growth can significantly influence the environmental fate of polybrominated diphenyl ethers (PBDEs) in a paddy field. We studied variations in PBDE concentrations in multiple compartments of a paddy field in the suburban area of Guangzhou, South China, including air, soil, water, and rice tissues. The input/output fluxes of air–surface and air–foliage exchange, atmospheric deposition and water input during different rice growth stages were measured simultaneously. Air–foliage and air–water diffusion exchanges were the key processes controlling inputs and outputs of PBDEs in paddy fields, respectively, whereas atmospheric deposition dominated inputs of higher brominated PBDEs. The high input of PBDEs via air–foliage exchange suggested that vegetation can significantly increase the air-to-field transport of PBDEs in ecosystems. The annual input of PBDEs in all paddy fields in Guangdong Province was estimated to be 22.1 kg. - Highlights: • PBDE concentrations in multiple compartments of a suburban paddy field were measured. • Air–water exchange was the key process controlling PBDE output in paddy fields. • Air–foliage exchange dominated the inputs of PBDEs in paddy fields. • Annual PBDE input in paddy fields in Guangdong Province was calculated to be 22 kg. - Air–foliage exchange is the most dominant inputs of PBDEs in the subtropical paddy fields

  7. Collecting marine litter during regular fish surveys

    NARCIS (Netherlands)

    Sluis, van der M.T.; Hal, van R.

    2014-01-01

    This report presents the results of the marine litter monitoring on the IBTS survey of 2014 and the BTS survey of 2013. Since 2013 marine litter is collected during the International Bottom Trawl Survey (IBTS) and Dutch Beam Trawl Survey (BTS) following a protocol developed by ICES. The composition

  8. Skin interface pressure on the NATO litter.

    Science.gov (United States)

    Bridges, Elizabeth J; Schmelz, Joseph O; Mazer, Stephen

    2003-04-01

    The NATO litter serves as a transport device and hospital bed during all types of operations. Little is known about the skin interface pressure on this litter. The purpose of this study was to determine whether various types of padding on the litter and body position affect the peak skin interface pressure and the total body area exposed to interface pressures above 30 mm Hg at different body areas. Thirty-two subjects participated. A repeated measures design was used. The surface effect was statistically significant for all peak pressure and surface area analyses (repeated-measures analysis of variance, p patients if feasible. Preventive measures (turning, elevating the heels) are still required.

  9. Leaf litter breakdown rates and associated fauna of native and exotic trees used in Neotropical Riparia Reforestation; Tasas de perdida de masa de la hojarasca y fauna asociada en especies de arboles comunmente utilizados en la Reforestacion de Riberas Neotropicales

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Isaza, Nataly; Blanco, Juan Felipe

    2014-07-01

    A signature of globalization is the prevalence of exotic trees along reforested urban and rural riparian zones in the neotropics, but little is known about the instream processing of its leaf litter. In this study, leaf litter breakdown rates were measured during 35 days using mesh bags within a reference headwater stream for seven exotic and three native tree species commonly used in urban and rural reforestation. Artocarpus altilis, Schefflera actinophylla and Terminalia catappa scored the highest mass loss rates (>85 %; mean life: t50 <15 d), while Cecropia sp. and Cespedesia macrophylla (mass loss =36 and 15 %; t50 =58 and 172 d, respectively) scored the lowest rates. However, a broad range of rates was observed among the ten species studied. The carbon to phosphorus ratio (c:p) and toughness of the leaf litter were the best predictors of breakdown rates. However, these leaf properties were not correlated with the very low values of macro invertebrates abundance and diversity, and the few morpho classified as shredders. Therefore physical rather than biological controls seem to best explain the observed variability of mass loss rates, and thus slow decomposing leaf litter species seems to provide a habitat rather than a food resource, particularly to collectors. This study suggests that riparian reforestation will propagate species-specific ecological influences on instream processes such as leaf litter processing depending on leaf quality properties, therefore ecosystem-wide influences should be considered for improving reforestation strategies. Future studies should test for differences in breakdown rates and colonization by macro invertebrates relative for leaf litter species origin (native vs. exotic).

  10. Influence of different litter materials on cecal microbiota colonization in broiler chickens.

    Science.gov (United States)

    Torok, V A; Hughes, R J; Ophel-Keller, K; Ali, M; Macalpine, R

    2009-12-01

    A chicken growth study was conducted to determine if litter type influenced gut microbiota and performance in broilers. Seven bedding materials were investigated and included soft and hardwood sawdust, softwood shavings, shredded paper, chopped straw, rice hulls, and reused softwood shavings. Microbial profiling was done to investigate changes in cecal bacterial communities associated with litter material and age. Cecal microbiota were investigated at 14 and 28 d of age (n = 12 birds/litter material). At both ages, the cecal microbiota of chickens raised on reused litter was significantly (P litter materials, except softwood shavings at d 28. Cecal microbiota was also significantly different between birds raised on shredded paper and rice hulls at both ages. Age had a significant influence on cecal microbiota composition regardless of litter material. Similarity in cecal microbial communities among birds raised on the same litter treatment was greater at 28 d of age (29 to 40%) than at 14 d of age (25 to 32%). Bird performance on the different litter materials was measured by feed conversion ratio, live weight, and feed intake. Significant (P litter materials. However, no significant (P > 0.05) differences were observed in feed conversion ratio among birds raised on any of the 7 different litter materials at either 14 or 28 d of age. The type of litter material can influence colonization and development of cecal microbiota in chickens. Litter-induced changes in the gut microbiota may be partially responsible for some of the significant differences observed in early rates of growth; therefore, litter choice may have an important role in poultry gut health particularly in the absence of in-feed antibiotics.

  11. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    Science.gov (United States)

    Moore, Robert [Edgewood, NM; Pickard, Paul S [Albuquerque, NM; Parma, Jr., Edward J.; Vernon, Milton E [Albuquerque, NM; Gelbard, Fred [Albuquerque, NM; Lenard, Roger X [Edgewood, NM

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  12. Procedures for Decomposing a Redox Reaction into Half-Reaction

    Science.gov (United States)

    Fishtik, Ilie; Berka, Ladislav H.

    2005-01-01

    A simple algorithm for a complete enumeration of the possible ways a redox reaction (RR) might be uniquely decomposed into half-reactions (HRs) using the response reactions (RERs) formalism is presented. A complete enumeration of the possible ways a RR may be decomposed into HRs is equivalent to a complete enumeration of stoichiometrically…

  13. The effect of long-term feeding of fresh and ensiled cassava (Manihot esculenta) foliage on gastrointestinal nematode infections in goats.

    Science.gov (United States)

    Sokerya, S; Waller, P J; Try, P; Höglund, J

    2009-02-01

    The benefit of long-term feeding of fresh or ensiled cassava foliage on gastrointestinal parasite in goats was evaluated. Eighteen male goats (15.15 +/- 2.83 kg and between 4-6 months) were randomly allocated into three treatments supplemented with 200 g of wheat bran head(-1) day(-1). All groups were fed ad-libitum on either grass (CO), fresh cassava (CaF) or ensiled cassava foliage (CaS). At the beginning of the trial, each goat was inoculated with 3000 L3 containing approximately 50% Haemonchus contortus. Individual LWt, FEC and PCV were measured at weekly intervals for 10 weeks. At the termination of the experiment all goats were slaughtered for worm recovery and enumeration. The goats in CaF and CaS had similar weight gains while those in CO lost weight (p goats. PCV of all groups decreased from above 30% to around 25% at the end of the trial. The compositions of established worm burdens were mainly H. contortus (19-40%) and Trichostrongylus colubriformis (55-76%). TWB did not differ among the groups, however, CaS significantly reduced H. contortus burdens, as compared to CaF and CO (p < or = 0.005). Thus, ensiled cassava foliage reduced the H. contortus population while the fresh foliage only reduced worm fecundity.

  14. Evaluation of litter type and dietary coarse ground corn inclusion on broiler live performance, gastrointestinal tract development, and litter characteristics.

    Science.gov (United States)

    Xu, Y; Stark, C R; Ferket, P R; Williams, C M; Nusairat, B; Brake, J

    2015-03-01

    Two 49 d floor pen studies were conducted to evaluate the effects of litter type and dietary coarse ground corn (CC) inclusion on broiler live performance, gastrointestinal tract (GIT) development, and litter characteristics. Experiment 1 was a 2×2 factorial arrangement of 2 genders (male or female) and 2 CC levels (0 or 50%). From 15 to 35 d, the addition of CC decreased feed intake (Pbroilers exhibited better live performance than females during the study as evidenced by greater feed intake (Plitter types (ground old litter or new wood shavings litter). The inclusion of CC decreased feed intake throughout the experiment without affecting final BW when only males were used and improved FCR after 25 d (Plitter improved FCR from 1 to 14 d (Plitter moisture (Plitter had only a marginal benefit on broiler live performance. © 2015 Poultry Science Association Inc.

  15. Quality of poultry litter-derived granular activated carbon.

    Science.gov (United States)

    Qiu, Guannan; Guo, Mingxin

    2010-01-01

    Utilization of poultry litter as a source material for generating activated carbon is a value-added and environmentally beneficial approach to recycling organic waste. In this study, the overall quality of poultry litter-derived granular activated carbon was systematically evaluated based on its various physical and chemical properties. Granular activated carbon generated from pelletized poultry litter following a typical steam-activation procedure possessed numerous micropores in the matrix. The product exhibited a mean particle diameter of 2.59 mm, an apparent density of 0.45 g cm(-3), a ball-pan hardness of 91.0, an iodine number of 454 mg g(-1), and a BET surface area of 403 m(2) g(-1). It contained high ash, nitrogen, phosphorus contents and the trace elements Cu, Zn, and As. Most of the nutrients and toxic elements were solidified and solution-unextractable. In general, poultry litter-based activated carbon demonstrated overall quality comparable to that of low-grade commercial activated carbon derived from coconut shell and bituminous coal. It is promising to use poultry litter as a feedstock to manufacture activated carbon for wastewater treatment.

  16. Microbiological and chemical properties of litter from different chicken types and production systems

    International Nuclear Information System (INIS)

    Omeira, N.; Barbour, E.K.; Nehme, P.A.; Hamadeh, S.K.; Zurayk, R.; Bashour, I.

    2006-01-01

    Chicken litter is produced in large quantities from all types of poultry raising activities. It is primarily used for land application, thus it is essential to analyze its properties before it is released to the environment. The objective of this study is to compare the microbiological and chemical properties of litter generated from layer and broiler chickens reared under intensive and free-range production systems. The microbiological analysis consisted of the enumeration of total bacteria, total coliforms, Staphylococcus species, Salmonella species and Clostridium perfringens. Chicken litter from layers reared under intensive and free range systems showed lower mean total bacterial count than the litter collected from chicken broilers reared under either of the two systems (P = 0.0291). The litter from intensive layers had the lowest mean total coliform counts (P = 0.0222) while the lowest Staphylococcus species count was observed in the litter from free-range layers (P = 0.0077). The C. perfringens count was the lowest in chicken litter from intensively raised broilers and layers (P = 0.0001). The chemical properties of litter from the different chicken types and production systems were compared based on determination of pH, electrical conductivity, carbon, nitrogen, phosphorus, potassium, cadmium and zinc. Litter from free-range broilers showed the highest pH value (P = 0.0005); however, the electrical conductivity was higher in the litter from both intensive and free-range layers compared to the litter from both broiler production systems (P = 0.0117). Chicken litter from intensive systems had higher nitrogen content than litter from free-range systems (P = 0.0000). The total phosphorus was the lowest in free-range broiler litter (P = 0.0001), while the total potassium was the lowest in litter from intensively managed broilers (P = 0.0000). Zinc appeared higher in litter from layers compared to that from broilers (P = 0.0101). The cadmium content was higher

  17. Microbiological and chemical properties of litter from different chicken types and production systems.

    Science.gov (United States)

    Omeira, N; Barbour, E K; Nehme, P A; Hamadeh, S K; Zurayk, R; Bashour, I

    2006-08-15

    Chicken litter is produced in large quantities from all types of poultry raising activities. It is primarily used for land application, thus it is essential to analyze its properties before it is released to the environment. The objective of this study is to compare the microbiological and chemical properties of litter generated from layer and broiler chickens reared under intensive and free-range production systems. The microbiological analysis consisted of the enumeration of total bacteria, total coliforms, Staphylococcus species, Salmonella species and Clostridium perfringens. Chicken litter from layers reared under intensive and free range systems showed lower mean total bacterial count than the litter collected from chicken broilers reared under either of the two systems (P=0.0291). The litter from intensive layers had the lowest mean total coliform counts (P=0.0222) while the lowest Staphylococcus species count was observed in the litter from free-range layers (P=0.0077). The C. perfringens count was the lowest in chicken litter from intensively raised broilers and layers (P=0.0001). The chemical properties of litter from the different chicken types and production systems were compared based on determination of pH, electrical conductivity, carbon, nitrogen, phosphorus, potassium, cadmium and zinc. Litter from free-range broilers showed the highest pH value (P=0.0005); however, the electrical conductivity was higher in the litter from both intensive and free-range layers compared to the litter from both broiler production systems (P=0.0117). Chicken litter from intensive systems had higher nitrogen content than litter from free-range systems (P=0.0000). The total phosphorus was the lowest in free-range broiler litter (P=0.0001), while the total potassium was the lowest in litter from intensively managed broilers (P=0.0000). Zinc appeared higher in litter from layers compared to that from broilers (P=0.0101). The cadmium content was higher in the litter from

  18. Microbiological and chemical properties of litter from different chicken types and production systems

    Energy Technology Data Exchange (ETDEWEB)

    Omeira, N. [Department of Land and Water Resources, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut (Lebanon); Barbour, E.K. [Department of Animal Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut (Lebanon)]. E-mail: eb01@aub.edu.lb; Nehme, P.A. [Department of Land and Water Resources, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut (Lebanon); Hamadeh, S.K. [Department of Animal Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut (Lebanon); Zurayk, R. [Department of Land and Water Resources, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut (Lebanon); Bashour, I. [Department of Land and Water Resources, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut (Lebanon)

    2006-08-15

    Chicken litter is produced in large quantities from all types of poultry raising activities. It is primarily used for land application, thus it is essential to analyze its properties before it is released to the environment. The objective of this study is to compare the microbiological and chemical properties of litter generated from layer and broiler chickens reared under intensive and free-range production systems. The microbiological analysis consisted of the enumeration of total bacteria, total coliforms, Staphylococcus species, Salmonella species and Clostridium perfringens. Chicken litter from layers reared under intensive and free range systems showed lower mean total bacterial count than the litter collected from chicken broilers reared under either of the two systems (P = 0.0291). The litter from intensive layers had the lowest mean total coliform counts (P = 0.0222) while the lowest Staphylococcus species count was observed in the litter from free-range layers (P = 0.0077). The C. perfringens count was the lowest in chicken litter from intensively raised broilers and layers (P = 0.0001). The chemical properties of litter from the different chicken types and production systems were compared based on determination of pH, electrical conductivity, carbon, nitrogen, phosphorus, potassium, cadmium and zinc. Litter from free-range broilers showed the highest pH value (P = 0.0005); however, the electrical conductivity was higher in the litter from both intensive and free-range layers compared to the litter from both broiler production systems (P = 0.0117). Chicken litter from intensive systems had higher nitrogen content than litter from free-range systems (P = 0.0000). The total phosphorus was the lowest in free-range broiler litter (P = 0.0001), while the total potassium was the lowest in litter from intensively managed broilers (P = 0.0000). Zinc appeared higher in litter from layers compared to that from broilers (P = 0.0101). The cadmium content was higher

  19. Ammonia and nitrous oxide emissions from broiler houses with downtime windrowed litter

    Science.gov (United States)

    An emerging poultry manure management practice is in house windrowing to disinfect the litter. With this practice, growers windrow the litter in broiler houses between flocks, usually for 2 weeks. This results in high litter temperatures that can reduce pathogens in the litter. However, this practi...

  20. Litter Decomposition Rate of Karst Ecosystem at Gunung Cibodas, Ciampea Bogor Indonesia

    Directory of Open Access Journals (Sweden)

    Sethyo Vieni Sari

    2016-05-01

    Full Text Available The study aims to know the productivity of litter and litter decomposition rate in karst ecosystem. This study was conducted on three altitude of 200 meter above sea level (masl, 250 masl and 300 masl in karst ecosystem at Gunung Cibodas, Ciampea, Bogor. Litter productivity measurement performed using litter-trap method and litter-bag method was used to know the rate of decomposition. Litter productivity measurement results showed that the highest total of litter productivity measurement results was on altitude of 200 masl (90.452 tons/ha/year and the lowest was on altitude of 300 masl (25.440 tons/ha/year. The litter productivity of leaves (81.425 ton/ha/year showed the highest result than twigs (16.839 ton/ha/year, as well as flowers and fruits (27.839 ton/ha/year. The rate of decomposition was influenced by rainfall. The decomposition rate and the decrease of litter dry weight on altitude of 250 masl was faster than on the altitude of 200 masl and 300 masl. The dry weight was positively correlated to the rate of decomposition. The lower of dry weight would affect the rate of decomposition become slower. The average of litter C/N ratio were ranged from 28.024%--28.716% and categorized as moderate (>25. The finding indicate that the rate of decomposition in karst ecosystem at Gunung Cibodas was slow and based on C/N ratio of litter showed the mineralization process was also slow.

  1. A multi-criteria evaluation system for marine litter pollution based on statistical analyses of OSPAR beach litter monitoring time series.

    Science.gov (United States)

    Schulz, Marcus; Neumann, Daniel; Fleet, David M; Matthies, Michael

    2013-12-01

    During the last decades, marine pollution with anthropogenic litter has become a worldwide major environmental concern. Standardized monitoring of litter since 2001 on 78 beaches selected within the framework of the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) has been used to identify temporal trends of marine litter. Based on statistical analyses of this dataset a two-part multi-criteria evaluation system for beach litter pollution of the North-East Atlantic and the North Sea is proposed. Canonical correlation analyses, linear regression analyses, and non-parametric analyses of variance were used to identify different temporal trends. A classification of beaches was derived from cluster analyses and served to define different states of beach quality according to abundances of 17 input variables. The evaluation system is easily applicable and relies on the above-mentioned classification and on significant temporal trends implied by significant rank correlations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Litter mixture interactions at the level of plant functional types are additive.

    NARCIS (Netherlands)

    Hoorens, B.; Stroetenga, M.J.; Aerts, R.

    2010-01-01

    It is very difficult to estimate litter decomposition rates in natural ecosystems because litters of many species are mixed and idiosyncratic interactions occur among those litters. A way to tackle this problem is to investigate litter mixing effects not at the species level but at the level of

  3. Street litter reduction programs in the Netherlands: reflections on the implementation of the Dutch litter reduction program for 2007-2009. Lessons from a public private partnership in environmental policy

    NARCIS (Netherlands)

    Hoppe, Thomas; Bressers, Johannes T.A.; de Bruijn, Theo; Franco Garcia, Maria Maria

    2013-01-01

    On a daily basis one is confronted with litter. Most forms of litter are, however, of no concern to people. Nonetheless, litter accounts for serious economic costs, and causes negative effects to health, safety and biodiversity. Most countries implement litter reduction policy programs, often in the

  4. Patterns and correlates of giant sequoia foliage dieback during California’s 2012–2016 hotter drought

    Science.gov (United States)

    Stephenson, Nathan L.; Das, Adrian J.; Ampersee, Nicholas J.; Cahill, Kathleen G.; Caprio, Anthony C.; Sanders, John E.; Williams, A. Park

    2018-01-01

    Hotter droughts – droughts in which unusually high temperatures exacerbate the effects of low precipitation – are expected to increase in frequency and severity in coming decades, challenging scientists and managers to identify which parts of forested landscapes may be most vulnerable. In 2014, in the middle of California’s historically unprecedented 2012–2016 hotter drought, we noticed apparently drought-induced foliage dieback in giant sequoias (Sequoiadendron giganteum Lindl. [Buchholz]) in Sequoia and Kings Canyon national parks, California. Characteristics of the dieback were consistent with a controlled process of drought-induced senescence: younger (distal) shoots remained green while older (proximal) shoots were preferentially shed. As part of an ongoing interdisciplinary effort to understand and map sequoia vulnerability to hotter droughts, we reviewed historical records for evidence of previous foliage dieback events, surveyed dieback along trail corridors in eight sequoia groves, and analyzed tree-ring data from a high- and a low-foliage-dieback area. In sharp contrast to the greatly elevated mortality of other coniferous species found at low and middle elevations, we estimate that <1% of sequoias died during the drought. Foliage dieback was notably elevated in 2014 – the most severe single drought year in our 122-year record – but much lower in subsequent years. We found no historical records of similar foliage dieback during previous droughts. Dieback in 2014 was highly variable both within and among groves, ranging from virtually no dieback in some areas to nearly 50% in others. Dieback was highest (1) at low elevations, probably due to higher temperatures, reduced snowpack, and earlier snowmelt; (2) in areas of low adult sequoia densities, which likely reflect intrinsically more stressful sites; and (3) on steep slopes, probably reflecting reduced water availability. Average sequoia ring widths were narrower at the high-dieback than the

  5. Differetial degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes

    Czech Academy of Sciences Publication Activity Database

    Steffen, K. T.; Cajthaml, Tomáš; Šnajdr, Jaroslav; Baldrian, Petr

    2007-01-01

    Roč. 158, č. 5 (2007), s. 447-455 ISSN 0923-2508 R&D Projects: GA ČR GA526/05/0168; GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510 Keywords : biopolymers * carbohydrate * laccase Subject RIV: EE - Microbiology, Virology Impact factor: 2.219, year: 2007

  6. Nitrogen Transformations in Broiler Litter-Amended Soils

    Directory of Open Access Journals (Sweden)

    Kokoasse Kpomblekou-A

    2012-01-01

    Full Text Available Nitrogen mineralization rates in ten surface soils amended with (200 μg N g−1 soil or without broiler litter were investigated. The soil-broiler litter mixture was incubated at 25±1∘C for 28 weeks. A nonlinear regression approach for N mineralization was used to estimate the readily mineralizable organic N pools (N0 and the first-order rate constant (k. The cumulative N mineralized in the nonamended soils did not exceed 80 mg N kg−1 soil. However, in Decatur soil amended with broiler litter 2, it exceeded 320 mg N kg−1 soil. The greatest calculated N0 of the native soils was observed in Sucarnoochee soil alone (123 mg NO3− kg−1 soil which when amended with broiler litter 1 reached 596 mg N kg−1 soil. The added broiler litter mineralized initially at a fast rate (k1 followed by a slow rate (k2 of the most resistant fraction. Half-life of organic N remaining in the soils alone varied from 33 to 75 weeks and from 43 to 15 weeks in the amended soils. When N0 was regressed against soil organic N (=0.782∗∗ and C (=0.884∗∗∗, positive linear relationships were obtained. The N0 pools increased with sand but decreased with silt and clay contents.

  7. Water, Rather than Temperature, Dominantly Impacts How Soil Fauna Affect Dissolved Carbon and Nitrogen Release from Fresh Litter during Early Litter Decomposition

    Directory of Open Access Journals (Sweden)

    Shu Liao

    2016-10-01

    Full Text Available Longstanding observations suggest that dissolved materials are lost from fresh litter through leaching, but the role of soil fauna in controlling this process has been poorly documented. In this study, a litterbag experiment employing litterbags with different mesh sizes (3 mm to permit soil fauna access and 0.04 mm to exclude fauna access was conducted in three habitats (arid valley, ecotone and subalpine forest with changes in climate and vegetation types to evaluate the effects of soil fauna on the concentrations of dissolved organic carbon (DOC and total dissolved nitrogen (TDN during the first year of decomposition. The results showed that the individual density and community abundance of soil fauna greatly varied among these habitats, but Prostigmata, Isotomidae and Oribatida were the dominant soil invertebrates. At the end of the experiment, the mass remaining of foliar litter ranged from 58% for shrub litter to 77% for birch litter, and the DOC and TDN concentrations decreased to 54%–85% and increased to 34%–269%, respectively, when soil fauna were not present. The effects of soil fauna on the concentrations of both DOC and TDN in foliar litter were greater in the subalpine forest (wetter but colder during the winter and in the arid valley (warmer but drier during the growing season, and this effect was positively correlated with water content. Moreover, the effects of fauna on DOC and TDN concentrations were greater for high-quality litter and were related to the C/N ratio. These results suggest that water, rather than temperature, dominates how fauna affect the release of dissolved substances from fresh litter.

  8. Ambient temperature affects postnatal litter size reduction in golden hamsters.

    Science.gov (United States)

    Ohrnberger, Sarah A; Monclús, Raquel; Rödel, Heiko G; Valencak, Teresa G

    2016-01-01

    To better understand how different ambient temperatures during lactation affect survival of young, we studied patterns of losses of pups in golden hamsters ( Mesocricetus auratus ) at different ambient temperatures in the laboratory, mimicking temperature conditions in natural habitats. Golden hamsters produce large litters of more than 10 young but are also known to wean fewer pups at the end of lactation than they give birth to. We wanted to know whether temperature affects litter size reductions and whether the underlying causes of pup loss were related to maternal food (gross energy) intake and reproductive performance, such as litter growth. For that, we exposed lactating females to three different ambient temperatures and investigated associations with losses of offspring between birth and weaning. Overall, around one third of pups per litter disappeared, obviously consumed by the mother. Such litter size reductions were greatest at 30 °C, in particular during the intermediate postnatal period around peak lactation. Furthermore, litter size reductions were generally higher in larger litters. Maternal gross energy intake was highest at 5 °C suggesting that mothers were not limited by milk production and might have been able to raise a higher number of pups until weaning. This was further supported by the fact that the daily increases in litter mass as well as in the individual pup body masses, a proxy of mother's lactational performance, were lower at higher ambient temperatures. We suggest that ambient temperatures around the thermoneutral zone and beyond are preventing golden hamster females from producing milk at sufficient rates. Around two thirds of the pups per litter disappeared at high temperature conditions, and their early growth rates were significantly lower than at lower ambient temperatures. It is possible that these losses are due to an intrinsic physiological limitation (imposed by heat dissipation) compromising maternal energy intake and

  9. Can persuasive and demonstrative messages to visitors reduce littering in river beaches?

    Science.gov (United States)

    Cingolani, Ana M; Barberá, Iván; Renison, Daniel; Barri, Fernando R

    2016-12-01

    Littering of public areas is a significant problem worldwide. Here we evaluate the success of persuasive and demonstrative messages at reducing littering in highly visited river beaches in Argentina. We made an intervention at the beaches which consisted of a personalized verbal request asking visitors to take their litter to the waste cans (persuasive message) while they were exposed to the example of picking up the litter already left on the beach (demonstrative message). We conducted 102 observations distributed over 29 dates, two years and four beaches. Each observation consisted of three or four rounds: before the presence of visitors we cleaned the beaches, during the stay of visitors we made the intervention (once or twice) in two out of the four beaches, and early next morning we estimated the amount of litter left per beach. Litter weight ranged from 0 to 53gvisitor -1 day -1 . Littering per visitor was reduced an average of 35% due to the intervention (p=0.049). We also found differences among beaches (p=0.001), and an increase in littering with crowding (p=0.005). We show for the first time that the personalized request combined with the example of picking up litter is effective in reducing littering in a Latin American country. Copyright © 2016. Published by Elsevier Ltd.

  10. Effect of Poultry Litter Treatment (PLT) on death due to ascites in broilers.

    Science.gov (United States)

    Terzich, M; Quarles, C; Goodwin, M A; Brown, J

    1998-01-01

    The purposes of this study were to determine the effect of Poultry Litter Treatment (PLT) on levels of litter moisture, litter nitrogen, atmospheric ammonia, and death due to ascites. Data were collected from chicks raised in containment conditions that resembled commercial settings. The ascites death rate (5.9%) in broiler chicks on PLT-treated litter was significantly (chi 2 = 15.5, df = 1, P = 0.0001) lower than that (31.5%) in broiler chicks raised on untreated litter. Likewise, atmospheric ammonia levels in pens that had been treated with PLT were significantly (P litter moisture and litter nitrogen levels were not different (P > 0.05) among treatments at any sample interval.

  11. ( Rosa damascena Mill.) dreg: an alternative litter material in broiler ...

    African Journals Online (AJOL)

    The present study was carried out to determine the effects of using dried rose dreg (DRD) as an alternative litter material for broiler performance and microbiological characteristics of litter. A total of 225 day-old broiler chicks was raised on pine wood shavings (PS), DRD and PS+DRD until 42 days. The effects of litter ...

  12. Monitoring Litter Inputs from the Adour River (Southwest France to the Marine Environment

    Directory of Open Access Journals (Sweden)

    Antoine Bruge

    2018-03-01

    Full Text Available Rivers are major pathways for litter to enter the ocean, especially plastic debris. Yet, further research is needed to improve knowledge on rivers contribution, increase data availability, refine litter origins, and develop relevant solutions to limit riverine litter inputs. This study presents the results of three years of aquatic litter monitoring on the Adour river catchment (southwest of France. Litter monitoring consisted of collecting all litter stranded on river banks or stuck in the riparian vegetation in defined areas identified from cartographic and hydromorphological analyses, and with the support of local stakeholders. Litter samples were then sorted and counted according to a list of items containing 130 categories. Since 2014, 278 litter samplings were carried out, and 120,632 litter items were collected, sorted, and counted. 41% of litter could not be identified due to high degradation. Food and beverage packaging, smoking-related items, sewage related debris, fishery and mariculture gear, and common household items represented around 70% of identifiable items. Overall, the present study contributes to our knowledge of litter sources and pathways, with the target of reducing the amounts entering the ocean. The long-term application of this monitoring is a way forward to measure societal changes as well as assess effectiveness of measures.

  13. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources

    Directory of Open Access Journals (Sweden)

    Maria eMooshammer

    2014-02-01

    Full Text Available Terrestrial microbial decomposer communities thrive on a wide range of organic matter types that rarely ever meet their elemental demands. In this review we synthesize the current state-of-the-art of microbial adaptations to resource stoichiometry, in order to gain a deeper understanding of the interactions between heterotrophic microbial communities and their chemical environment. The stoichiometric imbalance between microbial communities and their organic substrates generally decreases from wood to leaf litter and further to topsoil and subsoil organic matter. Microbial communities can respond to these imbalances in four ways: first, they adapt their biomass composition towards their resource in a non-homeostatic behaviour. Such changes are, however, only moderate, and occur mainly because of changes in microbial community structure and less so due to cellular storage of elements in excess. Second, microbial communities can mobilize resources that meet their elemental demand by producing specific extracellular enzymes, which, in turn, is restricted by the C and N requirement for enzyme production itself. Third, microbes can regulate their element use efficiencies (ratio of element invested in growth over total element uptake, such that they release elements in excess depending on their demand (e.g., respiration and N mineralization. Fourth, diazotrophic bacteria and saprotrophic fungi may trigger the input of external N and P to decomposer communities. Theoretical considerations show that adjustments in element use efficiencies may be the most important mechanism by which microbes regulate their biomass stoichiometry. This review summarizes different views on how microbes cope with imbalanced supply of C, N and P, thereby providing a framework for integrating and linking microbial adaptation to resource imbalances to ecosystem scale fluxes across scales and ecosystems.

  14. Poultry litter power station in the United Kingdom

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Poultry litter has presented a waste disposal problem to the poultry industry in many parts of the United Kingdom. The plant at Eye is a small to medium scale power station, fired using poultry litter. The 12.7 MW of electricity generated is supplied, through the local utility, to the National Grid. The spent litter that constitutes the fuel is made up of excrement and animal bedding (usually 90% excrement and 10% straw or wood shavings). It comes from large climate-controlled buildings (broiler houses) where birds, reared for meat production, are allowed to roam freely. (UK)

  15. Detritivores enhance the mobilization of {sup 137}Cs from leaf-litter

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Masashi; Suzuki, Takahiro [Community Ecology Lab., Biology Course, Faculty of Science, Chiba University, Chiba, 263-8522 (Japan); Ishii, Nobuyoshi [National Institute of Radiological Sciences, Chiba, 263-8555 (Japan); Ohte, Nobuhito [Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 (Japan)

    2014-07-01

    A large amount of radioactive material was released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident after the disastrous earthquake and subsequent tsunami of March 2011. Since most of the Japanese land area is covered by forest ecosystems, {sup 137}Cs was mostly deposited and accumulated on the land surface of forest. The fate of radioactive materials accumulated on the leaf litters should be conscientiously monitored to understand the future distribution and the spread to the surrounding landscapes. Because the accident took place on 11 March 2011, just before the bud-break of deciduous trees, the {sup 137}Cs are highly accumulated on the surface of leaf litter on the forest floor. This accumulated {sup 137}Cs had transferred to higher trophic organisms mainly through the detritus food chain. However, on the litter surface, {sup 137}Cs considered to be strongly and immediately fixed and highly immobilized. Decomposition processes in the forest floor can re-mobilise the nutritional elements which are contained within detritus and make them available for the organisms. In the present study, the feeding effect of detritivore soil arthropods on the mobilization of {sup 137}Cs from leaf litter was experimentally examined. Furthermore, the effect of detritivores on the plant uptake of {sup 137}Cs was examined by small-scale nursery experiment. Decomposition experiment in the small microcosms was performed using a larvae of Trypoxylus dichotomus, whichis a detritivores feeding on dead plant materials such as wood debris and leaf litters. Contaminated leaf litters were collected in a forest of the Kami-Oguni River catchment in the northern part of Fukushima Prefecture. The leaf litters at A0 layers which are highly contaminated by {sup 137}Cs were utilized for the experiment. The contaminated leaf litter was fed to the larvae for ten days. The litter with larvae excreta was washed by 2 M KCl and deionized water. The {sup 137}Cs concentration was measured

  16. Genotypic diversity of an invasive plant species promotes litter decomposition and associated processes.

    Science.gov (United States)

    Wang, Xiao-Yan; Miao, Yuan; Yu, Shuo; Chen, Xiao-Yong; Schmid, Bernhard

    2014-03-01

    Following studies that showed negative effects of species loss on ecosystem functioning, newer studies have started to investigate if similar consequences could result from reductions of genetic diversity within species. We tested the influence of genotypic richness and dissimilarity (plots containing one, three, six or 12 genotypes) in stands of the invasive plant Solidago canadensis in China on the decomposition of its leaf litter and associated soil animals over five monthly time intervals. We found that the logarithm of genotypic richness was positively linearly related to mass loss of C, N and P from the litter and to richness and abundance of soil animals on the litter samples. The mixing proportion of litter from two sites, but not genotypic dissimilarity of mixtures, had additional effects on measured variables. The litter diversity effects on soil animals were particularly strong under the most stressful conditions of hot weather in July: at this time richness and abundance of soil animals were higher in 12-genotype litter mixtures than even in the highest corresponding one-genotype litter. The litter diversity effects on decomposition were in part mediated by soil animals: the abundance of Acarina, when used as covariate in the analysis, fully explained the litter diversity effects on mass loss of N and P. Overall, our study shows that high genotypic richness of S. canadensis leaf litter positively affects richness and abundance of soil animals, which in turn accelerate litter decomposition and P release from litter.

  17. Litter materials and the incidence of carcass lesions in broilers chickens

    Directory of Open Access Journals (Sweden)

    RG Garcia

    2012-03-01

    Full Text Available The aim of this study was to evaluate the effects of different litter materials on litter compaction, broiler feathering and the incidence of carcass lesions. In the experiment, 3240 one-day-old Ross® chicks were selected by sex and distributed according to a completely randomized experimental design in a 2 x 6 factorial arrangement (two sex and six litter materials. The following litter materials were used: wood shavings, rice husks, chopped Napier grass, 50% sugar cane bagasse plus 50% wood shavings, 50% sugar cane bagasse plus 50% rice husks, and pure sugar cane bagasse. Litter compaction was weekly assessed using a penetrometer. On days 21, 35 and 42 of the experimental period, feathering on the back and legs was scored according to a 0 - 10 scale. On day 42, birds were slaughtered and the presence of bruises, scratches and footpad lesions was recorded. Litter material had no effect on bird feathering. Carcass lesions (scratches, bruises and footpad lesions were influenced by the litter material evaluated. Birds reared on sugarcane bagasse and chopped Napier grass presented more scratches, bruises and footpad lesions than the others. Dermatitis was more evident in birds reared on sugarcane bagasse, chopped Napier grass and the combination of litter materials. It was found that males presented higher incidence of dermatitis and footpad lesions than females. Each litter material presented different compaction degrees, which increased along the experimental period. Sugarcane bagasse, chopped Napier grass and the combination of bedding materials presented the highest degree of compaction, compared with wood shavings and rice husks.

  18. Decomposing change in life expectancy

    DEFF Research Database (Denmark)

    Vaupel, James W.; Canudas Romo, Vladimir

    2003-01-01

    We extend Nathan Keyfitz's research on continuous change in life expectancy over time by presenting and proving a new formula for decomposing such change. The formula separates change in life expectancy over time into two terms. The first term captures the general effect of reduction in death rates...... in Sweden and Japan....

  19. Long-term marine litter monitoring in the remote Great Australian Bight, South Australia.

    Science.gov (United States)

    Edyvane, K S; Dalgetty, A; Hone, P W; Higham, J S; Wace, N M

    2004-06-01

    The Anxious Bay beach litter clearance is the longest running annual survey of ocean-based litter in Australia. It's remoteness from centres of human population and location (with respect to prevailing winds and currents) make it an ideal place for monitoring ocean or ship-based litter in Australia's southern oceans and particularly, the Great Australian Bight. Over the 1991-1999 period, a large but gradual decline in the amount of beach washed litter was recorded (with minor peaks recorded during the 1992 and 1994 surveys). Beach washed litter decreased by approximately 86%, from 344 kg recorded in 1991 (13.2 kg/km) to 49 kg in 1999 (i.e. 1.9 kg/km), reaching a maximum of 390 kg in 1992 (or 15 kg/km of beach). However, a sharp increase in litter was recorded in 2000 (i.e. 252 kg or 9.7 kg/km). This increase in litter yield in 2000 is probably due to stronger than average onshore surface flow (or Ekman Transport) in the western Eyre Peninsula and Bight region. Prior to the survey in 2000, the results appeared to indicate that ocean litter on Anxious Bay beach was beginning to level out at around 50-70 kg/year (i.e. 2-3 kg/km). As the beach surveys involve the assumption that the beach is completely cleared of litter, this may represent a baseline level for ocean-based litter in the region. The yields and type of litter collected from the annual survey indicates that the majority of litter washed ashore originates from commercial fishing activities within the Great Australian Bight. Most of the fishing-related litter was directly sourced to the Southern Rock Lobster Fishery (i.e. bait buckets, baskets, pots), the Great Australian Bight Trawl Fishery (i.e. codends, trawl nets) and the Southern Shark Fishery (i.e. monofilament gillnets and longlines). Between 1994 and 1999, large reductions were observed in the amount of bait straps (77% reduction), lobster bait baskets/buckets (86% reduction), nets/ropes (62% reduction) and floats/buoys (83% reduction). Significantly

  20. Comparison of litter decomposition in a natural versus coal-slurry pond reclaimed as a wetland

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.; Middleton, B.A. [National Wetlands Research Center (USGS), Lafayette, LA (United States)

    2004-08-01

    Decomposition is a key function in reclaimed wetlands, and changes in its rate have ramifications for organic-matter accumulation, nutrient cycling, and production. The purpose of this study was to compare leaf litter decomposition rates in coal-slurry ponds vs. natural wetlands on natural floodplain wetlands in Illinois, USA. The rate of decomposition was slower in the natural wetland vs. the coal pond (k = 0.0043{+-}0.0008 vs. 0.0066{+-}0.0011, respectively); the soil of the natural wetland was more acidic than the coal pond in this study (pH = 5.3 vs. 7.9, respectively). Similarly, higher organic matter levels were related to lower pH levels, and organic matter levels were seven-times higher in the natural wetland than in the coal pond. The coal slurry pond was five years old at the time of the study, while the natural oxbow wetland was older (more than 550 years). The coal-slurry pond was originally a floodplain wetland (slough); the downstream end was blocked with a stoplog structure and the oxbow filled with slurry. The pattern of decomposition for all species in the coal pond was the same as in the natural pond; Potomogeton nodosus decomposed more quickly than Phragmites australis, and both of these species decomposed more quickly than either Typha latifolia or Cyperus erythrorhizos. Depending on how open or closed the system is to outside inputs, decomposition rate regulates other functions such as production, nutrient cycling, organic-layer accumulation in the soil, and the timing and nature of delivery of detritus to the food chain.

  1. A trait-based framework for understanding how and why litter decay and resource stoichiometry promote biogeochemical syndromes in arbuscular- and ectomycorrhizal-dominated forests

    Science.gov (United States)

    Phillips, R.; Brzostek, E. R.; Fisher, J. B.; Sulman, B. N.; Midgley, M.; Craig, M.; Keller, A. B.

    2016-12-01

    While it has long been known that ecosystems dominated by arbuscular mycorrhizal (AM) plants (e.g., grasslands, tropical forests) cycle carbon (C) and nutrients differently than those dominated by ectomycorrhizal (ECM) plants (e.g., boreal and subarctic forests), demonstrations of these patterns in ecosystems where both mycorrhizal types co-occur are rare. We tested the hypothesis that variation between AM and ECM nutrient use traits (e.g., litter quality) promote distinct microbial traits that track biogeochemical syndromes in temperate forests. We then explored whether such belowground dynamics influence ecosystem responses to elevated CO2. To do this, we calculated the C to N ratios of litter, soil microbes and soil organic matter in AM- and ECM-dominated forests throughout the temperate region. We then used these data to parameterize a coupled plant uptake-microbial decomposition model, in order to determine how belowground interactions feedback to affect ecosystem C and N cycling in forests exposed to elevated CO2. We found support for our hypothesis: AM litters decomposed 50% faster than ECM litters (p litter decay rates were negatively correlated with the C:N of soils (including the microbial biomass and mineral soil; p < 0.05 for both) and positively correlated with net nitrification rates (p < 0.01). However, faster nitrogen (N) cycling in AM plots was also associated with a greater amount of physcially protected N in soil, suggesting that nutrient stabilizing mechanisms may constrain NPP in response to elevated CO2. Our model results supported this prediction. We found that while the C cost of acquiring of N is cheaper for AM trees than ECM trees, this cost difference is reduced under rising atmospheric CO2 owing to the enhanced protection of soil N in AM soils. Taken together, our results demonstrate that variation in AM- and ECM-associated plant and microbial traits promote predictable biogeochemical syndromes in temperate forests that can impact

  2. THE FATE OF TANNINS IN CORSICAN PINE LITTER

    NARCIS (Netherlands)

    Nierop, K.G.J.; Verstraten, J.M.

    2006-01-01

    Tannins are ubiquitous in higher plants and therefore also in litter and soils where they affect many biogeochemical processes. Despite this well recognized role, the fate of tannins in litter and mineral soils is hardly known as often only trace amounts, if any, of tannins are measured. In this

  3. Production of litter and detritus related to the density of mangrove

    Science.gov (United States)

    Budi Mulya, Miswar; Arlen, HJ

    2018-03-01

    Research about the production of leaf litter and detritus related to the density of mangrove trees has been done. The aims of this research are to know and analyze the amount of litter and detritus produced to the density of mangrove trees. The production and collection of leaf litter were carried out in five stations. Production of detritus and decomposition rate were calculated by measuring its dry weight. The density and level of mangrove trees were determined using transect quadratic method. The relationship between the leaf litter and detritus production ratio related to mangrove density were then analyzed. Results showed that mangrove trees with the density of 766.67 ind ha‑1 ccould produce the amount of litter and detritus to about 28597.33 gha‑1day‑1and 1099.35 gha‑1day‑1 while mangrove trees with the density of 1300 ind ha‑1 could produce the amount of litter and detritus to about 35093.33 g/ha/day and 1216.68 gha‑1day‑1 respectively. Data analysis showed that the increment of mangrove density is linearly related to the production increment of litter and detritus.

  4. Does previous use affect litter box appeal in multi-cat households?

    Science.gov (United States)

    Ellis, J J; McGowan, R T S; Martin, F

    2017-08-01

    It is commonly assumed that cats actively avoid eliminated materials (especially in multi-cat homes), suggesting regular litter box cleaning as the best defense against out-of-box elimination. The relationship between previous use and litter box appeal to familiar subsequent users is currently unknown. The purpose of this study was to investigate the relationship between previous litter box use and the identity of the previous user, type of elimination, odor, and presence of physical/visual obstructions in a multi-cat household scenario. Cats preferred a clean litter box to a dirty one, but the identity of the previous user had no impact on preferences. While the presence of odor from urine and/or feces did not impact litter box preferences, the presence of odorless faux-urine and/or feces did - with the presence of faux-feces being preferred over faux-urine. Results suggest neither malodor nor chemical communication play a role in litter box preferences, and instead emphasize the importance of regular removal of physical/visual obstructions as the key factor in promoting proper litter box use. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Does litter size affect emotionality, spatial learning and memory in piglets?

    NARCIS (Netherlands)

    Fijn, Lisa; Antonides, Alexandra; Aalderink, Dave; Nordquist, Rebecca E.; van der Staay, Franz Josef

    2016-01-01

    Average litter size has steadily increased over the past decades in the pig farming industry. Large litters are associated with an increase of piglets born with a lower birth weight and reduced overall piglet viability. The aim of our study was to investigate whether litter size affects

  6. Effect of litter moisture on the development of footpad dermatitis in broiler chickens.

    Science.gov (United States)

    Taira, Kazuyo; Nagai, Toshimune; Obi, Takeshi; Takase, Kozo

    2014-04-01

    Broiler chicks were reared on either wet litter or dry litter to compare the development of footpad dermatitis (FPD). Broilers reared on wet litter first developed FPD at 14 days of age. Their FPD scores increased sharply after 21 days of age, reaching 2.92 at 42 days. In broilers reared on dry litter, FPD was first observed at 28 days of age, and the FPD score was only 0.70 at 42 days. When 21- or 28-day-old broilers that had been reared on wet litter and had developed FPD were moved to dry litter, the progression of FPD was suppressed or delayed. These results suggest that reducing litter moisture is effective in preventing FPD and suppressing disease progression.

  7. Mountain pine beetle attack alters the chemistry and flammability of lodgepole pine foliage

    Science.gov (United States)

    Wesley G. Page; Michael J. Jenkins; Justin B. Runyon

    2012-01-01

    During periods with epidemic mountain pine beetle (Dendroctonus ponderosae Hopkins) populations in lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests, large amounts of tree foliage are thought to undergo changes in moisture content and chemistry brought about by tree decline and death. However, many of the presumed changes have yet to be...

  8. [Contribution of soil fauna to the mass loss of Betula albosinensis leaf litter at early decomposition stage of subalpine forest litter in western Sichuan].

    Science.gov (United States)

    Xia, Lei; Wu, Fu-Zhong; Yang, Wan-Qin; Tan, Bo

    2012-02-01

    In order to quantify the contribution of soil fauna to the decomposition of birch (Betula albosinensis) leaf litter in subalpine forests in western Sichuan of Southwest China during freeze-thaw season, a field experiment with different mesh sizes (0.02, 0.125, 1 and 3 mm) of litterbags was conducted in a representative birch-fir (Abies faxoniana) forest to investigate the mass loss rate of the birch leaf litter from 26 October, 2010 to 18 April, 2011, and the contributions of micro-, meso- and macro-fauna to the decomposition of the leaf litter. Over the freeze-thaw season, 11.8%, 13.2%, 15.4% and 19.5% of the mass loss were detected in the litterbags with 0.02, 0. 125, 1 and 3 mm mesh sizes, respectively. The total contribution of soil fauna to the litter decomposition accounted for 39.5% of the mass loss, and the taxa and individual relative density of the soil fauna in the litterbags had the similar variation trend with that of the mass loss rate. The contribution rate of soil fauna to the leaf litter mass loss showed the order of micro- soil fauna played an important role in the litter decomposition in subalpine forests of western Sichuan during freeze-thaw season.

  9. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage

    International Nuclear Information System (INIS)

    Vollenweider, P.; Guenthardt-Goerg, Madeleine S.

    2005-01-01

    Visible symptoms in the foliage of trees are recorded to monitor the effects of abiotic and biotic stress. Difficulties are reported in diagnosing the origin of stress. The present paper discusses several diagnostic criteria which are usable in different species for a better determination of the stress factor type. A new diagnosis scheme to differentiate between classes of abiotic and biotic stress factors is supplied. Abiotic stress generates gradients of symptoms. The symptom specificity is determined by the degree of interaction between the stress factor and plant defense system. Symptoms caused by abiotic stress and natural autumnal senescence can be morphologically different or undistinguishable according to the stress and plant species. With biotic stress, the class of parasitic is generally recognizable on the basis of the visible symptoms. Structurally and physiologically based explanations of the symptom morphology are still missing for many stress factors. - The morphology and distribution of visible stress symptoms in tree foliage provides diagnostic tools to identify plant defense responses and differentiate stress from natural senescence symptoms

  10. Litter production and decomposition in Eucalyptus urophylla x Eucalyptus globulus maidenii stand

    Directory of Open Access Journals (Sweden)

    Mauro Valdir Schumacher

    2013-09-01

    Full Text Available he sustainable wood production in commercial plantations requires knowledge of the nutrient cycling process, which also involves the production and decomposition of litter. This study verified the influence of climatic variables on litter production and t evaluated the rate of leaf litter decomposition in a stand of Eucalyptus urophylla x E. globulus maidenii. There were installed 4 plots of 20 m x 20 m, in each plot four litter traps to collect leaves were placed, thin branches and miscellaneous, beside this, each plot received 3 areas for coarse branches collection. The litter collected was used to calculate the deposition and the correlation between climate variables and deposition. The climatic variables used, on a monthly basis, were average temperature, average maximum temperature, average minimum temperature, rainfall, relative humidity, average wind speed, average solar radiation and average evapotranspiration, both supplied by an experimental station. For evaluation of the litter decomposition rate, four square samples of 0.25 m side in each plot were randomly collected and used for determining the decay coefficient (K, half life (t0,5 and decomposition time of 95% of litter (t0,95 . The monthly litter production was weakly correlated with climatic variables and the annual production was 7.4 Mg ha-1, with leaves as the major fraction (60%. The litter decomposition rate was considered slow.

  11. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept.

    Science.gov (United States)

    Castellano, Michael J; Mueller, Kevin E; Olk, Daniel C; Sawyer, John E; Six, Johan

    2015-09-01

    Labile, 'high-quality', plant litters are hypothesized to promote soil organic matter (SOM) stabilization in mineral soil fractions that are physicochemically protected from rapid mineralization. However, the effect of litter quality on SOM stabilization is inconsistent. High-quality litters, characterized by high N concentrations, low C/N ratios, and low phenol/lignin concentrations, are not consistently stabilized in SOM with greater efficiency than 'low-quality' litters characterized by low N concentrations, high C/N ratios, and high phenol/lignin concentrations. Here, we attempt to resolve these inconsistent results by developing a new conceptual model that links litter quality to the soil C saturation concept. Our model builds on the Microbial Efficiency-Matrix Stabilization framework (Cotrufo et al., 2013) by suggesting the effect of litter quality on SOM stabilization is modulated by the extent of soil C saturation such that high-quality litters are not always stabilized in SOM with greater efficiency than low-quality litters. © 2015 John Wiley & Sons Ltd.

  12. Effect of Paper Waste Products as a Litter Material on Broiler Performance

    Directory of Open Access Journals (Sweden)

    Serdar Özlü

    2017-12-01

    Full Text Available This study conducted to determine the possibilities of using the paper waste products as a litter material in broiler production. A total of 468 Ross 308 broilers were used in this experiment. Litter materials were rice hulls (RH, waste paper (WP and mix of them (50 % RH + 50 % WP. BW was approximately 60 g heavier in waste paper group compare to other two litter groups at 42d of age. Type of litter material had no significant effects on feed conversion ratio, livability and leg defect. Therefore, paper waste products have potential as an alternative litter material for broiler production.

  13. Litter size influences milk composition and energy expenditure of rat pups

    International Nuclear Information System (INIS)

    Fiorotto, M.L.; Burrin, D.G.; Perez, M.; Reeds, P.J.

    1990-01-01

    The authors wished to determine whether differences in milk intake were solely responsible for differences in the weight gain of rat pups suckled in litters of varying sizes (S = 4, C = 10, L = 16 pups/litter; 9 litters/group). Milk intake was measured (by 3 H 2 O dilution) at 4-6, 8-10, and 14-16 d of age (3 litters of each size/time point). Pup (water, protein, and fat) and milk composition (water, fat, protein and lactose) were analyzed at 6, 10, and 16 d. Dam milk output was positively correlated with litter size and duration of lactation. Milk fat concentration was inversely related to dam milk output (r 2 = 0.79). Weight gain was highest in S litters and lowest in L litters. Weight gain was highly correlated to the volume of milk consumed in S and C pups (r 2 = 81%), but was poorly correlated among L pups (r 2 = 23%). The different correlations may have resulted from (1) the disparate relationship between volume and energy intake of L pups compared to S and C pups, or (2) a higher maintenance energy expenditure in L pups up to 10 d of age determined by a comparison of the composition of weight gain and energy intake. Thus, the reduced weight gain of pups suckled in large litters resulted from changes in both milk energy intake and the efficiency of its utilization

  14. Role of arthropod communities in bioenergy crop litter decomposition†.

    Science.gov (United States)

    Zangerl, Arthur R; Miresmailli, Saber; Nabity, Paul; Lawrance, Allen; Yanahan, Alan; Mitchell, Corey A; Anderson-Teixeira, Kristina J; David, Mark B; Berenbaum, May R; DeLucia, Evan H

    2013-10-01

    The extensive land use conversion expected to occur to meet demands for bioenergy feedstock production will likely have widespread impacts on agroecosystem biodiversity and ecosystem services, including carbon sequestration. Although arthropod detritivores are known to contribute to litter decomposition and thus energy flow and nutrient cycling in many plant communities, their importance in bioenergy feedstock communities has not yet been assessed. We undertook an experimental study quantifying rates of litter mass loss and nutrient cycling in the presence and absence of these organisms in three bioenergy feedstock crops-miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and a planted prairie community. Overall arthropod abundance and litter decomposition rates were similar in all three communities. Despite effective reduction of arthropods in experimental plots via insecticide application, litter decomposition rates, inorganic nitrogen leaching, and carbon-nitrogen ratios did not differ significantly between control (with arthropods) and treatment (without arthropods) plots in any of the three community types. Our findings suggest that changes in arthropod faunal composition associated with widespread adoption of bioenergy feedstock crops may not be associated with profoundly altered arthropod-mediated litter decomposition and nutrient release. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  15. High-frequency fire alters C : N : P stoichiometry in forest litter.

    Science.gov (United States)

    Toberman, Hannah; Chen, Chengrong; Lewis, Tom; Elser, James J

    2014-07-01

    Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long-term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient-acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every 2 years (2yrB), burning every 4 years (4 yrB) and no burning (NB). C : N ratios in freshly fallen litter were 29-42% higher and C : P ratios were 6-25% lower for 2 yrB than NB during decomposition, with correspondingly lower 2yrB N : P ratios (27-32) than for NB (34-49). Trends in litter soluble and microbial N : P ratios were similar to the overall litter N : P ratios across fire treatments. Consistent with these, the ratio of activities for N-acquiring to P-acquiring enzymes in litter was higher for 2 yrB than NB, whereas 4 yrB was generally intermediate between 2 yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2 yrB (72 ± 2% mass remaining at the end of experiment) than for 4 yrB (59 ± 3%) and NB (62 ± 3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed-age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2 yrB) decoupled N and P cycling, as manifested in litter C : N : P stoichiometry and in microbial biomass N : P ratio and enzymatic activities. Furthermore, these data indicate that fire induced a transient shift to N-limited ecosystem conditions

  16. Seafloor Litter in the Sinop İnceburun Coast in the Southern Black Sea

    Directory of Open Access Journals (Sweden)

    Ayşah Öztekin

    2017-11-01

    Full Text Available In this study, abundance, distribution and type of seafloor litter were determined in the Sinop Inceburun coast which is the northeast point of Turkey. Study was carried out in October 2014 and proposed methods by Guidance on Monitoring of Marine Litter in European Seas’ published by European Marine Strategy Framework Directive Technical Subgroup on Marine Litter section of seafloor litter adopted the region. Seafloor litter density was found mean 808.74±215.02 pieces per km-2. The amount of litter was found maximum in 34 m depth. When results were evaluated in terms of the type of material plastic was found 95.35% and encountered litter items were mainly composed of plastic bags. The size groups were found generally small than 50 cm x 50 cm in the classification according to the size groups. The data obtained from the study demonstrate that the seafloor in the region have highly littered compared to the other studies in the Black Sea. Marine litter pollution is a growing problem in the world all of the world’s oceans and also the Black Sea. Necessary measurements must be taken to solve this problem.

  17. Litter drives ecosystem and plant community changes in cattail invasion.

    Science.gov (United States)

    Farrer, Emily C; Goldberg, Deborah E

    2009-03-01

    Invaded systems are commonly associated with a change in ecosystem processes and a decline in native species diversity; however, many different causal pathways linking invasion, ecosystem change, and native species decline could produce this pattern. The initial driver of environmental change may be anthropogenic, or it may be the invader itself; and the mechanism behind native species decline may be the human-induced environmental change, competition from the invader, or invader-induced environmental change (non-trophic effects). We examined applicability of each of these alternate pathways in Great Lakes coastal marshes invaded by hybrid cattail (Typha x glauca). In a survey including transects in three marshes, we found that T. x glauca was associated with locally high soil nutrients, low light, and large amounts of litter, and that native diversity was highest in areas of shallow litter depth. We tested whether live T. x glauca plants or their litter induced changes in the environment and in diversity with a live plant and litter transplant experiment. After one year, Typha litter increased soil NH4+ and N mineralization twofold, lowered light levels, and decreased the abundance and diversity of native plants, while live Typha plants had no effect on the environment or on native plants. This suggests that T. x glauca, through its litter production, can cause the changes in ecosystem processes that we commonly attribute to anthropogenic nutrient loading and that T. x glauca does not displace native species through competition for resources, but rather affects them non-trophically through its litter. Moreover, because T. x glauca plants were taller when grown with their own litter, we suggest that this invader may produce positive feedbacks and change the environment in ways that benefit itself and may promote its own invasion.

  18. Through the sands of time: Beach litter trends from nine cleaned north cornish beaches

    International Nuclear Information System (INIS)

    Watts, Andrew J.R.; Porter, Adam; Hembrow, Neil; Sharpe, Jolyon; Galloway, Tamara S.; Lewis, Ceri

    2017-01-01

    Marine litter and its accumulation on beaches is an issue of major current concern due to its significant environmental and economic impacts. Yet our understanding of spatio-temporal trends in beach litter and the drivers of these trends are currently limited by the availability of robust long term data sets. Here we present a unique data set collected systematically once a month, every month over a six year period for nine beaches along the North Coast of Cornwall, U.K. to investigate the key drivers of beach litter in the Bude, Padstow and Porthcothan areas. Overall, an average of 0.02 litter items m −2 per month were collected during the six year study, with Bude beaches (Summerleaze, Crooklets and Widemouth) the most impacted (0.03 ± 0.004 litter items m −2 per month). The amount of litter collected each month decreased by 18% and 71% respectively for Padstow (Polzeath, Trevone and Harlyn) and Bude areas over the 6 years, possibly related to the regular cleaning, however litter increased by 120% despite this monthly cleaning effort on the Padstow area beaches. Importantly, at all nine beaches the litter was dominated by small, fragmented plastic pieces and rope fibres, which account for 32% and 17% of all litter items collected, respectively. The weathered nature of these plastics indicates they have been in the marine environment for an extended period of time. So, whilst classifying the original source of these plastics is not possible, it can be concluded they are not the result of recent public littering. This data highlights both the extent of the marine litter problem and that current efforts to reduce littering by beach users will only tackle a fraction of this litter. Such information is vital for developing effective management strategies for beach and marine litter at both regional and global levels. - Highlights: • Unique and systemically collected beach clean data set from 9 beaches over 6 years. • The most abundant litter items were

  19. Photodegradation of Leaf Litter in Water-Limited Ecosystems

    Science.gov (United States)

    Cory, R. M.; Powers, H.; McDowell, N.; Rahn, T.

    2008-12-01

    The longstanding view of terrestrial decomposition holds that heterotrophic respiration drives release of CO2, but recent studies, such as Austin and Vivanco (2006) have shown that in water-limited environments, photochemical decomposition of leaf litter may be equally or more effective than microbial decomposition. Although initial studies have concluded that photochemical degradation can be important in some environments, it has been difficult to quantify and the oxidative mechanisms involved remain unknown. Thus, the objectives of our study were to (1) quantify the CO2 emitted during photochemical degradation of leaf litter and (2) use the stable isotopic signatures of evolved CO2 to elucidate pathways of production. Emitted CO2 and its isotopic signature were measured using a tunable diode laser (TDL) to assess the pool of photochemically-labile plant matter (δ13C-CO2) in a given sample and to assess the source of the oxygen (δ18O-CO2). We quantified the photochemical release of CO2 and its isotopic signature from dried leaf litter of 10 tree and grass species prevalent in major biotic zones of New Mexico. The cumulative CO2 released upon exposure of 0.1-0.3 g of dried leaf litter to three hours of simulated sunlight ranged from 8-25 mg CO2-C g-1 dried litter, corresponding to 1-2% mass loss. Generally, the δ13C-CO2 was more depleted (4-7 ± 2 per mil) than the average δ13C of the respective leaf litter sample. The δ18O-CO2 evolved is approximately equal to δ18O of atmospheric O2, suggesting that the oxidation mechanism involves direct reaction with atmospheric O2.

  20. Short-term responses of decomposers and vegetation to stump removal

    Energy Technology Data Exchange (ETDEWEB)

    Kataja-aho, S.

    2011-07-01

    Stump removal has become a common practice to produce raw material for bioenergy production. It was hypothesized that stump removal is an extensive and more intense disturbance for forest ecosystems (soil decomposer organisms and vegetation) compared to traditional site preparation after clear cutting. Therefore, the effects of stump harvesting on forest soil decomposers, vegetation and nutrient dynamics in undisturbed patches of the forest soil and in exposed mineral soil were compared to the effects of the traditional site preparation method, mounding. Nematodes and enchytraeids were the only decomposer groups that were directly affected (negatively) by the stump removal. Regardless of the treatment, the abundances of most of the decomposer groups were consistently lower in the exposed mineral soil than in the intact forest soil. There was 2-3 times more exposed mineral soil in stump removal sites compared to mounding sites. When this was taken into account, the decomposer community was negatively affected by the stump removal at the forest stand level. However, the greater soil disturbance at the stump harvesting sites enhanced CO{sub 2} production, net nitrogen mineralisation and nitrification. The increased N availability and the changes in microclimate due to the disturbance probably explained the vegetation increase at the stump harvested sites. Planted Norway spruce seedlings grew faster during the first two growing periods at the stump removal sites than at the mounding sites. The seedlings had high and similar ectomycorrhizal colonization rate in both treatments. In the short-term, it is probably not the resources removed in the stumps themselves, but the degree and amount of soil disturbance during the stump harvesting procedure that affects the decomposer community and its function in the clear-felled stands. (orig.)

  1. Ingestion of marine litter by loggerhead sea turtles, Caretta caretta, in Portuguese continental waters.

    Science.gov (United States)

    Nicolau, Lídia; Marçalo, Ana; Ferreira, Marisa; Sá, Sara; Vingada, José; Eira, Catarina

    2016-02-15

    The accumulation of litter in marine and coastal environments is a major threat to marine life. Data on marine litter in the gastrointestinal tract of stranded loggerhead turtles, Caretta caretta, found along the Portuguese continental coast was presented. Out of the 95 analysed loggerheads, litter was present in 56 individuals (59.0%) and most had less than 10 litter items (76.8%) and less than 5 g (dm) (96.8%). Plastic was the main litter category (frequency of occurrence=56.8%), while sheet (45.3%) was the most relevant plastic sub-category. There was no influence of loggerhead stranding season, cause of stranding or size on the amount of litter ingested (mean number and dry mass of litter items per turtle). The high ingested litter occurrence frequency in this study supports the use of the loggerhead turtle as a suitable tool to monitor marine litter trends, as required by the European Marine Strategy Framework Directive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mangrove litter production and organic carbon pools in the ...

    African Journals Online (AJOL)

    Mngazana Estuary is an important source of mangrove litter and POC for the adjacent marine environment, possibly sustaining nearshore food webs. Keywords: Dissolved organic carbon, harvesting, litter production, mangroves, particulate organic carbon, Rhizophora mucronata, South Africa African Journal of Aquatic ...

  3. Nutrient dynamics and tree growth of silvopastoral systems: impact of poultry litter.

    Science.gov (United States)

    Blazier, Michael A; Gaston, Lewis A; Clason, Terry R; Farrish, Kenneth W; Oswald, Brian P; Evans, Hayden A

    2008-01-01

    Fertilizing pastures with poultry litter has led to an increased incidence of nutrient-saturated soils, particularly on highly fertilized, well drained soils. Applying litter to silvopastures, in which loblolly pine (Pinus taeda L.) and bahiagrass (Paspalum notatum) production are integrated, may be an ecologically desirable alternative for upland soils of the southeastern USA. Integrating subterranean clover (Trifolium subterraneum) into silvopastures may enhance nutrient retention potential. This study evaluated soil nutrient dynamics, loblolly pine nutrient composition, and loblolly pine growth of an annually fertilized silvopasture on a well drained soil in response to fertilizer type, litter application rate, and subterranean clover. Three fertilizer treatments were applied annually for 4 yr: (i) 5 Mg litter ha(-1) (5LIT), (ii) 10 Mg litter ha(-1) (10LIT), and (iii) an inorganic N, P, K pasture blend (INO). Litter stimulated loblolly pine growth, and neither litter treatment produced soil test P concentrations above runoff potential threshold ranges. However, both litter treatments led to accumulation of several nutrients (notably P) in upper soil horizons relative to INO and unfertilized control treatments. The 10LIT treatment may have increased N and P leaching potential. Subterranean clover kept more P sequestered in the upper soil horizon and conferred some growth benefits to loblolly pine. Thus, although these silvopasture systems had a relatively high capacity for nutrient use and retention at this site, litter should be applied less frequently than in this study to reduce environmental risks.

  4. Beach litter along various sand dune habitats in the southern Adriatic (E Mediterranean).

    Science.gov (United States)

    Šilc, Urban; Küzmič, Filip; Caković, Danka; Stešević, Danijela

    2018-03-01

    Marine litter accumulates on sandy beaches and is an important environmental problem, as well as a threat to habitat types that are among the most endangered according to EU legislation. We sampled 120 random plots (2 × 2 m) in spring 2017 to determine the distribution pattern of beach litter along the zonation of habitat types from sea to the inland. The most frequent litter items were plastic, polystyrene and glass. A clear increase of litter cover along the sea-inland gradient is evident, and foredunes and pine forests have the highest cover of litter. Almost no litter was present in humid dune slacks. Shoreline and recreational activities are the major source of beach litter, while ocean/waterway activities are more important in the aphytic zone and strandline. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina?

    Science.gov (United States)

    Araujo, Patricia I; Yahdjian, Laura; Austin, Amy T

    2012-01-01

    Surface litter decomposition in arid and semiarid ecosystems is often faster than predicted by climatic parameters such as annual precipitation or evapotranspiration, or based on standard indices of litter quality such as lignin or nitrogen concentrations. Abiotic photodegradation has been demonstrated to be an important factor controlling aboveground litter decomposition in aridland ecosystems, but soil fauna, particularly macrofauna such as termites and ants, have also been identified as key players affecting litter mass loss in warm deserts. Our objective was to quantify the importance of soil organisms on surface litter decomposition in the Patagonian steppe in the absence of photodegradative effects, to establish the relative importance of soil organisms on rates of mass loss and nitrogen release. We estimated the relative contribution of soil fauna and microbes to litter decomposition of a dominant grass using litterboxes with variable mesh sizes that excluded groups of soil fauna based on size class (10, 2, and 0.01 mm), which were placed beneath shrub canopies. We also employed chemical repellents (naphthalene and fungicide). The exclusion of macro- and mesofauna had no effect on litter mass loss over 3 years (P = 0.36), as litter decomposition was similar in all soil fauna exclusions and naphthalene-treated litter. In contrast, reduction of fungal activity significantly inhibited litter decomposition (P soil fauna have been mentioned as a key control of litter decomposition in warm deserts, biogeographic legacies and temperature limitation may constrain the importance of these organisms in temperate aridlands, particularly in the southern hemisphere.

  6. The generation and cost of litter resulting from the curbside collection of recycling.

    Science.gov (United States)

    Wagner, Travis P; Broaddus, Nathan

    2016-04-01

    This study examined the generation of litter, defined as spillage and uncollected residue, from a curbside collection system for residential recycling. The primary recycling containers used in the study were 18-gal (68 L), open-top bins. The study, conducted over a seven-week period, was comprised of both an urban and suburban area. Six litter characterizations were conducted in which all new litter larger than 1 in.(2) was collected, segregated, counted, and weighed. We found that each week the open-top recycling bins contributed approximately 20,590 pieces of litter over 1 in. in size per every 1000 households, which resulted in the generation of 3.74 tons of litter per 1000 households per year. In addition to the bins having no top, the primary root causes of the litter were constantly overflowing recycling bins, the method of collection, and material scavenging. Based on an estimated cost of litter cleanup ranging from $0.17 to $0.79 per piece of litter, the direct economic costs from the collection of litter and loss in recycling revenues were estimated at US$3920 to US$19,250 per 1000 households per year. Other notable impacts from the litter, such as increased risk of flood damage from storm drain impairment and marine ecosystem damages exist, but were not monetized. The results strongly suggest that modification of the curbside collection system would decrease the amount and associated cost of litter by replacing existing curbside collection containers with larger volume containers with covers and by modifying the task-based incentive system to emphasize litter prevention rather than the current aim of completing the task most quickly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Litter input controls on soil carbon in a temperate deciduous forest

    DEFF Research Database (Denmark)

    Bowden, Richard D.; Deem, Lauren; Plante, Alain F.

    2014-01-01

    Above- and belowground litter inputs in a temperate deciduous forest were altered for 20 yr to determine the importance of leaves and roots on soil C and soil organic matter (SOM) quantity and quality. Carbon and SOM quantity and quality were measured in the O horizon and mineral soil to 50 cm...... soil C, but decreases in litter inputs resulted in rapid soil C declines. Root litter may ultimately provide more stable sources of soil C. Management activities or environmental alterations that decrease litter inputs in mature forests can lower soil C content; however, increases in forest...

  8. Prevention of littering through packaging design : A support tool for concept generation

    NARCIS (Netherlands)

    Wever, R.; Gutter, N.; Silvester, S.

    2006-01-01

    Littering is a social and environmental problem. Numerous studies have been performed trying to understand littering behavior and to find ways to influence it successfully. Various litter-reduction strategies have been applied with changing success. These have either focused on directly influencing

  9. Impacts of Bottom Trawling and Litter on the Seabed in Norwegian Waters

    Directory of Open Access Journals (Sweden)

    Pål Buhl-Mortensen

    2018-02-01

    Full Text Available Bottom trawling and seabed littering are two serious threats to seabed integrity. We present an overview of the distribution of seabed litter and bottom trawling in Norwegian waters (the Norwegian Sea and the southern Barents Sea. Vessel Monitoring System (VMS records and trawl marks (TM on the seabed were used as indicators of pressure and impact of bottom trawling, respectively. Estimates of TM density and litter abundance were based on analyses of seabed videos from 1,778 locations, surveyed during 23 cruises, part of the Norwegian seabed mapping programme MAREANO. The abundance and composition of litter and the density of TM varied with depth, and type of sediments and marine landscapes. Lost or discarded fishing gear (especially lines and nets, and plastics (soft and hard plastic and rubber were the dominant types of litter. The distribution of litter reflected the distribution of fishing intensity (density of VMS records and density of TM at a regional scale, with highest abundance close to the coast and in areas with high fishing intensity, indicated from the VMS data. However, at a local scale patterns were less clear. An explanation to this could be that litter is transported with currents and accumulates in troughs, canyons, and local depressions, rather than reflecting the fisheries footprints directly. Also, deliberate dumping of discarded fishing gear is likely to occur away from good fishing grounds. Extreme abundance of litter, observed close to the coast is probably caused by such discarded fishing gear, but the contribution from aggregated populations on land is also indicated from the types of litter observed. The density of trawl marks is a good indicator of physical impact in soft sediments where the trawl gear leaves clear traces, whereas on harder substrates the impacts on organisms is probably greater than indicated by the hardly visible marks. The effects of litter on benthic communities is poorly known, but large litter

  10. Demonstration of a Small Modular BioPower System Using Poultry Litter

    Energy Technology Data Exchange (ETDEWEB)

    John P. Reardon; Art Lilley; Jim Wimberly; Kingsbury Browne; Kelly Beard; Jack Avens

    2002-05-22

    The purpose of this project was to assess poultry grower residue, or litter (manure plus absorbent biomass), as a fuel source for Community Power Corporation's small modular biopower system (SMB). A second objective was to assess the poultry industry to identify potential ''on-site'' applications of the SMB system using poultry litter residue as a fuel source, and to adapt CPC's existing SMB to generate electricity and heat from the poultry litter biomass fuel. Bench-scale testing and pilot testing were used to gain design information for the SMB retrofit. System design approach for the Phase II application of the SMB was the goal of Phase I testing. Cost estimates for an onsite poultry litter SMB were prepared. Finally, a market estimate was prepared for implementation of the on-farm SMB using poultry litter.

  11. Cellulose Dynamics during Foliar Litter Decomposition in an Alpine Forest Meta-Ecosystem

    Directory of Open Access Journals (Sweden)

    Kai Yue

    2016-08-01

    Full Text Available To investigate the dynamics and relative drivers of cellulose degradation during litter decomposition, a field experiment was conducted in three individual ecosystems (i.e., forest floor, stream, and riparian zone of an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Four litter species (i.e., willow: Salix paraplesia, azalea: Rhododendron lapponicum, cypress: Sabina saltuaria, and larch: Larix mastersiana that had varying initial litter chemical traits were placed separately in litterbags and then incubated on the soil surface of forest floor plots or in the water of the stream and riparian zone plots. Litterbags were retrieved five times each year during the two-year experiment, with nine replicates each time for each treatment. The results suggested that foliar litter lost 32.2%–89.2% of the initial dry mass depending on litter species and ecosystem type after two-year’s incubation. The cellulose lost 60.1%–96.8% of the initial mass with degradation rate in the order of stream > riparian zone > forest floor. Substantial cellulose degradation occurred at the very beginning (i.e., in the first pre-freezing period of litter decomposition. Litter initial concentrations of phosphorus (P and lignin were found to be the dominant chemical traits controlling cellulose degradation regardless of ecosystems type. The local-scale environmental factors such as temperature, pH, and nutrient availability were important moderators of cellulose degradation rate. Although the effects of common litter chemical traits (e.g., P and lignin concentrations on cellulose degradation across different individual ecosystems were identified, local-scale environmental factors such as temperature and nutrient availability were found to be of great importance for cellulose degradation. These results indicated that local-scale environmental factors should be considered apart from litter quality for generating a reliable predictive framework for the drivers

  12. Impact of fresh or used litter on the posthatch immune system of commercial broilers.

    Science.gov (United States)

    Lee, K W; Lillehoj, H S; Lee, S H; Jang, S I; Ritter, G Donald; Bautista, D A; Lillehoj, E P

    2011-12-01

    This study was carried out to investigate the effects of exposure of growing broiler chickens of commercial origin to used poultry litter on intestinal and systemic immune responses. The litter types evaluated were fresh wood shavings or used litter obtained from commercial poultry farms with or without a history of gangrenous dermatitis (GD). Immune parameters measured were serum nitric oxide (NO) levels, serum antibody titers against Eimeria or Clostridium perfringens, mitogen-induced spleen cell proliferation, and intestinal intraepithelial lymphocyte or splenic lymphocyte subpopulations. At 43 days posthatch, birds raised on used litter from a GD farm had higher serum NO levels and greater Eimeria or C. perfringens antibody levels compared with chickens raised on fresh litter or used, non-GD litter. Birds raised on non-GD and GD used litter had greater spleen cell mitogenic responses compared with chickens raised on fresh litter. Finally, spleen and intestinal lymphocyte subpopulations were increased or decreased depending on the litter type and the surface marker analyzed. Although it is likely that the presence of Eimeria oocysts and endemic viruses varies qualitatively and quantitatively between flocks and, by extension, varies between different used litter types, we believe that these data provide evidence that exposure of growing chicks to used poultry litter stimulates humoral and cell-mediated immune responses, presumably due to contact with contaminating enteric pathogens.

  13. Effect of Litter Moisture on the Development of Footpad Dermatitis in Broiler Chickens

    OpenAIRE

    TAIRA, Kazuyo; NAGAI, Toshimune; OBI, Takeshi; TAKASE, Kozo

    2013-01-01

    ABSTRACT Broiler chicks were reared on either wet litter or dry litter to compare the development of footpad dermatitis (FPD). Broilers reared on wet litter first developed FPD at 14 days of age. Their FPD scores increased sharply after 21 days of age, reaching 2.92 at 42 days. In broilers reared on dry litter, FPD was first observed at 28 days of age, and the FPD score was only 0.70 at 42 days. When 21- or 28-day-old broilers that had been reared on wet litter and had developed FPD were move...

  14. Effects of undernutrition and litter size on material variables and pup development.

    Science.gov (United States)

    Jen, K C; Wehmer, F; Morofski, J

    1978-05-01

    Differential effects of maternal nutrition and litter size variation were examined in a 2 x 2 factorial design in which undernourished or lib fed mothers nursed litters of 4 or 12. Litter size accounted for a greater proportion of pup body weight a weaning than did maternal nutrition. When the mother was fed ad lib, birth weight of individual pups and later body weight were correlated regardless of litter size. When the mother was undernourished, these correlations were not found. Enlargement of littersize increased the pup weight coefficient of variability only when the mother was fed ad lib. Size of the litter did not influence the maternal variables under study: open field behavior, adrenal weight, and body weight.

  15. Interrelations between the microbiotas in the litter and in the intestines of commercial broiler chickens.

    Science.gov (United States)

    Cressman, Michael D; Yu, Zhongtang; Nelson, Michael C; Moeller, Steven J; Lilburn, Michael S; Zerby, Henry N

    2010-10-01

    The intestinal microbiota of broiler chickens and the microbiota in the litter have been well studied, but the interactions between these two microbiotas remain to be determined. Therefore, we examined their reciprocal effects by analyzing the intestinal microbiotas of broilers reared on fresh pine shavings versus reused litter, as well as the litter microbiota over a 6-week cycle. Composite ileal mucosal and cecal luminal samples from birds (n = 10) reared with both litter conditions (fresh versus reused) were collected at 7, 14, 21, and 42 days of age. Litter samples were also collected at days 7, 14, 21, and 42. The microbiotas were profiled and compared within sample types based on litter condition using PCR and denaturing gradient gel electrophoresis (PCR-DGGE). The microbiotas were further analyzed using 16S rRNA gene clone libraries constructed from microbiota DNA extracted from both chick intestinal and litter samples collected at day 7. Results showed significant reciprocal effects between the microbiotas present in the litter and those in the intestines of broilers. Fresh litter had more environmental bacteria, while reused litter contained more bacteria of intestinal origin. Lactobacillus spp. dominated the ileal mucosal microbiota of fresh-litter chicks, while a group of bacteria yet to be classified within Clostridiales dominated in the ileal mucosal microbiota in the reused-litter chicks. The Litter condition (fresh versus reused) seemed to have a more profound impact on the ileal microbiota than on the cecal microbiota. The data suggest that the influence of fresh litter on ileal microbiota decreased as broilers grew, compared with temporal changes observed under reused-litter rearing conditions.

  16. Performance and hemtochemical parameters of buck-kids fed concentrate partially replaced with tropical Piliostigma thonningii foliage.

    Science.gov (United States)

    Olafadehan, Olurotimi A; Njidda, Ahmed A; Okunade, Sunday A; Salihu, Sarah O; Balogun, David O; Salem, Abdelfattah Z M

    2018-02-01

    Fifteen 5-month-old Red Sokoto buck-kids, (6.6 ± 0.71 kg body weight (BW)) randomly distributed into three groups of five animals per group, were used to study the effects of supplementary concentrate partially replaced with Piliostigma thonningii (PT) foliage on the growth performance, economic benefit and blood profile in a completely randomized design using analysis of variance. The goats in group 1 received 100% supplementary concentrates (PT0), groups 2 and 3 received 25% (PT25) and 50% (PT50), respectively, of concentrate replaced with an equal amount (dry matter basis) of Piliostigma foliage. The goats were fed a basal diet of threshed sorghum top (TST). Intake of concentrate, hemoglobin, mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, total feeding cost and cost/kg BW were greater (P kids. © 2017 Japanese Society of Animal Science.

  17. Amending triple superphosphate with chicken litter biochar improves phosphorus availability

    Directory of Open Access Journals (Sweden)

    Audrey Asap

    2018-04-01

    Full Text Available The reaction of H2PO42- and HPO4- with Al and Fe in acid soils to form a precipitate reduces P availability. Chicken litter biochar has been used to improve soil P availability for maize production but with limited information on optimum rates of biochar and Triple Superphosphate (TSP to increase P availability. This study determined the optimum amount of chicken litter biochar and TSP that could increase P availability. Different rates of chicken litter biochar and TSP were evaluated in an incubation study for 30, 60, and 90 days. Selected soil chemical properties before and after incubation were determined using standard procedures. Soil pH, total P, available P, and water soluble P increased in treatments with 75% and 50% biochar. Total acidity, exchangeable Al3+, and Fe2+ were significantly reduced by the chicken litter biochar. The chicken litter biochar also increased soil CEC and exchangeable cations (K, Ca, Mg and Na. The use of 75% and 50% of 5 t ha-1 biochar with 25% TSP of the existing recommendation can be used to increase P availability whilst minimizing soil Al and Fe content. This rates can be used to optimize chicken litter biochar and TSP use in acid soils for crop production especially maize and short term vegetables.

  18. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  19. Litter Controls Earthworm-Mediated Carbon and Nitrogen Transformations in Soil from Temperate Riparian Buffers

    Directory of Open Access Journals (Sweden)

    Maria Kernecker

    2014-01-01

    Full Text Available Nutrient cycling in riparian buffers is partly influenced by decomposition of crop, grass, and native tree species litter. Nonnative earthworms in riparian soils in southern Quebec are expected to speed the processes of litter decomposition and nitrogen (N mineralization, increasing carbon (C and N losses in gaseous forms or via leachate. A 5-month microcosm experiment evaluated the effect of Aporrectodea turgida on the decomposition of 3 litter types (deciduous leaves, reed canarygrass, and soybean stem residue. Earthworms increased CO2 and N2O losses from microcosms with soybean residue, by 112% and 670%, respectively, but reduced CO2 and N2O fluxes from microcosms with reed canarygrass by 120% and 220%, respectively. Litter type controlled the CO2 flux (soybean ≥ deciduous-mix litter = reed canarygrass > no litter and the N2O flux (soybean ≥ no litter ≥ reed canarygrass > deciduous-mix litter. However, in the presence of earthworms, there was a slight increase in C and N gaseous losses of C and N relative to their losses via leachate, across litter treatments. We conclude that litter type determines the earthworm-mediated decomposition effect, highlighting the importance of vegetation management in controlling C and N losses from riparian buffers to the environment.

  20. Acute aquatic toxicity of western juniper (Juniperus occidentalis) foliage and Port Orford cedar (Chamaecyparis lawsoniana) heartwood oils.

    Science.gov (United States)

    Duringer, Jennifer M; Swan, Laurence R; Walker, Douglas B; Craig, A Morrie

    2010-11-01

    Recently, interest has developed for using essential oils from Western juniper (Juniperus occidentalis) foliage and Port Orford cedar (Chamaecyparis lawsoniana) heartwood in commercial products such as pest repellents and cosmetics. In order to gauge the relative toxicological risk that these oils pose to freshwater and marine organisms, the acute aquatic toxicity of these oils was evaluated using OPPTS guidelines to the cladoceran Daphnia magna, the rainbow trout Oncorhynchus mykiss and the green alga Selenastrum capricornutum. For western juniper foliage oil, no toxicity was exhibited toward D. magna or O. mykiss, even at 5.0 mg/L (the highest concentration tested and limit of solubility). For toxicity to S. capricornutum using algal cell density, the 72 and 96 h EC50 value was 1.7 mg/L and the no observable effect concentration (NOEC) was 0.63 mg/L. For Port Orford cedar heartwood oil, no toxicity was exhibited toward O. mykiss or S. capricornutum, even at 5.0 mg/L (the highest concentration tested and limit of solubility). The 48-h D. magna EC50 value was 1.9 mg/L; the NOEC values for algal cell density were 1.25 mg/L (72 h) and 0.63 mg/L (96 h). In summary, this study shows that western juniper foliage and Port Orford cedar heartwood oils demonstrate little to no risk to aquatic organisms.

  1. Broiler excreta composition and its effect on wet litter : aspects of nutrition

    NARCIS (Netherlands)

    Hoeven-Hangoor, van der E.

    2014-01-01

    In commercial broiler farms, birds are usually housed on litter, composed of bedding materials like wood shavings. Wet litter is a condition in which the litter reaches its saturation threshold for water and cannot hold more moisture. It causes increased microbial activity and, as a result,

  2. Composting and gypsum amendment of broiler litter to reduce nutrient leaching loss

    Science.gov (United States)

    Relative to fresh broiler litter, little is known about the dynamics of composted litter derived-nutrient in the ecosystem. In this study, the potential leaching losses of nutrients from compost relative to fresh broiler litter along with flue gas desulfurization (FGD gypsum), as a nutrient immobil...

  3. Predicting climate change impacts on polar bear litter size.

    Science.gov (United States)

    Molnár, Péter K; Derocher, Andrew E; Klanjscek, Tin; Lewis, Mark A

    2011-02-08

    Predicting the ecological impacts of climate warming is critical for species conservation. Incorporating future warming into population models, however, is challenging because reproduction and survival cannot be measured for yet unobserved environmental conditions. In this study, we use mechanistic energy budget models and data obtainable under current conditions to predict polar bear litter size under future conditions. In western Hudson Bay, we predict climate warming-induced litter size declines that jeopardize population viability: ∼28% of pregnant females failed to reproduce for energetic reasons during the early 1990s, but 40-73% could fail if spring sea ice break-up occurs 1 month earlier than during the 1990s, and 55-100% if break-up occurs 2 months earlier. Simultaneously, mean litter size would decrease by 22-67% and 44-100%, respectively. The expected timeline for these declines varies with climate-model-specific sea ice predictions. Similar litter size declines may occur in over one-third of the global polar bear population.

  4. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study

    Science.gov (United States)

    Pearson, Richard G.; Hui, Cang; Gessner, Mark O.; Pérez, Javier; Alexandrou, Markos A.; Graça, Manuel A. S.; Cardinale, Bradley J.; Albariño, Ricardo J.; Arunachalam, Muthukumarasamy; Barmuta, Leon A.; Boulton, Andrew J.; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G.; Dudgeon, David; Encalada, Andrea C.; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S.; Gonçalves, José F.; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S.; Pringle, Catherine M.; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M.

    2016-01-01

    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. PMID:27122551

  5. Ecological restoration of litter in mined areas

    Science.gov (United States)

    Teresinha Gonçalves Bizuti, Denise; Nino Diniz, Najara; Schweizer, Daniella; de Marchi Soares, Thaís; Casagrande, José Carlos; Henrique Santin Brancalion, Pedro

    2016-04-01

    The success of ecological restoration projects depends on going monitoring of key ecological variables to determine if a desired trajectory has been established and, in the case of mining sites, nutrient cycling recovery plays an utmost importance. This study aimed to quantify and compare the annual litter production in native forests, and in restoration sites established in bauxite mines. We collected samples in 6 native forest remnants and 6 year-old restoration sites every month for a period of one year, in the city of Poços de Caldas/MG, SE Brazil. 120 wire collectors were used (0,6x0,6) and suspended 30cm above the soil surface. The material was dried until constant weight, weighed and fractionated in leaves, branches and reproductive material. The average annual litter production was 2,6 Mg ha-1 in native forests and 2,1 in forest in restoration sites, differing statistically. Litter production was higher in the rainy season, especially in September. Among the litter components, the largest contributor to total production was the fraction leaves, with 55,4% of the total dry weight of material collected, followed by reproductive material which contributed 24,5% and branches, with 20%. We conclude that the young areas in restoration process already restored important part, but still below the production observed in native areas.

  6. Litter Dynamics in a Forest Dune at Restinga da Marambaia, RJ, Brazil

    Directory of Open Access Journals (Sweden)

    Rodrigo Camara

    2018-03-01

    Full Text Available ABSTRACT Restingas are extremely degraded, tropical sandy ecosystems and are poorly studied in terms of nutrient cycling. The present study aimed to evaluate litter dynamics in a forest dune at Restinga da Marambaia, RJ. Litterfall was collected monthly using two parallel transects installed 200 m apart from each other with 15 litter traps (0.25 m2, over two consecutive years. The litterfall was sorted into leaves, twigs, flowers, fruits, and refuse. Litter decomposition was evaluated by the ratio between litterfall and litter layer on the soil surface, which was estimated every four months by quadrats (0.25 m2 placed next to the litter traps. The average annual litterfall was low (6.8 t ha-1 year-1 , mostly constituted by leaves (70%, with the greatest deposits occurring during the rainy season. The decomposition rate was low (0.85 and the turnover time was long (439 days. This litter dynamic contributes to the nutrient economy.

  7. Environmental safety to decomposer invertebrates of azadirachtin (neem) as a systemic insecticide in trees to control emerald ash borer.

    Science.gov (United States)

    Kreutzweiser, David; Thompson, Dean; Grimalt, Susana; Chartrand, Derek; Good, Kevin; Scarr, Taylor

    2011-09-01

    The non-target effects of an azadirachtin-based systemic insecticide used for control of wood-boring insect pests in trees were assessed on litter-dwelling earthworms, leaf-shredding aquatic insects, and microbial communities in terrestrial and aquatic microcosms. The insecticide was injected into the trunks of ash trees at a rate of 0.2 gazadirachtin cm(-1) tree diameter in early summer. At the time of senescence, foliar concentrations in most (65%) leaves where at or below detection (azadirachtin) and the average concentration among leaves overall at senescence was 0.19 mg kg(-1). Leaves from the azadirachtin-treated trees at senescence were added to microcosms and responses by test organisms were compared to those in microcosms containing leaves from non-treated ash trees (controls). No significant reductions were detected among earthworm survival, leaf consumption rates, growth rates, or cocoon production, aquatic insect survival and leaf consumption rates, and among terrestrial and aquatic microbial decomposition of leaf material in comparison to controls. In a further set of microcosm tests containing leaves from intentional high-dose trees, the only significant, adverse effect detected was a reduction in microbial decomposition of leaf material, and only at the highest test concentration (∼6 mg kg(-1)). Results indicated no significant adverse effects on litter-dwelling earthworms or leaf-shredding aquatic insects at concentrations up to at least 30 × the expected field concentrations at operational rates, and at 6 × expected field concentrations for adverse effects on microbial decomposition. We conclude that when azadirachtin is used as a systemic insecticide in trees for control of insect pests such as the invasive wood-boring beetle, emerald ash borer, resultant foliar concentrations in senescent leaf material are likely to pose little risk of harm to decomposer invertebrates. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  8. Through the sands of time: Beach litter trends from nine cleaned north cornish beaches.

    Science.gov (United States)

    Watts, Andrew J R; Porter, Adam; Hembrow, Neil; Sharpe, Jolyon; Galloway, Tamara S; Lewis, Ceri

    2017-09-01

    Marine litter and its accumulation on beaches is an issue of major current concern due to its significant environmental and economic impacts. Yet our understanding of spatio-temporal trends in beach litter and the drivers of these trends are currently limited by the availability of robust long term data sets. Here we present a unique data set collected systematically once a month, every month over a six year period for nine beaches along the North Coast of Cornwall, U.K. to investigate the key drivers of beach litter in the Bude, Padstow and Porthcothan areas. Overall, an average of 0.02 litter items m -2 per month were collected during the six year study, with Bude beaches (Summerleaze, Crooklets and Widemouth) the most impacted (0.03 ± 0.004 litter items m -2 per month). The amount of litter collected each month decreased by 18% and 71% respectively for Padstow (Polzeath, Trevone and Harlyn) and Bude areas over the 6 years, possibly related to the regular cleaning, however litter increased by 120% despite this monthly cleaning effort on the Padstow area beaches. Importantly, at all nine beaches the litter was dominated by small, fragmented plastic pieces and rope fibres, which account for 32% and 17% of all litter items collected, respectively. The weathered nature of these plastics indicates they have been in the marine environment for an extended period of time. So, whilst classifying the original source of these plastics is not possible, it can be concluded they are not the result of recent public littering. This data highlights both the extent of the marine litter problem and that current efforts to reduce littering by beach users will only tackle a fraction of this litter. Such information is vital for developing effective management strategies for beach and marine litter at both regional and global levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Robust Detection of Moving Human Target in Foliage-Penetration Environment Based on Hough Transform

    Directory of Open Access Journals (Sweden)

    P. Lei

    2014-04-01

    Full Text Available Attention has been focused on the robust moving human target detection in foliage-penetration environment, which presents a formidable task in a radar system because foliage is a rich scattering environment with complex multipath propagation and time-varying clutter. Generally, multiple-bounce returns and clutter are additionally superposed to direct-scatter echoes. They obscure true target echo and lead to poor visual quality time-range image, making target detection particular difficult. Consequently, an innovative approach is proposed to suppress clutter and mitigate multipath effects. In particular, a clutter suppression technique based on range alignment is firstly applied to suppress the time-varying clutter and the instable antenna coupling. Then entropy weighted coherent integration (EWCI algorithm is adopted to mitigate the multipath effects. In consequence, the proposed method effectively reduces the clutter and ghosting artifacts considerably. Based on the high visual quality image, the target trajectory is detected robustly and the radial velocity is estimated accurately with the Hough transform (HT. Real data used in the experimental results are provided to verify the proposed method.

  10. Effects of elevated CO2 on litter chemistry and subsequent invertebrate detritivore feeding responses.

    Directory of Open Access Journals (Sweden)

    Matthew W Dray

    Full Text Available Elevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no consensus on the link between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition. To identify any unifying mechanisms, we presented eight invertebrate species from aquatic and terrestrial ecosystems with litter from Alnus glutinosa (common alder or Betula pendula (silver birch trees propagated under ambient (380 ppm or elevated (ambient +200 ppm CO2 concentrations. Alder litter was largely unaffected by CO2 enrichment, but birch litter from leaves grown under elevated CO2 had reduced nitrogen concentrations and greater C/N ratios. Invertebrates were provided individually with either (i two litter discs, one of each CO2 treatment ('choice', or (ii one litter disc of each CO2 treatment alone ('no-choice'. Consumption was recorded. Only Odontocerum albicorne showed a feeding preference in the choice test, consuming more ambient- than elevated-CO2 birch litter. Species' responses to alder were highly idiosyncratic in the no-choice test: Gammarus pulex and O. albicorne consumed more elevated-CO2 than ambient-CO2 litter, indicating compensatory feeding, while Oniscus asellus consumed more of the ambient-CO2 litter. No species responded to CO2 treatment when fed birch litter. Overall, these results show how elevated atmospheric CO2 can alter litter chemistry, affecting invertebrate feeding behaviour in species-specific ways. The data highlight the need for greater species-level information when predicting changes to detrital processing-a key ecosystem function-under atmospheric change.

  11. Effect of leaf litter quantity and type on forest soil fauna and biological quality

    OpenAIRE

    Zhizhong Yuan; Yang Cui; Shaokui Yan

    2013-01-01

    It is important to assess forest litter management. Here we examined the effects of leaf litter addition on the soil faunal community in Huitong subtropical forest region in Hunan Province, China. The microcosm experiment involving leaf-litter manipulation using a block and nested experimental design, respectively, was established in May, 2011. In the block design, the effects of litter quantity and its control were examined, while in the nested design a comparison was made of litter quality ...

  12. Effect of different types of litter material for rearing broilers.

    Science.gov (United States)

    Swain, B K; Sundaram, R N

    2000-07-01

    1. Coir dust was evaluated as broiler litter in comparison with sawdust and rice husk using 135 commercial broilers. Forty-five broiler chicks were reared to 42 d on a 50 mm layer of each of these litters. 2. Birds reared on coir dust showed no difference in food consumption, body weight gain, food conversion efficiency production number and survivability in comparison to those reared on saw dust and rice husk. 3. It was concluded that coir dust is suitable as broiler litter when cheaply available.

  13. Artificial neural networks for modeling time series of beach litter in the southern North Sea.

    Science.gov (United States)

    Schulz, Marcus; Matthies, Michael

    2014-07-01

    In European marine waters, existing monitoring programs of beach litter need to be improved concerning litter items used as indicators of pollution levels, efficiency, and effectiveness. In order to ease and focus future monitoring of beach litter on few important litter items, feed-forward neural networks consisting of three layers were developed to relate single litter items to general categories of marine litter. The neural networks developed were applied to seven beaches in the southern North Sea and modeled time series of five general categories of marine litter, such as litter from fishing, shipping, and tourism. Results of regression analyses show that general categories were predicted significantly moderately to well. Measured and modeled data were in the same order of magnitude, and minima and maxima overlapped well. Neural networks were found to be eligible tools to deliver reliable predictions of marine litter with low computational effort and little input of information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Isotopic Discrimination During Leaf Litter Decomposition

    Science.gov (United States)

    Ngao, J.; Rubino, M.

    2006-12-01

    Methods involving stable isotopes have been successfully applied since decades in various research fields. Tracing 13C natural abundance in ecosystem compartments greatly enhanced the understanding of the C fluxes in the plant-soil-atmosphere C exchanges when compartments present different C isotopic signatures (i.e. atmospheric CO2 vs photosynthetic leaves, C3 vs C4; etc.). However, the assumption that no isotopic discrimination occurs during respiration is commonly made in numbers of C isotope-based ecological studies. Furthermore, verifications of such assumption are sparse and not enough reliable. The aim of our study is to assess the potential isotopic discrimination that may occur during litter decomposition. Leaf litter from an Arbutus unedo (L.) stand (Tolfa, Italy) was incubated in 1L jars, under constant laboratory conditions (i.e. 25 ° C and 135% WC). During the entire incubation period, gravimetric mass loss, litter respiration rates and the isotopic composition of respired CO2 are monitored at regular intervals. Data from 7 months of incubation will be presented and discussed. After two months, the litter mass loss averaged 16% of initial dry mass. During the same time-period, the respiration rate decreased significantly by 58% of the initial respiration rate. Isotopic compositions of respired CO2 ranged between -27.95‰ and - 25.69‰. Mean values did not differ significantly among the sampling days, in spite of an apparent enrichment in 13C of respired CO2 with time. The significance of these isotopic enrichment will be determined at a longer time scale. They may reveal both/either a direct microbial discrimination during respiration processes and/or a use of different litter compounds as C source along time. Further chemical and compound-specific isotopic analysis of dry matter will be performed in order to clarify these hypotheses. This work is part of the "ALICE" project, funded by the European Union's Marie Curie Fellowship Actions that aims to

  15. Marine litter monitoring by northern fulmars: progress report 2002

    NARCIS (Netherlands)

    Franeker, van J.A.; Meijboom, A.

    2003-01-01

    An earlier pilot study on litter contents in stomachs of Fulmars indicated that this seabird can be used as a suitable indicator for levels of marine litter pollution on the North Sea off the Dutch coast. This progress report updates the existing dataset with data on Fulmar stomach contents in the

  16. Leaf litter production of mahogany along street and campus forest of Universitas Negeri Semarang, Indonesia

    Science.gov (United States)

    Martin, F. P.; Abdullah, M.; Solichin; Hadiyanti, L. N.; Widianingrum, K.

    2018-03-01

    The leaf litter of trees along the existing streets on campus UNNES if not managed properly will be scattered and become garbage. Leaf litter Production in UNNES campus is not known for certain. UNNES does not own mapping of leaf litter Production of dominant tree species on campus. This cause leaf waste management is not optimal yet. There is still a lot of leaf litter that is discharged (not processed) because it exceeds the capacity of the fertilizer production equipment in the compost house. Aims of this study were to examine leaf litter production of dominant trees in Universitas Negeri Semarang and evaluate the relationship between leaf litter and average rainfall. Purposive sampling method placed pouches of nylon gauze measuring 1 × 1 mm2 as litter trap container with size 1 x l m2 (10 points mounted along street and campus forest). Litter trap mounted at the height of 50 cm above ground level. Leaf litter will be taken once a week for three months to observe the litter production. The litter was then dried by the oven at 70 ° C for 48 hours to obtain constant dry weight. Based on the results of the research, it was known that Mahogany tree in UNNES campus area has the potential to produce the litter of about 10 ton/ha / 3months in campus forest area and 2.5 ton/ha / 3months along campus street. There is a significant relationship between litter production of Mahogany leaves and precipitation during August - October 2017.

  17. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  18. Radiocesium migration in the litter layer of different forest types in Fukushima, Japan.

    Science.gov (United States)

    Kurihara, Momo; Onda, Yuichi; Kato, Hiroaki; Loffredo, Nicolas; Yasutaka, Tetsuo; Coppin, Frederic

    2018-07-01

    Cesium-137 ( 137 Cs) migration in the litter layer consists of various processes, such as input via throughfall, output via litter decomposition, and input from deeper layers via soil organism activity. We conducted litter bag experiments over 2 years (December 2014-November 2016) to quantify the inputs and outputs of 137 Cs in the litter layer in a Japanese cedar plantation (Cryptomeria japonica) and a mixed broadleaf forest dominated by Quercus serrata located 40 km northwest of the Fukushima Dai-ichi Nuclear Power Plant. The experiments included four conditions, combining contaminated and non-contaminated litter and deeper layer material, and the inputs and outputs were estimated from the combination of 137 Cs increases and decreases in the litter layer under each condition. The 137 Cs dynamics differed between the two forests. In the C. japonica forest, some 137 Cs input via throughfall remained in the litter layer, and downward 137 Cs flux passed through the litter layer was 0.42 (/year).Upward flux of 137 Cs from the deeper layer was very restricted, layers was restricted, downward 137 Cs flux was less than 0.003 (/year).Upward input of 137 Cs from the deeper layer was prominent, 0.037 (/year). 137 Cs output via litter decomposition was observed in both forests. The flux in the C. japonica forest was slower than that in the broadleaf forest, 0.12 and 0.15 (/year), respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Litter Accumulation and Nutrient Content of Roadside Plant Communities in Sichuan Basin, China.

    Science.gov (United States)

    He, Huiqin; Monaco, Thomas

    2017-08-30

    It is widely recognized that feedbacks exist between plant litter and plant community species composition, but this relationship is difficult to interpret over heterogeneous conditions typical of modified environments such as roadways. Given the need to expedite natural recovery of disturbed areas through restoration interventions, we characterized litter accumulation and nutrient content (i.e., organic carbon, total N, and P) and quantified their association with key plant species. Plant species cover and litter characteristics were sampled at 18 successional forest plant communities along major roadways in Sichuan Basin, western China. Variation in litter across communities was assessed with principal component analysis (PCA) and species with the highest correlation to PCA axes were determined with Pearson's r coefficients. Plant communities with the longest time since road construction (i.e., 70 years) were distinctly different in litter total N and organic carbon compared to plant communities with a shorter disturbance history. We encountered 59 plant species across sampling plots, but only four rare species (i.e., frequency plant litter across heavily disturbed landscapes and how litter characteristics and rare plant species are correlated.

  20. Demonstration of a Small Modular BioPower System Using Poultry Litter; FINAL

    International Nuclear Information System (INIS)

    John P. Reardon; Art Lilley; Jim Wimberly; Kingsbury Browne; Kelly Beard; Jack Avens

    2002-01-01

    The purpose of this project was to assess poultry grower residue, or litter (manure plus absorbent biomass), as a fuel source for Community Power Corporation's small modular biopower system (SMB). A second objective was to assess the poultry industry to identify potential ''on-site'' applications of the SMB system using poultry litter residue as a fuel source, and to adapt CPC's existing SMB to generate electricty and heat from the poultry litter biomass fuel. Bench-scale testing and pilot testing were used to gain design information for the SMB retrofit. System design approach for the Phase II application of the SMB was the goal of Phase I testing. Cost estimates for an onsite poultry litter SMB were prepared. Finally, a market estimate was prepared for implementation of the on-farm SMB using poultry litter

  1. Use of natural zeolite-supplemented litter increased broiler production

    African Journals Online (AJOL)

    The aim of this study was to ascertain the influence of natural zeolite, consisting mainly of clinoptilolite and mordenite, as a component of the litter material in broiler houses on the performance of the broilers and on some litter characteristics. Live weight gain, feed consumption, feed efficiency, viability and leg and body ...

  2. Marine litter distribution and density in European seas, from the shelves to deep basins.

    Science.gov (United States)

    Pham, Christopher K; Ramirez-Llodra, Eva; Alt, Claudia H S; Amaro, Teresa; Bergmann, Melanie; Canals, Miquel; Company, Joan B; Davies, Jaime; Duineveld, Gerard; Galgani, François; Howell, Kerry L; Huvenne, Veerle A I; Isidro, Eduardo; Jones, Daniel O B; Lastras, Galderic; Morato, Telmo; Gomes-Pereira, José Nuno; Purser, Autun; Stewart, Heather; Tojeira, Inês; Tubau, Xavier; Van Rooij, David; Tyler, Paul A

    2014-01-01

    Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets) was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments.

  3. Forest litter stocks in Korean pine-broad-leaved forests of the southern Sikhote Alin

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2015-10-01

    Full Text Available The article presents the data on the forest litter of the Korean pine-broad-leaved forests of the South of Primorsky krai. The focus of the research is plantations dominated by Korean pine; areas of the main tree species with ages of 50, 80, 130 and 200 years were selected. The dynamics of the forest litter stock in the pine and broadleaved forests of different ages according to the measurement results for the season in 2014 is stated. In the studied plantation, the forest litter stock varies between 9.7–20.3 t ha-1. The greatest value of the forest litter stock is recorded in old-growth cedar forest (200 years. Relatively high power and the stock of litter are typical for young Korean pine forest that can explain the lower speed of the litter properties change against the dynamics of taxation indicators of the forest stand. The difference between the amount of the litter in the 200-year-old and remaining pine trees are statistically significant at p = 0.05. The dependence of the litter power on the age is not revealed. The coefficient of the forest litter decomposition ranges from 2.55–10.60 that characterizes the high speed of its rotting. The highest coefficient of the litter decomposition has an old-growing pine forest. The schedule of seasonal humidity fluctuations of the forest litter on the chosen plot is made; with increasing cedar forest age, the volumetric moisture content of the forest litter increases; volumetric moisture content on the plots remain relatively unchanged during the season. The area of the Korean pine forests of Primorsky State Academy of Agriculture is 6835 ha. The amount of carbon stock in the forest litter is 38.7 thousand tons C. in this area, while the system of regional assessment of the forest carbon balance estimates this index as 24.3 tons С. The data obtained can be used to adjust the coefficients of regional assessment of the forest carbon balance for cedar forests of Primorsky krai.

  4. [DNA extraction from decomposed tissue by double-digest and magnetic beads methods].

    Science.gov (United States)

    Yang, Dian; Liu, Chao; Liu, Hong

    2011-12-01

    To study the effect of the double-digest and magnetic beads method for DNA extraction from 3 types of decomposed tissues. DNA of cartilages, nails and joint capsule in 91 highly decomposed corpses which had not been extracted by common magnetic beads method, were prepared with the double-digest and magnetic beads methods, and quantified with Quantifiler kit, followed by amplification with Sinofiler kit or Minifiler kit. DNA concentration extracted from the 91 highly decomposed cartilages, nails and joint capsule samples was 0-0.225 ng/microL. Sixty-two samples whose DNA concentration were more than 0.020 ng/microL had obtained 9 or more STR loci successfully. The detection rate was 68.13%. The successful rate of STR genotyping for the 3 types of decomposed tissues can be significantly improved by the double-digest and magnetic beads methods.

  5. Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?

    Science.gov (United States)

    Cornelissen, J H C; Quested, H M; van Logtestijn, R S P; Pérez-Harguindeguy, N; Gwynn-Jones, D; Díaz, S; Callaghan, T V; Press, M C; Aerts, R

    2006-03-01

    Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.

  6. Promoting Effect of Foliage Sprayed Zinc Sulfate on Accumulation of Sugar and Phenolics in Berries of Vitis vinifera cv. Merlot Growing on Zinc Deficient Soil

    Directory of Open Access Journals (Sweden)

    Chang-Zheng Song

    2015-02-01

    Full Text Available The effect of foliage sprayed zinc sulfate on berry development of Vitis vinifera cv. Merlot growing on arid zone Zn-deficient soils was investigated over two consecutive seasons, 2013 and 2014. Initial zinc concentration in soil and vines, photosynthesis at three berry developmental stages, berry weight, content of total soluble solids, titratable acidity, phenolics and expression of phenolics biosynthetic pathway genes throughout the stages were measured. Foliage sprayed zinc sulfate showed promoting effects on photosynthesis and berry development of vines and the promotion mainly occurred from veraison to maturation. Zn treatments enhanced the accumulation of total soluble solids, total phenols, flavonoids, flavanols, tannins and anthocyanins in berry skin, decreasing the concentration of titratable acidity. Furthermore, foliage sprayed zinc sulfate could significantly influence the expression of phenolics biosynthetic pathway genes throughout berry development, and the results of expression analysis supported the promotion of Zn treatments on phenolics accumulation. This research is the first comprehensive and detailed study about the effect of foliage sprayed Zn fertilizer on grape berry development, phenolics accumulation and gene expression in berry skin, providing a basis for improving the quality of grape and wine in Zn-deficient areas.

  7. Detection and quantification of ionophore antibiotics in runoff, soil and poultry litter.

    Science.gov (United States)

    Sun, Peizhe; Barmaz, Delphine; Cabrera, Miguel L; Pavlostathis, Spyros G; Huang, Ching-Hua

    2013-10-18

    Ionophore antibiotics (IPAs) are widely used as coccidiostats in poultry and other livestock industries to promote growth and prevent infections. Because most of the ingested IPAs are excreted in poultry litter, which is primarily applied as grassland fertilizer, a significant amount of IPAs can be released into the litter-soil-water environment. A robust analytical method has been developed to quantify IPAs (monensin (MON), salinomycin (SAL) and narasin (NAR)) in complex environmental compartments including surface runoff, soil and poultry litter, with success to minimize matrix interference. The method for water samples involves solid-phase extraction (SPE) followed by liquid-liquid extraction (LLE) post-clean up steps. The method for solid samples involves bi-solvent LLE. IPAs were detected by HPLC-MS, with optimized parameters to achieve the highest sensitivity. Nigericin (NIG), an IPA not used in livestock industry, is successfully applied and validated as a surrogate standard. The method recoveries were at 92-95% and 81-85% in runoff samples from unfertilized and litter-fertilized fields, respectively. For solids, the method recoveries were at 93-99% in soils, and 79-83% in poultry litter samples. SAL was detected at up to 22mg/kg and MON and NAR at up to 4mg/kg in broiler litter from different farms. Up to 183μg/kg of MON was detected in litter-fertilized soils. All three IPAs were detected in the rainfall runoff from litter-fertilized lands at concentrations up to 9μg/L. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Comparison of four sampling methods for the detection of Salmonella in broiler litter.

    Science.gov (United States)

    Buhr, R J; Richardson, L J; Cason, J A; Cox, N A; Fairchild, B D

    2007-01-01

    Experiments were conducted to compare litter sampling methods for the detection of Salmonella. In experiment 1, chicks were challenged orally with a suspension of naladixic acid-resistant Salmonella and wing banded, and additional nonchallenged chicks were placed into each of 2 challenge pens. Nonchallenged chicks were placed into each nonchallenge pen located adjacent to the challenge pens. At 7, 8, 10, and 11 wk of age the litter was sampled using 4 methods: fecal droppings, litter grab, drag swab, and sock. For the challenge pens, Salmonella-positive samples were detected in 3 of 16 fecal samples, 6 of 16 litter grab samples, 7 of 16 drag swabs samples, and 7 of 16 sock samples. Samples from the nonchallenge pens were Salmonella positive in 2 of 16 litter grab samples, 9 of 16 drag swab samples, and 9 of 16 sock samples. In experiment 2, chicks were challenged with Salmonella, and the litter in the challenge and adjacent nonchallenge pens were sampled at 4, 6, and 8 wk of age with broilers remaining in all pens. For the challenge pens, Salmonella was detected in 10 of 36 fecal samples, 20 of 36 litter grab samples, 14 of 36 drag swab samples, and 26 of 36 sock samples. Samples from the adjacent nonchallenge pens were positive for Salmonella in 6 of 36 fecal droppings samples, 4 of 36 litter grab samples, 7 of 36 drag swab samples, and 19 of 36 sock samples. Sock samples had the highest rates of Salmonella detection. In experiment 3, the litter from a Salmonella-challenged flock was sampled at 7, 8, and 9 wk by socks and drag swabs. In addition, comparisons with drag swabs that were stepped on during sampling were made. Both socks (24 of 36, 67%) and drag swabs that were stepped on (25 of 36, 69%) showed significantly more Salmonella-positive samples than the traditional drag swab method (16 of 36, 44%). Drag swabs that were stepped on had comparable Salmonella detection level to that for socks. Litter sampling methods that incorporate stepping on the sample

  9. Assessment of tannin variation in Tamarisk foliage across a latitudinal gradient

    Science.gov (United States)

    Hussey, A.M.; Kimball, B.A.; Friedman, J.M.

    2011-01-01

    Certain phenotypic traits of plants vary with latitude of origin. To understand if tannin concentration varies among populations of tamarisk (Tamarix spp.) according to a latitudinal gradient, an analytical method was adapted from an enological tannin assay. The tannin content (wet basis) of tamarisk foliage collected from 160 plants grown in a common garden ranged from 8.26 to 62.36 mg/g and was not correlated with the latitude of the original North American plant collection site. Tannins do not contribute to observed differences in herbivory observed among these tamarisk populations.

  10. A note on arbitrarily vertex decomposable graphs

    Directory of Open Access Journals (Sweden)

    Antoni Marczyk

    2006-01-01

    Full Text Available A graph \\(G\\ of order \\(n\\ is said to be arbitrarily vertex decomposable if for each sequence \\((n_{1},\\ldots,n_k\\ of positive integers such that \\(n_{1}+\\ldots+n_{k}=n\\ there exists a partition \\((V_{1},\\ldots,V_{k}\\ of the vertex set of \\(G\\ such that for each \\(i \\in \\{1,\\ldots,k\\}\\, \\(V_{i}\\ induces a connected subgraph of \\(G\\ on \\(n_i\\ vertices. In this paper we show that if \\(G\\ is a two-connected graph on \\(n\\ vertices with the independence number at most \\(\\lceil n/2\\rceil\\ and such that the degree sum of any pair of non-adjacent vertices is at least \\(n-3\\, then \\(G\\ is arbitrarily vertex decomposable. We present another result for connected graphs satisfying a similar condition, where the bound \\(n-3\\ is replaced by \\(n-2\\.

  11. Interaction of basal foliage removal and late season fungicide applications in management of Hop powdery mildew

    Science.gov (United States)

    Experiments were conducted over three years to evaluate whether fungicide applications could be ceased after the most susceptible stages of cone development (late July) without unduly affecting crop yield and quality when disease pressure was moderated with varying levels of basal foliage removal. I...

  12. The effect of leaf litter cover on surface runoff and soil erosion in Northern China.

    Science.gov (United States)

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2014-01-01

    The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (prunoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, prunoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (prunoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.

  13. The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China

    Science.gov (United States)

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2014-01-01

    The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (prunoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, prunoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h−1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (prunoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. PMID:25232858

  14. [Species-associated differences in foliage-root coupling soil-reinforcement and anti-erosion].

    Science.gov (United States)

    Liu, Fu-quan; Liu, Jing; Nao, Min; Yao, Xi-jun; Zheng, Yong-gang; Li, You-fang; Su, Yu; Wang, Chen-jia

    2015-02-01

    This paper took four kinds of common soil and water conservation plants of the study area, Caragana microphylla, Salix psammophila, Artemisia sphaerocephala and Hippophae rhamnides at ages of 4 as the research object. Thirteen indicators, i.e., single shrub to reduce wind velocity ration, shelterbelt reducing wind velocity ration, community reducing wind velocity ration, taproot tensile strength, representative root constitutive properties, representative root elasticity modulus, lateral root branch tensile strength, accumulative surface area, root-soil interface sheer strength, interface friction coefficient, accumulative root length, root-soil composite cohesive, root-soil composite equivalent friction angle, reflecting the characteristics of windbreak and roots, were chose to evaluate the differences of foliage-root coupling soil-reinforcement and anti-erosion among four kinds of plants by analytic hierarchy process (AHP) under the condition of spring gale and summer rainstorm, respectively. The results showed the anti-erosion index of foliage-root coupling was in the sequence of S. psammophila (0.841) > C. microphylla (0.454) > A. sphaerocephala (-0.466) > H. rhamnides (-0.829) in spring gale, and C. microphylla (0.841) > S. psammophila (0. 474) > A. sphaerocephala (-0.470) > H. rhamnides (-0.844) in summer rainstorm. S. psammophila could be regarded as one of the most important windbreak and anti-erosion species, while C. microphylla could be the most valuable soil and water conservation plant for the study area.

  15. The effect of leaf litter cover on surface runoff and soil erosion in Northern China.

    Directory of Open Access Journals (Sweden)

    Xiang Li

    Full Text Available The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter, four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05. Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05, and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05 were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05 with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.

  16. Mineralization of hormones in breeder and broiler litters at different water potentials and temperatures.

    Science.gov (United States)

    Hemmings, Sarah N J; Hartel, Peter G

    2006-01-01

    When poultry litter is landspread, steroidal hormones present in the litter may reach surface waters, where they may have undesirable biological effects. In a laboratory study, we determined the mineralization of [4-14C]-labeled 17beta-estradiol, estrone, and testosterone in breeder litter at three different water potentials (-56, -24, and -12 MPa) and temperatures (25, 35, and 45 degrees C), and in broiler litter at two different water potentials (-24 and -12 MPa) and temperatures (25 and 35 degrees C). Mineralization was similar in both litters and generally increased with increasing water content and decreasing temperature. After 23 wk at -24 MPa, an average of 27, 11, and litter was mineralized to 14CO2 at 25, 35, and 45 degrees C, respectively. In contrast, mineralization of the radiolabeled estradiol and estrone was mineralized. The minimal mineralization suggests that the litters may still be potential sources of hormones to surface and subsurface waters.

  17. Investigation and comprehensive evaluation of the litter pollution on the Heishijiao beach in Dalian

    Science.gov (United States)

    Han, Mengdi; Zhao, Kaiyuan; Zhang, Yan; Sui, Chuanguo

    2018-02-01

    From November 2015 to August 2016, this paper conducted an investigation into the classification of the litter on the Heishijiao beach in Dalian, and made a comprehensive evaluation of the litter pollution on the beach in different seasons. According to the results, the litter on the Heishijiao beach in Dalian mainly come from human’s offshore activities and other wastes, and spring is the season which witnesses the largest quantity of litter resulting from the activities. Most of the fragmental wastes are glass, plastic and paper, while there is a little metal, rubber and wooden products. On the Heishijiao beach, most of the fragmental litter are small, followed by medium and large ones; outsized wastes are rare. The quantitative density of litter is highest in winter (9.0items/m2), with the average quantitative density of 4.6 items/m2; the qualitative density of litter is highest in spring (8 g/m2), with the average qualitative density of 6.0 g/m2. The results of the comprehensive evaluation show that the litter pollution on the Heishijiao beach stays between “Average” and “Unsatisfactory”.

  18. Marine litter distribution and density in European seas, from the shelves to deep basins.

    Directory of Open Access Journals (Sweden)

    Christopher K Pham

    Full Text Available Anthropogenic litter is present in all marine habitats, from beaches to the most remote points in the oceans. On the seafloor, marine litter, particularly plastic, can accumulate in high densities with deleterious consequences for its inhabitants. Yet, because of the high cost involved with sampling the seafloor, no large-scale assessment of distribution patterns was available to date. Here, we present data on litter distribution and density collected during 588 video and trawl surveys across 32 sites in European waters. We found litter to be present in the deepest areas and at locations as remote from land as the Charlie-Gibbs Fracture Zone across the Mid-Atlantic Ridge. The highest litter density occurs in submarine canyons, whilst the lowest density can be found on continental shelves and on ocean ridges. Plastic was the most prevalent litter item found on the seafloor. Litter from fishing activities (derelict fishing lines and nets was particularly common on seamounts, banks, mounds and ocean ridges. Our results highlight the extent of the problem and the need for action to prevent increasing accumulation of litter in marine environments.

  19. The role of the plant litter layer in the recycling of radiocaesium in upland habitats

    International Nuclear Information System (INIS)

    Horrill, A.D.; Kennedy, V.H.; Dent, T.L.; Thomson, A.J.

    1992-08-01

    Field and laboratory studies have been used to investigate the role of the plant litter layer in upland habitats. Radiocaesium, deposited unhomogeneously, by the Chernobyl accident, ranged from 1 3000 - 2 400 Bq kgsup(-1) in a range of plant litters in May 1992. In the field 45% of the 137 Cs in heather litter was released over a two year period. Litter leachates contained 0.1 -0.7 Bq 1 -1 of 137 Cs. Microbial population size has also been shown to affect 137 Cs release rates in laboratory experiments on heather and spruce litter. 137 Cs distribution within litter has been investigated by sequential extraction techniques and it was shown that there is a potential long term immobilization of c. 20% of litter 137 Cs by the lignin component. (author)

  20. Is there a tree economics spectrum of decomposability?

    NARCIS (Netherlands)

    Zuo, Juan; Hefting, Mariet M.; Berg, Matty P.; van Logtestijn, Richard S.P.; van Hal, Jurgen; Goudzwaard, Leo; Liu, Jin Chun; Sass-Klaassen, Ute; Sterck, Frank J.; Poorter, Lourens; Cornelissen, Johannes H.C.

    2018-01-01

    The plant economics spectrum (PES) integrates trade-offs and coordination in resource traits among species within and between organs, and affects ecosystem processes such as litter decomposition. This PES is currently based on trait variation among a wide range of plant types and growth forms. Here

  1. Dynamics of low-temperature acclimation in temperate and boreal conifer foliage in a mild winter climate

    Science.gov (United States)

    G. Richard Strimbeck; Trygve D. Kjellsen; Paul G. Schaberg; Paula F. Murakami

    2008-01-01

    To provide baseline data for physiological studies of extreme low-temperature (LT) tolerance in boreal conifers, we profiled LT stress responses, liquid nitrogen (LN2)-quench tolerance, and sugar concentrations in foliage of boreal-temperate species pairs in the genera Abies, Picea and Pinus, growing in an...

  2. Flue-gas desulfurization gypsum effects on urea-degrading bacteria and ammonia volatilization from broiler litter.

    Science.gov (United States)

    Burt, Christopher D; Cabrera, Miguel L; Rothrock, Michael J; Kissel, D E

    2017-08-01

    A major concern of the broiler industry is the volatilization of ammonia (NH3) from the mixture of bedding material and broiler excretion that covers the floor of broiler houses. Gypsum has been proposed as a litter amendment to reduce NH3 volatilization, but reports of NH3 abatement vary among studies and the mechanism responsible for decreasing NH3 volatilization is not well understood. The goal of this study was to evaluate the effect of adding 20 or 40% flue-gas desulfurization gypsum (FGDG) to broiler litter on pH, electrical conductivity (EC), water potential, urea-degrading bacteria abundance, NH3 and carbon dioxide (CO2) evolution, and nitrogen (N) mineralization in several 21-d experiments. The addition of FGDG to broiler litter increased EC by 24 to 33% (P mineralization by 10 to 11% (P = 0.0001) as compared to litters not amended with FGDG. Furthermore, the addition of FGDG to broiler litter decreased NH3 volatilization by 18 to 28% (P litter pH values compared to un-amended litter (P litter with 20% FGDG can decrease NH3 volatilization and increase the fertlizer value of broiler litter. © 2017 Poultry Science Association Inc.

  3. The multidimensional causal factors of 'wet litter' in chicken-meat production.

    Science.gov (United States)

    Dunlop, Mark W; Moss, Amy F; Groves, Peter J; Wilkinson, Stuart J; Stuetz, Richard M; Selle, Peter H

    2016-08-15

    The problem of 'wet litter', which occurs primarily in grow-out sheds for meat chickens (broilers), has been recognised for nearly a century. Nevertheless, it is an increasingly important problem in contemporary chicken-meat production as wet litter and associated conditions, especially footpad dermatitis, have developed into tangible welfare issues. This is only compounded by the market demand for chicken paws and compromised bird performance. This review considers the multidimensional causal factors of wet litter. While many causal factors can be listed it is evident that the critical ones could be described as micro-environmental factors and chief amongst them is proper management of drinking systems and adequate shed ventilation. Thus, this review focuses on these environmental factors and pays less attention to issues stemming from health and nutrition. Clearly, there are times when related avian health issues of coccidiosis and necrotic enteritis cannot be overlooked and the development of efficacious vaccines for the latter disease would be advantageous. Presently, the inclusion of phytate-degrading enzymes in meat chicken diets is routine and, therefore, the implication that exogenous phytases may contribute to wet litter is given consideration. Opinion is somewhat divided as how best to counter the problem of wet litter as some see education and extension as being more beneficial than furthering research efforts. However, it may prove instructive to assess the practice of whole grain feeding in relation to litter quality and the incidence of footpad dermatitis. Additional research could investigate the relationships between dietary concentrations of key minerals and the application of exogenous enzymes with litter quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  4. The use of beached bird surveys for marine plastic litter monitoring in Ireland

    NARCIS (Netherlands)

    Acampora, Heidi; Lyashevska, Olga; Franeker, van J.A.; O'Connor, I.

    2016-01-01

    Marine plastic litter has become a major threat to wildlife. Marine animals are highly susceptible to entanglement and ingestion of debris at sea. Governments all around the world are being urged to monitor litter sources and inputs, and to mitigate the impacts of marine litter, which is primarily

  5. Investigating organic matter in Fanno Creek, Oregon, Part 1 of 3: estimating annual foliar biomass for a deciduous-dominant urban riparian corridor

    Science.gov (United States)

    Sobieszczyk, Steven; Keith, Mackenzie K.; Rounds, Stewart A.; Goldman, Jami H.

    2014-01-01

    For this study, we explored the amount, type, and distribution of foliar biomass that is deposited annually as leaf litter to Fanno Creek and its floodplain in Portland, Oregon, USA. Organic matter is a significant contributor to the decreased dissolved oxygen concentrations observed in Fanno Creek each year and leaf litter is amongst the largest sources of organic matter to the stream channel and floodplain. Using a combination of field measurements and light detection and ranging (LiDAR) point cloud data, the annual foliar biomass was estimated for 13 stream reaches along the creek. Biomass estimates were divided into two sets: (1) the annual foliage available from the entire floodplain overstory canopy, and (2) the annual foliage overhanging the stream, which likely contributes leaf litter directly to the creek each year. Based on these computations, an estimated 991 (±22%) metric tons (tonnes, t) of foliar biomass is produced annually above the floodplain, with about 136 t (±24%) of that foliage falling directly into Fanno Creek. The distribution of foliar biomass varies by reach, with between 150 and 640 t/km2 produced along the floodplain and between 400 and 1100 t/km2 available over the channel. Biomass estimates vary by reach based primarily on the density of tree cover, with forest-dominant reaches containing more mature deciduous trees with broader tree canopies than either wetland or urban-dominant reaches, thus supplying more organic material to the creek. By quantifying the foliar biomass along Fanno Creek we have provided a reach-scale assessment of terrestrial organic matter loading, thereby providing land managers useful information for planning future restoration efforts.

  6. Scalable Domain Decomposed Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  7. Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species.

    Science.gov (United States)

    Aerts, R; Callaghan, T V; Dorrepaal, E; van Logtestijn, R S P; Cornelissen, J H C

    2012-11-01

    Litter decomposition and nutrient mineralization in high-latitude peatlands are constrained by low temperatures. So far, little is known about the effects of seasonal components of climate change (higher spring and summer temperatures, more snow which leads to higher winter soil temperatures) on these processes. In a 4-year field experiment, we manipulated these seasonal components in a sub-arctic bog and studied the effects on the decomposition and N and P dynamics of leaf litter of Calamagrostis lapponica, Betula nana, and Rubus chamaemorus, incubated both in a common ambient environment and in the treatment plots. Mass loss in the controls increased in the order Calamagrostis Litter chemistry showed within each incubation environment only a few and species-specific responses. Compared to the interspecific differences, they resulted in only moderate climate treatment effects on mass loss and these differed among seasons and species. Neither N nor P mineralization in the litter were affected by the incubation environment. Remarkably, for all species, no net N mineralization had occurred in any of the treatments during 4 years. Species differed in P-release patterns, and summer warming strongly stimulated P release for all species. Thus, moderate changes in summer temperatures and/or winter snow addition have limited effects on litter decomposition rates and N dynamics, but summer warming does stimulate litter P release. As a result, N-limitation of plant growth in this sub-arctic bog may be sustained or even further promoted.

  8. Mapping a candidate gene (MdMYB10 for red flesh and foliage colour in apple

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2007-07-01

    Full Text Available Abstract Background Integrating plant genomics and classical breeding is a challenge for both plant breeders and molecular biologists. Marker-assisted selection (MAS is a tool that can be used to accelerate the development of novel apple varieties such as cultivars that have fruit with anthocyanin through to the core. In addition, determining the inheritance of novel alleles, such as the one responsible for red flesh, adds to our understanding of allelic variation. Our goal was to map candidate anthocyanin biosynthetic and regulatory genes in a population segregating for the red flesh phenotypes. Results We have identified the Rni locus, a major genetic determinant of the red foliage and red colour in the core of apple fruit. In a population segregating for the red flesh and foliage phenotype we have determined the inheritance of the Rni locus and DNA polymorphisms of candidate anthocyanin biosynthetic and regulatory genes. Simple Sequence Repeats (SSRs and Single Nucleotide Polymorphisms (SNPs in the candidate genes were also located on an apple genetic map. We have shown that the MdMYB10 gene co-segregates with the Rni locus and is on Linkage Group (LG 09 of the apple genome. Conclusion We have performed candidate gene mapping in a fruit tree crop and have provided genetic evidence that red colouration in the fruit core as well as red foliage are both controlled by a single locus named Rni. We have shown that the transcription factor MdMYB10 may be the gene underlying Rni as there were no recombinants between the marker for this gene and the red phenotype in a population of 516 individuals. Associating markers derived from candidate genes with a desirable phenotypic trait has demonstrated the application of genomic tools in a breeding programme of a horticultural crop species.

  9. Analysis of litter mesofauna of Poltava region forest ecosystems

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2007-08-01

    Full Text Available On the basis of research of litter mesofauna of 48 forest biogeocenoses the regularities of invertebrate communities formation on the species and families levels are determined. The degree of similarity of test plots are analysed by taxonomic structure of the communities. The factors of the litter invertebrate communities formation in forest ecosystems of the Poltava region are revealed.

  10. Litter aeration and spread of Salmonella in broilers.

    Science.gov (United States)

    Bodí, Sara González; Garcia, Arantxa Villagra; García, Santiago Vega; Orenga, Clara Marín

    2013-08-01

    Litter quality in the poultry sector is one of the main parameters of health, productivity, and animal welfare. Therefore, innovative management methods have been developed to improve the quality of litter. One of them is litter aeration (LA) by tumbling. However, there is little information related to the effect of this technique on the spreading of pathogens of public health importance such as Salmonella. In this context, the objective of this study was to determine the epidemiology of Salmonella in poultry farms, when serial LA were implemented during the rearing cycle of broilers. For this purpose, an experimental broiler farm with 3 identical rooms was used in the study. Two rooms were assigned to the LA treatment, and the other one served as the control room. Environmental samples were taken in poultry houses after LA in 4 consecutive weeks at the end of the cycle. All samples collected were analyzed according to the standards of the International Organization for Standardization (ISO 6579:2002, Annex D). The results of this study showed that in the control and treated rooms, the percentage of positive samples for Salmonella decreased in the first 3 LA sessions (LA 1, LA 2, and LA 3). However, in the last LA session of rearing (LA 4), the percentage of positive samples increased from 8.2 to 33.2% in the control room instead the treated rooms where the positive samples decreased (P = 0.017). Thus, the aeration of the litter as litter management technique in poultry broiler production does not increase the shedding or the spread of Salmonella throughout broiler houses. In addition, it could be an effective technique to reduce the infective pressure of this bacterium in several areas of the farm or in certain moments of the rearing period with more risk of multiplication and spreading of Salmonella.

  11. Effects of Nitrogen Addition on Leaf Decomposition of Single-Species and Litter Mixture in Pinus tabulaeformis Forests

    Directory of Open Access Journals (Sweden)

    Jinsong Wang

    2015-12-01

    Full Text Available The litter decomposition process is closely correlated with nutrient cycling and the maintenance of soil fertility in the forest ecosystem. In particular, the intense environmental concern about atmospheric nitrogen (N deposition requires a better understanding of its influence on the litter decomposition process. This study examines the responses of single-species litter and litter mixture decomposition processes to N addition in Chinese pine (Pinus tabulaeformis Carr. ecosystems. Chinese pine litter, Mongolian oak (Quercus mongolica Fisch. ex Ledeb. litter, and a pine–oak mixture were selected from a plantation and a natural forest of Chinese pine. Four N addition treatments, i.e., control (N0: 0 kg N ha−1·year−1, low-N (N1: 5 kg N ha−1·year−1, medium-N (N2: 10 kg N ha−1·year−1, and high-N (N3: 15 kg N ha−1·year−1, were applied starting May 2010. In the plantation, N addition significantly stimulated the decomposition of the Chinese pine litter. In the natural forest, N addition had variable effects on the decomposition of single-species litter and the litter mixture. A stimulatory effect of the high-N treatment on the Chinese pine litter decomposition could be attributed to a decrease in the substrate C:N ratio. However, an opposite effect was found for the Mongolian oak litter decomposition. The stimulating effect of N addition on the Chinese pine litter may offset the suppressive effect on the Mongolian oak litter, resulting in a neutral effect on the litter mixture. These results suggest that the different responses in decomposition of single-species litter and the litter mixture to N addition are mainly attributed to litter chemical composition. Further investigations are required to characterize the effect of long-term high-level N addition on the litter decomposition as N deposition is likely to increase rapidly in the region where this study was conducted.

  12. Quicklime treatment and stirring of different poultry litter substrates for reducing pathogenic bacteria counts.

    Science.gov (United States)

    Lopes, M; Roll, V F B; Leite, F L; Dai Prá, M A; Xavier, E G; Heres, T; Valente, B S

    2013-03-01

    Testing different management practices can help to identify conditions that decrease or even eliminate pathogenic bacteria in poultry litter. A trial was conducted to evaluate the effects of daily manual stirring (rotation of the litter with a pitchfork) for the first 14 d of a bird's life (WDR), in 3 types of poultry litter substrates and quicklime treatment (CaO) during layout time between flocks on pathogenic bacteria occurrence (cfu). A total of 216 male Cobb broilers were randomly allotted to 18 pens with new litter (experimental unit). A split-plot design, with 6 treatments allotted to the main plots, was used: 1) wood shavings (WS) + WDR, 2) WS without stirring up to 14 d (WODR), 3) rice hulls (RIH) + WDR, 4) RIH + WODR, 5) mixture of 50% RIH and WS + WDR, and 6) mixture of 50% RIH and WS + WODR. Two treatments were allotted to the subplots: 0 and 300 g of CaO•m(-2) litter. After depopulation, litter samples were collected, and CaO was incorporated into the litter in the designated half of each pen. The cfu from litter samples after 7 d of the quicklime treatment were counted on Chapman agar, brain heart infusion media, and MacConkey agar. The data were analyzed using ANOVA, and the means were compared by least squares means (P litter efficiently reduced the cfu observed on brain heart infusion, Chapman agar, and MacConkey agar media by 57.2, 66.9, and 92.1%, respectively, compared with control (6.4, 17.9, and 46.1%; P litter reduces the cfu, regardless of the substrate and stirring performed.

  13. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil

    Science.gov (United States)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Imran, Muhammad; Dhavamani, Jeyakumar; Ismail, Iqbal M. I.; Basahi, Jalal M.; Almeelbi, Talal

    2017-02-01

    We examined time-dependent effect of iron oxide nanoparticles (IONPs) at a rate of 2000 mg kg-1 soil on Cynodon dactylon litter (3 g kg-1) decomposition in an arid sandy soil. Overall, heterotrophic cultivable bacterial and fungal colonies, and microbial biomass carbon were significantly decreased in litter-amended soil by the application of nanoparticles after 90 and 180 days of incubation. Time dependent effect of nanoparticles was significant for microbial biomass in litter-amended soil where nanoparticles decreased this variable from 27% after 90 days to 49% after 180 days. IONPs decreased CO2 emission by 28 and 30% from litter-amended soil after 90 and 180 days, respectively. These observations indicated that time-dependent effect was not significant on grass-litter carbon mineralization efficiency. Alternatively, nanoparticles application significantly reduced mineral nitrogen content in litter-amended soil in both time intervals. Therefore, nitrogen mineralization efficiency was decreased to 60% after 180 days compared to that after 90 days in nanoparticles grass-litter amended soil. These effects can be explained by the presence of labile Fe in microbial biomass after 180 days in nanoparticles amendment. Hence, our results suggest that toxicity of IONPs to soil functioning should consider before recommending their use in agro-ecosystems.

  14. Litter Decomposition Rate of Avicennia marina and Rhizophora apiculata in Pulau Dua Nature Reserve, Banten

    Directory of Open Access Journals (Sweden)

    Febriana Siska

    2016-05-01

    Full Text Available Litter decomposition rate is useful method to determine forest fertility level. The aims of this study were to measure decomposition rate, and analyze the nutrient content released organic carbon, nitrogen, and phosphor from Avicennia marina and Rhizophora apiculata litters during the decomposition process. The research was conducted in the Pulau Dua Nature Reserve, Serang-Banten on A. marina and R. apiculata forest communities. Litter decomposition rate measurements performed in the field. Litter that has been obtained with the trap system is inserted into litter bag and than tied to the roots or trees to avoid drifting sea water. Litter decomposition rate was measured every 15 days and is accompanied by analysis of the content of organic C , total N and P. Our research results showed decomposition rate of A. marina (k= 0.83 was higher than that of R. apiculata (k= 0.41. Differences of  leaf anatomical structure and sea water salinity  influenced to the rate of litter decomposition. Organic C released was declined with longer of litter decomposition, on the contrary of releasing N and P nutrients.

  15. Measurement and characterization of cellulase activity in sclerophyllous forest litter.

    Science.gov (United States)

    Criquet, Stéven

    2002-07-01

    Cellulases are enzymatic proteins which hydrolyze cellulose polymers to smaller oligosaccharides, cellobiose and glucose. They consist in three major types of enzymes: endoglucanases (EC 3.2.1.4), cellobiohydrolases (EC 3.2.1.91) and beta-glucosidases (EC 3.2.1.21) which play an essential role in carbon turnover of forest ecosystem. The aim of this study was firstly to determine the parameters (i.e. buffer type, pH, temperature, quantity of litter, incubation time and reagent type) which affect the measurement of cellulase activity in a sclerophyllous forest litter, and secondly to compare two methods for measuring cellulase activity: a direct method and an extraction method. In the direct method, the litter was directly incubated with a buffered solution containing the enzyme substrate, whereas in the extraction method, the cellulases were firstly extracted before measuring their activity. The results were compared with other studies about soil cellulase activity, and it appeared that several parameters (buffer type, pH, temperature and sample quantity) which influence the measurement of cellulase activity differ according to whether a soil or a litter is considered. Concerning the procedure used for the measurement of cellulase activity, results showed that the activity values were higher when using an extraction procedure than when using a direct procedure. The extraction procedure, combined with a concentration stage of the extract, also allowed electrophoretic analysis (PAGE) of the cellulases extracted from the litter. The electrophoretic pattern revealed two cellulase isoenzymes which may be related to the occurrence of two pH-activity peaks of these enzymes when citrate buffer was used for the measurement of cellulase activity in the litter.

  16. Effects of anthropogenic heavy metal contamination on litter decomposition in streams – A meta-analysis

    International Nuclear Information System (INIS)

    Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K.; Guérold, François

    2016-01-01

    Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. - Highlights: • A meta-analysis was done to assess the effects of heavy metals on litter decomposition. • Heavy metals significantly and strongly inhibited litter decomposition in streams.

  17. Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life.

    Science.gov (United States)

    Bergmann, Melanie; Lutz, Birgit; Tekman, Mine B; Gutow, Lars

    2017-12-15

    Recent data indicate accumulation areas of marine litter in Arctic waters and significant increases over time. Beaches on remote Arctic islands may be sinks for marine litter and reflect pollution levels of the surrounding waters particularly well. We provide the first quantitative data from surveys carried out by citizen scientists on six beaches of Svalbard. Litter quantities recorded by cruise tourists varied from 9-524gm -2 and were similar to those from densely populated areas. Plastics accounted for >80% of the overall litter, most of which originated from fisheries. Photographs provided by citizens show deleterious effects of beach litter on Arctic wildlife, which is already under strong pressure from global climate change. Our study highlights the potential of citizen scientists to provide scientifically valuable data on the pollution of sensitive remote ecosystems. The results stress once more that current legislative frameworks are insufficient to tackle the pollution of Arctic ecosystems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Rate of litter decomposition and microbial activity in an area of Caatinga

    Directory of Open Access Journals (Sweden)

    Patrícia Carneiro Souto

    2013-12-01

    Full Text Available In order to evaluate the decomposition of litter and microbial activity in an area of preserved Caatinga, an experiment was conducted in the Natural Heritage Private Reserve Tamanduá Farm in Santa Terezinha county, State of Paraiba. The decomposition rate was determined by using litter bags containing 30 g of litter, which were arranged on the soil surface in September 2003 and 20 bags were taken each month until September 2005. The collected material was oven dried and weighed to assess weight loss compared to initial weight. Microbial activity was estimated monthly by the quantification of carbon dioxide (CO2 released into the edaphic breathing process from the soil surface, and captured by KOH solution. Weight loss of litter after one year was 41.19% and, after two years, was 48.37%, indicating a faster decomposition in the first year. Data analysis showed the influence of season on litter decomposition and temperature on microbial activity.

  19. Marine Litter in the context of `G7' - Nothing but empty rhetoric?

    Science.gov (United States)

    Neumann, J.; Imhoff, H.

    2016-02-01

    The G7 summit 2015 in Germany has demonstrated that the major advanced economies mark a new path and mindset beyond their classical issues of world economy, foreign-, security-, and development policy - the protection of the marine environment. Focus themes were marine litter, deep-sea mining, and the protection of the high seas. In the G7 Leaders' Declaration they "acknowledge that marine litter, in particular plastic litter, poses a global challenge, directly affecting marine and coastal life and ecosystems […]". Based on priority actions defined in the annex to the Leaders' Declaration, termed the `G7 Action Plan to combat Marine Litter' (G7AP ML), in fact a novelty to the otherwise rather restrained political statements, the German Presidency aims at further defining and specifying actions that are listed in the `G7AP ML'. This will include inter alia explicit measures and timelines. Emphasizing the global importance and willingness of the G7 to act, and aiming at a swift implementation of the action plan with the intention to establish a real and realistic tool in the race of litter input vs. reduction of anthropogenic pressure on the marine environment, is key to the envisaged approach. Thus, building on existing experiences, such as the OSPAR Regional Action Plan on Marine Litter for the North-East Atlantic, it is intended to expand the geographical range of application towards a global perspective. What has been learned - e.g. concerning the need of close collaboration with stakeholders? What has been decided - on how implementation may be done in reality? And is the `G7AP ML' a valuable add-on to other initiatives, e.g. Global Partnership on Marine Litter - United Nations Environment Programme (UNEP)? These questions will be discussed in the light of the state of the art of the G7 marine litter topic.

  20. Effect of litter size on the variation in birth and weaning weights of Landrace piglets

    Directory of Open Access Journals (Sweden)

    Camila Duarte Prazeres

    2016-03-01

    Full Text Available The objective of this study was to evaluate the effect of the size class of the litter at birth on the variation in birth and weaning weights and on the survival rate of piglets from birth to weaning. For this purpose, records of individual weight at birth and weaning of piglets obtained from a database of 295 Landrace litters born between 2000 and 2010 on a pig farm in the western region of the State of Paraná were used. The litters were classified as small (up to 7 piglets, medium (8 to 13 piglets, and large (> 14 piglets according to the total number of piglets born. The data were analyzed considering the effects of the year of sow mating and size class of the litter at birth. The correlations between mean weight and variance in litter weight and size were higher for medium and large litters. The size class of the litter significantly influenced the mean weight of piglets at birth and weaning and the variance in birth weight. Piglets born in medium and large litters weighed less and exhibited greater birth weight variation and a lower survival rate until weaning than piglets born in small litters.

  1. Meiofaunal Responses to Leaf Litter Added to Azoic Sediments in a ...

    African Journals Online (AJOL)

    ANOVA revealed a significant (p <0.05) litter source effect between ... marine benthic systems and supports a high ... Western Indian Ocean J. Mar. ... leaf litter for various invertebrate groups that .... increasing the acidity of the plant material,.

  2. Genetic parameters for litter size in Black Slavonian pigs

    Energy Technology Data Exchange (ETDEWEB)

    Skorput, D.; Gorjanc, G.; Dikic, M.; Lujovic, Z.

    2014-06-01

    The objective of this study was to estimate genetic parameters for litter size of Black Slavonian pigs using the repeatability, multiple trait, and random regression models, and to consider the possibility to increase litter size in Black Slavonian pigs by selection. A total of 4,733 litter records from the first to the sixth parity from sows that farrowed between January 1998 and December 2010 were included in the analysis. Individual record consisted of the following variables: breeding organisation (eight regions), parity (1-6), service boar, and farrowing season (monthyear interaction). Estimation of all the covariance components with three different models was based on the residual maximum likelihood method. Estimate of additive genetic variance and heritability for number of piglets born alive with repeatability model was 0.23 and 0.10, respectively. Estimates of additive genetic variance with multiple trait and random regression model were in a wider range from 0.05 to 0.65 across parities, and heritabilities were estimated in the range between 0.03 and 0.26. Estimates of phenotypic and additive genetic correlations were much smoother with random regression model in comparison with multiple trait model. Due to unexpected changes of variances along trajectory obtained with multiple trait and random regression model, the best option for genetic evaluation of litter size for now could be the use of repeatability model. With increasing number of data with proper data structure alternative modelling of litter size of Black Slavonian pig using multiple trait and random regression model could be taken into consideration. (Author)

  3. Combustion of poultry litter in a fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    P. Abelha; I. Gulyurtlu; D. Boavida; J. Seabra Barros; I. Cabrita; J. Leahy; B. Kelleher; M. Leahy [DEECA-INETI, Lisbon (Portugal)

    2003-04-01

    Combustion studies of poultry litter alone or mixed with peat by 50% on weight basis were undertaken in an atmospheric bubbling fluidised bed. Because of high moisture content of poultry litter, there was some uncertainty whether the combustion could be sustained on 100% poultry litter and as peat is very available in Ireland, its presence was considered to help to improve the combustion. However, the results showed that, as long as the moisture content of poultry litter was kept below 25%, the combustion did not need the addition of peat. The main parameters that were investigated are (i) moisture content, (ii) air staging, and (iii) variations in excess air levels along the freeboard. The main conclusions of the results are (i) combustion was influenced very much by the conditions of the fuel supply, (ii) the steady fuel supply was strongly dependent on the moisture content of the poultry litter, (iii) temperature appeared to be still very influential in reducing the levels of unburned carbon and hydrocarbons released from residues, (iv) the air staging in the freeboard improved combustion efficiency by enhancing the combustion of volatiles released from residues in the riser and (vi) NOx emissions were influenced by air staging in the freeboard. Particles collected from the bed and the two cyclones were analysed to determine the levels of heavy metals and the leachability tests were carried out with ashes collected to verify whether or not they could safely be used in agricultural lands. 8 refs., 1 fig., 8 tabs.

  4. Genetic parameters for litter size in Black Slavonian pigs

    Directory of Open Access Journals (Sweden)

    Dubravko Skorput

    2014-02-01

    Full Text Available The objective of this study was to estimate genetic parameters for litter size of Black Slavonian pigs using the repeatability, multiple trait, and random regression models, and to consider the possibility to increase litter size in Black Slavonian pigs by selection. A total of 4733 litter records from the first to the sixth parity from sows that farrowed between January 1998 and December 2010 were included in the analysis. Individual record consisted of the following variables: breeding organisation (eight regions, parity (1-6, service boar, and farrowing season (month-year interaction. Estimation of all the covariance components with three different models was based on the residual maximum likelihood method. Estimate of additive genetic variance and heritability for number of piglets born alive with repeatability model was 0.23 and 0.10, respectively. Estimates of additive genetic variance with multiple trait and random regression model were in a wider range from 0.05 to 0.65 across parities, and heritabilities were estimated in the range between 0.03 and 0.26. Estimates of phenotypic and additive genetic correlations were much smoother with random regression model in comparison with multiple trait model. Due to unexpected changes of variances along trajectory obtained with multiple trait and random regression model, the best option for genetic evaluation of litter size for now could be the use of repeatability model. With increasing number of data with proper data structure alternative modelling of litter size of Black Slavonian pig using multiple trait and random regression model could be taken into consideration.

  5. Comparison of radionuclide levels in soil, sagebrush, plant litter, cryptogams, and small mammals

    International Nuclear Information System (INIS)

    Landeen, D.S.

    1994-09-01

    Soil, sagebrush, plant litter, cryptogam, and small mammal samples were collected and analyzed for cesium-137, strontium-90, plutonium-238, plutonium 239/240, technetium-99, and iodine-129 from 1981 to 1986 at the US Department of Energy Hanford Site in southeastern Washington State as part of site characterization and environmental monitoring activities. Samples were collected on the 200 Areas Plateau, downwind from ongoing waste management activities. Plant litter, cryptogams, and small mammals are media that are not routinely utilized in monitoring or characterization efforts for determination of radionuclide concentrations. Studies at Hanford, other US Department of Energy sites, and in eastern Europe have indicated that plant litter and cryptogams may serve as effective ''natural'' monitors of air quality. Plant litter in this study consists of fallen leaves from sagebrush and ''cryptogams'' describes that portion of the soil crust composed of mosses, lichens, algae, and fungi. Comparisons of cesium-137 and strontium-90 concentrations in the soil, sagebrush, litter, and cryptogams revealed significantly higher (p<0.05) levels in plant litter and cryptogams. Technetium-99 values were the highest in sagebrush and litter. Plutonium-238 and 239/40 and iodine-129 concentrations never exceeded 0.8 pCi/gm in all media. No evidence of any significant amounts of any radionuclides being incorporated into the small mammal community was discovered. The data indicate that plant litter and cryptogams may be better, indicators of environmental quality than soil or vegetation samples. Augmenting a monitoring program with samples of litter and cryptogams may provide a more accurate representation of radionuclide environmental uptake and/or contamination levels in surrounding ecosystems. The results of this study may be applied directly to other radioecological monitoring conducted at other nuclear sites and to the monitoring of other pollutants

  6. Effects of adding aluminum sulfate to different litters on selected ...

    African Journals Online (AJOL)

    The objective of this study was to determine the effects of adding aluminum sulfate to different litters on blood plasma concentrations of some principal microelements and some vitamins in broilers. In this experiment, 645 day old Ross 308 broiler chicks were randomly divided into 4 litter group (straw, sawdust, alum ...

  7. Biocrude oils from the fast pyrolysis of poultry litter and hardwood

    International Nuclear Information System (INIS)

    Agblevor, F.A.; Beis, S.; Kim, S.S.; Tarrant, R.; Mante, N.O.

    2010-01-01

    The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter. Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous.

  8. The effect of alum addition on microbial communities in poultry litter.

    Science.gov (United States)

    Rothrock, M J; Cook, K L; Warren, J G; Sistani, K

    2008-08-01

    Alum [Al(2)(SO(4))(3).14H(2)O] is a common poultry litter amendment used to decrease water-soluble phosphorus or reduce ammonia volatilization, or both. Although the physiochemical effects of alum addition have been well researched, little attention has been given to the poultry litter microbial communities. The goal of this study was to use molecular biological methods [denaturing gradient gel electrophoresis (DGGE), community cloning, and quantitative real-time PCR] to characterize general, group-specific and pathogenic microbial communities in alum (10% wt/wt) and non-alum-treated litter. According to quantitative real-time PCR analyses, alum addition to the poultry litter resulted in significant reductions in both Campylobacter jejuni and Escherichia coli concentrations by the end of the first month of the experiment (3 log and 2 log, respectively). The concentrations of Salmonella spp. were below detection (Eubacterium and low %GC gram-positive groups in the alum-treated litters by the end of the first month, with no bands detectable for either group after 8 wk of incubation. Conversely, minimal effects of alum addition were observed in the Actinomycetes community. The most significant shift in the microbial community (based on DGGE analyses) occurred in the fungal population, with a large increase in diversity and abundance within 1 mo of alum addition (1 dominant band on d 0 to 9 dominant bands at 4 wk). Specifically, the incidence of Aspergillus spp. increased from 0 to 50% of the sequences in fungal clone libraries (n = 80) over the course of the experiment. This suggests that the addition of alum to poultry litter potentially shifts the microbial populations from bacterially dominated to dominated by fungi. The ramifications of this shift in dominance are still unknown, and future work will be aimed at characterizing these fungi and elucidating their role in the acidified litter environment.

  9. Decreasing phosphorus runoff losses from land-applied poultry litter with dietary modifications and alum addition.

    Science.gov (United States)

    Smith, Douglas R; Moore, P A; Miles, D M; Haggard, B E; Daniel, T C

    2004-01-01

    Phosphorus (P) losses from pastures fertilized with poultry litter contribute to the degradation of surface water quality in the United States. Dietary modification and manure amendments may reduce potential P runoff losses from pastures. In the current study, broilers were fed a normal diet, phytase diet, high available phosphorus (HAP) corn diet, or HAP corn + phytase diet. Litter treatments were untreated control and alum added at 10% by weight between flocks. Phytase and HAP corn diets reduced litter dissolved P content in poultry litter by 10 and 35%, respectively, compared with the normal diet (789 mg P kg(-1)). Alum treatment of poultry litter reduced the amount of dissolved P by 47%, while a 74% reduction was noted after alum treatment of litter from the HAP corn + phytase diet. The P concentrations in runoff water were highest from plots receiving poultry litter from the normal diet, whereas plots receiving poultry litter from phytase and HAP corn diets had reduced P concentrations. The addition of alum to the various poultry litters reduced P runoff by 52 to 69%; the greatest reduction occurred when alum was used in conjunction with HAP corn and phytase. This study demonstrates the potential added benefits of using dietary modification in conjunction with manure amendments in poultry operations. Integrators and producers should consider the use of phytase, HAP corn, and alum to reduce potential P losses associated with poultry litter application to pastures.

  10. Atomic-batched tensor decomposed two-electron repulsion integrals

    Science.gov (United States)

    Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove

    2017-04-01

    We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.

  11. Digestion, growth performance and caecal fermentation in growing rabbits fed diets containing foliage of browse trees

    Directory of Open Access Journals (Sweden)

    S.H. Abu Hafsa

    2016-12-01

    Full Text Available This study aimed to evaluate the effect of feeding dried foliage (leaves and petioles of Acacia saligna, Leucaena leucocephala or Moringa oleifera on the performance, digestibility, N utilisation, caecal fermentation and microbial profiles in New Zealand White (NZW rabbits. One hundred weaned male NZW rabbits weighing 819.2±16.6 g and aged 35±1 d were randomly allocated into 4 groups of 25 rabbits each. Rabbits were fed on pelleted diets containing 70% concentrate mixture and 30% Egyptian berseem (Trifolium alexandrinum hay (Control diet or one of the other 3 experimental diets, where 50% of berseem hay was replaced with A. saligna (AS, L. leucocephala (LL or M. oleifera (MO. Compared to Control diet, decreases in dry matter (DM; P=0.004, organic matter (P=0.028, crude protein (CP; P=0.001, neutral detergent fibre (P=0.033 and acid detergent fibre (P=0.011 digestibility were observed with the AS diet. However, DM and CP digestibility were increased by 3% with the MO diet, and N utilisation was decreased (P<0.05 with AS. Rabbits fed AS and LL diets showed decreased (P=0.001 average daily gain by 39 and 7%, respectively vs. Control. Feed conversion was similar in Control and MO rabbits, whereas rabbits fed AS diet ate up to 45% more feed (P=0.002 than Control rabbits to gain one kg of body weight. Caecal ammonia-N was increased (P=0.002 with LL, while acetic acid was decreased (P=0.001 with AS diet vs. other treatments. Caecal E. coli and Lactobacillus spp. bacteria counts were decreased with MO by about 44 and 51%, respectively, vs. Control. In conclusion, under the study conditions, tree foliage from M. oleifera and L. leucocephala are suitable fibrous ingredients to be included up to 150 g/kg in the diets of growing rabbits, and can safely replace 50% of berseem hay in diets of NZW rabbits without any adverse effect on their growth performance. Foliage from M. oleifera had a better potential as a feed for rabbits than that from L

  12. Interaction between litter quality and simulated water depth on decomposition of two emergent macrophytes

    Directory of Open Access Journals (Sweden)

    Yajun Xie

    2015-07-01

    Full Text Available Both water depth and litter quality are important factors influencing litter decomposition in wetlands, but the interactive role of these factors in regulating mass loss and nutrient dynamics is far from clear. The responses of mass loss and nutrient dynamics to simulated water depths and litter quality are investigated in leaves of Carex brevicuspis and leaves and stems of Miscanthus sacchariflorus from the Dongting Lake, China. Three litter types differing in litter quality were incubated for 210 days at three water depths (0 cm, 5 cm, and 80 cm, relative to the water surface in a pond near the Dongting Lake. The litter mass remaining, nitrogen (N, phosphorus (P, organic carbon (organic C, cellulose, and lignin contents were analyzed during the controlled decomposition experiment. Moreover, water properties (temperature, dissolved oxygen content, and conductivity and fungal biomass were also characterized. Initial N and P contents were highest in C. brevicuspis leaves, intermediate in M. sacchariflorus leaves and lowest in M. sacchariflorus stems, whereas the organic C, cellulose, and lignin contents exhibited an opposite trend. After a 210 days incubation, decomposition rate was highest in M. sacchariflorus leaves (0.0034–0.0090 g g-1 DW day-1, in exponential decay model, intermediate in C. brevicuspis leaves (0.0019–0.0041 g g-1 DW day-1, and lowest in M. sacchariflorus stems (0.0005–0.0011 g g-1DW day-1. Decomposition rate of C. brevicuspis leaves was highest at 5 cm water depth, intermediate at 80 cm, and lowest at 0 cm. Decomposition rate of M. sacchariflorus leaves was higher at 5 cm, and 80 cm than at 0 cm water depths. Water depth had no effect on decomposition of M. sacchariflorus stems. At the end of incubation, N and P mineralization was completely in leaf litters with increasing rates along with increasing water depth, while nutrients were accumulated in M. sacchariflorus stem. Organic C, cellulose, and lignin decayed quickly

  13. A (de)composable theory of rhythm perception

    NARCIS (Netherlands)

    Desain, P.

    1992-01-01

    A definition is given of expectancy of events projected into the future by a complex temporal sequence. The definition can be decomposed into basic expectancy components projected by each time interval implicit in the sequence. A preliminary formulation of these basic curves is proposed and the

  14. Litter environment affects behavior and brain metabolic activity of adult knockout mice

    Directory of Open Access Journals (Sweden)

    David Crews

    2009-08-01

    Full Text Available In mammals, the formative environment for social and anxiety-related behaviors is the family unit; in the case of rodents, this is the litter and the mother-young bond. A deciding factor in this environment is the sex ratio of the litter and, in the case of mice lacking functional copies of gene(s, the ratio of the various genotypes in the litter. Both Sex and Genotype ratios of the litter affect the nature and quality of the individual’s behavior later in adulthood, as well as metabolic activity in brain nuclei that underlie these behaviors. Mice were raised in litters reconstituted shortly after to birth to control for Sex ratio and Genotype ratio (wild type pups vs. pups lacking a functional estrogen receptor α. In both males and females the Sex and Genotype of siblings in the litter affected aggressive behaviors as well as patterns of metabolic activity in limbic nuclei in the social behavior network later in adulthood. Further, this pattern in males varied depending upon the Genotype of their brothers and sisters. Principal Components Analysis revealed two components comprised of several amygdalar and hypothalamic nuclei; the VMH showed strong correlations in both clusters, suggesting its pivotal nature in the organization of two neural networks.

  15. Tenacity of low-pathogenic avian influenza viruses in different types of poultry litter.

    Science.gov (United States)

    Reis, A; Stallknecht, D; Ritz, C; García, M

    2012-08-01

    To determine the risk of infection associated with exposure to low-pathogenic avian influenza (AI) virus-contaminated poultry litter, the tenacity of low pathogenic A/Ck/CA/431/00(H6N2), A/Mallard/MN/355779/00(H5N2), and A/turkey/Ohio/313053/04(H3N2) was evaluated. Viral stocks were incubated with poultry litter from commercial flocks at 25°C. Three types of poultry litter, wood shavings, shavings plus gypsum, and shavings plus peanut hulls, from commercial broiler flocks were used. The 3 low-pathogenic avian influenza viruses retained infectivity for one day in wood shavings and shavings plus peanut hulls litter types, whereas in wood shavings plus gypsum, litter viruses remained infective for up to 3 d. In contrast to the survivability in litter, all the viruses maintained infectivity in water for 4 d at titers of log(10)4.5. The infectivity of A/Ck/CA/431/00(H6N2) shed by experimentally infected layers, broilers, and turkeys was retained for one day, independently of the type of litter. In commercial production where a high density of birds are housed, the viral load shed by an infected flock will be significantly higher than the viral load shed 3 d postinfection obtained under the experimental conditions used in this study. Therefore proper management and disposal of poultry by products, such as windrow composting of litter and the composting of carcasses during an AI outbreak should be implemented.

  16. Dilution and separation of solids and liquids of broiler litter for supply of digester

    Energy Technology Data Exchange (ETDEWEB)

    Aires, Airon Magno; Lucas Junior, Jorge de; Xavier, Cristiane de Almeida Neves; Miranda, Adelia Pereira; Fukayama, Ellen Hatsumi [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias

    2008-07-01

    The solid separation techniques indicate that it can promote a support in anaerobic biological process. This trial was realized in FCAV-UNESP, Jaboticabal, Brazil, in Rural Engineering Department. For this trial two tests were developed, using broiler litter water diluted and separated in a 3mm mesh screen: the treatments consisted in (1kg) broiler litter diluted in (2kg) of water, (1kg) broiler litter and (4kg) water, (1kg) broiler litter diluted in (6kg) of water, (1kg) broiler litter and (8kg) of water, (1kg) broiler litter diluted in (10kg) of water, (1kg) broiler litter and (12kg) water and (1kg) broiler litter diluted in (14kg) of water. Total solids (TS), solid and liquid fraction and biogas production were estimated. There were no significant differences related to solid fraction retained in screen. As the broiler litter became more diluted, a raise in the liquid fractions quantities was observed, ranging from 20.9 to 89.4% of the total diluted waste. Biogas production potentials ranged from 0.2364 to 0.4666 m{sup 3} of biogas by 100kg of liquid fraction. Organic carbon numbers ranged from 0.21 to 0.47kg by 100kg of liquid fraction and 5.36 to 6.18kg by 100kg of solid fraction. The highest values obtained for this element in liquid fractions dilutions were 2:1 and 6:1 with 0.46 and 0.47kg by 100kg respectively. The separation of liquid and solid fraction of broiler litter was viable in the smaller dilutions, because those guarantee a reduction in the anaerobic digester implementation costs and dilution water economy. Solid fraction has potential for composting, mainly in a great scale production. (author)

  17. Decomposed process mining with DivideAndConquer

    NARCIS (Netherlands)

    Verbeek, H.M.W.; Limonad, L.; Weber, B.

    2014-01-01

    Many known process mining techniques scale badly in the number of activities in an event log. Examples of such techniques include the ILP Miner and the standard replay, which also uses ILP techniques. To alleviate the problems these techniques face, we can decompose a large problem (with many

  18. A general approach to decomposable bi-capacities

    Czech Academy of Sciences Publication Activity Database

    Saminger, S.; Mesiar, Radko

    2003-01-01

    Roč. 39, č. 5 (2003), s. 631-642 ISSN 0023-5954 R&D Projects: GA ČR GA402/04/1026 Institutional research plan: CEZ:AV0Z1075907 Keywords : bi-capacity * cumulative prospect theory * decomposable capacity Subject RIV: BA - General Mathematics Impact factor: 0.319, year: 2003

  19. Single Nucleotide Polymorphisms in the HIRA Gene Affect Litter Size in Small Tail Han Sheep

    Directory of Open Access Journals (Sweden)

    Mei Zhou

    2018-05-01

    Full Text Available Maintenance of appropriate levels of fecundity is critical for efficient sheep production. Opportunities to increase sheep litter size include identifying single gene mutations with major effects on ovulation rate and litter size. Whole-genome sequencing (WGS data of 89 Chinese domestic sheep from nine different geographical locations and ten Australian sheep were analyzed to detect new polymorphisms affecting litter size. Comparative genomic analysis of sheep with contrasting litter size detected a novel set of candidate genes. Two SNPs, g.71874104G>A and g.71833755T>C, were genotyped in 760 Small Tail Han sheep and analyzed for association with litter size. The two SNPs were significantly associated with litter size, being in strong linkage disequilibrium in the region 71.80–71.87 Mb. This haplotype block contains one gene that may affect litter size, Histone Cell Cycle Regulator (HIRA. HIRA mRNA levels in sheep with different lambing ability were significantly higher in ovaries of Small Tail Han sheep (high fecundity than in Sunite sheep (low fecundity. Moreover, the expression levels of HIRA in eight tissues of uniparous Small Tail Han sheep were significantly higher than in multiparous Small Tail Han sheep (p < 0.05. HIRA SNPs significantly affect litter size in sheep and are useful as genetic markers for litter size.

  20. Assessment of frequent litter amendment application on ammonia emission from broilers operations.

    Science.gov (United States)

    Li, Hong; Lin, Chongyang; Collier, Stephen; Brown, William; White-Hansen, Susan

    2013-04-01

    Litter amendments have been used to control the ammonia (NH3) emission from the broiler litter during the brooding period. One of the commercially available litter amendments, sodium bisulfate, was frequently applied on the litter with two different rates on weekly basis in a laboratory setup and with a single rate on biweekly basis under field conditions. Repeated application ofsodium bisulfate led to significant reduction in NH3 emissions from broilers. The magnitude of NH3 emission reduction increases with the application rate of sodium bisulfate. The reduction rates of cumulative emissions with 366 g/wk-m2 (75 lb/wk-1000 ft) rate (from 14% to 64.5%) were higher than the reduction rate of 183 g/wk-m2 (37.5 lb/wk-1000 ft2) rate (from 0% to 55%) from 28 to 61 days of age. The cumulative NH3 emission was reduced by 51.7% with 244 g/2 wk-m2 (50 lb/2 wk-1000 ft2) rate over a three-flockperiod (8-wk average grow-out per flock) under field production conditions. Sodium bisulfate application showed no significant difference on body weight and feed conversion efficiency. However, footpad quality was significantly improved by sodium bisulfate application. Litter pH and ammonia nitrogen level of the litter were decreased by sodium bisulfate application with both rates. Organic and total nitrogen contents in the litter were higher, whereas less nitrogen was emitted as NH3. The laboratory-scale findings of emission reduction by the additives should be considered to be preliminary if the additives are to be applied under commercial production settings. This work demonstrated that frequent litter amendment application can be used to reduce NH3 emissions from broiler houses, with no adverse effect on the animal production performances. The NH3 reduction rates could vary with different application frequencies and rates. Using litter amendment during broiler grow-out to lower NH3 emissions should be applicable to boiler production systems. The results of this study also

  1. Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions.

    Science.gov (United States)

    Gentile, Roberta; Vanlauwe, Bernard; Six, Johan

    2011-04-01

    Complex molecules are presumed to be preferentially stabilized as soil organic carbon (SOC) based on the generally accepted concept that the chemical composition of litter is a major factor in its rate of decomposition. Hence, a direct link between litter quality and SOC quantity has been assumed, accepted, and ultimately incorporated in SOC models. Here, however, we present data from an incubation and field experiment that refutes the influence of litter quality on the quantity of stabilized SOC. Three different qualities of litter (Tithonia diversifolia, Calliandra calothyrsus, and Zea mays stover; 4 Mg C x ha(-1) yr(-1)) with and without the addition of mineral N fertilizer (0 or 120 kg N x ha(-1)season(-1) were added to a red clay Humic Nitisol in a 3-yr field trial and a 1.5-yr incubation experiment. The litters differed in their concentrations of N, lignin, and polyphenols with the ratio of (lignin + polyphenols): N ranging from 3.5 to 9.8 for the field trial and from 2.3 to 4.0 for the incubation experiment in the order of T. diversifolia stabilized after three annual additions in the field trial. Even within the most sensitive soil aggregate fractions, SOC contents and C:N ratios did not differ with litter quality, indicating that litter quality did not influence the mechanisms by which SOC was stabilized. While increasing litter quality displayed faster decomposition and incorporation of C into soil aggregates after 0.25 yr in the incubation study, all litters resulted in equivalent amounts of C stabilized in the soil after 1.5 yr, further corroborating the results of the field trial. The addition of N fertilizer did not affect SOC stabilization in either the field or the incubation trial. Thus, we conclude that, while litter quality controls shorter-term dynamics of C decomposition and accumulation in the soil, longer-term SOC patterns cannot be predicted based on initial litter quality effects. Hence, the formation and stabilization of SOC is more

  2. Litter Quality of Populus Species as Affected by Free-Air CO2

    OpenAIRE

    Vermue, E.; Buurman, P.; Hoosbeek, M.R.

    2009-01-01

    The effect of elevated CO2 and nitrogen fertilization on the molecular chemistry of litter of three Populus species and associated soil organic matter (SOM) was investigated by pyrolysis-gas chromatography/mass spectrometry. The results are based on 147 quantified organic compounds in 24 litter samples. Litter of P. euramerica was clearly different from that of P. nigra and P. alba. The latter two had higher contents of proteins, polysaccharides, and cutin/cutan, while the former had higher c...

  3. LBA-ECO ND-11 Litter Decomposition, Carbon, and Nitrogen Dynamics in Agroforestry

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the results of an experiment to determine litter decomposition and dynamics of carbon and nitrogen release from plant litter of differing...

  4. LBA-ECO ND-11 Litter Decomposition, Carbon, and Nitrogen Dynamics in Agroforestry

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains the results of an experiment to determine litter decomposition and dynamics of carbon and nitrogen release from plant litter of...

  5. The effects of feeding broiler litter on microbial contamination of beef carcasses

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.R.; Apple, J.K.; Hellwig, D.H.; Kegley, E.B.; Pohlman, F.W. [University of Arkansas, Fayetteville, AR (United States). Department of Animal Science

    2002-09-01

    Two experiments were conducted to test the effects of feeding broiler litter, either directly in the diet or indirectly through pasture-fertilization, to beef cattle on the incidence of Salmonella typhimurium (S) and Escherichia coli O157:H7 (EC) contamination of carcasses and ground beef. In Experiment 1, beef cows (n=32) were allotted either ad libitum access to grass hay or a formulated diet (80% deep-stacked broiler litter and 20% corn). In Experiment 2, beef cows (n=32) were assigned to graze on pastures fertilized with a commercial fertilizer or fresh broiler litter. Cows in Experiment 1 were harvested following a 56-d feeding period; whereas, cows in Experiment 2 were harvested after 5, 10, 20, and 40 d of grazing pastures. All samples of muscle, purge, and ground beef were culture-negative for S and EC, suggesting that beef cattle may consume properly handled deep-stacked broiler litter, or pastures fertilized with fresh litter, without increasing the likelihood of carcass/meat contamination with S and (or) EC. (author)

  6. Arst on patsiendi poolel / Galina Litter

    Index Scriptorium Estoniae

    Litter, Galina, 1956-

    2006-01-01

    Naistearst Galina Litter seadusest, mis lubab alaealistel ilma vanema nõusolekuta aborti teha. Vastus artiklile : Varro Vooglaid. Vanemate vastutus - kas reaalne või paljasõnaline? // Õpetajate Leht (2006) 13. okt., lk. 1, 7

  7. SOA Formation Potential of Emissions from Soil and Leaf Litter

    Science.gov (United States)

    Faiola, C. L.; Vanderschelden, G. S.; Wen, M.; Cobos, D. R.; Jobson, B. T.; VanReken, T. M.

    2013-12-01

    In the United States, emissions of volatile organic compounds (VOCs) from natural sources exceed all anthropogenic sources combined. VOCs participate in oxidative chemistry in the atmosphere and impact the concentrations of ozone and particulate material. The formation of secondary organic aerosol (SOA) is particularly complex and is frequently underestimated using state-of-the-art modeling techniques. We present findings that suggest emissions of important SOA precursors from soil and leaf litter are higher than current inventories would suggest, particularly under conditions typical of Fall and Spring. Soil and leaf litter samples were collected at Big Meadow Creek from the University of Idaho Experimental Forest. The dominant tree species in this area of the forest are ponderosa pine, Douglas-fir, and western larch. Samples were transported to the laboratory and housed within a 0.9 cubic meter Teflon dynamic chamber where VOC emissions were continuously monitored with a GC-FID-MS and PTR-MS. Aerosol was generated from soil and leaf litter emissions by pumping the emissions into a 7 cubic meter Teflon aerosol growth chamber where they were oxidized with ozone in the absence of light. The evolution of particle microphysical and chemical characteristics was monitored over the following eight hours. Particle size distribution and chemical composition were measured with a SMPS and HR-ToF-AMS respectively. Monoterpenes dominated the emission profile with emission rates up to 283 micrograms carbon per meter squared per hour. The dominant monoterpenes emitted were beta-pinene, alpha-pinene, and delta-3-carene in descending order. The composition of the SOA produced was similar to biogenic SOA formed from oxidation of ponderosa pine emissions and alpha-pinene. Measured soil/litter monoterpene emission rates were compared with modeled canopy emissions. Results suggest that during fall and spring when tree emissions are lower, monoterpene emissions within forests may be

  8. Locomotor problems in broilers reared on new and re-used litter

    Directory of Open Access Journals (Sweden)

    Ibiara Correia Lima Almeida Paz

    2013-06-01

    Full Text Available Two field trials were conducted to assess locomotor problems in broilers. Males and females broilers were used from two commercial strains reared on two different litter materials, new and re-used. In the first experiment (E1 rice husks and wood shavings were used as new litter, and in the second experiment (E2 the same litter was re-used. A batch of one-day-old chicks (2968 was reared randomly distributed in experimental pens, in a 2x2x2 factorial scheme (two genetic strains, two sexes and two litter materials. The same fodder and water were available to all birds ad libitum. Broilers locomotion problems were evaluated using the characteristics of gait score, incidence of valgus and varus, foot-pad lesions, degeneration, femoral, tibial dyschondroplasia, spondylolisthesis and breast calluses. The number of birds with high gait score was less than 30% in the two experiments. Males presented higher gait score (GS (28.46% GS 1 and 2 compared to females, 20.98%; greater incidence of angular deformities (26.62% with valgus compared to 14.71% of the female; and femoral degenerative joint lesions (70.83% in average, compared to 55.16% of the female, and the correlation between these traits varied from 0.18 to 0.87 (P<0.05. There was an increase of foot-pad lesions in re-used litter leading to poor welfare. The use of rice husks in deep litter for broiler production might be a viable alternative of wood shavings.

  9. Dual role of lignin in plant litter decomposition in terrestrial ecosystems.

    Science.gov (United States)

    Austin, Amy T; Ballaré, Carlos L

    2010-03-09

    Plant litter decomposition is a critical step in the formation of soil organic matter, the mineralization of organic nutrients, and the carbon balance in terrestrial ecosystems. Biotic decomposition in mesic ecosystems is generally negatively correlated with the concentration of lignin, a group of complex aromatic polymers present in plant cell walls that is recalcitrant to enzymatic degradation and serves as a structural barrier impeding microbial access to labile carbon compounds. Although photochemical mineralization of carbon has recently been shown to be important in semiarid ecosystems, litter chemistry controls on photodegradative losses are not understood. We evaluated the importance of litter chemistry on photodegradation of grass litter and cellulose substrates with varying levels of lignin [cellulose-lignin (CL) substrates] under field conditions. Using wavelength-specific light attenuation filters, we found that light-driven mass loss was promoted by both UV and visible radiation. The spectral dependence of photodegradation correlated with the absorption spectrum of lignin but not of cellulose. Field incubations demonstrated that increasing lignin concentration reduced biotic decomposition, as expected, but linearly increased photodegradation. In addition, lignin content in CL substrates consistently decreased in photodegradative incubations. We conclude that lignin has a dual role affecting litter decomposition, depending on the dominant driver (biotic or abiotic) controlling carbon turnover. Under photodegradative conditions, lignin is preferentially degraded because it acts as an effective light-absorbing compound over a wide range of wavelengths. This mechanistic understanding of the role of lignin in plant litter decomposition will allow for more accurate predictions of carbon dynamics in terrestrial ecosystems.

  10. Fate of leaf-litter N in forest and grassland along a pedo-climatic gradient in south-western Siberia: an in situ 15N-labelling experiment

    Science.gov (United States)

    Brédoire, Félix; Zeller, Bernd; Nikitich, Polina; Barsukov, Pavel A.; Rusalimova, Olga; Bakker, Mark R.; Legout, Arnaud; Bashuk, Alexander; Kayler, Zachary E.; Derrien, Delphine

    2017-04-01

    The suitability of Siberia for agriculture is expected to increase in the next decades due to strong and rapid climatic changes, but little is known on the environmental drivers of soil fertility there, especially nitrogen (N). Plant-available N is mainly derived from litter decomposition. South-western (SW) Siberia is located on the transition between several bioclimatic zones that are predicted to shift and extend along with climate change (steppe, forest-steppe, sub-taiga). The soils of this region are formed on a common loess deposit but they are submitted to different climatic conditions and vegetation cover. In the south of the region, typically in steppe/forest-steppe, soil freezes over winter because of a relatively shallow snow-pack, and water shortages are frequent in summer. In the north, typically in sub-taiga, the soil is barely frozen in winter due to a thick snow-pack and sufficient soil moisture in summer. In this study, we characterized the dynamics of leaf litter decomposition and the transfer of N from leaf litter to the soil and back to plants. Four sites were chosen along a climate gradient (temperature, precipitation and snow depth). At each site, we applied 15N-labelled leaf litter on the soil surface in experimental plots in an aspen (Populus tremula L.) forest and in a grassland. Twice a year during three years, we tracked the 15N derived from the decomposing labelled-litter in the organic layers, in the first 15 cm of the soil, and in above-ground vegetation. Soil temperature and moisture were monitored at a daily timestep over three years and soil water budgets were simulated (BILJOU model, Granier et al. 1999). We observed contrasting patterns in the fate of litter-derived 15N between bioclimatic zones. Over three years, along with faster decay rates, the release of leaf litter-N was faster in sub-taiga than in forest-steppe. As such, higher quantities of 15N were transferred into the soil in sub-taiga. The transfer was also deeper there

  11. Tropical herbivorous phasmids, but not litter snails, alter decomposition rates by modifying litter bacteria

    Science.gov (United States)

    Chelse M. Prather; Gary E. Belovsky; Sharon A. Cantrell; Grizelle González

    2018-01-01

    Consumers can alter decomposition rates through both feces and selective feeding in many ecosystems, but these combined effects have seldom been examined in tropical ecosystems. Members of the detrital food web (litter-feeders or microbivores) should presumably have greater effects on decomposition than herbivores, members of the green food web. Using litterbag...

  12. Microhabitat effects of litter temperature and moisture on forest-floor invertebrate communities

    Science.gov (United States)

    Tim A. Christiansen; Sue A. Perry; William B. Perry

    1996-01-01

    Litter temperature and moisture may be altered due to changes in global climate. We investigated the effect of small changes in litter temperature and moisture on forest-floor communities in West Virginia.

  13. Attitude towards littering as a mediator of the relationship between personality attributes and responsible environmental behavior

    International Nuclear Information System (INIS)

    Ojedokun, Oluyinka

    2011-01-01

    Highlights: → Independently, altruism and locus of control contributed significantly toward attitude towards littering. → Altruism and locus of control jointly contributed significantly to attitude towards littering. → The results further show a significant joint influence of altruism and locus of control on REB. → The independent contributions reveal that altruism and locus of control contribute significantly to REB. → Attitude towards littering mediates the relationship between locus of control and REB. - Abstract: The study tested whether attitude towards littering mediates the relationship between personality attributes (altruism and locus of control) and responsible environmental behavior (REB) among some residents of Ibadan metropolis, Nigeria. Using multistage sampling technique, measures of each construct were administered to 1360 participants. Results reveal significant independent and joint influence of personality attributes on attitude towards littering and responsible environmental behavior, respectively. Attitude towards littering also mediates the relationship between personality characteristics and REB. These findings imply that individuals who possess certain desirable personality characteristics and who have unfavorable attitude towards littering have more tendencies to engage in pro-environmental behavior. Therefore, stakeholders who have waste management as their priority should incorporate this information when guidelines for public education and litter prevention programs are being developed. It is suggested that psychologists should be involved in designing of litter prevention strategies. This will ensure the inclusion of behavioral issues in such strategies. An integrated approach to litter prevention that combines empowerment, cognitive, social, and technical solutions is recommended as the most effective tool of tackling the litter problem among residents of Ibadan metropolis.

  14. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level

    International Nuclear Information System (INIS)

    Vollenweider, Pierre; Menard, Terry; Guenthardt-Goerg, Madeleine S.

    2011-01-01

    In order to achieve efficient phytoextraction of heavy metals using trees, the metal allocation to aboveground tissues needs to be characterised. In his study, the distribution of heavy metals, macro- and micronutrients and the metal micro-localisation as a function of the leaf position and heavy metal treatment were analysed in poplars grown on soil with mixed metal contamination. Zinc was the most abundant contaminant in both soil and foliage and, together with cadmium, was preferentially accumulated in older foliage whereas excess copper and lead were not translocated. Changes in other element concentrations indicated an acceleration in aging as a consequence of the metal treatment. Excess zinc was irregularly accumulated inside leaf tissues, tended to saturate the veins and was more frequently stored in cell symplast than apoplast. Storage compartments including metabolically safe and sensitive subcellular sites resulted in sizable metal accumulation as well as stress reactions. - Within foliage of poplars growing on contaminated soils, Zinc was stored at metabolically safe as well as sensitive subcellular sites, ensuring sizable bioaccumulation but also causing injuries.

  15. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level

    Energy Technology Data Exchange (ETDEWEB)

    Vollenweider, Pierre, E-mail: pierre.vollenweider@wsl.c [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Menard, Terry; Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2011-01-15

    In order to achieve efficient phytoextraction of heavy metals using trees, the metal allocation to aboveground tissues needs to be characterised. In his study, the distribution of heavy metals, macro- and micronutrients and the metal micro-localisation as a function of the leaf position and heavy metal treatment were analysed in poplars grown on soil with mixed metal contamination. Zinc was the most abundant contaminant in both soil and foliage and, together with cadmium, was preferentially accumulated in older foliage whereas excess copper and lead were not translocated. Changes in other element concentrations indicated an acceleration in aging as a consequence of the metal treatment. Excess zinc was irregularly accumulated inside leaf tissues, tended to saturate the veins and was more frequently stored in cell symplast than apoplast. Storage compartments including metabolically safe and sensitive subcellular sites resulted in sizable metal accumulation as well as stress reactions. - Within foliage of poplars growing on contaminated soils, Zinc was stored at metabolically safe as well as sensitive subcellular sites, ensuring sizable bioaccumulation but also causing injuries.

  16. The influence of selected litter and herd factors on treatments for lameness in suckling piglets from 35 Danish herds

    DEFF Research Database (Denmark)

    Christensen, J.

    1996-01-01

    was: high-risk litters are (1) large litters, (2) litters with previous diseases or deaths, (3) litters where the nursing sow had been treated, or (4) litters from high-parity sows. Litters from large conventional herds or from herds with a high stocking density were expected to have a high risk...

  17. Lost fishing gear and litter at Gorringe Bank (NE Atlantic)

    Science.gov (United States)

    Vieira, Rui P.; Raposo, Isabel P.; Sobral, Paula; Gonçalves, Jorge M. S.; Bell, Katherine L. C.; Cunha, Marina R.

    2015-06-01

    Studies concerning marine litter have received great attention over the last several years by the scientific community mainly due to their ecological and economic impacts in marine ecosystems, from coastal waters to the deep ocean seafloor. The distribution, type and abundance of marine litter in Ormonde and Gettysburg, the two seamounts of Gorringe Bank, were analyzed from photo and video imagery obtained during ROV-based surveys carried out at 60-3015 m depths during the E/V Nautilus cruise NA017. Located approximately 125 nm southwest of Portugal, Gorringe Bank lays at the crossroad between the Atlantic and the Mediterranean and is therefore characterized by an intense maritime traffic and fishing activities. The high frequency of lost or discarded fishing gear, such as cables, longlines and nets, observed on Gorringe Bank suggests an origin mostly from fishing activities, with a clear turnover in the type of litter (mostly metal, glass and to a much lesser extent, plastic) with increasing depth. Litter was more abundant at the summit of Gorringe Bank (ca. 4 items·km- 1), decreasing to less than 1 item·km- 1 at the flanks and to ca. 2 items·km- 1 at greater depths. Nevertheless, litter abundance appeared to be lower than in continental margin areas. The results presented herein are a contribution to support further actions for the conservation of vulnerable habitats on Gorringe Bank so that they can continue contributing to fishery productivity in the surrounding region.

  18. Mistletoes and epiphytic lichens contribute to litter input in Nothofagus antarctica forests

    Science.gov (United States)

    Soler, Rosina; Pastur, Guillermo Martínez; Lencinas, María Vanessa; Peri, Pablo Luis

    2015-10-01

    Litter input is one of the key components that define nutrient cycling in forests and the majority of studies only consider the tree components of litterfall. However, epiphytic species can play a crucial role in litter input throughout the growing season. This work evaluates changes in litter production by mistletoe (Misodendrum sp.) and epiphytic lichen (Usnea sp.), related to crown cover in mature unmanaged, second-growth and managed (thinned for silvopastoral use) forests in Tierra del Fuego (Argentina). We used plastic traps to collect litterfall biomass from trees, lichens and mistletoes on a monthly basis over three consecutive years. Tree litter was considerable during autumn (March to May), which is typical of Nothofagus deciduous species in the Southern hemisphere. In contrast, peak litterfall from mistletoes and lichens occurred during spring and summer seasons. Tree litter (1954-3398 kg dry matter ha-1 year-1) was correlated with crown cover gradient being highest in second-growth forests and lowest in thinned sites. While litter input from mistletoes did not vary among forest types (307-333 kg dry matter ha-1 year-1), lichen litter (11-40 kg dry matter ha-1 year-1) was higher in unmanaged and thinned mature forests despite differences in tree crown cover. Contrary to what we expected, the management practices investigated here did not affect the biomass of canopy communities compared to unmanaged mature forests. Mistletoes and lichens significantly increased the spatial (forest type) and temporal complexity (extended period of falling) of litterfall in Nothofagus antarctica forests. This study provides a starting point to understand the ecological relevance of canopy communities in the Patagonian forests of southern Argentina.

  19. A novel decomposition technique of friable asbestos by CHClF2-decomposed acidic gas

    International Nuclear Information System (INIS)

    Yanagisawa, Kazumichi; Kozawa, Takahiro; Onda, Ayumu; Kanazawa, Masazumi; Shinohara, Junichi; Takanami, Tetsuro; Shiraishi, Masatsugu

    2009-01-01

    Asbestos was widely used in numerous materials and building products due to their desirable properties. It is, however, well known that asbestos inhalation causes health damage and its inexpensive decomposition technique is necessary to be developed for pollution prevention. We report here an innovative decomposition technique of friable asbestos by acidic gas (HF and HCl) generated from the decomposition of CHClF 2 by the reaction with superheated steam at 800 deg. C. Chrysotile-asbestos fibers were completely decomposed to sellaite and magnesium silicofluoride hexahydrate by the reaction with CHClF 2 -decomposed acidic gas at 150 deg. C for 30 min. At high temperatures beyond 400 deg. C, sellaite and hematite were detected in the decomposed product. In addition, crocidolite containing wastes and amosite containing wastes were decomposed at 500 deg. C and 600 deg. C for 30 min, respectively, by CHClF 2 -decomposed acidic gas. The observation of the reaction products by phase-contrast microscopy (PCM) and scanning electron microscopy (SEM) confirmed that the resulting products did not contain any asbestos

  20. Peculiarities of litter invertebrates’ multispecies complexes formation on the Khortitsa island (Zaporizhzhya province

    Directory of Open Access Journals (Sweden)

    D. О. Fedorchenko

    2008-02-01

    Full Text Available Peculiarities of litter invertebrates’ complexes formation under conditions of the Khortitsa National Reserve (Zaporizhzhya province are studied. The dispersion of taxonomic groups of different levels (families and species in litter mesofauna is swayed by the inter- and intrasystem factors; the largest influence has the power of litter and its humidity. The rate of ecological factors’ influence at different taxonomic levels may diverge.

  1. Test fabrication of sulfuric acid decomposer applied for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Onuki, Kaoru; Hino, Ryutaro; Ota, Hiroyuki

    2007-07-01

    Thermo-chemical Iodine-Sulfur (IS) process produces large amount of hydrogen effectively without carbon dioxide emission. Since the IS process uses strong acids such as sulfuric acid and hydriodic acid, it is necessary to develop large-scale chemical reactors featuring materials that exhibit excellent heat and corrosion resistance. A sulfuric acid decomposer is one of the key components of the IS process plant, in which sulfuric acid is evaporated and decomposed into water and sulfur trioxide under temperature range from 300degC to 500degC using the heat supplied by high temperature helium gas. The decomposer is exposed to severe corrosion condition of sulfuric acid boiling flow, where only the SiC ceramics shows good corrosion resistance. However, at the current status, it is very difficult to manufacture the large-scale SiC ceramics structure required in the commercial plant. Therefore, we devised a new concept of the decomposer, which featured a counter flow type heat exchanger consisting of cylindrical blocks made of SiC ceramics. Scale up can be realized by connecting the blocks in parallel and/or in series. This paper describes results of the design work and the test-fabrication study of the sulfuric acid decomposer, which was carried out in order to confirm its feasibility. (author)

  2. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    Science.gov (United States)

    van Huysen, Tiff L.; Harmon, Mark E.; Perakis, Steven S.; Chen, Hua

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  3. Decomposition and nitrogen dynamics of (15)N-labeled leaf, root, and twig litter in temperate coniferous forests.

    Science.gov (United States)

    van Huysen, Tiff L; Harmon, Mark E; Perakis, Steven S; Chen, Hua

    2013-12-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using (15)N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7-20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  4. Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests

    DEFF Research Database (Denmark)

    Liu, Chunjiang; Berg, Bjørn; Kutsch, Werner

    2006-01-01

    The aim of this study is to determine the patterns of nitrogen (N) concentrations in leaf litter of forest trees as functions of climatic factors, annual average temperature (Temp, °C) and annual precipitation (Precip, dm) and of forest type (coniferous vs. broadleaf, deciduous vs. evergreen, Pinus...... concentration and Temp and Precip by means of regression analysis. Leaf litter data from N2-fixing species were excluded from the analysis. Results: Over the Eurasian continent, leaf litter N concentration increased with increasing Temp and Precip within functional groups such as conifers, broadleaf, deciduous....... In the context of global warming, these regression equations are useful for a better understanding and modelling of the effects of geographical and climatic factors on leaf litter N at a regional and continental scale....

  5. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting

    Science.gov (United States)

    Garbarino, J.R.; Bednar, A.J.; Rutherford, D.W.; Beyer, R.S.; Wershaw, R. L.

    2003-01-01

    Roxarsone, 3-nitro-4-hydroxyphenylarsonic acid, is an organoarsenic compound that is used extensively in the feed of broiler poultryto control coccidial intestinal parasites, improve feed efficiency, and promote rapid growth. Nearly all the roxarsone in the feed is excreted unchanged in the manure. Poultry litter composed of the manure and bedding material has a high nutrient content and is used routinely as a fertilizer on cropland and pasture. Investigations were conducted to determine the fate of poultrylitter roxarsone in the environment. Experiments indicated that roxarsone was stable in fresh dried litter; the primary arsenic species extracted with water from dried litter was roxarsone. However, when water was added to litter at about 50 wt % and the mixture was allowed to compost at 40oC, the speciation of arsenic shifted from roxarsone to primarily arsenate in about 30 days. Increasing the amount of water increased the rate of degradation. Experiments also suggested that the degradation process most likely was biotic in nature. The rate of degradation was directly proportional to the incubation temperature; heat sterilization eliminated the degradation. Biotic degradation also was supported by results from enterobacteriaceae growth media that were inoculated with litter slurry to enhance the biotic processes and to reduce the concomitant abiotic effects from the complex litter solution. Samples collected from a variety of litter windrows in Arkansas, Oklahoma, and Maryland also showed that roxarsone originally present had been converted to arsenate.

  6. Differences in Foliage Affect Performance of the Lappet Moth, Streblote panda: Implications for Species Fitness

    Science.gov (United States)

    Calvo, D.; Molina, J.M.

    2010-01-01

    Implications for adults' fitness through the foliage effects of five different host plants on larval survival and performance of the lappet moth, Streblote panda Hübner (Lepidoptera: Lasiocampidae), as well as their effect on species fitness were assayed. Larvae were reared under controlled laboratory conditions on excised foliage. Long-term developmental experiments were done using first instar larvae to adult emergence, and performance experiments were done using fifth instar larvae. Survival, development rates, and food use were measured. Foliar traits analysis indicated that leaves of different host plants varied, significantly affecting larvae performance and adult fitness. Pistacia lentiscus L. (Sapindales: Anacardiaceae), Arbutus unedo L. (Ericales: Ericaceae), and Retama sphaerocarpa (L.) Boiss. (Fabales: Fabaceae) were the most suitable hosts. Larvae fed on Tamarix gallica L. (Caryophyllales: Tamaricaceae) and Spartium junceum L. (Fabales: Fabaceae) showed the lowest survival, rates of development and pupal and adult weight. In general, S. panda showed a relatively high capacity to buffer low food quality, by reducing developmental rates and larvae development thereby reaching the minimum pupal weight that ensures adult survival. Less suitable plants seem to have indirect effects on adult fitness, producing smaller adults that could disperse to other habitats. PMID:21062148

  7. Effects of Forest Gaps on Litter Lignin and Cellulose Dynamics Vary Seasonally in an Alpine Forest

    Directory of Open Access Journals (Sweden)

    Han Li

    2016-01-01

    Full Text Available To understand how forest gaps and the associated canopy control litter lignin and cellulose dynamics by redistributing the winter snow coverage and hydrothermal conditions in the growing season, a field litterbag trial was conducted in the alpine Minjiang fir (Abies faxoniana Rehder and E.H. Wilson forest in a transitional area located in the upper reaches of the Yangtze River and the eastern Tibetan Plateau. Over the first year of litter decomposition, the litter exhibited absolute cellulose loss and absolute lignin accumulation except for the red birch litter. The changes in litter cellulose and lignin were significantly affected by the interactions among gap position, period and species. Litter cellulose exhibited a greater loss in the winter with the highest daily loss rate observed during the snow cover period. Both cellulose and lignin exhibited greater changes under the deep snow cover at the gap center in the winter, but the opposite pattern occurred under the closed canopy in the growing season. The results suggest that decreased snowpack seasonality due to winter warming may limit litter cellulose and lignin degradation in alpine forest ecosystems, which could further inhibit litter decomposition. As a result, the ongoing winter warming and gap vanishing would slow soil carbon sequestration from foliar litter in cold biomes.

  8. Effect of Reused Litter and Chemical Amendment on Broiler Chicken Performance and Litter Quality

    Directory of Open Access Journals (Sweden)

    M Lotfi

    2016-06-01

    Full Text Available An experiment was conducted to evaluate the effect of chemical amendments and reused litter on broiler performances, immune response and skin quality. Five hundred and seventy six (576 day old broiler chickens were randomly allocated to 3x2 factorial design experiment. Three amendments treatment included control (no chemical addition, alunminum sulfate and zeolite; two types of litter were new and reused one. There were 4 replicates and 24 broiler chickens in each pen. The feed and water were available ad libitum during 42 days of experiment. The type of bedding had no significant effect on broilers performances (weight gain, feed efficiency ratio and mortality. Chemical amendments improved broilers performances during 0-35 days of production period but by the end of experiment there was no differences between treatment groups. Neither bedding type nor chemical amendments influenced skin erosion criteria responses. The immune response of broilers was not affected by either type of bedding or chemical amendments. It could be concluded that although beddings to be reused, it should be treated so as to overcome any defect of reused bedding.

  9. Comparative evaluation of the bacteria isolated from decomposing ...

    African Journals Online (AJOL)

    Six (6) bacterial species Bacillus circulans, Bacillus pumilus, Bacillus subtilis, Micrococcus luteus, Streptococcus faecalis and Streptococcus lactis were isolated from decomposing cow milk, while four (4) bacterial species namely Bacillus brevis, Bacillus licheniformis, Lactobacillus casei and Staphylococcus epidermidis ...

  10. Effect of fractionation and pyrolysis on fuel properties of poultry litter.

    Science.gov (United States)

    Singh, Kaushlendra; Risse, L Mark; Das, K C; Worley, John; Thompson, Sidney

    2010-07-01

    Raw poultry litter has certain drawbacks for energy production such as high ash and moisture content, a corrosive nature, and low heating values. A combined solution to utilization of raw poultry litter may involve fractionation and pyrolysis. Fractionation divides poultry litter into a fine, nutrient-rich fraction and a coarse, carbon-dense fraction. Pyrolysis of the coarse fraction would remove the corrosive volatiles as bio-oil, leaving clean char. This paper presents the effect of fractionation and pyrolysis process parameters on the calorific value of char and on the characterization of bio-oil. Poultry litter samples collected from three commercial poultry farms were divided into 10 treatments that included 2 controls (raw poultry litter and its coarse fraction having particle size greater than 0.85 mm) and 8 other treatments that were combinations of three factors: type (raw poultry litter or its coarse fraction), heating rate (30 or 10 degrees C/min), and pyrolysis temperature (300 or 500 degrees C). After the screening process, the poultry litter samples were dried and pyrolyzed in a batch reactor under nitrogen atmosphere and char and condensate yields were recorded. The condensate was separated into three fractions on the basis of their density: heavy, medium, and light phase. Calorific value and proximate and nutrient analysis were performed for char, condensate, and feedstock. Results show that the char with the highest calorific value (17.39 +/- 1.37 MJ/kg) was made from the coarse fraction at 300 degrees C, which captured 68.71 +/- 9.37% of the feedstock energy. The char produced at 300 degrees C had 42 +/- 11 mg/kg arsenic content but no mercury. Almost all of the Al, Ca, Fe, K, Mg, Na, and P remained in the char. The pyrolysis process reduced ammoniacal-nitrogen (NH4-N) in char by 99.14 +/- 0.47% and nitrate-nitrogen (NO3-N) by 95.79 +/- 5.45% at 500 degrees C.

  11. Effect of petroleum on decomposition of shrub-grass litters in soil in Northern Shaanxi of China.

    Science.gov (United States)

    Zhang, Xiaoxi; Liu, Zengwen; Yu, Qi; Luc, Nhu Trung; Bing, Yuanhao; Zhu, Bochao; Wang, Wenxuan

    2015-07-01

    The impacts of petroleum contamination on the litter decomposition of shrub-grass land would directly influence nutrient cycling, and the stability and function of ecosystem. Ten common shrub and grass species from Yujiaping oil deposits were studied. Litters from these species were placed into litterbags and buried in petroleum-contaminated soil with 3 levels of contamination (slight, moderate and serious pollution with petroleum concentrations of 15, 30 and 45 g/kg, respectively). A decomposition experiment was then conducted in the lab to investigate the impacts of petroleum contamination on litter decomposition rates. Slight pollution did not inhibit the decomposition of any litters and significantly promoted the litter decomposition of Hippophae rhamnoides, Caragana korshinskii, Amorpha fruticosa, Ziziphus jujuba var. spinosa, Periploca sepium, Medicago sativa and Bothriochloa ischaemum. Moderate pollution significantly inhibited litter decomposition of M. sativa, Coronilla varia, Artemisia vestita and Trrifolium repens and significantly promoted the litter decomposition of C. korshinskii, Z. jujuba var. spinosa and P. sepium. Serious pollution significantly inhibited the litter decomposition of H. rhamnoides, A. fruticosa, B. ischaemum and A. vestita and significantly promoted the litter decomposition of Z. jujuba var. spinosa, P. sepium and M. sativa. In addition, the impacts of petroleum contamination did not exhibit a uniform increase or decrease as petroleum concentration increased. Inhibitory effects of petroleum on litter decomposition may hinder the substance cycling and result in the degradation of plant communities in contaminated areas. Copyright © 2015. Published by Elsevier B.V.

  12. Litter mercury deposition in the Amazonian rainforest

    International Nuclear Information System (INIS)

    Fostier, Anne Hélène; Melendez-Perez, José Javier; Richter, Larissa

    2015-01-01

    The objective of this work was to assess the flux of atmospheric mercury transferred to the soil of the Amazonian rainforest by litterfall. Calculations were based on a large survey of published and unpublished data on litterfall and Hg concentrations in litterfall samples from the Amazonian region. Litterfall based on 65 sites located in the Amazon rainforest averaged 8.15 ± 2.25 Mg ha"−"1 y"−"1. Average Hg concentrations were calculated from nine datasets for fresh tree leaves and ten datasets for litter, and a median concentration of 60.5 ng Hg g"−"1 was considered for Hg deposition in litterfall, which averaged 49 ± 14 μg m"−"2 yr"−"1. This value was used to estimate that in the Amazonian rainforest, litterfall would be responsible for the annual removing of 268 ± 77 Mg of Hg, approximately 8% of the total atmospheric Hg deposition to land. The impact of the Amazon deforestation on the Hg biogeochemical cycle is also discussed. - Highlights: • Based on published data we estimated the litterfall in the Amazonian rainforest. • All the published data on Hg concentration in leaves and litter from the region and some unpublished data are presented. • We calculated the litter mercury deposition. • We estimated the contribution of dry, wet and litter Hg deposition in the Amazonian rainforest. • We also discussed the impact of Amazon deforestation on the Hg biogeochemical cycle. - The Amazonian rainforest is responsible for removing at least 268 Mg Hg y"−"1, 8% of the total atmospheric mercury deposition to land.

  13. Ostwald ripening of decomposed phases in Cu-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Hernandez-Santiago, Felipe; Lopez-Hirata, Victor; Dorantes-Rosales, Hector J.; Saucedo-Munoz, Maribel L.; Gonzalez-Velazquez, Jorge L.; Paniagua-Mercado, Ana Ma.

    2008-01-01

    A study of the coarsening process of the decomposed phases was carried out in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys using transmission electron microscopy. As aging progressed, the morphology of the coherent decomposed Ni-rich phase changed from cuboids to platelets aligned in the Cu-rich matrix directions. Prolonged aging caused the loss of coherency between the decomposed phases and the morphology of the Ni-rich phase changed to ellipsoidal. The variation of mean radius of the coherent decomposed phases with aging time followed the modified LSW theory for thermally activated growth in ternary alloy systems. The linear variation of the density number of precipitates and matrix supersaturation with aging time, also confirmed that the coarsening process followed the modified LSW theory in both alloys. The coarsening rate was faster in the symmetrical Cu-45 wt.% Ni-10 wt.% Cr alloy due to its higher volume fraction of precipitates. The activation energy for thermally activated growth was determined to be about 182 and 102 kJ mol -1 in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys, respectively. The lower energy for the former alloy seems to be related to an increase in the atomic diffusion process as the chromium content increases. The size distributions of precipitates in the Cu-Ni-Cr alloys were broader and more symmetric than that predicted by the modified LSW theory for ternary alloys

  14. MENINGKATKAN PRODUKSI AYAM PEDAGING MELALUI PENGATURAN PROPORSI SEKAM, PASIR DAN KAPUR SEBAGAI LITTER

    Directory of Open Access Journals (Sweden)

    Muharlien Muharlien

    2012-04-01

    Full Text Available ABSTRAK Penelitian bertujuan  untuk mengetahui  proporsi yang tepat antara sekam, pasir dan kapur  sebagai litter terhadap produksi ayam pedaging. Hasil penelitian diharapkan dapat digunakan sebagai informasi dan pertimbangan bagi peternak ayam pedaging dalam penggunaan proporsi sekam, pasir dan kapur yang tepat sebagi litter untuk meningkatkan produksi ayam pedaging. Materi yang digunakan adalah 72 ekor ayam pedaging jantan strain Lohman umur 3 minggu, dengan bobot badan 424,74 ± 42,46 g Metode penelitian adalah percobaan dengan Rancangan Acak Lengkap (RAL dengan empat perlakuan dan enam ulangan. Perlakuan yang diberikan adalah perbedaan proporsi antara sekam, pasir dan kapur sebagai litter, yaitu P0 = litter dari 100 % sekam , P1 =  50 % sekam, 33 % pasir, 17 % kapur. Perlakuan P2 = 33 % sekam, 50 % pasir, 17 % kapur dan P3 = 41,5 % sekam, 41,5 % pasir dan 17 % kapur. Variabel yang diamati meliputi konsumsi pakan, pertambahan bobot badan dan konversi pakan. Data  dianalisis dengan sidik ragam, dan jika terdapat perbedaan yang nyata atau sangat nyata dikanjutkan dengan Uji Beda Nyata Terkecil (BNT. Hasil penelitian menunjukkan penggunaan proporsi sekam, pasir dan kapur dalam litter memberikan perbedaan pengaruh yang nyata (P<0,05 terhadap konsumsi pakan dan pertambahan bobot badan, tetapi tidak memberikan perbedaan pengaruh yang nyata terhadap konversi pakan. Kesimpulan, penggunaan litter yang terdiri dari 50 % sekam, 33 % pasir dan  17 % kapur dapat meningkatkan konsumsi pakan dan pertambahan bobot badan pada ayam pedaging dan tidak menurunkan konversi pakan. Saran pada pemeliharaan ayam pedaging untuk meningkatkan konsumsi pakan dan pertambahan bobot badan  sebaiknya digunalkan litter yang terdiri dari 50 % sekam, 33 % pasir dan  17 % kapur   Kata kunci : Ayam pedaging, konsumsi pakan, pertambahan bobot badan, konversi Pakan,  dan litter.     INCREASED  OF  BROILER PRODUCTION PASSED ARRANGEMENT OF PROPORTION  RICE HULL, SAND

  15. Effect of prenatal irradiation on total litter birth weight

    International Nuclear Information System (INIS)

    Angleton, G.M.; Lee, A.C.

    1981-01-01

    Total litter weight at birth was used as a response variable to study the effects of in utero irradiations on birth weight. Analyses were performed in such a manner as to allow for variations in litter size and environmental temperatures. No effects due to irradiation were noted for exposures given 8 days postcoitus (dpc) and 55 dpc. However, for exposures given 28 dpc, a 5% decrement in birth weight was found for an 80 rad dose

  16. Decomposability and convex structure of thermal processes

    Science.gov (United States)

    Mazurek, Paweł; Horodecki, Michał

    2018-05-01

    We present an example of a thermal process (TP) for a system of d energy levels, which cannot be performed without an instant access to the whole energy space. This TP is uniquely connected with a transition between some states of the system, that cannot be performed without access to the whole energy space even when approximate transitions are allowed. Pursuing the question about the decomposability of TPs into convex combinations of compositions of processes acting non-trivially on smaller subspaces, we investigate transitions within the subspace of states diagonal in the energy basis. For three level systems, we determine the set of extremal points of these operations, as well as the minimal set of operations needed to perform an arbitrary TP, and connect the set of TPs with thermomajorization criterion. We show that the structure of the set depends on temperature, which is associated with the fact that TPs cannot increase deterministically extractable work from a state—the conclusion that holds for arbitrary d level system. We also connect the decomposability problem with detailed balance symmetry of an extremal TPs.

  17. Laser Spectroscopy on Ozone Destruction by SF6 Decomposed Products

    OpenAIRE

    北嶋, 巌; 村上, 和幸; 田中, 淳一; 岡井, 善四郎

    2002-01-01

    This paper reports on the identification of the SF6 decomposed products and the possibility of the ozone destruction by it. SF6 gas absorbs very strongly the 10.6μm P branch of C02 laser beam,so that the trace detection under ppb will be easily performed by the laser photo-acoustic method. We observed a new absorption spectra within the 9.6μm P branch resulted from the decomposed molecules after 2 hours 1 Hz-pulsed discharge of SF6 gas. As a resu1t ofthe gas chromatograph, it will be assumed ...

  18. Uptake of tritium through foliage in capsicum fruitescens, L

    International Nuclear Information System (INIS)

    Iyengar, T.S.; Sadarangani, S.H.; Vaze, P.K.; Soman, S.D.

    1977-01-01

    Tritium uptake and release patterns throuogh foliage in Capsicum fruitescens, L. were investigated using twelve potted plants, under different conditions of exposure and release. The plants studied belonged to two age groups, 3 months and 5 months. The average half residence time for the species was found to be 42.6 min, on the basis of treating the entire group of plants as a single cluster. The individual release rates showed a variation of up to a factor of two, for half residence time values (Tsub(1/2)). The second component was not easily resolvable in most of the cases. Tissue bound tritium showed interesting uptake patterns. The ratios between tissue bound tritium and tissue free water tritium concentrations indicated regular mode of uptake with well defined rate constants in the case of long exposure periods. (author)

  19. Proportion of litters of purebred dogs born by caesarean section.

    Science.gov (United States)

    Evans, Katy M; Adams, Vicki J

    2010-02-01

    To describe the frequency of caesarean sections in a large sample of pedigree dogs in the UK. Data on the numbers of litters born in the previous 10 years were available from a cross-sectional study of dogs belonging to breed club members (2004 Kennel Club/BSAVA Scientific Committee Purebred Dog Health Survey). In this survey 151 breeds were represented with data for households that had reported on at least 10 litters (range 10-14,15): this represented 13,141 bitches which had whelped 22,005 litters. The frequency of caesarean sections was estimated as the percentage of litters that were reported to be born by caesarean section (caesarean rates) and are reported by breed. The dogs were categorised into brachycephalic, mesocephalic and dolicocephalic breeds. The 10 breeds with the highest caesarean rates were the Boston terrier, bulldog, French bulldog, mastiff, Scottish terrier, miniature bull terrier, German wirehaired pointer, Clumber spaniel, Pekingese and Dandie Dinmont terrier. In the Boston terrier, bulldog and French bulldog, the rate was > 80%. These data provide evidence for the need to monitor caesarean rates in certain breeds of dog.

  20. BOREAS TE-9 NSA Photosynthetic Capacity and Foliage Nitrogen Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the spatial and temporal relationship between foliage nitrogen concentration and photosynthetic capacity in the canopies of black spruce, jack pine, and aspen located within the Northern Study Area (NSA). The data were collected from June to September 1994 and are useful for modeling the vertical distribution of carbon fixation for different forest types in the boreal forest. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).