WorldWideScience

Sample records for deciphering evolutionary mechanisms

  1. Transcriptome analysis deciphers evolutionary mechanisms underlying genetic differentiation between coastal and offshore anchovy populations in the Bay of Biscay

    KAUST Repository

    Montes, Iratxe; Zarraonaindia, Iratxe; Iriondo, Mikel; Grant, W. Stewart; Manzano, Carmen; Cotano, Unai; Conklin, Darrell; Irigoien, Xabier; Estonba, Andone

    2016-01-01

    Morphometry and otolith microchemistry point to the existence of two populations of the European anchovy (Engraulis encrasicolus) in the Bay of Biscay: one in open seawaters, and a yet unidentified population in coastal waters. To test this hypothesis, we assembled a large number of samples from the region, including 587 juveniles and spawning adults from offshore and coastal waters, and 264 fish from other locations covering most of the species’ European range. These samples were genotyped for 456 exonic SNPs that provide a robust way to decipher adaptive processes in these populations. Two genetically differentiated populations of anchovy inhabit the Bay of Biscay with different population dynamics: (1) a large offshore population associated with marine waters included in the wide-shelf group, and (2) a coastal metapopulation adapted to estuarine environments in the Bay of Biscay and North Sea included in the narrow-shelf group. Transcriptome analysis identified neutral and adaptive evolutionary processes underlying differentiation between these populations. Reduced gene flow between offshore and coastal populations in the Bay of Biscay appears to result from divergence between two previously isolated gene pools adapted to contrasting habitats and now in secondary contact. Eleven molecular markers appear to mark divergent selection between the ecotypes, and a majority of these markers are associated with salinity variability. Ecotype differences at two outlier genes, TSSK6 and basigin, may hinder gamete compatibility between the ecotypes and reinforce reproductive isolation. Additionally, possible convergent evolution between offshore and coastal populations in the Bay of Biscay has been detected for the syntaxin1B-otoferlin gene system, which is involved in the control of larval buoyancy. Further study of exonic markers opens the possibility of understanding the mechanisms of adaptive divergence between European anchovy populations. © 2016, Springer

  2. Transcriptome analysis deciphers evolutionary mechanisms underlying genetic differentiation between coastal and offshore anchovy populations in the Bay of Biscay

    KAUST Repository

    Montes, Iratxe

    2016-09-13

    Morphometry and otolith microchemistry point to the existence of two populations of the European anchovy (Engraulis encrasicolus) in the Bay of Biscay: one in open seawaters, and a yet unidentified population in coastal waters. To test this hypothesis, we assembled a large number of samples from the region, including 587 juveniles and spawning adults from offshore and coastal waters, and 264 fish from other locations covering most of the species’ European range. These samples were genotyped for 456 exonic SNPs that provide a robust way to decipher adaptive processes in these populations. Two genetically differentiated populations of anchovy inhabit the Bay of Biscay with different population dynamics: (1) a large offshore population associated with marine waters included in the wide-shelf group, and (2) a coastal metapopulation adapted to estuarine environments in the Bay of Biscay and North Sea included in the narrow-shelf group. Transcriptome analysis identified neutral and adaptive evolutionary processes underlying differentiation between these populations. Reduced gene flow between offshore and coastal populations in the Bay of Biscay appears to result from divergence between two previously isolated gene pools adapted to contrasting habitats and now in secondary contact. Eleven molecular markers appear to mark divergent selection between the ecotypes, and a majority of these markers are associated with salinity variability. Ecotype differences at two outlier genes, TSSK6 and basigin, may hinder gamete compatibility between the ecotypes and reinforce reproductive isolation. Additionally, possible convergent evolution between offshore and coastal populations in the Bay of Biscay has been detected for the syntaxin1B-otoferlin gene system, which is involved in the control of larval buoyancy. Further study of exonic markers opens the possibility of understanding the mechanisms of adaptive divergence between European anchovy populations. © 2016, Springer

  3. Deciphering the evolutionary history of open and closed mitosis.

    Science.gov (United States)

    Sazer, Shelley; Lynch, Michael; Needleman, Daniel

    2014-11-17

    The origin of the nucleus at the prokaryote-to-eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the 'closed' mitosis of some yeasts, but loses its integrity in the 'open' mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and documenting patterns of mitotic nuclear variation within and among species and mapping them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  5. Quantum Mechanics predicts evolutionary biology.

    Science.gov (United States)

    Torday, J S

    2018-07-01

    Nowhere are the shortcomings of conventional descriptive biology more evident than in the literature on Quantum Biology. In the on-going effort to apply Quantum Mechanics to evolutionary biology, merging Quantum Mechanics with the fundamentals of evolution as the First Principles of Physiology-namely negentropy, chemiosmosis and homeostasis-offers an authentic opportunity to understand how and why physics constitutes the basic principles of biology. Negentropy and chemiosmosis confer determinism on the unicell, whereas homeostasis constitutes Free Will because it offers a probabilistic range of physiologic set points. Similarly, on this basis several principles of Quantum Mechanics also apply directly to biology. The Pauli Exclusion Principle is both deterministic and probabilistic, whereas non-localization and the Heisenberg Uncertainty Principle are both probabilistic, providing the long-sought after ontologic and causal continuum from physics to biology and evolution as the holistic integration recognized as consciousness for the first time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Algorithmic Mechanism Design of Evolutionary Computation.

    Science.gov (United States)

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  7. Deciphering the black box of food allergy mechanisms.

    Science.gov (United States)

    Sampath, Vanitha; Tupa, Dana; Graham, Michelle Toft; Chatila, Talal A; Spergel, Jonathan M; Nadeau, Kari C

    2017-01-01

    To review our current understanding of immunotherapy, the immune mechanisms underlying food allergy, and the methodological advances that are furthering our understanding of the role of immune cells and other molecules in mediating food allergies. Literature searches were performed using the following combination of terms: allergy, immunotherapy, food, and mechanisms. Data from randomized clinical studies using state-of-the-art mechanistic tools were prioritized. Articles were selected based on their relevance to food allergy. Current standard of care for food allergies is avoidance of allergenic foods and the use of epinephrine in case of severe reaction during unintentional ingestion. During the last few decades, great strides have been made in understanding the cellular and molecular mechanisms underlying food allergy, and this information is spearheading the development of exciting new treatments. Immunotherapy protocols are effective in desensitizing individuals to specific allergens; however, recurrence of allergic sensitization is common after discontinuation of therapy. Interestingly, in a subset of individuals, immunotherapy is protective against allergens even after discontinuation of immunotherapy. Whether this protection is permanent is currently unknown because of inadequate long-term follow-up data. Research on understanding the underlying mechanisms may assist in modifying protocols to improve outcome and enable sustained unresponsiveness, rather than a temporary relief against food allergies. The cellular changes brought about by immunotherapy are still a black box, but major strides in our understanding are being made at an exciting pace. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-01-01

    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  9. Statistical mechanics of spatial evolutionary games

    International Nuclear Information System (INIS)

    Miekisz, Jacek

    2004-01-01

    We discuss the long-run behaviour of stochastic dynamics of many interacting players in spatial evolutionary games. In particular, we investigate the effect of the number of players and the noise level on the stochastic stability of Nash equilibria. We discuss similarities and differences between systems of interacting players maximizing their individual payoffs and particles minimizing their interaction energy. We use concepts and techniques of statistical mechanics to study game-theoretic models. In order to obtain results in the case of the so-called potential games, we analyse the thermodynamic limit of the appropriate models of interacting particles

  10. Deciphering spreading mechanisms in amyotrophic lateral sclerosis: clinical evidence and potential molecular processes.

    Science.gov (United States)

    Pradat, Pierre-François; Kabashi, Edor; Desnuelle, Claude

    2015-10-01

    The aim of this review is to refer to recent arguments supporting the existence of specific propagation mechanisms associated with spreading of neuron injury in amyotrophic lateral sclerosis (ALS). Misfolded ALS-linked protein accumulation can induce aggregation of their native equivalent isoforms through a mechanism analogous to the infectious prion proteins initiation and its propagation. Although ALS is clinically heterogeneous, a shared characteristic is the focal onset and the progressive extension to all body regions. Being viewed until now as just summation of the increased number of affected neurons, dispersion is now rather considered as the result of a seeded self-propagating process. A sequential regional spreading pattern is supported by the distribution of TDP-43 aggregates in ALS autopsy cases. Electrophysiology and advanced neuroimaging methods also recently provided some evidence for propagation of lesions both in the brain and spinal cord, more longitudinal studies being still needed. Lesions are supposed to spread cell-to-cell regionally or through connected neuronal pathway. At the molecular level, the prion-like spreading is an emerging mechanism hypothesis, but other machineries such as those that are in charge of dealing with misfolded proteins and secretion of deleterious peptides may be involved in the propagation of neuron loss. Deciphering the mechanisms underlying spreading of ALS symptoms is of crucial importance to better understand this neurodegenerative disease, build new and appropriate animal models and to define novel therapeutic targets.

  11. Deciphering the Mechanism of Action of Wrightia tinctoria for Psoriasis Based on Systems Pharmacology Approach.

    Science.gov (United States)

    Sundarrajan, Sudharsana; Lulu, Sajitha; Arumugam, Mohanapriya

    2017-11-01

    Psoriasis is a chronic immune-mediated disorder of the skin. The disease manifests itself with red or silvery scaly plaques distributing over the lower back, scalp, and extensor aspects of limbs. Several medications are available for the treatment of psoriasis; however, high rates of remission and side-effects still persist as a major concern. Siddha, one of the traditional systems of Indian medicine offers cure to many dermatological conditions, including psoriasis. The oil prepared from the leaves of Wrightia tinctoria is prescribed by many healers for the treatment of psoriasis. This work aims to decipher the mechanism of action of the W. tinctoria in curing psoriasis and its associated comorbidities. The work integrates various pharmacology approaches such as drug-likeness evaluation, oral bioavailability predictions, and network pharmacology approaches to understand the roles of various bioactive components of the herb. This work identified 67 compounds of W. tinctoria interacting with 238 protein targets. The compounds were found to act through synergistic mechanism in reviving the disrupted process in the diseased state. The results of this work not only shed light on the pharmacological action of the herb but also validate the usage of safe herbal drugs.

  12. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance

    Directory of Open Access Journals (Sweden)

    Kamila Lucia Bokszczanin

    2013-08-01

    Full Text Available Global warming is a major threat for agriculture and food safety and in many cases the negative effects are already apparent. The current challenge of basic and applied plant science is to decipher the molecular mechanisms of heat stress response and thermotolerance in detail and use this information to identify genotypes that will withstand unfavorable environmental conditions. Nowadays X-omics approaches complement the findings of previous targeted studies and highlight the complexity of heat stress response mechanisms giving information for so far unrecognized genes, proteins and metabolites as potential key players of thermotolerance. Even more, roles of epigenetic mechanisms and the involvement of small RNAs in thermotolerance are currently emerging and thus open new directions of yet unexplored areas of plant heat stress response. In parallel it is emerging that although the whole plant is vulnerable to heat, specific organs are particularly sensitive to elevated temperatures. This has redirected research from the vegetative to generative tissues. The sexual reproduction phase is considered as the most sensitive to heat and specifically pollen exhibits the highest sensitivity and frequently an elevation of the temperature just a few degrees above the optimum during pollen development can have detrimental effects for crop production. Compared to our knowledge on heat stress response of vegetative tissues, the information on pollen is still scarce. Nowadays, several techniques for high-throughput X-omics approaches provide major tools to explore the principles of pollen heat stress response and thermotolerance mechanisms in specific genotypes. The collection of such information will provide an excellent support for improvement of breeding programs to facilitate the development of tolerant cultivars. The review aims at describing the current knowledge of thermotolerance mechanisms and the technical advances which will foster new insights into

  13. Deciphering the Mechanisms of Developmental Disorders (DMDD: a new programme for phenotyping embryonic lethal mice

    Directory of Open Access Journals (Sweden)

    Timothy Mohun

    2013-05-01

    International efforts to test gene function in the mouse by the systematic knockout of each gene are creating many lines in which embryonic development is compromised. These homozygous lethal mutants represent a potential treasure trove for the biomedical community. Developmental biologists could exploit them in their studies of tissue differentiation and organogenesis; for clinical researchers they offer a powerful resource for investigating the origins of developmental diseases that affect newborns. Here, we outline a new programme of research in the UK aiming to kick-start research with embryonic lethal mouse lines. The ‘Deciphering the Mechanisms of Developmental Disorders’ (DMDD programme has the ambitious goal of identifying all embryonic lethal knockout lines made in the UK over the next 5 years, and will use a combination of comprehensive imaging and transcriptomics to identify abnormalities in embryo structure and development. All data will be made freely available, enabling individual researchers to identify lines relevant to their research. The DMDD programme will coordinate its work with similar international efforts through the umbrella of the International Mouse Phenotyping Consortium [see accompanying Special Article (Adams et al., 2013] and, together, these programmes will provide a novel database for embryonic development, linking gene identity with molecular profiles and morphology phenotypes.

  14. Anticipatory Mechanisms in Evolutionary Living Systems

    Science.gov (United States)

    Dubois, Daniel M.; Holmberg, Stig C.

    2010-11-01

    This paper deals firstly with a revisiting of Darwin's theory of Natural Selection. Darwin in his book never uses the word "evolution", but shows a clear position about mutability of species. Darwin's Natural Selection was mainly inspired by the anticipatory Artificial Selection by humans in domestication, and the Malthus struggle for existence. Darwin showed that the struggle for existence leads to the preservation of the most divergent offspring of any one species. He cited several times the canon of "Natura non facit saltum". He spoke about the origin of life from some one primordial form, into which life was first breathed. Finally, Darwin made anticipation about the future researches in psychology. This paper cites the work of Ernst Mayr who was the first, after 90 years of an intense scientific debate, to present a new and stable Darwinian paradigm as the "Evolutionary Synthesis" in 1942. To explain what is life, the Living Systems Theory (LST) by J. G. Miller is presented. It is showed that the Autopoietic Systems Theory of Varela et al is also a fundamental component of living systems. In agreement with Darwin, the natural selection is a necessary condition for transformation of biological systems, but is not a sufficient condition. Thus, in this paper we conjecture that an anticipatory evolutionary mechanism exists with the genetic code that is a self-replicating and self-modifying anticipatory program. As demonstrated by Nobel laureate McClintock, evolution in genomes is programmed. The word "program" comes from "pro-gram" meaning to write before, by anticipation, and means a plan for the programming of a mechanism, or a sequence of coded instructions that can be inserted into a mechanism, or a sequence of coded instructions, as genes of behavioural responses, that is part of an organism. For example, cell death may be programmed by what is called the apoptosis. This definitively is a great breakthrough in our understanding of biological evolution. Hence

  15. Phylogenetic and CRISPR/Cas9 Studies in Deciphering the Evolutionary Trajectory and Phenotypic Impacts of Rice ERECTA Genes

    Directory of Open Access Journals (Sweden)

    Yanchun Zhang

    2018-04-01

    Full Text Available The ERECTA family genes (ERfs have been found to play diverse functions in Arabidopsis, including controlling cell proliferation and cell growth, regulating stomata patterning, and responding to various stresses. This wide range of functions has rendered them as a potential candidate for crop improvement. However, information on their functional roles, particularly their morphological impact, in crop genomes, such as rice, is limited. Here, through evolutionary prediction, we first depict the evolutionary trajectory of the ER family, and show that the ER family is actually highly conserved across different species, suggesting that most of their functions may also be observed in other plant species. We then take advantage of the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats–associated nuclease 9 system to assess their morphological impact on one of the most important crops, rice. Loss-of-function mutants of OsER1 and OsER2 display shortened plant stature and reduced panicle size, suggesting they possibly also functioned in regulating cell proliferation and cell growth in rice. In addition to functions similar to that in Arabidopsis, we also find clues that rice ERfs may play unique functional roles. The OsER2 displayed more severe phenotypic changes than OsER1, indicating putative differentiation in their functions. The OsERL might be of essential in its function, and the proper function of all three rice ER genes might be dependent of their genetic background. Future investigations relating to these functions are key to exploiting ERfs in crop development.

  16. Deciphering mechanisms of drug sensitivity and resistance to Selective Inhibitor of Nuclear Export (SINE) compounds

    International Nuclear Information System (INIS)

    Crochiere, Marsha; Kashyap, Trinayan; Kalid, Ori; Shechter, Sharon; Klebanov, Boris; Senapedis, William; Saint-Martin, Jean-Richard; Landesman, Yosef

    2015-01-01

    Exportin 1 (XPO1) is a well-characterized nuclear export protein whose expression is up-regulated in many types of cancers and functions to transport key tumor suppressor proteins (TSPs) from the nucleus. Karyopharm Therapeutics has developed a series of small-molecule Selective Inhibitor of Nuclear Export (SINE) compounds, which have been shown to block XPO1 function both in vitro and in vivo. The drug candidate, selinexor (KPT-330), is currently in Phase-II/IIb clinical trials for treatment of both hematologic and solid tumors. The present study sought to decipher the mechanisms that render cells either sensitive or resistant to treatment with SINE compounds, represented by KPT-185, an early analogue of KPT-330. Using the human fibrosarcoma HT1080 cell line, resistance to SINE was acquired over a period of 10 months of constant incubation with increasing concentration of KPT-185. Cell viability was assayed by MTT. Immunofluorescence was used to compare nuclear export of TSPs. Fluorescence activated cell sorting (FACS), quantitative polymerase chain reaction (qPCR), and immunoblots were used to measure effects on cell cycle, gene expression, and cell death. RNA from naïve and drug treated parental and resistant cells was analyzed by Affymetrix microarrays. Treatment of HT1080 cells with gradually increasing concentrations of SINE resulted in > 100 fold decrease in sensitivity to SINE cytotoxicity. Resistant cells displayed prolonged cell cycle, reduced nuclear accumulation of TSPs, and similar changes in protein expression compared to parental cells, however the magnitude of the protein expression changes were more significant in parental cells. Microarray analyses comparing parental to resistant cells indicate that a number of key signaling pathways were altered in resistant cells including expression changes in genes involved in adhesion, apoptosis, and inflammation. While the patterns of changes in transcription following drug treatment are similar in parental

  17. Use of fission track for deciphering the dissolution mechanism of silicates glasses

    International Nuclear Information System (INIS)

    Petit, J.C.; Brousse, C.

    1985-09-01

    Polished sections of silicate glasses containing latent or pre-etched fission tracks have been subjected to corrosion in deionized water or NaCl brines at 20, 50 and 100 0 C. The evolution of glass surface helps deciphering among reported dissolution models. We show that ion-exchange is dominant in simple glasses while in complex ones, dissolution involves several steps including an in-situ transformation of the pristine material and a reprecipitation of dissolved species

  18. SLIFER Decipher

    International Nuclear Information System (INIS)

    Breding, D.R.; Worthen, G.S.; Loukota, J.J.; Fogel, D.; Watterberg, J.P.

    1977-10-01

    The SLIFER Decipher (SD) is a digital instrument that records a time-varying frequency signal in the range from 700 kHz to 1500 kHz with an amplitude greater than 200 mV. This signal is referenced to an input fiducial marker. The primary purpose of this instrument is to reduce data recorded on magnetic tape from the SLIFER system used in underground nuclear tests. The SD records 512 samples after the fiducial signal, with a sample interval of 50 μs (for a total recording time of 25.55 ms). The measurement essentially uses a 20-cycle period-averaging counter technique

  19. Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)

    Science.gov (United States)

    2015-12-01

    event. The discovery that transformed and rapidly proliferating cells use alternative cleavage and polyadenylation ( APA ) to shorten the 3´UTR of their... APA . However, the mechanism that APA is still unknown. The goal of this project is to identify the mechanism of cyclin D1 APA regulation in cancer...for APA in MCL. In addition, by using RNA Seq. CFIm25 has been identified as an important global regulator of shortening of cyclin D1 mRNA and other

  20. Deciphering potential mechanisms of anaerobic soil disinfestation (ASD)-mediated control of Pratylenchus penetrans

    Science.gov (United States)

    Pratylenchus penetrans is a component of the apple replant disease (ARD) causal pathogen complex. The potential role for biological mechanisms contributing to ASD-mediated suppression of P. penetrans was examined in greenhouse study using orchard soil with a history of ARD. Populations of P. penetra...

  1. Transcending the biomarker mindset: deciphering disease mechanisms at the single cell level.

    Science.gov (United States)

    Danna, Erika A; Nolan, Garry P

    2006-02-01

    The application of proteomics to disease research promises to enhance the understanding and treatment of many human maladies through the identification of molecular profiles associated with each disease. However, although much is made of the utility of molecular signatures as markers of disease state, insufficient emphasis is often placed on the simultaneous need for biological mechanism inquiry. Focused and detailed analyses of disease-associated signaling networks have the potential to be more mechanistically informative than large-scale proteomic profiling approaches, providing insight into the cellular processes involved in pathogenesis, disease progression and therapeutic resistance; while still providing diagnostic or clinical management direction. Phospho-specific flow cytometry provides a method for the analysis of pathological signaling networks, enabling the investigation of disease mechanisms at the single-cell level.

  2. Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement

    OpenAIRE

    Willis, Nicholas A.; Rass, Emilie; Scully, Ralph

    2015-01-01

    Chromosome rearrangement plays a causal role in tumorigenesis by contributing to the inactivation of tumor suppressor genes, the dysregulated expression or amplification of oncogenes and the generation of novel gene fusions. Chromosome breaks are important intermediates in this process. How, when and where these breaks arise and the specific mechanisms engaged in their repair strongly influence the resulting patterns of chromosome rearrangement. Here, we review recent progress in understandin...

  3. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis

    Science.gov (United States)

    Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen

    2015-03-01

    The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.

  4. Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action.

    Science.gov (United States)

    Tan, W S Daniel; Liao, Wupeng; Zhou, Shuo; Wong, W S Fred

    2017-09-01

    Andrographis paniculata has long been part of the traditional herbal medicine system in Asia and in Scandinavia. Andrographolide was isolated as a major bioactive constituent of A. paniculata in 1951, and since 1984, andrographolide and its analogs have been scrutinized with modern drug discovery approach for anti-inflammatory properties. With this accumulated wealth of pre-clinical data, it is imperative to review and consolidate different sources of information, to decipher the major anti-inflammatory mechanisms of action in inflammatory diseases, and to provide direction for future studies. Andrographolide and its analogs have been shown to provide anti-inflammatory benefits in a variety of inflammatory disease models. Among the diverse signaling pathways investigated, inhibition of NF-κB activity is the prevailing anti-inflammatory mechanism elicited by andrographolide. There is also increasing evidence supporting endogenous antioxidant defense enhancement by andrographolide through Nrf2 activation. However, the exact pathway leading to NF-κB and Nrf2 activation by andrographolide has yet to be elucidated. Validation and consensus on the major mechanistic actions of andrographolide in different inflammatory conditions are required before translating current findings into clinical settings. There are a few clinical trials conducted using andrographolide in fixed combination formulation which have shown anti-inflammatory benefits and good safety profile. A concerted effort is definitely needed to identify potent andrographolide lead compounds with improved pharmacokinetics and toxicological properties. Taken together, andrographolide and its analogs have great potential to be the next new class of anti-inflammatory agents, and more andrographolide molecules are likely moving towards clinical study stage in the near future. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement

    Science.gov (United States)

    Willis, Nicholas A.; Rass, Emilie; Scully, Ralph

    2015-01-01

    Chromosome rearrangement plays a causal role in tumorigenesis by contributing to the inactivation of tumor suppressor genes, the dysregulated expression or amplification of oncogenes and the generation of novel gene fusions. Chromosome breaks are important intermediates in this process. How, when and where these breaks arise and the specific mechanisms engaged in their repair strongly influence the resulting patterns of chromosome rearrangement. Here, we review recent progress in understanding how certain distinctive features of the cancer genome, including clustered mutagenesis, tandem segmental duplications, complex breakpoints, chromothripsis, chromoplexy and chromoanasynthesis may arise. PMID:26726318

  6. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: A quantitative proteomics approach.

    Science.gov (United States)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-04-14

    Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After tube foot detachment, the secreted adhesive remains bound to the substratum as a footprint. Sea urchin adhesive is composed by proteins and sugars, but so far only one protein, Nectin, was shown to be over-expressed as a transcript in tube feet discs, suggesting its involvement in sea urchin adhesion. Here we use high-resolution quantitative mass-spectrometry to perform the first study combining the analysis of the differential proteome of an adhesive organ, with the proteome of its secreted adhesive. This strategy allowed us to identify 163 highly over-expressed disc proteins, specifically involved in sea urchin reversible adhesion; to find that 70% of the secreted adhesive components fall within five protein groups, involved in exocytosis and microbial protection; and to provide evidences that Nectin is not only highly expressed in tube feet discs but is an actual component of the adhesive. These results give an unprecedented insight into the molecular mechanisms underlying sea urchin adhesion, and opening new doors to develop wet-reliable, reversible, and ecological biomimetic adhesives. Sea urchins attach strongly but in a reversible manner to substratum, being a valuable source of inspiration for industrial and biomedical applications. Yet, the molecular mechanisms governing reversible adhesion are still poorly studied delaying the engineering of biomimetic adhesives. We used the latest mass spectrometry techniques to analyze the differential proteome of an adhesive organ and the proteome of its secreted adhesive, allowing us to uncover the key players in sea urchin reversible adhesion. We demonstrate, that Nectin, a protein previously pointed out as potentially

  7. Cotton proteomics for deciphering the mechanism of environment stress response and fiber development.

    Science.gov (United States)

    Zhou, Meiliang; Sun, Guoqing; Sun, Zhanmin; Tang, Yixiong; Wu, Yanmin

    2014-06-13

    Cotton fiber is considered as the backbone of the textile industry. The productivity of cotton crop is severely hampered by the occurrence of pathogens, pests, and various environmental factors. Nevertheless, cotton plant has developed sophisticated mechanisms to respond to environment stresses to avoid detrimental effects on its growth and development. Therefore, understanding the mechanisms of cotton fiber development and environment stress response is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in cotton fiber development and abiotic/biotic stress tolerance has increased dramatically in the last 5years as evidenced by the large amount of publications in this area. This review summarizes the work which has been reported for cotton proteomics and evaluates the findings in context of the approaches that are widely employed with the aim to generate novel insight useful for cotton improvement. Cotton (Gossypium spp.) is considered as the foremost commercially important fiber crop grown all over the world and is deemed as the backbone of the textile industry. Cotton is also an important source of edible oil seed and a nutrient-rich food crop as cottonseed contains high-quality protein and oil. The growth and productivity of cotton crop are often hampered by various biotic stress factors, such as insect pests and pathogens. In addition, cotton plants are frequently subjected to unavoidable environmental factors that cause abiotic stress, such as salt, heat and drought. Proteomic techniques provide one of the best options for understanding the gene function and phenotypic changes during cotton fiber development and stress response. This review first summarizes the work which has been reported for cotton proteomics about cotton fiber development and abiotic/biotic stress tolerance, and also evaluates the findings in context of the approaches

  8. SPICA/SAFARI Fourier transform spectrometer mechanism evolutionary design

    Science.gov (United States)

    van den Dool, Teun C.; Kruizinga, Bob; Braam, Ben C.; Hamelinck, Roger F. M. M.; Loix, Nicolas; Van Loon, Dennis; Dams, Johan

    2012-09-01

    TNO, together with its partners, have designed a cryogenic scanning mechanism for use in the SAFARI1 Fourier Transform Spectrometer (FTS) on board of the SPICA mission. SPICA is one of the M-class missions competing to be launched in ESA's Cosmic Vision Programme2 in 2022. JAXA3 leads the development of the SPICA satellite and SRON is the prime investigator of the Safari instrument. The FTS scanning mechanism (FTSM) has to meet a 35 mm stroke requirement with an Optical Path Difference resolution of less then 15 nm and must fit in a small volume. It consists of two back-to-back roof-top mirrors mounted on a small carriage, which is moved using a magnetic bearing linear guiding system in combination with a magnetic linear motor serving as the OPD actuator. The FTSM will be used at cryogenic temperatures of 4 Kelvin inducing challenging requirements on the thermal power dissipation and heat leak. The magnetic bearing enables movements over a scanning stroke of 35.5 mm in a small volume. It supports the optics in a free-floating way with no friction, or other non-linearities, with sub-nanometer accuracy. This solution is based on the design of the breadboard ODL (Optical Delay Line) developed for the ESA Darwin mission4 and the MABE mechanism developed by Micromega Dynamics. During the last couple of years the initial design of the SAFARI instrument, as described in an earlier SPIE 2010 paper5, was adapted by the SAFARI team in an evolutionary way to meet the changing requirements of the SPICA payload module. This presentation will focus on the evolution of the FTSM to meet these changing requirements. This work is supported by the Netherlands Space Office (NSO).

  9. The evolution of different forms of sociality: behavioral mechanisms and eco-evolutionary feedback.

    Directory of Open Access Journals (Sweden)

    Daniel J van der Post

    Full Text Available Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from "leader-follower" societies to "fission-fusion" societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality.

  10. Dual transcriptomics reveals co-evolutionary mechanisms of intestinal parasite infections in blue mussels Mytilus edulis

    NARCIS (Netherlands)

    Feis, M.E.; John, U.; Lokmer, A.; Luttikhuizen, P.C.; Wegner, K.M.

    2018-01-01

    On theoretical grounds, antagonistic co-evolution between hosts and their parasitesshould be a widespread phenomenon but only received little empirical support sofar. Consequently, the underlying molecular mechanisms and evolutionary stepsremain elusive, especially in nonmodel systems. Here, we

  11. Sex differences in jealousy: evolutionary mechanism or artifact of measurement?

    Science.gov (United States)

    DeSteno, David; Bartlett, Monica Y; Braverman, Julia; Salovey, Peter

    2002-11-01

    Two studies are presented that challenge the evidentiary basis for the existence of evolved sex differences in jealousy. In opposition to the evolutionary view, Study I demonstrated that a sex difference in jealousy resulting from sexual versus emotional infidelity is observed only when judgments are recorded using a forced-choice response format. On all other measures, no sex differences were found; both men and women reported greater jealousy in response to sexual infidelity. A second study revealed that the sex difference on the forced-choice measure disappeared under conditions of cognitive constraint. These findings suggest that the sex difference used to support the evolutionary view of jealousy (e.g., D. M. Buss, R. Larsen, D. Westen, & J. Semmelroth, 1992; D. M. Buss et al., 1999) likely represents a measurement artifact resulting from a format-induced effortful decision strategy and not an automatic, sex-specific response shaped by evolution.

  12. Mechanics of evolutionary digit reduction in fossil horses (Equidae).

    Science.gov (United States)

    McHorse, Brianna K; Biewener, Andrew A; Pierce, Stephanie E

    2017-08-30

    Digit reduction is a major trend that characterizes horse evolution, but its causes and consequences have rarely been quantitatively tested. Using beam analysis on fossilized centre metapodials, we tested how locomotor bone stresses changed with digit reduction and increasing body size across the horse lineage. Internal bone geometry was captured from 13 fossil horse genera that covered the breadth of the equid phylogeny and the spectrum of digit reduction and body sizes, from Hyracotherium to Equus To account for the load-bearing role of side digits, a novel, continuous measure of digit reduction was also established-toe reduction index (TRI). Our results show that without accounting for side digits, three-toed horses as late as Parahippus would have experienced physiologically untenable bone stresses. Conversely, when side digits are modelled as load-bearing, species at the base of the horse radiation through Equus probably maintained a similar safety factor to fracture stress. We conclude that the centre metapodial compensated for evolutionary digit reduction and body mass increases by becoming more resistant to bending through substantial positive allometry in internal geometry. These results lend support to two historical hypotheses: that increasing body mass selected for a single, robust metapodial rather than several smaller ones; and that, as horse limbs became elongated, the cost of inertia from the side toes outweighed their utility for stabilization or load-bearing. © 2017 The Author(s).

  13. Study on Cooperative Mechanism of Prefabricated Producers Based on Evolutionary Game Theory

    Directory of Open Access Journals (Sweden)

    Tongyao Feng

    2017-01-01

    Full Text Available Good cooperation mechanism is an important guarantee for the advancement of industrialization construction. To strengthen the partnership between producers, we analyze the behavior evolution trend of both parties using an evolutionary game theory. Based on the original model, the mechanism of coordination and cooperation between prefabricated producers is explained under the condition of punishment and incentive. The results indicate that stable evolutionary strategies exist under both cooperation and noncooperation, and the evolutionary results are influenced by the initial proportion of both decision-making processes. The government can support the production enterprises to establish a solid partnership through effective punishment and incentive mechanisms to reduce the initial cost in the supply chain of prefabricated construction, resulting in a win-win situation.

  14. SPICA/SAFARI fourier transform spectrometer mechanism evolutionary design

    NARCIS (Netherlands)

    Dool, T.C. van den; Kruizinga, B.; Braam, B.C.; Hamelinck, R.F.M.M.; Loix, N.; Loon, D. van; Dams, J.

    2012-01-01

    TNO, together with its partners, have designed a cryogenic scanning mechanism for use in the SAFARI Fourier Transform Spectrometer (FTS) on board of the SPICA mission. SPICA is one of the M-class missions competing to be launched in ESA's Cosmic Vision Programme in 2022. JAXA leads the development

  15. Symmetry-based reciprocity: evolutionary constraints on a proximate mechanism.

    Science.gov (United States)

    Campennì, Marco; Schino, Gabriele

    2016-01-01

    Background. While the evolution of reciprocal cooperation has attracted an enormous attention, the proximate mechanisms underlying the ability of animals to cooperate reciprocally are comparatively neglected. Symmetry-based reciprocity is a hypothetical proximate mechanism that has been suggested to be widespread among cognitively unsophisticated animals. Methods. We developed two agent-based models of symmetry-based reciprocity (one relying on an arbitrary tag and the other on interindividual proximity) and tested their ability both to reproduce significant emergent features of cooperation in group living animals and to promote the evolution of cooperation. Results. Populations formed by agents adopting symmetry-based reciprocity showed differentiated "social relationships" and a positive correlation between cooperation given and received: two common aspects of animal cooperation. However, when reproduction and selection across multiple generations were added to the models, agents adopting symmetry-based reciprocity were outcompeted by selfish agents that never cooperated. Discussion. In order to evolve, hypothetical proximate mechanisms must be able to stand competition from alternative strategies. While the results of our simulations require confirmation using analytical methods, we provisionally suggest symmetry-based reciprocity is to be abandoned as a possible proximate mechanism underlying the ability of animals to reciprocate cooperative interactions.

  16. Evolutionary Trends in the Jaw Adductor Mechanics of Ornithischian Dinosaurs.

    Science.gov (United States)

    Nabavizadeh, Ali

    2016-03-01

    Jaw mechanics in ornithischian dinosaurs have been widely studied for well over a century. Most of these studies, however, use only one or few taxa within a given ornithischian clade as a model for feeding mechanics across the entire clade. In this study, mandibular mechanical advantages among 52 ornithischian genera spanning all subclades are calculated using 2D lever arm methods. These lever arm calculations estimate the effect of jaw shape and difference in adductor muscle line of action on relative bite forces along the jaw. Results show major instances of overlap between taxa in tooth positions at which there was highest mechanical advantage. A relatively low bite force is seen across the tooth row among thyreophorans (e.g., stegosaurs and ankylosaurs), with variation among taxa. A convergent transition occurs from a more evenly distributed bite force along the jaw in basal ornithopods and basal marginocephalians to a strong distal bite force in hadrosaurids and ceratopsids, respectively. Accordingly, adductor muscle vector angles show repeated trends from a mid-range caudodorsal orientation in basal ornithischians to a decrease in vector angles indicating more caudally oriented jaw movements in derived taxa (e.g., derived thyreophorans, basal ornithopods, lambeosaurines, pachycephalosaurs, and derived ceratopsids). Analyses of hypothetical jaw morphologies were also performed, indicating that both the coronoid process and lowered jaw joint increase moment arm length therefore increasing mechanical advantage of the jaw apparatus. Adaptive trends in craniomandibular anatomy show that ornithischians evolved more complex feeding apparatuses within different clades as well as morphological convergences between clades. © 2016 Wiley Periodicals, Inc.

  17. A security mechanism based on evolutionary game in fog computing.

    Science.gov (United States)

    Sun, Yan; Lin, Fuhong; Zhang, Nan

    2018-02-01

    Fog computing is a distributed computing paradigm at the edge of the network and requires cooperation of users and sharing of resources. When users in fog computing open their resources, their devices are easily intercepted and attacked because they are accessed through wireless network and present an extensive geographical distribution. In this study, a credible third party was introduced to supervise the behavior of users and protect the security of user cooperation. A fog computing security mechanism based on human nervous system is proposed, and the strategy for a stable system evolution is calculated. The MATLAB simulation results show that the proposed mechanism can reduce the number of attack behaviors effectively and stimulate users to cooperate in application tasks positively.

  18. A security mechanism based on evolutionary game in fog computing

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2018-02-01

    Full Text Available Fog computing is a distributed computing paradigm at the edge of the network and requires cooperation of users and sharing of resources. When users in fog computing open their resources, their devices are easily intercepted and attacked because they are accessed through wireless network and present an extensive geographical distribution. In this study, a credible third party was introduced to supervise the behavior of users and protect the security of user cooperation. A fog computing security mechanism based on human nervous system is proposed, and the strategy for a stable system evolution is calculated. The MATLAB simulation results show that the proposed mechanism can reduce the number of attack behaviors effectively and stimulate users to cooperate in application tasks positively.

  19. An evolutionary framework for studying mechanisms of social behavior.

    Science.gov (United States)

    Hofmann, Hans A; Beery, Annaliese K; Blumstein, Daniel T; Couzin, Iain D; Earley, Ryan L; Hayes, Loren D; Hurd, Peter L; Lacey, Eileen A; Phelps, Steven M; Solomon, Nancy G; Taborsky, Michael; Young, Larry J; Rubenstein, Dustin R

    2014-10-01

    Social interactions are central to most animals and have a fundamental impact upon the phenotype of an individual. Social behavior (social interactions among conspecifics) represents a central challenge to the integration of the functional and mechanistic bases of complex behavior. Traditionally, studies of proximate and ultimate elements of social behavior have been conducted by distinct groups of researchers, with little communication across perceived disciplinary boundaries. However, recent technological advances, coupled with increased recognition of the substantial variation in mechanisms underlying social interactions, should compel investigators from divergent disciplines to pursue more integrative analyses of social behavior. We propose an integrative conceptual framework intended to guide researchers towards a comprehensive understanding of the evolution and maintenance of mechanisms governing variation in sociality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The evolutionary roots of creativity: mechanisms and motivations.

    Science.gov (United States)

    Wiggins, Geraint A; Tyack, Peter; Scharff, Constance; Rohrmeier, Martin

    2015-03-19

    We consider the evolution of cognition and the emergence of creative behaviour, in relation to vocal communication. We address two key questions: (i) what cognitive and/or social mechanisms have evolved that afford aspects of creativity?; (ii) has natural and/or sexual selection favoured human behaviours considered 'creative'? This entails analysis of 'creativity', an imprecise construct: comparable properties in non-humans differ in magnitude and teleology from generally agreed human creativity. We then address two apparent problems: (i) the difference between merely novel productions and 'creative' ones; (ii) the emergence of creative behaviour in spite of high cost: does it fit the idea that females choose a male who succeeds in spite of a handicap (costly ornament); or that creative males capable of producing a large and complex song repertoire grew up under favourable conditions; or a demonstration of generally beneficial heightened reasoning capacity; or an opportunity to continually reinforce social bonding through changing communication tropes; or something else? We illustrate and support our argument by reference to whale and bird song; these independently evolved biological signal mechanisms objectively share surface properties with human behaviours generally called 'creative'. Studying them may elucidate mechanisms underlying human creativity; we outline a research programme to do so. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. The evolutionary roots of creativity: mechanisms and motivations

    Science.gov (United States)

    Wiggins, Geraint A.; Tyack, Peter; Scharff, Constance; Rohrmeier, Martin

    2015-01-01

    We consider the evolution of cognition and the emergence of creative behaviour, in relation to vocal communication. We address two key questions: (i) what cognitive and/or social mechanisms have evolved that afford aspects of creativity?; (ii) has natural and/or sexual selection favoured human behaviours considered ‘creative’? This entails analysis of ‘creativity’, an imprecise construct: comparable properties in non-humans differ in magnitude and teleology from generally agreed human creativity. We then address two apparent problems: (i) the difference between merely novel productions and ‘creative’ ones; (ii) the emergence of creative behaviour in spite of high cost: does it fit the idea that females choose a male who succeeds in spite of a handicap (costly ornament); or that creative males capable of producing a large and complex song repertoire grew up under favourable conditions; or a demonstration of generally beneficial heightened reasoning capacity; or an opportunity to continually reinforce social bonding through changing communication tropes; or something else? We illustrate and support our argument by reference to whale and bird song; these independently evolved biological signal mechanisms objectively share surface properties with human behaviours generally called ‘creative’. Studying them may elucidate mechanisms underlying human creativity; we outline a research programme to do so. PMID:25646522

  2. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells

    Directory of Open Access Journals (Sweden)

    Lola Boutin

    2018-04-01

    Full Text Available Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg, such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the expression of butyrophilin 3A1 (BTN3A1/CD277 molecules, which are type I glycoproteins that belong to the B7 family. Several studies have further shown that pAg specifically bind to the intracellular B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg and the contribution of the different subunits to this activation process. Recent reports support that conformational modifications of BTN3A1 might represent a key step in the detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that target defined functions of this unique γδ T cell subset.

  3. Evolutionary conservation and neuronal mechanisms of auditory perceptual restoration.

    Science.gov (United States)

    Petkov, Christopher I; Sutter, Mitchell L

    2011-01-01

    Auditory perceptual 'restoration' occurs when the auditory system restores an occluded or masked sound of interest. Behavioral work on auditory restoration in humans began over 50 years ago using it to model a noisy environmental scene with competing sounds. It has become clear that not only humans experience auditory restoration: restoration has been broadly conserved in many species. Behavioral studies in humans and animals provide a necessary foundation to link the insights being obtained from human EEG and fMRI to those from animal neurophysiology. The aggregate of data resulting from multiple approaches across species has begun to clarify the neuronal bases of auditory restoration. Different types of neural responses supporting restoration have been found, supportive of multiple mechanisms working within a species. Yet a general principle has emerged that responses correlated with restoration mimic the response that would have been given to the uninterrupted sound of interest. Using the same technology to study different species will help us to better harness animal models of 'auditory scene analysis' to clarify the conserved neural mechanisms shaping the perceptual organization of sound and to advance strategies to improve hearing in natural environmental settings. © 2010 Elsevier B.V. All rights reserved.

  4. Application of Evolutionary Mechanisms of Enhancers for Development Effective Artificial Intelligence Systems for Providing Data Security

    Directory of Open Access Journals (Sweden)

    M. L. Garanina

    2010-06-01

    Full Text Available This article describes the base approaches of the methods of evolutionary mechanisms (special type of genes — enhancers for parameterizations of AI systems genotype. This method can help in increasing adaptability of AI systems for providing data security.

  5. Mechanisms and evolutionary patterns of mammalian and avian dosage compensation.

    Directory of Open Access Journals (Sweden)

    Philippe Julien

    Full Text Available As a result of sex chromosome differentiation from ancestral autosomes, male mammalian cells only contain one X chromosome. It has long been hypothesized that X-linked gene expression levels have become doubled in males to restore the original transcriptional output, and that the resulting X overexpression in females then drove the evolution of X inactivation (XCI. However, this model has never been directly tested and patterns and mechanisms of dosage compensation across different mammals and birds generally remain little understood. Here we trace the evolution of dosage compensation using extensive transcriptome data from males and females representing all major mammalian lineages and birds. Our analyses suggest that the X has become globally upregulated in marsupials, whereas we do not detect a global upregulation of this chromosome in placental mammals. However, we find that a subset of autosomal genes interacting with X-linked genes have become downregulated in placentals upon the emergence of sex chromosomes. Thus, different driving forces may underlie the evolution of XCI and the highly efficient equilibration of X expression levels between the sexes observed for both of these lineages. In the egg-laying monotremes and birds, which have partially homologous sex chromosome systems, partial upregulation of the X (Z in birds evolved but is largely restricted to the heterogametic sex, which provides an explanation for the partially sex-biased X (Z expression and lack of global inactivation mechanisms in these lineages. Our findings suggest that dosage reductions imposed by sex chromosome differentiation events in amniotes were resolved in strikingly different ways.

  6. The final checkpoint. Cancer as an adaptive evolutionary mechanism

    Directory of Open Access Journals (Sweden)

    Rumena Petkova

    2016-05-01

    Full Text Available The mechanisms for identification of DNA damage and repair usually manage DNA damage very efficiently. If damaged cells manage to bypass the checkpoints where the integrity of the genome is assessed and the decisions whether to proceed with the cell cycle are made, they may evade the imperative to stop dividing and to die. As a result, cancer may develop. Warding off the potential sequence-altering effects of DNA damage during the life of the individual or the existence span of the species is controlled by a set of larger checkpoints acting on a progressively increasing scale, from systematic removal of damaged cells from the proliferative pool by means of repair of DNA damage/programmed cell death through ageing to, finally, cancer. They serve different purposes and act at different levels of the life cycle, safeguarding the integrity of the genetic backup of the individual, the genetic diversity of the population, and, finally, the survival of the species and of life on Earth. In the light of the theory that cancer is the final checkpoint or the nature's manner to prevent complex organisms from living forever at the expense of genetic stagnation, the eventual failure of modern anti-cancer treatments is only to be expected. Nevertheless, the medicine of today and the near future has enough potential to slow down the progression to terminal cancer so that the life expectancy and the quality of life of cancer-affected individuals may be comparable to those of healthy aged individuals.

  7. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation.

    Science.gov (United States)

    Corrada, Dario; Soshilov, Anatoly A; Denison, Michael S; Bonati, Laura

    2016-06-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the

  8. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation.

    Directory of Open Access Journals (Sweden)

    Dario Corrada

    2016-06-01

    Full Text Available The Aryl hydrocarbon Receptor (AhR is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT protein, occurring through the Helix-Loop-Helix (HLH and PER-ARNT-SIM (PAS domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms

  9. Research on Evolutionary Mechanism of Agile Supply Chain Network via Complex Network Theory

    Directory of Open Access Journals (Sweden)

    Nai-Ru Xu

    2016-01-01

    Full Text Available The paper establishes the evolutionary mechanism model of agile supply chain network by means of complex network theory which can be used to describe the growth process of the agile supply chain network and analyze the complexity of the agile supply chain network. After introducing the process and the suitability of taking complex network theory into supply chain network research, the paper applies complex network theory into the agile supply chain network research, analyzes the complexity of agile supply chain network, presents the evolutionary mechanism of agile supply chain network based on complex network theory, and uses Matlab to simulate degree distribution, average path length, clustering coefficient, and node betweenness. Simulation results show that the evolution result displays the scale-free property. It lays the foundations of further research on agile supply chain network based on complex network theory.

  10. Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Dawei Xue

    2017-04-01

    Full Text Available Cuticular wax, the first protective layer of above ground tissues of many plant species, is a key evolutionary innovation in plants. Cuticular wax safeguards the evolution from certain green algae to flowering plants and the diversification of plant taxa during the eras of dry and adverse terrestrial living conditions and global climate changes. Cuticular wax plays significant roles in plant abiotic and biotic stress tolerance and has been implicated in defense mechanisms against excessive ultraviolet radiation, high temperature, bacterial and fungal pathogens, insects, high salinity, and low temperature. Drought, a major type of abiotic stress, poses huge threats to global food security and health of terrestrial ecosystem by limiting plant growth and crop productivity. The composition, biochemistry, structure, biosynthesis, and transport of plant cuticular wax have been reviewed extensively. However, the molecular and evolutionary mechanisms of cuticular wax in plants in response to drought stress are still lacking. In this review, we focus on potential mechanisms, from evolutionary, molecular, and physiological aspects, that control cuticular wax and its roles in plant drought tolerance. We also raise key research questions and propose important directions to be resolved in the future, leading to potential applications of cuticular wax for water use efficiency in agricultural and environmental sustainability.

  11. Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms

    Directory of Open Access Journals (Sweden)

    Achal Rastogi

    2015-07-01

    Full Text Available Recent progress made on epigenetic studies revealed the conservation of epigenetic features in deep diverse branching species including Stramenopiles, plants and animals. This suggests their fundamental role in shaping species genomes across different evolutionary time scales. Diatoms are a highly successful and diverse group of phytoplankton with a fossil record of about 190 million years ago. They are distantly related from other super-groups of Eukaryotes and have retained some of the epigenetic features found in mammals and plants suggesting their ancient origin. Phaeodactylum tricornutum and Thalassiosira pseudonana, pennate and centric diatoms, respectively, emerged as model species to address questions on the evolution of epigenetic phenomena such as what has been lost, retained or has evolved in contemporary species. In the present work, we will discuss how the study of non-model or emerging model organisms, such as diatoms, helps understand the evolutionary history of epigenetic mechanisms with a particular focus on DNA methylation and histone modifications.

  12. Heterogeneous update mechanisms in evolutionary games: Mixing innovative and imitative dynamics

    Science.gov (United States)

    Amaral, Marco Antonio; Javarone, Marco Alberto

    2018-04-01

    Innovation and evolution are two processes of paramount relevance for social and biological systems. In general, the former allows the introduction of elements of novelty, while the latter is responsible for the motion of a system in its phase space. Often, these processes are strongly related, since an innovation can trigger the evolution, and the latter can provide the optimal conditions for the emergence of innovations. Both processes can be studied by using the framework of evolutionary game theory, where evolution constitutes an intrinsic mechanism. At the same time, the concept of innovation requires an opportune mathematical representation. Notably, innovation can be modeled as a strategy, or it can constitute the underlying mechanism that allows agents to change strategy. Here, we analyze the second case, investigating the behavior of a heterogeneous population, composed of imitative and innovative agents. Imitative agents change strategy only by imitating that of their neighbors, whereas innovative ones change strategy without the need for a copying source. The proposed model is analyzed by means of analytical calculations and numerical simulations in different topologies. Remarkably, results indicate that the mixing of mechanisms can be detrimental to cooperation near phase transitions. In those regions, the spatial reciprocity from imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation. Our investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy revision methods, highlighting the role of innovation in evolutionary games.

  13. Learning from evolutionary optimisation: what are toughening mechanisms good for in dentine, a nonrepairing bone tissue?

    Science.gov (United States)

    Zaslansky, Paul; Currey, John D; Fleck, Claudia

    2016-09-12

    The main mass of material found in teeth is dentine, a bone-like tissue, riddled with micron-sized tubules and devoid of living cells. It provides support to the outer wear-resistant layer of enamel, and exhibits toughening mechanisms which contribute to crack resistance. And yet unlike most bone tissues, dentine does not remodel and consequently any accumulated damage does not 'self repair'. Because damage containment followed by tissue replacement is a prime reason for the crack-arresting microstructures found in most bones, the occurrence of toughening mechanisms without the biological capability to repair is puzzling. Here we consider the notion that dentine might be overdesigned for strength, because it has to compensate for the lack of cell-mediated healing mechanisms. Based on our own and on literature-reported observations, including quasistatic and fatigue properties, dentine design principles are discussed in light of the functional conditions under which teeth evolved. We conclude that dentine is only slightly overdesigned for everyday cyclic loading because usual mastication stresses may come close to its endurance strength. The in-built toughening mechanisms constitute an evolutionary benefit because they prevent catastrophic failure during rare overload events, which was probably very advantageous in our hunter gatherer ancestor times. From a bio-inspired perspective, understanding the extent of evolutionary overdesign might be useful for optimising biomimetic structures used for load bearing.

  14. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    Science.gov (United States)

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  15. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nakhleh, Luay

    2014-03-12

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbial genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.

  16. Species-Specific Mechanisms of Neuron Subtype Specification Reveal Evolutionary Plasticity of Amniote Brain Development

    Directory of Open Access Journals (Sweden)

    Tadashi Nomura

    2018-03-01

    Full Text Available Summary: Highly ordered brain architectures in vertebrates consist of multiple neuron subtypes with specific neuronal connections. However, the origin of and evolutionary changes in neuron specification mechanisms remain unclear. Here, we report that regulatory mechanisms of neuron subtype specification are divergent in developing amniote brains. In the mammalian neocortex, the transcription factors (TFs Ctip2 and Satb2 are differentially expressed in layer-specific neurons. In contrast, these TFs are co-localized in reptilian and avian dorsal pallial neurons. Multi-potential progenitors that produce distinct neuronal subtypes commonly exist in the reptilian and avian dorsal pallium, whereas a cis-regulatory element of avian Ctip2 exhibits attenuated transcription suppressive activity. Furthermore, the neuronal subtypes distinguished by these TFs are not tightly associated with conserved neuronal connections among amniotes. Our findings reveal the evolutionary plasticity of regulatory gene functions that contribute to species differences in neuronal heterogeneity and connectivity in developing amniote brains. : Neuronal heterogeneity is essential for assembling intricate neuronal circuits. Nomura et al. find that species-specific transcriptional mechanisms underlie diversities of excitatory neuron subtypes in mammalian and non-mammalian brains. Species differences in neuronal subtypes and connections suggest functional plasticity of regulatory genes for neuronal specification during amniote brain evolution. Keywords: Ctip2, Satb2, multi-potential progenitors, transcriptional regulation, neuronal connectivity

  17. Deciphering Periodic Methanol Masers

    Science.gov (United States)

    Stecklum, Bringfried; Caratti o Garatti, Alessio; Henning, Thomas; Hodapp, Klaus; Hopp, Ulrich; Kraus, Alex; Linz, Hendrik; Sanna, Alberto; Sobolev, Andrej; Wolf, Verena

    2018-05-01

    Impressive progress has been made in recent years on massive star formation, yet the involved high optical depths even at submm/mm wavelengths make it difficult to reveal its details. Recently, accretion bursts of massive YSOs have been identified to cause flares of Class II methanol masers (methanol masers for short) due to enhanced mid-IR pumping. This opens a new window to protostellar accretion variability, and implies that periodic methanol masers hint at cyclic accretion. Pinning down the cause of the periodicity requires joint IR and radio monitoring. We derived the first IR light curve of a periodic maser host from NEOWISE data. The source, G107.298+5.639, is an intermediate-mass YSO hosting methanol and water masers which flare every 34.5 days. Our recent joint K-band and radio observations yielded first but marginal evidence for a phase lag between the rise of IR and maser emission, respectively, and revealed that both NEOWISE and K-band light curves are strongly affected by the light echo from the ambient dust. Both the superior resolution of IRAC over NEOWISE and the longer wavelengths compared to our ground-based imaging are required to inhibit the distractive contamination by the light echo. Thus, we ask for IRAC monitoring of G107 to cover one flare cycle, in tandem with 100-m Effelsberg and 2-m Wendelstein radio and NIR observations to obtain the first high-quality synoptic measurements of this kind of sources. The IR-maser phase lag, the intrinsic shape of the IR light curves and their possible color variation during the cycle allow us to constrain models for the periodic maser excitation. Since methanol masers are signposts of intermediate-mass and massive YSOs, deciphering their variability offers a clue to the dynamics of the accretion-mediated growth of massive stars and their feedback onto the immediate natal environment. The Spitzer light curve of such a maser-hosting YSO would be a legacy science product of the mission.

  18. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

    Science.gov (United States)

    Hagman, Arne; Piškur, Jure

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that were semi-anaerobic.

  19. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

    Directory of Open Access Journals (Sweden)

    Arne Hagman

    Full Text Available Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that

  20. Interplay between cooperation-enhancing mechanisms in evolutionary games with tag-mediated interactions

    Science.gov (United States)

    Hadzibeganovic, Tarik; Stauffer, Dietrich; Han, Xiao-Pu

    2018-04-01

    Cooperation is fundamental for the long-term survival of biological, social, and technological networks. Previously, mechanisms for the enhancement of cooperation, such as network reciprocity, have largely been studied in isolation and with often inconclusive findings. Here, we present an evolutionary, multiagent-based, and spatially explicit computer model to specifically address the interactive interplay between such mechanisms. We systematically investigate the effects of phenotypic diversity, network structure, and rewards on cooperative behavior emerging in a population of reproducing artificial decision makers playing tag-mediated evolutionary games. Cooperative interactions are rewarded such that both the benefits of recipients and costs of donators are affected by the reward size. The reward size is determined by the number of cooperative acts occurring within a given reward time frame. Our computational experiments reveal that small reward frames promote unconditional cooperation in populations with both low and high diversity, whereas large reward frames lead to cycles of conditional and unconditional strategies at high but not at low diversity. Moreover, an interaction between rewards and spatial structure shows that relative to small reward frames, there is a strong difference between the frequency of conditional cooperators populating rewired versus non-rewired networks when the reward frame is large. Notably, in a less diverse population, the total number of defections is comparable across different network topologies, whereas in more diverse environments defections become more frequent in a regularly structured than in a rewired, small-world network of contacts. Acknowledging the importance of such interaction effects in social dilemmas will have inevitable consequences for the future design of cooperation-enhancing protocols in large-scale, distributed, and decentralized systems such as peer-to-peer networks.

  1. Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility.

    Directory of Open Access Journals (Sweden)

    Linbin Zhang

    2015-03-01

    Full Text Available Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome--two patterns widely observed across animals.

  2. Caught in self-interaction: evolutionary and functional mechanisms of protein homooligomerization

    International Nuclear Information System (INIS)

    Hashimoto, Kosuke; Nishi, Hafumi; Bryant, Stephen; Panchenko, Anna R

    2011-01-01

    Many soluble and membrane proteins form homooligomeric complexes in a cell which are responsible for the diversity and specificity of many pathways, may mediate and regulate gene expression, activity of enzymes, ion channels, receptors, and cell adhesion processes. The evolutionary and physical mechanisms of oligomerization are very diverse and its general principles have not yet been formulated. Homooligomeric states may be conserved within certain protein subfamilies and might be important in providing specificity to certain substrates while minimizing interactions with other unwanted partners. Moreover, recent studies have led to a greater awareness that transitions between different oligomeric states may regulate protein activity and provide the switch between different pathways. In this paper we summarize the biological importance of homooligomeric assemblies, physico-chemical properties of their interfaces, experimental and computational methods for their identification and prediction. We particularly focus on homooligomer evolution and describe the mechanisms to develop new specificities through the formation of different homooligomeric complexes. Finally, we discuss the possible role of oligomeric transitions in the regulation of protein activity and compile a set of experimental examples with such regulatory mechanisms

  3. Diversity in viral anti-PKR mechanisms: a remarkable case of evolutionary convergence.

    Directory of Open Access Journals (Sweden)

    Elena Domingo-Gil

    Full Text Available Most viruses express during infection products that prevent or neutralize the effect of the host dsRNA activated protein kinase (PKR. Translation of Sindbis virus (SINV mRNA escapes to PKR activation and eIF2 phosphorylation in infected cells by a mechanism that requires a stem loop structure in viral 26S mRNA termed DLP to initiate translation in the absence of functional eIF2. Unlike the rest of viruses tested, we found that Alphavirus infection allowed a strong PKR activation and eIF2α phosphorylation in vitro and in infected animals so that the presence of DLP structure in mRNA was critical for translation and replication of SINV. Interestingly, infection of MEFs with some viruses that express PKR inhibitors prevented eIF2α phosphorylation after superinfection with SINV, suggesting that viral anti-PKR mechanisms could be exchangeable. Thus, translation of SINV mutant lacking the DLP structure (ΔDLP in 26S mRNA was partially rescued in cells expressing vaccinia virus (VV E3 protein, a known inhibitor of PKR. This case of heterotypic complementation among evolutionary distant viruses confirmed experimentally a remarkable case of convergent evolution in viral anti-PKR mechanisms. Our data reinforce the critical role of PKR in regulating virus-host interaction and reveal the versatility of viruses to find different solutions to solve the same conflict.

  4. Sex ratio meiotic drive as a plausible evolutionary mechanism for hybrid male sterility.

    Science.gov (United States)

    Zhang, Linbin; Sun, Tianai; Woldesellassie, Fitsum; Xiao, Hailian; Tao, Yun

    2015-03-01

    Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome--two patterns widely observed across animals.

  5. Evolutionary traces decode molecular mechanism behind fast pace of myosin XI

    Directory of Open Access Journals (Sweden)

    Syamaladevi Divya P

    2011-09-01

    Full Text Available Abstract Background Cytoplasmic class XI myosins are the fastest processive motors known. This class functions in high-velocity cytoplasmic streaming in various plant cells from algae to angiosperms. The velocities at which they process are ten times faster than its closest class V homologues. Results To provide sequence determinants and structural rationale for the molecular mechanism of this fast pace myosin, we have compared the sequences from myosin class V and XI through Evolutionary Trace (ET analysis. The current study identifies class-specific residues of myosin XI spread over the actin binding site, ATP binding site and light chain binding neck region. Sequences for ET analysis were accumulated from six plant genomes, using literature based text search and sequence searches, followed by triple validation viz. CDD search, string-based searches and phylogenetic clustering. We have identified nine myosin XI genes in sorghum and seven in grape by sequence searches. Both the plants possess one gene product each belonging to myosin type VIII as well. During this process, we have re-defined the gene boundaries for three sorghum myosin XI genes using fgenesh program. Conclusion Molecular modelling and subsequent analysis of putative interactions involving these class-specific residues suggest a structural basis for the molecular mechanism behind high velocity of plant myosin XI. We propose a model of a more flexible switch I region that contributes to faster ADP release leading to high velocity movement of the algal myosin XI.

  6. Shaping mechanisms of metal specificity in a family of metazoan metallothioneins: evolutionary differentiation of mollusc metallothioneins

    Directory of Open Access Journals (Sweden)

    Atrian Sílvia

    2011-01-01

    Full Text Available Abstract Background The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT were used as model molecules in order to elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion. Results HpCuMT and HpCdMT were recombinantly synthesized in the presence of Cd2+, Zn2+ or Cu2+ and corresponding metal complexes analysed by electrospray mass spectrometry and circular dichroism (CD and ultra violet-visible (UV-Vis spectrophotometry. Both MT isoforms were only able to form unique, homometallic and stable complexes (Cd6-HpCdMT and Cu12-HpCuMT with their cognate metal ions. Yeast complementation assays demonstrated that the two isoforms assumed metal-specific functions, in agreement with their binding preferences, in heterologous eukaryotic environments. In the snail organism, the functional metal specificity of HpCdMT and HpCuMT was contributed by metal-specific transcription programming and cell-specific expression. Sequence elucidation and phylogenetic analysis of MT isoforms from a number of snail species revealed that they possess an unspecific and two metal-specific MT isoforms, whose metal specificity was

  7. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences.

    Science.gov (United States)

    Chapman, Jason W; Reynolds, Don R; Wilson, Kenneth

    2015-03-01

    Myriad tiny insect species take to the air to engage in windborne migration, but entomology also has its 'charismatic megafauna' of butterflies, large moths, dragonflies and locusts. The spectacular migrations of large day-flying insects have long fascinated humankind, and since the advent of radar entomology much has been revealed about high-altitude night-time insect migrations. Over the last decade, there have been significant advances in insect migration research, which we review here. In particular, we highlight: (1) notable improvements in our understanding of lepidopteran navigation strategies, including the hitherto unsuspected capabilities of high-altitude migrants to select favourable winds and orientate adaptively, (2) progress in unravelling the neuronal mechanisms underlying sun compass orientation and in identifying the genetic complex underpinning key traits associated with migration behaviour and performance in the monarch butterfly, and (3) improvements in our knowledge of the multifaceted interactions between disease agents and insect migrants, in terms of direct effects on migration success and pathogen spread, and indirect effects on the evolution of migratory systems. We conclude by highlighting the progress that can be made through inter-phyla comparisons, and identify future research areas that will enhance our understanding of insect migration strategies within an eco-evolutionary perspective. © 2015 John Wiley & Sons Ltd/CNRS.

  8. Evolutionary dynamics of adult stem cells: comparison of random and immortal-strand segregation mechanisms.

    Science.gov (United States)

    Tannenbaum, Emmanuel; Sherley, James L; Shakhnovich, Eugene I

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) "immortal DNA strand" co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  9. Distinct evolutionary mechanisms for genomic imbalances in high-risk and low-risk neuroblastomas

    Directory of Open Access Journals (Sweden)

    Gisselsson David

    2007-09-01

    Full Text Available Abstract Background Neuroblastoma (NB is the most common extracranial solid tumour of childhood. Several genomic imbalances correlate to prognosis in NB, with structural rearrangements, including gene amplification, in a near-diploid setting typically signifying high-risk tumours and numerical changes in a near-triploid setting signifying low-risk tumours. Little is known about the temporal sequence in which these imbalances occur during the carcinogenic process. Methods We have reconstructed the appearance of cytogenetic imbalances in 270 NBs by first grouping tumours and imbalances through principal component analysis and then using the number of imbalances in each tumour as an indicator of evolutionary progression. Results Tumours clustered in four sub-groups, dominated respectively by (1 gene amplification in double minute chromosomes and few other aberrations, (2 gene amplification and loss of 1p sequences, (3 loss of 1p and other structural aberrations including gain of 17q, and (4 whole-chromosome gains and losses. Temporal analysis showed that the structural changes in groups 1–3 were acquired in a step-wise fashion, with loss of 1p sequences and the emergence of double minute chromosomes as the earliest cytogenetic events. In contrast, the gains and losses of whole chromosomes in group 4 occurred through multiple simultaneous events leading to a near-triploid chromosome number. Conclusion The finding of different temporal patterns for the acquisition of genomic imbalances in high-risk and low-risk NBs lends strong support to the hypothesis that these tumours are biologically diverse entities, evolving through distinct genetic mechanisms.

  10. Research on Information Sharing Mechanism of Network Organization Based on Evolutionary Game

    Science.gov (United States)

    Wang, Lin; Liu, Gaozhi

    2018-02-01

    This article first elaborates the concept and effect of network organization, and the ability to share information is analyzed, secondly introduces the evolutionary game theory, network organization for information sharing all kinds of limitations, establishes the evolutionary game model, analyzes the dynamic evolution of network organization of information sharing, through reasoning and evolution. The network information sharing by the initial state and two sides of the game payoff matrix of excess profits and information is the information sharing of cost and risk sharing are the influence of network organization node information sharing decision.

  11. Decipher

    CERN Multimedia

    2002-01-01

    Review of a new fiction work by Stel Pavlou whose starting point is the lifecycle of the sun and the implications for human civilization. The story invokes the use of the CERN accelerator to analyze a special type of crystal found in Antartica which may hold the key to the legend of the city of Atlantis (1/2 page).

  12. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success.

    Science.gov (United States)

    Diniz, Diego Felipe Araujo; de Albuquerque, Cleide Maria Ribeiro; Oliva, Luciana Oliveira; de Melo-Santos, Maria Alice Varjal; Ayres, Constância Flávia Junqueira

    2017-06-26

    Mosquitoes are insects belonging to the order Diptera and family Culicidae. They are distributed worldwide and include approximately 3500 species, of which about 300 have medical and veterinary importance. The evolutionary success of mosquitoes, in both tropical and temperate regions, is due to the various survival strategies these insects have developed throughout their life histories. Of the many adaptive mechanisms, diapause and quiescence, two different types of dormancy, likely contribute to the establishment, maintenance and spread of natural mosquito populations. This review seeks to objectively and coherently describe the terms diapause and quiescence, which can be confused in the literature because the phenotypic effects of these mechanisms are often similar.

  13. Connecting proximate mechanisms and evolutionary patterns: pituitary gland size and mammalian life history.

    Science.gov (United States)

    Kamilar, J M; Tecot, S R

    2015-11-01

    At the proximate level, hormones are known to play a critical role in influencing the life history of mammals, including humans. The pituitary gland is directly responsible for producing several hormones, including those related to growth and reproduction. Although we have a basic understanding of how hormones affect life history characteristics, we still have little knowledge of this relationship in an evolutionary context. We used data from 129 mammal species representing 14 orders to investigate the relationship between pituitary gland size and life history variation. Because pituitary gland size should be related to hormone production and action, we predicted that species with relatively large pituitaries should be associated with fast life histories, especially increased foetal and post-natal growth rates. Phylogenetic analyses revealed that total pituitary size and the size of the anterior lobe of the pituitary significantly predicted a life history axis that was correlated with several traits including body mass, and foetal and post-natal growth rates. Additional models directly examining the association between relative pituitary size and growth rates produced concordant results. We also found that relative pituitary size variation across mammals was best explained by an Ornstein-Uhlenbeck model of evolution, suggesting an important role of stabilizing selection. Our results support the idea that the size of the pituitary is linked to life history variation through evolutionary time. This pattern is likely due to mediating hormone levels but additional work is needed. We suggest that future investigations incorporating endocrine gland size may be critical for understanding life history evolution. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  14. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1 contributes to resistance against Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Raghavendra Gunnaiah

    Full Text Available BACKGROUND: Resistance in plants to pathogen attack can be qualitative or quantitative. For the latter, hundreds of quantitative trait loci (QTLs have been identified, but the mechanisms of resistance are largely unknown. Integrated non-target metabolomics and proteomics, using high resolution hybrid mass spectrometry, were applied to identify the mechanisms of resistance governed by the fusarium head blight resistance locus, Fhb1, in the near isogenic lines derived from wheat genotype Nyubai. FINDINGS: The metabolomic and proteomic profiles were compared between the near isogenic lines (NIL with resistant and susceptible alleles of Fhb1 upon F. graminearum or mock-inoculation. The resistance-related metabolites and proteins identified were mapped to metabolic pathways. Metabolites of the shunt phenylpropanoid pathway such as hydroxycinnamic acid amides, phenolic glucosides and flavonoids were induced only in the resistant NIL, or induced at higher abundances in resistant than in susceptible NIL, following pathogen inoculation. The identities of these metabolites were confirmed, with fragmentation patterns, using the high resolution LC-LTQ-Orbitrap. Concurrently, the enzymes of phenylpropanoid biosynthesis such as cinnamyl alcohol dehydrogenase, caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, flavonoid O-methyltransferase, agmatine coumaroyltransferase and peroxidase were also up-regulated. Increased cell wall thickening due to deposition of hydroxycinnamic acid amides and flavonoids was confirmed by histo-chemical localization of the metabolites using confocal microscopy. CONCLUSION: The present study demonstrates that the resistance in Fhb1 derived from the wheat genotype Nyubai is mainly associated with cell wall thickening due to deposition of hydroxycinnamic acid amides, phenolic glucosides and flavonoids, but not with the conversion of deoxynivalenol to less toxic deoxynivalenol 3-O-glucoside.

  15. Deciphering a molecular mechanism of neonatal diabetes mellitus by the chemical synthesis of a protein diastereomer, [D-AlaB8]human proinsulin.

    Science.gov (United States)

    Avital-Shmilovici, Michal; Whittaker, Jonathan; Weiss, Michael A; Kent, Stephen B H

    2014-08-22

    Misfolding of proinsulin variants in the pancreatic β-cell, a monogenic cause of permanent neonatal-onset diabetes mellitus, provides a model for a disease of protein toxicity. A hot spot for such clinical mutations is found at position B8, conserved as glycine within the vertebrate insulin superfamily. We set out to investigate the molecular basis of the aberrant properties of a proinsulin clinical mutant in which residue Gly(B8) is replaced by Ser(B8). Modular total chemical synthesis was used to prepare the wild-type [Gly(B8)]proinsulin molecule and three analogs: [D-Ala(B8)]proinsulin, [L-Ala(B8)]proinsulin, and the clinical mutant [L-Ser(B8)]proinsulin. The protein diastereomer [D-Ala(B8)]proinsulin produced higher folding yields at all pH values compared with the wild-type proinsulin and the other two analogs, but showed only very weak binding to the insulin receptor. The clinical mutant [L-Ser(B8)]proinsulin impaired folding at pH 7.5 even in the presence of protein-disulfide isomerase. Surprisingly, although [L-Ser(B8)]proinsulin did not fold well under the physiological conditions investigated, once folded the [L-Ser(B8)]proinsulin protein molecule bound to the insulin receptor more effectively than wild-type proinsulin. Such paradoxical gain of function (not pertinent in vivo due to impaired secretion of the mutant insulin) presumably reflects induced fit in the native mechanism of hormone-receptor engagement. This work provides insight into the molecular mechanism of a clinical mutation in the insulin gene associated with diabetes mellitus. These results dramatically illustrate the power of total protein synthesis, as enabled by modern chemical ligation methods, for the investigation of protein folding and misfolding. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

    Directory of Open Access Journals (Sweden)

    Adrien Nicolaï

    Full Text Available ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD of Hsp70 propagates a signal to its substrate-binding domain (SBD. Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in

  17. Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: metabolic changes including crassulacean acid-like metabolism induction and reversal upon re-watering.

    Science.gov (United States)

    D'Andrea, Rodrigo Matías; Andreo, Carlos Santiago; Lara, María Valeria

    2014-11-01

    Portulaca oleracea is a C(4) plant; however, under drought it can change its carbon fixation metabolism into a crassulacean acid metabolism (CAM)-like one. While the C(3) -CAM shift is well known, the C(4) -CAM transition has only been described in Portulaca. Here, a CAM-like metabolism was induced in P. oleracea by drought and then reversed by re-watering. Physiological and biochemical approaches were undertaken to evaluate the drought and recovery responses. In CAM-like plants, chlorophyll fluorescence parameters were transitory affected and non-radiative energy dissipation mechanisms were induced. Induction of flavonoids, betalains and antioxidant machinery may be involved in photosynthetic machinery protection. Metabolic analysis highlights a clear metabolic shift, when a CAM-like metabolism is induced and then reversed. Increases in nitrogenous compounds like free amino acids and urea, and of pinitol could contribute to withstand drought. Reciprocal variations in arginase and urease in drought-stressed and in re-watered plants suggest urea synthesis is strictly regulated. Recovery of C(4) metabolism was accounted by CO(2) assimilation pattern and malate levels. Increases in glycerol and in polyamines would be of importance of re-watered plants. Collectively, in P. oleracea multiple strategies, from induction of several metabolites to the transitory development of a CAM-like metabolism, participate to enhance its adaptation to drought. © 2014 Scandinavian Plant Physiology Society.

  18. Evolutionary dynamics of adult stem cells: Comparison of random and immortal strand segregation mechanisms

    OpenAIRE

    Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.

    2004-01-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) Random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell. (2) ``Immortal DNA strand'' co-segregation, for which the stem cell reta...

  19. Deciphering MCR-2 Colistin Resistance

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2017-05-01

    Full Text Available Antibiotic resistance is a prevalent problem in public health worldwide. In general, the carbapenem β-lactam antibiotics are considered a final resort against lethal infections by multidrug-resistant bacteria. Colistin is a cationic polypeptide antibiotic and acts as the last line of defense for treatment of carbapenem-resistant bacteria. Very recently, a new plasmid-borne colistin resistance gene, mcr-2, was revealed soon after the discovery of the paradigm gene mcr-1, which has disseminated globally. However, the molecular mechanisms for MCR-2 colistin resistance are poorly understood. Here we show a unique transposon unit that facilitates the acquisition and transfer of mcr-2. Evolutionary analyses suggested that both MCR-2 and MCR-1 might be traced to their cousin phosphoethanolamine (PEA lipid A transferase from a known polymyxin producer, Paenibacillus. Transcriptional analyses showed that the level of mcr-2 transcripts is relatively higher than that of mcr-1. Genetic deletions revealed that the transmembrane regions (TM1 and TM2 of both MCR-1 and MCR-2 are critical for their location and function in bacterial periplasm, and domain swapping indicated that the TM2 is more efficient than TM1. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS confirmed that all four MCR proteins (MCR-1, MCR-2, and two chimeric versions [TM1-MCR-2 and TM2-MCR-1] can catalyze chemical modification of lipid A moiety anchored on lipopolysaccharide (LPS with the addition of phosphoethanolamine to the phosphate group at the 4′ position of the sugar. Structure-guided site-directed mutagenesis defined an essential 6-residue-requiring zinc-binding/catalytic motif for MCR-2 colistin resistance. The results further our mechanistic understanding of transferable colistin resistance, providing clues to improve clinical therapeutics targeting severe infections by MCR-2-containing pathogens.

  20. 3D computational mechanics elucidate the evolutionary implications of orbit position and size diversity of early amphibians.

    Directory of Open Access Journals (Sweden)

    Jordi Marcé-Nogué

    Full Text Available For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA and Parametrical Analysis (PA is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs.

  1. 3D Computational Mechanics Elucidate the Evolutionary Implications of Orbit Position and Size Diversity of Early Amphibians

    Science.gov (United States)

    Marcé-Nogué, Jordi; Fortuny, Josep; De Esteban-Trivigno, Soledad; Sánchez, Montserrat; Gil, Lluís; Galobart, Àngel

    2015-01-01

    For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA) and Parametrical Analysis (PA) is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs. PMID:26107295

  2. Deciphering MCR-2 Colistin Resistance.

    Science.gov (United States)

    Sun, Jian; Xu, Yongchang; Gao, Rongsui; Lin, Jingxia; Wei, Wenhui; Srinivas, Swaminath; Li, Defeng; Yang, Run-Shi; Li, Xing-Ping; Liao, Xiao-Ping; Liu, Ya-Hong; Feng, Youjun

    2017-05-09

    Antibiotic resistance is a prevalent problem in public health worldwide. In general, the carbapenem β-lactam antibiotics are considered a final resort against lethal infections by multidrug-resistant bacteria. Colistin is a cationic polypeptide antibiotic and acts as the last line of defense for treatment of carbapenem-resistant bacteria. Very recently, a new plasmid-borne colistin resistance gene, mcr-2 , was revealed soon after the discovery of the paradigm gene mcr-1 , which has disseminated globally. However, the molecular mechanisms for MCR-2 colistin resistance are poorly understood. Here we show a unique transposon unit that facilitates the acquisition and transfer of mcr-2 Evolutionary analyses suggested that both MCR-2 and MCR-1 might be traced to their cousin phosphoethanolamine (PEA) lipid A transferase from a known polymyxin producer, Paenibacillus Transcriptional analyses showed that the level of mcr-2 transcripts is relatively higher than that of mcr-1 Genetic deletions revealed that the transmembrane regions (TM1 and TM2) of both MCR-1 and MCR-2 are critical for their location and function in bacterial periplasm, and domain swapping indicated that the TM2 is more efficient than TM1. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) confirmed that all four MCR proteins (MCR-1, MCR-2, and two chimeric versions [TM1-MCR-2 and TM2-MCR-1]) can catalyze chemical modification of lipid A moiety anchored on lipopolysaccharide (LPS) with the addition of phosphoethanolamine to the phosphate group at the 4' position of the sugar. Structure-guided site-directed mutagenesis defined an essential 6-residue-requiring zinc-binding/catalytic motif for MCR-2 colistin resistance. The results further our mechanistic understanding of transferable colistin resistance, providing clues to improve clinical therapeutics targeting severe infections by MCR-2-containing pathogens. IMPORTANCE Carbapenem and colistin are the last line of

  3. Exploring the evolutionary mechanism of complex supply chain systems using evolving hypergraphs

    Science.gov (United States)

    Suo, Qi; Guo, Jin-Li; Sun, Shiwei; Liu, Han

    2018-01-01

    A new evolutionary model is proposed to describe the characteristics and evolution pattern of supply chain systems using evolving hypergraphs, in which nodes represent enterprise entities while hyperedges represent the relationships among diverse trades. The nodes arrive at the system in accordance with a Poisson process, with the evolving process incorporating the addition of new nodes, linking of old nodes, and rewiring of links. Grounded in the Poisson process theory and continuum theory, the stationary average hyperdegree distribution is shown to follow a shifted power law (SPL), and the theoretical predictions are consistent with the results of numerical simulations. Testing the impact of parameters on the model yields a positive correlation between hyperdegree and degree. The model also uncovers macro characteristics of the relationships among enterprises due to the microscopic interactions among individuals.

  4. First insights into the evolutionary history of the Davallia repens complex

    NARCIS (Netherlands)

    Chen, C.-W.; Ngan, L.T.; Hidayat, A.; Evangelista, L.; Nooteboom, H.P.; Chiou, W.-L.

    2014-01-01

    Davallia repens and its close relatives have been identified as a species complex in this study because of the existence of continuously morphological variation. To decipher its evolutionary history, integrated methodologies were applied in this study including morphology, cytology, reproductive

  5. Diversification of defensins and NLRs in Arabidopsis species by different evolutionary mechanisms.

    Science.gov (United States)

    Mondragón-Palomino, Mariana; Stam, Remco; John-Arputharaj, Ajay; Dresselhaus, Thomas

    2017-12-15

    Genes encoding proteins underlying host-pathogen co-evolution and which are selected for new resistance specificities frequently are under positive selection, a process that maintains diversity. Here, we tested the contribution of natural selection, recombination and transcriptional divergence to the evolutionary diversification of the plant defensins superfamily in three Arabidopsis species. The intracellular NOD-like receptor (NLR) family was used for comparison because positive selection has been well documented in its members. Similar to defensins, NLRs are encoded by a large and polymorphic gene family and many of their members are involved in the immune response. Gene trees of Arabidopsis defensins (DEFLs) show a high prevalence of clades containing orthologs. This indicates that their diversity dates back to a common ancestor and species-specific duplications did not significantly contribute to gene family expansion. DEFLs are characterized by a pervasive pattern of neutral evolution with infrequent positive and negative selection as well as recombination. In comparison, most NLR alignment groups are characterized by frequent occurrence of positive selection and recombination in their leucine-rich repeat (LRR) domain as well negative selection in their nucleotide-binding (NB-ARC) domain. While major NLR subgroups are expressed in pistils and leaves both in presence or absence of pathogen infection, the members of DEFL alignment groups are predominantly transcribed in pistils. Furthermore, conserved groups of NLRs and DEFLs are differentially expressed in response to Fusarium graminearum regardless of whether these genes are under positive selection or not. The present analyses of NLRs expands previous studies in Arabidopsis thaliana and highlights contrasting patterns of purifying and diversifying selection affecting different gene regions. DEFL genes show a different evolutionary trend, with fewer recombination events and significantly fewer instances of

  6. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica.

    Science.gov (United States)

    Yang, J; Liu, G; Zhao, N; Chen, S; Liu, D; Ma, W; Hu, Z; Zhang, M

    2016-05-01

    The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Deciphering interactions in moving animal groups.

    Directory of Open Access Journals (Sweden)

    Jacques Gautrais

    Full Text Available Collective motion phenomena in large groups of social organisms have long fascinated the observer, especially in cases, such as bird flocks or fish schools, where large-scale highly coordinated actions emerge in the absence of obvious leaders. However, the mechanisms involved in this self-organized behavior are still poorly understood, because the individual-level interactions underlying them remain elusive. Here, we demonstrate the power of a bottom-up methodology to build models for animal group motion from data gathered at the individual scale. Using video tracks of fish shoal in a tank, we show how a careful, incremental analysis at the local scale allows for the determination of the stimulus/response function governing an individual's moving decisions. We find in particular that both positional and orientational effects are present, act upon the fish turning speed, and depend on the swimming speed, yielding a novel schooling model whose parameters are all estimated from data. Our approach also leads to identify a density-dependent effect that results in a behavioral change for the largest groups considered. This suggests that, in confined environment, the behavioral state of fish and their reaction patterns change with group size. We debate the applicability, beyond the particular case studied here, of this novel framework for deciphering interactions in moving animal groups.

  8. Deciphering the genetic regulatory code using an inverse error control coding framework.

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel; May, Elebeoba Eni; Brown, William Michael; Johnston, Anna Marie; Watson, Jean-Paul

    2005-03-01

    We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.

  9. Fault bars in bird feathers: mechanisms, and ecological and evolutionary causes and consequences.

    Science.gov (United States)

    Jovani, Roger; Rohwer, Sievert

    2017-05-01

    Fault bars are narrow malformations in feathers oriented almost perpendicular to the rachis where the feather vein and even the rachis may break. Breaks in the barbs and barbules result in small pieces of the feather vein being lost, while breaks in the rachis result in loss of the distal portion of the feather. Here, we provide a comprehensive review of 74 papers on fault bar formation in hopes of providing a clearer approach to their study. First, we review the evidence that the propensity to develop fault bars is modified by natural selection. Given that fault bars persist in the face of survival costs, we conclude that they must be an unfortunate consequence of some alternative adaptation that outweighs the fitness costs of fault bars. Second, we summarize evidence that the development of fault bars is triggered by psychological stress such as that of handling or predation attempts, and that they persist because the sudden contractions of the muscles in the feather follicle that control fright moults also causes the development of fault bars in growing feathers. Third, we review external and physiological (e.g. corticosterone) agents that may affect the likelihood that an acute stress will result in a growing feather exhibiting a fault bar. These modifying factors have often been treated as fundamental causes in the earlier literature on fault bars. Fourth, we then use this classification to propose a tentative model where fault bars of different severity (from light to severe) are the outcome of the interaction between the propensity to produce fault bars (which differs between species, individuals and feather follicles within individuals) and the intensity of the perturbation. This model helps to explain contradictory results in the literature, to identify gaps in our knowledge, and to suggest further studies. Lastly, we discuss ways in which better understanding of fault bars can inform us about other aspects of avian evolutionary ecology, such as the

  10. Evolutionary mechanisms driving the evolution of a large polydnavirus gene family coding for protein tyrosine phosphatases

    Directory of Open Access Journals (Sweden)

    Serbielle Céline

    2012-12-01

    Full Text Available Abstract Background Gene duplications have been proposed to be the main mechanism involved in genome evolution and in acquisition of new functions. Polydnaviruses (PDVs, symbiotic viruses associated with parasitoid wasps, are ideal model systems to study mechanisms of gene duplications given that PDV genomes consist of virulence genes organized into multigene families. In these systems the viral genome is integrated in a wasp chromosome as a provirus and virus particles containing circular double-stranded DNA are injected into the parasitoids’ hosts and are essential for parasitism success. The viral virulence factors, organized in gene families, are required collectively to induce host immune suppression and developmental arrest. The gene family which encodes protein tyrosine phosphatases (PTPs has undergone spectacular expansion in several PDV genomes with up to 42 genes. Results Here, we present strong indications that PTP gene family expansion occurred via classical mechanisms: by duplication of large segments of the chromosomally integrated form of the virus sequences (segmental duplication, by tandem duplications within this form and by dispersed duplications. We also propose a novel duplication mechanism specific to PDVs that involves viral circle reintegration into the wasp genome. The PTP copies produced were shown to undergo conservative evolution along with episodes of adaptive evolution. In particular recently produced copies have undergone positive selection in sites most likely involved in defining substrate selectivity. Conclusion The results provide evidence about the dynamic nature of polydnavirus proviral genomes. Classical and PDV-specific duplication mechanisms have been involved in the production of new gene copies. Selection pressures associated with antagonistic interactions with parasitized hosts have shaped these genes used to manipulate lepidopteran physiology with evidence for positive selection involved in

  11. Mechanisms of symbiont-conferred protection against natural enemies: an ecological and evolutionary framework.

    Science.gov (United States)

    Gerardo, Nicole M; Parker, Benjamin J

    2014-10-01

    Many vertically-transmitted microbial symbionts protect their insect hosts from natural enemies, including host-targeted pathogens and parasites, and those vectored by insects to other hosts. Protection is often achieved through production of inhibiting toxins, which is not surprising given that toxin production mediates competition in many environments. Classical models of macroecological interactions, however, demonstrate that interspecific competition can be less direct, and recent research indicates that symbiont-protection can be mediated through exploitation of limiting resources, and through activation of host immune mechanisms that then suppress natural enemies. Available data, though limited, suggest that effects of symbionts on vectored pathogens and parasites, as compared to those that are host-targeted, are more likely to result from symbiont activation of the host immune system. We discuss these different mechanisms in light of their potential impact on the evolution of host physiological processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Co-Evolutionary Mechanisms of Emotional Bursts in Online Social Dynamics and Networks

    Directory of Open Access Journals (Sweden)

    Bosiljka Tadić

    2013-11-01

    Full Text Available Collective emotional behavior of users is frequently observed on various Web portals; however, its complexity and the role of emotions in the acting mechanisms are still not thoroughly understood. In this work, using the empirical data and agent-based modeling, a parallel analysis is performed of two archetypal systems—Blogs and Internet-Relayed-Chats—both of which maintain self-organized dynamics but not the same communication rules and time scales. The emphasis is on quantifying the collective emotions by means of fractal analysis of the underlying processes as well as topology of social networks, which arise and co-evolve in these stochastic processes. The results reveal that two distinct mechanisms, which are based on different use of emotions (an emotion is characterized by two components, arousal and valence, are intrinsically associated with two classes of emergent social graphs. Their hallmarks are the evolution of communities in accordance with the excess of the negative emotions on popular Blogs, on one side, and smooth spreading of the Bot’s emotional impact over the entire hierarchical network of chats, on the other. Another emphasis of this work is on the understanding of nonextensivity of the emotion dynamics; it was found that, in its own way, each mechanism leads to a reduced phase space of the emotion components when the collective dynamics takes place. That a non-additive entropy describes emotion dynamics, is further confirmed by computing the q-generalized Kolmogorov-Sinai entropy rate in the empirical data of chats as well as in the simulations of interacting emotional agents and Bots.

  13. Locomotor loading mechanics in the hindlimbs of tegu lizards (Tupinambis merianae): comparative and evolutionary implications.

    Science.gov (United States)

    Sheffield, K Megan; Butcher, Michael T; Shugart, S Katherine; Gander, Jennifer C; Blob, Richard W

    2011-08-01

    Skeletal elements are usually able to withstand several times their usual load before they yield, and this ratio is known as the bone's safety factor. Limited studies on amphibians and non-avian reptiles have shown that they have much higher limb bone safety factors than birds and mammals. It has been hypothesized that this difference is related to the difference in posture between upright birds and mammals and sprawling ectotherms; however, limb bone loading data from a wider range of sprawling species are needed in order to determine whether the higher safety factors seen in amphibians and non-avian reptiles are ancestral or derived conditions. Tegus (family Teiidae) are an ideal lineage with which to expand sampling of limb bone loading mechanics for sprawling taxa, particularly for lizards, because they are from a different clade than previously sampled iguanas and exhibit different foraging and locomotor habits (actively foraging carnivore versus burst-activity herbivore). We evaluated the mechanics of locomotor loading for the femur of the Argentine black and white tegu (Tupinambus merianae) using three-dimensional measurements of the ground reaction force and hindlimb kinematics, in vivo bone strains and femoral mechanical properties. Peak bending stresses experienced by the femur were low (tensile: 10.4 ± 1.1 MPa; compressive: -17.4 ± 0.9 MPa) and comparable to those in other reptiles, with moderate shear stresses and strains also present. Analyses of peak femoral stresses and strains led to estimated safety factor ranges of 8.8-18.6 in bending and 7.8-17.5 in torsion, both substantially higher than typical for birds and mammals but similar to other sprawling tetrapods. These results broaden the range of reptilian and amphibian taxa in which high femoral safety factors have been evaluated and further indicate a trend for the independent evolution of lower limb bone safety factors in endothermic taxa.

  14. Universal effect of dynamical reinforcement learning mechanism in spatial evolutionary games

    International Nuclear Information System (INIS)

    Zhang, Hai-Feng; Wu, Zhi-Xi; Wang, Bing-Hong

    2012-01-01

    One of the prototypical mechanisms in understanding the ubiquitous cooperation in social dilemma situations is the win–stay, lose–shift rule. In this work, a generalized win–stay, lose–shift learning model—a reinforcement learning model with dynamic aspiration level—is proposed to describe how humans adapt their social behaviors based on their social experiences. In the model, the players incorporate the information of the outcomes in previous rounds with time-dependent aspiration payoffs to regulate the probability of choosing cooperation. By investigating such a reinforcement learning rule in the spatial prisoner's dilemma game and public goods game, a most noteworthy viewpoint is that moderate greediness (i.e. moderate aspiration level) favors best the development and organization of collective cooperation. The generality of this observation is tested against different regulation strengths and different types of network of interaction as well. We also make comparisons with two recently proposed models to highlight the importance of the mechanism of adaptive aspiration level in supporting cooperation in structured populations

  15. Evolutionary pattern, operation mechanism and policy orientation of low carbon economy development

    Directory of Open Access Journals (Sweden)

    X. Dou

    2016-10-01

    Full Text Available The essence of low carbon economy development is a continuous evolution and innovation process of socio-economic system from traditional high carbon economy to new sustainable green low carbon economy to achieve a sustainable dynamic balance and benign interactive development of various elements between society, economy and natural ecosystem. At the current stage, China’s socio-economy is showing the feature of "three high" (high energy consumption, high emissions and high pollution. In this case, quickly to promote the development of green low carbon economy is necessary and urgent. This research indicates that, low carbon economy development is achieved by micro-economic agents such as households, businesses and social intermediary organizations through Government’s guidance and the role of market mechanism. In low carbon economy development, the state (government is a leader and markets are core, while economic agents (e.g., households, businesses and social intermediary organizations are basis. For this reason, it is necessary to build an effective cleaner development and incentive-compatible policy system oriented to end-users.

  16. Reassessing Domain Architecture Evolution of Metazoan Proteins: The Contribution of Different Evolutionary Mechanisms

    Directory of Open Access Journals (Sweden)

    Laszlo Patthy

    2011-08-01

    Full Text Available In the accompanying papers we have shown that sequence errors of public databases and confusion of paralogs and epaktologs (proteins that are related only through the independent acquisition of the same domain types significantly distort the picture that emerges from comparison of the domain architecture (DA of multidomain Metazoan proteins since they introduce a strong bias in favor of terminal over internal DA change. The issue of whether terminal or internal DA changes occur with greater probability has very important implications for the DA evolution of multidomain proteins since gene fusion can add domains only at terminal positions, whereas domain-shuffling is capable of inserting domains both at internal and terminal positions. As a corollary, overestimation of terminal DA changes may be misinterpreted as evidence for a dominant role of gene fusion in DA evolution. In this manuscript we show that in several recent studies of DA evolution of Metazoa the authors used databases that are significantly contaminated with incomplete, abnormal and mispredicted sequences (e.g., UniProtKB/TrEMBL, EnsEMBL and/or the authors failed to separate paralogs and epaktologs, explaining why these studies concluded that the major mechanism for gains of new domains in metazoan proteins is gene fusion. In contrast with the latter conclusion, our studies on high quality orthologous and paralogous Swiss-Prot sequences confirm that shuffling of mobile domains had a major role in the evolution of multidomain proteins of Metazoa and especially those formed in early vertebrates.

  17. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum.

    Science.gov (United States)

    Hibi, Masahiko; Matsuda, Koji; Takeuchi, Miki; Shimizu, Takashi; Murakami, Yasunori

    2017-05-01

    The cerebellum is derived from the dorsal part of the anterior-most hindbrain. The vertebrate cerebellum contains glutamatergic granule cells (GCs) and gamma-aminobutyric acid (GABA)ergic Purkinje cells (PCs). These cerebellar neurons are generated from neuronal progenitors or neural stem cells by mechanisms that are conserved among vertebrates. However, vertebrate cerebella are widely diverse with respect to their gross morphology and neural circuits. The cerebellum of cyclostomes, the basal vertebrates, has a negligible structure. Cartilaginous fishes have a cerebellum containing GCs, PCs, and deep cerebellar nuclei (DCNs), which include projection neurons. Ray-finned fish lack DCNs but have projection neurons termed eurydendroid cells (ECs) in the vicinity of the PCs. Among ray-finned fishes, the cerebellum of teleost zebrafish has a simple lobular structure, whereas that of weakly electric mormyrid fish is large and foliated. Amniotes, which include mammals, independently evolved a large, foliated cerebellum, which contains massive numbers of GCs and has functional connections with the dorsal telencephalon (neocortex). Recent studies of cyclostomes and cartilaginous fish suggest that the genetic program for cerebellum development was already encoded in the genome of ancestral vertebrates. In this review, we discuss how alterations of the genetic and cellular programs generated diversity of the cerebellum during evolution. © 2017 Japanese Society of Developmental Biologists.

  18. [Possible evolutionary mechanisms of 'culture' in animals: The hypothesis of distributed social learning].

    Science.gov (United States)

    Reznikova, Zh I; Panteleeva, S N

    2015-01-01

    There is a plethora of works on the origin and genesis of behavioral traditions in different animal species. Nevertheless, it still remains unclear as for which factors facilitate and which factors hinder the spreading those forms of behavior that are new for a population. Here, we present an analytical review on the topic, considering also the results of studies on 'culture' in animals and analyzing contradictions that arise when attempting to clarify the ethological mechanisms of cultural succession. The hypothesis of 'distributed social learning' is formulated, meaning that for spreading of complex behavioral stereotypes in a population the presence of few carriers of consistent stereotypes is enough under the condition that the rest of animals carry incomplete genetic programmes that start up these stereotypes. Existence of 'dormant' fragments of such programmes determines an inborn predisposition of their bearer to perform a certain sequence of acts. To complete the consistent stereotype, the simplest forms of social learning ('social alleviation') turn to be enough. The hypothesis is examined at the behavioral level and supported by experimental data obtained when studying the scenarios of hunting behavior development in ants Myrmica rubra L. It makes possible to explain the spreading of behavioral models in animal communities in a simpler way than cultural succession.

  19. Reproductive bribing and policing as evolutionary mechanisms for the suppression of within-group selfishness.

    Science.gov (United States)

    Reeve, H K; Keller, L

    1997-07-01

    We show that a new, simple, and robust general mechanism for the social suppression of within-group selfishness follows from Hamilton's rule applied in a multilevel selection approach to asymmetrical, two-person groups: If it pays a group member to behave selfishly (i.e., increase its share of the group's reproduction, at the expense of group productivity), then its partner will virtually always be favored to provide a reproductive "bribe" sufficient to remove the incentive for the selfish behavior. The magnitude of the bribe will vary directly with the number of offspring (or other close kin) potentially gained by the selfish individual and inversely with both the relatedness r between the interactants and the loss in group productivity because of selfishness. This bribe principle greatly extends the scope for cooperation within groups. Reproductive bribing is more likely to be favored over social policing for dominants rather than subordinates and as intragroup relatedness increases. Finally, analysis of the difference between the group optimum for an individual's behavior and the individual's inclusive fitness optimum reveals a paradoxical feedback loop by which bribing and policing, while nullifying particular selfish acts, automatically widen the separation of individual and group optima for other behaviors (i.e., resolution of one conflict intensifies others).

  20. Hormones and phenotypic plasticity in an ecological context: linking physiological mechanisms to evolutionary processes.

    Science.gov (United States)

    Lema, Sean C

    2014-11-01

    Hormones are chemical signaling molecules that regulate patterns of cellular physiology and gene expression underlying phenotypic traits. Hormone-signaling pathways respond to an organism's external environment to mediate developmental stage-specific malleability in phenotypes, so that environmental variation experienced at different stages of development has distinct effects on an organism's phenotype. Studies of hormone-signaling are therefore playing a central role in efforts to understand how plastic phenotypic responses to environmental variation are generated during development. But, how do adaptive, hormonally mediated phenotypes evolve if the individual signaling components (hormones, conversion enzymes, membrane transporters, and receptors) that comprise any hormone-signaling pathway show expressional flexibility in response to environmental variation? What relevance do these components hold as molecular targets for selection to couple or decouple correlated hormonally mediated traits? This article explores how studying the endocrine underpinnings of phenotypic plasticity in an ecologically relevant context can provide insights into these, and other, crucial questions into the role of phenotypic plasticity in evolution, including how plasticity itself evolves. These issues are discussed in the light of investigations into how thyroid hormones mediate morphological plasticity in Death Valley's clade of pupfishes (Cyprinodon spp.). Findings from this work with pupfish illustrate that the study of hormone-signaling from an ecological perspective can reveal how phenotypic plasticity contributes to the generation of phenotypic novelty, as well as how physiological mechanisms developmentally link an organism's phenotype to its environmental experiences. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Evolutionary conserved mechanisms pervade structure and transcriptional modulation of allograft inflammatory factor-1 from sea anemone Anemonia viridis.

    Science.gov (United States)

    Cuttitta, Angela; Ragusa, Maria Antonietta; Costa, Salvatore; Bennici, Carmelo; Colombo, Paolo; Mazzola, Salvatore; Gianguzza, Fabrizio; Nicosia, Aldo

    2017-08-01

    Gene family encoding allograft inflammatory factor-1 (AIF-1) is well conserved among organisms; however, there is limited knowledge in lower organisms. In this study, the first AIF-1 homologue from cnidarians was identified and characterised in the sea anemone Anemonia viridis. The full-length cDNA of AvAIF-1 was of 913 bp with a 5' -untranslated region (UTR) of 148 bp, a 3'-UTR of 315 and an open reading frame (ORF) of 450 bp encoding a polypeptide with149 amino acid residues and predicted molecular weight of about 17 kDa. The predicted protein possesses evolutionary conserved EF hand Ca 2+ binding motifs, post-transcriptional modification sites and a 3D structure which can be superimposed with human members of AIF-1 family. The AvAIF-1 transcript was constitutively expressed in all tested tissues of unchallenged sea anemone, suggesting that AvAIF-1 could serve as a general protective factor under normal physiological conditions. Moreover, we profiled the transcriptional activation of AvAIF-1 after challenges with different abiotic/biotic stresses showing induction by warming conditions, heavy metals exposure and immune stimulation. Thus, mechanisms associated to inflammation and immune challenges up-regulated AvAIF-1 mRNA levels. Our results suggest its involvement in the inflammatory processes and immune response of A. viridis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Remembering the evolutionary Freud.

    Science.gov (United States)

    Young, Allan

    2006-03-01

    Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.

  3. The genome sequence of the North-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants.

    Science.gov (United States)

    Wóycicki, Rafał; Witkowicz, Justyna; Gawroński, Piotr; Dąbrowska, Joanna; Lomsadze, Alexandre; Pawełkowicz, Magdalena; Siedlecka, Ewa; Yagi, Kohei; Pląder, Wojciech; Seroczyńska, Anna; Śmiech, Mieczysław; Gutman, Wojciech; Niemirowicz-Szczytt, Katarzyna; Bartoszewski, Grzegorz; Tagashira, Norikazu; Hoshi, Yoshikazu; Borodovsky, Mark; Karpiński, Stanisław; Malepszy, Stefan; Przybecki, Zbigniew

    2011-01-01

    Cucumber (Cucumis sativus L.), a widely cultivated crop, has originated from Eastern Himalayas and secondary domestication regions includes highly divergent climate conditions e.g. temperate and subtropical. We wanted to uncover adaptive genome differences between the cucumber cultivars and what sort of evolutionary molecular mechanisms regulate genetic adaptation of plants to different ecosystems and organism biodiversity. Here we present the draft genome sequence of the Cucumis sativus genome of the North-European Borszczagowski cultivar (line B10) and comparative genomics studies with the known genomes of: C. sativus (Chinese cultivar--Chinese Long (line 9930)), Arabidopsis thaliana, Populus trichocarpa and Oryza sativa. Cucumber genomes show extensive chromosomal rearrangements, distinct differences in quantity of the particular genes (e.g. involved in photosynthesis, respiration, sugar metabolism, chlorophyll degradation, regulation of gene expression, photooxidative stress tolerance, higher non-optimal temperatures tolerance and ammonium ion assimilation) as well as in distributions of abscisic acid-, dehydration- and ethylene-responsive cis-regulatory elements (CREs) in promoters of orthologous group of genes, which lead to the specific adaptation features. Abscisic acid treatment of non-acclimated Arabidopsis and C. sativus seedlings induced moderate freezing tolerance in Arabidopsis but not in C. sativus. This experiment together with analysis of abscisic acid-specific CRE distributions give a clue why C. sativus is much more susceptible to moderate freezing stresses than A. thaliana. Comparative analysis of all the five genomes showed that, each species and/or cultivars has a specific profile of CRE content in promoters of orthologous genes. Our results constitute the substantial and original resource for the basic and applied research on environmental adaptations of plants, which could facilitate creation of new crops with improved growth and yield in

  4. Deciphering jet quenching with JEWEL

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    In heavy ion collisions jets arising from the fragmentation of hard quarks and gluons experience strong modifications due to final state re-scattering. This so-called jet quenching is related to the emergence of collectivity and equilibration in QCD. I will give an introduction to jet quenching and its modeling in JEWEL, a Monte Carlo implementation of a dynamical model for jet quenching. I will then discuss examples highlighting how JEWEL can be used to elucidate the physical mechanisms relevant for jet quenching.  

  5. Evolutionary Nephrology.

    Science.gov (United States)

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  6. Evolutionary Nephrology

    Directory of Open Access Journals (Sweden)

    Robert L. Chevalier

    2017-05-01

    Full Text Available Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as “maladaptive.” In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or from evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ∼40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons, evolutionary selection for APOL1 mutations (which provide resistance to trypanosome infection, a tradeoff, and modern life experience (Western diet mismatch leading to diabetes and hypertension. Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout the life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo, developmental programming, and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  7. Evolutionary thinking

    Science.gov (United States)

    Hunt, Tam

    2014-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  8. Evolutionary Demography

    DEFF Research Database (Denmark)

    Levitis, Daniel

    2015-01-01

    of biological and cultural evolution. Demographic variation within and among human populations is influenced by our biology, and therefore by natural selection and our evolutionary background. Demographic methods are necessary for studying populations of other species, and for quantifying evolutionary fitness......Demography is the quantitative study of population processes, while evolution is a population process that influences all aspects of biological organisms, including their demography. Demographic traits common to all human populations are the products of biological evolution or the interaction...

  9. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis)

    Science.gov (United States)

    FUNK, W. CHRIS; LOVICH, ROBERT E.; HOHENLOHE, PAUL A.; HOFMAN, COURTNEY A.; MORRISON, SCOTT A.; SILLETT, T. SCOTT; GHALAMBOR, CAMERON K.; MALDONADO, JESUS E.; RICK, TORBEN C.; DAY, MITCH D.; POLATO, NICHOLAS R.; FITZPATRICK, SARAH W.; COONAN, TIMOTHY J.; CROOKS, KEVIN R.; DILLON, ADAM; GARCELON, DAVID K.; KING, JULIE L.; BOSER, CHRISTINA L.; GOULD, NICHOLAS; ANDELT, WILLIAM F.

    2016-01-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of 6 subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland gray foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness, and reduced adaptive potential. PMID:26992010

  10. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis).

    Science.gov (United States)

    Funk, W Chris; Lovich, Robert E; Hohenlohe, Paul A; Hofman, Courtney A; Morrison, Scott A; Sillett, T Scott; Ghalambor, Cameron K; Maldonado, Jesus E; Rick, Torben C; Day, Mitch D; Polato, Nicholas R; Fitzpatrick, Sarah W; Coonan, Timothy J; Crooks, Kevin R; Dillon, Adam; Garcelon, David K; King, Julie L; Boser, Christina L; Gould, Nicholas; Andelt, William F

    2016-05-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential. © 2016 John Wiley & Sons Ltd.

  11. An eco-epidemiological study of Morbilli-related paramyxovirus infection in Madagascar bats reveals host-switching as the dominant macro-evolutionary mechanism.

    Science.gov (United States)

    Mélade, Julien; Wieseke, Nicolas; Ramasindrazana, Beza; Flores, Olivier; Lagadec, Erwan; Gomard, Yann; Goodman, Steven M; Dellagi, Koussay; Pascalis, Hervé

    2016-04-12

    An eco-epidemiological investigation was carried out on Madagascar bat communities to better understand the evolutionary mechanisms and environmental factors that affect virus transmission among bat species in closely related members of the genus Morbillivirus, currently referred to as Unclassified Morbilli-related paramyxoviruses (UMRVs). A total of 947 bats were investigated originating from 52 capture sites (22 caves, 18 buildings, and 12 outdoor sites) distributed over different bioclimatic zones of the island. Using RT-PCR targeting the L-polymerase gene of the Paramyxoviridae family, we found that 10.5% of sampled bats were infected, representing six out of seven families and 15 out of 31 species analyzed. Univariate analysis indicates that both abiotic and biotic factors may promote viral infection. Using generalized linear modeling of UMRV infection overlaid on biotic and abiotic variables, we demonstrate that sympatric occurrence of bats is a major factor for virus transmission. Phylogenetic analyses revealed that all paramyxoviruses infecting Malagasy bats are UMRVs and showed little host specificity. Analyses using the maximum parsimony reconciliation tool CoRe-PA, indicate that host-switching, rather than co-speciation, is the dominant macro-evolutionary mechanism of UMRVs among Malagasy bats.

  12. Evolutionary Expectations

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    , they are correlated among people who share environments because these individuals satisfice within their cognitive bounds by using cues in order of validity, as opposed to using cues arbitrarily. Any difference in expectations thereby arise from differences in cognitive ability, because two individuals with identical...... cognitive bounds will perceive business opportunities identically. In addition, because cues provide information about latent causal structures of the environment, changes in causality must be accompanied by changes in cognitive representations if adaptation is to be maintained. The concept of evolutionary......The concept of evolutionary expectations descends from cue learning psychology, synthesizing ideas on rational expectations with ideas on bounded rationality, to provide support for these ideas simultaneously. Evolutionary expectations are rational, but within cognitive bounds. Moreover...

  13. [Evolutionary medicine].

    Science.gov (United States)

    Wjst, M

    2013-12-01

    Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Evolutionary Awareness

    Directory of Open Access Journals (Sweden)

    Gregory Gorelik

    2014-10-01

    Full Text Available In this article, we advance the concept of “evolutionary awareness,” a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities—which we refer to as “intergenerational extended phenotypes”—by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.

  15. An evolutionary framework for cultural change: Selectionism versus communal exchange

    Science.gov (United States)

    Gabora, Liane

    2013-06-01

    Dawkins' replicator-based conception of evolution has led to widespread mis-application of selectionism across the social sciences because it does not address the paradox that necessitated the theory of natural selection in the first place: how do organisms accumulate change when traits acquired over their lifetime are obliterated? This is addressed by von Neumann's concept of a self-replicating automaton (SRA). A SRA consists of a self-assembly code that is used in two distinct ways: (1) actively deciphered during development to construct a self-similar replicant, and (2) passively copied to the replicant to ensure that it can reproduce. Information that is acquired over a lifetime is not transmitted to offspring, whereas information that is inherited during copying is transmitted. In cultural evolution there is no mechanism for discarding acquired change. Acquired change can accumulate orders of magnitude faster than, and quickly overwhelm, inherited change due to differential replication of variants in response to selection. This prohibits a selectionist but not an evolutionary framework for culture and the creative processes that fuel it. The importance non-Darwinian processes in biological evolution is increasingly recognized. Recent work on the origin of life suggests that early life evolved through a non-Darwinian process referred to as communal exchange that does not involve a self-assembly code, and that natural selection emerged from this more haphazard, ancestral evolutionary process. It is proposed that communal exchange provides an evolutionary framework for culture that enables specification of cognitive features necessary for a (real or artificial) societies to evolve culture. This is supported by a computational model of cultural evolution and a conceptual network based program for documenting material cultural history, and it is consistent with high levels of human cooperation.

  16. Contemporary issues in evolutionary biology

    Indian Academy of Sciences (India)

    These discussions included, among others, the possible consequences of nonDNA-based inheritance—epigenetics and cultural evolution, niche construction, and developmental mechanisms on our understanding of the evolutionary process, speciation, complexity in biology, and constructing a formal evolutionary theory.

  17. Evolutionary robotics

    Indian Academy of Sciences (India)

    In evolutionary robotics, a suitable robot control system is developed automatically through evolution due to the interactions between the robot and its environment. It is a complicated task, as the robot and the environment constitute a highly dynamical system. Several methods have been tried by various investigators to ...

  18. Peeling back the evolutionary layers of molecular mechanisms responsive to exercise-stress in the skeletal muscle of the racing horse.

    Science.gov (United States)

    Kim, Hyeongmin; Lee, Taeheon; Park, Woncheoul; Lee, Jin Woo; Kim, Jaemin; Lee, Bo-Young; Ahn, Hyeonju; Moon, Sunjin; Cho, Seoae; Do, Kyoung-Tag; Kim, Heui-Soo; Lee, Hak-Kyo; Lee, Chang-Kyu; Kong, Hong-Sik; Yang, Young-Mok; Park, Jongsun; Kim, Hak-Min; Kim, Byung Chul; Hwang, Seungwoo; Bhak, Jong; Burt, Dave; Park, Kyoung-Do; Cho, Byung-Wook; Kim, Heebal

    2013-06-01

    The modern horse (Equus caballus) is the product of over 50 million yrs of evolution. The athletic abilities of the horse have been enhanced during the past 6000 yrs under domestication. Therefore, the horse serves as a valuable model to understand the physiology and molecular mechanisms of adaptive responses to exercise. The structure and function of skeletal muscle show remarkable plasticity to the physical and metabolic challenges following exercise. Here, we reveal an evolutionary layer of responsiveness to exercise-stress in the skeletal muscle of the racing horse. We analysed differentially expressed genes and their co-expression networks in a large-scale RNA-sequence dataset comparing expression before and after exercise. By estimating genome-wide dN/dS ratios using six mammalian genomes, and FST and iHS using re-sequencing data derived from 20 horses, we were able to peel back the evolutionary layers of adaptations to exercise-stress in the horse. We found that the oldest and thickest layer (dN/dS) consists of system-wide tissue and organ adaptations. We further find that, during the period of horse domestication, the older layer (FST) is mainly responsible for adaptations to inflammation and energy metabolism, and the most recent layer (iHS) for neurological system process, cell adhesion, and proteolysis.

  19. Part E: Evolutionary Computation

    DEFF Research Database (Denmark)

    2015-01-01

    of Computational Intelligence. First, comprehensive surveys of genetic algorithms, genetic programming, evolution strategies, parallel evolutionary algorithms are presented, which are readable and constructive so that a large audience might find them useful and – to some extent – ready to use. Some more general...... kinds of evolutionary algorithms, have been prudently analyzed. This analysis was followed by a thorough analysis of various issues involved in stochastic local search algorithms. An interesting survey of various technological and industrial applications in mechanical engineering and design has been...... topics like the estimation of distribution algorithms, indicator-based selection, etc., are also discussed. An important problem, from a theoretical and practical point of view, of learning classifier systems is presented in depth. Multiobjective evolutionary algorithms, which constitute one of the most...

  20. Evolutionary Explanations of Eating Disorders

    Directory of Open Access Journals (Sweden)

    Igor Kardum

    2008-12-01

    Full Text Available This article reviews several most important evolutionary mechanisms that underlie eating disorders. The first part clarifies evolutionary foundations of mental disorders and various mechanisms leading to their development. In the second part selective pressures and evolved adaptations causing contemporary epidemic of obesity as well as differences in dietary regimes and life-style between modern humans and their ancestors are described. Concerning eating disorders, a number of current evolutionary explanations of anorexia nervosa are presented together with their main weaknesses. Evolutionary explanations of eating disorders based on the reproductive suppression hypothesis and its variants derived from kin selection theory and the model of parental manipulation were elaborated. The sexual competition hypothesis of eating disorder, adapted to flee famine hypothesis as well as explanation based on the concept of social attention holding power and the need to belonging were also explained. The importance of evolutionary theory in modern conceptualization and research of eating disorders is emphasized.

  1. The Motivational Foundations of Prosocial Behavior From A Developmental Perspective-Evolutionary Roots and Key Psychological Mechanisms: Introduction to the Special Section.

    Science.gov (United States)

    Davidov, Maayan; Vaish, Amrisha; Knafo-Noam, Ariel; Hastings, Paul D

    2016-11-01

    Prosocial behavior is versatile, multifaceted, and complex. This special section seeks to advance coherent, integrative understanding of prosocial development by addressing this topic through the prism of motivations. This conceptual Introduction presents key ideas that provide a framework for thinking about motivation for prosocial behavior and its development. It outlines the evolutionary roots of prosocial behavior, underscoring the interdependent roles of nature and nurture. This is followed by a discussion of several key psychological mechanisms reflecting different motivations for prosocial action (empathy for a distressed other, concern about another's goal, desire to act in accordance with internalized prosocial norms, and guilt). We discuss the critical components of each motivation and highlight pertinent contributions of the special section articles. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  2. Proteomics in evolutionary ecology.

    Science.gov (United States)

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  3. Physical mechanism or evolutionary trade-off? Factors dictating the relationship between metabolic rate and ambient temperature in carabid beetles.

    Science.gov (United States)

    Gudowska, Agnieszka; Schramm, Bartosz W; Czarnoleski, Marcin; Kozłowski, Jan; Bauchinger, Ulf

    2017-08-01

    The tight association between ambient temperature (T) and metabolic rate (MR) is a common occurrence in ectotherms, but the determinants of this association are not fully understood. This study examined whether the relationship between MR and T is the same among individuals, as predicted by the Universal Temperature Dependence hypothesis, or whether this relationship differs between them. We used flow-through respirometry to measure standard MR and to determine gas exchange patterns for 111 individuals of three Carabidae species which differ in size (Abax ovalis, Carabus linnei and C. coriaceus), exposed to four different temperatures (ten individuals of each species measured at 6, 11, 16 and 21°C). We found a significant interaction between ln body mass and the inverse of temperature, indicating that in a given species, the effect of temperature on MR was weaker in larger individuals than in smaller individuals. Overall, this finding shows that the thermal dependence of MR is not body mass invariant. We observed three types of gas exchange patterns among beetles: discontinuous, cyclic and continuous. Additionally, the appearance of these patterns was associated with MR and T. Evolution in diverse terrestrial environments could affect diverse ventilation patterns, which accommodate changes in metabolism in response to temperature variation. In conclusion, explaining the variance in metabolism only through fundamental physical laws of thermodynamics, as predicted by the Universal Temperature Dependence hypothesis, appears to oversimplify the complexity of nature, ignoring evolutionary trade-offs that should be taken into account in the temperature - metabolism relationship. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Evolutionary institutionalism.

    Science.gov (United States)

    Fürstenberg, Dr Kai

    Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.

  5. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history.

    Science.gov (United States)

    Bhullar, Bhart-Anjan S; Morris, Zachary S; Sefton, Elizabeth M; Tok, Atalay; Tokita, Masayoshi; Namkoong, Bumjin; Camacho, Jasmin; Burnham, David A; Abzhanov, Arhat

    2015-07-01

    The avian beak is a key evolutionary innovation whose flexibility has permitted birds to diversify into a range of disparate ecological niches. We approached the problem of the mechanism behind this innovation using an approach bridging paleontology, comparative anatomy, and experimental developmental biology. First, we used fossil and extant data to show the beak is distinctive in consisting of fused premaxillae that are geometrically distinct from those of ancestral archosaurs. To elucidate underlying developmental mechanisms, we examined candidate gene expression domains in the embryonic face: the earlier frontonasal ectodermal zone (FEZ) and the later midfacial WNT-responsive region, in birds and several reptiles. This permitted the identification of an autapomorphic median gene expression region in Aves. To test the mechanism, we used inhibitors of both pathways to replicate in chicken the ancestral amniote expression. Altering the FEZ altered later WNT responsiveness to the ancestral pattern. Skeletal phenotypes from both types of experiments had premaxillae that clustered geometrically with ancestral fossil forms instead of beaked birds. The palatal region was also altered to a more ancestral phenotype. This is consistent with the fossil record and with the tight functional association of avian premaxillae and palate in forming a kinetic beak. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  6. Constructive anthropomorphism: a functional evolutionary approach to the study of human-like cognitive mechanisms in animals.

    Science.gov (United States)

    Arbilly, Michal; Lotem, Arnon

    2017-10-25

    Anthropomorphism, the attribution of human cognitive processes and emotional states to animals, is commonly viewed as non-scientific and potentially misleading. This is mainly because apparent similarity to humans can usually be explained by alternative, simpler mechanisms in animals, and because there is no explanatory power in analogies to human phenomena when these phenomena are not well understood. Yet, because it is also difficult to preclude real similarity and continuity in the evolution of humans' and animals' cognitive abilities, it may not be productive to completely ignore our understanding of human behaviour when thinking about animals. Here we propose that in applying a functional approach to the evolution of cognitive mechanisms, human cognition may be used to broaden our theoretical thinking and to generate testable hypotheses. Our goal is not to 'elevate' animals, but rather to find the minimal set of mechanistic principles that may explain 'advanced' cognitive abilities in humans, and consider under what conditions these mechanisms were likely to enhance fitness and to evolve in animals. We illustrate this approach, from relatively simple emotional states, to more advanced mechanisms, involved in planning and decision-making, episodic memory, metacognition, theory of mind, and consciousness. © 2017 The Author(s).

  7. Sequential Logic Model Deciphers Dynamic Transcriptional Control of Gene Expressions

    Science.gov (United States)

    Yeo, Zhen Xuan; Wong, Sum Thai; Arjunan, Satya Nanda Vel; Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar; Giuliani, Alessandro; Tsuchiya, Masa

    2007-01-01

    Background Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. Methodology Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM) is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. Principal Findings SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin) during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. Conclusions/Significance The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet providing rich biological

  8. Sequential logic model deciphers dynamic transcriptional control of gene expressions.

    Directory of Open Access Journals (Sweden)

    Zhen Xuan Yeo

    Full Text Available BACKGROUND: Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. METHODOLOGY: Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. PRINCIPAL FINDINGS: SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. CONCLUSIONS/SIGNIFICANCE: The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet

  9. Evolutionary Mechanisms Involved in Emergence of Viral Haemorrhagic Septicaemia Virus (VHSV) into Cultured Rainbow Trout, Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Schönherz, Anna A.

    virulence, causing extensive losses to the aquacultre industry. Cross-species transmission and subsequent adaptation to cultured raibow trout is observed occasionally. However, the biological background facilitationg VHSV emergense has yet to be identified. In the present PhD project potential mechanisms...... facilitation VHSV emergence into cultured raibow trout were explored. In vivo infection trials and in selico based molecular analysis were performed to independently investigate the first two steps of viral emergence, namely initial introduction to- and subsequent adaptation and establishment within the new...... of genetic variation, and that VHSV emergence into cultured rainbow torut was accompanied by rapid adaptive evolution within the viral glucoprotein...

  10. Deciphering complement mechanisms: The contributions of structural biology.

    NARCIS (Netherlands)

    Arlaud, G.J.; Barlow, P.N.; Gaboriaud, C.; Gros, P.; Narayana, S.V.L.

    2007-01-01

    Since the resolution of the first three-dimensional structure of a complement component in 1980, considerable efforts have been put into the investigation of this system through structural biology techniques, resulting in about a hundred structures deposited in the Protein Data Bank by the beginning

  11. Evolutionary history of the plant pathogenic bacterium Xanthomonas axonopodis.

    Directory of Open Access Journals (Sweden)

    Nadia Mhedbi-Hajri

    Full Text Available Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes--geographical and ecological speciation--that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25,000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.

  12. Functional metagenomics to decipher food-microbe-host crosstalk.

    Science.gov (United States)

    Larraufie, Pierre; de Wouters, Tomas; Potocki-Veronese, Gabrielle; Blottière, Hervé M; Doré, Joël

    2015-02-01

    The recent developments of metagenomics permit an extremely high-resolution molecular scan of the intestinal microbiota giving new insights and opening perspectives for clinical applications. Beyond the unprecedented vision of the intestinal microbiota given by large-scale quantitative metagenomics studies, such as the EU MetaHIT project, functional metagenomics tools allow the exploration of fine interactions between food constituents, microbiota and host, leading to the identification of signals and intimate mechanisms of crosstalk, especially between bacteria and human cells. Cloning of large genome fragments, either from complex intestinal communities or from selected bacteria, allows the screening of these biological resources for bioactivity towards complex plant polymers or functional food such as prebiotics. This permitted identification of novel carbohydrate-active enzyme families involved in dietary fibre and host glycan breakdown, and highlighted unsuspected bacterial players at the top of the intestinal microbial food chain. Similarly, exposure of fractions from genomic and metagenomic clones onto human cells engineered with reporter systems to track modulation of immune response, cell proliferation or cell metabolism has allowed the identification of bioactive clones modulating key cell signalling pathways or the induction of specific genes. This opens the possibility to decipher mechanisms by which commensal bacteria or candidate probiotics can modulate the activity of cells in the intestinal epithelium or even in distal organs such as the liver, adipose tissue or the brain. Hence, in spite of our inability to culture many of the dominant microbes of the human intestine, functional metagenomics open a new window for the exploration of food-microbe-host crosstalk.

  13. Freud: the first evolutionary psychologist?

    Science.gov (United States)

    LeCroy, D

    2000-04-01

    An evolutionary perspective on attachment theory and psychoanalytic theory brings these two fields together in interesting ways. Application of the evolutionary principle of parent-offspring conflict to attachment theory suggests that attachment styles represent context-sensitive, evolved (adaptive) behaviors. In addition, an emphasis on offspring counter-strategies to adult reproductive strategies leads to consideration of attachment styles as overt manifestations of psychodynamic mediating processes, including the defense mechanisms of repression and reaction formation.

  14. Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications.

    Science.gov (United States)

    Zákány, J; Fromental-Ramain, C; Warot, X; Duboule, D

    1997-12-09

    The proper development of digits, in tetrapods, requires the activity of several genes of the HoxA and HoxD homeobox gene complexes. By using a variety of loss-of-function alleles involving the five Hox genes that have been described to affect digit patterning, we report here that the group 11, 12, and 13 genes control both the size and number of murine digits in a dose-dependent fashion, rather than through a Hox code involving differential qualitative functions. A similar dose-response is observed in the morphogenesis of the penian bone, the baculum, which further suggests that digits and external genitalia share this genetic control mechanism. A progressive reduction in the dose of Hox gene products led first to ectrodactyly, then to olygodactyly and adactyly. Interestingly, this transition between the pentadactyl to the adactyl formula went through a step of polydactyly. We propose that in the distal appendage of polydactylous short-digited ancestral tetrapods, such as Acanthostega, the HoxA complex was predominantly active. Subsequent recruitment of the HoxD complex contributed to both reductions in digit number and increase in digit length. Thus, transition through a polydactylous limb before reaching and stabilizing the pentadactyl pattern may have relied, at least in part, on asynchronous and independent changes in the regulation of HoxA and HoxD gene complexes.

  15. The odyssey of a young gene: structure-function studies in human glutamate dehydrogenases reveal evolutionary-acquired complex allosteric regulation mechanisms.

    Science.gov (United States)

    Zaganas, Ioannis V; Kanavouras, Konstantinos; Borompokas, Nikolas; Arianoglou, Giovanna; Dimovasili, Christina; Latsoudis, Helen; Vlassi, Metaxia; Mastorodemos, Vasileios

    2014-01-01

    Mammalian glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia, interconnecting carbon skeleton and nitrogen metabolism. In addition, it functions as an energy switch by its ability to fuel the Krebs cycle depending on the energy status of the cell. As GDH lies at the intersection of several metabolic pathways, its activity is tightly regulated by several allosteric compounds that are metabolic intermediates. In contrast to other mammals that have a single GDH-encoding gene, humans and great apes possess two isoforms of GDH (hGDH1 and hGDH2, encoded by the GLUD1 and GLUD2 genes, respectively) with distinct regulation pattern, but remarkable sequence similarity (they differ, in their mature form, in only 15 of their 505 amino-acids). The GLUD2 gene is considered a very young gene, emerging from the GLUD1 gene through retro-position only recently (<23 million years ago). The new hGDH2 iso-enzyme, through random mutations and natural selection, is thought to have conferred an evolutionary advantage that helped its persistence through primate evolution. The properties of the two highly homologous human GDHs have been studied using purified recombinant hGDH1 and hGDH2 proteins obtained by expression of the corresponding cDNAs in Sf21 cells. According to these studies, in contrast to hGDH1 that maintains basal activity at 35-40 % of its maximal, hGDH2 displays low basal activity that is highly responsive to activation by rising levels of ADP and/or L-leucine which can also act synergistically. While hGDH1 is inhibited potently by GTP, hGDH2 shows remarkable GTP resistance. Furthermore, the two iso-enzymes are differentially inhibited by estrogens, polyamines and neuroleptics, and also differ in heat-lability. To elucidate the molecular mechanisms that underlie these different regulation patterns of the two iso-enzymes (and consequently the evolutionary adaptation of hGDH2 to a new functional role), we have

  16. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  17. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides).

    Science.gov (United States)

    Ramírez-Valiente, Jose A; Cavender-Bares, Jeannine

    2017-07-01

    In seasonally dry tropical forest regions, drought avoidance during the dry season coupled with high assimilation rates in the wet season is hypothesized to be an advantageous strategy for forest trees in regions with severe and long dry seasons. In contrast, where dry seasons are milder, drought tolerance coupled with a conservative resource-use strategy is expected to maximize carbon assimilation throughout the year. Tests of this hypothesis, particularly at the intraspecific level, have been seldom conducted. In this study, we tested the extent to which drought resistance mechanisms and rates of carbon assimilation have evolved under climates with varying dry season length and severity within Quercus oleoidesCham. and Schlect., a tropical dry forest species that is widely distributed in Central America. For this purpose, we conducted a greenhouse experiment where seedlings originating from five populations that vary in rainfall patterns were grown under different watering treatments. Our results revealed that populations from xeric climates with more severe dry seasons exhibited large mesophyllous leaves (with high specific leaf area, SLA), and leaf abscission in response to drought, consistent with a drought-avoidance strategy. In contrast, populations from more mesic climates with less severe dry seasons had small and thick sclerophyllous leaves with low SLA and reduced water potential at the turgor loss point (πtlp), consistent with a drought-tolerance strategy. Mesic populations also showed high plasticity in πtlp in response to water availability, indicating that osmotic adjustment to drought is an important component of this strategy. However, populations with mesophyllous leaves did not have higher maximum carbon assimilation rates under well-watered conditions. Furthermore, SLA was negatively associated with mass-based photosynthetic rates, contrary to expectations of the leaf economics spectrum, indicating that drought-resistance strategies are not

  18. Deciphering free-radical code of radiation effects

    International Nuclear Information System (INIS)

    Volovyk, S.; Bazyka, D.; Loganovsky, K.; Bebeshko, V.

    2007-01-01

    Complete text of publication follows. Objective: Ionizing radiation is fundamental environmental factor for life origin and evolution. Free radicals, primordial 'sea' for life conceiving and existence, induced by cosmic and terrestrial background radiation, are evolutionally archetypal, ubiquitous, and omnipotent in physiological- pathophysiological dichotomy. Classical free-radical paradigm in radiation biology and medicine, focused in essence on oxidative damage, needs new conceptualization and generalization. Methods: Suggested novel insights into free radicals dual immanent nature and functions in organism systems are based on original concepts of radicals dynamic charge transfer (CT) - redox ambivalence (interactional nucleo-, electro-, and ambiphilicity spectrum); pertinent chemical reactivity and selectivity delocalization model; physiological functional ambivalence and complementarity, and dynamic free-radical homeostasis. Results: Subtle perturbations in radicals CT spatiotemporal homeodynamics, in responsive signaling / controlling networks, concomitant alterations in genes expression, transcription, and apoptosis, redox control of mitochondrial ET chain, telomere/telomerase balance, DNA CT, circadian clock, hemispheric biochemical dominance/accentuation, including alteration of nitric oxide-superoxide complementarity, membranes permeability, neurotransmission pattern, synaptic circuitry, etc under radiation exposure have more fundamental impact on organism systems (especially CNS and CVS) deterioration than simple radicals inflicted oxidative (nitrosative) damage of cellular constituents. Conclusions: This novel conceptualization of free-radical paradigm constitutes new dimension in deciphering molecular mechanisms of radiation effects on subtle borderline norm-pathology and continuity-discontinuity dichotomy in organisms systems disorders - CT(redox)omics, which involves investigation of CT, redox, and spin states of free radicals, DNA bases

  19. Deciphering neuronal population codes for acute thermal pain

    Science.gov (United States)

    Chen, Zhe; Zhang, Qiaosheng; Phuong Sieu Tong, Ai; Manders, Toby R.; Wang, Jing

    2017-06-01

    Objective. Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Current pain research mostly focuses on molecular and synaptic changes at the spinal and peripheral levels. However, a complete understanding of pain mechanisms requires the physiological study of the neocortex. Our goal is to apply a neural decoding approach to read out the onset of acute thermal pain signals, which can be used for brain-machine interface. Approach. We used micro wire arrays to record ensemble neuronal activities from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) in freely behaving rats. We further investigated neural codes for acute thermal pain at both single-cell and population levels. To detect the onset of acute thermal pain signals, we developed a novel latent state-space framework to decipher the sorted or unsorted S1 and ACC ensemble spike activities, which reveal information about the onset of pain signals. Main results. The state space analysis allows us to uncover a latent state process that drives the observed ensemble spike activity, and to further detect the ‘neuronal threshold’ for acute thermal pain on a single-trial basis. Our method achieved good detection performance in sensitivity and specificity. In addition, our results suggested that an optimal strategy for detecting the onset of acute thermal pain signals may be based on combined evidence from S1 and ACC population codes. Significance. Our study is the first to detect the onset of acute pain signals based on neuronal ensemble spike activity. It is important from a mechanistic viewpoint as it relates to the significance of S1 and ACC activities in the regulation of the acute pain onset.

  20. Evolutionary disarmament in interspecific competition.

    Science.gov (United States)

    Kisdi, E; Geritz, S A

    2001-12-22

    Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races.

  1. Genetic analyses for deciphering the status and role of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 96; Issue 1. Genetic analyses for deciphering the status and role of photoperiodic and maturity genes in major Indian soybean cultivars. SANJAY GUPTA VIRENDER SINGH BHATIA GIRIRAJ KUMAWAT DEVSHREE THAKUR GOURAV SINGH RACHANA TRIPATHI GYANESH ...

  2. The evolutionary psychology of hunger.

    Science.gov (United States)

    Al-Shawaf, Laith

    2016-10-01

    An evolutionary psychological perspective suggests that emotions can be understood as coordinating mechanisms whose job is to regulate various psychological and physiological programs in the service of solving an adaptive problem. This paper suggests that it may also be fruitful to approach hunger from this coordinating mechanism perspective. To this end, I put forward an evolutionary task analysis of hunger, generating novel a priori hypotheses about the coordinating effects of hunger on psychological processes such as perception, attention, categorization, and memory. This approach appears empirically fruitful in that it yields a bounty of testable new hypotheses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Toward an evolutionary-predictive foundation for creativity : Commentary on "Human creativity, evolutionary algorithms, and predictive representations: The mechanics of thought trials" by Arne Dietrich and Hilde Haider, 2014 (Accepted pending minor revisions for publication in Psychonomic Bulletin & Review).

    Science.gov (United States)

    Gabora, Liane; Kauffman, Stuart

    2016-04-01

    Dietrich and Haider (Psychonomic Bulletin & Review, 21 (5), 897-915, 2014) justify their integrative framework for creativity founded on evolutionary theory and prediction research on the grounds that "theories and approaches guiding empirical research on creativity have not been supported by the neuroimaging evidence." Although this justification is controversial, the general direction holds promise. This commentary clarifies points of disagreement and unresolved issues, and addresses mis-applications of evolutionary theory that lead the authors to adopt a Darwinian (versus Lamarckian) approach. To say that creativity is Darwinian is not to say that it consists of variation plus selection - in the everyday sense of the term - as the authors imply; it is to say that evolution is occurring because selection is affecting the distribution of randomly generated heritable variation across generations. In creative thought the distribution of variants is not key, i.e., one is not inclined toward idea A because 60 % of one's candidate ideas are variants of A while only 40 % are variants of B; one is inclined toward whichever seems best. The authors concede that creative variation is partly directed; however, the greater the extent to which variants are generated non-randomly, the greater the extent to which the distribution of variants can reflect not selection but the initial generation bias. Since each thought in a creative process can alter the selective criteria against which the next is evaluated, there is no demarcation into generations as assumed in a Darwinian model. We address the authors' claim that reduced variability and individuality are more characteristic of Lamarckism than Darwinian evolution, and note that a Lamarckian approach to creativity has addressed the challenge of modeling the emergent features associated with insight.

  4. Evolutionary foundations for cancer biology.

    Science.gov (United States)

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.

  5. Preprocessing Algorithm for Deciphering Historical Inscriptions Using String Metric

    Directory of Open Access Journals (Sweden)

    Lorand Lehel Toth

    2016-07-01

    Full Text Available The article presents the improvements in the preprocessing part of the deciphering method (shortly preprocessing algorithm for historical inscriptions of unknown origin. Glyphs used in historical inscriptions changed through time; therefore, various versions of the same script may contain different glyphs for each grapheme. The purpose of the preprocessing algorithm is reducing the running time of the deciphering process by filtering out the less probable interpretations of the examined inscription. However, the first version of the preprocessing algorithm leads incorrect outcome or no result in the output in certain cases. Therefore, its improved version was developed to find the most similar words in the dictionary by relaying the search conditions more accurately, but still computationally effectively. Moreover, a sophisticated similarity metric used to determine the possible meaning of the unknown inscription is introduced. The results of the evaluations are also detailed.

  6. Deciphering Neural Codes of Memory during Sleep

    Science.gov (United States)

    Chen, Zhe; Wilson, Matthew A.

    2017-01-01

    Memories of experiences are stored in the cerebral cortex. Sleep is critical for consolidating hippocampal memory of wake experiences into the neocortex. Understanding representations of neural codes of hippocampal-neocortical networks during sleep would reveal important circuit mechanisms on memory consolidation, and provide novel insights into memory and dreams. Although sleep-associated ensemble spike activity has been investigated, identifying the content of memory in sleep remains challenging. Here, we revisit important experimental findings on sleep-associated memory (i.e., neural activity patterns in sleep that reflect memory processing) and review computational approaches for analyzing sleep-associated neural codes (SANC). We focus on two analysis paradigms for sleep-associated memory, and propose a new unsupervised learning framework (“memory first, meaning later”) for unbiased assessment of SANC. PMID:28390699

  7. Deciphering the Functional Composition of Fusogenic Liposomes

    Science.gov (United States)

    Kolašinac, Rejhana; Kleusch, Christian; Braun, Tobias; Merkel, Rudolf; Csiszár, Agnes

    2018-01-01

    Cationic liposomes are frequently used as carrier particles for nucleic acid delivery. The most popular formulation is the equimolar mixture of two components, a cationic lipid and a neutral phosphoethanolamine. Its uptake pathway has been described as endocytosis. The presence of an aromatic molecule as a third component strongly influences the cellular uptake process and results in complete membrane fusion instead of endocytosis. Here, we systematically varied all three components of this lipid mixture and determined how efficiently the resulting particles fused with the plasma membrane of living mammalian cells. Our results show that an aromatic molecule and a cationic lipid component with conical molecular shape are essential for efficient fusion induction. While a neutral lipid is not mandatory, it can be used to control fusion efficiency and, in the most extreme case, to revert the uptake mechanism back to endocytosis. PMID:29364187

  8. Attractive evolutionary equilibria

    NARCIS (Netherlands)

    Joosten, Reinoud A.M.G.; Roorda, Berend

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary

  9. Invoking adaptation to decipher the genetic legacy of past climate change.

    Science.gov (United States)

    de Lafontaine, Guillaume; Napier, Joseph D; Petit, Rémy J; Hu, Feng Sheng

    2018-05-05

    Persistence of natural populations during periods of climate change is likely to depend on migration (range shifts) or adaptation. These responses were traditionally considered discrete processes and conceptually divided into the realms of ecology and evolution. In a milestone paper, Davis and Shaw (2001) argued that the interplay of adaptation and migration was central to biotic responses to Quaternary climate, but since then there has been no synthesis of efforts made to set up this research program. Here we review some of the salient findings from molecular genetic studies assessing ecological and evolutionary responses to Quaternary climate change. These studies have revolutionized our understanding of population processes associated with past species migration. However, knowledge remains limited about the role of natural selection for local adaptation of populations to Quaternary environmental fluctuations and associated range shifts, and for the footprints this might have left on extant populations. Next-generation sequencing technologies, high-resolution paleoclimate analyses, and advances in population genetic theory offer an unprecedented opportunity to test hypotheses about adaptation through time. Recent population genomics studies have greatly improved our understanding of the role of contemporary adaptation to local environments in shaping spatial patterns of genetic diversity across modern-day landscapes. Advances in this burgeoning field provide important conceptual and methodological bases to decipher the historical role of natural selection and assess adaptation to past environmental variation. We suggest that a process called "temporal conditional neutrality" has taken place: some alleles favored in glacial environments become selectively neutral in modern-day conditions, whereas some alleles that had been neutral during glacial periods become under selection in modern environments. Building on this view, we present a new integrative framework for

  10. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.

  11. Skeletal remodelling suggests the turtle's shell is not an evolutionary straitjacket

    OpenAIRE

    Cordero, Gerardo Antonio; Quinteros, Kevin

    2015-01-01

    Recent efforts to decipher the enigma of the turtle's shell revealed that distantly related turtle species deploy diverse processes during shell development. Even so, extant species share in common a shoulder blade (scapula) that is encapsulated within the shell. Thus, evolutionary change in the correlated development of the shell and scapula probably underpins the evolution of highly derived shell morphologies. To address this expectation, we conducted one of the most phylogenetically compre...

  12. Complexity in Evolutionary Processes

    International Nuclear Information System (INIS)

    Schuster, P.

    2010-01-01

    Darwin's principle of evolution by natural selection is readily casted into a mathematical formalism. Molecular biology revealed the mechanism of mutation and provides the basis for a kinetic theory of evolution that models correct reproduction and mutation as parallel chemical reaction channels. A result of the kinetic theory is the existence of a phase transition in evolution occurring at a critical mutation rate, which represents a localization threshold for the population in sequence space. Occurrence and nature of such phase transitions depend critically on fitness landscapes. The fitness landscape being tantamount to a mapping from sequence or genotype space into phenotype space is identified as the true source of complexity in evolution. Modeling evolution as a stochastic process is discussed and neutrality with respect to selection is shown to provide a major challenge for understanding evolutionary processes (author)

  13. Evolutionary molecular medicine.

    Science.gov (United States)

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  14. Reviews in modern astronomy, deciphering the universe through spectroscopy

    CERN Document Server

    von Berlepsch, Regina

    2011-01-01

    This 22nd volume in the series contains 15 invited reviews and highlight contributions from outstanding speakers presented during the 2009 annual meeting of the Astronomical Society on the subject of ""Deciphering the Universe through Spectroscopy"", held in Potsdam, Germany. Topics range from the measurements of magnetic fields on the surface of the sun via detailed measurements of abundances in stellar atmospheres to the kinematics of the universe at its largest scales. The result is a systematic overview of the latest astronomical and cosmological research.

  15. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.

    Science.gov (United States)

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-04-01

    Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.

  16. Envirotyping for deciphering environmental impacts on crop plants.

    Science.gov (United States)

    Xu, Yunbi

    2016-04-01

    Global climate change imposes increasing impacts on our environments and crop production. To decipher environmental impacts on crop plants, the concept "envirotyping" is proposed, as a third "typing" technology, complementing with genotyping and phenotyping. Environmental factors can be collected through multiple environmental trials, geographic and soil information systems, measurement of soil and canopy properties, and evaluation of companion organisms. Envirotyping contributes to crop modeling and phenotype prediction through its functional components, including genotype-by-environment interaction (GEI), genes responsive to environmental signals, biotic and abiotic stresses, and integrative phenotyping. Envirotyping, driven by information and support systems, has a wide range of applications, including environmental characterization, GEI analysis, phenotype prediction, near-iso-environment construction, agronomic genomics, precision agriculture and breeding, and development of a four-dimensional profile of crop science involving genotype (G), phenotype (P), envirotype (E) and time (T) (developmental stage). In the future, envirotyping needs to zoom into specific experimental plots and individual plants, along with the development of high-throughput and precision envirotyping platforms, to integrate genotypic, phenotypic and envirotypic information for establishing a high-efficient precision breeding and sustainable crop production system based on deciphered environmental impacts.

  17. Incorporating Development Into Evolutionary Psychology

    Directory of Open Access Journals (Sweden)

    David F. Bjorklund

    2016-09-01

    Full Text Available Developmental thinking is gradually becoming integrated within mainstream evolutionary psychology. This is most apparent with respect to the role of parenting, with proponents of life history theory arguing that cognitive and behavioral plasticity early in life permits children to select different life history strategies, with such strategies being adaptive solutions to different fitness trade-offs. I argue that adaptations develop and are based on the highly plastic nature of infants’ and children’s behavior/cognition/brains. The concept of evolved probabilistic cognitive mechanisms is introduced, defined as information processing mechanisms evolved to solve recurrent problems faced by ancestral populations that are expressed in a probabilistic fashion in each individual in a generation and are based on the continuous and bidirectional interaction over time at all levels of organization, from the genetic through the cultural. Early perceptual/cognitive biases result in behavior that, when occurring in a species-typical environment, produce continuous adaptive changes in behavior (and cognition, yielding adaptive outcomes. Examples from social learning and tool use are provided, illustrating the development of adaptations via evolved probabilistic cognitive mechanisms. The integration of developmental concepts into mainstream evolutionary psychology (and evolutionary concepts into mainstream developmental psychology will provide a clearer picture of what it means to be human.

  18. Attractive evolutionary equilibria

    OpenAIRE

    Roorda, Berend; Joosten, Reinoud

    2011-01-01

    We present attractiveness, a refinement criterion for evolutionary equilibria. Equilibria surviving this criterion are robust to small perturbations of the underlying payoff system or the dynamics at hand. Furthermore, certain attractive equilibria are equivalent to others for certain evolutionary dynamics. For instance, each attractive evolutionarily stable strategy is an attractive evolutionarily stable equilibrium for certain barycentric ray-projection dynamics, and vice versa.

  19. Polymorphic Evolutionary Games.

    Science.gov (United States)

    Fishman, Michael A

    2016-06-07

    In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A Computationally-Efficient, Multi-Mechanism Based Framework for the Comprehensive Modeling of the Evolutionary Behavior of Shape Memory Alloys

    Science.gov (United States)

    Saleeb, Atef F.; Vaidyanathan, Raj

    2016-01-01

    The report summarizes the accomplishments made during the 4-year duration of the project. Here, the major emphasis is placed on the different tasks performed by the two research teams; i.e., the modeling activities by the University of Akron (UA) team and the experimental and neutron diffraction studies conducted by the University of Central Florida (UCF) team, during this 4-year period. Further technical details are given in the upcoming sections by UA and UCF for each of the milestones/years (together with the corresponding figures and captions).The project majorly involved the development, validation, and application of a general theoretical model that is capable of capturing the nonlinear hysteretic responses, including pseudoelasticity, shape memory effect, rate-dependency, multi-axiality, asymmetry in tension versus compression response of shape memory alloys. Among the targeted goals for the SMA model was its ability to account for the evolutionary character response (including transient and long term behavior under sustained cycles) for both conventional and high temperature (HT) SMAs, as well as being able to simulate some of the devices which exploit these unique material systems. This required extensive (uniaxial and multi-axial) experiments needed to guide us in calibrating and characterizing the model. Moreover, since the model is formulated on the theoretical notion of internal state variables (ISVs), neutron diffraction experiments were needed to establish the linkage between the micromechanical changes and these ISVs. In addition, the design of the model should allow easy implementation in large scale finite element application to study the behavior of devices making use of these SMA materials under different loading controls. Summary of the activities, progress/achievements made during this period is given below in details for the University of Akron and the University (Section 2.0) of Central Florida (Section 3.0).

  1. Human compulsivity: A perspective from evolutionary medicine.

    Science.gov (United States)

    Stein, Dan J; Hermesh, Haggai; Eilam, David; Segalas, Cosi; Zohar, Joseph; Menchon, Jose; Nesse, Randolph M

    2016-05-01

    Biological explanations address not only proximal mechanisms (for example, the underlying neurobiology of obsessive-compulsive disorder), but also distal mechanisms (that is, a consideration of how particular neurobiological mechanisms evolved). Evolutionary medicine has emphasized a series of explanations for vulnerability to disease, including constraints, mismatch, and tradeoffs. The current paper will consider compulsive symptoms in obsessive-compulsive and related disorders and behavioral addictions from this evolutionary perspective. It will argue that while obsessive-compulsive disorder (OCD) is typically best conceptualized as a dysfunction, it is theoretically and clinically valuable to understand some symptoms of obsessive-compulsive and related disorders in terms of useful defenses. The symptoms of behavioral addictions can also be conceptualized in evolutionary terms (for example, mismatch), which in turn provides a sound foundation for approaching assessment and intervention. Copyright © 2016. Published by Elsevier B.V.

  2. Understanding the mind from an evolutionary perspective: an overview of evolutionary psychology.

    Science.gov (United States)

    Shackelford, Todd K; Liddle, James R

    2014-05-01

    The theory of evolution by natural selection provides the only scientific explanation for the existence of complex adaptations. The design features of the brain, like any organ, are the result of selection pressures operating over deep time. Evolutionary psychology posits that the human brain comprises a multitude of evolved psychological mechanisms, adaptations to specific and recurrent problems of survival and reproduction faced over human evolutionary history. Although some mistakenly view evolutionary psychology as promoting genetic determinism, evolutionary psychologists appreciate and emphasize the interactions between genes and environments. This approach to psychology has led to a richer understanding of a variety of psychological phenomena, and has provided a powerful foundation for generating novel hypotheses. Critics argue that evolutionary psychologists resort to storytelling, but as with any branch of science, empirical testing is a vital component of the field, with hypotheses standing or falling with the weight of the evidence. Evolutionary psychology is uniquely suited to provide a unifying theoretical framework for the disparate subdisciplines of psychology. An evolutionary perspective has provided insights into several subdisciplines of psychology, while simultaneously demonstrating the arbitrary nature of dividing psychological science into such subdisciplines. Evolutionary psychologists have amassed a substantial empirical and theoretical literature, but as a relatively new approach to psychology, many questions remain, with several promising directions for future research. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  3. Evolutionary ecology of virus emergence.

    Science.gov (United States)

    Dennehy, John J

    2017-02-01

    The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.

  4. Origins of evolutionary transitions

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... ... of events: 'Entities that were capable of independent replication ... There have been many major evolutionary events that this definition of .... selection at level x to exclusive selection at x – will probably require a multiplicity ...

  5. Evolutionary relationships among Astroviridae

    NARCIS (Netherlands)

    Lukashov, Vladimir V.; Goudsmit, Jaap

    2002-01-01

    To study the evolutionary relationships among astroviruses, all available sequences for members of the family Astroviridae were collected. Phylogenetic analysis distinguished two deep-rooted groups: one comprising mammalian astroviruses, with ovine astrovirus being an outlier, and the other

  6. Evolutionary Multiplayer Games

    OpenAIRE

    Gokhale, Chaitanya S.; Traulsen, Arne

    2014-01-01

    Evolutionary game theory has become one of the most diverse and far reaching theories in biology. Applications of this theory range from cell dynamics to social evolution. However, many applications make it clear that inherent non-linearities of natural systems need to be taken into account. One way of introducing such non-linearities into evolutionary games is by the inclusion of multiple players. An example is of social dilemmas, where group benefits could e.g.\\ increase less than linear wi...

  7. Comparative Genomics of the Sigatoka Disease Complex on Banana Suggests a Link between Parallel Evolutionary Changes in Pseudocercospora fijiensis and Pseudocercospora eumusae and Increased Virulence on the Banana Host

    NARCIS (Netherlands)

    Chang, Ti-Cheng; Salvucci, Anthony; Crous, Pedro W.; Stergiopoulos, Ioannis

    2016-01-01

    Understanding the evolutionary and genomic changes involved in the emergence of new pathogens and shifts in virulence spectra is vital for deciphering the biological process of disease emergence and for designing new and effective disease control methods. In this study, we employed comparative

  8. Archaeological sites along the Gujarat coast: Proxies to decipher the past shoreline

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Gaur, A; Sundaresh

    on northwestern Saurashtra coast presents a classical case of shoreline shift in recent past. The paper discusses the archaeological evidences to decipher the past shoreline of the Saurashtra region...

  9. The Evolutionary Puzzle of Suicide

    Directory of Open Access Journals (Sweden)

    Henri-Jean Aubin

    2013-12-01

    Full Text Available Mechanisms of self-destruction are difficult to reconcile with evolution’s first rule of thumb: survive and reproduce. However, evolutionary success ultimately depends on inclusive fitness. The altruistic suicide hypothesis posits that the presence of low reproductive potential and burdensomeness toward kin can increase the inclusive fitness payoff of self-removal. The bargaining hypothesis assumes that suicide attempts could function as an honest signal of need. The payoff may be positive if the suicidal person has a low reproductive potential. The parasite manipulation hypothesis is founded on the rodent—Toxoplasma gondii host-parasite model, in which the parasite induces a “suicidal” feline attraction that allows the parasite to complete its life cycle. Interestingly, latent infection by T. gondii has been shown to cause behavioral alterations in humans, including increased suicide attempts. Finally, we discuss how suicide risk factors can be understood as nonadaptive byproducts of evolved mechanisms that malfunction. Although most of the mechanisms proposed in this article are largely speculative, the hypotheses that we raise accept self-destructive behavior within the framework of evolutionary theory.

  10. On the evolutionary arms-race between Utetheisa ornatrix moth and its Florida host, Crotalaria pumila: chemical attraction, and mechanical defense

    Science.gov (United States)

    While Utetheisa ornatrix larvae are able to develop through feeding only on foliage of its hostplants in the genus Crotalaria, in later instars they are attracted to seeds as a richer source of alkaloids. Recently, it was demonstrated that seeds receive different degrees of mechanical protection fro...

  11. Deciphering the Astrocyte Reaction in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Beatriz G. Perez-Nievas

    2018-04-01

    Full Text Available Reactive astrocytes were identified as a component of senile amyloid plaques in the cortex of Alzheimer’s disease (AD patients several decades ago. However, their role in AD pathophysiology has remained elusive ever since, in part owing to the extrapolation of the literature from primary astrocyte cultures and acute brain injury models to a chronic neurodegenerative scenario. Recent accumulating evidence supports the idea that reactive astrocytes in AD acquire neurotoxic properties, likely due to both a gain of toxic function and a loss of their neurotrophic effects. However, the diversity and complexity of this glial cell is only beginning to be unveiled, anticipating that astrocyte reaction might be heterogeneous as well. Herein we review the evidence from mouse models of AD and human neuropathological studies and attempt to decipher the main conundrums that astrocytes pose to our understanding of AD development and progression. We discuss the morphological features that characterize astrocyte reaction in the AD brain, the consequences of astrocyte reaction for both astrocyte biology and AD pathological hallmarks, and the molecular pathways that have been implicated in this reaction.

  12. Deciphering fluid inclusions in high-grade rocks

    Directory of Open Access Journals (Sweden)

    Alfons van den Kerkhof

    2014-09-01

    Full Text Available The study of fluid inclusions in high-grade rocks is especially challenging as the host minerals have been normally subjected to deformation, recrystallization and fluid-rock interaction so that primary inclusions, formed at the peak of metamorphism are rare. The larger part of the fluid inclusions found in metamorphic minerals is typically modified during uplift. These late processes may strongly disguise the characteristics of the “original” peak metamorphic fluid. A detailed microstructural analysis of the host minerals, notably quartz, is therefore indispensable for a proper interpretation of fluid inclusions. Cathodoluminescence (CL techniques combined with trace element analysis of quartz (EPMA, LA-ICPMS have shown to be very helpful in deciphering the rock-fluid evolution. Whereas high-grade metamorphic quartz may have relatively high contents of trace elements like Ti and Al, low-temperature re-equilibrated quartz typically shows reduced trace element concentrations. The resulting microstructures in CL can be basically distinguished in diffusion patterns (along microfractures and grain boundaries, and secondary quartz formed by dissolution-reprecipitation. Most of these textures are formed during retrograde fluid-controlled processes between ca. 220 and 500 °C, i.e. the range of semi-brittle deformation (greenschist-facies and can be correlated with the fluid inclusions. In this way modified and re-trapped fluids can be identified, even when there are no optical features observed under the microscope.

  13. Deciphering the landscape of host barriers to Listeria monocytogenes infection.

    Science.gov (United States)

    Zhang, Ting; Abel, Sören; Abel Zur Wiesch, Pia; Sasabe, Jumpei; Davis, Brigid M; Higgins, Darren E; Waldor, Matthew K

    2017-06-13

    Listeria monocytogenes is a common food-borne pathogen that can disseminate from the intestine and infect multiple organs. Here, we used sequence tag-based analysis of microbial populations (STAMP) to investigate L monocytogenes population dynamics during infection. We created a genetically barcoded library of murinized L monocytogenes and then used deep sequencing to track the pathogen's dissemination routes and quantify its founding population ( N b ) sizes in different organs. We found that the pathogen disseminates from the gastrointestinal tract to distal sites through multiple independent routes and that N b sizes vary greatly among tissues, indicative of diverse host barriers to infection. Unexpectedly, comparative analyses of sequence tags revealed that fecally excreted organisms are largely derived from the very small number of L. monocytogenes cells that colonize the gallbladder. Immune depletion studies suggest that distinct innate immune cells restrict the pathogen's capacity to establish replicative niches in the spleen and liver. Finally, studies in germ-free mice suggest that the microbiota plays a critical role in the development of the splenic, but not the hepatic, barriers that prevent L. monocytogenes from seeding these organs. Collectively, these observations illustrate the potency of the STAMP approach to decipher the impact of host factors on population dynamics of pathogens during infection.

  14. Applying evolutionary anthropology.

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.

  15. Applying Evolutionary Anthropology

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  16. Archaeogenetics in evolutionary medicine.

    Science.gov (United States)

    Bouwman, Abigail; Rühli, Frank

    2016-09-01

    Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.

  17. Towards unified characterization of cooperation mechanisms. Comment on "Universal scaling for the dilemma strength in evolutionary games" by Z. Wang et al.

    Science.gov (United States)

    Han, The Anh

    2015-09-01

    "I will jump into the river to save two brothers or eight cousins": This famous quote by J.B.S. Haldane accurately anticipates the conditions under which cooperation is the favorable choice in an interaction between genetic relatives. The general condition can later be formulated as a surprisingly simple mathematical expression, known as the Hamilton's rule, stating that natural selection favors cooperation if the genetic relatedness (r) between the donor and the recipient of a cooperative act is greater than its cost (c) to benefit (b) ratio [1]: r > c / b. Motivated by Hamilton's elegant early studies, researchers have attempted to find simple and concise rules that characterize the conditions for cooperation to be selected under various social viscosity [2,3]. For example, the seminal work by M. Nowak [3] in 2006 shows that similarly simple rules can be derived that govern each of the other four popular mechanisms of cooperation-direct reciprocity, indirect reciprocity, group selection and network reciprocity-, which can be expressed via the cost-to-benefit ratio being smaller than some critical value associated with the mechanism at work (as seen, for kin interactions, the critical value is relatedness). However, these rules are restricted to the donor and recipient (D&R) paradigm. The question is thus whether it is possible to obtain simple rules even for the general case? The answer is not trivial as a general two-player game is described by four independent parameters, not just two as in the D&R game.

  18. The race to decipher the top secrets of TOP mRNAs.

    Science.gov (United States)

    Meyuhas, Oded; Kahan, Tamar

    2015-07-01

    Cells encountering hostile growth conditions, like those residing in the middle of a newly developing solid tumor, conserve resources and energy by downregulating protein synthesis. One mechanism in this response is the translational repression of multiple mRNAs that encode components of the translational apparatus. This coordinated translational control is carried through a common cis-regulatory element, the 5' Terminal OligoPyrimidine motif (5'TOP), after which these mRNAs are referred to as TOP mRNAs. Subsequent to the initial structural and functional characterization of members of this family, the research of TOP mRNAs has progressed in three major directions: a) delineating the landscape of the family; b) establishing the pathways that transduce stress cues into selective translational repression; and c) attempting to decipher the most proximal trans-acting factor(s) and defining its mode of action--a repressor or activator. The present chapter critically reviews the development in these three avenues of research with a special emphasis on the two "top secrets" of the TOP mRNA family: the scope of its members and the identity of the proximal cellular regulator(s). This article is part of a Special Issue entitled: Translation and Cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Deciphering Corporate Governance and Environmental Commitments among Southeast Asian Transnationals: Uptake of Sustainability Certification

    Directory of Open Access Journals (Sweden)

    Jean-Marc Roda

    2015-04-01

    Full Text Available Promoting tropical forest sustainability among corporate players is a major challenge. Many tools have been developed, but without much success. Southeast Asia has become a laboratory of globalization processes, where the development and success of agribusiness transnationals raises questions about their commitment to environmental concerns. An abundance of literature discusses what determines the behavior of Asian corporations, with a particular emphasis on cultural factors. Our hypothesis is that financial factors, such as ownership structure, may also have a fundamental role. We analyzed the audited accounts of four major Asian agribusiness transnationals. Using network analysis, we deciphered how the 931 companies relate to each other and determine the behavior of the transnationals to which they belong. We compared various metrics with the environmental commitment of these transnationals. We found that ownership structures reflect differences in flexibility, control and transaction costs, but not in ethnicities. Capital and its control, ownership structure, and flexibility explain 97% of the environmental behavior. It means that existing market-based tools to promote environmental sustainability do not engage transnationals at the scale where most of their behavior is determined. For the first time, the inner mechanisms of corporate governance are unraveled in agricultural and forest sustainability. New implications such as the convergence of environmental sustainability with family business sustainability emerged.

  20. A Double Evolutionary Pool Memetic Algorithm for Examination Timetabling Problems

    Directory of Open Access Journals (Sweden)

    Yu Lei

    2014-01-01

    Full Text Available A double evolutionary pool memetic algorithm is proposed to solve the examination timetabling problem. To improve the performance of the proposed algorithm, two evolutionary pools, that is, the main evolutionary pool and the secondary evolutionary pool, are employed. The genetic operators have been specially designed to fit the examination timetabling problem. A simplified version of the simulated annealing strategy is designed to speed the convergence of the algorithm. A clonal mechanism is introduced to preserve population diversity. Extensive experiments carried out on 12 benchmark examination timetabling instances show that the proposed algorithm is able to produce promising results for the uncapacitated examination timetabling problem.

  1. Evolutionary Statistical Procedures

    CERN Document Server

    Baragona, Roberto; Poli, Irene

    2011-01-01

    This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a

  2. Deciphering the porcine intestinal microRNA transcriptome

    Directory of Open Access Journals (Sweden)

    Keller Andreas

    2010-04-01

    Full Text Available Abstract Background While more than 700 microRNAs (miRNAs are known in human, a comparably low number has been identified in swine. Because of the close phylogenetic distance to humans, pigs serve as a suitable model for studying e.g. intestinal development or disease. Recent studies indicate that miRNAs are key regulators of intestinal development and their aberrant expression leads to intestinal malignancy. Results Here, we present the identification of hundreds of apparently novel miRNAs in the porcine intestine. MiRNAs were first identified by means of deep sequencing followed by miRNA precursor prediction using the miRDeep algorithm as well as searching for conserved miRNAs. Second, the porcine miRNAome along the entire intestine (duodenum, proximal and distal jejunum, ileum, ascending and transverse colon was unraveled using customized miRNA microarrays based on the identified sequences as well as known porcine and human ones. In total, the expression of 332 intestinal miRNAs was discovered, of which 201 represented assumed novel porcine miRNAs. The identified hairpin forming precursors were in part organized in genomic clusters, and most of the precursors were located on chromosomes 3 and 1, respectively. Hierarchical clustering of the expression data revealed subsets of miRNAs that are specific to distinct parts of the intestine pointing to their impact on cellular signaling networks. Conclusions In this study, we have applied a straight forward approach to decipher the porcine intestinal miRNAome for the first time in mammals using a piglet model. The high number of identified novel miRNAs in the porcine intestine points out their crucial role in intestinal function as shown by pathway analysis. On the other hand, the reported miRNAs may share orthologs in other mammals such as human still to be discovered.

  3. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    Science.gov (United States)

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  4. The Use of Animal Models to Decipher Physiological and Neurobiological Alterations of Anorexia Nervosa Patients

    Science.gov (United States)

    Méquinion, Mathieu; Chauveau, Christophe; Viltart, Odile

    2015-01-01

    Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa. PMID:26042085

  5. Evolutionary dynamics of complex communications networks

    CERN Document Server

    Karyotis, Vasileios; Papavassiliou, Symeon

    2013-01-01

    Until recently, most network design techniques employed a bottom-up approach with lower protocol layer mechanisms affecting the development of higher ones. This approach, however, has not yielded fascinating results in the case of wireless distributed networks. Addressing the emerging aspects of modern network analysis and design, Evolutionary Dynamics of Complex Communications Networks introduces and develops a top-bottom approach where elements of the higher layer can be exploited in modifying the lowest physical topology-closing the network design loop in an evolutionary fashion similar to

  6. Evolutionary trends in Heteroptera

    NARCIS (Netherlands)

    Cobben, R.H.

    1968-01-01

    1. This work, the first volume of a series dealing with evolutionary trends in Heteroptera, is concerned with the egg system of about 400 species. The data are presented systematically in chapters 1 and 2 with a critical review of the literature after each family.

    2. Chapter 3 evaluates facts

  7. Evolutionary mysteries in meiosis

    NARCIS (Netherlands)

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E.; Wijnker, Erik; Haag, Christoph R.

    2016-01-01

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these

  8. Applications of Evolutionary Computation

    NARCIS (Netherlands)

    Mora, Antonio M.; Squillero, Giovanni; Di Chio, C; Agapitos, Alexandros; Cagnoni, Stefano; Cotta, Carlos; Fernández De Vega, F; Di Caro, G A; Drechsler, R.; Ekárt, A; Esparcia-Alcázar, Anna I.; Farooq, M; Langdon, W B; Merelo-Guervós, J.J.; Preuss, M; Richter, O.-M.H.; Silva, Sara; Sim$\\$~oes, A; Squillero, Giovanni; Tarantino, Ernesto; Tettamanzi, Andrea G B; Togelius, J; Urquhart, Neil; Uyar, A S; Yannakakis, G N; Smith, Stephen L; Caserta, Marco; Ramirez, Adriana; Voß, Stefan; Squillero, Giovanni; Burelli, Paolo; Mora, Antonio M.; Squillero, Giovanni; Jan, Mathieu; Matthias, M; Di Chio, C; Agapitos, Alexandros; Cagnoni, Stefano; Cotta, Carlos; Fernández De Vega, F; Di Caro, G A; Drechsler, R.; Ekárt, A; Esparcia-Alcázar, Anna I.; Farooq, M; Langdon, W B; Merelo-Guervós, J.J.; Preuss, M; Richter, O.-M.H.; Silva, Sara; Sim$\\$~oes, A; Squillero, Giovanni; Tarantino, Ernesto; Tettamanzi, Andrea G B; Togelius, J; Urquhart, Neil; Uyar, A S; Yannakakis, G N; Caserta, Marco; Ramirez, Adriana; Voß, Stefan; Squillero, Giovanni; Burelli, Paolo; Esparcia-Alcazar, Anna I; Silva, Sara; Agapitos, Alexandros; Cotta, Carlos; De Falco, Ivanoe; Cioppa, Antonio Della; Diwold, Konrad; Ekart, Aniko; Tarantino, Ernesto; Vega, Francisco Fernandez De; Burelli, Paolo; Sim, Kevin; Cagnoni, Stefano; Simoes, Anabela; Merelo, J.J.; Urquhart, Neil; Haasdijk, Evert; Zhang, Mengjie; Squillero, Giovanni; Eiben, A E; Tettamanzi, Andrea G B; Glette, Kyrre; Rohlfshagen, Philipp; Schaefer, Robert; Caserta, Marco; Ramirez, Adriana; Voß, Stefan

    2015-01-01

    The application of genetic and evolutionary computation to problems in medicine has increased rapidly over the past five years, but there are specific issues and challenges that distinguish it from other real-world applications. Obtaining reliable and coherent patient data, establishing the clinical

  9. Evolutionary perspectives on ageing.

    Science.gov (United States)

    Reichard, Martin

    2017-10-01

    From an evolutionary perspective, ageing is a decrease in fitness with chronological age - expressed by an increase in mortality risk and/or decline in reproductive success and mediated by deterioration of functional performance. While this makes ageing intuitively paradoxical - detrimental to individual fitness - evolutionary theory offers answers as to why ageing has evolved. In this review, I first briefly examine the classic evolutionary theories of ageing and their empirical tests, and highlight recent findings that have advanced our understanding of the evolution of ageing (condition-dependent survival, positive pleiotropy). I then provide an overview of recent theoretical extensions and modifications that accommodate those new discoveries. I discuss the role of indeterminate (asymptotic) growth for lifetime increases in fecundity and ageing trajectories. I outline alternative views that challenge a universal existence of senescence - namely the lack of a germ-soma distinction and the ability of tissue replacement and retrogression to younger developmental stages in modular organisms. I argue that rejuvenation at the organismal level is plausible, but includes a return to a simple developmental stage. This may exempt a particular genotype from somatic defects but, correspondingly, removes any information acquired during development. A resolution of the question of whether a rejuvenated individual is the same entity is central to the recognition of whether current evolutionary theories of ageing, with their extensions and modifications, can explain the patterns of ageing across the Tree of Life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Editorial overview: Evolutionary psychology

    NARCIS (Netherlands)

    Gangestad, S.W.; Tybur, J.M.

    2016-01-01

    Functional approaches in psychology - which ask what behavior is good for - are almost as old as scientific psychology itself. Yet sophisticated, generative functional theories were not possible until developments in evolutionary biology in the mid-20th century. Arising in the last three decades,

  11. Biochemistry and evolutionary biology

    Indian Academy of Sciences (India)

    Biochemical information has been crucial for the development of evolutionary biology. On the one hand, the sequence information now appearing is producing a huge increase in the amount of data available for phylogenetic analysis; on the other hand, and perhaps more fundamentally, it allows understanding of the ...

  12. Evolutionary Biology Today

    Indian Academy of Sciences (India)

    Hindi and English. Port 1. Resonance, Vo1.7 ... they use. Of course, many evolutionary biologists do work with fossils or DNA, or both, but there are also large numbers of ... The first major division that I like to make is between studies focussed ...

  13. Learning: An Evolutionary Analysis

    Science.gov (United States)

    Swann, Joanna

    2009-01-01

    This paper draws on the philosophy of Karl Popper to present a descriptive evolutionary epistemology that offers philosophical solutions to the following related problems: "What happens when learning takes place?" and "What happens in human learning?" It provides a detailed analysis of how learning takes place without any direct transfer of…

  14. Complex systems, evolutionary planning?

    NARCIS (Netherlands)

    Bertolini, L.; de Roo, G.; Silva, E.A.

    2010-01-01

    Coping with uncertainty is a defining challenge for spatial planners. Accordingly, most spatial planning theories and methods are aimed at reducing uncertainty. However, the question is what should be done when this seems impossible? This chapter proposes an evolutionary interpretation of spatial

  15. Molluscan Evolutionary Development

    DEFF Research Database (Denmark)

    Wanninger, Andreas Wilhelm Georg; Koop, Damien; Moshel-Lynch, Sharon

    2008-01-01

    Brought together by Winston F. Ponder and David R. Lindberg, thirty-six experts on the evolution of the Mollusca provide an up-to-date review of its evolutionary history. The Mollusca are the second largest animal phylum and boast a fossil record of over 540 million years. They exhibit remarkable...

  16. The evolutionary implications of epigenetic inheritance.

    Science.gov (United States)

    Jablonka, Eva

    2017-10-06

    The Modern Evolutionary Synthesis (MS) forged in the mid-twentieth century was built on a notion of heredity that excluded soft inheritance, the inheritance of the effects of developmental modifications. However, the discovery of molecular mechanisms that generate random and developmentally induced epigenetic variations is leading to a broadening of the notion of biological heredity that has consequences for ideas about evolution. After presenting some old challenges to the MS that were raised, among others, by Karl Popper, I discuss recent research on epigenetic inheritance, which provides experimental and theoretical support for these challenges. There is now good evidence that epigenetic inheritance is ubiquitous and is involved in adaptive evolution and macroevolution. I argue that the many evolutionary consequences of epigenetic inheritance open up new research areas and require the extension of the evolutionary synthesis beyond the current neo-Darwinian model.

  17. Evolutionary genomics and HIV restriction factors.

    Science.gov (United States)

    Pyndiah, Nitisha; Telenti, Amalio; Rausell, Antonio

    2015-03-01

    To provide updated insights into innate antiviral immunity and highlight prototypical evolutionary features of well characterized HIV restriction factors. Recently, a new HIV restriction factor, Myxovirus resistance 2, has been discovered and the region/residue responsible for its activity identified using an evolutionary approach. Furthermore, IFI16, an innate immunity protein known to sense several viruses, has been shown to contribute to the defense to HIV-1 by causing cell death upon sensing HIV-1 DNA. Restriction factors against HIV show characteristic signatures of positive selection. Different patterns of accelerated sequence evolution can distinguish antiviral strategies--offense or defence--as well as the level of specificity of the antiviral properties. Sequence analysis of primate orthologs of restriction factors serves to localize functional domains and sites responsible for antiviral action. We use recent discoveries to illustrate how evolutionary genomic analyses help identify new antiviral genes and their mechanisms of action.

  18. Reading Hidden Messages Through Deciphered Manual Alphabets on Classic Artwork

    Science.gov (United States)

    Castronovo, Joseph Anthony, Jr.

    1998-10-01

    Decipherment is the tool used to uncover several types of hand signs that played vital roles in the creation of hidden messages in classic artwork. A 3,100 B.C. bas-relief of The 'Kaph' Telescope, formerly named The Narmer Palette, and Michaelangelo Buonarrotte's Battle of Cascina of 1506 were two key works of art that show certain similarities even though separated by 4,500 years. It is evident that Renaissance humanists provided artists with certain knowledge of the ancients. Results of incorporating a number of minor works of art showed that the competence of ancient Egyptians, Cretans and Australian Aboriginals, to name a few, as astronomers, was underestimated. Some deciphered Indus seals attested to a global understanding of the universe, with Gemini and the star of Thuban at the center of their attention. Certain forms of secrecy had to be undertaken for various reasons throughout the millennia. Three examples are: (1) In Italy, to keep controversial and truthful teachings discreet and hidden, artists embedded them in artwork long before the plight of Galileo Galilei and his discoveries. (2) Among Jewish Kabbalists, a well-known design was obscured in The Arnolfini Wedding painting for fear it would be lost due to persecution. (3) Michaelangelo Buonarrotte indicated several meanings through the hands of The Statue of Moses. They were overlooked by several societies, including the gesticulating culture of Italy, because they oppressed the value of signed languages. Spatial decipherment may testify to a need for the restoration of a spatial writing system for expanded linguistic accessibility. A 21st century model community for sign language residents and employees will benefit visual learners, particularly visual artists and non-phonetic decipherers, to better uncover, understand and perhaps use ancient hand forms to restore ancient knowledge. Moreover, the National Association of Teaching English (NATE) has recently endorsed the addition of two skills

  19. Introduction to Evolutionary Algorithms

    CERN Document Server

    Yu, Xinjie

    2010-01-01

    Evolutionary algorithms (EAs) are becoming increasingly attractive for researchers from various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science, economics, etc. This book presents an insightful, comprehensive, and up-to-date treatment of EAs, such as genetic algorithms, differential evolution, evolution strategy, constraint optimization, multimodal optimization, multiobjective optimization, combinatorial optimization, evolvable hardware, estimation of distribution algorithms, ant colony optimization, particle swarm opti

  20. Evolutionary games on graphs

    Science.gov (United States)

    Szabó, György; Fáth, Gábor

    2007-07-01

    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

  1. Evolutionary mysteries in meiosis.

    Science.gov (United States)

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E; Wijnker, Erik; Haag, Christoph R

    2016-10-19

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  2. Asymmetric Evolutionary Games

    Science.gov (United States)

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  3. Evolutionary dynamics of incubation periods.

    Science.gov (United States)

    Ottino-Loffler, Bertrand; Scott, Jacob G; Strogatz, Steven H

    2017-12-21

    The incubation period for typhoid, polio, measles, leukemia and many other diseases follows a right-skewed, approximately lognormal distribution. Although this pattern was discovered more than sixty years ago, it remains an open question to explain its ubiquity. Here, we propose an explanation based on evolutionary dynamics on graphs. For simple models of a mutant or pathogen invading a network-structured population of healthy cells, we show that skewed distributions of incubation periods emerge for a wide range of assumptions about invader fitness, competition dynamics, and network structure. The skewness stems from stochastic mechanisms associated with two classic problems in probability theory: the coupon collector and the random walk. Unlike previous explanations that rely crucially on heterogeneity, our results hold even for homogeneous populations. Thus, we predict that two equally healthy individuals subjected to equal doses of equally pathogenic agents may, by chance alone, show remarkably different time courses of disease.

  4. Evolutionary adaptations to dietary changes.

    Science.gov (United States)

    Luca, F; Perry, G H; Di Rienzo, A

    2010-08-21

    Through cultural innovation and changes in habitat and ecology, there have been a number of major dietary shifts in human evolution, including meat eating, cooking, and those associated with plant and animal domestication. The identification of signatures of adaptations to such dietary changes in the genome of extant primates (including humans) may shed light not only on the evolutionary history of our species, but also on the mechanisms that underlie common metabolic diseases in modern human populations. In this review, we provide a brief overview of the major dietary shifts that occurred during hominin evolution, and we discuss the methods and approaches used to identify signals of natural selection in patterns of sequence variation. We then review the results of studies aimed at detecting the genetic loci that played a major role in dietary adaptations and conclude by outlining the potential of future studies in this area.

  5. Deciphering effects of functional groups and electron density on azo dyes degradation by graphene loaded TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian [College of Chemical Engineering, HuaQiao University, Xiamen 361021 (China); Liang, Xiao [School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Chen, Bor-Yann [Department of Chemical and Materials Engineering, National I-Lan University, 26047, Taiwan (China); Chang, Chang-Tang, E-mail: ctchang@niu.edu.tw [Department of Environmental Engineering, National I-Lan University, 26047, Taiwan (China)

    2015-12-01

    Highlights: • The degradation pathways of RB5, RB171 and RR198 have been identified. • The favorable bond to be broken under photo degradation was deciphered in this research. • The breakages of the bonds were due to the electron density changes around the bonds. • The hydroxyl radicals as the main oxidized species were confirmed by positive hole trapper and ESR. - Abstract: This study tended to decipher the mechanism of photo degradation of azo dyes, which bond was favorable to be broken for application of wastewater decolorization. That is, from chemical structure perspective, the critical substituents to affect electron donor/acceptor for dye degradation would be identified in this research. The model reactive blacks (RB5), reactive blue 171 (RB171) and reactive red 198 (RR198) were degraded by graphene loaded TiO{sub 2}, indicating how the electron withdrawing and releasing groups affect azo dye degradability. The byproducts and intermediate products were analyzed by ultraviolet–visible spectroscopy (UV–vis), gas chromatography–mass spectrometry (GC–MS) and ion chromatography (IC). Furthermore, the radicals involved in the reaction were found by electron paramagnetic resonance (ESR) to confirm the main oxidized species of hydroxyl radicals rather than the light generated positive holes. The finding revealed that the breakages of the bonds were due to the electron density changes around the bonds. This principle can be applicable not only for RB5 degradation, but also for reactive blue 171 (RB171), reactive red 198 (RR198) and some other textile dyes.

  6. The First Joke: Exploring the Evolutionary Origins of Humor

    Directory of Open Access Journals (Sweden)

    Joseph Polimeni

    2006-01-01

    Full Text Available Humor is a complex cognitive function which often leads to laughter. Contemporary humor theorists have begun to formulate hypotheses outlining the possible innate cognitive structures underlying humor. Humor's conspicuous presence in the behavioral repertoire of humankind invites adaptive explanations. This article explores the possible adaptive features of humor and ponders its evolutionary path through hominid history. Current humor theories and previous evolutionary ideas on humor are reviewed. In addition, scientific fields germane to the evolutionary study of humor are examined: animal models, genetics, children's humor, humor in pathological conditions, neurobiology, humor in traditional societies and cognitive archeology. Candidate selection pressures and associated evolutionary mechanisms are considered. The authors conclude that several evolutionary-related topics such as the origins of language, cognition underlying spiritual feelings, hominid group size, and primate teasing could have special relevance to the origins of humor.

  7. Expanding Evolutionary Theory beyond Darwinism with Elaborating, Self-Organizing, and Fractionating Complex Evolutionary Systems

    Science.gov (United States)

    Fichter, Lynn S.; Pyle, E. J.; Whitmeyer, S. J.

    2010-01-01

    Earth systems increase in complexity, diversity, and interconnectedness with time, driven by tectonic/solar energy that keeps the systems far from equilibrium. The evolution of Earth systems is facilitated by three evolutionary mechanisms: "elaboration," "fractionation," and "self-organization," that share…

  8. Studies in evolutionary agroecology

    DEFF Research Database (Denmark)

    Wille, Wibke

    of population performance will increase in frequency. Yield, one of the fundamental agronomic variables, is not an individual, but a population characteristic. A farmer wants a high yield per hectare; he is not interested in the performance of individual plants. When individual selection and population...... of Evolutionary Agroecology that the highest yielding individuals do not necessarily perform best as a population. The investment of resources into strategies and structures increasing individual competitive ability carries a cost. If a whole population consists of individuals investing resources to compete...

  9. Towards Adaptive Evolutionary Architecture

    DEFF Research Database (Denmark)

    Bak, Sebastian HOlt; Rask, Nina; Risi, Sebastian

    2016-01-01

    This paper presents first results from an interdisciplinary project, in which the fields of architecture, philosophy and artificial life are combined to explore possible futures of architecture. Through an interactive evolutionary installation, called EvoCurtain, we investigate aspects of how...... to the development of designs tailored to the individual preferences of inhabitants, changing the roles of architects and designers entirely. Architecture-as-it-could-be is a philosophical approach conducted through artistic methods to anticipate the technological futures of human-centered development within...

  10. Deciphering the Swine-Flu Pandemics of 1918 and 2009

    Science.gov (United States)

    Goldstein, Richard; Dos Reis, Mario; Tamuri, Asif; Hay, Alan

    The devastating "Spanish flu" of 1918 killed an estimated 50 million people worldwide, ranking it as the deadliest pandemic in recorded human history. It is generally believed that the virus transferred from birds directly to humans shortly before the start of the pandemic, subsequently jumping from humans to swine. By developing 'non-homogeneous' substitution models that consider that substitution patterns may be different in human, avian, and swine hosts, we can determine the timing of the host shift to mammals. We find it likely that the Spanish flu of 1918, like the current 2009 pandemic, was a 'swine-origin' influenza virus. Now that we are faced with a new pandemic, can we understand how influenza is able to change hosts? Again by modelling the evolutionary process, considering the different selective constraints for viruses in the different hosts, we can identify locations that seem to be under different selective constraints in humans and avian hosts. This allows us to identify changes that may have facilitated the establishment of the 2009 swine-origin flu in humans.

  11. Biodiversity Meets Neuroscience: From the Sequencing Ship (Ship-Seq) to Deciphering Parallel Evolution of Neural Systems in Omic's Era.

    Science.gov (United States)

    Moroz, Leonid L

    2015-12-01

    The origins of neural systems and centralized brains are one of the major transitions in evolution. These events might occur more than once over 570-600 million years. The convergent evolution of neural circuits is evident from a diversity of unique adaptive strategies implemented by ctenophores, cnidarians, acoels, molluscs, and basal deuterostomes. But, further integration of biodiversity research and neuroscience is required to decipher critical events leading to development of complex integrative and cognitive functions. Here, we outline reference species and interdisciplinary approaches in reconstructing the evolution of nervous systems. In the "omic" era, it is now possible to establish fully functional genomics laboratories aboard of oceanic ships and perform sequencing and real-time analyses of data at any oceanic location (named here as Ship-Seq). In doing so, fragile, rare, cryptic, and planktonic organisms, or even entire marine ecosystems, are becoming accessible directly to experimental and physiological analyses by modern analytical tools. Thus, we are now in a position to take full advantages from countless "experiments" Nature performed for us in the course of 3.5 billion years of biological evolution. Together with progress in computational and comparative genomics, evolutionary neuroscience, proteomic and developmental biology, a new surprising picture is emerging that reveals many ways of how nervous systems evolved. As a result, this symposium provides a unique opportunity to revisit old questions about the origins of biological complexity. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. Core principles of evolutionary medicine

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660

  13. Practical advantages of evolutionary computation

    Science.gov (United States)

    Fogel, David B.

    1997-10-01

    Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.

  14. Deciphering morphological variation in the braincase of caecilian amphibians (Gymnophiona).

    Science.gov (United States)

    Maddin, Hillary C

    2011-07-01

    High levels of morphological homoplasy have hindered progress in understanding morphological evolution within gymnophione lissamphibians. Stemming from the hypothesis that the braincase has the potential to yield phylogenetic information, the braincases of 27 species (23 genera) of gymnophione amphibians were examined using high-resolution micro-computed tomography and histologically prepared specimens. Morphology of the brain and its relationship to features of the braincase is described, and it is shown that eight different patterns exist in the distribution of foramina in the antotic region. The distribution of variants is congruent with molecule-based phylogeny. Additionally, all variants are shown to correspond directly to stages along developmental continua, suggesting that the evolutionary truncation of development in the antotic region at various stages has driven the evolution of morphology in this region. Attempts to correlate the observed morphology with proxies of putative heterochronic events (including those attributable to burrowing, life history, and size) fail to explain the distribution of morphology if each proxy is considered separately. Thus, it is concluded that either currently unrecognized causes of heterochrony or combinations thereof have influenced morphology in different lineages independently. These data identify clades whose morphology can now be reconsidered in light of previously unrecognized heterochronic events, thereby providing a foundation for future analyses of the evolution of morphology within Gymnophiona as a whole. Most significantly, these data confirm, for the first time in a lissamphibian group, that the braincase can preserve important phylogenetic information that is otherwise obscured in regions of the skull that experience strong influences from functional constraints. Copyright © 2011 Wiley-Liss, Inc.

  15. Natural pedagogy as evolutionary adaptation.

    Science.gov (United States)

    Csibra, Gergely; Gergely, György

    2011-04-12

    We propose that the cognitive mechanisms that enable the transmission of cultural knowledge by communication between individuals constitute a system of 'natural pedagogy' in humans, and represent an evolutionary adaptation along the hominin lineage. We discuss three kinds of arguments that support this hypothesis. First, natural pedagogy is likely to be human-specific: while social learning and communication are both widespread in non-human animals, we know of no example of social learning by communication in any other species apart from humans. Second, natural pedagogy is universal: despite the huge variability in child-rearing practices, all human cultures rely on communication to transmit to novices a variety of different types of cultural knowledge, including information about artefact kinds, conventional behaviours, arbitrary referential symbols, cognitively opaque skills and know-how embedded in means-end actions. Third, the data available on early hominin technological culture are more compatible with the assumption that natural pedagogy was an independently selected adaptive cognitive system than considering it as a by-product of some other human-specific adaptation, such as language. By providing a qualitatively new type of social learning mechanism, natural pedagogy is not only the product but also one of the sources of the rich cultural heritage of our species.

  16. Natural pedagogy as evolutionary adaptation

    Science.gov (United States)

    Csibra, Gergely; Gergely, György

    2011-01-01

    We propose that the cognitive mechanisms that enable the transmission of cultural knowledge by communication between individuals constitute a system of ‘natural pedagogy’ in humans, and represent an evolutionary adaptation along the hominin lineage. We discuss three kinds of arguments that support this hypothesis. First, natural pedagogy is likely to be human-specific: while social learning and communication are both widespread in non-human animals, we know of no example of social learning by communication in any other species apart from humans. Second, natural pedagogy is universal: despite the huge variability in child-rearing practices, all human cultures rely on communication to transmit to novices a variety of different types of cultural knowledge, including information about artefact kinds, conventional behaviours, arbitrary referential symbols, cognitively opaque skills and know-how embedded in means-end actions. Third, the data available on early hominin technological culture are more compatible with the assumption that natural pedagogy was an independently selected adaptive cognitive system than considering it as a by-product of some other human-specific adaptation, such as language. By providing a qualitatively new type of social learning mechanism, natural pedagogy is not only the product but also one of the sources of the rich cultural heritage of our species. PMID:21357237

  17. Invisible hand effect in an evolutionary minority game model

    Science.gov (United States)

    Sysi-Aho, Marko; Saramäki, Jari; Kaski, Kimmo

    2005-03-01

    In this paper, we study the properties of a minority game with evolution realized by using genetic crossover to modify fixed-length decision-making strategies of agents. Although the agents in this evolutionary game act selfishly by trying to maximize their own performances only, it turns out that the whole society will eventually be rewarded optimally. This “invisible hand” effect is what Adam Smith over two centuries ago expected to take place in the context of free market mechanism. However, this behaviour of the society of agents is realized only under idealized conditions, where all agents are utilizing the same efficient evolutionary mechanism. If on the other hand part of the agents are adaptive, but not evolutionary, the system does not reach optimum performance, which is also the case if part of the evolutionary agents form a uniformly acting “cartel”.

  18. Evolutionary design assistants for architecture

    Directory of Open Access Journals (Sweden)

    N. Onur Sönmez

    2015-04-01

    existing literature and the proposals and applications of the thesis; secondly, proposals for descriptive and prescriptive models, mappings, summary illustrations, task structures, decomposition schemes, and integratory frameworks; and finally, experimental applications of these proposals. This tripartite progression allows an evaluation of each proposal both conceptually and practically; thereby, enabling a progressive improvement of the understanding regarding the research question, while producing concrete outputs on the way. Besides theoretical and interpretative examinations, the thesis investigates its subject through a set of practical and speculative proposals, which function as both research instruments and the outputs of the study. The first main output of the study is the “design_proxy” approach (d_p, which is an integrated approach for draft making design assistants. It is an outcome of both theoretical examinations and experimental applications, and proposes an integration of, (1 flexible and relaxed task definitions and representations (instead of strict formalisms, (2 intuitive interfaces that make use of usual design media, (3 evaluation of solution proposals through their similarity to given examples, and (4 a dynamic evolutionary approach for solution generation. The design_proxy approach may be useful for AD researchers that aim at developing practical design assistants, as has been examined and demonstrated with the two applications, i.e., design_proxy.graphics and design_proxy.layout. The second main output, the “Interleaved Evolutionary Algorithm” (IEA, or Interleaved EA is a novel evolutionary algorithm proposed and used as the underlying generative mechanism of design_proxybased design assistants. The Interleaved EA is a dynamic, adaptive, and multi-objective EA, in which one of the objectives leads the evolution until its fitness progression stagnates; in the sense that the settings and fitness values of this objective is used for most

  19. Conquering the Mesoscale of Africa's Landscapes: deciphering the Genomic Record of Individuating Landforms with Geoecodynamics

    Science.gov (United States)

    Cotterill, Fenton P. D.

    2016-04-01

    Press). Equally, Africa's freshwater fish fauna stands apart in its high endemism, preponderance of highly specialized species flocks, and ancient lineages that have seeded recent radiations (Otero O 2010. Cybium 2010, 34(1): 93-113). Nevertheless, Africa's fossil record - botanical and zoological - is too patchy and incomplete to build palaeoenvironmental narratives with the precision needed to resolve details of mesoscale events in landscape dynamics (especially at timescales >10 000 yr). Ideally, the biological evidence we seek to resolve a high fidelity narrative of landscape dynamics must extend back into the Cenozoic, and quantify turnovers of individual species on respective landforms. Births, deaths and tenures of species are its core currencies. The genomic record holds this evidence in its evolutionary archives, and we can read these signatures in the DNA of living organisms. This interdisciplinary approach exploits patterns of DNA variation in living organisms to reconstruct evolutionary events in landscape history at the mesoscale. Coupling the technological advances in 21st century molecular biology (especially genomics) with key tenets of ecological theory, we can exploit the remarkable variety of evolutionary signals preserved in the extant biodiversity of a landscape. Deciphering the genomic record, Geoecodynamics exploits the fidelity of individual species to their respective habitats; where the biota has persisted within/on encompassing landforms. This spatial resolution is determined principally by the degree of niche conservatism that has acted to lock the species into finite ecophysiological boundaries in the landscape. These ecophysiological envelopes of species can be mapped and modelled in a GIS framework, using variables familiar to geomorphologists: including altitude, surface roughness, lithology, and especially drainage attributes (stream topology and limnological variables). Geoecodynamics studies terrestrial and aquatic species as

  20. Spore: Spawning Evolutionary Misconceptions?

    Science.gov (United States)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  1. Evolutionary games under incompetence.

    Science.gov (United States)

    Kleshnina, Maria; Filar, Jerzy A; Ejov, Vladimir; McKerral, Jody C

    2018-02-26

    The adaptation process of a species to a new environment is a significant area of study in biology. As part of natural selection, adaptation is a mutation process which improves survival skills and reproductive functions of species. Here, we investigate this process by combining the idea of incompetence with evolutionary game theory. In the sense of evolution, incompetence and training can be interpreted as a special learning process. With focus on the social side of the problem, we analyze the influence of incompetence on behavior of species. We introduce an incompetence parameter into a learning function in a single-population game and analyze its effect on the outcome of the replicator dynamics. Incompetence can change the outcome of the game and its dynamics, indicating its significance within what are inherently imperfect natural systems.

  2. Open Issues in Evolutionary Robotics.

    Science.gov (United States)

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  3. Evolutionary economics and industry location

    NARCIS (Netherlands)

    Boschma, R.A.; Frenken, K.

    2003-01-01

    This paper aims to provide the outlines of an evolutionary economic geography of industry location. We discuss two evolutionary explanations of industry location, that is, one that concentrates on spin-offs, and one that focuses attention on knowledge and agglomeration economies. We claim that both

  4. Contemporary issues in evolutionary biology

    Indian Academy of Sciences (India)

    We are delighted to bring to the readers, a set of peer-reviewed papers on evolutionary biology, published as a special issue of the Journal of Genetics. These papers emanated from ruminations upon and discussions at the Foundations of. Evolutionary Theory: the Ongoing Synthesis meeting at Coorg, India, in February ...

  5. Fixation Time for Evolutionary Graphs

    Science.gov (United States)

    Nie, Pu-Yan; Zhang, Pei-Ai

    Evolutionary graph theory (EGT) is recently proposed by Lieberman et al. in 2005. EGT is successful for explaining biological evolution and some social phenomena. It is extremely important to consider the time of fixation for EGT in many practical problems, including evolutionary theory and the evolution of cooperation. This study characterizes the time to asymptotically reach fixation.

  6. Applications of evolutionary economic geography

    NARCIS (Netherlands)

    Boschma, R.A.; Frenken, K.; Puranam, Krishna Kishore; Ravi Kumar Jain B., xx

    2008-01-01

    This paper is written as the first chapter of an edited volume on evolutionary economics and economic geography (Frenken, K., editor, Applied Evolutionary Economics and Economic Geography, Cheltenham: Edward Elgar, expected publication date February 2007). The paper reviews empirical applications of

  7. Toward a general evolutionary theory of oncogenesis.

    Science.gov (United States)

    Ewald, Paul W; Swain Ewald, Holly A

    2013-01-01

    We propose an evolutionary framework, the barrier theory of cancer, which is based on the distinction between barriers to oncogenesis and restraints. Barriers are defined as mechanisms that prevent oncogenesis. Restraints, which are more numerous, inhibit but do not prevent oncogenesis. Processes that compromise barriers are essential causes of cancer; those that interfere with restraints are exacerbating causes. The barrier theory is built upon the three evolutionary processes involved in oncogenesis: natural selection acting on multicellular organisms to mold barriers and restraints, natural selection acting on infectious organisms to abrogate these protective mechanisms, and oncogenic selection which is responsible for the evolution of normal cells into cancerous cells. The barrier theory is presented as a first step toward the development of a general evolutionary theory of cancer. Its attributes and implications for intervention are compared with those of other major conceptual frameworks for understanding cancer: the clonal diversification model, the stem cell theory and the hallmarks of cancer. The barrier theory emphasizes the practical value of distinguishing between essential and exacerbating causes. It also stresses the importance of determining the scope of infectious causation of cancer, because individual pathogens can be responsible for multiple essential causes in infected cells.

  8. 长期合作关系中惩罚机制的演化博弈分析%Evolutionary game analysis on punishment mechanism of long-term cooperative partnership

    Institute of Scientific and Technical Information of China (English)

    陈通; 罗晓彬; 汪勇杰

    2015-01-01

    In the public cultural PPP project management,establishing long-term cooperative partnership between construction unit and contractor will help reduce the cost of trust and acquire long-term gains.But some contractors take opportunistic be-havior by using information superiority for the pursuit of excess earnings and undermine the long-term cooperation condition. So,construction unit should take certain management tools to inhibit contractors’opportunistic behaviors.The inhibitory effect and necessity of the punishment mechanism for opportunistic behavior are investigated by establishing evolutionary game model and analyzing evolution path of the contractors’opportunistic behaviors in the long-term cooperation condition.The re-sults show that punishment mechanism does not play significant inhibitory role on the opportunistic behavior of the contractor under the condition of establishing long-term cooperative partnership in public cultural PPP projects.Based on this,construc-tion unit should fully communicate with the contractors to establish integrity and cooperation platform,and try to improve the potential long-term cooperative revenue through a variety of ways to achieve mutual benefit.%在公共文化 PPP 项目管理中,建设单位和承包商建立长期合作伙伴关系有助于降低信任成本,获得长期收益;但不排除承包商为追求超额收益,运用信息优势采取机会主义行为,破坏长期合作状态。因此,建设单位需采取一定的管理手段来抑制承包商的机会主义行为。运用演化博弈理论建立模型,分析承包商机会主义的演化路径,探讨在长期合作状态下,惩罚机制对承包商机会主义行为的抑制效果及其建立的必要性。结果表明,公共文化 PPP 项目中,在双方建立长期合作关系的前提下,惩罚机制对承包商的机会主义行为并未起到较为显著的抑制效果。基于此,建设单位应与承包商进行充分

  9. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion : A quantitative proteomics approach

    NARCIS (Netherlands)

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen|info:eu-repo/dai/nl/313939780; Cordeiro, Carlos; Heck, Albert J R|info:eu-repo/dai/nl/105189332; Santos, Romana

    2016-01-01

    Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After

  10. Deciphering the combinatorial roles of geometric, mechanical, and adhesion cues in regulation of cell spreading.

    Directory of Open Access Journals (Sweden)

    Greg M Harris

    Full Text Available Significant effort has gone towards parsing out the effects of surrounding microenvironment on macroscopic behavior of stem cells. Many of the microenvironmental cues, however, are intertwined, and thus, further studies are warranted to identify the intricate interplay among the conflicting downstream signaling pathways that ultimately guide a cell response. In this contribution, by patterning adhesive PEG (polyethylene glycol hydrogels using Dip Pen Nanolithography (DPN, we demonstrate that substrate elasticity, subcellular elasticity, ligand density, and topography ultimately define mesenchymal stem cells (MSCs spreading and shape. Physical characteristics are parsed individually with 7 kilopascal (kPa hydrogel islands leading to smaller, spindle shaped cells and 105 kPa hydrogel islands leading to larger, polygonal cell shapes. In a parallel effort, a finite element model was constructed to characterize and confirm experimental findings and aid as a predictive tool in modeling cell microenvironments. Signaling pathway inhibition studies suggested that RhoA is a key regulator of cell response to the cooperative effect of the tunable substrate variables. These results are significant for the engineering of cell-extra cellular matrix interfaces and ultimately decoupling matrix bound cues presented to cells in a tissue microenvironment for regenerative medicine.

  11. Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)

    Science.gov (United States)

    2014-10-01

    Kubo , T., Wada, T., Yamaguchi, Y., Shimizu, A. & Handa, H. Knock-down of 25 kDa subunit of cleavage factor Im inHela cells alters alternative...usage was calculated as 62normalized DDDCT. Oligonucleotides used for qRT–PCR. Cyclin D1 common forward, 59-CTGC CAGGAGCAGATCGAAG; reverse, 59...CTdeviation of either amplicon at all of the dilutions was calculated as a correction factor. d, The experiment shown in c was repeated for DICER1 and

  12. Deciphering the signaling mechanisms of the plant cell wall degradation machinery in Aspergillus oryzae

    DEFF Research Database (Denmark)

    Udatha, D. B. R. K. Gupta; Topakas, Evangelos; Salazar, Margarita Pena

    2015-01-01

    is required to rationally engineer filamentous fungi for more efficient bioconversion of different types of biomass. Results: In this study we focused on ten chemically defined inducers to drive expression of cellulases, hemicellulases and accessory enzymes in the model filamentous fungus Aspergillus oryzae....... oryzae genome were only partially explained by the chemical similarity of the enzyme inducers. Genes encoding enzymes that have attracted considerable interest such as cellobiose dehydrogenases and copper-dependent polysaccharide mono-oxygenases presented a substrate-specific induction. Several homology...... in 2360 reactions in the genome scale metabolic network of A. oryzae, was performed through a two-step molecular docking against the binding pockets of the transcription factors AoXlnR and AoAmyR. A total of six metabolites viz., sulfite (H2SO3), sulfate (SLF), uroporphyrinogen III (UPGIII), ethanolamine...

  13. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian; MacPherson, Cameron R; Essack, Magbubah; Kaur, Mandeep; Schaefer, Ulf; Suzuki, Harukazu; Hayashizaki, Yoshihide; Bajic, Vladimir B.

    2009-01-01

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  14. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian

    2009-12-10

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  15. Chemical evolutionary games.

    Science.gov (United States)

    Aristotelous, Andreas C; Durrett, Richard

    2014-05-01

    Inspired by the use of hybrid cellular automata in modeling cancer, we introduce a generalization of evolutionary games in which cells produce and absorb chemicals, and the chemical concentrations dictate the death rates of cells and their fitnesses. Our long term aim is to understand how the details of the interactions in a system with n species and m chemicals translate into the qualitative behavior of the system. Here, we study two simple 2×2 games with two chemicals and revisit the two and three species versions of the one chemical colicin system studied earlier by Durrett and Levin (1997). We find that in the 2×2 examples, the behavior of our new spatial model can be predicted from that of the mean field differential equation using ideas of Durrett and Levin (1994). However, in the three species colicin model, the system with diffusion does not have the coexistence which occurs in the lattices model in which sites interact with only their nearest neighbors. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Evolutionary and developmental modules.

    Science.gov (United States)

    Lacquaniti, Francesco; Ivanenko, Yuri P; d'Avella, Andrea; Zelik, Karl E; Zago, Myrka

    2013-01-01

    The identification of biological modules at the systems level often follows top-down decomposition of a task goal, or bottom-up decomposition of multidimensional data arrays into basic elements or patterns representing shared features. These approaches traditionally have been applied to mature, fully developed systems. Here we review some results from two other perspectives on modularity, namely the developmental and evolutionary perspective. There is growing evidence that modular units of development were highly preserved and recombined during evolution. We first consider a few examples of modules well identifiable from morphology. Next we consider the more difficult issue of identifying functional developmental modules. We dwell especially on modular control of locomotion to argue that the building blocks used to construct different locomotor behaviors are similar across several animal species, presumably related to ancestral neural networks of command. A recurrent theme from comparative studies is that the developmental addition of new premotor modules underlies the postnatal acquisition and refinement of several different motor behaviors in vertebrates.

  17. Deciphering the sugar biosynthetic pathway and tailoring steps of nucleoside antibiotic A201A unveils a GDP-l-galactose mutase.

    Science.gov (United States)

    Zhu, Qinghua; Chen, Qi; Song, Yongxiang; Huang, Hongbo; Li, Jun; Ma, Junying; Li, Qinglian; Ju, Jianhua

    2017-05-09

    Galactose, a monosaccharide capable of assuming two possible configurational isomers (d-/l-), can exist as a six-membered ring, galactopyranose (Gal p ), or as a five-membered ring, galactofuranose (Gal f ). UDP-galactopyranose mutase (UGM) mediates the conversion of pyranose to furanose thereby providing a precursor for d-Gal f Moreover, UGM is critical to the virulence of numerous eukaryotic and prokaryotic human pathogens and thus represents an excellent antimicrobial drug target. However, the biosynthetic mechanism and relevant enzymes that drive l-Gal f production have not yet been characterized. Herein we report that efforts to decipher the sugar biosynthetic pathway and tailoring steps en route to nucleoside antibiotic A201A led to the discovery of a GDP-l-galactose mutase, MtdL. Systematic inactivation of 18 of the 33 biosynthetic genes in the A201A cluster and elucidation of 10 congeners, coupled with feeding and in vitro biochemical experiments, enabled us to: ( i ) decipher the unique enzyme, GDP-l-galactose mutase associated with production of two unique d-mannose-derived sugars, and ( ii ) assign two glycosyltransferases, four methyltransferases, and one desaturase that regiospecifically tailor the A201A scaffold and display relaxed substrate specificities. Taken together, these data provide important insight into the origin of l-Gal f -containing natural product biosynthetic pathways with likely ramifications in other organisms and possible antimicrobial drug targeting strategies.

  18. Industrial Applications of Evolutionary Algorithms

    CERN Document Server

    Sanchez, Ernesto; Tonda, Alberto

    2012-01-01

    This book is intended as a reference both for experienced users of evolutionary algorithms and for researchers that are beginning to approach these fascinating optimization techniques. Experienced users will find interesting details of real-world problems, and advice on solving issues related to fitness computation, modeling and setting appropriate parameters to reach optimal solutions. Beginners will find a thorough introduction to evolutionary computation, and a complete presentation of all evolutionary algorithms exploited to solve different problems. The book could fill the gap between the

  19. Evolutionary change in physiological phenotypes along the human lineage.

    Science.gov (United States)

    Vining, Alexander Q; Nunn, Charles L

    2016-01-01

    Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  20. Deciphering the iron isotope message of the human body

    Science.gov (United States)

    Walczyk, Thomas; von Blanckenburg, Friedhelm

    2005-04-01

    Mass-dependent variations in isotopic composition are known since decades for the light elements such as hydrogen, carbon or oxygen. Multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) and double-spike thermal ionization mass spectrometry (TIMS) permit us now to resolve small variations in isotopic composition even for the heavier elements such as iron. Recent studies on the iron isotopic composition of human blood and dietary iron sources have shown that lighter iron isotopes are enriched along the food chain and that each individual bears a certain iron isotopic signature in blood. To make use of this finding in biomedical research, underlying mechanisms of isotope fractionation by the human body need to be understood. In this paper available iron isotope data for biological samples are discussed within the context of isotope fractionation concepts and fundamental aspects of human iron metabolism. This includes evaluation of new data for body tissues which show that blood and muscle tissue have a similar iron isotopic composition while heavier iron isotopes are concentrated in the liver. This new observation is in agreement with our earlier hypothesis of a preferential absorption of lighter iron isotopes by the human body. Possible mechanisms for inducing an iron isotope effect at the cellular and molecular level during iron uptake are presented and the potential of iron isotope effects in human blood as a long-term measure of dietary iron absorption is discussed.

  1. EVOLUTIONARY THEORY AND THE MARKET COMPETITION

    Directory of Open Access Journals (Sweden)

    SIRGHI Nicoleta

    2014-12-01

    Full Text Available Evolutionary theory study of processes that transform economy for firms, institutions, industries, employment, production, trade and growth within, through the actions of diverse agents from experience and interactions, using evolutionary methodology. Evolutionary theory analyses the unleashing of a process of technological and institutional innovation by generating and testing a diversity of ideas which discover and accumulate more survival value for the costs incurred than competing alternatives.This paper presents study the behavior of the firms on the market used the evolutionary theory.The paper is to present in full the developments that have led to the re-assessment of theories of firms starting from the criticism on Coase's theory based on the lack of testable hypotheses and on non-operative definition of transaction costs. In the literature in the field studies on firms were allotted a secondary place for a long period of time, to date the new theories of the firm hold a dominant place in the firms’ economic analysis. In an article, published in 1937, Ronald H. Coase identified the main sources of the cost of using the market mechanism. The firms theory represent a issue intensively studied in the literature in the field, regarding the survival, competitiveness and innovation of firm on the market. The research of Nelson and Winter, “An Evolutionary Theory of Economic Change” (1982 is the starting point for a modern literature in the field which considers the approach of the theory of the firm from an evolutionary perspective. Nelson and Winter have shown that the “orthodox” theory, is objectionable primarily by the fact that the hypothesis regarding profit maximization has a normative character and is not valid in any situation. Nelson and Winter reconsidered their microeconomic analysis showing that excessive attention should not be paid to market equilibrium but rather to dynamic processes resulting from irreversible

  2. Protein 3D structure computed from evolutionary sequence variation.

    Directory of Open Access Journals (Sweden)

    Debora S Marks

    Full Text Available The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org. This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of

  3. Cryptic Genetic Variation in Evolutionary Developmental Genetics

    Directory of Open Access Journals (Sweden)

    Annalise B. Paaby

    2016-06-01

    Full Text Available Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes—processes that cannot be fully observed in continuously varying visible traits.

  4. Helminths and Cancers From the Evolutionary Perspective.

    Science.gov (United States)

    Scholte, Larissa L S; Pascoal-Xavier, Marcelo A; Nahum, Laila A

    2018-01-01

    Helminths include free-living and parasitic Platyhelminthes and Nematoda which infect millions of people worldwide. Some Platyhelminthes species of blood flukes ( Schistosoma haematobium, Schistosoma japonicum , and Schistosoma mansoni ) and liver flukes ( Clonorchis sinensis and Opisthorchis viverrini ) are known to be involved in human cancers. Other helminths are likely to be carcinogenic. Our main goals are to summarize the current knowledge of human cancers caused by Platyhelminthes, point out some helminth and human biomarkers identified so far, and highlight the potential contributions of phylogenetics and molecular evolution to cancer research. Human cancers caused by helminth infection include cholangiocarcinoma, colorectal hepatocellular carcinoma, squamous cell carcinoma, and urinary bladder cancer. Chronic inflammation is proposed as a common pathway for cancer initiation and development. Furthermore, different bacteria present in gastric, colorectal, and urogenital microbiomes might be responsible for enlarging inflammatory and fibrotic responses in cancers. Studies have suggested that different biomarkers are involved in helminth infection and human cancer development; although, the detailed mechanisms remain under debate. Different helminth proteins have been studied by different approaches. However, their evolutionary relationships remain unsolved. Here, we illustrate the strengths of homology identification and function prediction of uncharacterized proteins from genome sequencing projects based on an evolutionary framework. Together, these approaches may help identifying new biomarkers for disease diagnostics and intervention measures. This work has potential applications in the field of phylomedicine (evolutionary medicine) and may contribute to parasite and cancer research.

  5. Helminths and Cancers From the Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Larissa L. S. Scholte

    2018-04-01

    Full Text Available Helminths include free-living and parasitic Platyhelminthes and Nematoda which infect millions of people worldwide. Some Platyhelminthes species of blood flukes (Schistosoma haematobium, Schistosoma japonicum, and Schistosoma mansoni and liver flukes (Clonorchis sinensis and Opisthorchis viverrini are known to be involved in human cancers. Other helminths are likely to be carcinogenic. Our main goals are to summarize the current knowledge of human cancers caused by Platyhelminthes, point out some helminth and human biomarkers identified so far, and highlight the potential contributions of phylogenetics and molecular evolution to cancer research. Human cancers caused by helminth infection include cholangiocarcinoma, colorectal hepatocellular carcinoma, squamous cell carcinoma, and urinary bladder cancer. Chronic inflammation is proposed as a common pathway for cancer initiation and development. Furthermore, different bacteria present in gastric, colorectal, and urogenital microbiomes might be responsible for enlarging inflammatory and fibrotic responses in cancers. Studies have suggested that different biomarkers are involved in helminth infection and human cancer development; although, the detailed mechanisms remain under debate. Different helminth proteins have been studied by different approaches. However, their evolutionary relationships remain unsolved. Here, we illustrate the strengths of homology identification and function prediction of uncharacterized proteins from genome sequencing projects based on an evolutionary framework. Together, these approaches may help identifying new biomarkers for disease diagnostics and intervention measures. This work has potential applications in the field of phylomedicine (evolutionary medicine and may contribute to parasite and cancer research.

  6. Diabetes and Obesity—An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Sylvia Kirchengast

    2017-01-01

    Full Text Available Obesity and type II diabetes belong to the most serious public health challenges of the 21st century. Initially both diseases were typical of affluent societies. Currently both conditions however are increasingly found in low and middle income countries. In future obesity and diabetes are expected to reach epidemic proportions and affect developing countries to a greater extent than developed ones. A globalization of obesity and diabetes is observable. Recently prevalence rates increased, especially in Asia, the Near and Middle East, the Western Pacific region and even in Sub-Saharan Africa. Evolutionary Anthropology tries to understand the evolutionary mechanisms promoting rising obesity and diabetes type II rates. Homo sapiens evolved in an environment quite different from our recent one. Profound changes in physical activity patterns and nutritional habits during the last 10,000 years and increasingly during the last 200 years increased the risk of obesity and diabetes type II. Consequently our recent environment is called “obesogenic”. This mismatch has been recently observable among societies experiencing rapid cultural changes characterized by Westernization and modernization. This review focuses on obesity and type II diabetes from the viewpoint of evolutionary anthropology.

  7. An Evolutionary Perspective on Toxic Leadership

    Directory of Open Access Journals (Sweden)

    Lucia Ovidia VREJA

    2016-12-01

    Full Text Available Charles Darwin’s prediction from 1859, that future psychology was going to be built on principles derived from evolutionary theory came at last to be fulfilled. Nowadays, there are at least four disciplines that attempt to explain human behaviours as evolutionary adaptations (or maladaptations to the natural and/or social environment: human sociobiology, human behavioural ecology, evolutionary psychology, memetics and gene–culture coevolution theory (in our view, the most adequate of all. According to gene–culture coevolution theory, articulated language was the singular phenomenon that permitted humans to become a cultural species, and from that moment on culture become itself a selection factor. Culture means transmission of information from one generation to the next and learning from other individuals’ experiences, trough language. So, it is of critical importance to have good criteria for the selection of those individuals from whom we should learn. Yet when humans also choose their leaders from among those role-models, according to the same criteria, this mechanism can become a maladaptation and the result can be toxic leadership.

  8. Molluscan Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  9. Evolutionary computation for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Wiering, M.; van Otterlo, M.

    2012-01-01

    Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,

  10. Evolutionary genetics: the Drosophila model

    Indian Academy of Sciences (India)

    Unknown

    Evolutionary genetics straddles the two fundamental processes of life, ... of the genus Drosophila have been used extensively as model systems in experimental ... issue will prove interesting, informative and thought-provoking for both estab-.

  11. Integrating genomics into evolutionary medicine.

    Science.gov (United States)

    Rodríguez, Juan Antonio; Marigorta, Urko M; Navarro, Arcadi

    2014-12-01

    The application of the principles of evolutionary biology into medicine was suggested long ago and is already providing insight into the ultimate causes of disease. However, a full systematic integration of medical genomics and evolutionary medicine is still missing. Here, we briefly review some cases where the combination of the two fields has proven profitable and highlight two of the main issues hindering the development of evolutionary genomic medicine as a mature field, namely the dissociation between fitness and health and the still considerable difficulties in predicting phenotypes from genotypes. We use publicly available data to illustrate both problems and conclude that new approaches are needed for evolutionary genomic medicine to overcome these obstacles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Evolutionary robotics – A review

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    a need for a technique by which the robot is able to acquire new behaviours automatically .... Evolutionary robotics is a comparatively new field of robotics research, which seems to ..... Technical Report: PCIA-94-04, Institute of Psychology,.

  13. Evolutionary Game Theory: A Renaissance

    Directory of Open Access Journals (Sweden)

    Jonathan Newton

    2018-05-01

    Full Text Available Economic agents are not always rational or farsighted and can make decisions according to simple behavioral rules that vary according to situation and can be studied using the tools of evolutionary game theory. Furthermore, such behavioral rules are themselves subject to evolutionary forces. Paying particular attention to the work of young researchers, this essay surveys the progress made over the last decade towards understanding these phenomena, and discusses open research topics of importance to economics and the broader social sciences.

  14. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  15. Evolutionary modelling of transitions to sustainable development

    International Nuclear Information System (INIS)

    Safarzynska, K.

    2010-01-01

    This thesis has examined how evolutionary economics can contribute to modelling the micromechanisms that underlie transitions towards sustainable development. In general, transitions are fundamental or structural system changes. They involve, or even require, escaping lock-in of dominant, environmentally unsustainable technologies, introducing major technical or social innovations, and changing prevailing social practices and structures. Due to the complexity of socioeconomic interactions, it is not always possible to identify, and thus target with appropriate policy instruments, causes of specific unsustainable patterns of behaviour. Formal modelling exercises can help improve our understanding of the interaction of various transition mechanisms which are otherwise difficult to grasp intuitively. They allow exploring effects of policy interventions in complex systems. However, existing models of transitions focus on social phenomena and seldom address economic problems. As opposed, mainstream (neoclassical) economic models of technological change do not account for social interactions, and changing heterogeneity of users and their perspectives - even though all of these can influence the direction of innovations and patterns of socio-technological development. Evolutionary economics offers an approach that goes beyond neoclassical economics - in the sense of employing more realistic assumptions regarding the behaviour and heterogeneity of consumers, firms and investors. It can complement current transition models by providing them with a better understanding of associated economic dynamics. In this thesis, formal models were proposed to illustrate the usefulness of a range of evolutionary-economic techniques for modelling transitions. Modelling exercises aimed to explain the core properties of socio-economic systems, such as lock-in, path-dependence, coevolution, group selection and recombinant innovation. The studies collected in this dissertation illustrate that

  16. Using natural laboratories and modeling to decipher lithospheric rheology

    Science.gov (United States)

    Sobolev, Stephan

    2013-04-01

    Rheology is obviously important for geodynamic modeling but at the same time rheological parameters appear to be least constrained. Laboratory experiments give rather large ranges of rheological parameters and their scaling to nature is not entirely clear. Therefore finding rheological proxies in nature is very important. One way to do that is finding appropriate values of rheological parameter by fitting models to the lithospheric structure in the highly deformed regions where lithospheric structure and geologic evolution is well constrained. Here I will present two examples of such studies at plate boundaries. One case is the Dead Sea Transform (DST) that comprises a boundary between African and Arabian plates. During the last 15- 20 Myr more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Lithospheric structure and geological evolution of DST and DSB is rather well constrained by a number of interdisciplinary projects including DESERT and DESIRE projects leaded by the GFZ Potsdam. Detailed observations reveal apparently contradictory picture. From one hand widespread igneous activity, especially in the last 5 Myr, thin (60-80 km) lithosphere constrained from seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow of less than 50-60mW/m2 and deep seismicity in the lower crust ( deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what I call the "DST heat-flow paradox", a 3D numerical thermo-mechanical model was developed operating with non-linear elasto-visco-plastic rheology of the lithosphere. Results of the numerical experiments show that the entire set of

  17. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  18. Biodiversity Meets Neuroscience: From the Sequencing Ship (Ship-Seq) to Deciphering Parallel Evolution of Neural Systems in Omic’s Era

    Science.gov (United States)

    Moroz, Leonid L.

    2015-01-01

    The origins of neural systems and centralized brains are one of the major transitions in evolution. These events might occur more than once over 570–600 million years. The convergent evolution of neural circuits is evident from a diversity of unique adaptive strategies implemented by ctenophores, cnidarians, acoels, molluscs, and basal deuterostomes. But, further integration of biodiversity research and neuroscience is required to decipher critical events leading to development of complex integrative and cognitive functions. Here, we outline reference species and interdisciplinary approaches in reconstructing the evolution of nervous systems. In the “omic” era, it is now possible to establish fully functional genomics laboratories aboard of oceanic ships and perform sequencing and real-time analyses of data at any oceanic location (named here as Ship-Seq). In doing so, fragile, rare, cryptic, and planktonic organisms, or even entire marine ecosystems, are becoming accessible directly to experimental and physiological analyses by modern analytical tools. Thus, we are now in a position to take full advantages from countless “experiments” Nature performed for us in the course of 3.5 billion years of biological evolution. Together with progress in computational and comparative genomics, evolutionary neuroscience, proteomic and developmental biology, a new surprising picture is emerging that reveals many ways of how nervous systems evolved. As a result, this symposium provides a unique opportunity to revisit old questions about the origins of biological complexity. PMID:26163680

  19. Crack propagation in disordered materials: how to decipher fracture surfaces

    Science.gov (United States)

    Ponson, L.

    For a half-century, engineers know how to describe and predict the propagation of a crack in a model elastic homogeneous medium. The case of real materials is much more complex. Indeed, we do not know how to relate their lifetime or their resistance to their microstructure. To achieve such a prediction, understanding the role of the microstructural disorder on the behavior of a crack is determinant. Fracture surfaces represent a promising field of investigation to address this question. From the study of various disordered materials, we propose a statistical description of their roughness and determine to which extent their properties are dependent of the material. We show that fracture surfaces display an anisotropic scale invariant geometry characterized by two universal exponents. Glass ceramics is then studied because its microstructure can be tuned in a controlled manner. Their fracture surfaces display the same general anisotropic properties but with surprisingly low exponents independent of the detail of the ceramics microstructure. This suggests the existence of a second universality class in failure problems. Using finally theoretical tools from out-of-equilibrium statistical physics and fracture mechanics, we relate the statistical properties of fracture surfaces with the mechanisms occurring at the microscopic scale during the failure of a material. In particular, we show that the first class of fracture surfaces results from a failure involving damage processes while the second one results from a perfectly brittle failure. Propagation de fissures dans les matériaux désordonnés : comment déchiffrer les surfaces de rupture. Depuis près d'un demi-siècle, les ingénieurs savent décrire et prévoir la propagation d'une fissure dans un milieu élastique homogène modèle. Le cas des matériaux réels est beaucoup plus complexe. En effet, on ne sait pas relier leur durée de vie ou leur résistance à leur microstructure. Passage obligé avant de telles

  20. Deciphering the clinical effect of drugs through large-scale data integration

    DEFF Research Database (Denmark)

    Kjærulff, Sonny Kim

    . This work demonstrates the power of a strategy that uses clinical data mining in association with chemical biology in order to reduce the search space and aid identification of novel drug actions. The second article described in chapter 3 outlines a high confidence side-effect-drug interaction dataset. We...... demonstrates the importance of using high-confidence drug-side-effect data in deciphering the effect of small molecules in humans. In summary, this thesis presents computational systems chemical biology approaches that can help identify clinical effects of small molecules through large-scale data integration...

  1. Descifrado geométrico de transmisiones de engranaje por tornillo sinfín cilíndrico // Deciphered geometric of worm gears transmissions

    Directory of Open Access Journals (Sweden)

    G. Rivero Llerena

    2000-01-01

    Full Text Available Se aborda el tema de la geometría de transmisiones de engranaje por tornillo sinfín cilíndrico como acción preliminar alproceso de reconversión de reductores de velocidad de mismo tipo. Se utilizan los diagramas bicromáticos como unaherramienta para el tratamiento algorítmico de problemas de descifrado geométrico.Palabras claves: Transmisión mecánica, descifrado, grafos bicromáticos, engranaje de tornillo sinfín.____________________________________________________________________AbstractThe worm gear geometry is treated as a way of recovering of speed reducers. Bicromatic diagram is used as tool foralgorithm treatment and analyzing of geometric problems.Key word: Worm gears, deciphered, bicromatic diagrams, mechanical transmissions.

  2. Evolutionary engineering for industrial microbiology.

    Science.gov (United States)

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  3. Evolutionary Explanations for Antibiotic Resistance in Daily Press, Online Websites and Biology Textbooks in Sweden

    Science.gov (United States)

    Bohlin, Gustav; Höst, Gunnar E.

    2015-01-01

    The present study explores the extent and precision of evolutionary explanations for antibiotic resistance in communication directed toward the Swedish public. Bacterial resistance develops through evolutionary mechanisms and knowledge of these helps to explain causes underlying the growing prevalence of resistant strains, as well as important…

  4. Evolutionary Aesthetics and Print Advertising

    Directory of Open Access Journals (Sweden)

    Kamil Luczaj

    2015-06-01

    Full Text Available The article analyzes the extent to which predictions based on the theory of evolutionary aesthetics are utilized by the advertising industry. The purpose of a comprehensive content analysis of print advertising is to determine whether the items indicated by evolutionists such as animals, flowers, certain types of landscapes, beautiful humans, and some colors are part of real advertising strategies. This article has shown that many evolutionary hypotheses (although not all of them are supported by empirical data. Along with these hypotheses, some inferences from Bourdieu’s cultural capital theory were tested. It turned out that advertising uses both biological schemata and cultural patterns to make an image more likable.

  5. Diversity-Guided Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær

    2002-01-01

    Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few...... algorithms have used a measure to guide the search. The diversity-guided evolutionary algorithm (DGEA) uses the wellknown distance-to-average-point measure to alternate between phases of exploration (mutation) and phases of exploitation (recombination and selection). The DGEA showed remarkable results...

  6. Deciphering energy

    International Nuclear Information System (INIS)

    Dessus, Benjamin

    2014-01-01

    In this book, the author aims at giving some explanations about the various terms regarding energy which are present in our everyday life, in speeches, in papers and magazines, on the air, in our energy bills, for instance: energy poverty, price of a barrel of oil, resources and proved reserves, intermittency and energy storage, fossil and renewable energies, and so on. In a first part, the author addresses issues ranging from the development needs of a society to the energy assessment of a country, i.e.: nature and quantity of needs in services provided by energy, analysis of the required quantity of energy products needed to satisfy these needs, stages between primary resources and service delivery, description of the French consumption of available final energy products (per product and per economic sector). In the second part, he addresses energy supply, energy sectors and environmental issues, thus focusing on the front end of the energy system, i.e. ways of production from primary energy resources to final energy products: main physical characteristics and description of the different fissile, fossil and renewable energies, description of the main sectors of production of final energy products (fuels, electricity, heat) with a specific attention to electricity. In this part, local, regional and global environmental issues related to the exploitation of these energy sectors are discussed: sources of atmospheric pollution related to energy, relationship between energy and global warming, role of the different greenhouse gases emitted by these sectors, and quantitative analysis of these emissions. The third part addresses the economy of energy systems. The author proposes a cost assessment method which can be used for the production analysis as well as the economic analysis of a specific energy product. He also described external costs and profits, and methods to take those hidden costs and profits into account. Other economic tools are discussed and compared which can be used to define and assess energy policies. The last part (Prospective and energy transition) recalls the evolution of concepts and concerns which have been at the origin of world and national energy prospective scenarios for the last thirty years and resulted in the emergence of the notion of energy transition with its different interpretations by the different actors of the energy sector

  7. Can Evolutionary Principles Explain Patterns of Family Violence?

    Science.gov (United States)

    Archer, John

    2013-01-01

    The article's aim is to evaluate the application of the evolutionary principles of kin selection, reproductive value, and resource holding power to the understanding of family violence. The principles are described in relation to specific predictions and the mechanisms underlying these. Predictions are evaluated for physical violence perpetrated…

  8. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  9. The evolutionary roots of human decision making.

    Science.gov (United States)

    Santos, Laurie R; Rosati, Alexandra G

    2015-01-03

    Humans exhibit a suite of biases when making economic decisions. We review recent research on the origins of human decision making by examining whether similar choice biases are seen in nonhuman primates, our closest phylogenetic relatives. We propose that comparative studies can provide insight into four major questions about the nature of human choice biases that cannot be addressed by studies of our species alone. First, research with other primates can address the evolution of human choice biases and identify shared versus human-unique tendencies in decision making. Second, primate studies can constrain hypotheses about the psychological mechanisms underlying such biases. Third, comparisons of closely related species can identify when distinct mechanisms underlie related biases by examining evolutionary dissociations in choice strategies. Finally, comparative work can provide insight into the biological rationality of economically irrational preferences.

  10. Explaining mutualism variation: a new evolutionary paradox?

    Science.gov (United States)

    Heath, Katy D; Stinchcombe, John R

    2014-02-01

    The paradox of mutualism is typically framed as the persistence of interspecific cooperation, despite the potential advantages of cheating. Thus, mutualism research has tended to focus on stabilizing mechanisms that prevent the invasion of low-quality partners. These mechanisms alone cannot explain the persistence of variation for partner quality observed in nature, leaving a large gap in our understanding of how mutualisms evolve. Studying partner quality variation is necessary for applying genetically explicit models to predict evolution in natural populations, a necessary step for understanding the origins of mutualisms as well as their ongoing dynamics. An evolutionary genetic approach, which is focused on naturally occurring mutualist variation, can potentially synthesize the currently disconnected fields of mutualism evolution and coevolutionary genetics. We outline explanations for the maintenance of genetic variation for mutualism and suggest approaches necessary to address them. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  11. An evolutionary medicine approach to understanding factors that contribute to chronic obstructive pulmonary disease.

    Science.gov (United States)

    Aoshiba, Kazutetsu; Tsuji, Takao; Itoh, Masayuki; Yamaguchi, Kazuhiro; Nakamura, Hiroyuki

    2015-01-01

    Although many studies have been published on the causes and mechanisms of chronic obstructive pulmonary disease (COPD), the reason for the existence of COPD and the reasons why COPD develops in humans have hardly been studied. Evolutionary medical approaches are required to explain not only the proximate factors, such as the causes and mechanisms of a disease, but the ultimate (evolutionary) factors as well, such as why the disease is present and why the disease develops in humans. According to the concepts of evolutionary medicine, disease susceptibility is acquired as a result of natural selection during the evolutionary process of traits linked to the genes involved in disease susceptibility. In this paper, we discuss the following six reasons why COPD develops in humans based on current evolutionary medical theories: (1) evolutionary constraints; (2) mismatch between environmental changes and evolution; (3) co-evolution with pathogenic microorganisms; (4) life history trade-off; (5) defenses and their costs, and (6) reproductive success at the expense of health. Our perspective pursues evolutionary answers to the fundamental question, 'Why are humans susceptible to this common disease, COPD, despite their long evolutionary history?' We believe that the perspectives offered by evolutionary medicine are essential for researchers to better understand the significance of their work.

  12. Different types of inks having certain medicolegal importance: Deciphering the faded and physically erased handwriting

    Directory of Open Access Journals (Sweden)

    Manal Abd-ElAziz Abd-ElZaher

    2014-06-01

    Full Text Available Disappearing ink is a type of ink which could be used to forge documents as it will fade away without any trace within 40–65 h. Erasable ink is another type of ink easily removed by certain rubbers incorporated in each pen. Both types of inks were applied separately on different types of papers (checks, standard white foolscap, and plain white A4 paper. For vanishing ink, it was observed visually in the first 6 h and then every 6 h. It was found that the vanishing ink disappeared completely within 2 h on checks, 36 h on standard white foolscap paper, and 40 h on plain white A4 paper. For erasable ink, the written strokes were manipulated manually using the incorporated eraser. Deciphering the faded writing failed by the conventional methods, but oblique light can reveal the indentation marks. The faded writing became visible when treated with weak alkaline (NaOH solutions. Erasable ink was deciphered with the aid of infra-red radiation combined with VSC-6000 as clear white traces against red fluorescence. It was concluded that the use of a weak (NaOH solution is an effective method for revealing the faded writing, and the infra-red illumination is also effective.

  13. Evolutionary Psychology and Intelligence Research

    Science.gov (United States)

    Kanazawa, Satoshi

    2010-01-01

    This article seeks to unify two subfields of psychology that have hitherto stood separately: evolutionary psychology and intelligence research/differential psychology. I suggest that general intelligence may simultaneously be an evolved adaptation and an individual-difference variable. Tooby and Cosmides's (1990a) notion of random quantitative…

  14. Darwinian foundations for evolutionary economics

    NARCIS (Netherlands)

    Stoelhorst, J.W.

    2008-01-01

    This paper engages with the methodological debate on the contribution of Darwinism to Veblen's (1898) evolutionary research program for economics. I argue that ontological continuity, generalized Darwinism, and multi-level selection are necessary building blocks for an explanatory framework that can

  15. Ernst Mayr and Evolutionary Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 7. Polemics and Synthesis: Ernst Mayr and Evolutionary Biology. Renee M Borges. General Article Volume 10 Issue 7 July 2005 pp 21-33. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Evolutionary Biology Research in India

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 10. Evolutionary Biology Research in India. Information and Announcements Volume 5 Issue 10 October 2000 pp 102-104. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/10/0102-0104 ...

  17. Realism, Relativism, and Evolutionary Psychology

    NARCIS (Netherlands)

    Derksen, M.

    Against recent attempts to forge a reconciliation between constructionism and realism, I contend that, in psychology at least, stirring up conflict is a more fruitful strategy. To illustrate this thesis, I confront a school of psychology with strong realist leanings, evolutionary psychology, with

  18. Ancient Biomolecules and Evolutionary Inference

    DEFF Research Database (Denmark)

    Cappellini, Enrico; Prohaska, Ana; Racimo, Fernando

    2018-01-01

    Over the last decade, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, the field now stands on firm foundations. Researchers now successfully retrieve nucleo...

  19. Genetical Genomics for Evolutionary Studies

    NARCIS (Netherlands)

    Prins, J.C.P.; Smant, G.; Jansen, R.C.

    2012-01-01

    Genetical genomics combines acquired high-throughput genomic data with genetic analysis. In this chapter, we discuss the application of genetical genomics for evolutionary studies, where new high-throughput molecular technologies are combined with mapping quantitative trait loci (QTL) on the genome

  20. Evolutionary trends in directional hearing

    DEFF Research Database (Denmark)

    Carr, Catherine E; Christensen-Dalsgaard, Jakob

    2016-01-01

    Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds...

  1. Evolutionary dynamics of mammalian karyotypes

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2012-12-01

    Full Text Available This special volume of Cytogenetic and Genome Research (edited by Roscoe Stanyon, University of Florence and Alexander Graphodatsky, Siberian division of the Russian Academy of Sciences is dedicated to the fascinating long search of the forces behind the evolutionary dynamics of mammalian karyotypes, revealed after the hypotonic miracle of the 1950s....

  2. Haldane and modern evolutionary genetics

    Indian Academy of Sciences (India)

    Brian Charlesworth

    2017-11-24

    Nov 24, 2017 ... q(t) of an allele at a locus among the gametes produced at time t, to its .... the importance of disease as an evolutionary factor, which is now a ..... VII. Selection intensity as a function of mortality rate. Proc. Camb. Philos. Soc.

  3. Self-organized modularization in evolutionary algorithms.

    Science.gov (United States)

    Dauscher, Peter; Uthmann, Thomas

    2005-01-01

    The principle of modularization has proven to be extremely successful in the field of technical applications and particularly for Software Engineering purposes. The question to be answered within the present article is whether mechanisms can also be identified within the framework of Evolutionary Computation that cause a modularization of solutions. We will concentrate on processes, where modularization results only from the typical evolutionary operators, i.e. selection and variation by recombination and mutation (and not, e.g., from special modularization operators). This is what we call Self-Organized Modularization. Based on a combination of two formalizations by Radcliffe and Altenberg, some quantitative measures of modularity are introduced. Particularly, we distinguish Built-in Modularity as an inherent property of a genotype and Effective Modularity, which depends on the rest of the population. These measures can easily be applied to a wide range of present Evolutionary Computation models. It will be shown, both theoretically and by simulation, that under certain conditions, Effective Modularity (as defined within this paper) can be a selection factor. This causes Self-Organized Modularization to take place. The experimental observations emphasize the importance of Effective Modularity in comparison with Built-in Modularity. Although the experimental results have been obtained using a minimalist toy model, they can lead to a number of consequences for existing models as well as for future approaches. Furthermore, the results suggest a complex self-amplification of highly modular equivalence classes in the case of respected relations. Since the well-known Holland schemata are just the equivalence classes of respected relations in most Simple Genetic Algorithms, this observation emphasizes the role of schemata as Building Blocks (in comparison with arbitrary subsets of the search space).

  4. Exercise, Affect, and Adherence: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Harold Lee

    2016-08-01

    Full Text Available The low rates of regular exercise and overall physical activity (PA in the general population represent a significant public health challenge. Previous research suggests that, for many people, exercise leads to a negative affective response and, in turn, reduced likelihood of future exercise. The purpose of this paper is to examine this exercise-affect-adherence relationship from an evolutionary perspective. Specifically, we argue that low rates of physical exercise in the general population are a function of the evolved human tendency to avoid unnecessary physical exertion. This innate tendency evolved because it allowed our evolutionary ancestors to conserve energy for physical activities that had immediate adaptive utility such as pursuing prey, escaping predators, and engaging in social and reproductive behaviors. The commonly observed negative affective response to exercise is an evolved proximate psychological mechanism through which humans avoid unnecessary energy expenditure. The fact that the human tendencies toward negative affective response to and avoidance of unnecessary physical activities are innate does not mean that they are unchangeable. Indeed, it is only because of human-engineered changes in our environmental conditions (i.e., it is no longer necessary for us to work for our food that our predisposition to avoid unnecessary physical exertion has become a liability. Thus, it is well within our capabilities to reengineer our environments to once again make PA necessary or, at least, to serve an immediate functional purpose. We propose a two-pronged approach to PA promotion based on this evolutionary functional perspective: First, to promote exercise and other physical activities that are perceived to have an immediate purpose, and second, to instill greater perceived purpose for a wider range of physical activities. We posit that these strategies are more likely to result in more positive (or at least less negative affective

  5. Occult hepatitis B infection: an evolutionary scenario

    Directory of Open Access Journals (Sweden)

    Lukashov Vladimir V

    2008-12-01

    Full Text Available Abstract Background Occult or latent hepatitis B virus (HBV infection is defined as infection with detectable HBV DNA and undetectable surface antigen (HBsAg in patients' blood. The cause of an overt HBV infection becoming an occult one is unknown. To gain insight into the mechanism of the development of occult infection, we compared the full-length HBV genome from a blood donor carrying an occult infection (d4 with global genotype D genomes. Results The phylogenetic analysis of polymerase, core and X protein sequences did not distinguish d4 from other genotype D strains. Yet, d4 surface protein formed the evolutionary outgroup relative to all other genotype D strains. Its evolutionary branch was the only one where accumulation of substitutions suggests positive selection (dN/dS = 1.3787. Many of these substitutiions accumulated specifically in regions encoding the core/surface protein interface, as revealed in a 3D-modeled protein complex. We identified a novel RNA splicing event (deleting nucleotides 2986-202 that abolishes surface protein gene expression without affecting polymerase, core and X-protein related functions. Genotype D strains differ in their ability to perform this 2986-202 splicing. Strains prone to 2986-202 splicing constitute a separate clade in a phylogenetic tree of genotype D HBVs. A single substitution (G173T that is associated with clade membership alters the local RNA secondary structure and is proposed to affect splicing efficiency at the 202 acceptor site. Conclusion We propose an evolutionary scenario for occult HBV infection, in which 2986-202 splicing generates intracellular virus particles devoid of surface protein, which subsequently accumulates mutations due to relaxation of coding constraints. Such viruses are deficient of autonomous propagation and cannot leave the host cell until it is lysed.

  6. Selfish genetic elements, genetic conflict, and evolutionary innovation.

    Science.gov (United States)

    Werren, John H

    2011-06-28

    Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible "evolutionary functions" of SGEs.

  7. Cooperative Evolutionary Game and Applications in Construction Supplier Tendency

    Directory of Open Access Journals (Sweden)

    Qianqian Shi

    2018-01-01

    Full Text Available Major construction projects have a great influence on the national economy and society, wherein cooperative relationship between construction suppliers plays an increasingly significant role in the overall supply chain system. However, the relationships between suppliers are noncontractual, multistage, dynamic, and complicated. To gain a deeper insight into the suppliers’ cooperative relationships, an evolutionary game model is developed to explore the cooperation tendency of multisuppliers. A replicator dynamic system is further formulated to investigate the evolutionary stable strategies of multisuppliers. Then, fourteen “when-then” type scenarios are concluded and classified into six different evolutionary tracks. Meanwhile, the critical influencing factors are identified. The results show that the suppliers’ production capacity, owner-supplier contract, and the owner’s incentive mechanism influence the cooperation tendency of suppliers directly. The managerial implications contribute to insightful references for a more stable cooperative relationship between the owner and suppliers.

  8. Towards a mechanistic foundation of evolutionary theory.

    Science.gov (United States)

    Doebeli, Michael; Ispolatov, Yaroslav; Simon, Burt

    2017-02-15

    Most evolutionary thinking is based on the notion of fitness and related ideas such as fitness landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death processes, in which individuals give birth and die at ever-changing rates, should be the basis of evolutionary theory, because such processes capture the fundamental events that generate evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and owing to the potential complexity of such processes, there is no guarantee that there is a simple scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how evolutionary birth-death processes can provide useful perspectives on a number of central issues in evolution.

  9. Applied evolutionary economics and economic geography

    NARCIS (Netherlands)

    Frenken, K.

    2007-01-01

    Applied Evolutionary Economics and Economic Geography" aims to further advance empirical methodologies in evolutionary economics, with a special emphasis on geography and firm location. It does so by bringing together a select group of leading scholars including economists, geographers and

  10. Evolutionary biology of bacterial and fungal pathogens

    National Research Council Canada - National Science Library

    Baquero, F

    2008-01-01

    ... and Evolutionary Dynamics of Pathogens * 21 Keith A. Crandall and Marcos Pérez-Losada II. Evolutionary Genetics of Microbial Pathogens 4. Environmental and Social Influences on Infectious Disea...

  11. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents.

    Science.gov (United States)

    Gilbert, Scott F; Bosch, Thomas C G; Ledón-Rettig, Cristina

    2015-10-01

    The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.

  12. Cognition and Culture in Evolutionary Context.

    Science.gov (United States)

    Colmenares, Fernando; Hernández-Lloreda, María Victoria

    2017-01-09

    In humans and other animals, the individuals' ability to adapt efficiently and effectively to the niches they have actively contributed to construct relies heavily on an evolved psychology which has been shaped by biological, social, and cultural processes over evolutionary time. As expected, although many of the behavioral and cognitive components of this evolved psychology are widely shared across species, many others are species-unique. Although many animal species are known to acquire group-specific traditions (or cultures) via social learning, human culture is unique in terms of its contents and characteristics (observable and unobservable products, cumulative effects, norm conformity, and norm enforcement) and of its cognitive underpinnings (imitation, instructed teaching, and language). Here we provide a brief overview of some of the issues that are currently tackled in the field. We also highlight some of the strengths of a biological, comparative, non-anthropocentric and evolutionarily grounded approach to the study of culture. The main contributions of this approach to the science of culture are its emphasis (a) on the integration of information on mechanisms, function, and evolution, and on mechanistic factors located at different levels of the biological hierarchy, and (b) on the search for general principles that account for commonalities and differences between species, both in the cultural products and in the processes of innovation, dissemination, and accumulation involved that operate during developmental and evolutionary timespans.

  13. Evolutionary origins of mechanosensitive ion channels.

    Science.gov (United States)

    Martinac, Boris; Kloda, Anna

    2003-01-01

    According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.

  14. Emergence of structured communities through evolutionary dynamics.

    Science.gov (United States)

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The citation field of evolutionary economics

    NARCIS (Netherlands)

    Dolfsma, Wilfred; Leydesdorff, Loet

    2010-01-01

    Evolutionary economics has developed into an academic field of its own, institutionalized around, amongst others, the Journal of Evolutionary Economics (JEE). This paper analyzes the way and extent to which evolutionary economics has become an interdisciplinary journal, as its aim was: a journal

  16. Essays on nonlinear evolutionary game dynamics

    NARCIS (Netherlands)

    Ochea, M.I.

    2010-01-01

    Evolutionary game theory has been viewed as an evolutionary repair of rational actor game theory in the hope that a population of boundedly rational players may attain convergence to classic rational solutions, such as the Nash Equilibrium, via some learning or evolutionary process. In this thesis

  17. Schroedinger operators and evolutionary strategies

    International Nuclear Information System (INIS)

    Asselmeyer, T.

    1997-01-01

    First we introduce a simple model for the description of evolutionary algorithms, which is based on 2nd order partial differential equations for the distribution function of the individuals. Then we turn to the properties of Boltzmann's and Darwin's strategy. the next chapter is dedicated to the mathematical properties of Schroedinger operators. Both statements on the spectral density and their reproducibility during the simulation are summarized. The remaining of this chapter are dedicated to the analysis of the kernel as well as the dependence of the Schroedinger operator on the potential. As conclusion from the results of this chapter we obtain the classification of the strategies in dependence of the fitness. We obtain the classification of the evolutionary strategies, which are described by a 2nd order partial differential equation, in relation to their solution behaviour. Thereafter we are employed with the variation of the mutation distribution

  18. Exponential Expansion in Evolutionary Economics

    DEFF Research Database (Denmark)

    Frederiksen, Peter; Jagtfelt, Tue

    2013-01-01

    This article attempts to solve current problems of conceptual fragmentation within the field of evolutionary economics. One of the problems, as noted by a number of observers, is that the field suffers from an assemblage of fragmented and scattered concepts (Boschma and Martin 2010). A solution...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...... concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light...

  19. Preventive evolutionary medicine of cancers.

    Science.gov (United States)

    Hochberg, Michael E; Thomas, Frédéric; Assenat, Eric; Hibner, Urszula

    2013-01-01

    Evolutionary theory predicts that once an individual reaches an age of sufficiently low Darwinian fitness, (s)he will have reduced chances of keeping cancerous lesions in check. While we clearly need to better understand the emergence of precursor states and early malignancies as well as their mitigation by the microenvironment and tissue architecture, we argue that lifestyle changes and preventive therapies based in an evolutionary framework, applied to identified high-risk populations before incipient neoplasms become clinically detectable and chemoresistant lineages emerge, are currently the most reliable way to control or eliminate early tumours. Specifically, the relatively low levels of (epi)genetic heterogeneity characteristic of many if not most incipient lesions will mean a relatively limited set of possible adaptive traits and associated costs compared to more advanced cancers, and thus a more complete and predictable understanding of treatment options and outcomes. We propose a conceptual model for preventive treatments and discuss the many associated challenges.

  20. Passivity and Evolutionary Game Dynamics

    KAUST Repository

    Park, Shinkyu; Shamma, Jeff S.; Martins, Nuno C.

    2018-01-01

    This paper investigates an energy conservation and dissipation -- passivity -- aspect of dynamic models in evolutionary game theory. We define a notion of passivity using the state-space representation of the models, and we devise systematic methods to examine passivity and to identify properties of passive dynamic models. Based on the methods, we describe how passivity is connected to stability in population games and illustrate stability of passive dynamic models using numerical simulations.

  1. Passivity and Evolutionary Game Dynamics

    KAUST Repository

    Park, Shinkyu

    2018-03-21

    This paper investigates an energy conservation and dissipation -- passivity -- aspect of dynamic models in evolutionary game theory. We define a notion of passivity using the state-space representation of the models, and we devise systematic methods to examine passivity and to identify properties of passive dynamic models. Based on the methods, we describe how passivity is connected to stability in population games and illustrate stability of passive dynamic models using numerical simulations.

  2. ART Or AGR: Deciphering Which Reserve Program is Best Suited for Today’s Total Force Structure

    Science.gov (United States)

    2016-02-01

    AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY ART OR AGR: DECIPHERING WHICH RESERVE PROGRAM IS BEST SUITED FOR TODAY’S TOTAL FORCE STRUCTURE...4 ART Program...time workforce, which are the ART and AGR programs, by comparing each and highlighting the differences, advantages and disadvantages they present to

  3. Deciphering the complete mitochondrial genome and phylogeny of the extinct cave bear in the Paleolithic painted cave of Chauvet

    NARCIS (Netherlands)

    Bon, Céline; Caudy, Nicolas; De Dieuleveult, Maud; Fosse, Philippe; Philippe, Michel; Maksud, Frédéric; Beraud-Colomb, Éliane; Bouzaid, Eric; Kefi, Rym; Laugier, Christelle; Rousseau, Bernard; Casane, Didier; Van Der Plicht, Johannes; Elalouf, Jean-Marc

    2008-01-01

    Retrieving a large amount of genetic information from extinct species was demonstrated feasible, but complete mitochondrial genome sequences have only been deciphered for the moa, a bird that became extinct a few hundred years ago, and for Pleistocene species, such as the woolly mammoth and the

  4. Comparative Advantages of Spin-off Firms: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Bilgehan Uzunca

    2011-11-01

    Full Text Available As predicted by evolutionary economics, historical antecedents matter when it comes to the relationship between survival of entrants and organizational capabilities. Spinoff firms provide an exemplary case of such relationship where the founders’ pre-entry capabilities that are inherited from the parent firm increases their survival chances. Looking closer and deeper to the evolutionary spinoff success mechanisms, I examine three specific genetic features which make spinoff firms more advantageous compared to other entrants; namely 1 Genotype: Transfer of blueprint, 2 Phenotype: Organizational learning, and 3 Memes: Informal relations and social capital. A detailed theoretical analysis of each mechanism prevails how they function and provide sustainable competitive advantage to spinoff firms. Testable hypotheses are provided about each mechanism.

  5. [Evolutionary perspective in precocious puberty].

    Science.gov (United States)

    Hochberg, Ze'ev

    2014-10-01

    Pubertal development is subject to substantial heritability, but much variation remains to be explained, including fast changes over the last 150 years, that cannot be explained by changes of gene frequency in the population. This article discusses the influence of environmental factors to adjust maturational tempo in the service of fitness goals. Utilizing evolutionary development thinking (evo-devo), the author examines adolescence as an evolutionary life-history stage in its developmental context. The transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, social needs of adolescence and maturation toward youth and adulthood. Using Belsky's evolutionary theory of socialization, I show that familial psychosocial environment during the infancy-childhood and childhood-juvenility transitions foster a fast life-history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. The implications of the evo-devo framework for theory building, illuminates new directions in the understanding of precocious puberty other than a diagnosis of a disease.

  6. Testing evolutionary convergence on Europa

    Energy Technology Data Exchange (ETDEWEB)

    Chela-Flores, Julian [Instituto de Estudios Avanzados, Caracas (Venezuela); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2002-11-01

    A major objective in solar system exploration is the insertion of appropriate biology-oriented experiments in future missions. We discuss various reasons for suggesting that this type of research be considered a high priority for feasibility studies and, subsequently, for technological development of appropriate melters and submersibles. Based on numerous examples, we argue in favour of the assumption that Darwin's theory is valid for the evolution of life anywhere in the universe. We have suggested how to obtain preliminary insights into the question of the distribution of life in the universe. Universal evolution of intelligent behaviour is at the end of an evolutionary pathway, in which evolution of ion channels in the membrane of microorganisms occurs in its early stages. Further, we have argued that a preliminary test of this conjecture is feasible with experiments on the Europan surface or ocean, involving evolutionary biosignatures (ion channels). This aspect of the exploration for life in the solar system should be viewed as a complement to the astronomical approach for the search of evidence of the later stages of the evolutionary pathways towards intelligent behaviour. (author)

  7. Dynamic Ising model: reconstruction of evolutionary trees

    International Nuclear Information System (INIS)

    De Oliveira, P M C

    2013-01-01

    An evolutionary tree is a cascade of bifurcations starting from a single common root, generating a growing set of daughter species as time goes by. ‘Species’ here is a general denomination for biological species, spoken languages or any other entity which evolves through heredity. From the N currently alive species within a clade, distances are measured through pairwise comparisons made by geneticists, linguists, etc. The larger is such a distance that, for a pair of species, the older is their last common ancestor. The aim is to reconstruct the previously unknown bifurcations, i.e. the whole clade, from knowledge of the N(N − 1)/2 quoted distances, which are taken for granted. A mechanical method is presented and its applicability is discussed. (paper)

  8. Evolutionary optimization of rotational population transfer

    Energy Technology Data Exchange (ETDEWEB)

    Rouzee, Arnaud; Vrakking, Marc J. J. [FOM Institute for Atomic and Molecular Physics (AMOLF), Science Park 104, NL-1098 XG Amsterdam (Netherlands); Max Born Institut, Max Born Strasse 2A, D-12489, Berlin (Germany); Ghafur, Omair; Gijsbertsen, Arjan [FOM Institute for Atomic and Molecular Physics (AMOLF), Science Park 104, NL-1098 XG Amsterdam (Netherlands); Vidma, Konstantin; Meijer, Afric; Zande, Wim J. van der; Parker, David [Institute of Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, NL-6500 GL Nijmegen (Netherlands); Shir, Ofer M.; Baeck, Thomas [Leiden Institute of Advanced Computer Science (LIACS), Niels Bohrweg 1, NL-2333 CA Leiden (Netherlands)

    2011-09-15

    We present experimental and numerical studies on control of rotational population transfer of NO(J=1/2) molecules to higher rotational states. We are able to transfer 57% of the population to the J=5/2 state and 46% to J=9/2, in good agreement with quantum mechanical simulations. The optimal pulse shapes are composed of pulse sequences with delays corresponding to the beat frequencies of states on the rotational ladder. The evolutionary algorithm is limited by experimental constraints such as volume averaging and the finite laser intensity used, the latter to circumvent ionization. Without these constraints, near-perfect control (>98%) is possible. In addition, we show that downward control, moving molecules from high to low rotational states, is also possible.

  9. Evolutionary optimization of rotational population transfer

    International Nuclear Information System (INIS)

    Rouzee, Arnaud; Vrakking, Marc J. J.; Ghafur, Omair; Gijsbertsen, Arjan; Vidma, Konstantin; Meijer, Afric; Zande, Wim J. van der; Parker, David; Shir, Ofer M.; Baeck, Thomas

    2011-01-01

    We present experimental and numerical studies on control of rotational population transfer of NO(J=1/2) molecules to higher rotational states. We are able to transfer 57% of the population to the J=5/2 state and 46% to J=9/2, in good agreement with quantum mechanical simulations. The optimal pulse shapes are composed of pulse sequences with delays corresponding to the beat frequencies of states on the rotational ladder. The evolutionary algorithm is limited by experimental constraints such as volume averaging and the finite laser intensity used, the latter to circumvent ionization. Without these constraints, near-perfect control (>98%) is possible. In addition, we show that downward control, moving molecules from high to low rotational states, is also possible.

  10. Metabolomics to Decipher the Chemical Defense of Cereals against Fusarium graminearum and Deoxynivalenol Accumulation

    Directory of Open Access Journals (Sweden)

    Léa Gauthier

    2015-10-01

    Full Text Available Fusarium graminearum is the causal agent of Fusarium head blight (FHB and Gibberella ear rot (GER, two devastating diseases of wheat, barley, and maize. Furthermore, F. graminearum species can produce type B trichothecene mycotoxins that accumulate in grains. Use of FHB and GER resistant cultivars is one of the most promising strategies to reduce damage induced by F. graminearum. Combined with genetic approaches, metabolomic ones can provide powerful opportunities for plant breeding through the identification of resistant biomarker metabolites which have the advantage of integrating the genetic background and the influence of the environment. In the past decade, several metabolomics attempts have been made to decipher the chemical defense that cereals employ to counteract F. graminearum. By covering the major classes of metabolites that have been highlighted and addressing their potential role, this review demonstrates the complex and integrated network of events that cereals can orchestrate to resist to F. graminearum.

  11. Spectral Barcoding of Quantum Dots: Deciphering Structural Motifs from the Excitonic Spectra

    International Nuclear Information System (INIS)

    Mlinar, V.; Zunger, A.

    2009-01-01

    Self-assembled semiconductor quantum dots (QDs) show in high-resolution single-dot spectra a multitude of sharp lines, resembling a barcode, due to various neutral and charged exciton complexes. Here we propose the 'spectral barcoding' method that deciphers structural motifs of dots by using such barcode as input to an artificial-intelligence learning system. Thus, we invert the common practice of deducing spectra from structure by deducing structure from spectra. This approach (i) lays the foundation for building a much needed structure-spectra understanding for large nanostructures and (ii) can guide future design of desired optical features of QDs by controlling during growth only those structural motifs that decide given optical features.

  12. DECIPHERING THE FINEST IMPRINT OF GLACIAL EROSION: OBJECTIVE ANALYSIS OF STRIAE PATTERNS ON BEDROCK

    Directory of Open Access Journals (Sweden)

    Piet Stroeven

    2011-05-01

    Full Text Available The aim of this study is to compare the efficiency of different mathematical and statistical geometrical methods applied to characterise the orientation distribution of striae on bedrock for deciphering the finest imprint of glacial erosion. The involved methods include automatic image analysis techniques of Fast Fourier Transform (FFT, and the experimental investigations by means of Saltikov's directed secants analysis (rose of intersection densities, applied to digital and analogue images of the striae pattern, respectively. In addition, the experimental data were compared with the modelling results made on the basis of Underwood's concept of linear systems in a plane. The experimental and modelling approaches in the framework of stereology yield consistent results. These results reveal that stereological methods allow a reliable and efficient delineation of different families of glacial striae from a complex record imprinted in bedrock.

  13. Metabolomics to Decipher the Chemical Defense of Cereals against Fusarium graminearum and Deoxynivalenol Accumulation

    Science.gov (United States)

    Gauthier, Léa; Atanasova-Penichon, Vessela; Chéreau, Sylvain; Richard-Forget, Florence

    2015-01-01

    Fusarium graminearum is the causal agent of Fusarium head blight (FHB) and Gibberella ear rot (GER), two devastating diseases of wheat, barley, and maize. Furthermore, F. graminearum species can produce type B trichothecene mycotoxins that accumulate in grains. Use of FHB and GER resistant cultivars is one of the most promising strategies to reduce damage induced by F. graminearum. Combined with genetic approaches, metabolomic ones can provide powerful opportunities for plant breeding through the identification of resistant biomarker metabolites which have the advantage of integrating the genetic background and the influence of the environment. In the past decade, several metabolomics attempts have been made to decipher the chemical defense that cereals employ to counteract F. graminearum. By covering the major classes of metabolites that have been highlighted and addressing their potential role, this review demonstrates the complex and integrated network of events that cereals can orchestrate to resist to F. graminearum. PMID:26492237

  14. Four Versions of the Christus by the Massys: Deciphering the Meaning of the Letters

    Directory of Open Access Journals (Sweden)

    Vicente Jara Vera

    2017-02-01

    Full Text Available The Flemish painters Quentin Massys and his son Jan Massys appear to be the authors of four works with a very similar motif, the bust of Jesus Christ. These canvasses can be found in different locations today: the Prado Museum in Madrid (Spain, the RKD Netherlands Institute for Art History of The Hague (Netherlands, the Kunstmuseum Winterthur (Switzerland, and another one in a private collection. Written on the edge of the robe around the neck, these canvasses display a series of Hebrew or pseudo-Hebrew letters. We offer the complete solution deciphered, until today incomplete, for three of them, with a very similar letter sequence. Finally, we resolve completely one of the canvasses, which, until today, had no known solution.

  15. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected

  16. Treatment resistance in urothelial carcinoma: an evolutionary perspective.

    Science.gov (United States)

    Vlachostergios, Panagiotis J; Faltas, Bishoy M

    2018-05-02

    The emergence of treatment-resistant clones is a critical barrier to cure in patients with urothelial carcinoma. Setting the stage for the evolution of resistance, urothelial carcinoma is characterized by extensive mutational heterogeneity, which is detectable even in patients with early stage disease. Chemotherapy and immunotherapy both act as selective pressures that shape the evolutionary trajectory of urothelial carcinoma throughout the course of the disease. A detailed understanding of the dynamics of evolutionary drivers is required for the rational development of curative therapies. Herein, we describe the molecular basis of the clonal evolution of urothelial carcinomas and the use of genomic approaches to predict treatment responses. We discuss various mechanisms of resistance to chemotherapy with a focus on the mutagenic effects of the DNA dC->dU-editing enzymes APOBEC3 family of proteins. We also review the evolutionary mechanisms underlying resistance to immunotherapy, such as the loss of clonal tumour neoantigens. By dissecting treatment resistance through an evolutionary lens, the field will advance towards true precision medicine for urothelial carcinoma.

  17. Deciphering Egyptian Hieroglyphs: Towards a New Strategy for Navigation in Museums

    Directory of Open Access Journals (Sweden)

    Jaime Duque-Domingo

    2017-03-01

    Full Text Available This work presents a novel strategy to decipher fragments of Egyptian cartouches identifying the hieroglyphs of which they are composed. A cartouche is a drawing, usually inside an oval, that encloses a group of hieroglyphs representing the name of a monarch. Aiming to identify these drawings, the proposed method is based on several techniques frequently used in computer vision and consists of three main stages: first, a picture of the cartouche is taken as input and its contour is localized. In the second stage, each hieroglyph is individually extracted and identified. Finally, the cartouche is interpreted: the sequence of the hieroglyphs is established according to a previously generated benchmark. This sequence corresponds to the name of the king. Although this method was initially conceived to deal with both high and low relief writing in stone, it can be also applied to painted hieroglyphs. This approach is not affected by variable lighting conditions, or the intensity and the completeness of the objects. This proposal has been tested on images obtained from the Abydos King List and other Egyptian monuments and archaeological excavations. The promising results give new possibilities to recognize hieroglyphs, opening a new way to decipher longer texts and inscriptions, being particularly useful in museums and Egyptian environments. Additionally, devices used for acquiring visual information from cartouches (i.e., smartphones, can be part of a navigation system for museums where users are located in indoor environments by means of the combination of WiFi Positioning Systems (WPS and depth cameras, as unveiled at the end of the document.

  18. Deciphering Late-Pleistocence landscape evolution: linking proxies by combining pedo-stratigraphy and luminescence dating

    Science.gov (United States)

    Kreutzer, Sebastian; Meszner, Sascha; Faust, Dominik; Fuchs, Markus

    2014-05-01

    Interpreting former landscape evolution asks for understanding the processes that sculpt such landforms by means of deciphering complex systems. For reconstructing terrestrial Quaternary environments based on loess archives this might be considered, at least, as a three step process: (1) Identifying valuable records in appropriate morphological positions in a previously defined research area, (2) analysing the profiles by field work and laboratory methods and finally (3) linking the previously considered pseudo-isolated systems to set up a comprehensive picture. Especially the first and the last step might bring some pitfalls, as it is tempting to specify single records as pseudo-isolated, closed systems. They might be, with regard to their preservation in their specific morphological position, but in fact they are part of a complex, open system. Between 2008 and 2013, Late-Pleistocene loess archives in Saxony have been intensively investigated by field and laboratory methods. Linking pedo- and luminescence dating based chronostratigraphies, a composite profile for the entire Saxonian Loess Region has been established. With this, at least, two-fold approach we tried to avoid misinterpretations that might appear when focussing on one standard profile in an open morphological system. Our contribution focuses on this multi-proxy approach to decipher the Late-Pleistocene landscape evolution in the Saxonian Loess Region. Highlighting the challenges and advantages of combining different methods, we believe that (1) this multi-proxy approach is without alternative, (2) the combination of different profiles may simplify the more complex reality, but it may be a useful generalisation to understand and reveal the stratigraphical significance of the landscape evolution in this region.

  19. Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting

    Science.gov (United States)

    Sharma, Deepak; Barakat, Nada

    2018-02-01

    An evolutionary optimization approach is adopted in this paper for simultaneously achieving the economic and productive soil cutting. The economic aspect is defined by minimizing the power requirement from the bulldozer, and the soil cutting is made productive by minimizing the time of soil cutting. For determining the power requirement, two force models are adopted from the literature to quantify the cutting force on the blade. Three domain-specific constraints are also proposed, which are limiting the power from the bulldozer, limiting the maximum force on the bulldozer blade and achieving the desired production rate. The bi-objective optimization problem is solved using five benchmark multi-objective evolutionary algorithms and one classical optimization technique using the ɛ-constraint method. The Pareto-optimal solutions are obtained with the knee-region. Further, the post-optimal analysis is performed on the obtained solutions to decipher relationships among the objectives and decision variables. Such relationships are later used for making guidelines for selecting the optimal set of input parameters. The obtained results are then compared with the experiment results from the literature that show a close agreement among them.

  20. Skeletal remodelling suggests the turtle's shell is not an evolutionary straitjacket.

    Science.gov (United States)

    Cordero, Gerardo Antonio; Quinteros, Kevin

    2015-04-01

    Recent efforts to decipher the enigma of the turtle's shell revealed that distantly related turtle species deploy diverse processes during shell development. Even so, extant species share in common a shoulder blade (scapula) that is encapsulated within the shell. Thus, evolutionary change in the correlated development of the shell and scapula probably underpins the evolution of highly derived shell morphologies. To address this expectation, we conducted one of the most phylogenetically comprehensive surveys of turtle development, focusing on scapula growth and differentiation in embryos, hatchlings and adults of 13 species. We report, to our knowledge, the first description of secondary differentiation owing to skeletal remodelling of the tetrapod scapula in turtles with the most structurally derived shell phenotypes. Remodelling and secondary differentiation late in embryogenesis of box turtles (Emys and Terrapene) yielded a novel skeletal segment (i.e. the suprascapula) of high functional value to their complex shell-closing system. Remarkably, our analyses suggest that, in soft-shelled turtles (Trionychidae) with extremely flattened shells, a similar transformation is linked to truncated scapula growth. Skeletal remodelling, as a form of developmental plasticity, might enable the seemingly constrained turtle body plan to diversify, suggesting the shell is not an evolutionary straitjacket. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Is the political animal politically ignorant? Applying evolutionary psychology to the study of political attitudes.

    Science.gov (United States)

    Petersen, Michael Bang; Aarøe, Lene

    2012-12-20

    As evidenced by research in evolutionary psychology, humans have evolved sophisticated psychological mechanisms tailored to solve enduring adaptive problems of social life. Many of these social problems are political in nature and relate to the distribution of costs and benefits within and between groups. In that sense, evolutionary psychology suggests that humans are, by nature, political animals. By implication, a straightforward application of evolutionary psychology to the study of public opinion seems to entail that modern individuals find politics intrinsically interesting. Yet, as documented by more than fifty years of research in political science, people lack knowledge of basic features of the political process and the ability to form consistent political attitudes. By reviewing and integrating research in evolutionary psychology and public opinion, we describe (1) why modern mass politics often fail to activate evolved mechanisms and (2) the conditions in which these mechanisms are in fact triggered.

  2. An Improved SPEA2 Algorithm with Adaptive Selection of Evolutionary Operators Scheme for Multiobjective Optimization Problems

    Directory of Open Access Journals (Sweden)

    Fuqing Zhao

    2016-01-01

    Full Text Available A fixed evolutionary mechanism is usually adopted in the multiobjective evolutionary algorithms and their operators are static during the evolutionary process, which causes the algorithm not to fully exploit the search space and is easy to trap in local optima. In this paper, a SPEA2 algorithm which is based on adaptive selection evolution operators (AOSPEA is proposed. The proposed algorithm can adaptively select simulated binary crossover, polynomial mutation, and differential evolution operator during the evolutionary process according to their contribution to the external archive. Meanwhile, the convergence performance of the proposed algorithm is analyzed with Markov chain. Simulation results on the standard benchmark functions reveal that the performance of the proposed algorithm outperforms the other classical multiobjective evolutionary algorithms.

  3. Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.

    Science.gov (United States)

    Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D

    2017-10-01

    Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.

  4. Introduced species as evolutionary traps

    Science.gov (United States)

    Schlaepfer, Martin A.; Sherman, P.W.; Blossey, B.; Runge, M.C.

    2005-01-01

    Invasive species can alter environments in such a way that normal behavioural decision-making rules of native species are no longer adaptive. The evolutionary trap concept provides a useful framework for predicting and managing the impact of harmful invasive species. We discuss how native species can respond to changes in their selective regime via evolution or learning. We also propose novel management strategies to promote the long-term co-existence of native and introduced species in cases where the eradication of the latter is either economically or biologically unrealistic.

  5. Multidimensional extended spatial evolutionary games.

    Science.gov (United States)

    Krześlak, Michał; Świerniak, Andrzej

    2016-02-01

    The goal of this paper is to study the classical hawk-dove model using mixed spatial evolutionary games (MSEG). In these games, played on a lattice, an additional spatial layer is introduced for dependence on more complex parameters and simulation of changes in the environment. Furthermore, diverse polymorphic equilibrium points dependent on cell reproduction, model parameters, and their simulation are discussed. Our analysis demonstrates the sensitivity properties of MSEGs and possibilities for further development. We discuss applications of MSEGs, particularly algorithms for modelling cell interactions during the development of tumours. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Feminist Encounters with Evolutionary Psychology

    OpenAIRE

    O'Neill, Rachel

    2016-01-01

    This Section of Australian Feminist Studies is the product of an event that took place at King’s College London in January 2015, hosted as part of the UK-based ‘Critical Sexology’ seminar series. Participants at this event – feminist scholars working across the fields of lin- guistics, cultural studies, sociology, and psychology – were invited to reflect on their encounters with evolutionary psychology (EP). As the event organiser, I was interested to prompt a discussion about how EP shapes t...

  7. Improving processes through evolutionary optimization.

    Science.gov (United States)

    Clancy, Thomas R

    2011-09-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies on complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 18th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, I discuss methods to optimize complex healthcare processes through learning, adaptation, and evolutionary planning.

  8. Historical change and evolutionary theory.

    Science.gov (United States)

    Masters, Roger D

    2007-09-01

    Despite advances in fields like genetics, evolutionary psychology, and human behavior and evolution--which generally focus on individual or small group behavior from a biological perspective--evolutionary biology has made little impact on studies of political change and social history. Theories of natural selection often seem inapplicable to human history because our social behavior is embedded in language (which makes possible the concepts of time and social identity on which what we call "history" depends). Peter Corning's Holistic Darwinism reconceptualizes evolutionary biology, making it possible to go beyond the barriers separating the social and natural sciences. Corning focuses on two primary processes: "synergy" (complex multivariate interactions at multiple levels between a species and its environment) and "cybernetics" (the information systems permitting communication between individuals and groups over time). Combining this frame of reference with inclusive fitness theory, it is possible to answer the most important (and puzzling) question in human history: How did a species that lived for millennia in hunter-gatherer bands form centralized states governing large populations of non-kin (including multi-ethnic empires as well as modern nation-states)? The fragility and contemporary ethnic violence in Kenya and the Congo should suffice as evidence that these issues need to be taken seriously. To explain the rise and fall of states as well as changes in human laws and customs--the core of historical research--it is essential to show how the provision of collective goods can overcome the challenge of self-interest and free-riding in some instances, yet fail to do so in others. To this end, it is now possible to consider how a state providing public goods can--under circumstances that often include effective leadership--contribute to enhanced inclusive fitness of virtually all its members. Because social behavior needs to adapt to ecology, but ecological

  9. Selective evolutionary generation systems: Theory and applications

    Science.gov (United States)

    Menezes, Amor A.

    This dissertation is devoted to the problem of behavior design, which is a generalization of the standard global optimization problem: instead of generating the optimizer, the generalization produces, on the space of candidate optimizers, a probability density function referred to as the behavior. The generalization depends on a parameter, the level of selectivity, such that as this parameter tends to infinity, the behavior becomes a delta function at the location of the global optimizer. The motivation for this generalization is that traditional off-line global optimization is non-resilient and non-opportunistic. That is, traditional global optimization is unresponsive to perturbations of the objective function. On-line optimization methods that are more resilient and opportunistic than their off-line counterparts typically consist of the computationally expensive sequential repetition of off-line techniques. A novel approach to inexpensive resilience and opportunism is to utilize the theory of Selective Evolutionary Generation Systems (SECS), which sequentially and probabilistically selects a candidate optimizer based on the ratio of the fitness values of two candidates and the level of selectivity. Using time-homogeneous, irreducible, ergodic Markov chains to model a sequence of local, and hence inexpensive, dynamic transitions, this dissertation proves that such transitions result in behavior that is called rational; such behavior is desirable because it can lead to both efficient search for an optimizer as well as resilient and opportunistic behavior. The dissertation also identifies system-theoretic properties of the proposed scheme, including equilibria, their stability and their optimality. Moreover, this dissertation demonstrates that the canonical genetic algorithm with fitness proportional selection and the (1+1) evolutionary strategy are particular cases of the scheme. Applications in three areas illustrate the versatility of the SECS theory: flight

  10. Conceptual Barriers to Progress Within Evolutionary Biology.

    Science.gov (United States)

    Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy

    2009-08-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.

  11. [Evolutionary process unveiled by the maximum genetic diversity hypothesis].

    Science.gov (United States)

    Huang, Yi-Min; Xia, Meng-Ying; Huang, Shi

    2013-05-01

    As two major popular theories to explain evolutionary facts, the neutral theory and Neo-Darwinism, despite their proven virtues in certain areas, still fail to offer comprehensive explanations to such fundamental evolutionary phenomena as the genetic equidistance result, abundant overlap sites, increase in complexity over time, incomplete understanding of genetic diversity, and inconsistencies with fossil and archaeological records. Maximum genetic diversity hypothesis (MGD), however, constructs a more complete evolutionary genetics theory that incorporates all of the proven virtues of existing theories and adds to them the novel concept of a maximum or optimum limit on genetic distance or diversity. It has yet to meet a contradiction and explained for the first time the half-century old Genetic Equidistance phenomenon as well as most other major evolutionary facts. It provides practical and quantitative ways of studying complexity. Molecular interpretation using MGD-based methods reveal novel insights on the origins of humans and other primates that are consistent with fossil evidence and common sense, and reestablished the important role of China in the evolution of humans. MGD theory has also uncovered an important genetic mechanism in the construction of complex traits and the pathogenesis of complex diseases. We here made a series of sequence comparisons among yeasts, fishes and primates to illustrate the concept of limit on genetic distance. The idea of limit or optimum is in line with the yin-yang paradigm in the traditional Chinese view of the universal creative law in nature.

  12. Estimating true evolutionary distances under the DCJ model.

    Science.gov (United States)

    Lin, Yu; Moret, Bernard M E

    2008-07-01

    Modern techniques can yield the ordering and strandedness of genes on each chromosome of a genome; such data already exists for hundreds of organisms. The evolutionary mechanisms through which the set of the genes of an organism is altered and reordered are of great interest to systematists, evolutionary biologists, comparative genomicists and biomedical researchers. Perhaps the most basic concept in this area is that of evolutionary distance between two genomes: under a given model of genomic evolution, how many events most likely took place to account for the difference between the two genomes? We present a method to estimate the true evolutionary distance between two genomes under the 'double-cut-and-join' (DCJ) model of genome rearrangement, a model under which a single multichromosomal operation accounts for all genomic rearrangement events: inversion, transposition, translocation, block interchange and chromosomal fusion and fission. Our method relies on a simple structural characterization of a genome pair and is both analytically and computationally tractable. We provide analytical results to describe the asymptotic behavior of genomes under the DCJ model, as well as experimental results on a wide variety of genome structures to exemplify the very high accuracy (and low variance) of our estimator. Our results provide a tool for accurate phylogenetic reconstruction from multichromosomal gene rearrangement data as well as a theoretical basis for refinements of the DCJ model to account for biological constraints. All of our software is available in source form under GPL at http://lcbb.epfl.ch.

  13. Evolutionary epistemology a multiparadigm program

    CERN Document Server

    Pinxten, Rik

    1987-01-01

    This volume has its already distant origin in an inter­national conference on Evolutionary Epistemology the editors organized at the University of Ghent in November 1984. This conference aimed to follow up the endeavor started at the ERISS (Epistemologically Relevant Internalist Sociology of Science) conference organized by Don Campbell and Alex Rosen­ berg at Cazenovia Lake, New York, in June 1981, whilst in­ jecting the gist of certain current continental intellectual developments into a debate whose focus, we thought, was in danger of being narrowed too much, considering the still underdeveloped state of affairs in the field. Broadly speaking, evolutionary epistemology today con­ sists of two interrelated, yet qualitatively distinct inves­ tigative efforts. Both are drawing on Darwinian concepts, which may explain why many people have failed to discriminate them. One is the study of the evolution of the cognitive apparatus of living organisms, which is first and foremost the province of biologists and...

  14. Evolutionary potential games on lattices

    International Nuclear Information System (INIS)

    Szabó, György; Borsos, István

    2016-01-01

    Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the “equilibrium state” by adding non-potential components representing games of cyclic dominance.

  15. Evolutionary potential games on lattices

    Energy Technology Data Exchange (ETDEWEB)

    Szabó, György, E-mail: szabo@mfa.kfki.hu; Borsos, István, E-mail: borsos@mfa.kfki.hu

    2016-04-05

    Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the “equilibrium state” by adding non-potential components representing games of cyclic dominance.

  16. Evolutionary potential games on lattices

    Science.gov (United States)

    Szabó, György; Borsos, István

    2016-04-01

    Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the "equilibrium state" by adding non-potential components representing games of cyclic dominance.

  17. Ancient Biomolecules and Evolutionary Inference.

    Science.gov (United States)

    Cappellini, Enrico; Prohaska, Ana; Racimo, Fernando; Welker, Frido; Pedersen, Mikkel Winther; Allentoft, Morten E; de Barros Damgaard, Peter; Gutenbrunner, Petra; Dunne, Julie; Hammann, Simon; Roffet-Salque, Mélanie; Ilardo, Melissa; Moreno-Mayar, J Víctor; Wang, Yucheng; Sikora, Martin; Vinner, Lasse; Cox, Jürgen; Evershed, Richard P; Willerslev, Eske

    2018-04-25

    Over the last decade, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, the field now stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field. Expected final online publication date for the Annual Review of Biochemistry Volume 87 is June 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  18. Evolutionary Models for Simple Biosystems

    Science.gov (United States)

    Bagnoli, Franco

    The concept of evolutionary development of structures constituted a real revolution in biology: it was possible to understand how the very complex structures of life can arise in an out-of-equilibrium system. The investigation of such systems has shown that indeed, systems under a flux of energy or matter can self-organize into complex patterns, think for instance to Rayleigh-Bernard convection, Liesegang rings, patterns formed by granular systems under shear. Following this line, one could characterize life as a state of matter, characterized by the slow, continuous process that we call evolution. In this paper we try to identify the organizational level of life, that spans several orders of magnitude from the elementary constituents to whole ecosystems. Although similar structures can be found in other contexts like ideas (memes) in neural systems and self-replicating elements (computer viruses, worms, etc.) in computer systems, we shall concentrate on biological evolutionary structure, and try to put into evidence the role and the emergence of network structure in such systems.

  19. Regional systems of innovation: an evolutionary perspective

    OpenAIRE

    P Cooke; M G Uranga; G Etxebarria

    1998-01-01

    The authors develop the concept of regional systems of innovation and relate it to preexisting research on national systems of innovation. They argue that work conducted in the 'new regional science' field is complementary to systems of innovation approaches. They seek to link new regional work to evolutionary economics, and argue for the development of evolutionary regional science. Common elements of interest to evolutionary innovation research and new regional science are important in unde...

  20. Evolutionary Acquisition and Spiral Development Tutorial

    National Research Council Canada - National Science Library

    Hantos, P

    2005-01-01

    .... NSS Acquisition Policy 03-01 provided some space-oriented customization and, similarly to the original DOD directives, also positioned Evolutionary Acquisition and Spiral Development as preferred...

  1. A backtracking evolutionary algorithm for power systems

    Directory of Open Access Journals (Sweden)

    Chiou Ji-Pyng

    2017-01-01

    Full Text Available This paper presents a backtracking variable scaling hybrid differential evolution, called backtracking VSHDE, for solving the optimal network reconfiguration problems for power loss reduction in distribution systems. The concepts of the backtracking, variable scaling factor, migrating, accelerated, and boundary control mechanism are embedded in the original differential evolution (DE to form the backtracking VSHDE. The concepts of the backtracking and boundary control mechanism can increase the population diversity. And, according to the convergence property of the population, the scaling factor is adjusted based on the 1/5 success rule of the evolution strategies (ESs. A larger population size must be used in the evolutionary algorithms (EAs to maintain the population diversity. To overcome this drawback, two operations, acceleration operation and migrating operation, are embedded into the proposed method. The feeder reconfiguration of distribution systems is modelled as an optimization problem which aims at achieving the minimum loss subject to voltage and current constraints. So, the proper system topology that reduces the power loss according to a load pattern is an important issue. Mathematically, the network reconfiguration system is a nonlinear programming problem with integer variables. One three-feeder network reconfiguration system from the literature is researched by the proposed backtracking VSHDE method and simulated annealing (SA. Numerical results show that the perfrmance of the proposed method outperformed the SA method.

  2. Epidemiological, evolutionary and co-evolutionary implications of context-dependent parasitism

    Science.gov (United States)

    Vale, Pedro F.; Wilson, Alastair J.; Best, Alex; Boots, Mike; Little, Tom J.

    2013-01-01

    Victims of infection are expected to suffer increasingly as parasite population growth increases. Yet, under some conditions, faster growing parasites do not appear to cause more damage and infections can be quite tolerable. We studied these conditions by assessing how the relationship between parasite population growth and host health is sensitive to environmental variation. In experimental infections of the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa we show how easily an interaction can shift from a severe interaction, i.e. when host fitness declines substantially with each unit of parasite growth, to a tolerable relationship by changing only simple environmental variables: temperature and food availability. We explored the evolutionary and epidemiological implications of such a shift by modelling pathogen evolution and disease spread under different levels of infection severity, and find that environmental shifts that promote tolerance ultimately result in populations harbouring more parasitized individuals. We also find that the opportunity for selection, as indicated by the variance around traits, varied considerably with the environmental treatment. Thus our results suggest two mechanisms that could underlie co-evolutionary hot- and coldspots: spatial variation in tolerance and spatial variation in the opportunity for selection. PMID:21460572

  3. Context dependent DNA evolutionary models

    DEFF Research Database (Denmark)

    Jensen, Jens Ledet

    This paper is about stochastic models for the evolution of DNA. For a set of aligned DNA sequences, connected in a phylogenetic tree, the models should be able to explain - in probabilistic terms - the differences seen in the sequences. From the estimates of the parameters in the model one can...... start to make biologically interpretations and conclusions concerning the evolutionary forces at work. In parallel with the increase in computing power, models have become more complex. Starting with Markov processes on a space with 4 states, and extended to Markov processes with 64 states, we are today...... studying models on spaces with 4n (or 64n) number of states with n well above one hundred, say. For such models it is no longer possible to calculate the transition probability analytically, and often Markov chain Monte Carlo is used in connection with likelihood analysis. This is also the approach taken...

  4. Evolutionary Games and Social Conventions

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg

    2007-01-01

    -defined metaphors of individual learning and social imitation processes, from which a revised theory of convention may be erected (see Sugden 2004, Binmore 1993 and Young 1998). This paper makes a general argument in support of the evolutionary turn in the theory of convention by a progressive exposition of its...... in Aumann (1976) and which, together with the assumptions of perfect rationality, came to be defining of classical game theory. However, classical game theory is currently undergoing severe crisis as a tool for exploring social phenomena; a crisis emerging from the problem of equilibrium selection around......Some thirty years ago Lewis published his Convention: A Philosophical Study (Lewis, 2002). This laid the foundation for a game-theoretic approach to social conventions, but became more famously known for its seminal analysis of common knowledge; the concept receiving its canonical analysis...

  5. Bacterial Actins? An Evolutionary Perspective

    Science.gov (United States)

    Doolittle, Russell F.; York, Amanda L.

    2003-01-01

    According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveml that eukaryotic actin and the bacterial homolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.

  6. EDEN: evolutionary dynamics within environments

    Science.gov (United States)

    Münch, Philipp C.; Stecher, Bärbel; McHardy, Alice C.

    2017-01-01

    Abstract Summary Metagenomics revolutionized the field of microbial ecology, giving access to Gb-sized datasets of microbial communities under natural conditions. This enables fine-grained analyses of the functions of community members, studies of their association with phenotypes and environments, as well as of their microevolution and adaptation to changing environmental conditions. However, phylogenetic methods for studying adaptation and evolutionary dynamics are not able to cope with big data. EDEN is the first software for the rapid detection of protein families and regions under positive selection, as well as their associated biological processes, from meta- and pangenome data. It provides an interactive result visualization for detailed comparative analyses. Availability and implementation EDEN is available as a Docker installation under the GPL 3.0 license, allowing its use on common operating systems, at http://www.github.com/hzi-bifo/eden. Contact alice.mchardy@helmholtz-hzi.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:28637301

  7. Steps towards an evolutionary physics

    CERN Document Server

    Tiezzi, E

    2006-01-01

    If thermodynamics is to physics as logic is to philosophy, recent theoretical advancements lend new coherence to the marvel and dynamism of life on Earth. Enzo Tiezzi's "Steps Towards an Evolutionary Physics" is a primer and guide, to those who would to stand on the shoulders of giants to attain this view: Heisenberg, Planck, Bateson, Varela, and Prigogine as well as notable contemporary scientists. The adventure of such a free and enquiring spirit thrives not so much on answers as on new questions. The book offers a new gestalt on the uncertainty principle and concept of probability. A wide range of examples, enigmas, and paradoxes lead one's imagination on an exquisite dance. Among the applications are: songs and shapes of nature, oscillatory reactions, orientors, goal functions and configurations of processes, and "dissipative structures and the city". Ecodynamics is a new science, which proposes a cross-fertilization between Charles Darwin and Ilya Prigogine. As an enigma in thermodynamics, Entropy forms ...

  8. Numerical and Evolutionary Optimization Workshop

    CERN Document Server

    Trujillo, Leonardo; Legrand, Pierrick; Maldonado, Yazmin

    2017-01-01

    This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO) workshop held in September 2015 in Tijuana, Mexico. The development of powerful search and optimization techniques is of great importance in today’s world that requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known fields that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others. The goal of the NEO workshop series is to bring together people from these and related fields to discuss, compare and merge their complimentary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. Throu...

  9. Markov Networks in Evolutionary Computation

    CERN Document Server

    Shakya, Siddhartha

    2012-01-01

    Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs).  EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis. This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models. All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current researc...

  10. Rating the raters in a mixed model: An approach to deciphering the rater reliability

    Science.gov (United States)

    Shang, Junfeng; Wang, Yougui

    2013-05-01

    Rating the raters has attracted extensive attention in recent years. Ratings are quite complex in that the subjective assessment and a number of criteria are involved in a rating system. Whenever the human judgment is a part of ratings, the inconsistency of ratings is the source of variance in scores, and it is therefore quite natural for people to verify the trustworthiness of ratings. Accordingly, estimation of the rater reliability will be of great interest and an appealing issue. To facilitate the evaluation of the rater reliability in a rating system, we propose a mixed model where the scores of the ratees offered by a rater are described with the fixed effects determined by the ability of the ratees and the random effects produced by the disagreement of the raters. In such a mixed model, for the rater random effects, we derive its posterior distribution for the prediction of random effects. To quantitatively make a decision in revealing the unreliable raters, the predictive influence function (PIF) serves as a criterion which compares the posterior distributions of random effects between the full data and rater-deleted data sets. The benchmark for this criterion is also discussed. This proposed methodology of deciphering the rater reliability is investigated in the multiple simulated and two real data sets.

  11. Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy.

    Science.gov (United States)

    Delaforge, Elise; Kragelj, Jaka; Tengo, Laura; Palencia, Andrés; Milles, Sigrid; Bouvignies, Guillaume; Salvi, Nicola; Blackledge, Martin; Jensen, Malene Ringkjøbing

    2018-01-24

    Intrinsically disordered proteins (IDPs) display a large number of interaction modes including folding-upon-binding, binding without major structural transitions, or binding through highly dynamic, so-called fuzzy, complexes. The vast majority of experimental information about IDP binding modes have been inferred from crystal structures of proteins in complex with short peptides of IDPs. However, crystal structures provide a mainly static view of the complexes and do not give information about the conformational dynamics experienced by the IDP in the bound state. Knowledge of the dynamics of IDP complexes is of fundamental importance to understand how IDPs engage in highly specific interactions without concomitantly high binding affinity. Here, we combine rotating-frame R 1ρ , Carr-Purcell-Meiboom Gill relaxation dispersion as well as chemical exchange saturation transfer to decipher the dynamic interaction profile of an IDP in complex with its partner. We apply the approach to the dynamic signaling complex formed between the mitogen-activated protein kinase (MAPK) p38α and the intrinsically disordered regulatory domain of the MAPK kinase MKK4. Our study demonstrates that MKK4 employs a subtle combination of interaction modes in order to bind to p38α, leading to a complex displaying significantly different dynamics across the bound regions.

  12. Deciphering a unique biotin scavenging pathway with redundant genes in the probiotic bacterium Lactococcus lactis.

    Science.gov (United States)

    Zhang, Huimin; Wang, Qingjing; Fisher, Derek J; Cai, Mingzhu; Chakravartty, Vandana; Ye, Huiyan; Li, Ping; Solbiati, Jose O; Feng, Youjun

    2016-05-10

    Biotin protein ligase (BPL) is widespread in the three domains of the life. The paradigm BPL is the Escherichia coli BirA protein, which also functions as a repressor for the biotin biosynthesis pathway. Here we report that Lactococcus lactis possesses two different orthologues of birA (birA1_LL and birA2_LL). Unlike the scenario in E. coli, L. lactis appears to be auxotrophic for biotin in that it lacks a full biotin biosynthesis pathway. In contrast, it retains two biotin transporter-encoding genes (bioY1_LL and bioY2_LL), suggesting the use of a scavenging strategy to obtain biotin from the environment. The in vivo function of the two L. lactis birA genes was judged by their abilities to complement the conditional lethal E. coli birA mutant. Thin-layer chromatography and mass spectroscopy assays demonstrated that these two recombinant BirA proteins catalyze the biotinylation reaction of the acceptor biotin carboxyl carrier protein (BCCP), through the expected biotinoyl-AMP intermediate. Gel shift assays were used to characterize bioY1_LL and BirA1_LL. We also determined the ability to uptake (3)H-biotin by L. lactis. Taken together, our results deciphered a unique biotin scavenging pathway with redundant genes present in the probiotic bacterium L. lactis.

  13. Evolutionary primacy of sodium bioenergetics

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2008-04-01

    Full Text Available Abstract Background The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts and V-type (found in archaea, some bacteria, and eukaryotic vacuoles ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments. Results We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree. Conclusion Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions. Reviewers This article was reviewed by J. Peter Gogarten, Martijn A. Huynen, and Igor B. Zhulin. For the full reviews, please go to the Reviewers' comments section.

  14. Handbook of differential equations evolutionary equations

    CERN Document Server

    Dafermos, CM

    2008-01-01

    The material collected in this volume discusses the present as well as expected future directions of development of the field with particular emphasis on applications. The seven survey articles present different topics in Evolutionary PDE's, written by leading experts.- Review of new results in the area- Continuation of previous volumes in the handbook series covering Evolutionary PDEs- Written by leading experts

  15. On economic applications of evolutionary game theory

    OpenAIRE

    Daniel Friedman

    1998-01-01

    Evolutionary games have considerable unrealized potential for modeling substantive economic issues. They promise richer predictions than orthodox game models but often require more extensive specifications. This paper exposits the specification of evolutionary game models and classifies the possible asymptotic behavior for one and two dimensional models.

  16. Evolutionary principles and their practical application.

    Science.gov (United States)

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-03-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.

  17. Research traditions and evolutionary explanations in medicine.

    Science.gov (United States)

    Méthot, Pierre-Olivier

    2011-02-01

    In this article, I argue that distinguishing 'evolutionary' from 'Darwinian' medicine will help us assess the variety of roles that evolutionary explanations can play in a number of medical contexts. Because the boundaries of evolutionary and Darwinian medicine overlap to some extent, however, they are best described as distinct 'research traditions' rather than as competing paradigms. But while evolutionary medicine does not stand out as a new scientific field of its own, Darwinian medicine is united by a number of distinctive theoretical and methodological claims. For example, evolutionary medicine and Darwinian medicine can be distinguished with respect to the styles of evolutionary explanations they employ. While the former primarily involves 'forward looking' explanations, the latter depends mostly on 'backward looking' explanations. A forward looking explanation tries to predict the effects of ongoing evolutionary processes on human health and disease in contemporary environments (e.g., hospitals). In contrast, a backward looking explanation typically applies evolutionary principles from the vantage point of humans' distant biological past in order to assess present states of health and disease. Both approaches, however, are concerned with the prevention and control of human diseases. In conclusion, I raise some concerns about the claim that 'nothing in medicine makes sense except in the light of evolution'.

  18. Democratizing evolutionary biology, lessons from insects

    DEFF Research Database (Denmark)

    Dunn, Robert Roberdeau; Beasley, DeAnna E.

    2016-01-01

    The engagement of the public in the scientific process is an old practice. Yet with recent advances in technology, the role of the citizen scientist in studying evolutionary processes has increased. Insects provide ideal models for understanding these evolutionary processes at large scales. This ...

  19. A Hybrid Chaotic Quantum Evolutionary Algorithm

    DEFF Research Database (Denmark)

    Cai, Y.; Zhang, M.; Cai, H.

    2010-01-01

    A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....

  20. On the Evolutionary Stability of Bargaining Inefficiency

    DEFF Research Database (Denmark)

    Poulsen, Anders

    This paper investigates whether 'tough' bargaining behavior, which gives rise to inefficiency, can be evolutionary stable. We show that in a two-stage Nash Demand Game tough behavior survives. Indeed, almost all the surplus may be wasted. We also study the Ultimatum Game. Here evolutionary select...

  1. Calculating evolutionary dynamics in structured populations.

    Directory of Open Access Journals (Sweden)

    Charles G Nathanson

    2009-12-01

    Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.

  2. Unfair and Anomalous Evolutionary Dynamics from Fluctuating Payoffs

    Science.gov (United States)

    Stollmeier, Frank; Nagler, Jan

    2018-02-01

    Evolution occurs in populations of reproducing individuals. Reproduction depends on the payoff a strategy receives. The payoff depends on the environment that may change over time, on intrinsic uncertainties, and on other sources of randomness. These temporal variations in the payoffs can affect which traits evolve. Understanding evolutionary game dynamics that are affected by varying payoffs remains difficult. Here we study the impact of arbitrary amplitudes and covariances of temporally varying payoffs on the dynamics. The evolutionary dynamics may be "unfair," meaning that, on average, two coexisting strategies may persistently receive different payoffs. This mechanism can induce an anomalous coexistence of cooperators and defectors in the prisoner's dilemma, and an unexpected selection reversal in the hawk-dove game.

  3. Dinosaurs reveal the geographical signature of an evolutionary radiation.

    Science.gov (United States)

    O'Donovan, Ciara; Meade, Andrew; Venditti, Chris

    2018-03-01

    Dinosaurs dominated terrestrial ecosystems across the globe for over 100 million years and provide a classic example of an evolutionary radiation. However, little is known about how these animals radiated geographically to become globally distributed. Here, we use a biogeographical model to reconstruct the dinosaurs' ancestral locations, revealing the spatial mechanisms that underpinned this 170-million-year-long radiation. We find that dinosaurs spread rapidly initially, followed by a significant continuous and gradual reduction in their speed of movement towards the Cretaceous/Tertiary boundary (66 million years ago). This suggests that the predominant mode of dinosaur speciation changed through time with speciation originally largely driven by geographical isolation-when dinosaurs speciated more, they moved further. This was gradually replaced by increasing levels of sympatric speciation (species taking advantage of ecological opportunities within their existing environment) as terrestrial space became a limiting factor. Our results uncover the geographical signature of an evolutionary radiation.

  4. How Quasar Feedback May Shape the Co-evolutionary Paths

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Wako, E-mail: wako.ishibashi@physik.uzh.ch [Physik-Institut, University of Zurich, Zürich (Switzerland)

    2017-10-17

    Observations point toward some form of “co-evolutionary sequence,” from dust-enshrouded starbursts to luminous unobscured quasars. Active galactic nucleus (AGN) feedback is generally invoked to expel the obscuring dusty gas in a blow-out event, eventually revealing the hidden central quasar. However, the physical mechanism driving AGN feedback, either due to winds or radiation, remains uncertain and is still a source of much debate. We consider quasar feedback, based on radiation pressure on dust, which directly acts on the obscuring dusty gas. We show that AGN radiative feedback is capable of efficiently removing the obscuring cocoon, and driving powerful outflows on galactic scales, consistent with recent observations. I will discuss how such quasar feedback may provide a natural physical interpretation of the observed evolutionary path, and the physical implications in the broader context of black hole-host galaxy co-evolution.

  5. Evolutionary engineering to enhance starter culture performance in food fermentations.

    Science.gov (United States)

    Bachmann, Herwig; Pronk, Jack T; Kleerebezem, Michiel; Teusink, Bas

    2015-04-01

    Microbial starter cultures are essential for consistent product quality and functional properties such as flavor, texture, pH or the alcohol content of various fermented foods. Strain improvement programs to achieve desired properties in starter cultures are diverse, but developments in next-generation sequencing lead to an increased interest in evolutionary engineering of desired phenotypes. We here discuss recent developments of strain selection protocols and how computational approaches can assist such experimental design. Furthermore the analysis of evolved phenotypes and possibilities with complex consortia are highlighted. Studies carried out with mainly yeast and lactic acid bacteria demonstrate the power of evolutionary engineering to deliver strains with novel phenotypes as well as insight into underlying mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Integrating Evolutionary Game Theory into Mechanistic Genotype-Phenotype Mapping.

    Science.gov (United States)

    Zhu, Xuli; Jiang, Libo; Ye, Meixia; Sun, Lidan; Gragnoli, Claudia; Wu, Rongling

    2016-05-01

    Natural selection has shaped the evolution of organisms toward optimizing their structural and functional design. However, how this universal principle can enhance genotype-phenotype mapping of quantitative traits has remained unexplored. Here we show that the integration of this principle and functional mapping through evolutionary game theory gains new insight into the genetic architecture of complex traits. By viewing phenotype formation as an evolutionary system, we formulate mathematical equations to model the ecological mechanisms that drive the interaction and coordination of its constituent components toward population dynamics and stability. Functional mapping provides a procedure for estimating the genetic parameters that specify the dynamic relationship of competition and cooperation and predicting how genes mediate the evolution of this relationship during trait formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The evolutionary value of recombination is constrained by genome modularity.

    Directory of Open Access Journals (Sweden)

    Darren P Martin

    2005-10-01

    Full Text Available Genetic recombination is a fundamental evolutionary mechanism promoting biological adaptation. Using engineered recombinants of the small single-stranded DNA plant virus, Maize streak virus (MSV, we experimentally demonstrate that fragments of genetic material only function optimally if they reside within genomes similar to those in which they evolved. The degree of similarity necessary for optimal functionality is correlated with the complexity of intragenomic interaction networks within which genome fragments must function. There is a striking correlation between our experimental results and the types of MSV recombinants that are detectable in nature, indicating that obligatory maintenance of intragenome interaction networks strongly constrains the evolutionary value of recombination for this virus and probably for genomes in general.

  8. Ecological and evolutionary drivers of the elevational gradient of diversity.

    Science.gov (United States)

    Laiolo, Paola; Pato, Joaquina; Obeso, José Ramón

    2018-05-02

    Ecological, evolutionary, spatial and neutral theories make distinct predictions and provide distinct explanations for the mechanisms that control the relationship between diversity and the environment. Here, we test predictions of the elevational diversity gradient focusing on Iberian bumblebees, grasshoppers and birds. Processes mediated by local abundance and regional diversity concur in explaining local diversity patterns along elevation. Effects expressed through variation in abundance were similar among taxa and point to the overriding role of a physical factor, temperature. This determines how energy is distributed among individuals and ultimately how the resulting pattern of abundance affects species incidence. Effects expressed through variation in regional species pools depended instead on taxon-specific evolutionary history, and lead to diverging responses under similar environmental pressures. Local filters and regional variation also explain functional diversity gradients, in line with results from species richness that indicate an (local) ecological and (regional) historical unfolding of diversity-elevation relationships. © 2018 John Wiley & Sons Ltd/CNRS.

  9. Variants of Evolutionary Algorithms for Real-World Applications

    CERN Document Server

    Weise, Thomas; Michalewicz, Zbigniew

    2012-01-01

    Evolutionary Algorithms (EAs) are population-based, stochastic search algorithms that mimic natural evolution. Due to their ability to find excellent solutions for conventionally hard and dynamic problems within acceptable time, EAs have attracted interest from many researchers and practitioners in recent years. This book “Variants of Evolutionary Algorithms for Real-World Applications” aims to promote the practitioner’s view on EAs by providing a comprehensive discussion of how EAs can be adapted to the requirements of various applications in the real-world domains. It comprises 14 chapters, including an introductory chapter re-visiting the fundamental question of what an EA is and other chapters addressing a range of real-world problems such as production process planning, inventory system and supply chain network optimisation, task-based jobs assignment, planning for CNC-based work piece construction, mechanical/ship design tasks that involve runtime-intense simulations, data mining for the predictio...

  10. Comparison of evolutionary computation algorithms for solving bi ...

    Indian Academy of Sciences (India)

    failure probability. Multiobjective Evolutionary Computation algorithms (MOEAs) are well-suited for Multiobjective task scheduling on heterogeneous environment. The two Multi-Objective Evolutionary Algorithms such as Multiobjective Genetic. Algorithm (MOGA) and Multiobjective Evolutionary Programming (MOEP) with.

  11. An Evolutionary Genetic Perspective of Eating Disorders.

    Science.gov (United States)

    Mayhew, Alexandra J; Pigeyre, Marie; Couturier, Jennifer; Meyre, David

    2018-01-01

    Eating disorders (ED) including anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED) affect up to 5% of the population in Western countries. Risk factors for developing an ED include personality traits, family environment, gender, age, ethnicity, and culture. Despite being moderately to highly heritable with estimates ranging from 28 to 83%, no genetic risk factors have been conclusively identified. Our objective was to explore evolutionary theories of EDs to provide a new perspective on research into novel biological mechanisms and genetic causes of EDs. We developed a framework that explains the possible interactions between genetic risk and cultural influences in the development of ED. The framework includes three genetic predisposition categories (people with mainly AN restrictive gene variants, people with mainly BED variants, and people with gene variants predisposing to both diseases) and a binary variable of either the presence or absence of pressure to be thin. We propose novel theories to explain the overlapping characteristics of the subtypes of AN (binge/purge and restrictive), BN, and BED. For instance, mutations/structural gene variants in the same gene causing opposite effects or mutations in nearby genes resulting in partial disequilibrium for the genes causing AN (restrictive) and BED may explain the overlap of phenotypes seen in AN (binge/purge). © 2017 S. Karger AG, Basel.

  12. Evolutionary stability of sex chromosomes in snakes.

    Science.gov (United States)

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-12-22

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. © 2015 The Author(s).

  13. Evaluating alternative gait strategies using evolutionary robotics.

    Science.gov (United States)

    Sellers, William I; Dennis, Louise A; W -J, Wang; Crompton, Robin H

    2004-05-01

    Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robot is predefined and various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requirements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance parameters such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictions for modern humans are highly accurate in terms of energy cost for a given speed and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human-like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids.

  14. Possible evolutionary origins of cognitive brain lateralization.

    Science.gov (United States)

    Vallortigara, G; Rogers, L J; Bisazza, A

    1999-08-01

    Despite the substantial literature on the functional architecture of the asymmetries of the human brain, which has been accumulating for more than 130 years since Dax and Broca's early reports, the biological foundations of cerebral asymmetries are still poorly understood. Recent advances in comparative cognitive neurosciences have made available new animal models that have started to provide unexpected insights into the evolutionary origins and neuronal mechanisms of cerebral asymmetries. Animal model-systems, particularly those provided by the avian brain, highlight the interrelations of genetic, hormonal and environmental events to produce neural and behavioural asymmetries. Novel evidences showing that functional and structural lateralization of the brain is widespread among vertebrates (including fish, reptiles and amphibians) have accumulated rapidly. Perceptual asymmetries, in particular, seem to be ubiquitous in everyday behaviour of most species of animals with laterally placed eyes; in organisms with wider binocular overlap (e.g., amphibians), they appear to be retained for initial detection of stimuli in the extreme lateral fields. We speculate that adjustment of head position and eye movements may play a similar role in mammals with frontal vision as does the choice for right or left lateral visual fields in animals with laterally placed eyes. A first attempt to trace back the origins of brain asymmetry to early vertebrates is presented, based on the hypothesis that functional incompatibility between the logical demands associated with very basic cognitive functions is central to the phenomenon of cerebral lateralization.

  15. Comparison of some evolutionary algorithms for optimization of the path synthesis problem

    Science.gov (United States)

    Grabski, Jakub Krzysztof; Walczak, Tomasz; Buśkiewicz, Jacek; Michałowska, Martyna

    2018-01-01

    The paper presents comparison of the results obtained in a mechanism synthesis by means of some selected evolutionary algorithms. The optimization problem considered in the paper as an example is the dimensional synthesis of the path generating four-bar mechanism. In order to solve this problem, three different artificial intelligence algorithms are employed in this study.

  16. Recent and ancient recharge deciphered by multi-dating tracer technique

    Science.gov (United States)

    Dogramaci, Shawan; Cook, Peter; Mccallum, Jimes; Purtchert, Roland

    2017-04-01

    Determining groundwater residence time from environmental tracer concentrations obtained from open bores or long screened intervals is fraught with difficulty because the sampled water represents variety of ages. Information on the distribution of groundwater age is commonly obtained by measuring more than one tracer. We examined the use of the multi-tracer technique representing different time frames (39Ar, 85Kr, 14C, 3H, CFC 11- CFC-12 CFC-113, SF6 and Cl,) to decipher the groundwater ages sampled from long screened bores in a regional aquifer in the Pilbara region of northwest Australia. We then applied a technique that assumes limited details of the form of the age distribution. Tracer concentrations suggest that groundwater samples are a mixture of young and old water - the former is inferred to represent localised recharge from an adjacent creek, and the latter to be diffuse recharge. Using our method, we were able to identify distinct age components in the groundwater. The results suggest the presence of four distinct age groups; zero and 20 years, 50 to 100 years, 100 to 600 years and approximately 1000 years old. These relatively high recharge events were consistent with local recharge sources (50-100 years) and confirmed by palaeo-climate record obtained from lake sediments. We found that although the ages of these components were well constrained, the relative proportions of each component was highly sensitive to errors of environmental tracer data. Our results show that the method we implemented can identify distinct age groups in groundwater samples without prior knowledge of the age distribution. The presence of distinct recharge times gives insight into groundwater flow conditions over long periods of time.

  17. Deciphering the genomic architecture of the stickleback brain with a novel multilocus gene-mapping approach.

    Science.gov (United States)

    Li, Zitong; Guo, Baocheng; Yang, Jing; Herczeg, Gábor; Gonda, Abigél; Balázs, Gergely; Shikano, Takahito; Calboli, Federico C F; Merilä, Juha

    2017-03-01

    Quantitative traits important to organismal function and fitness, such as brain size, are presumably controlled by many small-effect loci. Deciphering the genetic architecture of such traits with traditional quantitative trait locus (QTL) mapping methods is challenging. Here, we investigated the genetic architecture of brain size (and the size of five different brain parts) in nine-spined sticklebacks (Pungitius pungitius) with the aid of novel multilocus QTL-mapping approaches based on a de-biased LASSO method. Apart from having more statistical power to detect QTL and reduced rate of false positives than conventional QTL-mapping approaches, the developed methods can handle large marker panels and provide estimates of genomic heritability. Single-locus analyses of an F 2 interpopulation cross with 239 individuals and 15 198, fully informative single nucleotide polymorphisms (SNPs) uncovered 79 QTL associated with variation in stickleback brain size traits. Many of these loci were in strong linkage disequilibrium (LD) with each other, and consequently, a multilocus mapping of individual SNPs, accounting for LD structure in the data, recovered only four significant QTL. However, a multilocus mapping of SNPs grouped by linkage group (LG) identified 14 LGs (1-6 depending on the trait) that influence variation in brain traits. For instance, 17.6% of the variation in relative brain size was explainable by cumulative effects of SNPs distributed over six LGs, whereas 42% of the variation was accounted for by all 21 LGs. Hence, the results suggest that variation in stickleback brain traits is influenced by many small-effect loci. Apart from suggesting moderately heritable (h 2  ≈ 0.15-0.42) multifactorial genetic architecture of brain traits, the results highlight the challenges in identifying the loci contributing to variation in quantitative traits. Nevertheless, the results demonstrate that the novel QTL-mapping approach developed here has distinctive advantages

  18. Comprehensive proteome profiling in Aedes albopictus to decipher Wolbachia-arbovirus interference phenomenon.

    Science.gov (United States)

    Saucereau, Yoann; Valiente Moro, Claire; Dieryckx, Cindy; Dupuy, Jean-William; Tran, Florence-Hélène; Girard, Vincent; Potier, Patrick; Mavingui, Patrick

    2017-08-18

    Aedes albopictus is a vector of arboviruses that cause severe diseases in humans such as Chikungunya, Dengue and Zika fevers. The vector competence of Ae. albopictus varies depending on the mosquito population involved and the virus transmitted. Wolbachia infection status in believed to be among key elements that determine viral transmission efficiency. Little is known about the cellular functions mobilized in Ae. albopictus during co-infection by Wolbachia and a given arbovirus. To decipher this tripartite interaction at the molecular level, we performed a proteome analysis in Ae. albopictus C6/36 cells mono-infected by Wolbachia wAlbB strain or Chikungunya virus (CHIKV), and bi-infected. We first confirmed significant inhibition of CHIKV by Wolbachia. Using two-dimensional gel electrophoresis followed by nano liquid chromatography coupled with tandem mass spectrometry, we identified 600 unique differentially expressed proteins mostly related to glycolysis, translation and protein metabolism. Wolbachia infection had greater impact on cellular functions than CHIKV infection, inducing either up or down-regulation of proteins associated with metabolic processes such as glycolysis and ATP metabolism, or structural glycoproteins and capsid proteins in the case of bi-infection with CHIKV. CHIKV infection inhibited expression of proteins linked with the processes of transcription, translation, lipid storage and miRNA pathways. The results of our proteome profiling have provided new insights into the molecular pathways involved in tripartite Ae. albopictus-Wolbachia-CHIKV interaction and may help defining targets for the better implementation of Wolbachia-based strategies for disease transmission control.

  19. Penguin Proxies: Deciphering Millennial-Scale Antarctic Ecosystem Change using Amino Acid Stable Isotope Analysis.

    Science.gov (United States)

    Michelson, C.; McMahon, K.; Emslie, S. D.; Patterson, W. P.; McCarthy, M. D.; Polito, M. J.

    2017-12-01

    The Southern Ocean ecosystem is undergoing rapid environmental change due to ongoing and historic anthropogenic impacts such as climate change and marine mammal harvesting. These disturbances may have cascading effects through the Antarctic food webs, resulting in profound shifts in the sources and cycling of organic matter supporting higher-trophic organisms, such as penguins. For example, bulk stable isotope analyses of modern and ancient preserved penguin tissues suggest variations in penguin feeding ecology throughout the Holocene with dramatic isotopic shifts in the last 200 years. However, it is not clear whether these isotopic shifts resulted from changes at the base of the food web, dietary shifts in penguins, or some combination of both factors. Newly developed compound-specific stable nitrogen isotope analysis of individual amino acids (CSIA-AA) may provide a powerful new tool to tease apart these confounding variables. Stable nitrogen isotope values of trophic amino acids (e.g., glutamic acid) increase substantially with each trophic transfer in the food web, while source amino acid (e.g., phenylalanine) stable nitrogen isotope values remain relatively unchanged and reflect ecosystem baselines. As such, we can use this CSIA-AA approach to decipher between baseline and dietary shifts in penguins over time from modern and ancient eggshells of Pygoscelis penguins in the Antarctic Peninsula and the Ross Sea regions of Antarctica. In order to accurately apply this CSIA-AA approach, we first characterized the trophic fractionation factors of individual amino acids between diet and penguin consumers in a long-term controlled penguin feeding experiment. We then applied these values to modern and ancient eggshells from the Antarctic Peninsula and Ross Sea to evaluate shifts in penguin trophic dynamics as a function of climate and anthropogenic interaction throughout much of the Holocene. This work develops a cutting edge new molecular geochemistry approach

  20. Phylogenetic inference with weighted codon evolutionary distances.

    Science.gov (United States)

    Criscuolo, Alexis; Michel, Christian J

    2009-04-01

    We develop a new approach to estimate a matrix of pairwise evolutionary distances from a codon-based alignment based on a codon evolutionary model. The method first computes a standard distance matrix for each of the three codon positions. Then these three distance matrices are weighted according to an estimate of the global evolutionary rate of each codon position and averaged into a unique distance matrix. Using a large set of both real and simulated codon-based alignments of nucleotide sequences, we show that this approach leads to distance matrices that have a significantly better treelikeness compared to those obtained by standard nucleotide evolutionary distances. We also propose an alternative weighting to eliminate the part of the noise often associated with some codon positions, particularly the third position, which is known to induce a fast evolutionary rate. Simulation results show that fast distance-based tree reconstruction algorithms on distance matrices based on this codon position weighting can lead to phylogenetic trees that are at least as accurate as, if not better, than those inferred by maximum likelihood. Finally, a well-known multigene dataset composed of eight yeast species and 106 codon-based alignments is reanalyzed and shows that our codon evolutionary distances allow building a phylogenetic tree which is similar to those obtained by non-distance-based methods (e.g., maximum parsimony and maximum likelihood) and also significantly improved compared to standard nucleotide evolutionary distance estimates.

  1. The Evolutionary Origins of Hierarchy.

    Science.gov (United States)

    Mengistu, Henok; Huizinga, Joost; Mouret, Jean-Baptiste; Clune, Jeff

    2016-06-01

    Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

  2. Evolutionary dynamics under interactive diversity

    Science.gov (United States)

    Su, Qi; Li, Aming; Wang, Long

    2017-10-01

    As evidenced by many cases in human societies, individuals often make different behavior decisions in different interactions, and adaptively adjust their behavior in changeable interactive scenarios. However, up to now, how such diverse interactive behavior affects cooperation dynamics has still remained unknown. Here we develop a general framework of interactive diversity, which models individuals’ separated behavior against distinct opponents and their adaptive adjustment in response to opponents’ strategies, to explore the evolution of cooperation. We find that interactive diversity enables individuals to reciprocate every single opponent, and thus sustains large-scale reciprocal interactions. Our work witnesses an impressive boost of cooperation for a notably extensive range of parameters and for all pairwise games. These results are robust against well-mixed and various networked populations, and against degree-normalized and cumulative payoff patterns. From the perspective of network dynamics, distinguished from individuals competing for nodes in most previous work, in this paper, the system evolves in the form of behavior disseminating along edges. We propose a theoretical method based on evolution of edges, which predicts well both the frequency of cooperation and the compact cooperation clusters. Our thorough investigation clarifies the positive role of interactive diversity in resolving social dilemmas and highlights the significance of understanding evolutionary dynamics from the viewpoint of edge dynamics.

  3. The Evolutionary Origins of Hierarchy

    Science.gov (United States)

    Huizinga, Joost; Clune, Jeff

    2016-01-01

    Hierarchical organization—the recursive composition of sub-modules—is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force–the cost of connections–promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics. PMID:27280881

  4. The Evolutionary Origins of Hierarchy.

    Directory of Open Access Journals (Sweden)

    Henok Mengistu

    2016-06-01

    Full Text Available Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments. Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

  5. Evolutionary games in the multiverse.

    Science.gov (United States)

    Gokhale, Chaitanya S; Traulsen, Arne

    2010-03-23

    Evolutionary game dynamics of two players with two strategies has been studied in great detail. These games have been used to model many biologically relevant scenarios, ranging from social dilemmas in mammals to microbial diversity. Some of these games may, in fact, take place between a number of individuals and not just between two. Here we address one-shot games with multiple players. As long as we have only two strategies, many results from two-player games can be generalized to multiple players. For games with multiple players and more than two strategies, we show that statements derived for pairwise interactions no longer hold. For two-player games with any number of strategies there can be at most one isolated internal equilibrium. For any number of players with any number of strategies , there can be at most isolated internal equilibria. Multiplayer games show a great dynamical complexity that cannot be captured based on pairwise interactions. Our results hold for any game and can easily be applied to specific cases, such as public goods games or multiplayer stag hunts.

  6. Evolutionary advantages of adaptive rewarding

    International Nuclear Information System (INIS)

    Szolnoki, Attila; Perc, Matjaž

    2012-01-01

    Our well-being depends on both our personal success and the success of our society. The realization of this fact makes cooperation an essential trait. Experiments have shown that rewards can elevate our readiness to cooperate, but since giving a reward inevitably entails paying a cost for it, the emergence and stability of such behavior remains elusive. Here we show that allowing for the act of rewarding to self-organize in dependence on the success of cooperation creates several evolutionary advantages that instill new ways through which collaborative efforts are promoted. Ranging from indirect territorial battle to the spontaneous emergence and destruction of coexistence, phase diagrams and the underlying spatial patterns reveal fascinatingly rich social dynamics that explain why this costly behavior has evolved and persevered. Comparisons with adaptive punishment, however, uncover an Achilles heel of adaptive rewarding, coming from over-aggression, which in turn hinders optimal utilization of network reciprocity. This may explain why, despite its success, rewarding is not as firmly embedded into our societal organization as punishment. (paper)

  7. Flourishing: An Evolutionary Concept Analysis.

    Science.gov (United States)

    Agenor, Christine; Conner, Norma; Aroian, Karen

    2017-11-01

    Mental health is an important measure of public health (WHO, 2004); however, nursing practice and research continues to prioritize mental illness, rather than well-being (Wand, 2011). Flourishing is a recent concept in the field of well-being. The term has been used sparingly in nursing practice and research, and conceptual clarification is needed to promote comprehensive understanding of the phenomenon. The purpose of this study is to critically analyze flourishing, assess the maturity of the concept, and provide recommendations for future research, education, and practice. The concept of flourishing was analyzed using the evolutionary approach to concept analysis (Rodgers, 2000). A search for articles on flourishing within the context of well-being was conducted through CINAHL, MEDLINE, and PsycINFO. A sample of 32 articles and 1 book was reviewed. Data were reviewed for concept attributes, antecedents, consequences, surrogate terms and related concepts. Four models of flourishing were identified with six overlapping attributes: meaning, positive relationships, engagement, competence, positive emotion, and self-esteem. Limited longitudinal and predictive studies have been conducted, but there is evidence for several antecedents and outcomes of flourishing. Research is ongoing primarily in psychology and sociology and is lacking in other disciplines. The concept of flourishing is immature; however, evidence is building for related concepts. A lack of consistent terminology regarding flourishing prevents knowledge development of flourishing as a distinct concept. Further multidisciplinary research is needed to establish standard operational and conceptual definitions and develop effective interventions.

  8. Imaging the Antikythera Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Malzbender, Thomas

    2012-02-10

    In 1900, a party of sponge divers chanced on the wreck of a Roman merchant vessel between Crete and mainland Greece. It was found to contain numerous ancient Greek treasures, among them a mysterious lump of clay that split open to reveal ‘mathematical gears’ as it dried out. This object is now known as the Antikythera Mechanism, one of the most enlightening artifacts in terms of revealing the advanced nature of ancient Greek science and technology. In 2005 we travelled to the National Archeological Museum in Athens to apply our Reflectance Imaging methods to the mechanism in the hopes of revealing ancient writing on the device. We were successful, and along with the results of Microfocus CT imaging, epigraphers were able to decipher 3000 characters.

  9. The ABCs of an evolutionary education science: The academic, behavioral, and cultural implications of an evolutionary approach to education theory and practice

    Science.gov (United States)

    Kauffman, Rick, Jr.

    Calls for improving research-informed policy in education are everywhere. Yet, while there is an increasing trend towards science-based practice, there remains little agreement over which of the sciences to consult and how to organize a collective effort between them. What Education lacks is a general theoretical framework through which policies can be constructed, implemented, and assessed. This dissertation submits that evolutionary theory can provide a suitable framework for coordinating educational policies and practice, and can provide the entire field of education with a clearer sense of how to better manage the learning environment. This dissertation explores two broad paths that outline the conceptual foundations for an Evolutionary Education Science: "Teaching Evolution" and "Using Evolution to Teach." Chapter 1 introduces both of these themes. After describing why evolutionary science is best suited for organizing education research and practice, Chapter 1 proceeds to "teach" an overview of the "evolutionary toolkit"---the mechanisms and principles that underlie the modern evolutionary perspective. The chapter then employs the "toolkit" in examining education from an evolutionary perspective, outlining the evolutionary precepts that can guide theorizing and research in education, describing how educators can "use evolution to teach.". Chapters 2-4 expand on this second theme. Chapters 2 and 3 describe an education program for at-risk 9th and 10th grade students, the Regents Academy, designed entirely with evolutionary principles in mind. The program was rigorously assessed in a randomized control design and has demonstrated success at improving students' academic performance (Chapter 2) and social & behavioral development (Chapter 3). Chapter 4 examines current teaching strategies that underlie effective curriculum-instruction-assessment practices and proposes a framework for organizing successful, evidence-based strategies for neural

  10. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    Science.gov (United States)

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evolutionary theory and the naturalist fallacy

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh

    2008-01-01

    that great work of art are also automatically fitness-enhancing in the present day environment, at that there are simple correllations between whether a work of art has a high aesthetic value and whether it is fitness-enhancing or not.  Keywords :  Evolutionary aesthetics, film theory, literary theory......The article is an invited response to a target article by Joseph Carroll entitled "An evolutionary paradigm for literary study". It argues that the target article  misuse the fact that works of art are based on adaptations that were fitness-enhancing in the era of evolutionary adaptations to claim...

  12. Genetic approaches in comparative and evolutionary physiology

    Science.gov (United States)

    Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore

    2015-01-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111

  13. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells

    OpenAIRE

    Lola Boutin; Lola Boutin; Emmanuel Scotet; Emmanuel Scotet

    2018-01-01

    Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg), such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the e...

  14. Deciphering mechanisms of malathion toxicity under pulse exposure of the freshwater cladoceran Daphnia magna

    DEFF Research Database (Denmark)

    Trác, Ngoc Lâm; Andersen, Ole; Palmqvist, Annemette

    2016-01-01

    ; enzyme activities of acetylcholinesterase (AChE), carboxylesterase (CbE), and glutathione S-transferase (GST); and AChE gene expression. The results showed no difference in survival among equivalent integrated doses. Adverse sublethal effects were driven by exposure concentration rather than pulse...... duration. Specifically, short pulse exposure to a high concentration of malathion resulted in more immobilized daphnids, lower AChE and CbE activities, and a higher transcript level ofAChE gene compared with long pulse exposure to low concentration. The expression of the AChE gene was up...

  15. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  16. [Narcissism in the world of Facebook. An evolutionary psychopathological interpretation].

    Science.gov (United States)

    Szekeres, Adám; Tisljár, Roland

    2013-01-01

    In the last few decades there has been a considerable increase in the levels of narcissism among the population of individualistic, western cultures. The phenomena of narcissism induced a large number of psychological researches, some of which approaches the issue from changes in environmental factors. The modern environment of these days is substantially different from the one to which our ancestors have adapted over millions of years of evolution. The research results of narcissism from the perspective of evolutionary psychopathology approach have yet to integrate.The present review focuses on two studies and empirical findings induced by them in which an attempt is made to explore the evolutionary origins of narcissism. Relating to these studies we present the main mechanisms by which evolution may have played a role in the development and maintenance of narcissism. One of the significant elements of the current, changing social environment allowing virtual contacts is the social networking site called Facebook. Following the presentation of the main features of the site we discuss research results in connection with narcissistic traits and Facebook usage. Finally an attempt is made to integrate these findings into an evolutionary psychopathological framework.

  17. An evolutionary perspective on anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    David John Klinke

    2013-01-01

    Full Text Available The challenges associated with demonstrating a durable response using molecular targeted therapies in cancer has sparked a renewed interest in viewing cancer from an evolutionary perspective. Evolutionary processes have three common traits: heterogeneity, dynamics, and a selective fitness landscape. Mutagens randomly alter the genome of host cells creating a population of cells that contain different somatic mutations. This genomic rearrangement perturbs cellular homeostasis through changing how cells interact with their tissue microenvironment. To counterbalance the ability of mutated cells to outcompete for limited resources, control structures are encoded within the cell and within the organ system, such as innate and adaptive immunity, to restore cellular homeostasis. These control structures shape the selective fitness landscape and determine whether a cell that harbors particular somatic mutations is retained or eliminated from a cell population. While next-generation sequencing has revealed the complexity and heterogeneity of oncogenic transformation, understanding the dynamics of oncogenesis and how cancer cells alter the selective fitness landscape remain unclear. In this technology review, we will summarize how recent advances in technology have impacted our understanding of these three attributes of cancer as an evolutionary process. In particular, we will focus on how advances in genome sequencing have enabled quantifying cellular heterogeneity, advances in computational power have enabled explicit testing of postulated intra- and intercellular control structures against the available data using simulation, and advances in proteomics have enabled identifying novel mechanisms of cellular cross-talk that cancer cells use to alter the fitness landscape.

  18. Evolutionary model of the growth and size of firms

    Science.gov (United States)

    Kaldasch, Joachim

    2012-07-01

    The key idea of this model is that firms are the result of an evolutionary process. Based on demand and supply considerations the evolutionary model presented here derives explicitly Gibrat's law of proportionate effects as the result of the competition between products. Applying a preferential attachment mechanism for firms, the theory allows to establish the size distribution of products and firms. Also established are the growth rate and price distribution of consumer goods. Taking into account the characteristic property of human activities to occur in bursts, the model allows also an explanation of the size-variance relationship of the growth rate distribution of products and firms. Further the product life cycle, the learning (experience) curve and the market size in terms of the mean number of firms that can survive in a market are derived. The model also suggests the existence of an invariant of a market as the ratio of total profit to total revenue. The relationship between a neo-classic and an evolutionary view of a market is discussed. The comparison with empirical investigations suggests that the theory is able to describe the main stylized facts concerning the size and growth of firms.

  19. Extended evolutionary psychology: the importance of transgenerational developmental plasticity

    Directory of Open Access Journals (Sweden)

    Karola eStotz

    2014-08-01

    Full Text Available What kind mechanisms one deems central for the evolutionary process deeply influences one’s understanding of the nature of organisms, including cognition. Reversely, adopting a certain approach to the nature of life and cognition and the relationship between them or between the organism and its environment should affect one’s view of evolutionary theory. This paper explores this reciprocal relationship in more detail. In particular it argues that the view of living and cognitive systems, especially humans, as deeply integrated beings embedded in and transformed by their genetic, epigenetic (molecular and cellular, behavioral, ecological, socio-cultural and cognitive-symbolic legacies calls for an extended evolutionary synthesis that goes beyond either a theory of genes juxtaposed against a theory of cultural evolution and or even more sophisticated theories of gene-culture coevolution and niche construction. Environments, particularly in the form of developmental environments, do not just select for variation, they also create new variation by influencing development through the reliable transmission of non-genetic but heritable information. This paper stresses particularly views of embodied, embedded, enacted and extended cognition, and their relationship to those aspects of extended inheritance that lie between genetic and cultural inheritance, the still grey area of epigenetic and behavioral inheritance systems that play a role in parental effect. These are the processes that can be regarded as transgenerational developmental plasticity and that I think can most fruitfully contribute to, and be investigated by, developmental psychology.

  20. Extended evolutionary psychology: the importance of transgenerational developmental plasticity.

    Science.gov (United States)

    Stotz, Karola

    2014-01-01

    What kind mechanisms one deems central for the evolutionary process deeply influences one's understanding of the nature of organisms, including cognition. Reversely, adopting a certain approach to the nature of life and cognition and the relationship between them or between the organism and its environment should affect one's view of evolutionary theory. This paper explores this reciprocal relationship in more detail. In particular it argues that the view of living and cognitive systems, especially humans, as deeply integrated beings embedded in and transformed by their genetic, epigenetic (molecular and cellular), behavioral, ecological, socio-cultural and cognitive-symbolic legacies calls for an extended evolutionary synthesis that goes beyond either a theory of genes juxtaposed against a theory of cultural evolution and or even more sophisticated theories of gene-culture coevolution and niche construction. Environments, particularly in the form of developmental environments, do not just select for variation, they also create new variation by influencing development through the reliable transmission of non-genetic but heritable information. This paper stresses particularly views of embodied, embedded, enacted and extended cognition, and their relationship to those aspects of extended inheritance that lie between genetic and cultural inheritance, the still gray area of epigenetic and behavioral inheritance systems that play a role in parental effect. These are the processes that can be regarded as transgenerational developmental plasticity and that I think can most fruitfully contribute to, and be investigated by, developmental psychology.

  1. Does sex speed up evolutionary rate and increase biodiversity?

    Directory of Open Access Journals (Sweden)

    Carlos J Melián

    Full Text Available Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.

  2. Does sex speed up evolutionary rate and increase biodiversity?

    Science.gov (United States)

    Melián, Carlos J; Alonso, David; Allesina, Stefano; Condit, Richard S; Etienne, Rampal S

    2012-01-01

    Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.

  3. Evolutionary game dynamics in a growing structured population

    Energy Technology Data Exchange (ETDEWEB)

    Poncela, Julia; Gomez-Gardenes, Jesus; Moreno, Yamir [Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, E-50009 Zaragoza (Spain); Traulsen, Arne [Emmy-Noether Group for Evolutionary Dynamics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen (Germany)], E-mail: traulsen@evolbio.mpg.de

    2009-08-15

    We discuss a model for evolutionary game dynamics in a growing, network-structured population. In our model, new players can either make connections to random preexisting players or preferentially attach to those that have been successful in the past. The latter depends on the dynamics of strategies in the game, which we implement following the so-called Fermi rule such that the limits of weak and strong strategy selection can be explored. Our framework allows to address general evolutionary games. With only two parameters describing the preferential attachment and the intensity of selection, we describe a wide range of network structures and evolutionary scenarios. Our results show that even for moderate payoff preferential attachment, over represented hubs arise. Interestingly, we find that while the networks are growing, high levels of cooperation are attained, but the same network structure does not promote cooperation as a static network. Therefore, the mechanism of payoff preferential attachment is different to those usually invoked to explain the promotion of cooperation in static, already-grown networks.

  4. Evolutionary game dynamics in a growing structured population

    International Nuclear Information System (INIS)

    Poncela, Julia; Gomez-Gardenes, Jesus; Moreno, Yamir; Traulsen, Arne

    2009-01-01

    We discuss a model for evolutionary game dynamics in a growing, network-structured population. In our model, new players can either make connections to random preexisting players or preferentially attach to those that have been successful in the past. The latter depends on the dynamics of strategies in the game, which we implement following the so-called Fermi rule such that the limits of weak and strong strategy selection can be explored. Our framework allows to address general evolutionary games. With only two parameters describing the preferential attachment and the intensity of selection, we describe a wide range of network structures and evolutionary scenarios. Our results show that even for moderate payoff preferential attachment, over represented hubs arise. Interestingly, we find that while the networks are growing, high levels of cooperation are attained, but the same network structure does not promote cooperation as a static network. Therefore, the mechanism of payoff preferential attachment is different to those usually invoked to explain the promotion of cooperation in static, already-grown networks.

  5. Testing the ecological consequences of evolutionary change using elements.

    Science.gov (United States)

    Jeyasingh, Punidan D; Cothran, Rickey D; Tobler, Michael

    2014-02-01

    Understanding the ecological consequences of evolutionary change is a central challenge in contemporary biology. We propose a framework based on the ˜25 elements represented in biology, which can serve as a conduit for a general exploration of poorly understood evolution-to-ecology links. In this framework, known as ecological stoichiometry, the quantity of elements in the inorganic realm is a fundamental environment, while the flow of elements from the abiotic to the biotic realm is due to the action of genomes, with the unused elements excreted back into the inorganic realm affecting ecological processes at higher levels of organization. Ecological stoichiometry purposefully assumes distinct elemental composition of species, enabling powerful predictions about the ecological functions of species. However, this assumption results in a simplified view of the evolutionary mechanisms underlying diversification in the elemental composition of species. Recent research indicates substantial intraspecific variation in elemental composition and associated ecological functions such as nutrient excretion. We posit that attention to intraspecific variation in elemental composition will facilitate a synthesis of stoichiometric information in light of population genetics theory for a rigorous exploration of the ecological consequences of evolutionary change.

  6. Phanerozoic changes in hardpart availability and utilization in benthic communities: evolutionary ecology or evolutionary stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, S.M.

    1985-01-01

    Published experiments on modern communities and quantitative data from Miocene assemblages indicate that the accumulation of dead hardparts can drive specific changes in the composition of benthic communities (taphonomic feedback). Both opportunities and pathways of taphonomic feedback have changed over the Phanerozoic, however, owing to the evolution and environmental expansion of hardpart producers, utilizers, and destroyers. These changes were tracked using semi-quantitative estimates of hardpart availability based on familial diversity of the most abundant taxa, scored according to preservation potential at or near the seafloor. The data suggest a dramatic increase in hardpart availability from the Cambrian into the later Paleozoic, with a decline through the Mesozoic and Cenozoic related to the loss or dramatic reduction in calcitic epifauna, recliners on soft substrata, and large shelled nekton/plankton. The reduction in opportunities for taphonomic feedback among epifauna was accompanied by an increase in levels of infaunal interactions in the Cenozoic, which is characterized by fully three-dimensional shell gravels. In addition to evolutionary change in body sizes of hardpart producers and biotically-driven declines in certain benthic life habits, the change in pathways of taphonomic feedback was also a consequence of the large-scale shift from predominantly carbonate sedimentation in the Paleozoic to predominantly terrigenous sedimentation in the Cenozoic. For example, the waning of epifauna-dominated communities is closely associated with the restriction of level-bottom carbonate environments through the late Mesozoic and Cenozoic. The global evolution of sedimentary environments and their relative representation is important not only in its consequences for sampling but as a driving mechanism of evolutionary ecology of marine benthos.

  7. Evolutionary biology and life histories

    Directory of Open Access Journals (Sweden)

    Brown, C. R.

    2004-06-01

    Full Text Available The demographic processes that drive the spread of populations through environments and in turn determine the abundance of organisms are the same demographic processes that drive the spread of genes through populations and in turn determine gene frequencies and fitness. Conceptually, marked similarities exist in the dynamic processes underlying population ecology and those underlying evolutionary biology. Central to an understanding of both disciplines is life history and its component demographic rates, such as survival, fecundity, and age of first breeding, and biologists from both fields have a vested interest in good analytical machinery for the estimation and analysis of these demographic rates. In the EURING conferences, we have been striving since the mid 1980s to promote a quantitative understanding of demographic rates through interdisciplinary collaboration between ecologists and statisticians. From the ecological side, the principal impetus has come from population biology, and in particular from wildlife biology, but the importance of good quantitative insights into demographic processes has long been recognized by a number of evolutionary biologists (e.g., Nichols & Kendall, 1995; Clobert, 1995; Cooch et al., 2002. In organizing this session, we have aimed to create a forum for those committed to gaining the best possible understanding of evolutionary processes through the application of modern quantitative methods for the collection and interpretation of data on marked animal populations. Here we present a short overview of the material presented in the session on evolutionary biology and life histories. In a plenary talk, Brown & Brown (2004 explored how mark–recapture methods have allowed a better understanding of the evolution of group–living and alternative reproductive tactics in colonial cliff swallows (Petrochelidon pyrrhonota. By estimating the number of transient birds passing through colonies of different sizes, they

  8. [Evolutionary Concept Analysis of Spirituality].

    Science.gov (United States)

    Ko, Il Sun; Choi, So Young; Kim, Jin Sook

    2017-04-01

    This study was done to clarify attributes, antecedents, and consequences of spirituality. Rodgers's evolutionary concept analysis was used to analyze fifty seven studies from the literature related to spirituality as it appears in systematic literature reviews of theology, medicine, counseling & psychology, social welfare, and nursing. Spirituality was found to consist of two dimensions and eight attributes: 1) vertical dimension: 'intimacy and connectedness with God' and 'holy life and belief', 2) horizontal dimension: 'self-transcendence', 'meaning and purpose in life', 'self-integration', and 'self-creativity' in relationship with self, 'connectedness' and 'trust' in relationship with others·neighbors·nature. Antecedents of spirituality were socio-demographic, religious, psychological, and health related characteristics. Consequences of spirituality were positive and negative. Being positive included 'life centered on God' in vertical dimension, and among horizontal dimension 'joy', 'hope', 'wellness', 'inner peace', and 'self-actualization' in relationship with self, 'doing in love' and 'extended life toward neighbors and the world' in relationship with others·neighbors·nature. Being negative was defined as having 'guilt', 'inner conflict', 'loneliness', and 'spiritual distress'. Facilitators of spirituality were stressful life events and experiences. Spirituality is a multidimensional concept. Unchangeable attributes of spirituality are 'connectedness with God', 'self-transcendence', 'meaning of life' and 'connectedness with others·nature'. Unchangeable consequences of spirituality are 'joy' and 'hope'. The findings suggest that the dimensional framework of spirituality can be used to assess the current spiritual state of patients. Based on these results, the development of a Korean version of the scale measuring spirituality is recommended. © 2017 Korean Society of Nursing Science

  9. Evolutionary Transgenomics: prospects and challenges

    Directory of Open Access Journals (Sweden)

    Raul eCorrea

    2015-10-01

    Full Text Available AbstractMany advances in our understanding of the genetic basis of species differences have arisen from transformation experiments, which allow us to study the effect of genes from one species (the donor when placed in the genetic background of another species (the recipient. Such interspecies transformation experiments are usually focused on candidate genes – genes that, based on work in model systems, are suspected to be responsible for certain phenotypic differences between the donor and recipient species. We suggest that the high efficiency of transformation in a few plant species, most notably Arabidopsis thaliana, combined with the small size of typical plant genes and their cis-regulatory regions allow implementation of a screening strategy that does not depend upon a priori candidate gene identification. This approach, transgenomics, entails moving many large genomic inserts of a donor species into the wild type background of a recipient species and then screening for dominant phenotypic effects. As a proof of concept, we recently conducted a transgenomic screen that analyzed more than 1100 random, large genomic inserts of the Alabama gladecress Leavenworthia alabamica for dominant phenotypic effects in the A. thaliana background. This screen identified one insert that shortens fruit and decreases A. thaliana fertility. In this paper we discuss the principles of transgenomic screens and suggest methods to help minimize the frequencies of false positive and false negative results. We argue that, because transgenomics avoids committing in advance to candidate genes it has the potential to help us identify truly novel genes or cryptic functions of known genes. Given the valuable knowledge that is likely to be gained, we believe the time is ripe for the plant evolutionary community to invest in transgenomic screens, at least in the mustard family Brassicaceae Burnett where many species are amenable to efficient transformation.

  10. Evolutionary relevance facilitates visual information processing.

    Science.gov (United States)

    Jackson, Russell E; Calvillo, Dusti P

    2013-11-03

    Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  11. Evolutionary Relevance Facilitates Visual Information Processing

    Directory of Open Access Journals (Sweden)

    Russell E. Jackson

    2013-07-01

    Full Text Available Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  12. Evolutionary algorithms for mobile ad hoc networks

    CERN Document Server

    Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal

    2014-01-01

    Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...

  13. Evolutionary medicine: its scope, interest and potential.

    Science.gov (United States)

    Stearns, Stephen C

    2012-11-07

    This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host-pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous.

  14. Exploitation of linkage learning in evolutionary algorithms

    CERN Document Server

    Chen, Ying-ping

    2010-01-01

    The exploitation of linkage learning is enhancing the performance of evolutionary algorithms. This monograph examines recent progress in linkage learning, with a series of focused technical chapters that cover developments and trends in the field.

  15. Evolutionary Robotics: What, Why, and Where to

    Directory of Open Access Journals (Sweden)

    Stephane eDoncieux

    2015-03-01

    Full Text Available Evolutionary robotics applies the selection, variation, and heredity principles of natural evolution to the design of robots with embodied intelligence. It can be considered as a subfield of robotics that aims to create more robust and adaptive robots. A pivotal feature of the evolutionary approach is that it considers the whole robot at once, and enables the exploitation of robot features in a holistic manner. Evolutionary robotics can also be seen as an innovative approach to the study of evolution based on a new kind of experimentalism. The use of robots as a substrate can help address questions that are difficult, if not impossible, to investigate through computer simulations or biological studies. In this paper we consider the main achievements of evolutionary robotics, focusing particularly on its contributions to both engineering and biology. We briefly elaborate on methodological issues, review some of the most interesting findings, and discuss important open issues and promising avenues for future work.

  16. Mean-Potential Law in Evolutionary Games

    Science.gov (United States)

    Nałecz-Jawecki, Paweł; Miekisz, Jacek

    2018-01-01

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  17. Hybridizing Evolutionary Algorithms with Opportunistic Local Search

    DEFF Research Database (Denmark)

    Gießen, Christian

    2013-01-01

    There is empirical evidence that memetic algorithms (MAs) can outperform plain evolutionary algorithms (EAs). Recently the first runtime analyses have been presented proving the aforementioned conjecture rigorously by investigating Variable-Depth Search, VDS for short (Sudholt, 2008). Sudholt...

  18. Genetic variations and evolutionary relationships among radishes ...

    African Journals Online (AJOL)

    vera 1

    To determine the genetic diversity and evolutionary relationships among red radishes, 37 accessions ... determined that plant height, fresh leaf weight, and root ... Flower-shaped. Red .... according to Levan's karyotype classification standards.

  19. Evolutionary genetics: 150 years of natural selection

    Indian Academy of Sciences (India)

    This year marks a hundred and fifty years since the formal enunciation of the ... publication of R. A. Fisher's landmark paper reconciling the statistical results of the ... applications of evolutionary thinking that has emerged over the past fifteen.

  20. Evolutionary principles and their practical application

    DEFF Research Database (Denmark)

    Hendry, A. P.; Kinnison, M. T.; Heino, M.

    2011-01-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles...... are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design...... of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently...

  1. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Lamour, Kurt H [ORNL; McDonald, W Hayes [ORNL; Savidor, Alon [ORNL

    2006-01-01

    Genome sequences of the soybean pathogen, Phytophthora sojae, and the sudden oak death pathogen, Phytophthora ramorum, suggest a photosynthetic past and reveal recent massive expansion and diversification of potential pathogenicity gene families. Abstract: Draft genome sequences of the soybean pathogen, Phytophthora sojae, and the sudden oak death pathogen, Phytophthora ramorum, have been determined. O mycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms and the presence of many Phytophthora genes of probable phototroph origin support a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors and, in particular, a superfamily of 700 proteins with similarity to known o mycete avirulence genes.

  2. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Brett M.; Tripathy, Sucheta; Zhang, Xuemin; Dehal, Paramvir; Jiang, Rays H. Y.; Aerts, Andrea; Arredondo, Felipe D.; Baxter, Laura; Bensasson, Douda; Beynon, JIm L.; Chapman, Jarrod; Damasceno, Cynthia M. B.; Dorrance, Anne E.; Dou, Daolong; Dickerman, Allan W.; Dubchak, Inna L.; Garbelotto, Matteo; Gijzen, Mark; Gordon, Stuart G.; Govers, Francine; Grunwald, NIklaus J.; Huang, Wayne; Ivors, Kelly L.; Jones, Richard W.; Kamoun, Sophien; Krampis, Konstantinos; Lamour, Kurt H.; Lee, Mi-Kyung; McDonald, W. Hayes; Medina, Monica; Meijer, Harold J. G.; Nordberg, Erik K.; Maclean, Donald J.; Ospina-Giraldo, Manuel D.; Morris, Paul F.; Phuntumart, Vipaporn; Putnam, Nicholas J.; Rash, Sam; Rose, Jocelyn K. C.; Sakihama, Yasuko; Salamov, Asaf A.; Savidor, Alon; Scheuring, Chantel F.; Smith, Brian M.; Sobral, Bruno W. S.; Terry, Astrid; Torto-Alalibo, Trudy A.; Win, Joe; Xu, Zhanyou; Zhang, Hongbin; Grigoriev, Igor V.; Rokhsar, Daniel S.; Boore, Jeffrey L.

    2006-04-17

    Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oömycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.

  3. Evolutionary Game Theory Analysis of Tumor Progression

    Science.gov (United States)

    Wu, Amy; Liao, David; Sturm, James; Austin, Robert

    2014-03-01

    Evolutionary game theory applied to two interacting cell populations can yield quantitative prediction of the future densities of the two cell populations based on the initial interaction terms. We will discuss how in a complex ecology that evolutionary game theory successfully predicts the future densities of strains of stromal and cancer cells (multiple myeloma), and discuss the possible clinical use of such analysis for predicting cancer progression. Supported by the National Science Foundation and the National Cancer Institute.

  4. Endogenous money: the evolutionary versus revolutionary views

    OpenAIRE

    Louis-Philippe Rochon; Sergio Rossi

    2013-01-01

    The purpose of this paper is to shed light on the endogenous nature of money. Contrary to the established post-Keynesian, or evolutionary, view, this paper argues that money has always been endogenous, irrespective of the historical period. Instead of the evolutionary theory of money and banking that can be traced back to Chick (1986), this paper puts forward a revolutionary definition of endogenous money consistent with many aspects of post-Keynesian economics as well as with the monetary ci...

  5. Avoiding Local Optima with Interactive Evolutionary Robotics

    Science.gov (United States)

    2012-07-09

    the top of a flight of stairs selects for climbing ; suspending the robot and the target object above the ground and creating rungs between the two will...REPORT Avoiding Local Optimawith Interactive Evolutionary Robotics 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The main bottleneck in evolutionary... robotics has traditionally been the time required to evolve robot controllers. However with the continued acceleration in computational resources, the

  6. Applied evolutionary economics and economic geography

    OpenAIRE

    Peter Sunley

    2008-01-01

    Applied Evolutionary Economics and Economic Geography aims to further advance empirical methodologies in evolutionary economics, with a special emphasis on geography and firm location. It does so by bringing together a select group of leading scholars including economists, geographers and sociologists, all of whom share an interest in explaining the uneven distribution of economic activities in space and the historical processes that have produced these patterns.

  7. On the evolution of misunderstandings about evolutionary psychology.

    Science.gov (United States)

    Young, J; Persell, R

    2000-04-01

    Some of the controversy surrounding evolutionary explanations of human behavior may be due to cognitive information-processing patterns that are themselves the result of evolutionary processes. Two such patterns are (1) the tendency to oversimplify information so as to reduce demand on cognitive resources and (2) our strong desire to generate predictability and stability from perceptions of the external world. For example, research on social stereotyping has found that people tend to focus automatically on simplified social-categorical information, to use such information when deciding how to behave, and to rely on such information even in the face of contradictory evidence. Similarly, an undying debate over nature vs. nurture is shaped by various data-reduction strategies that frequently oversimplify, and thus distort, the intent of the supporting arguments. This debate is also often marked by an assumption that either the nature or the nurture domain may be justifiably excluded at an explanatory level because one domain appears to operate in a sufficiently stable and predictable way for a particular argument. As a result, critiques in-veighed against evolutionary explanations of behavior often incorporate simplified--and erroneous--assumptions about either the mechanics of how evolution operates or the inevitable implications of evolution for understanding human behavior. The influences of these tendencies are applied to a discussion of the heritability of behavioral characteristics. It is suggested that the common view that Mendelian genetics can explain the heritability of complex behaviors, with a one-gene-one-trait process, is misguided. Complex behaviors are undoubtedly a product of a more complex interaction between genes and environment, ensuring that both nature and nurture must be accommodated in a yet-to-be-developed post-Mendelian model of genetic influence. As a result, current public perceptions of evolutionary explanations of behavior are

  8. Theoretical Insights into the Biophysics of Protein Bi-stability and Evolutionary Switches.

    Directory of Open Access Journals (Sweden)

    Tobias Sikosek

    2016-06-01

    Full Text Available Deciphering the effects of nonsynonymous mutations on protein structure is central to many areas of biomedical research and is of fundamental importance to the study of molecular evolution. Much of the investigation of protein evolution has focused on mutations that leave a protein's folded structure essentially unchanged. However, to evolve novel folds of proteins, mutations that lead to large conformational modifications have to be involved. Unraveling the basic biophysics of such mutations is a challenge to theory, especially when only one or two amino acid substitutions cause a large-scale conformational switch. Among the few such mutational switches identified experimentally, the one between the GA all-α and GB α+β folds is extensively characterized; but all-atom simulations using fully transferrable potentials have not been able to account for this striking switching behavior. Here we introduce an explicit-chain model that combines structure-based native biases for multiple alternative structures with a general physical atomic force field, and apply this construct to twelve mutants spanning the sequence variation between GA and GB. In agreement with experiment, we observe conformational switching from GA to GB upon a single L45Y substitution in the GA98 mutant. In line with the latent evolutionary potential concept, our model shows a gradual sequence-dependent change in fold preference in the mutants before this switch. Our analysis also indicates that a sharp GA/GB switch may arise from the orientation dependence of aromatic π-interactions. These findings provide physical insights toward rationalizing, predicting and designing evolutionary conformational switches.

  9. Structure and stability insights into tumour suppressor p53 evolutionary related proteins.

    Directory of Open Access Journals (Sweden)

    Bruno Pagano

    Full Text Available The p53 family of genes and their protein products, namely, p53, p63 and p73, have over one billion years of evolutionary history. Advances in computational biology and genomics are enabling studies of the complexities of the molecular evolution of p53 protein family to decipher the underpinnings of key biological conditions spanning from cancer through to various metabolic and developmental disorders and facilitate the design of personalised medicines. However, a complete understanding of the inherent nature of the thermodynamic and structural stability of the p53 protein family is still lacking. This is due, to a degree, to the lack of comprehensive structural information for a large number of homologous proteins and to an incomplete knowledge of the intrinsic factors responsible for their stability and how these might influence function. Here we investigate the thermal stability, secondary structure and folding properties of the DNA-binding domains (DBDs of a range of proteins from the p53 family using biophysical methods. While the N- and the C-terminal domains of the p53 family show sequence diversity and are normally targets for post-translational modifications and alternative splicing, the central DBD is highly conserved. Together with data obtained from Molecular Dynamics simulations in solution and with structure based homology modelling, our results provide further insights into the molecular properties of evolutionary related p53 proteins. We identify some marked structural differences within the p53 family, which could account for the divergence in biological functions as well as the subtleties manifested in the oligomerization properties of this family.

  10. Deciphering long-term records of natural variability and human impact as recorded in lake sediments: a palaeolimnological puzzle

    DEFF Research Database (Denmark)

    Mills, Keely; Schillereff, Daniel; Saulnier-Talbot, Émilie

    2017-01-01

    that is particularly acute when considering management options for aquatic ecosystems. The duration and timing of human impacts on lake systems varies geographically, with some regions of the world (such as Africa and South America) having a longer legacy of human impact than others (e.g., New Zealand). A wide array...... of techniques (biological, chemical, physical and statistical) is available to palaeolimnologists to allow the deciphering of complex sedimentary records. Lake sediments are an important archive of how drivers have changed through time, and how these impacts manifest in lake systems. With a paucity of ‘real...

  11. Evolutionary cell biology: two origins, one objective.

    Science.gov (United States)

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  12. Evolutionary computation in zoology and ecology.

    Science.gov (United States)

    Boone, Randall B

    2017-12-01

    Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.

  13. Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm

    KAUST Repository

    Wong, Ka Chun

    2011-02-05

    Protein-DNA bindings are essential activities. Understanding them forms the basis for further deciphering of biological and genetic systems. In particular, the protein-DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play a central role in gene transcription. Comprehensive TF-TFBS binding sequence pairs have been found in a recent study. However, they are in one-to-one mappings which cannot fully reflect the many-to-many mappings within the bindings. An evolutionary algorithm is proposed to learn generalized representations (many-to-many mappings) from the TF-TFBS binding sequence pairs (one-to-one mappings). The generalized pairs are shown to be more meaningful than the original TF-TFBS binding sequence pairs. Some representative examples have been analyzed in this study. In particular, it shows that the TF-TFBS binding sequence pairs are not presumably in one-to-one mappings. They can also exhibit many-to-many mappings. The proposed method can help us extract such many-to-many information from the one-to-one TF-TFBS binding sequence pairs found in the previous study, providing further knowledge in understanding the bindings between TFs and TFBSs. © 2011 Springer-Verlag.

  14. Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm

    KAUST Repository

    Wong, Ka Chun; Peng, Chengbin; Wong, Manhon; Leung, Kwongsak

    2011-01-01

    Protein-DNA bindings are essential activities. Understanding them forms the basis for further deciphering of biological and genetic systems. In particular, the protein-DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play a central role in gene transcription. Comprehensive TF-TFBS binding sequence pairs have been found in a recent study. However, they are in one-to-one mappings which cannot fully reflect the many-to-many mappings within the bindings. An evolutionary algorithm is proposed to learn generalized representations (many-to-many mappings) from the TF-TFBS binding sequence pairs (one-to-one mappings). The generalized pairs are shown to be more meaningful than the original TF-TFBS binding sequence pairs. Some representative examples have been analyzed in this study. In particular, it shows that the TF-TFBS binding sequence pairs are not presumably in one-to-one mappings. They can also exhibit many-to-many mappings. The proposed method can help us extract such many-to-many information from the one-to-one TF-TFBS binding sequence pairs found in the previous study, providing further knowledge in understanding the bindings between TFs and TFBSs. © 2011 Springer-Verlag.

  15. Universal scaling for the dilemma strength in evolutionary games

    Science.gov (United States)

    Wang, Zhen; Kokubo, Satoshi; Jusup, Marko; Tanimoto, Jun

    2015-09-01

    Why would natural selection favor the prevalence of cooperation within the groups of selfish individuals? A fruitful framework to address this question is evolutionary game theory, the essence of which is captured in the so-called social dilemmas. Such dilemmas have sparked the development of a variety of mathematical approaches to assess the conditions under which cooperation evolves. Furthermore, borrowing from statistical physics and network science, the research of the evolutionary game dynamics has been enriched with phenomena such as pattern formation, equilibrium selection, and self-organization. Numerous advances in understanding the evolution of cooperative behavior over the last few decades have recently been distilled into five reciprocity mechanisms: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity. However, when social viscosity is introduced into a population via any of the reciprocity mechanisms, the existing scaling parameters for the dilemma strength do not yield a unique answer as to how the evolutionary dynamics should unfold. Motivated by this problem, we review the developments that led to the present state of affairs, highlight the accompanying pitfalls, and propose new universal scaling parameters for the dilemma strength. We prove universality by showing that the conditions for an ESS and the expressions for the internal equilibriums in an infinite, well-mixed population subjected to any of the five reciprocity mechanisms depend only on the new scaling parameters. A similar result is shown to hold for the fixation probability of the different strategies in a finite, well-mixed population. Furthermore, by means of numerical simulations, the same scaling parameters are shown to be effective even if the evolution of cooperation is considered on the spatial networks (with the exception of highly heterogeneous setups). We close the discussion by suggesting promising directions for future research

  16. Gene-Specific-Candidate-Driven Study to decipher Genetic Predisposition to Rotavirus Infection

    Directory of Open Access Journals (Sweden)

    Kshitija Rane-Yadav

    2017-10-01

    predisposition to Rotavirus diarrhea. Knowledge of molecular biology of the Rotavirus pathogenesis may open up new paths for vaccines and therapy. Data presented here is first of its kind which deciphers Host-Rotavirus interaction by parallel experiments of epidemiological study and In Silico study.

  17. Self-Organized Criticality and Mass Extinction in Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Krink, Thiemo; Thomsen, Rene

    2001-01-01

    The gaps in the fossil record gave rise to the hypothesis that evolution proceeded in long periods of stasis, which alternated with occasional, rapid changes that yielded evolutionary progress. One mechanism that could cause these punctuated bursts is the re-colonbation of changing and deserted...... at a critical state between chaos and order, known as self-organized criticality (SOC). Based on this background, we used SOC to control the size of spatial extinction zones in a diffusion model. The SOC selection process was easy to implement and implied only negligible computational costs. Our results show...

  18. Parameterless evolutionary algorithm applied to the nuclear reload problem

    International Nuclear Information System (INIS)

    Caldas, Gustavo Henrique Flores; Schirru, Roberto

    2008-01-01

    In this work, an evolutionary algorithm with no parameters called FPBIL (parameter free PBIL) is developed based on PBIL (population-based incremental learning). Moreover, the analysis reveals how the parameters from PBIL can be replaced by self-adaptable mechanisms which appear from the radically different form by which the evolution is processed. Despite the advantages, the FPBIL reveals itself compact and relatively modest in the use of computational resources. The FPBIL is then applied to the nuclear reload problem. The experimental results observed are compared to those of other works and corroborate to affirm the superiority of the new algorithm

  19. Social mechanisms and social causation

    OpenAIRE

    Friedel Weinert

    2014-01-01

    The aim of this paper is to examine the notion of social mechanisms by comparison with the notions of evolutionary and physical mechanisms. It is argued that social mechanisms are based on trends, and not lawlike regularities, so that social mechanisms are different from mechanisms in the natural sciences. Taking as an example of social causation the abolition of the slave trade, this paper argues that social mechanisms should be incorporated in Weber’s wider ...

  20. Selectionist and evolutionary approaches to brain function: a critical appraisal

    Directory of Open Access Journals (Sweden)

    Chrisantha Thomas Fernando

    2012-04-01

    Full Text Available We consider approaches to brain dynamics and function that have been claimed to be Darwinian. These include Edelman’s theory of neuronal group selection, Changeux’s theory of synaptic selection and selective stabilization of pre-representations, Seung’s Darwinian synapse, Loewenstein’s synaptic melioration, Adam’s selfish synapse and Calvin’s replicating activity patterns. Except for the last two, the proposed mechanisms are selectionist but not truly Darwinian, because no replicators with information transfer to copies and hereditary variation can be identified in them. All of them fit, however, a generalized selectionist framework conforming to the picture of Price’s covariance formulation, which deliberately was not specific even to selection in biology, and therefore does not imply an algorithmic picture of biological evolution. Bayesian models and reinforcement learning are formally in agreement with selection dynamics. A classification of search algorithms is shown to include Darwinian replicators (evolutionary units with multiplication, heredity and variability as the most powerful mechanism in a sparsely occupied search space. Examples of why parallel competitive search with information transfer among the units is efficient are given. Finally, we review our recent attempts to construct and analyze simple models of true Darwinian evolutionary units in the brain in terms of connectivity and activity copying of neuronal groups. Although none of the proposed neuronal replicators include miraculous mechanisms, their identification remains a challenge but also a great promise.

  1. Organisms as natural purposes: the contemporary evolutionary perspective.

    Science.gov (United States)

    Walsh, D M

    2006-12-01

    Kant's conception of organisms as natural purposes raises a challenge to the adequacy of mechanistic explanation in biology. Certain features of organisms appear to be inexplicable by appeal to mechanical law alone. Some biological phenomena, it seems, can only be accounted for teleologically. Contemporary evolutionary biology has by and large ignored this challenge. It is widely held that Darwin's theory of natural selection gives us an adequate, wholly mechanical account of the nature of organisms. In contemporary biology, the category of the organism plays virtually no explanatory role. Contemporary evolutionary biology is a science of sub-organismal entities-replicators. I argue that recent advances in developmental biology demonstrate the inadequacy of sub-organismal mechanism. The category of the organism, construed as a 'natural purpose' should play an ineliminable role in explaining ontogenetic development and adaptive evolution. According to Kant the natural purposiveness of organisms cannot be demonstrated to be an objective principle in nature, nor can purposiveness figure in genuine explain. I attempt to argue, by appeal to recent work on self-organization, that the purposiveness of organisms is a natural phenomenon, and, by appeal to the apparatus of invariance explanation, that biological purposiveness provides genuine, ineliminable biological explanations.

  2. Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters.

    Science.gov (United States)

    Baral, Bikash

    2017-01-01

    The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Functional Interdependence Theory: An Evolutionary Account of Social Situations.

    Science.gov (United States)

    Balliet, Daniel; Tybur, Joshua M; Van Lange, Paul A M

    2017-11-01

    Social interactions are characterized by distinct forms of interdependence, each of which has unique effects on how behavior unfolds within the interaction. Despite this, little is known about the psychological mechanisms that allow people to detect and respond to the nature of interdependence in any given interaction. We propose that interdependence theory provides clues regarding the structure of interdependence in the human ancestral past. In turn, evolutionary psychology offers a framework for understanding the types of information processing mechanisms that could have been shaped under these recurring conditions. We synthesize and extend these two perspectives to introduce a new theory: functional interdependence theory (FIT). FIT can generate testable hypotheses about the function and structure of the psychological mechanisms for inferring interdependence. This new perspective offers insight into how people initiate and maintain cooperative relationships, select social partners and allies, and identify opportunities to signal social motives.

  4. Women, behavior, and evolution: understanding the debate between feminist evolutionists and evolutionary psychologists.

    Science.gov (United States)

    Liesen, Laurette T

    2007-03-01

    Often since the early 1990s, feminist evolutionists have criticized evolutionary psychologists, finding fault in their analyses of human male and female reproductive behavior. Feminist evolutionists have criticized various evolutionary psychologists for perpetuating gender stereotypes, using questionable methodology, and exhibiting a chill toward feminism. Though these criticisms have been raised many times, the conflict itself has not been fully analyzed. Therefore, I reconsider this conflict, both in its origins and its implications. I find that the approaches and perspectives of feminist evolutionists and evolutionary psychologists are distinctly different, leading many of the former to work in behavioral ecology, primatology, and evolutionary biology. Invitingly to feminist evolutionists, these three fields emphasize social behavior and the influences of environmental variables; in contrast, evolutionary psychology has come to rely on assumptions deemphasizing the pliability of psychological mechanisms and the flexibility of human behavior. In behavioral ecology, primatology, and evolutionary biology, feminist evolutionists have found old biases easy to correct and new hypotheses practical to test, offering new insights into male and female behavior, explaining the emergence and persistence of patriarchy, and potentially bringing closer a prime feminist goal, sexual equality.

  5. The uncertain foundation of neo-Darwinism: metaphysical and epistemological pluralism in the evolutionary synthesis.

    Science.gov (United States)

    Delisle, Richard G

    2009-06-01

    The Evolutionary Synthesis is often seen as a unification process in evolutionary biology, one which provided this research area with a solid common theoretical foundation. As such, neo-Darwinism is believed to constitute from this time onward a single, coherent, and unified movement offering research guidelines for investigations. While this may be true if evolutionary biology is solely understood as centred around evolutionary mechanisms, an entirely different picture emerges once other aspects of the founding neo-Darwinists' views are taken into consideration, aspects potentially relevant to the elaboration of an evolutionary worldview: the tree of life, the ontological distinctions of the main cosmic entities (inert matter, biological organisms, mind), the inherent properties of self-organizing matter, evolutionary ethics, and so on. Profound tensions and inconsistencies are immediately revealed in the neo-Darwinian movement once this broader perspective is adopted. This pluralism is such that it is possible to identify at least three distinct and quasi-incommensurable epistemological/metaphysical frameworks as providing a proper foundation for neo-Darwinism. The analysis of the views of Theodosius Dobzhansky, Bernhard Rensch, and Ernst Mayr will illustrate this untenable pluralism, one which requires us to conceive of the neo-Darwinian research agenda as being conducted in more than one research programme or research tradition at the same time.

  6. EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.

    Science.gov (United States)

    Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D

    2012-01-01

    Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.

  7. Nucleotide Variability at Its Limit? Insights into the Number and Evolutionary Dynamics of the Sex-Determining Specificities of the Honey Bee Apis mellifera

    Science.gov (United States)

    Lechner, Sarah; Ferretti, Luca; Schöning, Caspar; Kinuthia, Wanja; Willemsen, David; Hasselmann, Martin

    2014-01-01

    Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116–145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene. PMID:24170493

  8. Nucleotide variability at its limit? Insights into the number and evolutionary dynamics of the sex-determining specificities of the honey bee Apis mellifera.

    Science.gov (United States)

    Lechner, Sarah; Ferretti, Luca; Schöning, Caspar; Kinuthia, Wanja; Willemsen, David; Hasselmann, Martin

    2014-02-01

    Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116-145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene.

  9. Evolutionary public health: introducing the concept.

    Science.gov (United States)

    Wells, Jonathan C K; Nesse, Randolph M; Sear, Rebecca; Johnstone, Rufus A; Stearns, Stephen C

    2017-07-29

    The emerging discipline of evolutionary medicine is breaking new ground in understanding why people become ill. However, the value of evolutionary analyses of human physiology and behaviour is only beginning to be recognised in the field of public health. Core principles come from life history theory, which analyses the allocation of finite amounts of energy between four competing functions-maintenance, growth, reproduction, and defence. A central tenet of evolutionary theory is that organisms are selected to allocate energy and time to maximise reproductive success, rather than health or longevity. Ecological interactions that influence mortality risk, nutrient availability, and pathogen burden shape energy allocation strategies throughout the life course, thereby affecting diverse health outcomes. Public health interventions could improve their own effectiveness by incorporating an evolutionary perspective. In particular, evolutionary approaches offer new opportunities to address the complex challenges of global health, in which populations are differentially exposed to the metabolic consequences of poverty, high fertility, infectious diseases, and rapid changes in nutrition and lifestyle. The effect of specific interventions is predicted to depend on broader factors shaping life expectancy. Among the important tools in this approach are mathematical models, which can explore probable benefits and limitations of interventions in silico, before their implementation in human populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A teleofunctional account of evolutionary mismatch.

    Science.gov (United States)

    Cofnas, Nathan

    When the environment in which an organism lives deviates in some essential way from that to which it is adapted, this is described as "evolutionary mismatch," or "evolutionary novelty." The notion of mismatch plays an important role, explicitly or implicitly, in evolution-informed cognitive psychology, clinical psychology, and medicine. The evolutionary novelty of our contemporary environment is thought to have significant implications for our health and well-being. However, scientists have generally been working without a clear definition of mismatch. This paper defines mismatch as deviations in the environment that render biological traits unable, or impaired in their ability, to produce their selected effects (i.e., to perform their proper functions in Neander's sense). The machinery developed by Millikan in connection with her account of proper function, and with her related teleosemantic account of representation, is used to identify four major types, and several subtypes, of evolutionary mismatch. While the taxonomy offered here does not in itself resolve any scientific debates, the hope is that it can be used to better formulate empirical hypotheses concerning the effects of mismatch. To illustrate, it is used to show that the controversial hypothesis that general intelligence evolved as an adaptation to handle evolutionary novelty can, contra some critics, be formulated in a conceptually coherent way.

  11. Multiobjective Multifactorial Optimization in Evolutionary Multitasking.

    Science.gov (United States)

    Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen

    2016-05-03

    In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.

  12. The evolutionary ecology of molecular replicators.

    Science.gov (United States)

    Nee, Sean

    2016-08-01

    By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.

  13. An Evolutionary Psychology Approach to Consumer Choice

    Directory of Open Access Journals (Sweden)

    ZURINA BT MOHAIDIN

    2013-07-01

    Full Text Available Human behaviour can be explained not only through experience and environments but also by incorporating evolutionary explanation. Consumer behaviour could not be understood accurately without infusing Darwinian evolutionary theory which has contributed in the knowledge of human nature. Evolutionary psychology revolves around the human’s evolved mental and the impact on human’s traits and behaviour where the influence of the environment to our genes would determine our individual behaviour and traits, resulting in variation among us. Foraging which is a part of behavioural ecology involves many sequences or repetitions of animals’ activities and decision making which is useful to relate these patterns of activities to the decisions made in human consumption. The aim of this research is to investigate the similarities of human consumption and ecological behaviour by employing interpretative and comparative approach. It is hoped that by applying the evolutionary theory in explaining consumer choice, this study is able to contribute to the development of behavioural ecology in human consumption. The analysis of the data is done aggregately for 200 consumers and individually for 20 consumers, who have purchased four product categories over a year. This study concludes that the theories of evolutionary psychology can fit to the consumers’ buying behaviour implicating its usefulness in explaining the consumers’ choice.

  14. Evolutionary heritage influences Amazon tree ecology

    Science.gov (United States)

    Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517

  15. Evolutionary heritage influences Amazon tree ecology.

    Science.gov (United States)

    Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R

    2016-12-14

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.

  16. Evolutionary accounts of human behavioural diversity

    Science.gov (United States)

    Brown, Gillian R.; Dickins, Thomas E.; Sear, Rebecca; Laland, Kevin N.

    2011-01-01

    Human beings persist in an extraordinary range of ecological settings, in the process exhibiting enormous behavioural diversity, both within and between populations. People vary in their social, mating and parental behaviour and have diverse and elaborate beliefs, traditions, norms and institutions. The aim of this theme issue is to ask whether, and how, evolutionary theory can help us to understand this diversity. In this introductory article, we provide a background to the debate surrounding how best to understand behavioural diversity using evolutionary models of human behaviour. In particular, we examine how diversity has been viewed by the main subdisciplines within the human evolutionary behavioural sciences, focusing in particular on the human behavioural ecology, evolutionary psychology and cultural evolution approaches. In addition to differences in focus and methodology, these subdisciplines have traditionally varied in the emphasis placed on human universals, ecological factors and socially learned behaviour, and on how they have addressed the issue of genetic variation. We reaffirm that evolutionary theory provides an essential framework for understanding behavioural diversity within and between human populations, but argue that greater integration between the subfields is critical to developing a satisfactory understanding of diversity. PMID:21199836

  17. Evolutionary model of an anonymous consumer durable market

    Science.gov (United States)

    Kaldasch, Joachim

    2011-07-01

    An analytic model is presented that considers the evolution of a market of durable goods. The model suggests that after introduction goods spread always according to a Bass diffusion. However, this phase will be followed by a diffusion process for durable consumer goods governed by a variation-selection-reproduction mechanism and the growth dynamics can be described by a replicator equation. The theory suggests that products play the role of species in biological evolutionary models. It implies that the evolution of man-made products can be arranged into an evolutionary tree. The model suggests that each product can be characterized by its product fitness. The fitness space contains elements of both sites of the market, supply and demand. The unit sales of products with a higher product fitness compared to the mean fitness increase. Durables with a constant fitness advantage replace other goods according to a logistic law. The model predicts in particular that the mean price exhibits an exponential decrease over a long time period for durable goods. The evolutionary diffusion process is directly related to this price decline and is governed by Gompertz equation. Therefore it is denoted as Gompertz diffusion. Describing the aggregate sales as the sum of first, multiple and replacement purchase the product life cycle can be derived. Replacement purchase causes periodic variations of the sales determined by the finite lifetime of the good (Juglar cycles). The model suggests that both, Bass- and Gompertz diffusion may contribute to the product life cycle of a consumer durable. The theory contains the standard equilibrium view of a market as a special case. It depends on the time scale, whether an equilibrium or evolutionary description is more appropriate. The evolutionary framework is used to derive also the size, growth rate and price distribution of manufacturing business units. It predicts that the size distribution of the business units (products) is lognormal

  18. The Matthew Effect: Evolutionary Implications

    Directory of Open Access Journals (Sweden)

    Leon Sloman MRCS LRCP FRCP (C

    2004-01-01

    Full Text Available This article suggests that, in prehistoric man, the results of competition magnified the effect of small genetic differences between competing individuals, thereby increasing the differential in their relative reproductive success (difference amplification. This had the effect of accelerating the evolution of early man. The differential effect of success and failure on competing individuals led to “difference amplification”. These mechanisms can still be observed today. This model is relevant to psychotherapy with depressed clients.

  19. Apoptosis in Trypanosomatids: Evolutionary and phylogenetic considerations

    Directory of Open Access Journals (Sweden)

    Marcello A. Barcinski

    1998-03-01

    Full Text Available Programmed cell death (PCD or apoptosis, an active process of cell death, plays a central role in normal tissue development and organogenesis, as well as in the pathogenesis of different diseases. Although it occurs in diverse cells and tissues under the influence of a remarkable variety of inducing agents, the resultant ultrastructural and biochemical changes are extremely monotonous, indicating the existence of a common biological mechanism underlying its occurrence. It is generally accepted that a developmental program leading to cell death cannot be advantageous to unicellular organisms and that PCD appeared in evolution to fulfill the organizational needs of multicellular life. However, the recent description of apoptotic death occurring in three different species of pathogenic kinetoplastids suggests that the evolutionary origin of PCD precedes the appearence of multicellular organisms. The present study proposes that a population of pathogenic Trypanosomatids is socially organized and that PCD is a prerequisite for this organization and for the fulfillment of the demands of a heteroxenic lifestyle. This proposal includes possible roles for PCD in the development of the parasite in the insect vector and/or in its mammalian host and suggests experimental strategies to localize the evolutionary origin of PCD within the kinetoplastids.A morte celular programada (PCD ou apoptose, um processo ativo de morte celular, desempenha um papel fundamental no desenvolvimento tecidual normal e na organogênese, assim como na patogênese de diferentes doenças. Embora este processo ocorra em uma gama variada de diferentes células e tecidos, sob a influência dos mais diversos agentes indutores, a resultante morfológica e bioquímica do processo é extremamente monótona, sugerindo que um mecanismo único opere em todas as situações. Era consensualmente aceito que um programa de morte programada não poderia ser vantajoso para organismos unicelulares e

  20. Deciphering Detailed Plate Kinematics of the Indian Ocean: A Combined Indian-Australian-French Initiative

    Science.gov (United States)

    Vadakkeyakath, Y.; Müller, R.; Dyment, J.; Bhattacharya, G.; Lister, G. S.; Kattoju, K. R.; Whittaker, J.; Shuhail, M.; Gibbons, A.; Jacob, J.; White, L. T.; Bissessur, P. D.; Kiranmai, S.

    2012-12-01

    -Australian and the Antarctic-Australian plate boundaries. These new studies also revealed the existence of several complexities, which need to be resolved in order to decipher plate kinematics of the Indian Ocean as a whole. Any improved model of plate kinematics of the Indian Ocean region should be compatible with the motions that are evident at all the above-mentioned plate boundaries and also is able to explain the identified complexities. With an aim to develop such a unified model for the plate tectonic evolution of the Indian Ocean in high resolution, a project was initiated for the synthesis of available data and results with the above groups of Indian, Australian and French scientists. The planned work under the auspices of this project will allow examining different reconstruction models to iteratively arrive at a model that is compatible with motions across different plate circuits and also accommodates various microcontinents and continental fragments and other hitherto identified complexities.

  1. Investigating evolutionary constraints on the detection of threatening stimuli in preschool children.

    Science.gov (United States)

    Zsido, Andras N; Deak, Anita; Losonci, Adrienn; Stecina, Diana; Arato, Akos; Bernath, Laszlo

    2018-04-01

    Numerous objects and animals could be threatening, and thus, children learn to avoid them early. Spiders and syringes are among the most common targets of fears and phobias of the modern word. However, they are of different origins: while the former is evolutionary relevant, the latter is not. We sought to investigate the underlying mechanisms that make the quick detection of such stimuli possible and enable the impulse to avoid them in the future. The respective categories of threatening and non-threatening targets were similar in shape, while low-level visual features were controlled. Our results showed that children found threatening cues faster, irrespective of the evolutionary age of the cues. However, they detected non-threatening evolutionary targets faster than non-evolutionary ones. We suggest that the underlying mechanism may be different: general feature detection can account for finding evolutionary threatening cues quickly, while specific features detection is more appropriate for modern threatening stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Evolutionary stability concepts in a stochastic environment

    Science.gov (United States)

    Zheng, Xiu-Deng; Li, Cong; Lessard, Sabin; Tao, Yi

    2017-09-01

    Over the past 30 years, evolutionary game theory and the concept of an evolutionarily stable strategy have been not only extensively developed and successfully applied to explain the evolution of animal behaviors, but also widely used in economics and social sciences. Nonetheless, the stochastic dynamical properties of evolutionary games in randomly fluctuating environments are still unclear. In this study, we investigate conditions for stochastic local stability of fixation states and constant interior equilibria in a two-phenotype model with random payoffs following pairwise interactions. Based on this model, we develop the concepts of stochastic evolutionary stability (SES) and stochastic convergence stability (SCS). We show that the condition for a pure strategy to be SES and SCS is more stringent than in a constant environment, while the condition for a constant mixed strategy to be SES is less stringent than the condition to be SCS, which is less stringent than the condition in a constant environment.

  3. Evolutionary Sound Synthesis Controlled by Gestural Data

    Directory of Open Access Journals (Sweden)

    Jose Fornari

    2011-05-01

    Full Text Available This article focuses on the interdisciplinary research involving Computer Music and Generative Visual Art. We describe the implementation of two interactive artistic systems based on principles of Gestural Data (WILSON, 2002 retrieval and self-organization (MORONI, 2003, to control an Evolutionary Sound Synthesis method (ESSynth. The first implementation uses, as gestural data, image mapping of handmade drawings. The second one uses gestural data from dynamic body movements of dance. The resulting computer output is generated by an interactive system implemented in Pure Data (PD. This system uses principles of Evolutionary Computation (EC, which yields the generation of a synthetic adaptive population of sound objects. Considering that music could be seen as “organized sound” the contribution of our study is to develop a system that aims to generate "self-organized sound" – a method that uses evolutionary computation to bridge between gesture, sound and music.

  4. Do we need an extended evolutionary synthesis?

    Science.gov (United States)

    Pigliucci, Massimo

    2007-12-01

    The Modern Synthesis (MS) is the current paradigm in evolutionary biology. It was actually built by expanding on the conceptual foundations laid out by its predecessors, Darwinism and neo-Darwinism. For sometime now there has been talk of a new Extended Evolutionary Synthesis (EES), and this article begins to outline why we may need such an extension, and how it may come about. As philosopher Karl Popper has noticed, the current evolutionary theory is a theory of genes, and we still lack a theory of forms. The field began, in fact, as a theory of forms in Darwin's days, and the major goal that an EES will aim for is a unification of our theories of genes and of forms. This may be achieved through an organic grafting of novel concepts onto the foundational structure of the MS, particularly evolvability, phenotypic plasticity, epigenetic inheritance, complexity theory, and the theory of evolution in highly dimensional adaptive landscapes.

  5. Infrastructure system restoration planning using evolutionary algorithms

    Science.gov (United States)

    Corns, Steven; Long, Suzanna K.; Shoberg, Thomas G.

    2016-01-01

    This paper presents an evolutionary algorithm to address restoration issues for supply chain interdependent critical infrastructure. Rapid restoration of infrastructure after a large-scale disaster is necessary to sustaining a nation's economy and security, but such long-term restoration has not been investigated as thoroughly as initial rescue and recovery efforts. A model of the Greater Saint Louis Missouri area was created and a disaster scenario simulated. An evolutionary algorithm is used to determine the order in which the bridges should be repaired based on indirect costs. Solutions were evaluated based on the reduction of indirect costs and the restoration of transportation capacity. When compared to a greedy algorithm, the evolutionary algorithm solution reduced indirect costs by approximately 12.4% by restoring automotive travel routes for workers and re-establishing the flow of commodities across the three rivers in the Saint Louis area.

  6. Evolutionary plasticity of plasma membrane interaction in DREPP family proteins.

    Science.gov (United States)

    Vosolsobě, Stanislav; Petrášek, Jan; Schwarzerová, Kateřina

    2017-05-01

    The plant-specific DREPP protein family comprises proteins that were shown to regulate the actin and microtubular cytoskeleton in a calcium-dependent manner. Our phylogenetic analysis showed that DREPPs first appeared in ferns and that DREPPs have a rapid and plastic evolutionary history in plants. Arabidopsis DREPP paralogues called AtMDP25/PCaP1 and AtMAP18/PCaP2 are N-myristoylated, which has been reported as a key factor in plasma membrane localization. Here we show that N-myristoylation is neither conserved nor ancestral for the DREPP family. Instead, by using confocal microscopy and a new method for quantitative evaluation of protein membrane localization, we show that DREPPs rely on two mechanisms ensuring their plasma membrane localization. These include N-myristoylation and electrostatic interaction of a polybasic amino acid cluster. We propose that various plasma membrane association mechanisms resulting from the evolutionary plasticity of DREPPs are important for refining plasma membrane interaction of these signalling proteins under various conditions and in various cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Origin of evolutionary change in avian clutch size.

    Science.gov (United States)

    Haywood, Sacha

    2013-11-01

    Why different bird species lay different numbers of eggs is a question that has long been associated with factors external to the organism, that is, factors which operate on inherited variation in clutch size through the action of natural selection. Yet, while external factors are important, the extent of what is evolutionarily possible rests with the mechanisms developed by birds for clutch-size control. Hitherto neglected, these mechanisms generate factors internal to the organism that are central to the origin of evolutionary change. They are related to the fact that a species-specific range of clutch size arises from the differential survival of pre-ovulatory follicles undergoing growth when the signal causing egg laying to end reaches the ovary. Herein, I examine three internal factors that, together with external factors, could impact the evolution of avian clutch size. Each factor acts by changing either the number of pre-ovulatory follicles present in the ovary at the time of follicular disruption or the timing of this event. These changes to clutch size can be explained by the concept of heterochrony. In light of this, the role of phenotypic plasticity and genes determining clutch size is discussed. Finally, to account for the origin of evolutionary change in clutch size, I detail an hypothesis involving a process similar to Waddington's theory of genetic assimilation. © 2013 The Author. Biological Reviews © 2013 Cambridge Philosophical Society.

  8. New pillars of evolutionary theory in the light of genomics

    International Nuclear Information System (INIS)

    Lopez Carrascal, Camilo Ernesto

    2011-01-01

    The evolutionist theory proposed by Darwin is one of the fundamental pillars in biology. Darwin's theory was solidified with the modern synthesis of evolutionary biology thanks to the rediscovery of Mendel's work, which laid the genetic basis of heredity. In recent years, great progress has been acquired in the sequencing and analyses of complete genomes, which have provided several elements to discuss some Darwinists tenets of evolution. The evidence of gene duplication and whole-genome duplication, the horizontal gene transfer and the endosymbiosis process question the idea that evolution proceeds through the gradual accumulation of infinitesimally small random changes. The new evidence of neutral selection on the genomics context reveals other mechanisms of evolution not necessarily related with the idea of progress or with an adaptationist program as was originally stated by the Darwin's theory. in this paper, I present these and other concepts such as gene regulation, molecular mechanisms of development and some environmental aspects (epigenesis and phenotypic plasticity) as starting points to think in the necessity to update the evolutionary theory which in my opinion should be more inclusive, pluralistic and consistent with our current knowledge.

  9. On Reciprocal Causation in the Evolutionary Process.

    Science.gov (United States)

    Svensson, Erik I

    2018-01-01

    Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause-effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist . Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach

  10. Evolutionary cost management in the nuclear industry

    International Nuclear Information System (INIS)

    Lombardi, C.G.; Mazzini, R.A.

    1986-01-01

    The reader is urged to consider the material in ''The Evolutionary Theory of Cost Management'' carefully before proceeding with the material in this paper. The recommendations in this paper flow from the revised line of thinking generated by the evolutionary approach. The suggestions will be difficult to accept in the absence of an understanding of the underlying theory. Although the authors briefly discuss some of the theory, it is nevertheless recommended that the reader develop a fuller understanding of the concepts by studying the prior paper

  11. Evolutionary optimization of production materials workflow processes

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Hansen, Zaza Nadja Lee; Jacobsen, Peter

    2014-01-01

    We present an evolutionary optimisation technique for stochastic production processes, which is able to find improved production materials workflow processes with respect to arbitrary combinations of numerical quantities associated with the production process. Working from a core fragment...... of the BPMN language, we employ an evolutionary algorithm where stochastic model checking is used as a fitness function to determine the degree of improvement of candidate processes derived from the original process through mutation and cross-over operations. We illustrate this technique using a case study...

  12. Evolutionary Algorithms Application Analysis in Biometric Systems

    Directory of Open Access Journals (Sweden)

    N. Goranin

    2010-01-01

    Full Text Available Wide usage of biometric information for person identity verification purposes, terrorist acts prevention measures and authenticationprocess simplification in computer systems has raised significant attention to reliability and efficiency of biometricsystems. Modern biometric systems still face many reliability and efficiency related issues such as reference databasesearch speed, errors while recognizing of biometric information or automating biometric feature extraction. Current scientificinvestigations show that application of evolutionary algorithms may significantly improve biometric systems. In thisarticle we provide a comprehensive review of main scientific research done in sphere of evolutionary algorithm applicationfor biometric system parameter improvement.

  13. Langley's CSI evolutionary model: Phase O

    Science.gov (United States)

    Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.

  14. Evolutionary Graphs with Frequency Dependent Fitness

    Science.gov (United States)

    Nie, Pu-Yan; Zhang, Pei-Ai

    Evolutionary graph theory was recently proposed by Lieberman et al. in 2005. In the previous papers about evolutionary graphs (EGs), the fitness of the residents in the EGs is in general assumed to be unity, and the fitness of a mutant is assumed to be a constant r. We aim to extend EG to general cases in this paper, namely, the fitness of a mutant is heavily dependent upon frequency. The corresponding properties for these new EGs are analyzed, and the fixation probability is obtained for large population.

  15. Genomes, Phylogeny, and Evolutionary Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica

    2005-03-25

    With the completion of the human genome and the growing number of diverse genomes being sequenced, a new age of evolutionary research is currently taking shape. The myriad of technological breakthroughs in biology that are leading to the unification of broad scientific fields such as molecular biology, biochemistry, physics, mathematics and computer science are now known as systems biology. Here I present an overview, with an emphasis on eukaryotes, of how the postgenomics era is adopting comparative approaches that go beyond comparisons among model organisms to shape the nascent field of evolutionary systems biology.

  16. Reasoning about Evolutionary History: Post-Secondary Students' Knowledge of Most Recent Common Ancestry and Homoplasy

    Science.gov (United States)

    Morabito, Nancy P.; Catley, Kefyn M.; Novick, Laura R.

    2010-01-01

    Evolution curricula are replete with information about Darwin's theory of evolution as well as microevolutionary mechanisms underlying this process of change. However, other fundamental facets of evolutionary theory, particularly those related to macroevolution are often missing. One crucial idea typically overlooked is that of most recent common…

  17. Cultural Adaptations to Environmental Variability: An Evolutionary Account of East-West Differences

    Science.gov (United States)

    Chang, Lei; Mak, Miranda C. K.; Li, Tong; Wu, Bao Pei; Chen, Bin Bin; Lu, Hui Jing

    2011-01-01

    Much research has been conducted to document and sometimes to provide proximate explanations (e.g., Confucianism vs. Western philosophy) for East-West cultural differences. The ultimate evolutionary mechanisms underlying these cross-cultural differences have not been addressed. We propose in this review that East-West cultural differences (e.g.,…

  18. Elitism, Sharing and Ranking Choices in Evolutionary Multi-Criterion Optimisation

    OpenAIRE

    Pursehouse, R.C.; Fleming, P.J.

    2002-01-01

    Elitism and sharing are two mechanisms that are believed to improve the performance of an evolutionary multi-criterion optimiser. The relative performance of of the two most popular ranking strategies is largely unknown. Using a new empirical inquiry framework, this report studies the effect of elitism, sharing and ranking design choices using a benchmark suite of two-criterion problems.........

  19. Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective

    NARCIS (Netherlands)

    Wertheim, B.; van Baalen, E-J.A.; Dicke, M.; Vet, L.E.M.

    2005-01-01

    Although the use of aggregation pheromones has been reported for hundreds of nonsocial arthropod species, the evolutionary ecological aspects of this behavior have received little attention. Despite the elaborate literature on mechanisms, robust data on costs and benefits of aggregation pheromones

  20. Analysis of Knowledge-Sharing Evolutionary Game in University Teacher Team

    Science.gov (United States)

    Huo, Mingkui

    2013-01-01

    The knowledge-sharing activity is a major drive force behind the progress and innovation of university teacher team. Based on the evolutionary game theory, this article analyzes the knowledge-sharing process model of this team, studies the influencing mechanism of various factors such as knowledge aggregate gap, incentive coefficient and risk…

  1. Memory boosts turn taking in evolutionary dilemma games.

    Science.gov (United States)

    Wang, Tao; Chen, Zhigang; Yang, Lei; Zou, You; Luo, Juan

    2015-05-01

    Spontaneous turn taking phenomenon can be observed in many self-organized systems, and the mechanism is unclear. This paper tries to model it by evolutionary dilemma games with memory mechanism. Prisoner's dilemma, Snowdrift (including Leader and Hero) and Stag-hunt games are unified on an extended S-T plane. Agents play game with all the others and make decision by the last game histories. The experiments find that when agents remember last 2-step histories or more, a kind of cooperative turn taking (CAD) bursts at the area of Snowdrift game with restriction of S + T > 2R and S ≠ T, while the consistent strategy (DorC) gathers on the line of S + T > 2R and S = T. We also find that the system's fitness ratio greatly improved with 2-step memory. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Evolutionary thinking: "A conversation with Carter Phipps about the role of evolutionary thinking in modern culture".

    Science.gov (United States)

    Hunt, Tam

    2014-12-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution-both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place-has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps' book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging "integral" or "evolutionary" cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps.

  3. Theologies, ideologies and evolutionary biology.

    Science.gov (United States)

    Scudo, Francesco M

    2010-01-01

    Since a century evolution has mostly been interpreted by two simple, "opposite" kinds of "theories" — i.e. as due either to fitness differences among genotypes or to some other simple mechanism — while bona fide, more complex theories were less popular throughout. In particular by far the most complete theories ever produced were suddenly, almost universally abandoned just after World War II, though not as a consequence of major breakthroughs. The causes of this situation are examined by analogy with much earlier developments and their demise by Cartesianism. The down to earth solutions these "complete" theories provide to the problems of "speciation" and the origins of cells are contrasted with the "miraculous" approaches by systemic neo-Darwinists.

  4. Evolutionary Quantitative Genomics of Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Ilga Porth

    Full Text Available Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance was investigated for signatures of selection (comparing QST-FST using clustering of individuals by climate of origin (temperature and precipitation. 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages across the P. trichocarpa sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation; 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes were associated with adaptive traits (based on significant QST. Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show

  5. Development links psychological causes to evolutionary explanations.

    Science.gov (United States)

    Fedyk, Mark; Kushnir, Tamar

    2014-04-01

    Our conscious abilities are learned in environments that have evolved to support them. This insight provides an alternative way of framing Huang & Bargh's (H&B's) provocative hypothesis. To understand the conflict between unconscious goals and consciousness, we can study the emergence of conscious thought and control in childhood. These developmental processes are also central to the best available current evolutionary theories.

  6. Evolutionary Algorithms for Boolean Queries Optimization

    Czech Academy of Sciences Publication Activity Database

    Húsek, Dušan; Snášel, Václav; Neruda, Roman; Owais, S.S.J.; Krömer, P.

    2006-01-01

    Roč. 3, č. 1 (2006), s. 15-20 ISSN 1790-0832 R&D Projects: GA AV ČR 1ET100300414 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary algorithms * genetic algorithms * information retrieval * Boolean query Subject RIV: BA - General Mathematics

  7. Function Follows Performance in Evolutionary Computational Processing

    DEFF Research Database (Denmark)

    Pasold, Anke; Foged, Isak Worre

    2011-01-01

    As the title ‘Function Follows Performance in Evolutionary Computational Processing’ suggests, this paper explores the potentials of employing multiple design and evaluation criteria within one processing model in order to account for a number of performative parameters desired within varied...

  8. Evolutionary convergence and biologically embodied cognition

    NARCIS (Netherlands)

    Keijzer, Franciscus

    2017-01-01

    The study of evolutionary patterns of cognitive convergence would be greatly helped by a clear demarcation of cognition. Cognition is often used as an equivalent of mind, making it difficult to pin down empirically or to apply it confidently beyond the human condition. Recent developments in

  9. Indoor Thermal Comfort, an Evolutionary Biology Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, John L.

    2006-04-15

    As is becoming increasingly clear, the human species evolvedin the East African savannah. Details of the precise evolutionary chainremain unresolved however it appears that the process lasted severalmillion years, culminating with the emergence of modern Homo sapiensroughly 200,000 years ago. Following that final evolutionary developmentmodern Homo sapiens relatively quickly populated the entire world.Clearly modern Homo sapiens is a successful, resourceful and adaptablespecies. In the developed societies, modern humans live an existence farremoved from our evolutionary ancestors. As we have learned over the lastcentury, this "new" lifestyle can often result in unintendedconsequences. Clearly, our modern access to food, shelter, transportationand healthcare has resulted in greatly expanded expected lifespan butthis new lifestyle can also result in the emergence of different kinds ofdiseases and health problems. The environment in modern buildings haslittle resemblance to the environment of the savannah. We strive tocreate environments with little temperature, air movement and lightvariation. Building occupants often express great dissatisfaction withthese modern created environments and a significant fraction even developsomething akin to allergies to specific buildings (sick buildingsyndrome). Are the indoor environments we are creating fundamentallyunhealthy -- when examined from an evolutionary perspective?

  10. On evolutionary ray-projection dynamics

    NARCIS (Netherlands)

    Joosten, Reinoud A.M.G.; Roorda, Berend

    2011-01-01

    We introduce the ray-projection dynamics in evolutionary game theory by employing a ray projection of the relative fitness (vector) function, i.e., a projection unto the unit simplex along a ray through the origin. Ray-projection dynamics are weakly compatible in the terminology of Friedman

  11. Evolutionary Biology: Its Value to Society

    Science.gov (United States)

    Carson, Hampton L.

    1972-01-01

    Cites examples of the contribution of basic research in evolutionary biology to the solution of problems facing society (1) by dispelling myths about human origins, the nature of the individual, and the nature of race (2) by providing basic data concerning the effects of overpopulation, the production of improved sources of food, resistance of…

  12. 2004 Structural, Function and Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  13. Extracting the evolutionary signal from genomes.

    NARCIS (Netherlands)

    Dutilh, B.E.

    2007-01-01

    Several methods to analyze aspects of evolution are developed, that depend on the availability of complete genomes. While I consistently find a phylogenetic signal using many approaches, a question that is winning concern is how these evolutionary relationships should be interpreted. Since Darwin’s

  14. Static and evolutionary quantum public goods games

    Energy Technology Data Exchange (ETDEWEB)

    Liao Zeyang; Qin Gan; Hu Lingzhi; Li Songjian; Xu Nanyang [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Du Jiangfeng [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Fachbereich Physik, Universitaet Dortmund, 44221 Dortmund (Germany)], E-mail: djf@ustc.edu.cn

    2008-05-12

    We apply the continuous-variable quantization scheme to quantize public goods game and find that new pure strategy Nash equilibria emerge in the static case. Furthermore, in the evolutionary public goods game, entanglement can also contribute to the persistence of cooperation under various population structures without altruism, voluntary participation, and punishment.

  15. Special issue on evolutionary theories of religion

    DEFF Research Database (Denmark)

    McKay, Ryan

    Redaktionen af et temanummer i Journal for the Cognitive Science of Religion 4 (1) 2016: 1-90 med en række bidrag som respons til en targetartikel skrevet af Jonathan H. Turner med titlen "Using Neurosociology and Evolutionary Sociology to Explain the Origin and Evolution of Religions". Der er ko...

  16. On the Evolutionary Bases of Consumer Reinforcement

    Science.gov (United States)

    Nicholson, Michael; Xiao, Sarah Hong

    2010-01-01

    This article locates consumer behavior analysis within the modern neo-Darwinian synthesis, seeking to establish an interface between the ultimate-level theorizing of human evolutionary psychology and the proximate level of inquiry typically favored by operant learning theorists. Following an initial overview of the central tenets of neo-Darwinism,…

  17. The essence of Schumpeter's evolutionary economics

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    Schumpeter’s unique type of evolutionary analysis can hardly be understood unless we recognise that he developed it in relation to a study of the strength and weaknesses of the Walrasian form of neoclassical economics. The paper demonstrates that Schumpeter’s major steps were already performed in...

  18. Food processing optimization using evolutionary algorithms | Enitan ...

    African Journals Online (AJOL)

    Evolutionary algorithms are widely used in single and multi-objective optimization. They are easy to use and provide solution(s) in one simulation run. They are used in food processing industries for decision making. Food processing presents constrained and unconstrained optimization problems. This paper reviews the ...

  19. BEAST: Bayesian evolutionary analysis by sampling trees

    Directory of Open Access Journals (Sweden)

    Drummond Alexei J

    2007-11-01

    Full Text Available Abstract Background The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. Results BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at http://beast-mcmc.googlecode.com/ under the GNU LGPL license. Conclusion BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.

  20. The Microfoundations of Macroeconomics: An Evolutionary Perspective

    NARCIS (Netherlands)

    Bergh, van den Jeroen C.J.M.; Gowdy, John M.

    2000-01-01

    We consider the microfoundations controversy from the perspective ofeconomic evolution and show that the debate can benefit from lessons learned in evolutionary biology. Although the analogy between biology and economics has been noted before, it has rarely focused on clarifying the micro-macro