WorldWideScience

Sample records for decentralized gasification cogeneration

  1. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania

  2. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock

  3. EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    John W. Rich

    2001-03-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

  4. About the gasification of untreated scrap and waste wood in fluidized bed reactor for use in decentralized gas engine-cogeneration plants; Zur Vergasung von Rest- und Abfallholz in Wirbelschichtreaktoren fuer dezentrale Energieversorgungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Tepper, H.

    2005-10-20

    This dissertation examines the thermochemical conversion (gasification) of untreated scrap and waste wood in combustible gases for use in decentralized gas engine-cogeneration plants of low output (1 to 10 MW fuel power). A general section goes into the basics of the energetic utilization of solid biomass, the subprocesses of thermochemical conversion being described in more detail. Special attention is given to the processes and state of the art of biomass gasification in decentralized plants. A theoretical section analyzes the gasification models for solid biomass presented in the literature. Based on this analysis, a simplified kinetic model is derived for the gasification of untreated scrap and waste wood with air in bubbling fluidized bed reactors. It includes a fluid mechanic analysis of the fluidized bed based on HILLIGARDT, an empirical pyrolysis model and a global kinetic approach to the main chemical reaction taken from the literature. An experimental section describes the tests of the gasification of forest scrap wood in a semi-industrial fluidized bed gasification test plant with 150 kW fuel power and presents the significant test results. The gasification model derived is applied to check the test plant's standard settings and compare them with measured values. Furthermore, the model is employed to explain basic reaction paths and zones and to perform concluding parameter simulations. (orig.)

  5. Decentralized cogeneration - A solution for Romania? RAEF experience

    International Nuclear Information System (INIS)

    Binig, Alexandru-Valeriu

    2004-01-01

    deficit should be covered using indigenous power generation sources. One could conclude, correlated with the previous discussion on financing investment, that most of the private capital is expected in the power and heat generation sector. New injection points might necessitate network reinforcement (implying additional costs and delays), may have to pass a complicated and lengthy authorizations process, etc. In conclusion, realisation of 'greenfield' large projects is likely to be cumbersome and delayed due mainly to issues related to connection to the grid. But also fuel supply issues, cooling water access, impact on communities, add to the serious siting problems for new greenfield power generation projects. A psychological impact on private investor's appetite is also given by the continuation of erection of Cernavoda 2, (3?) nuclear units, as these are modern, safe, and optimal at dispatching. In conclusion, in Romania, at present, one cannot identify large private power generation projects in advanced development phase. A solution could be decentralized power generation. Combined with covering a heat demand, it leads to distributed cogeneration. It is an EU and worldwide trend. The above, combined with the overall analysis of the experience in Romania and worldwide allow drawing the following conclusions: - Decentralised generation (cogeneration) is a solution to be considered for Romania and for the region; - The national energy strategy must consider it; - Resources should be allocated to it (not necessarily financial), thus contributing to sustainable development; - It must be promoted by appropriate legislative, regulatory fiscal, etc framework; - Periodic exchange of experience among different actors is decisive for avoiding wasting resources; - this is mainly the purpose of the present article; - Private initiative is the main driver and must be encouraged for promoting efficiency and sustainability; - The solution chosen yields better risk management while

  6. Assessing the economic feasibility of flexible integrated gasification Co-generation facilities

    NARCIS (Netherlands)

    Meerman, J.C.; Ramírez Ramírez, C.A.; Turkenburg, W.C.; Faaij, A.P.C.

    2011-01-01

    This paper evaluated the economic effects of introducing flexibility to state-of-the-art integrated gasification co-generation (IGCG) facilities equipped with CO2 capture. In a previous paper the technical and energetic performances of these flexible IG-CG facilities were evaluated. This paper

  7. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    Science.gov (United States)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  8. FBC utilization prospects in decentralized cogeneration units in Caucasus region countries

    Directory of Open Access Journals (Sweden)

    Skodras George

    2003-01-01

    Full Text Available Great differences are encountered among Caucasus region countries with respect to energy resources reserves and economic conditions. Thermal power plants consist of obsolete and inefficient units, while the Soviet-type large heating systems in the area collapsed after 1992 and their reconstruction is considered uneconomic. Renovation needs of the power and heat sector, and the potential of Fluidised Bed Combustion implementations in decentralized cogeneration units were investigated, since operating oil and gas power plants exhibit high fuel consumption, low efficiency and poor environmental performance. Results showed significant prospects of Fluidised Bed Combustion utilization in decentralized cogeneration units in the Caucausus region heat and power sector. Their introduction constitutes an economically attractive way to cover power and heat demands and promotes utilization of domestic energy resources in all of three countries, provided that financial difficulties could be confronted.

  9. Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Buljit; Mahanta, Pinakeswar; Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology, Guwahati, 781 039, Assam (India)

    2010-06-15

    In recent years, biomass gasification has emerged as a viable option for decentralized power generation, especially in developing countries. Another potential use of producer gas from biomass gasification is in terms of feedstock for Fischer-Tropsch (FT) synthesis - a process for manufacture of synthetic gasoline and diesel. This paper reports optimization of biomass gasification process for these two applications. Using the non-stoichometric equilibrium model (SOLGASMIX), we have assessed the outcome of gasification process for different combinations of operating conditions. Four key parameters have been used for optimization, viz. biomass type (saw dust, rice husk, bamboo dust), air or equivalence ratio (AR = 0, 0.2, 0.4, 0.6, 0.8 and 1), temperature of gasification (T = 400, 500, 600, 700, 800, 900 and 1000 C), and gasification medium (air, air-steam 10% mole/mole mixture, air-steam 30%mole/mole mixture). Performance of the gasification process has been assessed with four measures, viz. molar content of H{sub 2} and CO in the producer gas, H{sub 2}/CO molar ratio, LHV of producer gas and overall efficiency of gasifier. The optimum sets of operating conditions for gasifier for FT synthesis are: AR = 0.2-0.4, Temp = 800-1000 C, and gasification medium as air. The optimum sets of operating conditions for decentralized power generation are: AR = 0.3-0.4, Temp = 700-800 C with gasification medium being air. The thermodynamic model and methodology presented in this work also presents a general framework, which could be extended for optimization of biomass gasification for any other application. (author)

  10. Thermodynamic optimization of biomass gasification for decentralized power generation and Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Buragohain, Buljit; Mahanta, Pinakeswar; Moholkar, Vijayanand S.

    2010-01-01

    In recent years, biomass gasification has emerged as a viable option for decentralized power generation, especially in developing countries. Another potential use of producer gas from biomass gasification is in terms of feedstock for Fischer-Tropsch (FT) synthesis - a process for manufacture of synthetic gasoline and diesel. This paper reports optimization of biomass gasification process for these two applications. Using the non-stoichometric equilibrium model (SOLGASMIX), we have assessed the outcome of gasification process for different combinations of operating conditions. Four key parameters have been used for optimization, viz. biomass type (saw dust, rice husk, bamboo dust), air or equivalence ratio (AR = 0, 0.2, 0.4, 0.6, 0.8 and 1), temperature of gasification (T = 400, 500, 600, 700, 800, 900 and 1000 o C), and gasification medium (air, air-steam 10% mole/mole mixture, air-steam 30%mole/mole mixture). Performance of the gasification process has been assessed with four measures, viz. molar content of H 2 and CO in the producer gas, H 2 /CO molar ratio, LHV of producer gas and overall efficiency of gasifier. The optimum sets of operating conditions for gasifier for FT synthesis are: AR = 0.2-0.4, Temp = 800-1000 o C, and gasification medium as air. The optimum sets of operating conditions for decentralized power generation are: AR = 0.3-0.4, Temp = 700-800 o C with gasification medium being air. The thermodynamic model and methodology presented in this work also presents a general framework, which could be extended for optimization of biomass gasification for any other application.

  11. Thermoeconomic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, Felipe Raul Ponce; Lora, Electo Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil). Nucleo de Estudos de Sistemas Termicos]. E-mails: aponce@iem.efei.br; electo@iem.efei.br; Perez, Silvia Azucena Nebra de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: sanebra@fem. unicamp.br

    2000-07-01

    Using thermoeconomics as a tool to identify the location and magnitude of the real thermodynamic losses (energy waste, or exergy destruction and exergy losses) it is possible to assess the production costs of each product (electric power and heat) and the exergetic and exergoeconomic cost of each flow in a cogeneration plant to assist in decision-marketing procedures concerning to plant design, investment, operation and allocations of research funds. Thermo economic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant for its applications in sugar cane mills brings the following results: the global exergetic efficiency is low; the highest irreversibilities occur in the following equipment, by order: scrubber (38%), gas turbine (16%), dryer (12%), gasifier and HRSG (6%); due to the adopted cost distribution methodology, the unit exergetic cost of the heat (4,11) is lower than electricity (4,71); the lower market price of biomass is one of the most sensible parameter in the possible implementation of BIG-GT technology in sugar cane industry; the production costs are 31 US$/MWh and 32 US$/MWh for electricity and heat, respectively. The electricity cost is, after all, competitive with the actual market price. The electricity and heat costs are lower or almost equal than other values reported for actual Rankine cycle cogeneration plants. (author)

  12. Gasification of torrefied fuel at power generation for decentralized consumers

    Science.gov (United States)

    Safin, R. R.; Khakimzyanov, I. F.; Galyavetdinov, N. R.; Mukhametzyanov, S. R.

    2017-10-01

    The increasing need of satisfaction of the existing needs of the population and the industry for electric energy, especially in the areas remote from the centralized energy supply, results in need of development of “small-scale energy generation”. At the same time, the basis in these regions is made by the energy stations, using imported fuel, which involve a problem of increase in cost and transportation of fuel to the place of consumption. The solution of this task is the use of the torrefied waste of woodworking and agricultural industry as fuel. The influence of temperature of torrefaction of wood fuel on the developed electric generator power is considered in the article. As a result of the experiments, it is revealed that at gasification of torrefied fuel from vegetable raw material, the generating gas with the increased content of hydrogen and carbon oxide, in comparison with gasification of the raw materials, is produced. Owing to this, the engine capacity increases that exerts direct impact on power generation by the electric generator.

  13. Cogeneration

    International Nuclear Information System (INIS)

    Derbentli, Taner

    2006-01-01

    Cogeneration is the combined production of power and heat. Cogeneration aims to utilize the waste heat of power plants. The waste heat may be utilized for process heating, district heating, drying and cooling. In this way the primary energy is utilized more efficiently. Furthermore due to use of lesser amounts of fuel, emissions and carbon dioxide production is reduced. This is important from the viewpoint of controlling global warming. Cogeneration is used worldwide in industry and in conjunction with district heating.The prime movers used for this purpose are gas turbines, Diesel or natural gas engines and steam power plants. There are several parameters used for characterizing cogeneration. First of all capacity shows the power produced by the cogeneration plant. Most of the cogeneration plants used in industry have capacities between 3 and 20 MW. However there are plants having capacities as large as 200 MW and capacities smaller than 1 MW. The latter are known as micro cogeneration plants. Power to heat ratio is another parameter characterizing cogeneration. It gives the ratio of power produced to heat produced in a cogeneration plant. For gas turbine plants this is around 0.6, for gas engines it is about 1. For steam power plants, power to heat ratio is smaller than 0.4. The total efficiency or fuel utilization efficiency is defined as the total useful output of the plant as power and heat to energy input as fuel. The higher this value, the better is the cogeneration application. In a well designed plant this value may be as high as eighty to ninety percent. Cogeneration started as self power production in Turkey to provide continuous and top quality electric power to industrial plants in the 1990s. Now approximately 20 % of the power production capacity of Turkey is provided by the cogeneration plants. Turkey imports most of its primary energy demand, therefore it is important to increase the use of cogeneration to reduce the demand. There are studies which

  14. Dynamics of decentralization: The case of micro cogeneration diffusion in Germany

    International Nuclear Information System (INIS)

    Praetorius, Barbara; Schneider, Lambert

    2005-01-01

    Micro cogeneration is the simultaneous generation of heat and electricity in small units; it is expected to allow for a higher energy efficiency than separate generation. For Germany, the potential of micro cogeneration has been estimated with about 3 GW. Introduced in a larger scale and as part of a general move towards distributed generation, micro cogeneration may contribute to substantial structural changes on electricity and heat markets. We start with an assessment of existing micro cogeneration technologies, including reciprocating engines, Stirling engines and fuel cells, and describe their characteristics and state of development. Based on a model to calculate costs of micro cogeneration operation, we examine their economic feasibility in Germany in a number of typical applications from an operator's and a societal perspective. On this basis, we explore the actual dynamics of its diffusion in Germany. We analyze the interests, attitudes and strategies of actors concerned with implementing micro cogeneration, such as network operators, appliance industry, gas and electricity suppliers, etc. We explore the impacts of their (diverging) interests and strategies and mirror them with the economic potential and institutional setting for micro cogeneration with respect to competition, grid access and transaction costs. We conclude with assessing barriers for and measures to facilitate the diffusion of micro cogeneration in Germany

  15. Cogeneration (hydrogen and electrical power) using the Texaco Gasification Power Systems (TGPS) technology

    International Nuclear Information System (INIS)

    Gardner, J.

    1994-01-01

    The information herein presents preliminary technical and cost data for an actual case study using Texaco Gasification Power Systems (TGPS) technology, incorporated as part of an overall refinery upgrade project. This study is based on gasification of asphalt and vacuum residue (see Table 1, feedstock properties) to produce hydrogen plus carbon monoxide (synthesis gas) for the ultimate production of high purity hydrogen and power at a major refinery in Eastern Europe. A hydrogen production of 101,000 Nm 3 /hr (9.1 tons/hr) at 99.9 (wt.%) purity plus 50 MW (net) power slated to be used by the refinery was considered for this study. Figure I shows a block diagram depicting the general refinery configuration upgrade as envisioned by the owner operator; included in the configuration as shown in the shaded area is the TGPS plant. Figure II shows a block flow diagram depicting the TGPS unit and its battery limits as defined for this project. The technology best suited to meet the demand for clean and efficient electric power generation and hydrogen production is the Texaco Gasification Power Systems (TGPS) process. This technology is based upon Texaco's proprietary gasification technology which is well proven with over 40 years of gasification experience. There are currently 37 operating units in the world today which have licensed the Texaco gasification process technology, with another 12 in design/construction. Total synthesis gas (hydrogen + carbon monoxide) production capacity is over 2,8 billion standard cubic feet per day. The TGPS, which is basically the Integrated Gasification Combined Cycle (IGCC) based upon the Texaco gasification technology, was developed by combining and integrating gasification with power generation facilities. (author). 3 figs., 9 tabs., 4 refs

  16. Decentralized combined heat and power production by two-stage biomass gasification and solid oxide fuel cells

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian

    2013-01-01

    To investigate options for increasing the electrical efficiency of decentralized combined heat and power (CHP) plants fuelled with biomass compared to conventional technology, this research explored the performance of an alternative plant design based on thermal biomass gasification and solid oxide......, carbon conversion factor in the gasifier and the efficiency of the DC/AC inverter were the most influential parameters in the model. Thus, a detailed study of the practical values of these parameters was conducted to determine the performance of the plant with the lowest possible uncertainty. The SOFC...

  17. Techno-economic analysis of wastewater sludge gasification: a decentralized urban perspective.

    Science.gov (United States)

    Lumley, Nicholas P G; Ramey, Dotti F; Prieto, Ana L; Braun, Robert J; Cath, Tzahi Y; Porter, Jason M

    2014-06-01

    The successful management of wastewater sludge for small-scale, urban wastewater treatment plants, (WWTPs), faces several financial and environmental challenges. Common management strategies stabilize sludge for land disposal by microbial processes or heat. Such approaches require large footprint processing facilities or high energy costs. A new approach considers converting sludge to fuel which can be used to produce electricity on-site. This work evaluated several thermochemical conversion (TCC) technologies from the perspective of small urban WWTPs. Among TCC technologies, air-blown gasification was found to be the most suitable approach. A gasification-based generating system was designed and simulated in ASPEN Plus® to determine net electrical and thermal outputs. A technical analysis determined that such a system can be built using currently available technologies. Air-blown gasification was found to convert sludge to electricity with an efficiency greater than 17%, about triple the efficiency of electricity generation using anaerobic digester gas. This level of electricity production can offset up to 1/3 of the electrical demands of a typical WWTP. Finally, an economic analysis concluded that a gasification-based power system can be economically feasible for WWTPs with raw sewage flows above 0.093m(3)/s (2.1 million gallons per day), providing a profit of up to $3.5 million over an alternative, thermal drying and landfill disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Decentralized heat and power supply from biogenic solid fuels. A technical and economic evaluation of the gasification in comparison to combustion. 2. ed.; Dezentrale Strom- und Waermeerzeugung aus biogenen Festbrennstoffen. Eine technische und oekonomische Bewertung der Vergasung im Vergleich zur Verbrennung

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, A.

    2007-04-15

    The previous technologies for the development of the decentralized combined heat and power generation are based on various concepts with different ripeness. Gasification is regarded as an energetically promising technology, which is not yet marketable. Under this aspect, the author of the contribution under consideration reports on an economic evaluation of the decentralized power and heat production by gasification of biogenic solid fuels and on a comparison with existing alternative technologies of combustion. In particular, the author examines the following central issues: (a) Which technologies of gasification can be regarded as promising with respect to a decentralized application?; (b) How are the technologies of gasification to be evaluated with respect to the alternative technologies of combustion from technical and economic view? For the comparative view of these different techniques, an electrical output of 500 W is specified as a uniform characteristic value of performance according to the decentralized gasification and combustion.

  19. Fossil fuel savings, carbon emission reduction and economic attractiveness of medium-scale integrated biomass gasification combined cycle cogeneration plants

    Directory of Open Access Journals (Sweden)

    Kalina Jacek

    2012-01-01

    Full Text Available The paper theoretically investigates the system made up of fluidized bed gasifier, SGT-100 gas turbine and bottoming steam cycle. Different configurations of the combined cycle plant are examined. A comparison is made between systems with producer gas (PG and natural gas (NG fired turbine. Supplementary firing of the PG in a heat recovery steam generator is also taken into account. The performance of the gas turbine is investigated using in-house built Engineering Equation Solver model. Steam cycle is modeled using GateCycleTM simulation software. The results are compared in terms of electric energy generation efficiency, CO2 emission and fossil fuel energy savings. Finally there is performed an economic analysis of a sample project. The results show relatively good performance in the both alternative configurations at different rates of supplementary firing. Furthermore, positive values of economic indices were obtained. [Acknowledgements. This work was carried out within the frame of research project no. N N513 004036, titled: Analysis and optimization of distributed energy conversion plants integrated with gasification of biomass. The project is financed by the Polish Ministry of Science.

  20. Biomass: towards more co-generation than gasification? Interview with Jean-Christophe Pouet; Figures for the heat fund; biomass in the Parisian heat network; gasification still at the promise stage; Engie bets on bio-methane of 2. generation; a new bidding for biomass co-generation

    International Nuclear Information System (INIS)

    Petitot, Pauline; De Santis, Audrey; Mary, Olivier; Signoret, Stephane

    2016-01-01

    After some brief presentations of some highlights in the biomass sector in France, Ukraine, UK and Brazil, a set of articles proposes an overview of recent developments and perspectives for the biomass-based energy and heat production in France. It presents and comments some emerging projects based on biomass gasification as technologies have evolved for a higher economic profitability. It discusses the action of the Heat Fund (Fonds chaleur) which supports investors in a context constrained by the hard competition with fossil energies, notably with gas as discussed in an interview with a member of the ADEME. Some tables and graphs give data about biomass installations supported by the Heat fund, about subsidies awarded by the ADEME, about the production of the various heat sources. An article comments the operation of a biomass-based plant near Paris which supplies the Parisian heat network. A project of methane production from dry biomass from local resources by Engie near Lyons (methane of second generation). The last article comments a new bidding process for co-generation projects which can be an opportunity for new projects, and not only big ones

  1. Decentralized electricity production. v. 1 and 2

    International Nuclear Information System (INIS)

    1991-01-01

    The first part of the symposium is concerned with market analysis, case studies and prospectives for the decentralized production of electricity in France: cogeneration, heat networks, municipal waste incineration, etc. Financing systems and microeconomical analysis are presented. The second part is devoted to macroeconomical outlooks (France and Europe mainly) on decentralized electricity production (cogeneration, small-scale hydroelectric power plants), to other countries experience (PV systems connected to the grid, cogeneration, etc.) and to price contracts and regulations

  2. Agricultural residue gasification for low-cost, low-carbon decentralized power: An empirical case study in Cambodia

    International Nuclear Information System (INIS)

    Field, John L.; Tanger, Paul; Shackley, Simon J.; Haefele, Stephan M.

    2016-01-01

    Highlights: • Four operating small-scale distributed gasification power systems were observed. • System carbon and energy balance, profitability, and GHG performance were assessed. • Best systems mitigated >1 MgCO 2 eq (Mg feedstock) −1 and recouped costs within a year. • Wide variability in performance across systems; some likely un-profitable. - Abstract: Small-scale distributed gasification can provide energy access for low-carbon sustainable development, though current understanding of the economic and environmental performance of the technology relies mostly on assumption-heavy modeling studies. Here we report a detailed empirical assessment and uncertainty estimation for four real-world gasification power systems operating at rice mills in rural Cambodia. System inputs and outputs were characterized while operating in both diesel and dual-fuel modes and synthesized into a model of carbon and energy balance, economic performance, and greenhouse gas mitigation. Our results confirm that the best-performing systems reduce diesel fuel use by up to 83%, mitigating greenhouse gas emissions and recouping the initial system capital investment within one year. However, we observe a significant performance disparity across the systems observed leading to a wide range of economic outcomes. We also highlight related critical sustainability challenges around the management of byproducts that should be addressed before more widespread implementation of the technology.

  3. Decentralized energy conversion of biomass from Amstelland. The feasibility of decentralized use of energy from green wastes in the municipality Amstelveen and its environs

    International Nuclear Information System (INIS)

    Brouwer, H.D.

    1997-10-01

    The aim of the study on the title subject is to determine the enviro-technical and economical feasibility of decentralized biomass conversion as part of the green area and energy infrastructure of the region Amstelland, Netherlands. The parts of the study concern a regional inventory of green wastes in Amstelland, an energy demand analysis of conversion sites in the region, a logistic analysis, an evaluation of technical options (cogeneration, combustion, gasification), business economical analysis of the investments, determining the support and willingness to contribute and cooperate, and drafting a final report. Based on the results of the report decisions can be made whether or not the design and installation of a decentralized biomass conversion system should be elaborated in detail. 16 refs

  4. Cogeneration and production of 2nd generation bio fuels using biomass gasification; Cogeneracion y produccion de biocombustibles de 2 generacion mediante gasificacion de biomasa

    Energy Technology Data Exchange (ETDEWEB)

    Uruena Leal, A.; Diez Rodriguez, D.; Antolin Giraldo, G.

    2011-07-01

    Thermochemical decomposition process of gasification, in which a carbonaceous fuel, under certain conditions of temperature and oxygen deficiency, results in a series of reactions that will produce a series of gaseous products is now widely used for high performance energetic and versatility of these gaseous products for energy and 2nd generation bio fuels and reduce the emission of greenhouse gases. (Author)

  5. Cogeneration. Kraftvaerme

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Existing and future technologies for cogeneration in the 1-100 MW ranges are reviewed. Efforts have been made to analyze performance and economy of the different plants in a uniform manner. The technologies presented are supposed to represent the normal status at the beginning of the next century. The economy of the plants have been analyzed through sensitivity analysis. Some main conclusions are: the competitiveness of cogeneration has been identified; the taxation principles for energy are of outmost importance; there is no need to await new technology for starting to build cogeneration plants. In a long perspective, R and D effort should be concentrated on combustion of solid fuels in diesel engines and gas turbines, and on molten carbonate fuel cells. (L.E.).

  6. Cogeneration feasibility study in the Gulf States Utilities service area

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Sites in the Gulf States Utilities service are considered for cogeneration feasibility studies. The sources of steam considered for the Orange, Texas and Geismar, Lake Charles, and North Baton Rouge, Louisiana sites include oil, coal, HTGR steamers, consolidated nuclear steam system, atmospheric fluidized-bed coal combustion, and coal gasification. Concepts concerning cogeneration fuel systems were categorized by technical applicability as: current technology (pulverized coal-fired boilers and fuel oil-fired boilers), advanced technology under development (HTGR steamers and the CNSS), and advanced technology for future development (atmospheric fluidized-bed boilers and coal gasification). In addition to providing data on cogeneration plant generally useful in the US, the study determined the technical and economic feasibility of steam and electric power cogeneration using coal and nuclear fuels for localized industrial complexes. Details on site selection, plant descriptions, cost estimates, economic analysis, and plant schedule and implementation. (MCW)

  7. Viability analysis of electric energy cogeneration in combined cycle with sugar-cane biomass gasification and natural gas; Analise de viabilidade da cogeracao de energia eletrica em ciclo combinado com gaseificacao de biomassa de cana-de-acucar e gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Correa Neto, Vicente

    2001-03-15

    The objective of this thesis is evaluate the technical and economic viability of electric energy generation projects using as fuel the biomass produced in the sugar cane Brazilian industry, specifically the cane trash, the straw and the leaves of the plant, as complemental option to the expansion of the Brazilian electric system, hour in phase of deep modification in the institutional scenery, through the sale of electric energy for direct consumers or utilities, characterizing the business possibilities for the ethanol distilleries already integrated into the energy reality of the country. The analyzed technology is thermoelectric generation with combined cycle, operating in cogeneration, integrated to biomass gasification systems for the production of combustible gas, with and without addition of natural gas. The considered technology is known by the acronym BIG/GTCC, originated in Biomass Integrate Gasification Combined Cycle Gas Turbine. The economic analysis is made herself through a modeling and construction of economy project curves based on the prices of the electric energy, of the natural gas and in the costs of the retired biomass in an mechanized way.(author)

  8. Air emission control in a modern industrial gasification-cogeneration plant; Il controllo delle emissioni in atmosfera di un moderno impianto industriale. L'impianto di gassificazione-cogenerazione di ISAB energy di Priolo Gargallo

    Energy Technology Data Exchange (ETDEWEB)

    Bifulco, S.; Panico, A. [Catania Univ., Catania (Italy). Facolta' di Farmacia, Dipt. di Science Farmaceutiche

    2001-06-01

    The present paper reports the study technology and environmental of new industry integrated gasification - combinated cycle - in Priolo Gargallo area at Siracusa. The analysis shows as the suggested industry waste strategy would bring about benefits on both the environmental and economic view points. [Italian] Nel presente articolo vengono illustrati gli aspetti tecnologici ed ambientali di un moderno impianto di I.G.C.C. (Integrated Gasification - Combined Cycle) dell'Isab Energy di Priolo Gargallo.

  9. Cogeneration techniques; Les techniques de cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    This dossier about cogeneration techniques comprises 12 parts dealing successively with: the advantages of cogeneration (examples of installations, electrical and thermal efficiency); the combustion turbine (principle, performances, types); the alternative internal combustion engines (principle, types, rotation speed, comparative performances); the different configurations of cogeneration installations based on alternative engines and based on steam turbines (coal, heavy fuel and natural gas-fueled turbines); the environmental constraints of combustion turbines (pollutants, techniques of reduction of pollutant emissions); the environmental constraints of alternative internal combustion engines (gas and diesel engines); cogeneration and energy saving; the techniques of reduction of pollutant emissions (pollutants, unburnt hydrocarbons, primary and secondary (catalytic) techniques, post-combustion); the most-advanced configurations of cogeneration installations for enhanced performances (counter-pressure turbines, massive steam injection cycles, turbo-chargers); comparison between the performances of the different cogeneration techniques; the tri-generation technique (compression and absorption cycles). (J.S.)

  10. Mini/micro cogeneration, basis for installation. Dimensioning, accounting and potential. Project report 1; Mini/mikrokraftvarme, forudsaetninger for installation. Dimensionering, afregningsforhold og potentiale. Projektrapport 1

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J. de; Iskov, H.

    2005-11-15

    Cogeneration is quite spread in Denmark. Approx. 50 % of the power supply and 80 % of the district heating supply come from cogeneration. Combined heat and power is produced on both centralized (large) plants and decentralized plants. Decentralized combined heat and power plants (typically based on natural gas) use gas motors or gas turbines for power and heat production. Cogeneration of heat and power saves primary fuels and a directly derived effect from cogeneration is CO{sub 2} emission reduction. If fuels with higher specific CO{sub 2} emission than natural gas (e.g. coal, oil) are substituted, additional CO{sub 2} reduction can be reached. (BA)

  11. Introduction to cogeneration; Introducao a cogeracao

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luiz Augusto Horta; Martins, Andre Luiz Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1997-07-01

    This work presents a general view of cogeneration. The paper approaches the development of cogeneration, technological aspects, the cogeneration in Brazil, economical aspects, performance of cogeneration systems, viability, costs, cogeneration potentials and technological trends.

  12. Gasification processes study of biomass and industrial wastes integrated to a type IGCC cogeneration system. Scientific report PE 5-1, 2003 - BIOCOGAZ; Etude des procedes de gazeification de la biomasse et de residus industriels integres a un systeme de co-generation de type IGCC. Rapport scientifique PE 5-1, 2003 - BIOCOGAZ

    Energy Technology Data Exchange (ETDEWEB)

    Most, J.M. [Poitiers Univ., Lab. de Combustion et Detonique (LCD) UPR 9028, 86 (France); Lede, J. [Laboratoire des Sciences du Genie Chimique de Nancy, 54 (France)

    2004-07-01

    The exploratory program objective was to define the characteristics of a thermochemical process of pyrolysis-gasification of the biomass or wastes, which can be connected to a direct energy generation application (gas turbines, boilers, engines). This document presents the program methodology. (A.L.B.)

  13. EVALUATION OF ENERGY COGENERATION FROM SUGAR CANE BAGASSE

    Directory of Open Access Journals (Sweden)

    Hanserth Abreu Elizundia

    2016-01-01

    Full Text Available In this paper were simulated and evaluated five alternatives of cogeneration scheme that promote a higher production of thermal and electrical energies as well as its right management. The first three alternatives are directed to increasing the boiler pressure and a change of steam turbines which are the extraction-condensation type, and then the fourth alternative proposed a boiler change to implement a bubbling fluidized bed and finally in the fifth alternative a scheme of biomass gasification is analyzed. All scheme were analyzed energetic and exergetically. The five cogeneration alternatives were simulated in ASPEN PLUS; they showed that the largest surplus bagasse and electricity are obtained with the scheme of a biomass gasification and the worst results in these parameters were obtained in the alternative that function in low pressure and temperature parameters

  14. Industrial cogeneration optimization program

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The purpose of this program was to identify up to 10 good near-term opportunities for cogeneration in 5 major energy-consuming industries which produce food, textiles, paper, chemicals, and refined petroleum; select, characterize, and optimize cogeneration systems for these identified opportunities to achieve maximum energy savings for minimum investment using currently available components of cogenerating systems; and to identify technical, institutional, and regulatory obstacles hindering the use of industrial cogeneration systems. The analysis methods used and results obtained are described. Plants with fuel demands from 100,000 Btu/h to 3 x 10/sup 6/ Btu/h were considered. It was concluded that the major impediments to industrial cogeneration are financial, e.g., high capital investment and high charges by electric utilities during short-term cogeneration facility outages. In the plants considered an average energy savings from cogeneration of 15 to 18% compared to separate generation of process steam and electric power was calculated. On a national basis for the 5 industries considered, this extrapolates to saving 1.3 to 1.6 quads per yr or between 630,000 to 750,000 bbl/d of oil. Properly applied, federal activity can do much to realize a substantial fraction of this potential by lowering the barriers to cogeneration and by stimulating wider implementation of this technology. (LCL)

  15. Cogeneration. Energy efficiency - Micro-cogeneration

    International Nuclear Information System (INIS)

    Boudellal, M.

    2010-01-01

    Depletion of natural resources and of non-renewable energy sources, pollution, greenhouse effect, increasing energy needs: energy efficiency is a major topic implying a better use of the available primary energies. In front of these challenges, cogeneration - i.e. the joint production of electricity and heat, and, at a local or individual scale, micro-cogeneration - can appear as interesting alternatives. This book presents in a detailed manner: the present day and future energy stakes; the different types of micro-cogeneration units (internal combustion engines, Stirling engine, fuel cell..), and the available models or the models at the design stage; the different usable fuels (natural gas, wood, biogas..); the optimization rules of a facility; the costs and amortizations; and some examples of facilities. (J.S.)

  16. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  17. Biomass cogeneration. A business assessment

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  18. Experience feedback from nuclear cogeneration - 15369

    International Nuclear Information System (INIS)

    Auriault, C.; Fuetterer, M.A.; Baudrand, O.

    2015-01-01

    A consortium of 20 companies currently runs the NC2I-R (Nuclear Cogeneration Industrial Initiative - Research) project as part of the European Union's 7. Framework Programme. The project supports the development of an industrial initiative to demonstrate nuclear cogeneration of heat and power as an effective low-carbon technology for industrial market applications. As part of this project, operational feedback was collected from previous, existing and planned nuclear cogeneration projects in a number of countries with the aim of identifying a most complete set of boundary conditions which led to successful projects in the past. Stakeholders consulted include in particular utilities and end users. The scope encompassed technical and non-technical information (organizational structure, financial aspects, public relations, etc.) and specifically experience in licensing gained from these projects. The information was collected by a questionnaire and additional face-to-face interviews. The questionnaire was formulated to cover 9 categories of in total 56 questions for 36 identified projects: Motivation and initiative, Role of key players, Organizational structure, Technical aspects, Safety and licensing, Financial aspects, Timing, Public relations, General experience feedback. From the 36 identified projects worldwide, 23 from 10 countries have provided feedback on a variety of applications such as district heating, seawater desalination, paper and pulp industry, petrochemical industry, coal gasification or salt processing. This is a surprisingly positive response considering that several of these projects date back to the 1980's and many of them were performed outside Europe. This paper summarizes and analyzes the received information and deduces from there which boundary conditions are favorable for the construction of new nuclear cogeneration projects. (authors)

  19. Cogeneration and North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, J. [ed.

    1979-01-01

    A separate abstract was prepared for each of 18 individual presentations. Appendices include lists of participants, speakers, and session chairmen plus California and North Carolina reports and legislation dealing with cogeneration.

  20. Cogeneration markets in Ontario

    International Nuclear Information System (INIS)

    Poredos, S.

    1993-01-01

    Cogeneration offers a key strategy which supports global competitiveness for Ontario businesses, encourages energy efficiency and environmental protection, and offers natural gas utilities and producers stable long-term incremental markets. By supporting cogeneration projects, electric utilities will benefit from increased flexibility. Natural gas is the fuel of choice for cogeneration, which can in most cases be easily integrated into existing operations. In Ontario, electric demand grew along with the gross domestic product until 1990, but has decreased with the recent economic recession. The provincial utility Ontario Hydro is resizing itself to stabilize total rate increases of 30% over the last three years and supporting reduction of its high debt load. Rate increases are supposed to be limited but this may be difficult to achieve without further cost-cutting measures. Cogeneration opportunities exist with many institutional and industrial customers who are trying to remain globally competitive by cutting operating costs. In general, cogeneration can save 20% or more of total annual energy costs. Due to excess capacity, Ontario Hydro is not willing to purchase electric power, thus only electric load displacement projects are valid at this time. This will reduce overall savings due to economies of scale. In southwestern Ontario, Union Gas Ltd. has been successful in developing 40 MW of electric displacement projects, providing a total load of 5 billion ft 3 of natural gas (50% of which is incremental). Over 3,000 MW of technical cogeneration potential is estimated to exist in the Union Gas franchise area

  1. Global environment and cogeneration

    International Nuclear Information System (INIS)

    Miyahara, Atsushi

    1992-01-01

    The environment problems on global scale have been highlighted in addition to the local problems due to the rapid increase of population, the increase of energy demand and so on. The global environment summit was held in Brazil. Now, global environment problems are the problems for mankind, and their importance seems to increase toward 21st century. In such circumstances, cogeneration can reduce carbon dioxide emission in addition to energy conservation, therefore, attention has been paid as the countermeasure for global environment. The background of global environment problems is explained. As to the effectiveness of cogeneration for global environment, the suitability of city gas to environment, energy conservation, the reduction of carbon dioxide and nitrogen oxides emission are discussed. As for the state of spread of cogeneration, as of March, 1992, those of 2250 MW in terms of power generation capacity have been installed in Japan. It is forecast that cogeneration will increase hereafter. As the future systems of cogeneration, city and industry energy center conception, industrial repowering, multiple house cogeneration and fuel cells are described. (K.I.)

  2. Cogeneration and local authorities; Cogeneration et collectivites territoriales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This conference is composed of 15 communications concerning cogeneration systems and applications in local communities. The main themes are: the regulation context and administrative procedures for cogeneration projects in France; legal aspects, risk covering, financing and sellback conditions for cogeneration systems; examples of cogeneration and tri-generation (with refrigeration energy) in different cities, airport, hospitals, campus, combined with the upgrading of district heating systems or municipal waste incineration plants. Impacts on energy savings and air pollution are also discussed

  3. The California cogeneration success story

    International Nuclear Information System (INIS)

    Neiggemann, M.F.

    1992-01-01

    This chapter describes the involvement of Southern California Gas Company(SoCalGas) in the promotion and demonstration of the benefits of cogeneration in California. The topics covered in this chapter are market strategy, cogeneration program objectives, cogeneration program, incentive cofunding, special gas rate, special service priority, special gas pressure and main options, advertising, promotional brochures and handbooks, technical support, program accomplishments, cogeneration outlook, and reasons for success of the program

  4. The cogeneration market in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Masaki [Cogeneration Research Society of Japan, Tokyo (Japan). Research Dept.

    1997-09-01

    Conventional power generation is only around 35% efficient at demand side in Japan. Cogeneration increases the overall energy efficiency up to 85%. Other merits of cogeneration are energy saving, improvement of the environment, greenhouse gas emission (CO{sub 2}) can be reduced. The energy conditions in Japan are overviewed and the trends for cogeneration - both commercial and industrial - are evaluated. Finally, statutory regulations regarding cogeneration systems are considered. (R.P.)

  5. ELSAM/ELKRAFT: Draft for the plan of management for bio-energy. ELSAM/ELKRAFT: The electricity companies' programme for gasification of coal and biomass

    International Nuclear Information System (INIS)

    1992-08-01

    The Danish power companies have, since the middle of the 80's carried through a technology development effort for the use of bio-fuels in power (and dual-purpose power) plants. This note concerns the current status of the development and a sketch for an action programme for future effort. Straw is the largest unexploited potential. The use of bio-fuels does not produce so much carbon dioxide, but on the other hand biomass supply can fluctuate. Biofuels are also difficult to stoke, and expensive. Close co-operation between agriculture and forestry is necessary and risks are high for the involved sectors. It must be possible to use bio-fuels combined with coal to secure a sturdy and economic energy production, it is necessary to have a stable energy and industrial policy to maintain interest in the long term development effort, the contrasts of interest between natural gas and bio-fuels on the decentralized thermal power market must be clarified and the prices of bio-fuels must be made competitive by making supply and subsidies more effective. The main areas for future development are the bio-fuel resources, logistics and economy, straw in central power plants, gasification of coal and biomass, bio-fuels in decentralized cogeneration plants, biogas plants, conversion of biomass to synthetic fuels etc. A close co-ordination of ELSAM/ELKRAFT's development activities and cooperation between organizations in Denmark and abroad should be aimed at. (AB)

  6. Development of biomass gasification systems for gas turbine power generation

    International Nuclear Information System (INIS)

    Larson, E.D.; Svenningsson, P.

    1991-01-01

    Gas turbines are of interest for biomass applications because, unlike steam turbines, they have relatively high efficiencies and low unit capital costs in the small sizes appropriate for biomass installations. Gasification is a simple and efficient way to make biomass usable in gas turbines. The authors evaluate here the technical requirements for gas turbine power generation with biomass gas and the status of pressurized biomass gasification and hot gas cleanup systems. They also discuss the economics of gasifier-gas turbine cycles and make some comparisons with competing technologies. Their analysis indicates that biomass gasifiers fueling advanced gas turbines are promising for cost-competitive cogeneration and central station power generation. Gasifier-gas turbine systems are not available commercially, but could probably be developed in 3 to 5 years. Extensive past work related to coal gasification and pressurized combustion of solid fuels for gas turbines would be relevant in this effort, as would work on pressurized biomass gasification for methanol synthesis

  7. DDACE cogeneration systems : 10 case studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    DDACE Power Systems are experts in green energy power generation and provide solutions that deal with waste and industrial by-products. The company develops practical energy solutions that address environmental and financial concerns facing both industrial and municipal customers. The following 10 case studies are examples of the installations that DDACE Power Systems have completed in recent years: (1) a combined heat and emergency power installation on the roof of a 19 storey apartment building on Bloor Street in Toronto, Ontario. The cogeneration package provides electricity and heat to the entire building, replacing an old diesel generator, (2) a combined heat and emergency power installation at the Villa Colombo extended care facility in Vaughan, Ontario. The cogeneration system provides heat and power to the building, as well as emergency power, (3) emergency standby power with demand response capabilities at Sobeys Distribution Warehouse in Vaughan, Ontario. The primary purpose of the 2.4 MW low emission, natural gas fuelled emergency standby generator is to provide emergency power to the building in the event of a grid failure, (4) a dual fuel combined heat and power installation at the Queensway Carleton Hospital in Ottawa, Ontario that provides electricity, hot water and steam to all areas of the hospital, (5) a tri-generation installation at the Ontario Police College in Aylmer, Ontario which provides power and heat to the building as well as emergency power in the event of a grid failure. An absorption chiller provides cooling in the summer and an exhaust emission control system reduces NOx emissions, (6) a biomass gasification installation at Nexterra Energy in Kamloops, British Columbia. The 239 kW generator is fueled by synthesis gas, (7) biogas utilization at Fepro Farms in Cobden, Ontario for treatment of the facility's waste products. The biogas plant uses cow manure, as well as fats, oil and grease from restaurants to produce electricity and

  8. Modified Thermodynamic Equilibrium Model for Biomass Gasification: A Study of the Influence of Operating Conditions

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Juan Carlos; Coronas, Alberto

    2012-01-01

    This paper presents a mathematical model for biomass gasification processes developed in the equation solver program Engineering Equation Solver (EES) with an implemented user-friendly interface. It is based on thermodynamic equilibrium calculations and includes some modifications to be adapted......, and oxygen enrichment] on producer gas. The model predicts the behavior of different kinds of biomass and becomes a useful tool to simulate the biomass gasification process by allowing its integration in complete energy supply systems, such as co-generation plants....

  9. Micro-size cogeneration plants and virtual power plants. New energy landscapes; Mikro-KWK und virtuelle Kraftwerke. Neue Energielandschaften

    Energy Technology Data Exchange (ETDEWEB)

    Roon, Serafin von [Forschungsstelle fuer Energiewirtschaft e.V., Muenchen (Germany)

    2009-07-01

    Combined heat and power generation is an established technology. With micro-size cogeneration units, the technology is now available to private single or multiple dwellings and for decentral power supply of residential blocks. With the right political boundary conditions and integrated into virtual power stations, this is an option for enhanced use of renewable energy sources and for decentral, flexible and climate-friendly heat and power generation in buildings. Economic efficiency analyses by experts, high utilisation rates, innovative developments of the manufacturers and a positive public image are all in favour of a great future for micro-size cogeneration units. (orig.)

  10. District heating and co-generation in Slovenia

    International Nuclear Information System (INIS)

    Hrovatin, Franc; Pecaric, Marko; Perovic, Olgica

    2000-01-01

    Recent development of district heating systems, gasification and co-generation processes in local communities in Slovenia as well as current status, potentials, possibilities and plans for further development in this sphere are presented. The current status presents energy production, distribution and use in district heating systems and in local gas distribution networks. An analysis of the energy and power generated and distributed in district power systems, made with regard to the size of the system, fuel used, type of consumers and the way of production, is given. Growth in different areas of local power systems in the period of last years is included. Potentials in the sphere of electrical energy and heat co-generation were assessed. Some possibilities and experience in heat energy storage are given and trends and plans for further development are introduced. (Authors)

  11. Cogeneration in Southeast Asia: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, S.K. [EC-ASEAN COGEN Programme, Bangkok (Thailand)

    2002-10-01

    This article presents an overview of cogeneration in Brunei, Indonesia, Malaysia, the Philippines, Singapore, Thailand, Vietnam and Cambodia. The status of cogeneration technologies in Southeast Asia is examined, and details are given of some cogeneration projects such as the cogeneration scheme at a new sawmill and moulding factory in Malaysia, and the cogeneration plant at a large rice mill in Thailand. The potential for cogeneration in the region is assessed.

  12. Corruption and Decentralization

    OpenAIRE

    Carbonara, Emanuela

    1999-01-01

    This paper studies the effect of decentralization on corruption in a hierarchical organization, where decentralization is intended as the delegation of control power to lower levels in a hierarchy. Decentral- ization causes a loss in control to the higher levels, thus curbing their incentives to monitor and detect corrupt activities. However, it also lowers the expected gains from corruption as, following decentralization, the number of individuals who are in charge of a single decision is re...

  13. The cogeneration in France; La cogeneration en France

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Since the years 90 many measures have been decided by the government in favor of the cogeneration, to implement a juridical, fiscal, technical and economical framework. After a presentation of the three main channels and the advantages of the cogeneration, the author presents these measures. (A.L.B.)

  14. The alarming future for cogeneration

    International Nuclear Information System (INIS)

    Koevoet, H.

    2000-01-01

    Low prices and uncertainty in pricing of energy, higher costs for investment and expensive fuels are the most important reasons why the growth of cogeneration capacity in the Netherlands stagnates. The liberalization of the energy market appears to be the malefactor. A brief overview is given of the ECN (Netherlands Energy Research Foundation) report 'Toekomst warmtekrachtkoppeling' (Future of cogeneration)

  15. Cogeneration technologies, optimisation and implementation

    CERN Document Server

    Frangopoulos, Christos A

    2017-01-01

    Cogeneration refers to the use of a power station to deliver two or more useful forms of energy, for example, to generate electricity and heat at the same time. This book provides an integrated treatment of cogeneration, including a tour of the available technologies and their features, and how these systems can be analysed and optimised.

  16. Feasibility study of a biomass-fired cogeneration plant Groningen, Netherlands

    International Nuclear Information System (INIS)

    Rijk, P.J.; Van Loo, S.; Webb, R.

    1996-06-01

    The feasibility of the title plant is determined for district heating and electricity supply of more than 1,000 houses in Groningen, Netherlands. Also attention is paid to the feasibility of such installations in a planned area of the city. Prices and supply of several biomass resources are dealt with: prunings of parks, public and private gardens, clean wood wastes, wood wastes from forests, wood from newly planted forests, specific energy crops (willows in high densities and short cycles). Prices are calculated, including transport to the gate of the premises where the cogeneration installations is situated. For the conversion attention is paid to both the feasibility of the use of a conventional cogeneration installation (by means of a steam turbine) and the use of a new conversion technique: combined cycle of a gasification installation and a cogeneration installation. 5 figs., 5 ills., 22 tabs., 1 appendix, 33 refs

  17. Conventional and cogeneration costs

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Two areas must be addressed in the preparation of any feasibility analysis. First is the identification of all cost components, and second is the development of actual cost estimates. In this chapter, the individual cost components are identified and reviewed. Each of them should be considered in the conduct of any feasibility study, for it is the depth to which they are analyzed that is the most significant contributor to the cost of the analysis. The discussion reviews both the operating and the capital cost considerations of cogeneration economics

  18. Pyrolysis and Gasification

    DEFF Research Database (Denmark)

    Astrup, Thomas; Bilitewski, B.

    2011-01-01

    Pyrolysis and gasification include processes that thermally convert carbonaceous materials into products such as gas, char, coke, ash, and tar. Overall, pyrolysis generates products like gas, tar, and char, while gasification converts the carboncontaining materials (e.g. the outputs from pyrolysis...... may often be described as gasification only. Pyrolysis, however, can also be employed without proceeding with gasification. Gasification is by no means a novel process; in the 19th century so-called ‘town gas’ was produced by the gasification of coal and for example used for illumination purposes....... In Europe during World War II, wood-fueled gasifiers (or ‘gas generators’) were used to power cars during shortages of oil-based fuels. Sparked by oil price crises in 1970s and 1980s, further development in gasification technologies focused mainly on coal as a fuel to substitute for oil-based products...

  19. Decentralized Software Architecture

    National Research Council Canada - National Science Library

    Khare, Rohit

    2002-01-01

    .... While the term "decentralization" is familiar from political and economic contexts, it has been applied extensively, if indiscriminately, to describe recent trends in software architecture towards...

  20. Cogeneration in Australia. Situation and prospects

    International Nuclear Information System (INIS)

    1997-01-01

    This Research Paper is mainly concerned with the status and prospects for cogeneration in Australia. An introductory chapter reviews the fundamentals of cogeneration, covering both technical and institutional aspects. A range of technologies are employed in cogeneration: these technologies and their efficiency and environmental impact effects are discussed in Chapter 2. The economics of cogeneration are a major factor in the profitability of current and potential plants. Potential factors affecting cogeneration economics are discussed .The status of cogeneration in Australia is reviewed for each State and Territory, and includes a number of case studies of existing plants. Government (federal, state, territory) policies that have a significant impact on the attractiveness of cogeneration are reviewed. Finally, the future prospects for cogeneration in Australia, drawing on the preceding chapters and a review of estimated potentials for cogeneration in Australia are presented

  1. Catalytic Gasification of Lignocellulosic Biomass

    NARCIS (Netherlands)

    Chodimella, Pramod; Seshan, Kulathuiyer; Schlaf, Marcel; Zhang, Z. Conrad

    2015-01-01

    Gasification of lignocellulosic biomass has attracted substantial current research interest. Various possible routes to convert biomass to fuels have been explored. In the present chapter, an overview of the gasification processes and their possible products are discussed. Gasification of solid

  2. Cogeneration Systems; Sistemas de Cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez M, Manuel F; Huante P, Liborio; Romo M, Cesar A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2006-07-01

    The present article deals on relevant aspects on the subject of cogeneration within the Mexican territorial limits. In the first place it is presented the role of Mexico in terms of its cogeneration potential, the type of service that has obtained from this predominant modality of cogeneration for self-supplying, the most propitious sectors to develop it, its legislations on the matter, the projects made for the implementation of cogeneration plants, as well as the existing cogeneration schemes for its respective optimization proposals. Without leaving out the analysis on the different types of evaluation on the efficiency of cogeneration systems and the aspects to consider for the election of a generation cycle. [Spanish] El presente articulo trata sobre aspectos relevantes en materia de cogeneracion dentro de los limites territoriales de la nacion mexicana. Se muestra en primer lugar el papel de Mexico en terminos de su potencial de cogeneracion, el tipo de servicio que ha obtenido de esta predominantemente (modalidad de cogeneracion para autoabastecimiento), los sectores mas propicios para desarrollarla, sus legislaciones al respecto, los proyectos realizados para la implementacion de plantas de cogeneracion, asi como los esquemas de cogeneracion existentes con sus respectivas propuestas de optimizacion. Sin dejar de lado el analisis sobre los distintos tipos de evaluacion de la eficiencia de sistemas de cogeneracion y los aspectos a considerar para la eleccion de un ciclo de generacion.

  3. Decentralization: An International Perspective.

    Science.gov (United States)

    Walberg, Herbert J.; Paik, Susan J.; Komukai, Atsuko; Freeman, Karen

    2000-01-01

    Analysis of 22 definitions of decentralization shows how they are encompassed in the Organization for Economic Cooperation and Development's taxonomy. Data from 14 nations suggest that decentralization of instruction, planning, personnel management, and resource allocation and use has less effect on learning than do conditions in classrooms and…

  4. Gasification of Woody Biomass.

    Science.gov (United States)

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges.

  5. Radiative Gasification Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — This apparatus, developed at EL, determines gasification rate (mass loss rate) of a horizontally oriented specimen exposed in a nitrogen environment to a controlled...

  6. Optimal design of a cogeneration system for typical hospitals in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Azit, A.H.; Nor, K.M. [Technological Univ. of Malaysia, Kuala Lumpur (Malaysia)

    2008-07-01

    Cogeneration systems produce electricity and heat at decentralized locations. They are efficient energy conversion systems that offer many benefit, including savings in energy consumption. They are very effective compared to centralized bulk generation, particularly if they are located near the load. As such, they are well suited for use in hospitals that have significant thermal loads. However, in order to derive maximum benefits, cogeneration systems must be optimally sized. This paper presented a study of a cogeneration system for a typical hospital buildings in Malaysia. A mixed integer non-linear optimization technique was used to size the system. A Newton Raphson and Conjugate method was used in the optimization process. The optimization technique simulated the cogeneration system along with a thermal storage system. In particular, a cogeneration system for a 5 MW and 2 MW maximum demand hospital facility was simulated using non linear mixed integer optimization programming. Five different capacities of gas turbine generators were used in the simulation to determine the optimal size. The optimization results showed that optimum energy savings and efficiency could be achieved with the right generation output. The optimization used thermal storage to help improve thermal load matching in order to improve the overall efficiency. 7 refs., 3 tabs., 4 figs.

  7. Coal fired air turbine cogeneration

    Science.gov (United States)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.

  8. Combined cycles and cogeneration with natural gas and alternative fuels

    International Nuclear Information System (INIS)

    Gusso, R.

    1992-01-01

    Since 1985 there has been a sharp increase world-wide in the sales of gas turbines. The main reasons for this are: the improved designs allowing better gas turbine and, thus, combined cycle efficiencies; the good fuel use indices in the the case of cogeneration; the versatility of the gas turbines even with poly-fuel plants; greatly limited exhaust emissions; and lower manufacturing costs and delivery times with respect to conventional plants. This paper after a brief discussion on the evolution in gas turbine applications in the world and in Italy, assesses their use and environmental impacts with fuels other than natural gas. The paper then reviews Italian efforts to develop power plants incorporating combined cycles and the gasification of coal, residual, and other low calorific value fuels

  9. Decentralized Online Social Networks

    Science.gov (United States)

    Datta, Anwitaman; Buchegger, Sonja; Vu, Le-Hung; Strufe, Thorsten; Rzadca, Krzysztof

    Current Online social networks (OSN) are web services run on logically centralized infrastructure. Large OSN sites use content distribution networks and thus distribute some of the load by caching for performance reasons, nevertheless there is a central repository for user and application data. This centralized nature of OSNs has several drawbacks including scalability, privacy, dependence on a provider, need for being online for every transaction, and a lack of locality. There have thus been several efforts toward decentralizing OSNs while retaining the functionalities offered by centralized OSNs. A decentralized online social network (DOSN) is a distributed system for social networking with no or limited dependency on any dedicated central infrastructure. In this chapter we explore the various motivations of a decentralized approach to online social networking, discuss several concrete proposals and types of DOSN as well as challenges and opportunities associated with decentralization.

  10. Cogeneration for small SAGD projects

    Energy Technology Data Exchange (ETDEWEB)

    Albion, Stuart [AMEC BDR Limited (United Kingdom)

    2011-07-01

    As many SAGD projects are being developed in remote locations, the supply of a steady source of power to them becomes an important question. Connecting these remote facilities to a grid can often be difficult and costly. This presentation, by AMEC BDR Limited, promotes the use of cogeneration in small SAGD projects. Cogeneration is the generation of two forms of energy from one fuel source. In this particular case, the energy forms would be electricity and heat. In many SAGD projects, a gas turbine system is used to generate the electricity, while a heat recovery system is utilized to generate steam. The use of cogeneration systems in SAGD projects, as opposed to using separate heat and electricity systems, has the potential to significantly reduce the amount of energy lost, the amount of emissions and power costs, in addition to ensuring that there is a reliable supply of steam and electricity.

  11. Decentralized energy studies: bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J.M.; Unseld, C.T.; Levine, A.; Silversmith, J.A.

    1980-05-01

    This bibliography is a compilation of literature on decentralized energy systems. It is arranged according to topical (e.g., lifestyle and values, institutions, and economics) and geographical scale to facilitate quick reference to specific areas of interest. Also included are articles by and about Amory B. Lovins who has played a pivotal role in making energy decentralization an important topic of national debate. Periodicals, other bibliographies, and directories are also listed.

  12. Remote handling of decentralized power generation plants; Fernwirken von dezentralen Energieerzeugungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Michael [IDS GmbH, Ettlingen (Germany). Geschaeftsbereich Entwicklung-Prozessautomatisierung; Thomas, Ralf [IDS GmbH, Ettlingen (Germany). Bereich Business Development und Marketing

    2011-05-15

    The incresing number of decentral power generation systems requires new grid solutions, i.e. the so-called smart grids. One important function is the monitoring and control, e.g. of decentral PV, wind power and cogeneration systems. The data interfaces used are highly diverse and as a rule are taken from measuring and automation technology, i.e. they must be adapted to the data models and transmission procedures of remote control and guidance systems. A compact protocol gateway enables standardized control and diagnosis.

  13. Experiences Applying Cogeneration Policies in Europe

    International Nuclear Information System (INIS)

    Marin Nortes, M.

    1997-01-01

    This paper starts by giving overview of the development of cogeneration in the European Union. The percentage of electricity produced by cogeneration is about 10%. The difference among the countries are however very big, ranging from 40% in Denmark to 2% in France. This is because the development of cogeneration in a country depends on a number of different factors. Political and regulatory factors are of a major importance. This paper tries to show this and to examinate a number of cogeneration policies in some countries in Europe. In each case, the reasons why or why not cogeneration has been successful will be analysed. (author)

  14. Combined heat and power production through biomass gasification with 'Heatpipe-Reformer'

    International Nuclear Information System (INIS)

    Iliev, I.; Kamburova, V.; Terziev, A.

    2013-01-01

    The current report aims is to analyze the system for combined heat and power production through biomass gasification with “heatpipe-reformer” system. Special attention is paid on the process of synthetic gas production in the Reformer, its cleaning and further burning in the co-generation unit. A financial analysis is made regarding the investments and profits generated by the combined heat and power production. (authors)

  15. Thermal and biological gasification

    Energy Technology Data Exchange (ETDEWEB)

    Overend, R.P.; Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States)

    1993-12-31

    Gasification is being developed to enable a diverse range of biomass resources to meet modern secondary energy uses, especially in the electrical utility sector. Biological or anaerobic gasification in US landfills has resulted in the installation of almost 500 MW(e) of capacity and represents the largest scale application of gasification technology today. The development of integrated gasification combined cycle generation for coal technologies is being paralleled by bagasse and wood thermal gasification systems in Hawaii and Scandinavia, and will lead to significant deployment in the next decade as the current scale-up activities are commercialized. The advantages of highly reactive biomass over coal in the design of process units are being realized as new thermal gasifiers are being scaled up to produce medium-energy-content gas for conversion to synthetic natural gas and transportation fuels and to hydrogen for use in fuel cells. The advent of high solids anaerobic digestion reactors is leading to commercialization of controlled municipal solid waste biological gasification rather than landfill application. In both thermal and biological gasification, high rate process reactors are a necessary development for economic applications that address waste and residue management and the production and use of new crops for energy. The environmental contribution of biomass in reducing greenhouse gas emission will also be improved.

  16. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  17. Cogeneration system simulation/optimization

    International Nuclear Information System (INIS)

    Puppa, B.A.; Chandrashekar, M.

    1992-01-01

    Companies are increasingly turning to computer software programs to improve and streamline the analysis o cogeneration systems. This paper introduces a computer program which originated with research at the University of Waterloo. The program can simulate and optimize any type of layout of cogeneration plant. An application of the program to a cogeneration feasibility study for a university campus is described. The Steam and Power Plant Optimization System (SAPPOS) is a PC software package which allows users to model any type of steam/power plant on a component-by-component basis. Individual energy/steam balances can be done quickly to model any scenario. A typical days per month cogeneration simulation can also be carried out to provide a detailed monthly cash flow and energy forecast. This paper reports that SAPPOS can be used for scoping, feasibility, and preliminary design work, along with financial studies, gas contract studies, and optimizing the operation of completed plants. In the feasibility study presented, SAPPOS is used to evaluate both diesel engine and gas turbine combined cycle options

  18. Decentralized Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Sørensen, M. D.; Clausen, Jens

    2002-01-01

    Typically, ground staff scheduling is centrally planned for each terminal in an airport. The advantage of this is that the staff is efficiently utilized, but a disadvantage is that staff spends considerable time walking between stands. In this paper a decentralized approach for ground staff...... scheduling is investigated. The airport terminal is divided into zones, where each zone consists of a set of stands geographically next to each other. Staff is assigned to work in only one zone and the staff scheduling is planned decentralized for each zone. The advantage of this approach is that the staff...... work in a smaller area of the terminal and thus spends less time walking between stands. When planning decentralized the allocation of stands to flights influences the staff scheduling since the workload in a zone depends on which flights are allocated to stands in the zone. Hence solving the problem...

  19. Decentralization and Governance in Indonesia

    NARCIS (Netherlands)

    Holzhacker, Ronald; Wittek, Rafael; Woltjer, Johan

    2016-01-01

    I. Theoretical Reflections on Decentralization and Governance for Sustainable Society 1. Decentralization and Governance for Sustainable Society in Indonesia Ronald Holzhacker, Rafael Wittek and Johan Woltjer 2. Good Governance Contested: Exploring Human Rights and Sustainability as Normative Goals

  20. Gasification - Status and technology

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen

    2012-06-15

    In this report gasification and gas cleaning techniques for biomass are treated. The main reason for gasifying biomass is to refine the fuel to make it suitable for efficient CHP production, as vehicle fuel or in industrial processes. The focus is on production of synthesis gas that can be used for production of vehicle fuel and for CHP production. Depending on application different types of gasifiers, gasification techniques and process parameters are of interest. Two gasification techniques have been identified as suitable for syngas generation, mainly due to the fact that they allow the production of a nitrogen free gas out of the gasifier; Indirect gasification and pressurized oxygen-blown gasification For CHP production there are no restrictions on the gas composition in terms of nitrogen and here air-blown gasification is of interest as well. The main challenge when it comes to gas cleaning is related to sulphur and tars. There are different concepts and alternatives to handle sulphur and tars. Some of them are based on conventional techniques with well-proven components that are commercially available while others, more advantageous solutions, still need further development.

  1. Decentralized control: An overview

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír

    2008-01-01

    Roč. 32, č. 1 (2008), s. 87-98 ISSN 1367-5788 R&D Projects: GA AV ČR(CZ) IAA200750802; GA MŠk(CZ) LA 282 Institutional research plan: CEZ:AV0Z10750506 Keywords : decentralized control * large-scale systems * decomposition Subject RIV: BC - Control Systems Theory Impact factor: 1.109, year: 2008

  2. Decentralized control and communication

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Papík, Martin

    2012-01-01

    Roč. 36, č. 1 (2012), s. 1-10 ISSN 1367-5788 R&D Projects: GA MŠk(CZ) LG12014 Institutional research plan: CEZ:AV0Z10750506 Keywords : decentralization * communication * large-scale complex systems Subject RIV: BC - Control Systems Theory Impact factor: 1.289, year: 2012

  3. Coalition or decentralization

    DEFF Research Database (Denmark)

    Mahdiraji, Hannan Amoozad; Govindan, Kannan; Zavadskas, Edmundas Kazimieras

    2014-01-01

    retailers. The Nash equilibrium and definition are used bearing in mind inventory and pricing and marketing cost as decision variables for this matter. This paper studies a three-echelon supply chain network and focuses on the value of integrating a pair of partners in the chain. In the decentralized case...

  4. Cogeneration: Key feasibility analysis parameters

    International Nuclear Information System (INIS)

    Coslovi, S.; Zulian, A.

    1992-01-01

    This paper first reviews the essential requirements, in terms of scope, objectives and methods, of technical/economic feasibility analyses applied to cogeneration systems proposed for industrial plants in Italy. Attention is given to the influence on overall feasibility of the following factors: electric power and fuel costs, equipment coefficients of performance, operating schedules, maintenance costs, Italian Government taxes and financial and legal incentives. Through an examination of several feasibility studies that were done on cogeneration proposals relative to different industrial sectors, a sensitivity analysis is performed on the effects of varying the weights of different cost benefit analysis parameters. With the use of statistical analyses, standard deviations are then determined for key analysis parameters, and guidelines are suggested for analysis simplifications

  5. MACROECONOMIC IMPACT OF DECENTRALIZATION

    Directory of Open Access Journals (Sweden)

    Emilia Cornelia STOICA

    2014-05-01

    Full Text Available The concept of decentralization has a variety of expressions, but the meaning generally accepted refers to the transfer of authority and responsibility of the public functions from central government to sub-national public entities or even to the private sector. Decentralization process is complex, affecting many aspects of social and economic life and public management, and its design and implementation cover several stages, depending on the cyclical and structural developments of the country. From an economic perspective, decentralization is seen as a means of primary importance in terms of improving the effectiveness and efficiency of public services and macroeconomic stability due to the redistribution of public finances while in a much closer logic of the government policy objectives. But the decentralization process behaves as well some risks, because it involves the implementation of appropriate mechanisms for the establishment of income and expenditure programming at the subnational level, which, if is not correlated with macroeconomic policy imperatives can lead to major imbalances, both financially as in termes of economic and social life. Equally, ensuring the balance of the budget at the local level is imperative to fulfill, this goal imposing a legal framework and specific procedures to size transfers of public funds, targeted or untargeted. Also, public and local authorities have to adopt appropriate laws and regulations such that sub-national public entities can access loans - such as bank loans or debentures from domestic or external market - in terms of a strict monitoring national financial stability. In all aspects of decentralization - political, administrative, financial -, public authorities should develop and implement the most effective mechanisms to coordinate macroeconomic objectives and both sectoral and local interests and establish clear responsibilities - exclusive or shared - for all parties involved in the

  6. Decentralized Portfolio Management

    Directory of Open Access Journals (Sweden)

    Benjamin Miranda Tabak

    2003-12-01

    Full Text Available We use a mean-variance model to analyze the problem of decentralized portfolio management. We find the solution for the optimal portfolio allocation for a head trader operating in n different markets, which is called the optimal centralized portfolio. However, as there are many traders specialized in different markets, the solution to the problem of optimal decentralized allocation should be different from the centralized case. In this paper we derive conditions for the solutions to be equivalent. We use multivariate normal returns and a negative exponential function to solve the problem analytically. We generate the equivalence of solutions by assuming that different traders face different interest rates for borrowing and lending. This interest rate is dependent on the ratio of the degrees of risk aversion of the trader and the head trader, on the excess return, and on the correlation between asset returns.

  7. WATER- AND COAL GASIFICATION

    Directory of Open Access Journals (Sweden)

    N. S. Nazarov

    2006-01-01

    Full Text Available According to the results of gas analysis it has been established that water- and coal gasification is rather satisfactorily described by three thermo-chemical equations. One of these equations is basic and independent and the other two equations depend on the first one.The proposed process scheme makes it possible to explain the known data and also permits to carry out the gasification process and obtain high-quality hydrogen carbon-monoxide which is applicable for practical use.

  8. A basic analysis of cogeneration economics

    NARCIS (Netherlands)

    Collet, P.J.

    1989-01-01

    The economics of small scale gas turbine based cogeneration systems are analyzed on the basis of avoided costs for an electric utility exploiting such systems. This concerns a theoretical study in which the cogeneration system as a means for electricity generation is assumed to supplant the building

  9. Policy Implementation Decentralization Government in Indonesia

    Directory of Open Access Journals (Sweden)

    Kardin M. Simanjuntak

    2015-06-01

    Full Text Available Decentralization in Indonesia is that reforms not completed and until the current implementation is not maximized or have not been successful. The essence of decentralization is internalising cost and benefit' for the people and how the government closer to the people. That's the most important essence of essence 'decentralization’. However, the implementation of decentralization in Indonesia is still far from the expectations. It is shown that only benefits of decentralization elite and local authorities, decentralization is a neo-liberal octopus, decentralization of public services are lacking in character, decentralization without institutional efficiency, decentralization fosters corruption in the area, and quasi-fiscal decentralization.

  10. Cogeneration development and market potential in China

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F.; Levine, M.D.; Naeb, J. [Lawrence Berkeley Lab., CA (United States); Xin, D. [State Planning Commission of China, Beijing, BJ (China). Energy Research Inst.

    1996-05-01

    China`s energy production is largely dependent on coal. China currently ranks third in global CO{sub 2} emissions, and rapid economic expansion is expected to raise emission levels even further in the coming decades. Cogeneration provides a cost-effective way of both utilizing limited energy resources and minimizing the environmental impacts from use of fossil fuels. However, in the last 10 years state investments for cogeneration projects in China have dropped by a factor of 4. This has prompted this study. Along with this in-depth analysis of China`s cogeneration policies and investment allocation is the speculation that advanced US technology and capital can assist in the continued growth of the cogeneration industry. This study provides the most current information available on cogeneration development and market potential in China.

  11. GASIFICATION FOR DISTRIBUTED GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  12. Management decisions for cogeneration: executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Radcliffe, R.R.; Tabors, R.D.

    1982-07-01

    This report summarizes two interdependent studies which explore the underlying factors in the decision by private, private non-profit, and public sector facility owners to invest in cogeneration technology. They employ factor analysis techniques to explain the decision to invest and discriminant analysis to group the survey respondents into non-cogenerators and potential cogenerators. Data for both studies come from a survey of commercial, industrial, and institutional electric energy consumers who used more than 750 kW demand in any one month of 1981 for a selected electric utility in the Boston area. There were 129 usable responses to the survey of 32.2% of the population. The studies reported here confirm that a number of factors other than purely economic considerations may prevent use of cogeneration technology at the present time. These factors include: uncertainty caused by regulatory action; desire for energy self sufficiency by the organization; financial flexibility; experience with electricity cogeneration or self generation; and capital budget planning methods. These studies provide a ranking of the factors involved in the cogeneration decision explaining most variance to least variance. However, the ranking of factors provides no measure of the importance of these factors in the decision to adopt or not adopt cogeneration technology. The results of these studies can be used to provide a rough estimate of capacity (kW) and energy (kWh) available from potential cogenerators in this electric utility service territory and the probability that a facility can be a cogenerator. These studies project a maximum potential of 106 MW and 559,000 MWH of cogenerated electrical energy in the utility service territory between 1982 and 2002.

  13. Decentralized control of complex systems

    CERN Document Server

    Siljak, Dragoslav D

    2011-01-01

    Complex systems require fast control action in response to local input, and perturbations dictate the use of decentralized information and control structures. This much-cited reference book explores the approaches to synthesizing control laws under decentralized information structure constraints.Starting with a graph-theoretic framework for structural modeling of complex systems, the text presents results related to robust stabilization via decentralized state feedback. Subsequent chapters explore optimization, output feedback, the manipulative power of graphs, overlapping decompositions and t

  14. Coal gasification fluidized bed (Winkler gasification) under pressure

    International Nuclear Information System (INIS)

    Anwer, J.; Boegner, F.

    1976-01-01

    Due to the 'oil crisis', the gasification of lignite and coal for the production of fuel and synthetic gas has reached increased importance. The present state of the Winkler gasification which has successfully operated for a long time is described. After the basic design of a Winkler gasification plant, the various chemical engineering problems are shown: the design characteristics of a fluidized bed, the reaction kinetics, the dependance of the products on the gasification pressure, and the economics of the process. Finally, the development trend in the USA and the future possibility of heating by nuclear heat is dealt with. (orig.) [de

  15. Tax issues in structuring effective cogeneration vehicles

    International Nuclear Information System (INIS)

    Ebel, S.R.

    1999-01-01

    An overview of the Canadian income tax laws that apply to cogeneration projects was presented. Certain tax considerations could be taken into account in deciding upon ownership and financing structures for cogeneration projects, particularly those that qualify for class 43.1 capital cost allowance treatment. The tax treatment of project revenues and expenses were described. The paper also reviewed the 1999 federal budget proposals regarding the manufacturing and processing tax credit, the capital cost allowance system applicable to cogeneration assets and the treatment of the Canadian renewable conservation expense

  16. On Decentralization and Life Satisfaction

    DEFF Research Database (Denmark)

    Bjørnskov, Christian; Dreher, Axel; Fischer, Justina A.V.

    2008-01-01

    We empirically analyze the impact of fiscal and political decentralization on subjective well-being in a cross-section of 60,000 individuals from 66 countries. More spending or revenue decentralization raises well-being while greater local autonomy is beneficial only via government consumption sp...

  17. A contingency approach to decentralization

    NARCIS (Netherlands)

    Fleurke, F.; Hulst, J.R.

    2006-01-01

    After decades of centralization, in 1980 the central government of the Netherlands embarked upon an ambitious project to decentralize the administrative system. It proclaimed a series of general decentralization measures that aimed to improve the performance of the administrative system and to boost

  18. Energy conservation through the implementation of cogeneration and grid interconnection

    International Nuclear Information System (INIS)

    Dashash, M. A.

    2007-01-01

    With increasing awareness of energy conservation and environmental protection, the Arab World is moving to further improve energy conversion efficiency. The equivalent of over 2.7 MM bbl is being daily burnt to fuel the thermal power plants that represent 92% of the total Arab power generation. This adds up to close to one billion barrels annually. At a conservative 30$ per barrel, this represents a daily cost of over $81 Million. This paper will introduce two strategies with the ultimate objective to cut-off up to half of the current fuel consumption. Firstly, Cogeneration Technology is able to improve thermal efficiency from the current average of less than 25% to up to 80%. Just 1% improvement in power plant thermal efficiency represents 3 million $/day in fuel cost savings. In addition, a well-designed and operated cogeneration plant will: - Reduce unfriendly emissions by burning less fuel as a result of higher thermal efficiency, - Increase the decentralization of electrical generation, - Improve the reliability of electricity supply. As an example, the Kingdom of Saudi Arabia's experience of implementing cogeneration will be presented, in particular within its hydrocarbon facilities and desalination plants. This will include the existing facilities and the planned and on-going projects. Secondly, by interconnecting the power networks of all the adjacent Arab countries, the following benefits could be reached: - Reduce generation reserves and enhance the system reliability, - Improve the economic efficiency of the electricity power systems, - Provide power exchange and strengthen the supply reliability, - Adopt technological development and use the best modern technologies. At least two factors plead for this direction. On one hand, the four-hour time zone difference from Eastern to Western Arab World makes it easy to exchange power. On the other hand, this will help to reduce the reserve capacity and save on corresponding Capital investment, fuel, and O and M

  19. Power generation from biomass: Status report on catalytic-allothermal wood gasification. Papers; Energetische Nutzung von Biomasse: Stand der Realisierung der katalytisch-allothermen Holzvergasung. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, H.; Bauermeister, U.; Kliche, H.; Seiffarth, K. (comps.)

    2001-12-01

    The topic of this event is bound up with the activities of FOeST in the field of gasification of biomass in decentralized small plants (< 2 MW{sub el}). The start project was a research work in 1993 to select a gasification process for using wood, sludge or plastic waste, continued 1995 by a research project with gasification tests of tar oil contaminated wood in a small gasification reactor with good results in environmental compatibility. But the following planning process of a demonstration plant for 500 kW{sub el} has shown, that the biomass gasification couldn't reach economic efficiency. Due to the development of an catalytic-partial allothermal gasification process of GNS ltd. it was clear, that the technical efficiency could be increased considerably. So, in 2000, a project started to test this catalytic-partial allothermal gasification in a pilot plant. Today the results of research, development and testing of biomass gasification with catalytic-partial allothermal processing as well as practically experience with a gasification plant, general conditions and further activities for energetically utilisation of biomass in Saxonia-Anhalt will be presented. (orig.)

  20. Performance evaluation of cogeneration power plants

    International Nuclear Information System (INIS)

    Bacone, M.

    2001-01-01

    The free market has changed the criteria for measuring the cogeneration plant performances. Further at the technical-economic parameters, are considered other connected at the profits of the power plant [it

  1. Thermal energy storage for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Drost, M.K.; Antoniak, Z.I.

    1992-04-01

    Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be coupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy`s Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

  2. Thermal energy storage for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Drost, M.K.; Antoniak, Z.I.

    1992-04-01

    Cogeneration is playing an increasingly important role in providing energy efficient power generation and thermal energy for space heating and industrial process heat applications. However, the range of applications for cogeneration could be further increased if the generation of electricity could be coupled from the generation of process heat. Thermal energy storage (TES) can decouple power generation from the production of process heat, allowing the production of dispatchable power while fully utilizing the thermal energy available from the prime mover. The Pacific Northwest Laboratory (PNL) leads the US Department of Energy's Thermal Energy Storage Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility applications (utility thermal energy storage (UTES)). Several of these technologies can be used in a cogeneration facility. This paper discusses TES concepts relevant to cogeneration and describes the current status of these TES systems.

  3. 'BACO' code: Cogeneration cycles heat balance

    International Nuclear Information System (INIS)

    Huelamo Martinez, E.; Conesa Lopez, P.; Garcia Kilroy, P.

    1993-01-01

    This paper presents a code, developed by Empresarios Agrupados, sponsored by OCIDE, CSE and ENHER, that, with Electrical Utilities as final users, allows to make combined and cogeneration cycles technical-economical studies. (author)

  4. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    Science.gov (United States)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  5. Biomass Gasification Combined Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  6. Modeling and Experimental Study of a Small Scale Olive Pomace Gasifier for Cogeneration: Energy and Profitability Analysis

    Directory of Open Access Journals (Sweden)

    Domenico Borello

    2017-11-01

    Full Text Available A thermodynamic model of a combined heat and power (CHP plant, fed by syngas produced by dry olive pomace gasification is here presented. An experimental study is carried out to inform the proposed model. The plant is designed to produce electric power (200 kWel and hot-water by using a cogenerative micro gas turbine (micro GT. Before being released, exhausts are used to dry the biomass from 50% to 17% wb. The ChemCad software is used to model the gasification process, and input data to inform the model are taken from experimental tests. The micro GT and cogeneration sections are modeled assuming data from existing commercial plants. The paper analyzes the whole conversion process from wet biomass to heat and power production, reporting energy balances and costs analysis. The investment profitability is assessed in light of the Italian regulations, which include feed-in-tariffs for biomass based electricity generation.

  7. Optimization of cogeneration thermal power units

    Science.gov (United States)

    Kler, A. M.; Marinchenko, A. Yu.; Potanina, Yu. M.

    2009-09-01

    We present a procedure for comparing the efficiencies of cogeneration thermal power units that takes variable conditions of their operation into account. A combined-cycle plant operating in accordance with the STIG cycle (i.e., with mixing of working fluids), a gas turbine unit equipped with a gas economizer, and a steam turbine unit equipped with a backpressure turbine are compared during their operation as part of a cogeneration station.

  8. CDM potential of bagasse cogeneration in India

    International Nuclear Information System (INIS)

    Purohit, Pallav; Michaelowa, Axel

    2007-01-01

    So far, the cumulative capacity of renewable energy systems such as bagasse cogeneration in India is far below their theoretical potential despite government subsidy programmes. One of the major barriers is the high investment cost of these systems. The Clean Development Mechanism (CDM) provides industrialized countries with an incentive to invest in emission reduction projects in developing countries to achieve a reduction in CO 2 emissions at lowest cost that also promotes sustainable development in the host country. Bagasse cogeneration projects could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development. This study assesses the maximum theoretical as well as the realistically achievable CDM potential of bagasse cogeneration in India. Our estimates indicate that there is a vast theoretical potential of CO 2 mitigation by the use of bagasse for power generation through cogeneration process in India. The preliminary results indicate that the annual gross potential availability of bagasse in India is more than 67 million tonnes (MT). The potential of electricity generation through bagasse cogeneration in India is estimated to be around 34 TWh i.e. about 5575 MW in terms of the plant capacity. The annual CER potential of bagasse cogeneration in India could theoretically reach 28 MT. Under more realistic assumptions about diffusion of bagasse cogeneration based on past experiences with the government-run programmes, annual CER volumes by 2012 could reach 20-26 million. The projections based on the past diffusion trend indicate that in India, even with highly favorable assumptions, the dissemination of bagasse cogeneration for power generation is not likely to reach its maximum estimated potential in another 20 years. CDM could help to achieve the maximum utilization potential more rapidly as compared to the current diffusion trend if supportive policies are introduced

  9. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical

  10. Decentring the Creative Self

    DEFF Research Database (Denmark)

    Glaveanu, Vlad Petre; Lubart, Todd

    2014-01-01

    Since its inception, the psychology of creativity has been concerned primarily with the study of individual creators. In contrast, this research is dedicated to an exploration of (a) who has a significant impact on a creative professional's activity and (b) what the contribution is that others make...... to themes depicting the interaction between these different others and the creator. Findings reveal both similarities and differences across the five domains in terms of the specific contribution of others to the creative process. Social interactions play a key formative, regulatory, motivational...... and informational role in relation to creative work. From ‘internalized’ to ‘distant’, other people are an integral part of the equation of creativity calling for a de-centring of the creative self and its re-centring in a social space of actions and interactions....

  11. Design and Optimization of an Integrated Biomass Gasification and Solid Oxide Fuel Cell System

    DEFF Research Database (Denmark)

    Bang-Møller, Christian

    based on biomass will improve the competitiveness of decentralized CHP production from biomass as well as move the development towards a more sustainable CHP production. The aim of this research is to contribute to enhanced electrical efficiencies and sustainability in future decentralized CHP plants......-level modelling study of three conceptual plant designs based on two-stage gasification of wood chips with a thermal biomass input of ~0.5 MWth (LHV) is presented. Product gas is converted in a micro gas turbine (MGT) in the first plant design, in SOFCs in the second, and in a combined SOFC-MGT arrangement......Development of sustainable power plants has gained focus in the recent years and utilization of biomass resources are seen as a pathway towards a sustainable combined heat and power (CHP) production. Biomass resources are distributed, thus decentralized biomass conversion would avoid extensive cost...

  12. Biomass Gasification - A synthesis of technical barriers and current research issues for deployment at large scale

    Energy Technology Data Exchange (ETDEWEB)

    Heyne, Stefan [Chalmers Univ. of Technology, Gothenburg (Sweden); Liliedahl, Truls [KTH, Royal Inst. of Technology, Stockholm (Sweden); Marklund, Magnus [Energy Technology Centre, Piteaa (Sweden)

    2013-09-01

    Thermal gasification at large scale for cogeneration of power and heat and/or production of fuels and materials is a main pathway for a sustainable deployment of biomass resources. However, so far no such full scale production exists and biomass gasification projects remain at the pilot or demonstration scale. This report focuses on the key critical technology challenges for the large-scale deployment of the following biomass-based gasification concepts: Direct Fluidized Bed Gasification (FBG), Entrained Flow Gasification (EFG) and indirect Dual Fluidized Bed Gasification (DFBG). The main content in this report is based on responses from a number of experts in biomass gasification obtained from a questionnaire. The survey was composed of a number of more or less specific questions on technical barriers as to the three gasification concepts considered. For formalising the questionnaire, the concept of Technology Readiness Level (TRL 1-9) was used for grading the level of technical maturity of the different sub-processes within the three generic biomass gasification technologies. For direct fluidized bed gasification (FBG) it is mentioned that the technology is already available at commercial scale as air-blown technology and thus that air-blown FBG gasification may be reckoned a mature technology. The remaining technical challenge is the conversion to operation on oxygen with the final goal of producing chemicals or transport fuels. Tar reduction, in particular, and gas cleaning and upgrading in general are by far the most frequently named technical issues considered problematic. Other important aspects are problems that may occur when operating on low-grade fuels - i.e. low-cost fuels. These problems include bed agglomeration/ash sintering as well as alkali fouling. Even the preparation and feeding of these low-grade fuels tend to be problematic and require further development to be used on a commercial scale. Furthermore, efficient char conversion is mentioned by

  13. Gasification with nuclear reactor heat

    International Nuclear Information System (INIS)

    Weisbrodt, I.A.

    1977-01-01

    The energy-political ultimate aims for the introduction of nuclear coal gasification and the present state of technology concerning the HTR reactor, concerning gasification and heat exchanging components are outlined. Presented on the plans a) for hydro-gasification of lignite and for steam gasification of pit coal for the production of synthetic natural gas, and b) for the introduction of a nuclear heat system. The safety and environmental problems to be expected are portrayed. The main points of development, the planned prototype plant and the schedule of the project Pototype plant Nuclear Process heat (PNP) are specified. In a market and economic viability study of nuclear coal gasification, the application potential of SNG, the possible construction programme for the FRG, as well as costs and rentability of SNG production are estimated. (GG) [de

  14. EVALUATION OF BIOMASS AND COAL CO-GASIFICATION OF BRAZILIAN FEEDSTOCK USING A CHEMICAL EQUILIBRIUM MODEL

    Directory of Open Access Journals (Sweden)

    R. Rodrigues

    Full Text Available Abstract Coal and biomass are energy sources with great potential for use in Brazil. Coal-biomass co-gasification enables the combination of the positive characteristics of each fuel, besides leading to a cleaner use of coal. The present study evaluates the potential of co-gasification of binary coal-biomass blends using sources widely available in Brazil. This analysis employs computational simulations using a reliable thermodynamic equilibrium model. Favorable operational conditions at high temperatures are determined in order to obtain gaseous products suitable for energy cogeneration and chemical synthesis. This study shows that blends with biomass ratios of 5% and equivalence ratios ≤ 0.3 lead to high cold gas efficiencies. Suitable gaseous products for chemical synthesis were identified at biomass ratios ≤ 35% and moisture contents ≥ 40%. Formation of undesirable nitrogen and sulfur compounds was also analyzed.

  15. Local Power -- Global Connections: linking the world to a sustainable future through decentralized energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Brent, Richard; Sweet, David

    2007-07-01

    Various international dynamics are converging to increase the attractiveness of decentralized energy as a complement to existing centralized energy infrastructures. Decentralized energy (DE) technologies, including onsite renewables, high efficiency cogeneration and industrial energy recycling, offer considerable benefits to those seeking working alternatives to emerging challenges in the energy sector. DE is ideally suited to provide clean affordable energy to areas where modern energy services are currently lacking. Having smaller generators close to where energy is required ensures a safe, reliable and secure energy supply when the energy is required. Furthermore, because DE is a much cleaner alternative than conventional central power plants and the energy provided comes at a much smaller price tag DE is an increasingly acceptable alternative both in the developed and developing world. DE is sure to play a key role in any plan to build a sustainable energy future. (auth)

  16. Decentralization Calls for Internal Audits.

    Science.gov (United States)

    DiCello, Jim

    1995-01-01

    Outlines internal-auditing strategies necessitated by decentralization. Describes the following areas of concern: the student activities account, student attendance, and funding delegated to the site level. Guidelines for conducting an internal audit are also included. (LMI)

  17. Decentralization and Bailouts in Colombia

    OpenAIRE

    Juan José Echavarría; Carolina Rentería; Roberto Steiner

    2002-01-01

    This paper examines the decentralization process in Colombia, particularly as it relates to reforms embodied in the 1991 Constitution, and the bailouts of territorial entities that have occurred in subsequent years as a result of perverse incentive structures. The paper provides a summary of the basic features of the decentralization process in Colombia, including an analysis of revenue and expenditure assignments, the intergovernmental transfer system and recent developments in terms of terr...

  18. Decentralized Bribery and Market Participation

    OpenAIRE

    Popov, Sergey V.

    2012-01-01

    I propose a bribery model that examines decentralized bureaucratic decision-making. There are multiple stable equilibria. High levels of bribery reduce an economy's productivity because corruption suppresses small business, and reduces the total graft, even though the size of an individual bribe might increase. Decentralization prevents movement towards a Pareto-dominant equilibrium. Anticorruption efforts, even temporary ones, might be useful to improve participation, if they lower the bribe...

  19. Gasification of rice husks

    Energy Technology Data Exchange (ETDEWEB)

    Marzetti, P. (ENEA, Rome (Italy). Dipt. Fonti Alternative e Risparmio Energetico)

    The paper outlines the thermochemical processes and equipment involved in the gasification of rice husks. An assessment is made of the feasibility (availability, technology requirements, economics of production and marketing) of this renewable energy source. Results, reported here in tabular form, of experimental trials at an Italian pilot plant (producing, with the use of 165 kg/h of rice husks, 350,000 kcal/h of gas with a conversion yield of 70%) indicated good feasibility. More research is required to improve the combustion qualities of the final product.

  20. CANDU co-generation opportunities

    International Nuclear Information System (INIS)

    Meneley, D.A.; Duffey, R.B.; Pendergast, D.R.

    2000-01-01

    Modern technology makes use of natural energy 'wealth' (uranium) to produce useful energy 'currency' (electricity) that can be used to society's benefit. This energy currency can be further applied to help solve a difficult problem faced by mankind. Within the next few years we must reduce our use of the same fuels which have made many countries wealthy - fossil fuels. Fortunately, electricity can be called upon to produce another currency, namely hydrogen, which has some distinct advantages. Unlike electricity, hydrogen can be stored and can be recovered for later use as fuel. It also is extremely useful in chemical processes and refining. To achieve the objective of reducing greenhouse gas emissions hydrogen must, of course, be produced using a method which does not emit such gases. This paper summarizes four larger studies carried out in Canada in the past few years. From these results we conclude that there are several significant opportunities to use nuclear fission for various co-generation technologies that can lead to more appropriate use of energy resources and to reduced emissions. (author)

  1. Coal gasification in Europe

    International Nuclear Information System (INIS)

    Furfari, S.

    1992-01-01

    This paper first analyzes European energy consumption and supply dynamics within the framework of the European Communities energy and environmental policies calling for the increased use of natural gas, reduced energy consumption, promotion of innovative renewable energy technologies, and the reduction of carbon dioxide emissions. This analysis evidences that, while, at present, the increased use of natural gas is an economically and environmentally advantageous policy, as well as, being strategically sound (in view of Middle East political instability), fuel interchangeability, in particular, the option to use coal, is vital to ensure stability of the currently favourable natural gas prices and offer a locally available energy alternative to foreign supplied sources. Citing the advantages to industry offered by the use of flexible, efficient and clean gaseous fuels, with interchangeability, the paper then illustrates the cost and environmental benefits to be had through the use of high efficiency, low polluting integrated gasification combined-cycle power plants equipped to run on a variety of fuels. In the assessment of technological innovations in this sector, a review is made of some of the commercially most promising gasification processes, e.g., the British Gas-Lurgi (BGL) slagging gasifier, the high-temperature Winkler (HTW) Rheinbraun, and the Krupp Koppers (PRENFLO) moving bed gasifier processes

  2. OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Martin Lisý

    2015-12-01

    Full Text Available The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e., tar in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5%, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/mn3. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.

  3. Extra cogeneration step seen boosting output 20%

    Energy Technology Data Exchange (ETDEWEB)

    Burton, P.

    1984-10-08

    Cogenerators can now buy a prototype 6.5 MW, pre-packaged cogeneration system that incorporates an added step to its cycle to reduce fuel use by 21%. Larger, custom-designed systems will be on the market in 1985. Fayette Manufacturing Co. will offer the Kalina Cycle system at a discount price of $8.2 million (1200/kW) until the systems are competitive with conventional units. The system varies from conventional cogeneration systems by adding a distillation step, which permits the use of two fluids for the turbine steam and operates at a higher thermodynamic efficiency, with boiling occuring at high temperature and low pressure. Although theoretically correct, DOE will withhold judgment on the system's efficiency until the first installation is operating.

  4. Cogeneration plant noise: Environmental impacts and abatement

    International Nuclear Information System (INIS)

    De Renzio, M.; Ciocca, B.

    1991-01-01

    In Italy, ever increasing attention to environmental problems has led to legislation requiring cogeneration plant owners to perform environmental impact assessments in order to determine plant conformity with pollution laws. This paper, based on an in-depth analysis of physics fundamentals relevant to the nature and effects of noise, examines the principal sources of noise in industrial cogeneration plants and the intensity and range of the effects of this noise on the local environment. A review is then made of the different methods of noise pollution abatement (e.g., heat and corrosion resistant silencers for gas turbines, varying types and thicknesses of acoustic insulation placed in specific locations) that can be effectively applied to cogeneration plant equipment and housing

  5. Cogeneration plants: SNAM (Italy) initiatives and incentives

    International Nuclear Information System (INIS)

    Pipparelli, M.

    1991-01-01

    First, an overall picture is presented of the extension of the use of cogeneration by the Italian brick industry. The particular suitability and usefulness of this form of energy to the brick industry are pointed out. Then a look is given at the legal and financial incentives which have been built into the National Energy Plan to encourage on-site production by Italian industries. Finally, a review is made of initiatives made by SNAM (the Italian National Methane Distribution Society) to develop a favourable tariff structure for on-site power producers using methane as their energy source, as well as, of the Society's efforts to set up a cogeneration equipment consulting service which would provide advice on cogeneration plant design, operation and maintenance

  6. Optimising the operation of an LNG import terminal (Zeebrugge) with an integrated cogeneration plant; Optimisation de l'exploitation d'un terminal importateur de GNL (Zeebrugge) lie a une unite de cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Van de Walle, F.; Gerard, A. [Distrigas (Belgium)

    2000-07-01

    Distrigas (Belgium) is operating an LNG Terminal in Zeebrugge since 1987, receiving some 3.25 million tonnes of LNG per year (60 shiploads of 125,000 m{sup 3} LNG). This LNG import covers some 30 % of the total natural gas consumption in Belgium. Re-gasification from 1987 until 1996 was solely with high-efficiency submerged combustion LNG vaporizers (open rack seawater vaporizers were not an option because in the winter period sea water temperature in Zeebrugge is too low: 4 deg. C and below). In 1995/1996 a 40 MW gas turbine cogeneration plant with a 72.5 MW heat recovery unit of novel design (including a direct-contact condensing cooling tower and a 50 deg. C/15 deg. C hot water circuit) was installed and integrated with the existing submerged combustion vaporizers. To realize this project, Distrigas signed a so-called 'cogeneration partnership' with its electric power supplier Electrabel. Start-up and initial operation were implemented without any interruption in the operation of the terminal. This poster presentation describes this cogeneration plant, and the optimisation since its initial operation in early 1997. (authors)

  7. Thermal-economic analysis of cogeneration systems

    International Nuclear Information System (INIS)

    Walter, A.C.S.; Bajay, S.V.

    1992-01-01

    Approximately 80 countries produce sugar, and fortuitously alcohol, from sugar cane. In all these countries the cogeneration technology of steam turbines is utilized, although almost always inefficient. The greater potential of cogeneration in Brazil is in sugar and alcohol sector, because of the use of sugar cane bagasse as combustible. This work applies the techniques of simulation and economic analysis to different configuration of plants, to determine power generation and associated costs of each alternative. The application of the same procedure at operating condition of several configurations in transient system permits the determination of production profile of exceeding during one day. (C.M.)

  8. GE will finance 614-MW cogeneration plant

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The General Electric Power Funding Corporation, a unit of GE Capital, will provide up to $870 million in construction and permanent financing, and letters of credit to Cogen Technologies of Houston, Texas. The agreement will fund the construction of a 614-megawatt (MW), combined-cycle cogeneration plant to be built in Linden, New Jersey, and for the purchase of gas properties. The plant will be owned by Cogen Technologies. The financing is one of the largest packages ever for a cogeneration plant, GE said

  9. Micro-cogeneration with fuel cells

    Science.gov (United States)

    Patsch, Marek; Čierny, Jaroslav

    2014-08-01

    The article is aimed at perspective and fast developing field of micro-cogeneration with small performance. Fuel cell application which uses natural gas as a fuel is high sophisticated technology of combined produce of heat and electric power. The aim of article is analysis of operation parameters of micro-cogeneration unit with fuel cell which as a fuel uses natural gas. The device is installed in University of Zilina laboratory. Measured parameters were electric input and output, thermal energy and electric, thermal and overall efficiency.

  10. Cogeneration plants in Italy: Licensing aspects

    International Nuclear Information System (INIS)

    Buscaglione, A.

    1991-01-01

    This paper focusses on administrative/bureaucratic problems relative to the licensing of cogeneration plants in Italy. The current stumbling block appears to lie in organizational difficulties relative to the coordination of various Government authorized safety committees responsible for the drafting up of suitable legislation governing cogeneration plant fire safety aspects. The author cites the possible environmental benefits in terms of air pollution abatement that could have been had with the timely start-up of a new 7 MW plant (in Lombardia) still awaiting its go-ahead authorization

  11. Potable water cogeneration using nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, G. [Instituto Nacional de Investigaciones Nucleares, Estado de Mexico (Mexico); Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, D.F. (Mexico); Ramirez, J.R. [Instituto Nacional de Investigaciones Nucleares, Estado de Mexico (Mexico); Valle, E. del [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, D.F. (Mexico)

    2014-07-01

    Mexico is a country with a diversity of conditions; the Peninsula of Baja California is a semi-arid region with a demand of potable water and electricity where small nuclear power can be used. This part of the country has a low density population, a high pressure over the water resources in the region, and their needs of electricity are small. The SMART reactor will be assessed as co-generator for this region; where five different scenarios of cogeneration of electricity and potable water production are considered, the levelized cost of electricity and potable water are obtained to assess their competitiveness. (author)

  12. Entrained Flow Gasification of Biomass

    DEFF Research Database (Denmark)

    Qin, Ke

    The present Ph. D. thesis describes experimental and modeling investigations on entrained flow gasification of biomass and an experimental investigation on entrained flow cogasification of biomass and coal. A review of the current knowledge of biomass entrained flow gasification is presented....... Biomass gasification experiments were performed in a laboratory-scale atmospheric pressure entrained flow reactor with the aim to investigate the effects of operating parameters and biomass types on syngas products. A wide range of operating parameters was involved: reactor temperature, steam/carbon ratio......, excess air ratio, oxygen concentration, feeder gas flow, and residence time. Wood, straw, and lignin were used as biomass fuels. In general, the carbon conversion was higher than 90 % in the biomass gasification experiments conducted at high temperatures (> 1200 °C). The biomass carbon...

  13. Centralized coke gasification study

    Energy Technology Data Exchange (ETDEWEB)

    du Plessis, Duke [Alberta Innovates (Canada); Pietrusik, Debbie [Alberta Finance and Enterprise (Canada)

    2011-07-01

    By the year 2020 Alberta will produce 3 million barrels of bitumen per day. Refining bitumen yields several by-products such as petroleum coke and off-gasses. These products can be further utilized as a low cost feedstock for additional applications to increase revenue. Alberta currently has the largest amount of coke stockpiled in the world. The presentation explores what is the most profitable way to use this coke and what future technologies would improve the economic and environmental impact of the process. The development of methane and hydrogen becomes competitive at intermediate gas and oil prices. The next generation of gasification technologies is going to be cheaper, efficient and much smaller. Pilot projects have shown positive results. Economies of scale can be reached simply by only 20-30% of annual coke production. The high cost of the current technology is creating the biggest challenge but new technologies and process innovations have the potential to drive down cost.

  14. Decentralized power generation from biogas

    International Nuclear Information System (INIS)

    2008-01-01

    Areva Bioenergies proposes ready-to-use biogas production and valorization units that use industrial effluents (liquid effluents, spent water, solid wastes). Biogas valorization is performed through cogeneration plants with an output power of 500 kW to 10 MW. This brochure presents Areva's global offer in methanation projects (support, engineering, optimization). Areva Bioenergies counts 20 dual-purpose power plants in operation or under construction in the world which represent an installed power of 220 MW

  15. Materials of Gasification

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  16. Robust Decentralized Formation Flight Control

    Directory of Open Access Journals (Sweden)

    Zhao Weihua

    2011-01-01

    Full Text Available Motivated by the idea of multiplexed model predictive control (MMPC, this paper introduces a new framework for unmanned aerial vehicles (UAVs formation flight and coordination. Formulated using MMPC approach, the whole centralized formation flight system is considered as a linear periodic system with control inputs of each UAV subsystem as its periodic inputs. Divided into decentralized subsystems, the whole formation flight system is guaranteed stable if proper terminal cost and terminal constraints are added to each decentralized MPC formulation of the UAV subsystem. The decentralized robust MPC formulation for each UAV subsystem with bounded input disturbances and model uncertainties is also presented. Furthermore, an obstacle avoidance control scheme for any shape and size of obstacles, including the nonapriorily known ones, is integrated under the unified MPC framework. The results from simulations demonstrate that the proposed framework can successfully achieve robust collision-free formation flights.

  17. 10 CFR 503.37 - Cogeneration.

    Science.gov (United States)

    2010-01-01

    ... is to use distillate oil. It will have a capacity of 50 MW, an average annual heat rate of 7600 BTU/KWHR, and be operated at a capacity factor of 90%. The annual fuel consumption is therefore calculated... Cogeneration. The following table may be used to determine eligibility for a permanent exemption based on oil...

  18. External financing of projects on cogeneration

    International Nuclear Information System (INIS)

    Contreras Olmedo, D.

    1993-01-01

    The Spanish Institute for Energy Saving and Diversification (IDAE), provides technical advisement and economical support to those industries requiring an improvement in the energy efficiency of their production chain. This paper focusses on administrative procedures to get external financing as one way to undertake the construction of cogeneration plants. Relationships among user, promoter and financier should be developed according to the outlined procedures. (Author)

  19. Procedure for cogeneration plant evaluation in Italy

    International Nuclear Information System (INIS)

    Bollettini, U.; Savelli, D.

    1992-01-01

    This paper develops a step-by-step approach to the evaluation of cogeneration plants for on-site power generation. The aim is to allow prospective cogeneration plant owners to build energy/cost efficient plants and to be able to make a proper assessment of eligible financial assistance which may be obtained through the provisions of energy conservation normatives and laws set up by the Italian National Energy Plan. The approach has three principal phases - the verification of the availability of the required human resources able to perform the plant evaluation (engineering, legal and business consultants), an energy/viability audit of any existing energy plant considered for retrofitting and, finally, the identification of the best technical/economic cogeneration alternative. The programmed set of evaluation tasks includes the determination of optimal contracts with ENEL (the Italian National Electricity Board), especially for the case of excess power to be ceded to the national grid, and the making of comparisons with reference cogeneration systems whose relative design/cost data are stored in existing computerized data bases

  20. Cogeneration in the former Soviet Union

    International Nuclear Information System (INIS)

    Horak, W.C.

    1997-01-01

    The former Soviet Union made a major commitment to Cogeneration. The scale and nature of this commitment created a system conceptually different from Cogeneration in the west. The differences were both in scale, in political commitment, and in socio economic impact. This paper addresses some of the largest scale Cogeneration programs, the technology, and the residual impact of these programs. The integration of the Cogeneration and nuclear programs is a key focus of the paper. Soviet designed nuclear power plants were designed to produce both electricity and heat for residential and industrial uses. Energy systems used to implement this design approach are discussed. The significant dependence on these units for heat created an urgent need for continued operation during the winter. Electricity and heat are also produced in nuclear weapons production facilities, as well as power plants. The Soviets also had designed, and initiated construction of a number of nuclear power plants open-quotes ATETsclose quotes optimized for production of heat as well as electricity. These were canceled

  1. Wage Dispersion and Decentralization of Wage Bargaining

    DEFF Research Database (Denmark)

    Dahl, Christian Møller; le Maire, Christian Daniel; Munch, Jakob R.

    2013-01-01

    This article studies how decentralization of wage bargaining from sector to firm level influences wage levels and wage dispersion. We use detailed panel data covering a period of decentralization in the Danish labor market. The decentralization process provides variation in the individual worker...

  2. Ubiquitous consultation tool for decentral knowledge workers

    OpenAIRE

    Nazari Shirehjini, A.A.; Rühl, C.; Noll, S.

    2003-01-01

    The special issue of this initial study is to examine the current work situation of consulting companies, and to elaborate a concept for supporting decentralized working consultants. The concept addresses significant challenges of decentralized work processes by deploying the Peer-to-Peer methodology to decentralized expert and Knowledge Management, cooperation, and enterprise resource planning.

  3. Biomass Gasification. The characteristics of technology development and the rate of learning

    Energy Technology Data Exchange (ETDEWEB)

    Dorca Duch, Andreu; Huertas Bermejo, Javier

    2008-09-15

    . In the case of large scale, interest has shifted from electricity generation to biofuel production, primarily due to the failed demonstration projects of the technology coupled with combined cycle for electricity generation. On the other hand, in small scale projects, cogeneration applications have gained interest over heat production. However, there are fewer actors involved in small scale experimentation than in large scale. Once the specific situation of each country has been analyzed, and the main characteristics of the development process have been identified, one of the causes which have hindered the technology to reach the expected commercial stage has been the lack of resources to demonstrate its competitiveness. So far, a significant number of experimentation activities, based on demonstration projects and pilot plants, have proved the future potential of the technology. Nonetheless, the uncertainty, shown by the great majority of actors, about integrating the biomass gasification in their industrial process has hindered the demonstration of its operational feasibility. Following this, further efforts should focus on the creation of incentives for the construction of new plants which integrate this technology in an industrial process already consolidated in the market. An approximation of the number of new plants needed, could be a good indicator of the economical resources required in order to acquire enough experience to make biomass gasification a competitive technology in the short-term. After simulating various future evolutions for small scale cogeneration applications, the learning rate obtained through the learning curves model predict that, building roughly forty plants in six years, the technology can be consolidated firmly in the market. Considering the decrease in the number of new plants built since 2002, the expectancies are not really optimistic. Nevertheless, it is not an unachievable objective if incentives are created by all administrative

  4. Reviving manufacturing with a federal cogeneration policy

    International Nuclear Information System (INIS)

    Brown, Marilyn A.; Cox, Matt; Baer, Paul

    2013-01-01

    Improving the energy economics of manufacturing is essential to revitalizing the industrial base of advanced economies. This paper evaluates ex-ante a federal policy option aimed at promoting industrial cogeneration—the production of heat and electricity in a single energy-efficient process. Detailed analysis using the National Energy Modeling System (NEMS) and spreadsheet calculations suggest that industrial cogeneration could meet 18% of U.S. electricity requirements by 2035, compared with its current 8.9% market share. Substituting less efficient utility-scale power plants with cogeneration systems would produce numerous economic and environmental benefits, but would also create an assortment of losers and winners. Multiple perspectives to benefit/cost analysis are therefore valuable. Our results indicate that the federal cogeneration policy would be highly favorable to manufacturers and the public sector, cutting energy bills, generating billions of dollars in electricity sales, making producers more competitive, and reducing pollution. Most traditional utilities, on the other hand, would lose revenues unless their rate recovery procedures are adjusted to prevent the loss of profits due to customer owned generation and the erosion of utility sales. From a public policy perspective, deadweight losses would be introduced by market-distorting federal incentives (ranging annually from $30 to $150 million), but these losses are much smaller than the estimated net social benefits of the federal cogeneration policy. - Highlights: ► Industrial cogeneration could meet 18% of US electricity demand by 2035, vs. 8.9% today. ► The policy would be highly favorable to manufacturers and the public. ► Traditional electric utilities would likely lose revenues. ► Deadweight loss would be introduced by tax incentives. ► The policy’s net social benefits would be much larger.

  5. Wood biomass gasification in the world today

    International Nuclear Information System (INIS)

    Nikolikj, Ognjen; Perishikj, Radovan; Mikulikj, Jurica

    1999-01-01

    Today gasification technology of different kinds represents a more and more interesting option of the production of energy forms. The article describes a biomass gasification plant (waste wood) Sydkraft, Vernamo from Sweden. (Author)

  6. Decentralized control: Status and outlook

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír

    2014-01-01

    Roč. 38, č. 1 (2014), s. 71-80 ISSN 1367-5788 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : decentralized control * networked control systems * event-triggered approach Subject RIV: BC - Control Systems Theory Impact factor: 2.518, year: 2014

  7. Decentralized control with input saturation

    NARCIS (Netherlands)

    Saberi, Ali; Stoorvogel, Antonie Arij; Sannuti, Peddapullaiah

    In decentralized control it is known that the system can be stabilized only if the so-called fixed modes are all stable. If we have input constraints then (semi-)global stability requires all poles to be in the closed left half plane. This paper establishes that these two requirements are necessary

  8. Peer Matcher : Decentralized Partnership Formation

    NARCIS (Netherlands)

    Bozdog, Nicolae Vladimir; Voulgaris, Spyros; Bal, Henri; van Halteren, Aart

    2015-01-01

    This paper presents Peer Matcher, a fully decentralized algorithm solving the k-clique matching problem. The aim of k-clique matching is to cluster a set of nodes having pair wise weights into k-size groups of maximal total weight. Since solving the problem requires exponential time, Peer Matcher

  9. Survey of biomass gasification. Volume II. Principles of gasification

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B. (comp.)

    1979-07-01

    Biomass can be converted by gasification into a clean-burning gaseous fuel that can be used to retrofit existing gas/oil boilers, to power engines, to generate electricity, and as a base for synthesis of methanol, gasoline, ammonia, or methane. This survey describes biomass gasification, associated technologies, and issues in three volumes. Volume I contains the synopsis and executive summary, giving highlights of the findings of the other volumes. In Volume II the technical background necessary for understanding the science, engineering, and commercialization of biomass is presented. In Volume III the present status of gasification processes is described in detail, followed by chapters on economics, gas conditioning, fuel synthesis, the institutional role to be played by the federal government, and recommendations for future research and development.

  10. The Two Edge Knife of Decentralization

    Directory of Open Access Journals (Sweden)

    Ahmad Khoirul Umam

    2011-07-01

    Full Text Available A centralistic government model has become a trend in a number of developing countries, in which the ideosycretic aspect becomes pivotal key in the policy making. The situation constitutes authoritarianism, cronyism, and corruption. To break the impasse, the decentralized system is proposed to make people closer to the public policy making. Decentralization is also convinced to be the solution to create a good governance. But a number of facts in the developing countries demonstrates that decentralization indeed has ignite emerges backfires such as decentralized corruption, parochialism, horizontal conflict, local political instability and others. This article elaborates the theoretical framework on decentralization's ouput as the a double-edge knife. In a simple words, the concept of decentralization does not have a permanent relationship with the creation of good governance and development. Without substantive democracy, decentralization is indeed potential to be a destructive political instrument threating the state's future.

  11. Decentralized neural control application to robotics

    CERN Document Server

    Garcia-Hernandez, Ramon; Sanchez, Edgar N; Alanis, Alma y; Ruz-Hernandez, Jose A

    2017-01-01

    This book provides a decentralized approach for the identification and control of robotics systems. It also presents recent research in decentralized neural control and includes applications to robotics. Decentralized control is free from difficulties due to complexity in design, debugging, data gathering and storage requirements, making it preferable for interconnected systems. Furthermore, as opposed to the centralized approach, it can be implemented with parallel processors. This approach deals with four decentralized control schemes, which are able to identify the robot dynamics. The training of each neural network is performed on-line using an extended Kalman filter (EKF). The first indirect decentralized control scheme applies the discrete-time block control approach, to formulate a nonlinear sliding manifold. The second direct decentralized neural control scheme is based on the backstepping technique, approximated by a high order neural network. The third control scheme applies a decentralized neural i...

  12. Analysis of cogeneration system using fuel cell: cases study; Analise de sistema de cogeracao utilizando celula de combustivel: estudo de casos

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Jose Luz; Leal, Elisangela Martins [UNESP, Guaratingueta, SP (Brazil). Escola de Engenharia. Dept. de Energia]. E-mails: joseluz@feg.unesp.br; elisange@feg.unesp.br

    2000-07-01

    In this paper, a methodology for the study of a molten carbonate fuel cell cogeneration system associated to an absorption refrigeration system, for the electricity and cold water production, and applied to two establishments, is presented. This system permits the recovery of waste heat, available between 600 deg C e 700 deg C. Initially, some technical information about the most diffusing types of the fuel cell demonstration in the world are presented. In the next step, an energetic, exergetic and economic analysis are carry out, seeking the use of fuel cells, in conditions of prices and interest of Brazil. In conclusion, the fuel cell cogeneration system may have an excellent opportunity to strengthen the decentralized energy production in the Brazilian energy scene. (author)

  13. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  14. Natural gas cogeneration in the residential sector; La cogeneration au gaz naturel en residentiel

    Energy Technology Data Exchange (ETDEWEB)

    Lancelot, C.; Gaudin, S. [Gaz de France, GDF, Dir. de la Recherche, 75 - Paris (France)

    2000-07-01

    The natural gas cogeneration offer is now available and operational in the industrial sector. It is based on technologies of piston engines and gas turbines. Currently, this offer is sufficiently diversified, so much from the point of view of the range of powers available (from 1 MW to more than 40 MW electric) that number of manufacturers. In order to widen the cogeneration market in France to the markets of the commercial and residential sectors, Gaz De France has undertaken a technical economic study to validate the potential of those markets. This study led to work on the assembly of a french die to cogeneration packages of low power (less than 1 MW electric). This step has emerged at the beginning of 1999 with the launching of a commercial offer of cogeneration packages. In margin to this work Gaz De France Research division also initiated a study in order to evaluate the offer of micro cogeneration, products delivering an electric output lower than 10 kW. (authors)

  15. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  16. Leaching From Biomass Gasification Residues

    DEFF Research Database (Denmark)

    Allegrini, Elisa; Boldrin, Alessio; Polletini, A.

    2011-01-01

    The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled with geoche......The aim of the present work is to attain an overall characterization of solid residues from biomass gasification. Besides the determination of chemical and physical properties, the work was focused on the study of leaching behaviour. Compliance and pH-dependence leaching tests coupled...

  17. Qualifying cogeneration in Texas and Louisiana

    International Nuclear Information System (INIS)

    Jenkins, S.C.; Cabe, R.; Stauffaeher, J.J.

    1992-01-01

    This paper reports that cogeneration of electricity and useful thermal energy by industrials along the Gulf Coast grew significantly more rapidly than in other parts of the country during and immediately following World War II as a result of the concentration of chemical and plastics processing facilities there. In 1982, Texas passed its version of PURPA, the Public Utility Regulatory Act (PURA) and designated those non-utility generators from which public utilities must purchase electricity as Qualifying Cogenerators. In 1991, there were nearly 7,500 MW of QF power generated for inside-the-fence use or firm capacity sale to utilities, with the two largest utilities in Texas purchasing over half that amount

  18. Electricity and heat production by biomass cogeneration

    Science.gov (United States)

    Marčič, Simon; Marčič, Milan

    2017-07-01

    In Slovenia, approximately 2 % of electricity is generated using cogeneration systems. Industrial and district heating networks ensure the growth of such technology. Today, many existing systems are outdated, providing myriad opportunities for reconstruction. One concept for the development of households and industry envisages the construction of several small biomass units and the application of natural gas as a fuel with a relatively extensive distribution network. This concept has good development potential in Slovenia. Forests cover 56 % of the surface area in Slovenia, which has, as a result, a lot of waste wood to be turned into biomass. Biomass is an important fuel in Slovenia. Biomass is gasified in a gasifier, and the wood gas obtained is used to power the gas engine. This paper describes a biomass cogeneration system as the first of this type in Slovenia, located in Ruše.

  19. Cogeneration: A marketing opportunity for pipelines

    International Nuclear Information System (INIS)

    Ulrich, J.S.

    1992-01-01

    This chapter describes the marketing of dual-purpose power plants by pipeline companies as a long term marketing strategy for natural gas. The author uses case studies to help evaluate a company's attitude toward development of a market for cogeneration facilities. The chapter focuses on strategies for developing markets in the industrial sector and identifying customer groups that are likely to respond in like manner to a marketing strategy

  20. Intraday trade is the answer for cogeneration

    International Nuclear Information System (INIS)

    Lomme, J.J.

    2006-01-01

    It is possible for operators of small cogeneration plants to sell electricity on the day-ahead market of the Amsterdam Power Exchange (APX) or through the unbalance market of the Dutch power transmission operator TenneT. However, it is difficult for them to take part in the market. The solution could be a so-called intraday-market, in which electricity trade can be a continuous process, but the question is who will start such a market [nl

  1. Cogeneration. Section 2: Products and services

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This is a directory of suppliers of products and services in the area of cogeneration. The subheadings of this directory include developers and owner operators, system packagers, manufacturers of prime movers, equipment manufacturers, instruments and controls manufacturing, consulting services, appraisal and valuation, computer services, environmental services, feasibility services, hydrology, marketing, measurements, meteorology, regulatory and licensing, research, testing, training and personnel, engineering and construction, operations and maintenance, and insurance, financial and legal services

  2. EXERGETIC ANALYSIS OF A COGENERATION POWER PLANT

    Directory of Open Access Journals (Sweden)

    Osvaldo Manuel Nuñez Bosch

    2016-07-01

    Full Text Available Cogeneration power plants connected to industrial processes have a direct impact on the overall efficiency of the plant and therefore on the economic results. Any modification to the thermal outline of these plants must first include an exergetic analysis to compare the benefits it can bring the new proposal. This research is performed to a cogeneration plant in operation with an installed electrical capacity of 24 MW and process heat demand of 190 MW, it shows a study made from the Second Law of Thermodynamics. Exergetic evaluation of each component of the plant was applied and similarly modified cogeneration scheme was evaluated. The results illustrate that the exergy losses and irreversibilities are completely different from one subsystem to another. In general, the total exergy destruction represented 70,7% from the primary fuel exergy. Steam generator was the subsystem with the highest irreversibility of the plant with 54%. It was demonstrated that the increase of the steam parameters lead to reduce exergy destruction and exergy efficiency elevation. The suppression of the reduction system and the adding of an extraction-condensing steam turbine produce the same effect and contribute to drop off the electrical consumption from the grid.

  3. Gas turbine modular helium reactor in cogeneration

    International Nuclear Information System (INIS)

    Leon de los Santos, G.

    2009-10-01

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  4. Feasibility Study of Coal Gasification/Fuel Cell Cogeneration. Preliminary Site Survey - Scranton, Pennsylvania.

    Science.gov (United States)

    1985-03-11

    during stripping of the process condensate will t be flared continuously, producing minor amounts of NOx. . The Stretford oxidizer vent which is...Originating in the Elmhurst reservoir, adequate water supply for process Z- and makeup (approximately 35 gpm) are available from 10 inch mains located on...of treated process condensate will be discharged either to the city r combined storm and sanitary system which ultimately empties into the

  5. Feasibility Study of Coal Gasification/Fuel Cell/Cogeneration Project. Scranton, Pennsylvania Site. Project Description,

    Science.gov (United States)

    1985-11-01

    Estimated Water Emissions 143 7-4 Estimated Solid Wastes 144 7-5 Composition of Blowdown from Stretford Process 145 7-6 Summary of Environmental... processes are a costly alternative for the sulfur recovery process due to the high CO2 concentration in the gas (26% Vol). Therefore, a Stretford ...oxidation Stretford Sulfur Removal Process is used for the removal of H2S to the required level. The shifted gas stream is directed to venturi contactor, T

  6. Feasibility Study of Coal Gasification/Fuel Cell/Cogeneration Project. Washington, DC Site. Project Description

    Science.gov (United States)

    1985-06-01

    Emissions 1:3 7-4 Estimated Solid Wastes 154 7-5 Composition of Blowdown from Stretford Process 155 vi 7398A I@ L1ST OF TABLES (Cont’d) Tab~le..Pae 7-6...alternative for the sulfur recovery process due to the high C02 concentration in the gas (24% Vol). Therefore, a Stretford liquid oxidation process was chosen...separated fromi the solution, which is regenerated by !i.r-Fparging and recycled. Because the Stretford process cannot remove COS, a hydrolysis step is

  7. Biomass gasification cogeneration – A review of state of the art technology and near future perspectives

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Thomsen, Tobias; Henriksen, Ulrik Birk

    2013-01-01

    Biomass is a renewable resource from which a broad variety of commodities can be produced. However, the resource is scarce and must be used with care to avoid depleting future stock possibilities. Flexibility and efficiency in production are key characteristics for biomass conversion technologies...

  8. Problems in decentralized data acquisition

    International Nuclear Information System (INIS)

    Eder, R.

    1985-04-01

    This paper describes INIS (International Nuclear Information System) which is operated by the International Atomic Energy Agency (IAEA) in collaboration with 73 Member States and 14 international organizations. INIS is a computerized system for collecting, processing and disseminating nuclear information. The collection and scanning of literature, input preparation and the dissemination of output are completely decentralized, the checking and merging of the information data are centralized. This paper shows the structure, management, processing and problem areas of this system. (Author)

  9. Decentralization and REDD+ in Brazil

    Directory of Open Access Journals (Sweden)

    Fabiano Toni

    2011-01-01

    Full Text Available Recent discussions on REDD+ (Reducing Emissions from Deforestation and Forest Degradation, plus conservation, sustainable management of forests and enhancement of forest carbon stocks have raised optimism about reducing carbon emissions and deforestation in tropical countries. If approved under the United Nations Framework Convention on Climate Change (UNFCCC, REDD+ mechanisms may generate a substantial influx of financial resources to developing countries. Some authors argue that this money could reverse the ongoing process of decentralization of forest policies that has spread through a large number of developing countries in the past two decades. Central states will be accountable for REDD+ money, and may be compelled to control and keep a significant share of REDD+ funds. Supporters of decentralization argue that centralized implementation of REDD+ will be ineffective and inefficient. In this paper, I examine the relation between subnational governments and REDD+ in Brazil. Data show that some state governments in the Brazilian Amazon have played a key role in creating protected areas (PAs after 2003, which helped decrease deforestation rates. Governors have different stimuli for creating PAs. Some respond to the needs of their political constituency; others have expectations to boost the forest sector so as to increase fiscal revenues. Governors also have led the discussion on REDD+ in Brazil since 2008. Considering their interests and political power, REDD+ is unlikely to curb decentralization in Brazil.

  10. The carbon dioxide gasification characteristics of biomass char samples and their effect on coal gasification reactivity during co-gasification.

    Science.gov (United States)

    Mafu, Lihle D; Neomagus, Hein W J P; Everson, Raymond C; Okolo, Gregory N; Strydom, Christien A; Bunt, John R

    2017-12-18

    The carbon dioxide gasification characteristics of three biomass char samples and bituminous coal char were investigated in a thermogravimetric analyser in the temperature range of 850-950 °C. Char SB exhibited higher reactivities (R i , R s , R f ) than chars SW and HW. Coal char gasification reactivities were observed to be lower than those of the three biomass chars. Correlations between the char reactivities and char characteristics were highlighted. The addition of 10% biomass had no significant impact on the coal char gasification reactivity. However, 20 and 30% biomass additions resulted in increased coal char gasification rate. During co-gasification, chars HW and SW caused increased coal char gasification reactivity at lower conversions, while char SB resulted in increased gasification rates throughout the entire conversion range. Experimental data from biomass char gasification and biomass-coal char co-gasification were well described by the MRPM, while coal char gasification was better described by the RPM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. BIMOMASS GASIFICATION PILOT PLANT STUDY

    Science.gov (United States)

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  12. Biomass gasification in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Van der Drift, A. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-07-15

    This reports summarizes the activities, industries, and plants on biomass gasification in the Netherlands. Most of the initiatives somehow relate to waste streams, rather than clean biomass, which may seem logic for a densely populated country as the Netherlands. Furthermore, there is an increasing interest for the production of SNG (Substitute Natural Gas) from biomass, both from governments and industry.

  13. Trends in research on forestry decentralization policies

    DEFF Research Database (Denmark)

    Lund, Jens Friis; Rutt, Rebecca Leigh; Ribot, Jesse

    2018-01-01

    We identify and describe four strands in the literature on forestry decentralization policies: studies that assess impacts of forestry sector decentralization policies on forests and livelihoods; studies that examine whether forestry decentralization empowers public and democratic local...... institutions; studies focusing on power and the role of elites in forestry decentralization, and; studies that historicize and contextualize forestry decentralization as reflective of broader societal phenomena. We argue that these strands reflect disciplinary differences in values, epistemologies, and methods...... preferences, and that they individually provide only partial representations of forestry decentralization policies. Accordingly, we conclude that a comprehensive understanding of these policies cannot rest solely on any of these strands, but should be informed by all of them....

  14. Combined cycles and cogeneration with natural gas and alternative fuels; Cicli combinati e cogenerazione con gas naturale e combustibili alternativi

    Energy Technology Data Exchange (ETDEWEB)

    Gusso, R. [Turbotecnica SpA, Florence (Italy)

    1992-12-31

    Since 1985 there has been a sharp increase world-wide in the sales of gas turbines. The main reasons for this are: the improved designs allowing better gas turbine and, thus, combined cycle efficiencies; the good fuel use indices in the the case of cogeneration; the versatility of the gas turbines even with poly-fuel plants; greatly limited exhaust emissions; and lower manufacturing costs and delivery times with respect to conventional plants. This paper after a brief discussion on the evolution in gas turbine applications in the world and in Italy, assesses their use and environmental impacts with fuels other than natural gas. The paper then reviews Italian efforts to develop power plants incorporating combined cycles and the gasification of coal, residual, and other low calorific value fuels.

  15. A Belgian margarine manufacturer is testing the green cogeneration; Un margarinier belge experimente la cogeneration verte

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-01-15

    Aigremont, an independent Belgian margarine manufacturer, is exploiting a 'green cogeneration' unit fueled with vegetal and animal fats. This unit generates 770 kW electrical power which is injected into the power grid and the same quantity of thermal power which is consumed by the fabrication process. Short paper. (J.S.)

  16. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuvien dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y.; Wilen, C.

    1995-12-31

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (a) suitability to small scale electricity production (< 5-10 MWe), (b) reliable operation with realistically available biomass feedstocks, and (c) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (a) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (b) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers

  17. Diesel power plants based on biomass gasification; Biomassan ja turpeen kaasutukseen perustuen dieselvoimalaitosten toteutettavuustutkimus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Staahlberg, P.; Solantausta, Y. [VTT Energy, Espoo (Finland)

    1996-12-01

    Different power production systems have been developed for biomass feedstocks. However, only few of these systems can meet the following three requirements: (1) suitability to small scale electricity production (<5-10 MWe), (2) reliable operation with realistically available biomass feedstocks, and (3) potential for economical competitiveness. The fluidized-bed boilers have been successfully operated with wood waste and peat down to outputs of the order of 5 MWe and the investment costs have been successfully lowered to a reasonable level. However, this concept is most suitable for combined heat and electricity production and smaller plant sizes are not considered feasible. One of the most promising alternative for this commercially proven technology is the diesel power plant based on gasification. This concept has a potential for higher power to heat ratios in cogeneration or higher efficiency in separate electricity production. The objectives of this project were (1) to evaluate the technical and economical feasibility of diesel power plants based on biomass gasification and (2) to study the effects of operating conditions (temperature, bed material and air staging) on the performance of a circulating fluidized-bed gasifier. The experimental part of the project was carried out on a new PDU-scale Circulating Fluidized-Bed Gasification test facility of VTT. Wood residues were used as the feedstocks and the experiments were mainly focused on tar formation and gasifier performance. The results will be compared to earlier VTT data obtained for bubbling-bed reactors. The techno-economic feasibility studies are carried out using existing process modelling tools of VTT and the gasification based diesel plants will be compared to conventional fluidized-bed boilers. The studies are scheduled to be completed in March 1996. (author)

  18. Decentralized or Centralized Systems for Colleges and Universities?

    Science.gov (United States)

    Heydinger, Richard B.; Norris, Donald M.

    1979-01-01

    Arguments for and against decentralization of data management, analysis, and planning systems are presented. It is suggested that technological advances have encouraged decentralization. Caution in this direction is urged and the development of an articulated decentralization program is proposed. (SF)

  19. Intermittency-friendly and high-efficiency cogeneration

    DEFF Research Database (Denmark)

    Blarke, Morten; Dotzauer, Erik

    2011-01-01

    This paper develops, implements, and applies a mathematical model for economic unit dispatch for a novel cogeneration concept (CHP-HP-FG-CS (CHP with compression heat pump and cold storage using flue gas heat)) that increases the plant’s operational flexibility. The CHP-HP-FG-CS concept is a high......-temperature heat source, and an intermediate cold thermal storage allowing for non-concurrent operation of the cogeneration unit and the heat pump unit. The model is applied for a paradigmatic case study that shows how the integration of a heat pump affects the operational strategy of a cogeneration plant......-efficiency and widely applicable option in distributed cogeneration better supporting the co-existence between cogenerators and intermittent renewables in the energy system. The concept involves integrating an efficient high-temperature compression heat pump that uses only waste heat recovered from flue gases as low...

  20. Industrial Cogeneration Optimization Program: A summary of two studies

    Science.gov (United States)

    1981-08-01

    Two industrial cogeneration optimization programs were performed to examine the economic and energy saving impacts of adding cogeneration to site specific plants in the chemical, food, pulp and paper, petroleum refining, and textile industries. Industrial cogeneration is reviewed. The two parallel ICOP studies are described. The five industrial sectors are also described, followed by highlights of each of the site specific case studies. Steam turbine cogeneration systems fired by coal or alternative fuels are generally the most attractive in terms of economic performance and oil/gas savings potential. Of the 15 cogeneration systems selected as optimum in the ICOP studies, 11 were coal or wood fired steam turbines. By contrast, gas turbines, combined cycles, and diesel engines, which are limited to oil or gas firing, are usually less economical.

  1. Cogeneration: a win-win option for Cadbury Nigeria

    International Nuclear Information System (INIS)

    Dayo, Felix; Bogunjoko, S.B.; Sobanwa, A.C.

    2001-01-01

    Like most developing countries, Nigeria is looking to cogeneration as a sustainable and reliable means of overcoming its present unreliable supply of energy. The article focuses on the efforts of the food company Cadbury Nigeria which uses cogeneration for all its steam and power requirements within its own factory. The Company recently decided to upgrade further by switching from liquid fossil fuels to natural gas. Diagrams show the existing system as well as the systems for cogeneration with natural gas. Some of the obstacles to be overcome to improve the viability of cogeneration in developing countries are listed. It is hoped that the outcome of the COP6 meeting to be held in April 2001 will offer encouragement for cogeneration

  2. Cogeneration: a win-win option for Cadbury Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Dayo, Felix [Triple ' E' Systems Associates Ltd. (Nigeria); Bogunjoko, S.B.; Sobanwa, A.C. [Cadbury Nigeria plc. (Nigeria)

    2001-02-01

    Like most developing countries, Nigeria is looking to cogeneration as a sustainable and reliable means of overcoming its present unreliable supply of energy. The article focuses on the efforts of the food company Cadbury Nigeria which uses cogeneration for all its steam and power requirements within its own factory. The Company recently decided to upgrade further by switching from liquid fossil fuels to natural gas. Diagrams show the existing system as well as the systems for cogeneration with natural gas. Some of the obstacles to be overcome to improve the viability of cogeneration in developing countries are listed. It is hoped that the outcome of the COP6 meeting to be held in April 2001 will offer encouragement for cogeneration.

  3. Texaco gasification power systems for clean energy

    International Nuclear Information System (INIS)

    Quintana, M.E.; Thone, P.W.

    1991-01-01

    The Texaco Gasification Power Systems integrate Texaco's proprietary gasification technology with proven power generation and energy recovery schemes for efficient and environmentally superior fuel utilization. Texaco's commercial experience on gasification spans a period of over 40 years. During this time, the Texaco Gasification Process has been used primarily to manufacture synthesis gas for chemical applications in one hundred commercial installations worldwide. Power generation using the Texaco Gasification Power Systems (TGPS) concept has been successfully demonstrated at the Texaco-sponsored Cool Water Coal Gasification Program in California. The environmental superiority of this technology was demonstrated by the consistent performance of Cool Water in exceeding the strict emission standards of the state of California. Currently, several TGPS projects are under evaluation worldwide for power generation in the range of 90MW to 1300MW

  4. Small Distributed Energy Russia: Combined Heat and Power Generation

    OpenAIRE

    Astafyev, Aleksandr Vladimirovich; Kazakov, Aleksandr Vladimirovich; Zavorin, Aleksandr Sergeevich

    2016-01-01

    The issues and current trends of research in the field of decentralized energy supply for the period up to 2030 were considered. The analysis of the cogeneration market in Russia was done. The questions of gasification and hydrogen technologies as applied to the market of cogeneration plants were elucidated. Promising technologies for autonomous decentralized energy supply and the evaluation of their applicability to small energy were presented.

  5. An HTR cogeneration system for industrial applications

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Heek, A.I. van; Kikstra, J.F.

    2001-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of this study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220 deg. C. The economic characteristics of this installation turned out to be much more favourable using modern data. The research work for this installation is embedded in a programme that has links to the major HTR projects in the world. Accordingly ECN participates in several IAEA Co-ordinated Research Programmes (CRPs). Besides this, ECN is involved in the South African PBMR-project. Finally, ECN participates in the European Concerted Action on Innovative HTR. (author)

  6. Environmental licensing issues for cogeneration plants

    International Nuclear Information System (INIS)

    Lipka, G.S.; Bibbo, R.V.

    1990-01-01

    The siting and licensing of cogeneration and independent power production (IPP) facilities is a complex process involving a number of interrelated engineering, economic, and environmental impact considerations. Important considerations for the siting and licensing of such facilities include air quality control and air quality impacts, water supply and wastewater disposal, and applicable noise criteria and noise impact considerations. Air quality control and air quality impact considerations for power generation facilities are commonly reviewed in the public forum, and most project developers are generally aware of the key air quality licensing issues. These issues include Best Available Control Technology (BACT) demonstration requirements, and air quality modeling requirements. BACT is a case-by-case determination, which causes uncertainty, in that developers have difficulty in projecting the cost of required control systems. Continuing developments in control technology may cause this problem to continue in the 1990's. Air quality modeling can be a problem in hilly terrain or within or near an urban environment, which could delay or preclude permitting of a new cogeneration or IPP facility in such locations. This paper discusses several environmental issues which are less frequently addressed than air quality issues, namely water/wastewater and noise. The design features of typical cogeneration and IPP facilities that affect water supply requirements, wastewater volumes, and noise emissions are discussed. Then, the site selection and impact review process are examined to identify typical constraints and trade-offs that can develop relative to water, wastewater, and noise issues. Trends in permit review requirements for water, wastewater, and noise are examined. Finally, innovative approaches that can be used to resolve potential development constraints for water, wastewater, and noise issues are discussed

  7. Efficient Use of Cogeneration and Fuel Diversification

    Science.gov (United States)

    Kunickis, M.; Balodis, M.; Sarma, U.; Cers, A.; Linkevics, O.

    2015-12-01

    Energy policy of the European Community is implemented by setting various goals in directives and developing support mechanisms to achieve them. However, very often these policies and legislation come into contradiction with each other, for example Directive 2009/28/EC on the promotion of the use of energy from renewable sources and Directive 2012/27/EU on energy efficiency, repealing Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand. In this paper, the authors attempt to assess the potential conflicts between policy political objectives to increase the share of high-efficiency co-generation and renewable energy sources (RES), based on the example of Riga district heating system (DHS). If a new heat source using biomass is built on the right bank of Riga DHS to increase the share of RES, the society could overpay for additional heat production capacities, such as a decrease in the loading of existing generating units, thereby contributing to an inefficient use of existing capacity. As a result, the following negative consequences may arise: 1) a decrease in primary energy savings (PES) from high-efficiency cogeneration in Riga DHS, 2) an increase in greenhouse gas (GHG) emissions in the Baltic region, 3) the worsening security situation of electricity supply in the Latvian power system, 4) an increase in the electricity market price in the Lithuanian and Latvian price areas of Nord Pool power exchange. Within the framework of the research, calculations of PES and GHG emission volumes have been performed for the existing situation and for the situation with heat source, using biomass. The effect of construction of biomass heat source on power capacity balances and Nord Pool electricity prices has been evaluated.

  8. Progress in biofuel production from gasification

    OpenAIRE

    Sikarwar, Vineet Singh; Zhao, Ming; Fennell, Paul S.; Shah, Nilay; Anthony, Edward J.

    2017-01-01

    Biofuels from biomass gasification are reviewed here, and demonstrated to be an attractive option. Recent progress in gasification techniques and key generation pathways for biofuels production, process design and integration and socio-environmental impacts of biofuel generation are discussed, with the goal of investigating gasification-to-biofuels’ credentials as a sustainable and eco-friendly technology. The synthesis of important biofuels such as bio-methanol, bio-ethanol and higher alcoho...

  9. Studies on biomass char gasification and dynamics

    Science.gov (United States)

    You, Zhanping; You, Shijun; Ma, Xiaoyan

    2018-01-01

    The gasification performances of two kinds of biomass char by experiment methods are studied, including conversion rate and gasification gas component with temperature and time. Experimental results show that gasification temperature has important effects on the conversion rate and gas component. In the range of experimental temperature, char conversion rates are no more than 30.0%. The apparent activation energies and apparent reaction frequency factors of two biomass chars are obtained through kinetic studies.

  10. Cogeneration of electricity from biomass in India

    International Nuclear Information System (INIS)

    Bhargava, H.

    1997-01-01

    India, which is the largest sugarcane producer in the world and which has chronic severe power deficits, has excellent business opportunities in over 400 sugar mills for cogeneration of exportable electrical energy from bagasse. The current potential is between 2,500 and 3,000 MW of capacity. Individual plant size will range from 10 to 80 MW. The opportunities take the form of turnkey projects for promoter sugar mills, as well as for setting up facilities on BOOT (Build, Own, Operate and Transfer), BOO (Build, Own and Operate) or BOLT (Build, Own, Lease and Transfer) concepts. (author)

  11. Cogeneration: Effects of environmental laws and regulations

    International Nuclear Information System (INIS)

    Dean, J.E.

    1994-01-01

    The new list of environmental regulations caused by the 1990 Clean Air Act Amendments and the expected effects of other environmental and related regulation on American industry is truly staggering. The author's brief overview is limited to the effects on utility customer power generation. In his opinion, the regulations favor the use of clean burning waste materials to generate steam and electricity. The environmental requirements for all industry are expected to tighten significantly. Some of the issues of interest are: timing; clean burning power generation; future projected issues (5 years or more); waste power cogeneration; and Internal Revenue guidelines

  12. International Seminar on Gasification 2008

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen (ed.)

    2008-11-15

    In total 20 international and national experts were invited to give presentations (The PPT-presentations are collected in this volume).The seminar was divided into three parts: Production technologies; Applications - Gas turbines and gas Engines - Biomethane as vehicle fuel- Syngas in industrial processes; Strategy, policy and vision. Production of synthetic fuels through gasification of biomass is expected to develop rapidly due to political ambitions related to the strong fossil fuel dependency, especially within the transportation sector, security of supply issues and the growing environmental concern. Techniques that offer a possibility to produce high quality fuels in an efficient and sustainable way are of great importance. In this context gasification is expected to play a central part. The indirect gasification concept has been further developed in recent years and there are now pilot and demonstration plants as well as commercial plants in operation. The RandD activities at the semi-industrial plant in Guessing, Austria have resulted in the first commercial plant, in Oberwart. The design data is 8.5 MW{sub th} and 2.7 MW{sub e} which gives an electric efficiency of 32 % and the possibility to produce biomethane. In this scale conventional CHP production based on combustion of solid biomass and the steam cycle would result in a poor electric efficiency. Metso Power has complemented the 12 MW{sub th} CFB-boiler at Chalmers University of Technology, Gothenburg, Sweden with a 2 MW{sub th} indirect gasifier. The gasifier is financed by Gothenburg Energy and built for RD purposes. Gothenburg Energy in collaboration with E.ON Sweden will in a first stage build a 20 MW plant for biomethane production (as vehicle fuel and for grid injection) in Gothenburg based on the indirect gasification technology. The plant is expected to be in operation in 2012. The next stage involves an 80 MW plant with a planned start of operation in 2015. Indirect gasification of biomass

  13. Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification

    International Nuclear Information System (INIS)

    Li, Qi; Hu, Guiping

    2014-01-01

    An advanced biofuels supply chain is proposed to reduce biomass transportation costs and take advantage of the economics of scale for a gasification facility. In this supply chain, biomass is converted to bio-oil at widely distributed small-scale fast pyrolysis plants, and after bio-oil gasification, the syngas is upgraded to transportation fuels at a centralized biorefinery. A two-stage stochastic programming is formulated to maximize biofuel producers' annual profit considering uncertainties in the supply chain for this pathway. The first stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants as well as the centralized biorefinery, while the second stage determines the biomass and biofuels flows. A case study based on Iowa in the U.S. illustrates that it is economically feasible to meet desired demand using corn stover as the biomass feedstock. The results show that the locations of fast pyrolysis plants are sensitive to uncertainties while the capacity levels are insensitive. The stochastic model outperforms the deterministic model in the stochastic environment, especially when there is insufficient biomass. Also, farmers' participation can have a significant impact on the profitability and robustness of this supply chain. - Highlights: • Decentralized supply chain design for advanced biofuel production is considered. • A two-stage stochastic programming is formulated to consider uncertainties. • Farmers' participation has a significant impact on the biofuel supply chain design

  14. Simulation analysis of wastes gasification technologies

    Directory of Open Access Journals (Sweden)

    Stępień Leszek

    2017-01-01

    Full Text Available Each year a significant growth in the amount of wastes generated is observed. Due to this fact technologies enabling utilization of wastes are needed. One of the ways to utilizes wastes is thermal conversion. Most widely used technology for thermal conversion is gasification that enables to produce syngas that can be either combusted or directed to further synthesis to produce methanol or liquid fuels. There are several commercially available technologies that enable to gasify wastes. The first part of this study is subjected to general description of waste gasification process. Furthermore the analysis and comparison of commercially available gasification technologies is presented, including their process arrangement, limits and capabilities. Second part of the study is dedicated to the development of thermodynamic model for waste gasification. The model includes three zones of gasification reactors: drying, gasification and eventually ash melting. Modified Gibbs minimization method is used to simulate gasification process. The model is capable of predicting final gas composition as a function of temperature or equivalence ratio. Calculations are performed for a specified average wastes composition and different equivalence ratios of air to discuss its influence on the performance of gasification (temperature of the process and gas composition. Finally the model enables to calculate total energy balance of the process as well as gasification and final gas temperature.

  15. Policy Recommendations on Decentralization, Local Power and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-22

    Policy Recommendations on Decentralization, Local Power and Women's Rights. December 22, 2010. Image. The present document comprises a set of policy recommendations that define a global agenda on gender and decentralization. It emerged from the analysis and experiences shared during the Conference and the ...

  16. Decentralized Decision Making Toward Educational Goals.

    Science.gov (United States)

    Monahan, William W.; Johnson, Homer M.

    This monograph provides guidelines to help those school districts considering a more decentralized form of management. The authors discuss the levels at which different types of decisions should be made, describe the changing nature of the educational environment, identify different centralization-decentralization models, and suggest a flexible…

  17. Decentralization in Botswana: the reluctant process | Dipholo ...

    African Journals Online (AJOL)

    Botswana\\'s decentralization process has always been justified in terms of democracy and development. Consequently, the government has always argued that it is fully committed to decentralization in order to promote popular participation as well as facilitating sustainable rural development. Yet the government does not ...

  18. Policy Recommendations on Decentralization, Local Power and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Policy Recommendations on Decentralization, Local Power and Women's Rights. 22 décembre 2010. Image. The present document comprises a set of policy recommendations that define a global agenda on gender and decentralization. It emerged from the analysis and experiences shared during the Conference and the ...

  19. Decentralized Energy from Waste Systems

    Directory of Open Access Journals (Sweden)

    Blanca Antizar-Ladislao

    2010-01-01

    Full Text Available In the last five years or so, biofuels have been given notable consideration worldwide as an alternative to fossil fuels, due to their potential to reduce greenhouse gas emissions by partial replacement of oil as a transport fuel. The production of biofuels using a sustainable approach, should consider local production of biofuels, obtained from local feedstocks and adapted to the socio-economical and environmental characteristics of the particular region where they are developed. Thus, decentralized energy from waste systems will exploit local biomass to optimize their production and consumption. Waste streams such as agricultural and wood residues, municipal solid waste, vegetable oils, and algae residues can all be integrated in energy from waste systems. An integral optimization of decentralized energy from waste systems should not be based on the optimization of each single process, but the overall optimization of the whole process. This is by obtaining optimal energy and environmental benefits, as well as collateral beneficial co-products such as soil fertilizers which will result in a higher food crop production and carbon dioxide fixation which will abate climate change.

  20. Italian experience in gasification plants

    International Nuclear Information System (INIS)

    Rinaldi, N.U.

    1991-01-01

    After tracing the historical highlights representing the development of the Fauser (Montecatini) technology based gasification processes for the production of ammonia and methanol, this paper outlines the key design, operation and performance characteristics of the Montecatini (Italy) process plant for heavy liquid hydrocarbons gasification by means of partial auto-thermal combustion with oxygen. The outline makes evident the technical-economical validity of the Montecatini design solutions which include energy recovery (even the heat dispersed through the gasifier walls is recovered and utilized to produce low pressure steam to preheat the fuel oil); reduced oxygen consumption by the high temperature preheating of all reagents; the ecologically compatible elimination of gas black; as well as, desulfurization with materials recovery. The plant process descriptions come complete with flowsheets. While demonstrating that the Italian developed technology is historically well rooted, the Author stresses that the current design versions of Montecatini gasification plants are up to date with innovative solutions, especially, with regard to pollution abatement, and cites the need for a more concerted marketing effort on the part of local industry to help improve the competitiveness of the Italian made product

  1. Cogeneration opportunities in the maritime provinces

    International Nuclear Information System (INIS)

    MacPherson, S.W.

    1999-01-01

    With the arrival of natural gas in New Brunswick in November 1999, the province will be faced with new power generation development opportunities in four different categories of power projects. These include industrial self generation (including cogeneration), merchant power plants, power projects to replace aging facilities, and power projects to help meet future environmental needs. New Brunswick's competitive advantage in harnessing the power generation development opportunities lies in the fact that it is close to major electricity markets in Quebec and New England. It also has many available generation sites. The province's many pulp and paper plants with large process steam needs are also ideal candidates for cogeneration. Some of the major competitive advantages of natural gas over coal are its lower operation and maintenance costs, it is thermally more efficient, produces lower emissions to the environment and prices are competitive. One of the suggestions in New Brunswick Power's new restructuring proposal is to unbundle electricity service in the province into generation and transmission and distribution services. Three gas-fired projects have already been proposed for the province. The 284 MW Bayside Power Project at the Courtenay Bay Generating Station is the most advanced

  2. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  3. Current experience with central-station nuclear cogeneration plants

    International Nuclear Information System (INIS)

    1981-10-01

    In considering the potential of the HTGR for nuclear cogeneration, a logical element for investigation is the recent history of nuclear cogeneration experience. Little is found in recent literature; however, the twin nuclear cogeneration plant at Midland is nearing completion and this milestone will no doubt be the basis for a number of reports on the unique cogeneration facility and operating experiences with it. Less well known in the US is the Bruce Nuclear Power Development in Ontario, Canada. Originally designed to cogenerate steam for heavy water production, the Bruce facility is the focus of a major initiative to create an energy park on the shores of Lake Huron. To obtain an improved understanding of the status and implications of current nuclear cogeneration experience, GCRA representatives visited the Ontario Hydro offices in Toronto and subsequently toured the Midland site near Midland, Michigan. The primary purpose of this report is to summarize the results of those visits and to develop a series of conclusions regarding the implications for HTGR cogeneration concepts

  4. Transposition of the EU cogeneration directive: A vision for Portugal

    International Nuclear Information System (INIS)

    Moreira, Nuno Afonso; Monteiro, Eliseu; Ferreira, Sergio

    2007-01-01

    The potential for new, small-scale and micro-cogeneration installations in Portugal is very considerable due to the number of potential host buildings. In this work, we discuss the legal framework of the Portuguese energy market, and some modifications to accommodate the Directive, 2004/8/EC are stressed. A practical case of cogeneration is also presented, showing the application of the Annex III (b) and (c) of the Cogeneration Directive. The practical case presented shows that micro CHP can be considered highly efficient, with parameters calculated with the Directive rules. Two main improvements in Portugal's energy policy are important: improvement on the permission to access grid system and improvement on support mechanisms indexing it to PES. The Cogeneration Directive transposition is an excellent opportunity to induce a less restrictive framework for the installation of new cogeneration systems, reducing the technological barriers, namely allowing medium-voltage connection with the grid, and improving the revenues provided from these small cogeneration systems. These modifications can improve significantly the number of potential hosts for small-scale cogeneration systems. (author)

  5. Community Design Parameters and the Performance of Residential Cogeneration Systems

    Directory of Open Access Journals (Sweden)

    Hazem Rashed-Ali

    2012-11-01

    Full Text Available The integration of cogeneration systems in residential and mixed-use communities has the potential of reducing their energy demand and harmful emissions and can thus play asignificant role in increasing their environmental sustainability. This study investigated the impact of selected planning and architectural design parameters on the environmental and economic performances of centralized cogeneration systems integrated into residential communities in U.S.cold climates. Parameters investigated include: 1 density, 2 use mix, 3 street configuration, 4 housing typology, 5 envelope and building systems’ efficiencies, and 6 passive solar energyutilization. The study integrated several simulation tools into a procedure to assess the impact of each design parameter on the cogeneration system performance. This assessment procedure included: developing a base-line model representing typical design characteristics of U.S. residential communities; assessing the cogeneration system’s performance within this model using three performance indicators: percentage of reduction in primary energy use, percentage of reduction in CO2 emissions; and internal rate of return; assessing the impact of each parameter on the system performance through developing 46 design variations of the base-line model representing potential changes in each parameter and calculating the three indicators for each variation; and finally, using a multi-attribute decision analysis methodology to evaluate the relative impact of each parameter on the cogeneration system performance. The study results show that planning parameters had a higher impact on the cogeneration system performance than architectural ones. Also, a significant correlation was found between design characteristics identified as favorable for the cogeneration system performance and those of sustainable residential communities. These include high densities, high use mix, interconnected street networks, and mixing of

  6. Selected aspects of cogeneration technology in distributed energy applications

    Science.gov (United States)

    Zuchora, Konrad

    2017-08-01

    The paper presents an opinion on the use of distributed cogeneration technologies in the power industry. It offers worked out experiences and views on the idea of using renewable energy sources in the conventional power industry. The effects of the work done are analysed arguments concerning the use of cogeneration and renewable energy sources in the micropower industry, and developed ways of the functioning of the distributed energy generation system. The publication presents conclusions and simulation results of the criterial work of a micropower system containing in its structure renewable energy sources and a cogeneration unit.

  7. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    Science.gov (United States)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  8. Development of a packed-bed combination gasification system. Opportunities for economical energy generation from waste and chip wood; Entwicklung eines kombinierten Festbettvergasungsverfahrens. Chancen fuer die wirtschaftliche energetische Nutzung von Alt- und Restholz

    Energy Technology Data Exchange (ETDEWEB)

    Senger, W. [Inst. fuer Umwelttechnologie und Umweltanalytik e.V., Duisburg (Germany). Abt. Abfallwirtschaft/Monobrennstoffe

    1998-01-01

    For environment-political reasons and with a view to saving fossil fuel resources, enhanced use of renewable feedstocks for energy generation, especially at decentral combustion or gasification plants, is called for. Thermal processing of, for instance, waste and chip wood by gasification has fundamental advantages over combustion: the lean gas produced generates electricity directly by means of a gas engine or gas turbine. For decentral uses, it is above all packed-bed gasification systems, and among these particularly downward and upward gasification systems, that are of interest. Both types have mutually exclusive advantages, which are to be harnessed in a combination gasification system developed by the IUTA. (orig.) [Deutsch] Aus umweltpolitischen Gruenden und vor dem Hintergrund des Zieles der Schonung fossiler Brennstoffe wird ein verstaerkter Einsatz nachwachsender Rohstoffe zur Energieerzeugung insbesondere auch durch dezentrale Verbrennungs- oder Vergasungsanlagen gefordert. Bei der thermischen Verwertung von zum Beispiel Alt- und Resthoelzern weist die Vergasungstechnik gegenueber der Verbrennung prinzipielle Vorteile auf, da aus dem produzierten Schwachgas mit einem Gasmotor oder einer Gasturbine direkt Strom erzeugt werden kann. Fuer den dezentralen Einsatz sind vor allem Festbettvergaser und bei diesen insbesondere Gleich- und Gegenstromvergaser interessant. Beide Typen weisen sich ausschliessende Vorteile auf, die in einem vom IUTA entwickelten kombinierten Festbettvergaser genutzt werden sollen. (orig.)

  9. TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

  10. Gasification — the process and the technology

    NARCIS (Netherlands)

    van Swaaij, Willibrordus Petrus Maria

    1981-01-01

    Thermochemical gasification of biomass can produce low, medium and high calorific value gases. The characteristics, applications and potential of the different processes and reactor types are discussed. The introduction of biomass gasification on a large or intermediate scale for the production of

  11. Modeling integrated biomass gasification business concepts

    Science.gov (United States)

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  12. Bitcoin as a decentralized currency

    Directory of Open Access Journals (Sweden)

    Dinić Vladimir

    2014-01-01

    Full Text Available Bitcoin is the first decentralized peer-to-peer crypto-currency founded in 2009. Its main specificity is the fact that there is no issuer of this currency. On the other hand, the supply of this currency is software-programmed and limited. Among other things, its main features are relatively secure payments, low transaction costs, anonymity, inability of counterfeiting, irreversibility of transactions, but also extremely unstable exchange rate. Despite many advantages, the use of this currency is subject of numerous discussions, as this currency offers the possibility of performing various abuses and criminal activities. The future of this and other currencies in this regard depends on both security and privacy of these currencies, and legal regulation of such payments.

  13. International Seminar on Gasification 2009 - Biomass Gasification, Gas Clean-up and Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    2009-10-15

    During the seminar international and national experts gave presentations concerning Biomass gasification, Gas cleaning and gas treatment; and Strategy and policy issues. The presentations give an overview of the current status and what to be expected in terms of development, industrial interest and commercialization of different biomass gasification routes. The following PPT presentations are reproduced in the report: Black Liquor Gasification (Chemrec AB.); Gasification and Alternative Feedstocks for the Production of Synfuels and 2nd Generation Biofuels (Lurgi GmbH); Commercial Scale BtL Production on the Verge of Becoming Reality (Choren Industries GmbH.); Up-draft Biomass Gasification (Babcock and Wilcox Voelund A/S); Heterogeneous Biomass Residues and the Catalytic Synthesis of Alcohols (Enerkem); Status of the GoBiGas-project (Goeteborg Energi AB.); On-going Gasification Activities in Spain (University of Zaragoza,); Biomass Gasification Research in Italy (University of Perugia.); RDandD Needs and Recommendations for the Commercialization of High-efficient Bio-SNG (Energy Research Centre of the Netherlands.); Cleaning and Usage of Product Gas from Biomass Steam Gasification (Vienna University of Technology); Biomass Gasification and Catalytic Tar Cracking Process Development (Research Triangle Institute); Syngas Cleaning with Catalytic Tar Reforming (Franhofer UMSICHT); Biomass Gas Cleaning and Utilization - The Topsoee Perspective (Haldor Topsoee A/S); OLGA Tar Removal Technology (Dahlman); Bio-SNG - Strategy and Activities within E.ON (E.ON Ruhrgas AG); Strategy and Gasification Activities within Sweden (Swedish Energy Agency); 20 TWh/year Biomethane (Swedish Gas Association)

  14. Cogeneration steam turbine plant for district heating of Berovo (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin

    2000-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. A coal dust fraction from B rik' - Berovo coal mine is the main energy resource for cogeneration steam turbine plant. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. All necessary facilities of cogeneration plant is examined and determined. For proposed cogeneration steam turbine power plant for combined heat and electric production it is determined: heat and electric capacity of the plant, annually heat and electrical quantity production and annually coal consumption, the total investment of the plant, the price of both heat and electric energy as well as the pay back period. (Authors)

  15. Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

  16. Industrial cogeneration optimization program. Final report, September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jerry; McWhinney, Jr., Robert T.

    1980-01-01

    This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

  17. Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian

    2011-01-01

    A hybrid plant producing combined heat and power (CHP) from biomass by use of a two-stage gasification concept, solid oxide fuel cells (SOFC) and a micro gas turbine was considered for optimization. The hybrid plant represents a sustainable and efficient alternative to conventional decentralized...... and exergy analyses were applied. Focus in this optimization study was heat management, and the optimization efforts resulted in a substantial gain of approximately 6% in the electrical efficiency of the plant. The optimized hybrid plant produced approximately 290 kWe at an electrical efficiency of 58...

  18. Klickitat Cogeneration Project: Final environmental assessment

    International Nuclear Information System (INIS)

    1994-09-01

    To meet BPA's contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA's proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact)

  19. Klickitat Cogeneration Project : Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Klickitat Energy Partners

    1994-09-01

    To meet BPA`s contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA`s proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact).

  20. Cogeneration, renewables and reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Naughten, B.; Dlugosz, J.

    1996-01-01

    The MENSA model is used to assess the potential role of cogeneration and selected new renewable energy technologies in cost-effectively reducing Greenhouse gas emissions. The model framework for analyzing these issues is introduced, together with an account of relevant aspects of its application. In the discussion of selected new renewable energy technologies, it is shown how microeconomic reform may encourage these technologies and fuels, and thereby reduce sector wide carbon dioxide emissions. Policy scenarios modelled are described and the simulation results are presented. Certain interventions in microeconomic reform may result in economic benefits while also reducing emissions: no regrets' opportunities. Some renewable energy technologies are also shown to be cost-effective in the event that targets and timetables for reducing Greenhouse gas emissions are imposed. However, ad hoc interventions in support of particular renewables options are unlikely to be consistent with a least cost approach to achieving environmental objectives. (author). 5 tabs., 5 figs., 21 refs

  1. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  2. PLASMA GASIFICATION OF WASTE PLASTICS

    Directory of Open Access Journals (Sweden)

    Tadeusz Mączka

    2013-01-01

    Full Text Available The article presents the process of obtaining liquid fuels and fuel gas in the process of plasma processing of organic materials, including waste plastics. The concept of plasma pyrolysis of plastics was presented and on its basis a prototype installation was developed. The article describes a general rule of operating the installation and its elements in the process and basic operation parameters determined during its start-up. Initial results of processing plastics and the directions further investigations are also discussed. The effect of the research is to be the design of effective technology of obtaining fuels from gasification/pyrolysis of organic waste and biomass.

  3. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...

  4. The Use of Spark Ignition Engine in Domestic Cogeneration

    Directory of Open Access Journals (Sweden)

    Feiza Memet

    2009-10-01

    Full Text Available Cogeneration plants are strongly sustained by EU energy policies, one of the best beneficiary of this technology being residential buildings. This paper focus on spark ignition engine as a cogeneration application in order to supply energy for domestic consumers. Are considered two aspects of this solution: the energetic aspect and the environmental one. The energetic aspect deals with the energetic ratios, while the environmental aspect refers to the nitrogen oxide and carbon monoxide emissions.

  5. The role of cogeneration systems in sustainability of energy

    International Nuclear Information System (INIS)

    Çakir, Uğur; Çomakli, Kemal; Yüksel, Fikret

    2012-01-01

    Highlights: ► Energy source on the world is tending to run out day by day while the energy need of humanity is increasing simultaneously. ► There are two ways to overcome this problem; one of them is renewable energy sources like solar or wind energy systems. ► The other way is like cogeneration systems. ► Cogeneration system is one of the ways to save the energy and use the energy efficiently. ► A case study is made for a hospital to present the sustainability aspects of cogeneration systems. - Abstract: Cogeneration system (CHP) is one of the ways to save the energy and use the energy efficiently. When compared to separate fossil-fired generation of heat and electricity, CHP may result in a consistent energy conservation (usually ranging from 10% to 30%) while the avoided CO 2 emissions are, as a first approximation, similar to the amount of energy saving. In terms of sustainability, one of the primary considerations is energy efficiency. Sustainable energy is considered as a kind of energy which is renewable and continuous, meaning that the use of such energy can potentially be kept up well into the future without causing harmful repercussions for future generations. In this study, environmental benefits and sustainability aspects of cogeneration systems and importance of those systems to the use of sustainable energy are underlined. To support this idea, first we have referred some scientific studies previously made on cogeneration systems and then we have used our own case study. The case study made on gas engined cogeneration system was applied for a hospital to show the sustainability aspects of cogeneration systems.

  6. Cogeneration and taxation in a liberalised Nordic power market

    International Nuclear Information System (INIS)

    Jess Olsen, O.; Munksgaard, J.

    1997-01-01

    This report is about the impact of the liberalisation of the Nordic power market on cogeneration of heat and power. Special attention is given to the effects on competition of the entirely different tax regimes in the Nordic countries. Some of the main questions answered in this study are: Which cogeneration technologies are able to compete on a liberalised power market? What are the consequences of different tax structures in the four countries for cross-border competition? Which principles should be applied if a common Nordic tax structure is to be developed? The following countries are included in the study: Denmark, Finland, Norway and Sweden. Today, cogeneration provides a larger contribution to the energy supply in the Nordic countries than elsewhere in the world. Our analysis demonstrates that most cogeneration technologies can compete with the power-only technologies. This is the case with respect to both long- and short-term marginal costs. The main exception is the very expensive straw-fired cogeneration technology. The analysis is extended to include the effects of the existing tax regimes (in 1996) in Denmark, Finland and Sweden as well as of the combines energy/CO 2 -tax that was proposed in 1992 by the European Commission. Each of the four tax regimes preserve the competitiveness of cogeneration within its own regime, i.e. if a given cogeneration technology is competitive without taxes it will remain so in a closed market when either Danish, Finnish, Swedish or European taxes are added. The implication of this is that the same cogeneration technology will be exposed to very different conditions in an open power market with cross-border competition, if the present tax regimes in the Nordic countries are allowed to continue. (EG) Also published in Danish. 15 refs

  7. Cogeneration – development and prospect in Polish energy sector

    Directory of Open Access Journals (Sweden)

    Matuszewska Dominika

    2017-01-01

    Full Text Available Next 10-15 years are crucial for condition of Polish energy sector in light of challenges arising mainly from increasing demand for electric energy, need of reducing greenhouse gases emissions and shutdowns of old units. In this situation cogeneration can be one of the most rational way to meet those circumstances. This paper analyzes present development of cogeneration in Poland and its prospect for future.

  8. Sustainability assessment of cogeneration sector development in Croatia

    International Nuclear Information System (INIS)

    Liposcak, Marko; Afgan, Naim H.; Duic, Neven; Graca Carvalho, Maria da

    2006-01-01

    The effective and rational energy generation and supply is one of the main presumptions of sustainable development. Combined heat and power production, or co-generation, has clear environmental advantages by increasing energy efficiency and decreasing carbon emissions. However, higher investment cost and more complicated design and maintenance sometimes-present disadvantages from the economical viability point of view. As in the case of most of economies in transition in Central and Eastern Europe, Croatia has a strong but not very efficient co-generation sector, delivering 12% of the final energy consumption. District heating systems in the country's capital Zagreb and in city of Osijek represent the large share of the overall co-generation capacity. Besides district heating, co-generation in industry sector is also relatively well developed. The paper presents an attempt to assess the sustainability of Croatian co-generation sector future development. The sustainability assessment requires multi-criteria assessment of specific scenarios to be taken into consideration. In this respect three scenarios of Croatian co-generation sector future development are taken into consideration and for each of them environmental, social and economic sustainability indicators are defined and calculated. The assessment of complex relationships between environmental, social and economic aspects of the system is based on the multi-criteria decision-making procedure. The sustainability assessment is based on the General Sustainability Index rating for different cases reflecting different criteria and their priority. The method of sustainability assessment is applied to the Croatian co-generation sector contributing to the evaluation of different strategies and definition of a foundation for policy related to the sustainable future cogeneration sector development

  9. Study of Raw Materials Treatment by Melting and Gasification Process in Plasma Arc Reactor

    Directory of Open Access Journals (Sweden)

    Peter KURILLA

    2010-12-01

    Full Text Available The world consumption of metals and energy has increased in last few decades and it is still increasing. Total volume production results to higher waste production. Raw material basis of majority metals and fossil fuels for energy production is more complex and current waste treatment has long term tendency. Spent power cells of different types have been unneeded and usually they are classified as dangerous waste. This important issue is the main topic of the thesis, in which author describes pyrometallurgical method for storage batteries – power cells and catalysts treatment. During the process there were tested a trial of spent NiMH, Li – ion power cells and spent copper catalysts with metal content treatment by melting and gasification process in plasma arc reactor. The synthetic gas produced from gasification process has been treated by cogenerations micro turbines units for energy recovery. The metal and slag from treatment process are produced into two separately phases and they were analyzing continually.

  10. Advanced energy conversion and application - Decentralized energy systems. Papers; Fortschrittliche Energiewandlung und -anwendung - Schwerpunkt: Dezentrale Energiesysteme. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Decentralized energy systems is the major topic of this VDI report which contains the proceedings of the VDI conference on advanced energy conversion and application. The decentralized energy systems are in the focus because it is expected that they will gain in significance in the course of restructuring and liberalisation of the energy markets and growing commitment to greenhouse gas mitigation. The subjects of the papers are the cogeneration technology in general, and specific systems for combined generation of heat, power and cold,(CHPC systems), systems for renewable energy generation, industrial energy technology, and analysis and optimization of energy systems. The report is intended to serve as a source of guidance and reference for manufacturers and operators of decentralized energy systems, for decision-making on energy policy, and for the energy industry, counselling firms and regulatory/surveillance bodies, and members of universities involved in relevant research and development work. (orig./CB) [German] Themenschwerpunkt des VDI-Berichts sind die dezentralen Energiesysteme, die im Spannungsfeld von fortschreitender Liberalisierung der Energiemaerkte und der Bemuehungen um die Reduzierung von Emissionen an Bedeutung gewinnen. Dabei widmen sich die Beitraege den Systemen zur Kraft-Waerme-Kaelte-Kopplung und zur Nutzung erneuerbarer Energie sowie der industriellen Energietechnik und der Analyse und Optimierung von Energiesystemen. Der Bericht wendet sich an Hersteller und Betreiber dezentraler Energieanlagen, an Entscheidungstraeger aus Politik und Wirtschaft, an Berater und Ueberwachungsinstitutionen sowie an auf diesem Gebiet taetige Hochschullehrer und -mitarbeiter. (orig.)

  11. Process heat cogeneration using a high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Gustavo, E-mail: gustavoalonso3@gmail.com [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ramirez, Ramon [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Valle, Edmundo del [Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Castillo, Rogelio [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico)

    2014-12-15

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU.

  12. Modelling of a chemisorption refrigeration and power cogeneration system

    International Nuclear Information System (INIS)

    Bao, Huashan; Wang, Yaodong; Roskilly, Anthony Paul

    2014-01-01

    Highlights: • An adsorption cogeneration was proposed and simulated for cooling and electricity. • A dynamic model was built and studied to demonstrate the variability of the system. • A dynamic model included the complex coupling of thermodynamic and chemical kinetic. • Mutual constrains between main components and optimisation methods were discussed. • The highest theoretical COP and exergy efficiency of cogeneration is 0.57 and 0.62. - Abstract: The present work for the first time explores the possibility of a small-scale cogeneration unit by combining solid–gas chemisorption refrigeration cycle and a scroll expander. The innovation in this work is the capability of producing refrigeration and electricity continuously and simultaneously without aggravating the energy scarcity and environmental impact. Individual modelling for each component, which has been validated by experimental data, was firstly investigated in order to identify the proper operation condition for the cogeneration mode achieving 1000 W power output. Subsequently, with the integrated modelling of two components the cogeneration performance was studied to demonstrate the viability of this concept. However, because of the mutual constraint between the chemisorption and the expansion when they link in series, the power output of the cogeneration mode was only around one third of the original expectation under the same condition identified in the individual modelling. Methods of improving the global performance including the selection of reactive mediums were also discussed and would be of referable value for the future practical investigation

  13. Computing for Decentralized Systems (lecture 2)

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    With the rise of Bitcoin, Ethereum, and other cryptocurrencies it is becoming apparent the paradigm shift towards decentralized computing. Computer engineers will need to understand this shift when developing systems in the coming years. Transferring value over the Internet is just one of the first working use cases of decentralized systems, but it is expected they will be used for a number of different services such as general purpose computing, data storage, or even new forms of governance. Decentralized systems, however, pose a series of challenges that cannot be addressed with traditional approaches in computing. Not having a central authority implies truth must be agreed upon rather than simply trusted and, so, consensus protocols, cryptographic data structures like the blockchain, and incentive models like mining rewards become critical for the correct behavior of decentralized system. This series of lectures will be a fast track to introduce these fundamental concepts through working examples and pra...

  14. Computing for Decentralized Systems (lecture 1)

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    With the rise of Bitcoin, Ethereum, and other cryptocurrencies it is becoming apparent the paradigm shift towards decentralized computing. Computer engineers will need to understand this shift when developing systems in the coming years. Transferring value over the Internet is just one of the first working use cases of decentralized systems, but it is expected they will be used for a number of different services such as general purpose computing, data storage, or even new forms of governance. Decentralized systems, however, pose a series of challenges that cannot be addressed with traditional approaches in computing. Not having a central authority implies truth must be agreed upon rather than simply trusted and, so, consensus protocols, cryptographic data structures like the blockchain, and incentive models like mining rewards become critical for the correct behavior of decentralized system. This series of lectures will be a fast track to introduce these fundamental concepts through working examples and pra...

  15. The effects of fiscal decentralization in Albania

    Directory of Open Access Journals (Sweden)

    Dr.Sc. Blerta Dragusha

    2012-06-01

    Full Text Available “Basically decentralization is a democratic reform which seeks to transfer the political, administrative, financial and planning authority from central to local government. It seeks to develop civic participation, empowerment of local people in decision making process and to promote accountability and reliability: To achieve efficiency and effectiveness in the collection and management of resources and service delivery”1 The interest and curiosity of knowing how our country is doing in this process, still unfinished, served as a motivation forme to treat this topic: fiscal decentralization as a process of giving 'power' to local governments, not only in terms of rights deriving from this process but also on the responsibilities that come with it. Which are the stages before and after decentralization, and how has it affected the process in several key indicators? Is decentralization a good process only, or can any of its effects be seen as an disadvantage?

  16. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    Science.gov (United States)

    Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng

    2018-04-01

    In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.

  17. Decentralization and the local development state

    DEFF Research Database (Denmark)

    Emmenegger, Rony Hugo

    2016-01-01

    between the 2005 and 2010 elections. Based on ethnographic field research, the empirical case presented discloses that decentralization and state-led development serve the expansion of state power into rural areas, but that state authority is simultaneously constituted and undermined in the course...... of this process. On that basis, this article aims to contribute to an inherently political understanding of decentralization, development and their entanglement in local and national politics in rural African societies....

  18. Decentralized flight trajectory planning of multiple aircraft

    OpenAIRE

    Yokoyama, Nobuhiro; 横山 信宏

    2008-01-01

    Conventional decentralized algorithms for optimal trajectory planning tend to require prohibitive computational time as the number of aircraft increases. To overcome this drawback, this paper proposes a novel decentralized trajectory planning algorithm adopting a constraints decoupling approach for parallel optimization. The constraints decoupling approach is formulated as the path constraints of the real-time trajectory optimization problem based on nonlinear programming. Due to the parallel...

  19. Interregional Inequality, Decentralization, and Corruption in Indonesia

    OpenAIRE

    Sukadana, I Wayan

    2009-01-01

    Decentralization has been implemented for eight years. However, corruption has not been lessened yet within the decentralization era. Bad regulations and investment climate are suspected to be a cause of the situations. Good regulation and investment climate appear if the interjurisdictional competitions exist. The incentive for competition is the equality of economic endowment among regions, or each region has their own tradeable ”technology” that comparable to others. Inequality in ”...

  20. Brown coal gasification made easy

    International Nuclear Information System (INIS)

    Hamilton, Chris

    2006-01-01

    Few Victorians will be aware that gas derived from coal was first used in 1849 to provide lighting in a baker's shop in Swanston Street, long before electric lighting came to the State. The first commercial 'gas works' came on stream in 1856 and Melbourne then had street lighting run on gas. By 1892 there were 50 such gas works across the State. Virtually all were fed with black coal imported from New South Wales. Brown coal was first discovered west of Melbourne in 1857, and the Latrobe Valley deposits were identified in the early 1870s. Unfortunately, such wet brown coal did not suit the gas works. Various attempts to commercialise Victorian brown coal met with mixed success as it struggled to compete with imported New South Wales black coal. In June 1924 Yallourn A transmitted the first electric power to Melbourne, and thus began the Latrobe Valley's long association with generating electric power from brown coal. Around 1950, the Metropolitan Gas Company applied for financial assistance to build a towns gas plant using imported German gasification technology which had been originally designed for a brown coal briquette feed. The State Government promptly acquired the company and formed the Gas and Fuel Corporation. The Morwell Gasification Plant was opened on 9 December 1956 and began supplying Melbourne with medium heating value towns gas

  1. Macauba gasification; Gaseificacao da macauba

    Energy Technology Data Exchange (ETDEWEB)

    Santos Filho, Jaime dos; Oliveira, Eron Sardinha de [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Vitoria da Conquista, BA (Brazil)], E-mail: jaime@ifba.edu.br; Silva, Jadir Nogueira da; Galvarro, Svetlana Fialho Soria [Universidade Federal de Vicosa (UFV), MG (Brazil); Chaves, Modesto Antonio [Universidade Estadual do Sudoeste da Bahia (UESB), Itapetinga, BA (Brazil). Dept. de Engenharia de Alimentos

    2009-07-01

    For development of a productive activity, with reduced environmental degradation, the use of renewable energy sources as an important option. The gasification has been increasing among the ways of obtaining energy from biomass, and consists of a process where the necessary oxygen to the complete combustion of a fuel it is restricts and, in high temperatures it generates fuel gas of high-quality. In this direction, this work is justified and has its importance as the study of a renewable energy source, macauba coconut (Acrocomia aculeata [Jacq] Lodd), with the gasification process. The objective of this study is to build a biomass concurrent gasifier and evaluate the viability to provide heating for dehydration of fruits, using the macauba coconut as fuel. It was measured the temperature in five points distributed in both gasifier and combustor chamber, being the input area of primary combustor air and also the speed of rotation of the electric motor, using a factorial 3X3 experimental design with three repetitions and interval of measurements of five minutes. The analytical results take to infer that the macauba coconut have potential to be gasified and used for the dehydration of fruits. (author)

  2. Study on Incineration/ Pyrolysis/ Gasification Characteristics of Urethane/ Styrofoam Generated from Home Appliances Waste

    International Nuclear Information System (INIS)

    Cho, Sung-Jin; Jung, Hae-Young; Lee, Jang-Su; Lee, Ki-Bae; Seo, Yong-Chil; Kim, Ki-Heon

    2010-01-01

    According to the report of the Korean Association of Electronics Environment (KAEE), 1.44 million units of refrigerators, 1.15 million units of washing machines, 886 thousand units of televisions, and 327 thousand units of air conditioners were discarded in 2006. From such wastes more than 90 wt.% of valuable materials are recovered. Polyurethane/ styrofoam, used to reduce noise and thermally insulating agent in such electric appliances is hard to recycle and handle by any treatment processes. Urethane/ Styrofoam waste recycling consists of 3 parts material recycling, mechanical recycling and energy recycling. The material recycling involves shredding polyurethane for using as raw materials preparing various appliances. This is not easy however, active attempts are being made. The chemical recycling using thermal depolymerization is reduction from polyurethane to raw material polymer. The energy recycling is incineration of polyurethane for cogeneration, RDF (refuse dericed fuel) etc. Most of Urethane/ Styrofoam waste in Korea is sent to cement kilns as auxiliary fuel or is disposed off at landfill sites. Considering the limited landfill capacity and environmental problems associated to land filling, alternative treatment methods such as incineration, pyrolysis and gasification are evaluated for polyurethane/styrofoam disposal. In this study, we considered recovery and recycling of polyurethane/ styrofoam using 3 thermal treatment process (incineration, pyrolysis and gasification). The evaluation of 3 experimental conditions will suggest the energy recovery possibility and the hazard analysis of generated gas and residues. In addition, heating value of oil generated by pyrolysis will also be assessed. Results on possibility of energy recovery by analyzing syngas composition, heating value and carbon conversion efficiency during gasification experiment will also be presented. (author)

  3. Review and analysis of biomass gasification models

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Bruno, Joan Carles; Coronas, Alberto

    2010-01-01

    The use of biomass as a source of energy has been further enhanced in recent years and special attention has been paid to biomass gasification. Due to the increasing interest in biomass gasification, several models have been proposed in order to explain and understand this complex process......, and the design, simulation, optimisation and process analysis of gasifiers have been carried out. This paper presents and analyses several gasification models based on thermodynamic equilibrium, kinetics and artificial neural networks. The thermodynamic models are found to be a useful tool for preliminary...

  4. MHD power station with coal gasification

    International Nuclear Information System (INIS)

    Brzozowski, W.S.; Dul, J.; Pudlik, W.

    1976-01-01

    A description is given of the proposed operating method of a MHD-power station including a complete coal gasification into lean gas with a simultaneous partial gas production for the use of outside consumers. A comparison with coal gasification methods actually being used and full capabilities of power stations heated with coal-derived gas shows distinct advantages resulting from applying the method of coal gasification with waste heat from MHD generators working within the boundaries of the thermal-electric power station. (author)

  5. Fluidised-bed combustion of gasification residue

    Energy Technology Data Exchange (ETDEWEB)

    Korpela, T.; Kudjoi, A.; Hippinen, I.; Heinolainen, A.; Suominen, M.; Lu Yong [Helsinki Univ. of Technology (Finland). Lab of Energy Economics and Power Plant Engineering

    1996-12-01

    Partial gasification processes have been presented as possibilities for future power production. In the processes, the solid materials removed from a gasifier (i.e. fly ash and bed material) contain unburnt fuel and the fuel conversion is increased by burning this gasification residue either in an atmospheric or a pressurised fluidised-bed. In this project, which is a part of European JOULE 2 EXTENSION research programme, the main research objectives are the behaviour of calcium and sulphur compounds in solids and the emissions of sulphur dioxide and nitrogen oxides (NO{sub x} and N{sub 2}O) in pressurised fluidised-bed combustion of gasification residues. (author)

  6. Water pollution control for underground coal gasification

    International Nuclear Information System (INIS)

    Humenick, M.J.

    1984-01-01

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes

  7. Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

  8. Decentralized Consistent Updates in SDN

    KAUST Repository

    Nguyen, Thanh Dang

    2017-04-10

    We present ez-Segway, a decentralized mechanism to consistently and quickly update the network state while preventing forwarding anomalies (loops and blackholes) and avoiding link congestion. In our design, the centralized SDN controller only pre-computes information needed by the switches during the update execution. This information is distributed to the switches, which use partial knowledge and direct message passing to efficiently realize the update. This separation of concerns has the key benefit of improving update performance as the communication and computation bottlenecks at the controller are removed. Our evaluations via network emulations and large-scale simulations demonstrate the efficiency of ez-Segway, which compared to a centralized approach, improves network update times by up to 45% and 57% at the median and the 99th percentile, respectively. A deployment of a system prototype in a real OpenFlow switch and an implementation in P4 demonstrate the feasibility and low overhead of implementing simple network update functionality within switches.

  9. Integration of decentralized electricity production

    International Nuclear Information System (INIS)

    Tomekova, A.

    2004-01-01

    The project SustelNet also deals with the possibilities of future development of DG sources. Within the project frame a quite general concept of the so-called 'equal field' for centralized and decentralized production was chosen for the better integration of DG. Its aim was to the achieve demanded level on the market in the future term (by 2020). Looking at the problem in the wider context means, that both forms of the production should be admitted on the market on the same conditions. The result of this project is a regulatory map, which actually serves as a definite regulatory strategy for more effective employment of DG sources. On the basis of the national regulatory strategies a proposition of regulatory map for EU will be launched, including some recommendations for European Commission. A few expert papers (scenario of proceeding, benchmarking, economical tools and criteria) are also output of this project. Five member states of the EU and four entering countries have been involved in this project. The final results of this procedure will be presented from April 2004 on international and national conferences, seminaries, or by means of other ways of publicity

  10. Evaluation of diurnal thermal energy storage combined with cogeneration systems

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, S.; Brown, D.R.; Drost, M.K.

    1992-11-01

    This report describes the results of an evaluation of thermal energy storage (TES) integrated with simple gas turbine cogeneration systems. The TES system captures and stores thermal energy from the gas turbine exhaust for immediate or future generation of process heat. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers the following two significant advantages: (1) Electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced; (2) Although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. The study evaluated the cost of power produced by cogeneration and cogeneration/TES systems designed to serve a fixed process steam load. The value of the process steam was set at the levelized cost estimated for the steam from a conventional stand-alone boiler. Power costs for combustion turbine and combined-cycle power plants were also calculated for comparison. The results indicated that peak power production costs for the cogeneration/TES systems were between 25% and 40% lower than peak power costs estimated for a combustion turbine and between 15% and 35% lower than peak power costs estimated for a combined-cycle plant. The ranges reflect differences in the daily power production schedule and process steam pressure/temperature assumptions for the cases evaluated. Further cost reductions may result from optimization of current cogeneration/TES system designs and improvement in TES technology through future research and development.

  11. Evaluation of diurnal thermal energy storage combined with cogeneration systems

    Science.gov (United States)

    Somasundaram, S.; Brown, D. R.; Drost, M. K.

    1992-11-01

    This report describes the results of an evaluation of thermal energy storage (TES) integrated with simple gas turbine cogeneration systems. The TES system captures and stores thermal energy from the gas turbine exhaust for immediate or future generation of process heat. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers the following significant advantages: (1) electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced; (2) although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. The study evaluated the cost of power produced by cogeneration and cogeneration/TES systems designed to serve a fixed process steam load. The value of the process steam was set at the levelized cost estimated for the steam from a conventional stand-alone boiler. Power costs for combustion turbine and combined-cycle power plants were also calculated for comparison. The results indicated that peak power production costs for the cogeneration/TES systems were between 25 and 40 percent lower than peak power costs estimated for a combustion turbine and between 15 and 35 percent lower than peak power costs estimated for a combined-cycle plant. The ranges reflect differences in the daily power production schedule and process steam pressure/temperature assumptions for the cases evaluated. Further cost reductions may result from optimization of current cogeneration/TES system designs and improvement in TES technology through future research and development.

  12. Analysis and co-ordination of the activities concerning gasification of biomass. Summary country report, Denmark and Norway

    International Nuclear Information System (INIS)

    Stoholm, P.; Olsen, A.

    1996-11-01

    The analysis summarises the coordination of activities concerning the gasification of biomass in Denmark and Norway. The total quantity of available biomass for energy production in Denmark corresponds to ca. 115 PJ of which ca. 40% is utilized - and this constitutes ca. 6% of the country's total energy consumption. The resulting energy from biomass is currently mostly used for heating purposes utilizing small wood/straw household or farm stoves in addition to ca. 100 district heating systems. There is a tendency to use biomass fuels for electric power production as in the case of all major waste incineration plants and about 10 fully or partly wood/straw-fired cogeneration plants which are found within the range of 2 -20 MWe. A table shows details of all Danish biomass gasification plants and information is given on the types of biomass, under the titles of residue products and energy crops, most relevant to energy production in Denmark. Data is presented on the consumption of renewable energy in Denmark, recalculated in fuel equivalents, and Danish national energy policy and related legislation are described. Information on Norway's use of biomass as fuel is given under the headings of primary consumption, biomass sources and use, legislation, and brief evaluations of commercial gasification plants, pilot and demonstration plants, and laboratory plants and studies. It has recently been decided to speed up the development of small-scale gasification plants for combined heat and electricity production using biomass as fuel in Denmark. Total Norwegian energy consumption is 25% higher than Denmark's, and biomass fuels cover only 3.6% of this. (ARW) 32 refs

  13. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...... in the char conversion process. Comprehensive global equilibrium calculations predicted important characteristics of the inorganic ash residue. Equilibrium calculations predict the formation of liquid salt if sufficient amounts of Ca are added and according to experiments as well as calculations calcium binds...

  14. Groundwater and underground coal gasification in Alberta

    International Nuclear Information System (INIS)

    Haluszka, A.; MacMillan, G.; Maev, S.

    2010-01-01

    Underground coal gasification has potential in Alberta. This presentation provided background information on underground coal gasification and discussed groundwater and the Laurus Energy demonstration project. A multi-disciplined approach to project assessment was described with particular reference to geologic and hydrogeologic setting; geologic mapping; and a hydrogeologic numerical model. Underground coal gasification involves the conversion of coal into synthesis gas or syngas. It can be applied to mined coal at the surface or applied to non-mined coal seams using injection and production wells. Underground coal gasification can effect groundwater as the rate of water influx into the coal seams influences the quality and composition of the syngas. Byproducts created include heat as well as water with dissolved concentrations of ammonia, phenols, salts, polyaromatic hydrocarbons, and liquid organic products from the pyrolysis of coal. A process overview of underground coal gasification was also illustrated. It was concluded that underground coal gasification has the potential in Alberta and risks to groundwater could be minimized by a properly designed project. refs., figs.

  15. Electricity Cogenerator from Hydrogen and Biogas

    Science.gov (United States)

    Pinate, W.; Chinnasa, P.; Dangphonthong, D.

    2017-09-01

    This research studied about electricity cogenerator from Hydrogen and Biogas and the factors that cause that effecting Hydrogen from Aluminium which was a cylindrical feature. By using a catalyst was NaOH and CaO, it was reacted in distilled water with percentage of Aluminium: the catalyst (NaOH and CaO) and brought to mix with Biogas afterwards, that have been led to electricity from generator 1 kilowatt. The research outcomes were concentration of solutions that caused amount and percent of maximum Hydrogen was to at 10 % wt and 64.73 % which rate of flowing of constant gas 0.56 litter/minute as temperature 97 degree Celsius. After that led Hydrogen was mixed by Biogas next, conducted to electricity from generator and levelled the voltage of generator at 220 Volt. There after the measure of electricity current and found electricity charge would be constant at 3.1 Ampere. And rate of Biogas flowing and Hydrogen, the result was the generator used Biogas rate of flowing was highest 9 litter/minute and the lowest 7.5 litter/minute, which had rate of flowing around 8.2 litter/minute. Total Biogas was used around 493.2 litter or about 0.493 m3 and Hydrogen had rate of flowing was highest 2.5 litter/minute.

  16. Natural gas purchasing for cogeneration projects

    International Nuclear Information System (INIS)

    Kubacki, J. Jr.

    1992-01-01

    This paper reports on the primary cost component for most gas-fired cogeneration or on-site power projects, cost of natural gas. Often gas comprises 50 to 65% of total project costs over the life of the project. Thus it is very important to focus on natural gas sourcing, pricing, transportation and storage. This important task should not be blindly delegated to a gas supplier. The end user must develop a gas strategy that results in the most cost-effective burnertip price. Long-term natural gas supplies are usually source from the three major producing regions: Mod-Continent, Gulf Coast, and Western Canada. A well-reasoned gas strategy must include: determination of transportation and distribution options from the project site to potential gas sources (including direct interconnection of the project to interstate pipelines); acquisition of competitive gas bids from suppliers in appropriate regions; negotiation of potential discounts from interstate pipelines and local distribution companies (LDCs); fine-tuning project economics by, for example, using storage to maximize transportation load factor; and pricing mechanisms that meet economic parameters of the project. This paper uses a hypothetical project in the Midwest to examine the major factors in devising a cost-effective natural gas sourcing

  17. Sustainability evaluation of decentralized electricity generation

    International Nuclear Information System (INIS)

    Karger, Cornelia R.; Hennings, Wilfried

    2009-01-01

    Decentralized power generation is gaining significance in liberalized electricity markets. An increasing decentralization of power supply is expected to make a particular contribution to climate protection. This article investigates the advantages and disadvantages of decentralized electricity generation according to the overall concept of sustainable development. On the basis of a hierarchically structured set of sustainability criteria, four future scenarios for Germany are assessed, all of which describe different concepts of electricity supply in the context of the corresponding social and economic developments. The scenarios are developed in an explorative way according to the scenario method and the sustainability criteria are established by a discursive method with societal actors. The evaluation is carried out by scientific experts. By applying an expanded analytic hierarchy process (AHP), a multicriteria evaluation is conducted that identifies dissent among the experts. The results demonstrate that decentralized electricity generation can contribute to climate protection. The extent to which it simultaneously guarantees security of supply is still a matter of controversy. However, experts agree that technical and economic boundary conditions are of major importance in this field. In the final section, the article discusses the method employed here as well as implications for future decentralized energy supply. (author)

  18. Sustainability evaluation of decentralized electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Karger, Cornelia R.; Hennings, Wilfried [Research Centre Juelich, Programme Group Humans, Environment, Technology (MUT), 52425 Juelich (Germany)

    2009-04-15

    Decentralized power generation is gaining significance in liberalized electricity markets. An increasing decentralization of power supply is expected to make a particular contribution to climate protection. This article investigates the advantages and disadvantages of decentralized electricity generation according to the overall concept of sustainable development. On the basis of a hierarchically structured set of sustainability criteria, four future scenarios for Germany are assessed, all of which describe different concepts of electricity supply in the context of the corresponding social and economic developments. The scenarios are developed in an explorative way according to the scenario method and the sustainability criteria are established by a discursive method with societal actors. The evaluation is carried out by scientific experts. By applying an expanded analytic hierarchy process (AHP), a multicriteria evaluation is conducted that identifies dissent among the experts. The results demonstrate that decentralized electricity generation can contribute to climate protection. The extent to which it simultaneously guarantees security of supply is still a matter of controversy. However, experts agree that technical and economic boundary conditions are of major importance in this field. In the final section, the article discusses the method employed here as well as implications for future decentralized energy supply. (author)

  19. Optimal planning and economic evaluation of cogeneration system

    International Nuclear Information System (INIS)

    Oh, Si-Doek; Lee, Ho-Jun; Jung, Jung-Yeul; Kwak, Ho-Young

    2007-01-01

    Cogeneration plants, which simultaneously produce electricity and heat energy, have been introduced increasingly for commercial and domestic applications in Korea because of their energy efficiency. The optimal plant configuration of a specific commercial building can be determined by selecting the sizes and the number of cogeneration systems and the auxiliary equipment based on the annual demands of electricity, heating and cooling. In this study, a mixed-integer, linear programming, utilizing the branch and bound algorithm was used to obtain the optimal solution. Both the optimal configuration system equipment and the optimal operational mode were determined based on the annual cost method for the installation of a cogeneration system to a hospital and a group of apartments in Seoul, Korea. In addition, the economic evaluation for the optimal cogeneration system depending on the fuel tariff system was calculated. A short payback period and higher internal rate of return on the initial investment were found to be essential for the adoption of cogeneration plants to hospitals and apartments

  20. Optimal planning and economic evaluation of cogeneration system

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Si-Doek; Lee, Ho-Jun [Hyosung Corporation, Bangbae B/D, 1006-2, Bangbae-Dong, Seocho-Ku, Seoul 137-850 (Korea); Jung, Jung-Yeul; Kwak, Ho-Young [Mechanical Engineering Department, Chung-Ang University, 221, Huksuk-Dong, Dongjak-Gu, Seoul 156-756 (Korea)

    2007-05-15

    Cogeneration plants, which simultaneously produce electricity and heat energy, have been introduced increasingly for commercial and domestic applications in Korea because of their energy efficiency. The optimal plant configuration of a specific commercial building can be determined by selecting the sizes and the number of cogeneration systems and the auxiliary equipment based on the annual demands of electricity, heating and cooling. In this study, a mixed-integer, linear programming, utilizing the branch and bound algorithm was used to obtain the optimal solution. Both the optimal configuration system equipment and the optimal operational mode were determined based on the annual cost method for the installation of a cogeneration system to a hospital and a group of apartments in Seoul, Korea. In addition, the economic evaluation for the optimal cogeneration system depending on the fuel tariff system was calculated. A short payback period and higher internal rate of return on the initial investment were found to be essential for the adoption of cogeneration plants to hospitals and apartments. (author)

  1. Partially decentralized control for ALSTOM gasifier.

    Science.gov (United States)

    Tan, Wen; Lou, Guannan; Liang, Luping

    2011-07-01

    The gasifier plays a key role in the operation of the whole IGCC power plant. It is a typical multivariable control system with strict constraints on the inputs and outputs which makes it very difficult to control. This paper presents a partially decentralized controller design method based on the stabilizer idea. The method only requires identifying some closed-loop transfer functions and solving an H(∞) optimization problem. The final partially decentralized controller is easy to implement and test in practice. Two partially decentralized controllers are designed for the ALSTOM gasifier benchmark problem, and simulation results show that they both meet the design specifications. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Transition-Independent Decentralized Markov Decision Processes

    Science.gov (United States)

    Becker, Raphen; Silberstein, Shlomo; Lesser, Victor; Goldman, Claudia V.; Morris, Robert (Technical Monitor)

    2003-01-01

    There has been substantial progress with formal models for sequential decision making by individual agents using the Markov decision process (MDP). However, similar treatment of multi-agent systems is lacking. A recent complexity result, showing that solving decentralized MDPs is NEXP-hard, provides a partial explanation. To overcome this complexity barrier, we identify a general class of transition-independent decentralized MDPs that is widely applicable. The class consists of independent collaborating agents that are tied up by a global reward function that depends on both of their histories. We present a novel algorithm for solving this class of problems and examine its properties. The result is the first effective technique to solve optimally a class of decentralized MDPs. This lays the foundation for further work in this area on both exact and approximate solutions.

  3. Guide to the effective use of cogeneration and fuel cell (Akita Prefecture); Cogeneration nenryo denchi katsuyo guide (Akitaken)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    General cogeneration and fuel cells are separately described in this guidebook. There is a view that a fuel cell is a highly efficient energy system in which both electric power and heat are effectively utilized, and it regards the fuel cell as representative of one of the utilization modes of cogeneration. Following this view, a fuel cell is given a position in parallel with general cogeneration. This guidebook expects that it will be read at private businesses and factories and various public departments within the prefecture where the introduction and utilization of general cogeneration and fuel cells are under study, and describes the procedures to follow when using the energy systems and names the offices to which the readers should refer as need arises. It also expects that people at large in the prefecture who are interested in general cogeneration and fuel cells will be among the readers, and various information is stated for them outlining the energy systems, explaining their merits, and mentioning cases of their application in the past. (NEDO)

  4. Decentralization, Local Rights and the Construction of Women's ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Decentralization, Local Rights and the Construction of Women's Citizenship : a Comparative Study in Kenya, Tanzania and Uganda - Phase II. Kenya, Tanzania and Uganda have adopted new land laws, policies and institutional arrangements to accommodate decentralization of land administration and management.

  5. Benefit Analysis of Emergency Standby System Promoted to Cogeneration System

    Directory of Open Access Journals (Sweden)

    Shyi-Wen Wang

    2016-07-01

    Full Text Available Benefit analysis of emergency standby system combined with absorption chiller promoted to cogeneration system is introduced. Economic evaluations of such upgraded projects play a major part in the decisions made by investors. Time-of-use rate structure, fuel cost and system constraints are taken into account in the evaluation. Therefore, the problem is formulated as a mixed-integer programming problem. Using two-stage methodology and modified mixed-integer programming technique, a novel algorithm is developed and introduced here to solve the nonlinear optimization problem. The net present value (NPV method is used to evaluate the annual benefits and years of payback for the cogeneration system. The results indicate that upgrading standby generators to cogeneration systems is profitable and should be encouraged, especially for those utilities with insufficient spinning reserves, and moreover, for those having difficulty constructing new power plants.

  6. Examination on small-sized cogeneration HTGR for developing countries

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Tachibana, Yukio; Shimakawa, Satoshi; Ohashi, Hirofumi; Sato, Hiroyuki; Yan, Xing; Murakami, Tomoyuki; Ohashi, Kazutaka; Nakagawa, Shigeaki; Goto, Minoru; Ueta, Shohei; Mozumi, Yasuhiro; Imai, Yoshiyuki; Tanaka, Nobuyuki; Okuda, Hiroyuki; Iwatsuki, Jin; Kubo, Shinji; Takada, Shoji; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2008-03-01

    The small-sized and safe cogeneration High Temperature Gas-cooled Reactor (HTGR) that can be used not only for electric power generation but also for hydrogen production and district heating is considered one of the most promising nuclear reactors for developing countries where sufficient infrastructure such as power grids is not provided. Thus, the small-sized cogeneration HTGR, named High Temperature Reactor 50-Cogeneration (HTR50C), was studied assuming that it should be constructed in developing countries. Specification, equipment configuration, etc. of the HTR50C were determined, and economical evaluation was made. As a result, it was shown that the HTR50C is economically competitive with small-sized light water reactors. (author)

  7. Twin cities institutional issues study cogenerated hot water district heating

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, R. E.; Leas, R.; Kolb, J. O.

    1979-01-01

    Community district heating, utilizing hot water produced through electrical/thermal cogeneration, is seen as an integral part of Minnesota's Energy Policy and Conservation Plan. Several studies have been conducted which consider the technical and institutional issues affecting implementation of cogenerated district heating in the Minneapolis and St. Paul Metropolitan Area. The state of the technical art of cogenerated hot water district heating is assumed to be transferable from European experience. Institutional questions relating to such factors as the form of ownership, financing, operation, regulation, and product marketability cannot be transferred from the European experience, and have been the subject of an extensive investigation. The form and function of the Institutional Issues Study, and some of the preliminary conclusions and recommendations resulting from the study are discussed.

  8. Texasgulf solar cogeneration program. Mid-term topical report

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The status of technical activities of the Texasgulf Solar Cogeneration Program at the Comanche Creek Sulfur Mine is described. The program efforts reported focus on preparation of a system specification, selection of a site-specific configuration, conceptual design, and facility performance. Trade-off studies performed to select the site-specific cogeneration facility configuration that would be the basis for the conceptual design efforts are described. Study areas included solar system size, thermal energy storage, and field piping. The conceptual design status is described for the various subsystems of the Comanche Creek cogeneration facility. The subsystems include the collector, receiver, master control, fossil energy, energy storage, superheat boiler, electric power generation, and process heat subsystems. Computer models for insolation and performance are also briefly discussed. Appended is the system specification. (LEW)

  9. Overview of high temperature reactor activities relevant for cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Bogusch, Edgar; Brinkmann, Gerd; Hittner, Dominique [AREVA NP GmbH, Erlangen (Germany)

    2013-07-01

    The HTR offers a great potential for cogeneration of heat and electricity to supply conventional process plants thus reducing the emission of greenhouse gases. The modular design and the flexibility to adapt to the customer's needs in terms of thermal/electrical power and temperature, in addition to its inherent safety features makes the HTR a promising candidate for cogeneration applications. The coupling to a conventional process plant has to be designed to meet the requirements of power and temperature demand, the distance between the nuclear and the conventional plant and its safety requirements. Several countries such as China, the US, Japan and Korea are investigating the use of an HTR for cogeneration. The European Commission is supporting relevant activities through funding of related projects. (orig.)

  10. Residential cogeneration systems: review of the current technology

    International Nuclear Information System (INIS)

    Onovwiona, H.I.; Ugursal, V.I.

    2006-01-01

    There is a growing potential for the use of micro-cogeneration systems in the residential sector because they have the ability to produce both useful thermal energy and electricity from a single source of fuel such as oil or natural gas. In cogeneration systems, the efficiency of energy conversion increases to over 80% as compared to an average of 30-35% for conventional fossil fuel fired electricity generation systems. This increase in energy efficiency can result in lower costs and reduction in greenhouse gas emissions when compared to the conventional methods of generating heat and electricity separately. Cogeneration systems and equipment suitable for residential and small-scale commercial applications like hospitals, hotels or institutional buildings are available, and many new systems are under development. These products are used or aimed for meeting the electrical and thermal demands of a building for space and domestic hot water heating, and potentially, absorption cooling. The aim of this paper is to provide an up-to-date review of the various cogeneration technologies suitable for residential applications. The paper considers the various technologies available and under development for residential, i.e. single-family ( e ) and multi-family (10-30kW t ) applications, with focus on single-family applications. Technologies suitable for residential cogeneration systems include reciprocating internal combustion engine, micro-turbine, fuel cell, and reciprocating external combustion Stirling engine based cogeneration systems. The paper discusses the state of development and the performance, environmental benefits, and costs of these technologies. (author)

  11. Coadunation of technologies: Cogeneration and thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, S.; Drost, M. K.; Brown, D. R.; Antoniak, Z. A.

    1993-09-01

    Cogeneration is playing an increasingly important role in providing an independent and on-site high-efficiency source of power generation and thermal energy for space heating and cooling, as well as industrial process heat applications. However, the range of applications of cogeneration technology could be further extended if the generation of electricity could be decoupled from the generation of thermal energy for process use or space conditioning. The technology of thermal energy storage (TES) provides just such a decoupling that allows for the production of dispatchable power while fully utilizing the thermal energy available from the prime mover of the cogeneration system. The thermal energy from the prime mover exhaust can be stored either as sensible heat or as latent heat and used during peak demand periods to produce electric power or process steam/hot water. However, the additional materials and equipment necessary for a TES system will add to the capital as well as maintenance costs. Therefore, the economic benefits of adding TES to a conventional cogeneration system would have to outweigh the increased costs of the combined system. This paper addresses some of the TES systems that are readily applicable to be combined with cogeneration systems, as well as provide an update on the current status of these TES systems. TES allows a cogeneration facility to (1) provide dispatchable electric power while providing a constant thermal load, and (2) increase peak capacity by providing economical cooling of the combustion turbine inlet air. The particular systems addressed are high-temperature diurnal TES, and TES for cooling the combustion turbine inlet air.

  12. Fluidised bed gasification of low grade South African coals

    CSIR Research Space (South Africa)

    North, BC

    2006-09-01

    Full Text Available -going investigation into one potential Clean Coal Technology (CCT), namely fluidised bed gasification. Coal gasification holds the potential benefits of increased efficiency, reduced water consumption and co-production of liquid and gaseous fuels and chemicals...

  13. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  14. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas(trademark) technology (E-Gas(trademark) is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas(trademark) process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation

  15. Smart intermittency-friendly cogeneration: Techno-economic performance of innovative double storage concept for integrating compression heat pumps in distributed cogeneration

    DEFF Research Database (Denmark)

    Blarke, Morten

    2011-01-01

    plants may adapt their plant design and operational strategy to improve the co-existence between cogeneration and intermittent renewables. A novel intermittency-friendly and super-efficient concept in cogeneration is presented that involves integrating a high-pressure compression heat pump using heat...... cogeneration plants rather than central power plants are giving way for wind power in the electricity mix. Could intermittent renewables be a threat to the system-wide energy, economic and environmental benefits that distributed cogeneration have to offer? This paper investigates how existing cogeneration...... recovered from flue gasses as the only low-temperature heat source, furthermore applying an intermediate cold storage allowing for non-concurrent operation of heat pump and cogeneration unit. The novel concept is subject to a detailed techno-economic comparative modelling and analysis, hich finds...

  16. Cogeneration handbook for the food processing industry. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Eakin, D.E.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fasbender, A.G.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the food processing industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  17. Cogeneration handbook for the petroleum refining industry. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the petroleum refining industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  18. Cogeneration using small sized series connected units: Feasibility study

    International Nuclear Information System (INIS)

    Tondelli, F.; Bergamini, G.

    1992-01-01

    This paper evidences the technical/economic feasibility of the use of methane fuelled modular cogeneration systems based on small series connected Otto or Diesel cycle engines delivering from 20 to 90 kW of power. Ample reference is made to the successful application of modular cogeneration systems to supply low temperature thermal energy to hospitals, hotels, food processing firms, etc., in Italy. The cost benefit analysis covers many aspects: design, manufacturing, operation, performance, maintenance and safety. Suggestions are also made as to optimum contractual arrangements for equipment service and maintenance, as well as, for the exchange of power with local utilities

  19. Cogeneration handbook for the pulp and paper industry. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, E.A.; Moore, N.L.; Fassbender, L.L.; Garrett-Price, B.A.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the pulp and paper industry. Appendices B and O provide specific information that will be called out in subsequent chapters.

  20. The Optimal Operation Criteria for a Gas Turbine Cogeneration System

    Directory of Open Access Journals (Sweden)

    Atsushi Akisawa

    2009-04-01

    Full Text Available The study demonstrated the optimal operation criteria of a gas turbine cogeneration system based on the analytical solution of a linear programming model. The optimal operation criteria gave the combination of equipment to supply electricity and steam with the minimum energy cost using the energy prices and the performance of equipment. By the comparison with a detailed optimization result of an existing cogeneration plant, it was shown that the optimal operation criteria successfully provided a direction for the system operation under the condition where the electric power output of the gas turbine was less than the capacity

  1. Incentives for cogeneration in Italy: Logic and implementation

    International Nuclear Information System (INIS)

    Tomassetti, G.

    1992-01-01

    Within the framework of legal and financial incentives made possible through Italian legislation on cogeneration plants for on-site power generation, this paper reviews the planning criteria that went into the formulation of the incentives and the response obtained from small, medium and large industrial firms. The discussion takes into account the following aspects: the optimal timing of retrofits, national energy conservation and environmental policy objectives, energy surcharges, benefits to consumers as compared with those for energy producers, benefits from incentives as a function of cogeneration plant size, and the technical complexity of application requirements for prospective applicants

  2. A new dynamism for the cogeneration of 2000 - from the medium to the mini-cogeneration; Une nouvelle dynamique pour la cogeneration en l'an 2000 - de la moyenne vers le mini-cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In the framework of the Eco-Industries 2000 meeting, the ATEE organized a colloquium on the medium and mini-cogeneration market. This book presents the fourteen papers proposed at this colloquium bringing information on the cogeneration technology for the medium and mini-systems. The state of the art concerning the turbines and examples of dual systems (heating and warm water) are provided. Some economical aspects are also presented with the international and national market, the contracts management with EDF and the investments. (A.L.B.)

  3. Transient behaviour of small HTR for cogeneration

    International Nuclear Information System (INIS)

    Verkerk, E.C.; Van Heek, A.I.

    2000-01-01

    The Dutch market for combined generation of heat and power identifies a unit size of 40 MW thermal for the conceptual design of a nuclear cogeneration plant. The ACACIA system provides 14 MWe electricity combined with 17 t/h of high temperature steam (220 deg C, 10 bar) with a pebble-bed high temperature reactor directly coupled with a helium compressor and a helium turbine. The design of this small CHP unit that is used for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. Thermal hydraulic and reactor physics analyses show favourable control characteristics during normal operation and a benign response to loss of helium coolant and loss of flow conditions. Throughout the response on these highly infrequent conditions, ample margin exists between the highest fuel temperatures and the temperature above which fuel degradation will occur. To come to quantitative statements about the ACACIA transient behaviour, a calculational coupling between the high temperature reactor core analysis code package PANTHER/DIREKT and the thermal hydraulic code RELAP5 for the energy conversion system has been made. This coupling offers a more realistic simulation of the entire system, since it removes the necessity of forcing boundary conditions on the simulation models at the data transfer points. In this paper, the models used for the dynamic components of the energy conversion system are described, and the results of the calculation for two operational transients in order to demonstrate the effects of the interaction between reactor core and its energy conversion system are shown. Several transient cases that are representative as operational transients for an HTR will be discussed, including one representing a load rejection case that shows the functioning of the control system, in particular the bypass valve. Another transient is a load following

  4. Electric power plants in cogeneration: a promising potential even in France

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Implantation of cogeneration power plants has increased in France since two years but stays below other countries such as northern Europe. Technical, economical, legal and financial aspects of cogeneration have been debated during the ''Euroforum'' seminar (June 14-16, 1995). The european association Cogen Europe, created in 1993 with the financial support of the SAVE european program, has analysed the barriers that restrain cogeneration development and their solutions. Advantages of cogeneration are undeniable at any scale (from small engines to huge industrial systems) if efficiency of energy used reaches 85%. Opinions of representatives from different industries implied in cogeneration technology are reported. (J.S.). 1 photo

  5. Decentralization and Economic Growth per capita in Europe

    NARCIS (Netherlands)

    Crucq, Pieter; Hemminga, Hendrik-Jan

    2007-01-01

    In this paper the relationship between decentralization and economic growth is investigated. The focus is on decentralization from the national government to the highest substate level in a country, which we define as regional decentralization. Section 2 discusses the different dimensions of

  6. Time varying controllers in discrete-time decentralized control

    NARCIS (Netherlands)

    Deliu, C.; Deliu, C.; Stoorvogel, Antonie Arij; Saberi, Ali; Roy, Sandip; Malek, Babak

    2009-01-01

    In this paper, we consider the problem of finding a time-varying controller which can stabilize a decentralized discrete-time system. In continuous-time, it was already known that time-varying decentralized controllers can achieve stabilization in cases where time-invariant decentralized controllers

  7. Decentralization of school management to boards of governors

    African Journals Online (AJOL)

    ICL

    structures of decentralization gleaned from the literature, and then discuss some of the elements of decentralization. Theoretical model. The decentralization of ... leadership”. Leadership can only be effective in the Kenyan context if principals work seamlessly with BOGs in school management. Pushpanadham (2006) ...

  8. Gasification of wood in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, L.C. de; Marti, T.; Frankenhaeuser, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A first series of gasification experiments with our fluidized bed gasifier was performed using clean sawdust as fuel. The installation and the analytical systems were tested in a parametric study in which gasification temperature and equivalence ratio were varied. The data acquired will serve to establish the differences between the gasification of clean wood and the gasification of Altholz (scrapwood) and wood/plastics mixtures. (author) 1 fig., 3 tabs., 5 refs.

  9. The influence of chlorine on the gasification of wood

    Energy Technology Data Exchange (ETDEWEB)

    Scala, C. von; Struis, R.; Stucki, S. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Chlorides of the heavy metals copper, lead and zinc inhibit the CO{sub 2}-gasification reaction of charcoal. This is observed either by impregnation the wood with the salts before pyrolysis or by mechanically mixing the salts with the charcoal before gasification. Charcoal impregnated or mixed with ammonium chloride reacts more slowly than untreated charcoal. Treating the charcoal with HCl also influences negatively the gasification reactivity, indicating that chlorine plays an important role in the gasification. (author) 2 figs., 4 refs.

  10. Biomass gasification: a strategy for energy recovery and disposal of ...

    African Journals Online (AJOL)

    Gasification is a process that devoltalizes solid or liquid hydrocarbons, and converts them into a producer gas. There are more than 100 waste gasification facilities operating or under construction around the world. Some plants have been operating commercially for more than five years. Gasification has several advantages ...

  11. Biofluid process: fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, A. [ATEKO a.s., Hradec Kralove (Czech Republic)

    1996-12-31

    Fluidised-bed gasification of biomass was developed by ATEKO by using long-term experience from coal gasification. An experimental unit was built and a number of tests, first with sawdust gasification, were carried out. A gas combustion engine combined with a power generator was installed and operated in power production. (orig.)

  12. Mathematical Modelling of Coal Gasification Processes

    Science.gov (United States)

    Sundararajan, T.; Raghavan, V.; Ajilkumar, A.; Vijay Kumar, K.

    2017-07-01

    Coal is by far the most commonly employed fuel for electrical power generation around the world. While combustion could be the route for coal utilization for high grade coals, gasification becomes the preferred process for low grade coals having higher composition of volatiles or ash. Indian coals suffer from high ash content-nearly 50% by weight in some cases. Instead of transporting such high ash coals, it is more energy efficient to gasify the coal and transport the product syngas. Integrated Gasification Combined Cycle (IGCC) plants and Underground Gasification of coal have become attractive technologies for the best utilization of high ash coals. Gasification could be achieved in fixed beds, fluidized beds and entrained beds; faster rates of gasification are possible in fluidized beds and entrained flow systems, because of the small particle sizes and higher gas velocities. The media employed for gasification could involve air/oxygen and steam. Use of oxygen will yield relatively higher calorific value syngas because of the absence of nitrogen. Sequestration of the carbon dioxide after the combustion of the syngas is also easier, if oxygen is used for gasification. Addition of steam can increase hydrogen yield in the syngas and thereby increase the calorific value also. Gasification in the presence of suitable catalysts can increase the composition of methane in the product gas. Several competing heterogenous and homogenous reactions occur during coal major heterogenous reaction pathways, while interactions between carbon monoxide, oxygen, hydrogen, water vapour, methane and carbon dioxide result in several simultaneous gas-phase (homogenous) reactions. The overall product composition of the coal gasification process depends on the input reactant composition, particle size and type of gasifier, and pressure and temperature of the gasifier. The use of catalysts can also selectively change the product composition. At IIT Madras, over the last one decade, both

  13. Coal gasification and the power production market

    International Nuclear Information System (INIS)

    Howington, K.; Flandermeyer, G.

    1995-01-01

    The US electric power production market is experiencing significant changes sparking interest in the current and future alternatives for power production. Coal gasification technology is being marketed to satisfy the needs of the volatile power production industry. Coal gasification is a promising power production process in which solid coal is burned to produce a synthesis gas (syn gas). The syn gas may be used to fuel combustion integrated into a facility producing electric power. Advantages of this technology include efficient power production, low flue gas emissions, flexible fuel utilization, broad capability for facility integration, useful process byproducts, and decreased waste disposal. The primary disadvantages are relatively high capital costs and lack of proven long-term operating experience. Developers of coal gasification intend to improve on these disadvantages and lop a strong position in the power generation market. This paper is a marketing analysis of the partial oxidation coal gasification processes emerging in the US in response to the market factors of the power production industry. A brief history of these processes is presented, including the results of recent projects exploring the feasibility of integrated gasification combined cycle (IGCC) as a power production alternative. The current power generation market factors are discussed, and the status of current projects is presented including projected performance

  14. Hydrothermal Gasification for Waste to Energy

    Science.gov (United States)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  15. Gaz de France and cogeneration: a story which goes on; Gaz de France et la cogeneration: une histoire qui se poursuit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-15

    This document presents the principle of natural gas cogeneration (gas turbine and gas engine) and gives a general overview of the cogeneration market in France since 1991 and up to 2001 (development factors, results). The perspectives and opportunities of cogeneration are analyzed with respect to the development of new technologies like fuel cells (principle, advantages and future) and to the future energy markets. Follows a compilation and an analysis of French regulation texts about cogeneration systems, their connection to the power grid, and the tariffs of electricity re-purchase by Electricite de France (EdF). (J.S.)

  16. A critical review on biomass gasification, co-gasification, and their environmental assessments

    Directory of Open Access Journals (Sweden)

    Somayeh Farzad

    2016-12-01

    Full Text Available Gasification is an efficient process to obtain valuable products from biomass with several potential applications, which has received increasing attention over the last decades. Further development of gasification technology requires innovative and economical gasification methods with high efficiencies. Various conventional mechanisms of biomass gasification as well as new technologies are discussed in this paper. Furthermore, co-gasification of biomass and coal as an efficient method to protect the environment by reduction of greenhouse gas (GHG emissions has been comparatively discussed. In fact, the increasing attention to renewable resources is driven by the climate change due to GHG emissions caused by the widespread utilization of conventional fossil fuels, while biomass gasification is considered as a potentially sustainable and environmentally-friendly technology. Nevertheless, social and environmental aspects should also be taken into account when designing such facilities, to guarantee the sustainable use of biomass. This paper also reviews the life cycle assessment (LCA studies conducted on biomass gasification, considering different technologies and various feedstocks.

  17. Investigations in gasification of biomass mixtures using thermodynamic equilibrium and semi-equilibrium models

    Energy Technology Data Exchange (ETDEWEB)

    Buragohain, Buljit; Mahanta, Pinakeswar; Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology Guwahati, Guwahati - 781 039, Assam (India)

    2011-07-01

    Biomass gasifiers with power generation capacities exceeding 1 MW have large biomass consumption. Availability of a single biomass in such large quantities is rather difficult, and hence, mixtures of biomasses need to be used as feed-stock for these gasifiers. This study has assessed feasibility of biomass mixtures as fuel in biomass gasifiers for decentralized power generation using thermodynamic equilibrium and semi-equilibrium (with limited carbon conversion) model employing Gibbs energy minimization. Binary mixtures of common biomasses found in northeastern states of India such as rice husk, bamboo dust and saw dust have been taken for analysis. The potential for power generation from gasifier has been evaluated on the basis of net yield (in Nm3) and LHV (in MJ/Nm3) of the producer gas obtained from gasification of 100 g of biomass mixture. The results of simulations have revealed interesting trends in performance of gasifiers with operating parameters such as air ratio, temperature of gasification and composition of the biomass mixture. For all biomass mixtures, the optimum air ratio is {approx} 0.3 with gasification temperature of 800oC. Under total equilibrium conditions, and for engine-generator efficiency of 30%, the least possible fuel consumption is found to be 0.8 kg/kW-h. As revealed in the simulations with semi-equilibrium model, this parameter shows an inverse variation with the extent of carbon conversion. For low carbon conversions ({approx} 60% or so), the specific fuel consumption could be as high as 1.5 kg/kW-h. The results of this study have also been compared with previous literature (theoretical as well as experimental) and good agreement has been found. This study, thus, has demonstrated potential of replacement of a single biomass fuel in the gasifier with mixtures of different biomasses.

  18. Decentralized Networked Control of Building Structures

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Rehák, Branislav; Papík, Martin

    2016-01-01

    Roč. 31, č. 11 (2016), s. 871-886 ISSN 1093-9687 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : decentralized control * networked control * building structures Subject RIV: BC - Control Systems Theory Impact factor: 5.786, year: 2016

  19. GDCluster: A General Decentralized Clustering Algorithm

    NARCIS (Netherlands)

    Mashayekhi, Hoda; Habibi, Jafar; Khalafbeigi, Tania; Voulgaris, Spyros; van Steen, Martinus Richardus

    In many popular applications like peer-to-peer systems, large amounts of data are distributed among multiple sources. Analysis of this data and identifying clusters is challenging due to processing, storage, and transmission costs. In this paper, we propose GDCluster, a general fully decentralized

  20. Women's Political Representation and Participation in Decentralized ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Huairou Commission User

    facilitate people's participation in national development through ensuring sound local level politics. • RC evolved into local councils which then led to the implementation of decentralization through the local government act (1997). • This policy has provided opportunities for women to participate in local leadership from.

  1. Decentralized Development Planning and Fragmentation of ...

    African Journals Online (AJOL)

    Using the Greater Accra Metropolitan Area (GAMA) as a case study, this paper argues that the proliferation of autonomous local government areas within the context of urban sprawl and other challenges have inhibited metropolitan-wide development planning. Keywords: Decentralization; local government; urban growth; ...

  2. Decentralized Sparse Multitask RLS Over Networks

    Science.gov (United States)

    Cao, Xuanyu; Liu, K. J. Ray

    2017-12-01

    Distributed adaptive signal processing has attracted much attention in the recent decade owing to its effectiveness in many decentralized real-time applications in networked systems. Because many natural signals are highly sparse with most entries equal to zero, several decentralized sparse adaptive algorithms have been proposed recently. Most of them is focused on the single task estimation problems, in which all nodes receive data associated with the same unknown vector and collaborate to estimate it. However, many applications are inherently multitask oriented and each node has its own unknown vector different from others'. The related multitask estimation problem benefits from collaborations among the nodes as neighbor nodes usually share analogous properties and thus similar unknown vectors. In this work, we study the distributed sparse multitask recursive least squares (RLS) problem over networks. We first propose a decentralized online alternating direction method of multipliers (ADMM) algorithm for the formulated RLS problem. The algorithm is simplified for easy implementation with closed-form computations in each iteration and low storage requirements. Moreover, to further reduce the complexity, we present a decentralized online subgradient method with low computational overhead. We theoretically analyze the convergence behavior of the proposed subgradient method and derive an error bound related to the network topology and algorithm parameters. The effectiveness of the proposed algorithms is corroborated by numerical simulations and an accuracy-complexity tradeoff between the proposed two algorithms is highlighted.

  3. Group Formation Among Decentralized Autonomous Agents

    NARCIS (Netherlands)

    Ogston, E.F.Y.L.; van Steen, M.R.; Brazier, F.M.

    2004-01-01

    This paper examines a method of clustering within a fully decentralized multi-agent system. Our goal is to group agents with similar objectives or data, as is done in traditional clustering. However, we add the additional constraint that agents must remain in place on a network, instead of first

  4. Metropolitan Schools: Administrative Decentralization vs. Community Control.

    Science.gov (United States)

    Ornstein, Allan C.

    This book is divided into four chapters. The first examines the concepts and issues related to understanding social systems and how the schools can be viewed as a social system. The differences between centralization and decentralization, as well as systems-analysis and management-control approaches are also explored. In the next chapter, we are…

  5. Quotas and Decentralization (Indonesia) | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Over the past decade, the Government of Indonesia has taken steps to enhance the participation of women in public office. One element of the strategy is decentralization, promoted under the slogan, "local autonomy for people empowerment and welfare." Support for gender mainstreaming was proclaimed and in 2003 an ...

  6. Critical Systems Thinking on Decentralization: the Corporate ...

    African Journals Online (AJOL)

    It proposes more decentralized models of management and outlines a new theory taking a critical systems thinking approach. Corporations are advised to attack and overpower the Corporate Business Virus by re-structuring the dynamics between their headquarters and satellite operations in dealing with the “problem ...

  7. Towards a Decentralized Magnetic Indoor Positioning System

    Directory of Open Access Journals (Sweden)

    Zakaria Kasmi

    2015-12-01

    Full Text Available Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS, thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters.

  8. Decentralized Reinforcement Learning of robot behaviors

    NARCIS (Netherlands)

    Leottau, David L.; Ruiz-del-Solar, Javier; Babuska, R.

    2018-01-01

    A multi-agent methodology is proposed for Decentralized Reinforcement Learning (DRL) of individual behaviors in problems where multi-dimensional action spaces are involved. When using this methodology, sub-tasks are learned in parallel by individual agents working toward a common goal. In

  9. Decentralization Fails Women in Sudan | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-11-05

    Nov 5, 2010 ... Decentralization – a form of governance required by many donor organizations – is intended to disperse power and resources from the central government to ... Many local institutions have paid little attention to local planning, and those states with fewer resources have a hard time recruiting and retaining ...

  10. Near optimal decentralized H_inf control

    DEFF Research Database (Denmark)

    Stoustrup, J.; Niemann, Hans Henrik

    It is shown that foir a class of decentralized control problems there does not exist a sequence of controllers of bounded order which obtains near optimal control. Neither does there exist an infinity dimentional optimal controller. Using the insight of the line of proof of these results, a heuri...

  11. Quotas and Decentralization (Indonesia) | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Over the past decade, the Government of Indonesia has taken steps to enhance the participation of women in public office. One element of the strategy is decentralization, promoted under the slogan, "local autonomy for people empowerment and welfare." Support for gender mainstreaming was proclaimed and in 2003 an ...

  12. Decentralized Procurement in Light of Strategic Inventories

    DEFF Research Database (Denmark)

    Arya, Anil; Frimor, Hans; Mittendorf, Brian

    2014-01-01

    and confirmed to be a multifaceted choice. This paper complements existing studies by detailing the trade-offs in the centralization versus decentralization decision in light of firm's decision to cede procurement choices to its individual devisions can help moderate inventory levels and provide a natural salve...

  13. Decentralization, local power and women's rights

    International Development Research Centre (IDRC) Digital Library (Canada)

    Decentralization has changed the political and institutional context for promoting the full and equal rights of citizens in .... to local political, social, economic, and cultural needs and conditions. 13. Research and experience .... Communication, dissemination, and support networks. 52. Disseminate information on quotas, and ...

  14. Decentralization and Diversification in Forest Management Regimes ...

    African Journals Online (AJOL)

    In recent years in many African countries, including Tanzania, there has been a shift of paradigm from centralized and state driven forest management regimes to decentralized and people- centred forest management regime. The inception of a Tanzania forest policy of 1998 resulted in the institutionalization of community ...

  15. Decentralized Decision Making Protocol for Service Composition

    NARCIS (Netherlands)

    Wombacher, Andreas

    Service composition based on state dependent services is a challenge if it done in a decentralized way, that is without a centralized coordinating partner knowing all involved parties. In particular, the challenge is the combination of services to a composite service, such that every party involved

  16. PeerMatcher: Decentralized Partnership Formation

    NARCIS (Netherlands)

    Bozdog, N.V.; Voulgaris, S.; Bal, H.E.; van Halteren, A.

    2015-01-01

    This paper presents PeerMatcher, a fully decentralized algorithm solving the k-clique matching problem. The aim of k-clique matching is to cluster a set of nodes having pairwise weights into k-size groups of maximal total weight. Since solving the problem requires exponential time, PeerMatcher

  17. Plasma Treatments and Biomass Gasification

    Science.gov (United States)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  18. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS ...

    Science.gov (United States)

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multiple waste types in a 7-day period at the Kilauea Military Camp in Hawai’i. The emissions characterized were chosen based on regulatory emissions limits as well as their ability to cause adverse health effects on humans: particulate matter (PM), mercury, heavy metals, volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Three military waste feedstock compositions reflecting the variety of wastes to be encountered in theatre were investigated: standard waste (SW), standard waste with increased plastic content (HP), standard waste without SW food components but added first strike ration (FSR) food and packaging material (termed FSR). A fourth waste was collected from the Kilauea dumpster that served the dining facility and room lodging (KMC). Limited scrubber water and solid ash residue samples were collected to obtain a preliminary characterization of these effluents/residues.Gasifying SW, HP, and KMC resulted in similar PCDD/PCDF stack concentrations, 0.26-0.27 ng TEQ/m3 at 7% O2, while FSR waste generated a notably higher stack concentration of 0.68 ng TEQ/m3 at 7% O2. The PM emission

  19. Gasification from waste organic materials

    Directory of Open Access Journals (Sweden)

    Santiago Ramírez Rubio

    2011-09-01

    Full Text Available This article describes the fixed bed biomass gasifier operation designed and built by the Clean Development Mechanisms and Energy Management research group, the gasifier equipment and the measurement system. The experiment involved agro-industrial residues (biomass such wood chips, coconut shell, cocoa and coffee husk; some temperatures along the bed, its pressure, inlet air flow and the percentage of carbon monoxide and carbon dioxide in the syngas composition were measured. The test results showed that a fuel gas was being obtained which was suitable for use with an internal combustion engine for generating electricity because more carbon monoxide than carbon dioxide was being obtained during several parts of the operation. The gasification experimentation revealed that a gasifier having these characteristics should be ideal for bringing energy to areas where it is hard to obtain it (such as many rural sites in Latin-America or other places where large amounts of agro-industrial wastes are produced. Temperatures of around 1,000°C were obtained in the combustion zone, generating a syngas having more than 20% carbon monoxide in its composition, thereby leading to obtaining combustible gas.

  20. Dynamic models of staged gasification processes. Documentation of gasification simulator; Dynamiske modeller a f trinopdelte forgasningsprocesser. Dokumentation til forgasser simulator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-15

    In connection with the ERP project 'Dynamic modelling of staged gasification processes' a gasification simulator has been constructed. The simulator consists of: a mathematical model of the gasification process developed at Technical University of Denmark, a user interface programme, IGSS, and a communication interface between the two programmes. (BA)

  1. Fixed-bed gasification research using US coals. Volume 13. Gasification of Blind Canyon bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the thirteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Blind Canyon bituminous coal, from July 31, 1984 to August 11, 1984. 6 refs., 22 figs., 20 tabs.

  2. Biomass Gasification Technology Assessment: Consolidated Report

    Energy Technology Data Exchange (ETDEWEB)

    Worley, M.; Yale, J.

    2012-11-01

    Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

  3. Cogeneration: A new opportunity for energy production market

    International Nuclear Information System (INIS)

    Minghetti, E.

    1997-03-01

    Cogeneration or Combined Heat and Power (CHP) is an advantageous technique based on the simultaneous utilisation of electricity and heat produced. For this purpose existing energetic technologies are used. Cogeneration is based on the thermodynamics principle that producing electricity by combustion process means, at the same time, producing waste heat that can be useful utilised. Three main advantages can be lay out in a cogeneration plant: 1. High efficiency (the global efficiency is often around 80-90%). 2. Economic profit (pay back time is usually not longer than 2-4 years). 3. Low pollutant emissions (as a consequence of the high efficiency less fuel is burned for generating the same quantity of electricity). In this report are analysed various aspects of cogeneration (technical and economical) and the conditions influencing is development. Some figures on the european and national situation are also given. Finally are presented the research and development activities carried out by Italian National Agency for new Technology Energy and the Environment Energy Department to improve the efficiency and the competitiveness of this technology

  4. Micro cogeneration - rich-methane gasifier and micro gas turbine

    Directory of Open Access Journals (Sweden)

    Król Danuta

    2017-01-01

    Full Text Available The study presents a concept of integration a gasifier system with distributed generation of electricity and heat cogeneration system based on a gas microturbine. The gas generator is supplied by the RDF fuel from waste and biomass fuel Bio-CONOx. In the scale considered, the cogeneration system is designed to produce 30kWe of electricity and approx. 50kW of heat. Important perspective directions of technology development are: (i the possibility of gas microturbine to cooperate with the gasifier (up to date, in such systems were used, and continue to apply only piston engines, (ii the production of syngas in the gasifier (for efficient cogeneration in the composition of which there is a high content of methane (CH4 = 18%-22%. In the first step of possible commercialization a mathematical model to simulate single shaft gas turbine cogeneration plant has been developed. In conceptual design is application of microturbine as the prime mover of Combined Heat and Power (CHP system but with especial emphasis on possible use of a low calorific gas attainable from presented in details a gasifier unit. To support the calculations for preliminary design analysis, a computer program is developed in EES software environment.

  5. 78 FR 43198 - Watson Cogeneration Company; Notice of Filing

    Science.gov (United States)

    2013-07-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. TX13-1-000] Watson... Commission's (Commission) Regulations, 18 CFR 36.1, Watson Cogeneration Company filed an application... physical interconnection to the Watson facility; (2) direct SCE and California Independent System Operator...

  6. Diffusion paths for micro cogeneration using hydrogen in the Netherlands

    NARCIS (Netherlands)

    Taanman, M.; Groot, A.de; Kemp, R.; Verspagen, B.

    2008-01-01

    We estimate the diffusion of micro cogeneration systems (MiCoGen) using hydrogen produced from natural gas in the Netherlands for the 2000-2050 period on the basis of economical factors. The diffusion is important for the transition to a hydrogen economy based on renewables, with natural gas paving

  7. Comparative economic evaluation of environmental impact of different cogeneration technologies

    International Nuclear Information System (INIS)

    Patrascu, Roxana; Athanasovici, Victor; Raducanu, Cristian; Minciuc, Eduard; Bitir-Istrate, Ioan

    2004-01-01

    Cogeneration is one of the most powerful technologies for reduction of environmental pollution along with renewable energies. At the Kyoto Conference cogeneration has been identified as being the most important measure for reducing emissions of greenhouse effect gases. It has also been mentioned that cogeneration has a potential of reducing pollution with about 180 million tones per year. In order to promote new cogeneration technologies and evaluate the existing ones it is necessary to know and to be able to quantify in economical terms the environmental issues. When comparing different cogeneration technologies: steam turbine (TA), gas turbine (TG), internal combustion engine (MT), in order to choose the best one, the final decision implies an economic factor, which is even more important if it includes the environmental issues. The environmental impact of different cogeneration technologies is quantified using different criteria: depletion of non-renewable natural resources, eutrofisation, greenhouse effect, acidification etc. Environmental analysis using these criteria can be made using the 'impact with impact' methodology or the global one. The results of such an analysis cannot be quantified economically directly. Therefore there is a need of internalisation of ecological effects within the costs of produced energy: electricity and heat. In the energy production sector the externalizations represent the indirect effects on the environment. They can be materialised within different types of environmental impact: - Different buildings of mines, power plants etc; - Fuel losses during transportation and processing; - Effect of emissions in the air, water and soil. Introduction of the environmental impact costs in the energy price is called internalisation and it can be made using the direct and indirect methods. The paper discusses aspects regarding the emissions of cogeneration systems, the eco-taxes - method of 'internalisation' of environmental

  8. Pressurized pyrolysis and gasification behaviour of black liquor and biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K.; Backman, R.; Hupa, M. [Aabo Akademi, Turku (Finland)

    1996-12-01

    The objective of this project is to obtain basic experimental data on pyrolysis and gasification of various black liquors and biofuels at elevated pressures, and to model these processes. Liquor-to-liquor differences in conversion behavior of single liquor droplets during gasification at atmospheric pressure were investigated. The applicability of a rate equation developed for catalyzed gasification of carbon was investigated with regard to pressurized black liquor gasification. A neural network was developed to simulate the progression of char conversion during pressurized black liquor gasification. Pyrolysis of black liquor in a pressurized drop-tube furnace was investigated in collaboration with KTH in Stockholm. (author)

  9. Numerical simulation of waste tyres gasification.

    Science.gov (United States)

    Janajreh, Isam; Raza, Syed Shabbar

    2015-05-01

    Gasification is a thermochemical pathway used to convert carbonaceous feedstock into syngas (CO and H2) in a deprived oxygen environment. The process can accommodate conventional feedstock such as coal, discarded waste including plastics, rubber, and mixed waste owing to the high reactor temperature (1000 °C-1600 °C). Pyrolysis is another conversion pathway, yet it is more selective to the feedstock owing to the low process temperature (350 °C-550 °C). Discarded tyres can be subjected to pyrolysis, however, the yield involves the formation of intermediate radicals additional to unconverted char. Gasification, however, owing to the higher temperature and shorter residence time, is more opted to follow quasi-equilibrium and being predictive. In this work, tyre crumbs are subjected to two levels of gasification modelling, i.e. equilibrium zero dimension and reactive multi-dimensional flow. The objective is to investigate the effect of the amount of oxidising agent on the conversion of tyre granules and syngas composition in a small 20 kW cylindrical gasifier. Initially the chemical compositions of several tyre samples are measured following the ASTM procedures for proximate and ultimate analysis as well as the heating value. The measured data are used to carry out equilibrium-based and reactive flow gasification. The result shows that both models are reasonably predictive averaging 50% gasification efficiency, the devolatilisation is less sensitive than the char conversion to the equivalence ratio as devolatilisation is always complete. In view of the high attained efficiency, it is suggested that the investigated tyre gasification system is economically viable. © The Author(s) 2015.

  10. Updraft gasification of salmon processing waste.

    Science.gov (United States)

    Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles

    2009-10-01

    The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable.

  11. Use of Methanation for Optimization of a Hybrid Plant Combining Two-Stage Biomass Gasification, SOFCs and a Micro Gas Turbine

    DEFF Research Database (Denmark)

    Bang-Møller, Christian; Rokni, Masoud; Elmegaard, Brian

    2011-01-01

    A hybrid plant producing combined heat and power (CHP) from biomass by use of the two-stage gasification concept, solid oxide fuel cells (SOFCs) and a micro gas turbine (MGT) was considered for optimization. The hybrid plant is a sustainable and efficient alternative to conventional decentralized...... CHP plants. The demonstrated two-stage gasifier produces a clean product gas, thus ensuring the need for only simple gas conditioning prior to the SOFCs. Focus in this optimization study was on SOFC cooling and the investigation was conducted by system-level modelling combining zerodimensional...

  12. High-Btu coal gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, C.F.; Baker, N.R.; Tison, R.R.

    1979-01-01

    This evaluation provides estimates of performance and cost data for advanced technology, high-Btu, coal gasification facilities. The six processes discussed reflect the current state-of-the-art development. Because no large commercial gasification plants have yet been built in the United States, the information presented here is based only on pilot-plant experience. Performance characteristics that were investigated include unit efficiencies, product output, and pollution aspects. Total installed plant costs and operating costs are tabulated for the various processes. The information supplied here will assist in selecting energy conversion units for an Integrated Community Energy System (ICES).

  13. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  14. System aspects of black liquor gasification - Consequences for both industry and society

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    The pulp and paper industry consumes large quantities of biofuels (mainly bark and black liquor) to satisfy process requirements. Biomass is however a limited resource, and biofuel usage should therefore be as effective as possible. Modern pulp mills and integrated pulp and paper mills have excess fuel compared to the amounts needed to satisfy the process steam demand. The excess fuel is often used for cogeneration of electric power in CHP units. For integrated pulp and paper mills, this usually requires import of supplementary fuel to the plant. For market pulp mills, the excess internal biofuel quantities are sufficient to also allow electric power generation in condensing power plant units. If biofuel availability at a reasonable price is limited, import/export to, from a mill changes the amount of such biofuel available to alternative users. The goal of this thesis is to compare different mill powerhouse technologies and CHP plant configurations (including conventional recovery boiler technology and black liquor gasification technology) in order to identify the technology and CHP plant configuration that can produce the most electric power output from a given fuel resource for a given process steam demand. Different process steam demand levels for different representative mill types are considered. The comparison accounts for increased/decreased electricity production in an alternative energy system when biofuel is imported/exported to/from from the mill. The alternative energy system considered includes a district heating system with CHP capacity and natural gas fired combined cycle power plant capacity. The results show that black liquor gasification is in all cases considered an attractive powerhouse recovery cycle technology compared to conventional recovery boiler technology. If the marginal electric power generation efficiency for biofuel exported to the reference alternative energy system is 49%, excess mill internal biofuel should be used on mill

  15. Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-31

    The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

  16. Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

  17. Technical overview of cogeneration: the hardware, the industries, the potential development

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Because the by-product heat from a power-conversion process is captured for productive use in a cogeneration system, instead of exhausted to the environment as it is in a conventional power plant, cogeneration represents an important energy-conservation technique. By cogenerating, an industrial plant can save the fuel that would have been needed to produce the amount of heat captured. Recognizing the significant energy-savings potential offered by cogeneration, DOE has undertaken a major R, D, and D program to investigate and promote cogeneration in industry. Resource Planning Associates, Inc. (RPA), has been working to accomplish four of the program's objectives: (1) survey current, near state-of-the-art, and future cogeneration equipment, and identify any gaps or deficiencies; (2) characterize the energy requirements of the manufacturing sectors of five of the country's most energy-intensive industries - chemical, petroleum refining, paper and pulp, textiles, and food; (3) identify principal targets for, and barriers to, the increased market development of cogeneration systems; and (4) estimate the potential maximum and the probable energy savings that could be achieved in the five selected industries through cogeneration. In investigating cogeneration hardware, three specific technologies - steam turbines, gas turbines, and diesel engines - were emphasized. It is estimated that the widespread application of cogeneration technology in the five industries studied could result in a maximum potential savings of 2.4 million barrels of oil equivalent per day (or a maximum incremental capacity of 140,000 MWe) by 1985.

  18. Biomass gasification in a circulating fluidized bed; Vergasung von Biomasse in der zirkulierenden Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Ising, M.; Hoelder, D.; Backhaus, C.; Althaus, W. [Fraunhofer Inst. fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen (Germany)

    1998-09-01

    Biomass gasification in a circulating fluidized bed, in combination with a gas engine or gas burner, is a promising option for energetic use of biomass. Economic efficiency analyses on the basis of the UMSICHT plant show that this technology for combined heat and power generation from biomass is promising also for the range below 10 MW. The economic situation of any plant must be considered for the specific boundary conditions imposed by the power supply industry. The feasibility of the process was tested in a demonstration plant at Oberhausen. The plant was optimized further in extensive test series, and a number of tar reduction processes were investigated and improved on. The authors now intend to prove that gasification in a circulating fluidized bed combined with a gas engine cogeneration plant is feasible in continuous operation. (orig./SR) [Deutsch] Die Vergasung von Biomasse in der zirkulierenden Wirbelschicht ist in Kombination mit einem Gasmotor oder einem Gasbrenner eine vielversprechende Option fuer die energetische Biomassenutzung. Wirtschaftlichkeitsbetrachtungen auf Basis der UMSICHT-Anlage zeigen, dass diese Technologie fuer die gekoppelte Strom- und Waermeerzeugung aus Biomasse auch im Leistungsbereich unter 10 MW grosse Chancen verspricht. Dabei ist die oekonomische Situation einer Anlage im Einzelfall unter Beachtung der energiewirtschaftlichen Randbedingungen zu beurteilen. Durch den Betrieb einer Demonstrationsanlage in Oberhausen konnte die Funktion des Verfahrens nachgewiesen werden. In weiteren umfangreichen Versuchsreihen werden die Anlage weiter optimiert und verschiedene Konzepte zur Teerminderung untersucht und weiterentwickelt. Angestrebt ist der Nachweis des Dauerbetriebs von ZWS-Vergasung zusammen mit dem Gasmotoren-BHKW. (orig./SR)

  19. Commercialization Development of Crop Straw Gasification Technologies in China

    Directory of Open Access Journals (Sweden)

    Zhengfeng Zhang

    2014-12-01

    Full Text Available Crop straw gasification technologies are the most promising biomass gasification technologies and have great potential to be further developed in China. However, the commercialization development of gasification technology in China is slow. In this paper, the technical reliability and practicability of crop straw gasification technologies, the economic feasibility of gas supply stations, the economic feasibility of crop straw gasification equipment manufacture enterprises and the social acceptability of crop straw gasification technologies are analyzed. The results show that presently both the atmospheric oxidation gasification technology and the carbonization pyrolysis gasification technology in China are mature and practical, and can provide fuel gas for households. However, there are still a series of problems associated with these technologies that need to be solved for the commercialization development, such as the high tar and CO content of the fuel gas. The economic feasibility of the gas supply stations is different in China. Parts of gas supply stations are unprofitable due to high initial investment, the low fuel gas price and the small numbers of consumers. In addition, the commercialization development of crop straw gasification equipment manufacture enterprises is hindered for the low market demand for gasification equipment which is related to the fund support from the government. The acceptance of the crop straw gasification technologies from both the government and the farmers in China may be a driving force of further commercialization development of the gasification technologies. Then, the crop straw gasification technologies in China have reached at the stage of pre-commercialization. At this stage, the gasification technologies are basically mature and have met many requirements of commercialization, however, some incentives are needed to encourage their further development.

  20. New purchasing conditions for the electricity produced by cogeneration; Nouvelles conditions d`achat de l`electricite produite par cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Ch.

    1998-12-31

    This short note summarizes the new conditions of electricity purchase as stipulated in the contracts passed between Electricite de France (EdF) and the independent companies exploiting cogeneration units. These new conditions should allow the continuation of the development of cogeneration units in a power market progressively opened to competition. (J.S.)

  1. Cogeneration Technology Alternatives Study (CTAS). Volume 6: Computer data. Part 1: Coal-fired nocogeneration process boiler, section B

    Science.gov (United States)

    Knightly, W. F.

    1980-01-01

    About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.

  2. Cogeneration Technology Alternatives Study (CTAS). Volume 6: Computer data. Part 2: Residual-fired nocogeneration process boiler

    Science.gov (United States)

    Knightly, W. F.

    1980-01-01

    About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.

  3. Cogeneration Technology Alternatives Study (CTAS). Volume 6: Computer data. Part 1: Coal-fired nocogeneration process boiler, section A

    Science.gov (United States)

    Knightly, W. F.

    1980-01-01

    Various advanced energy conversion systems (ECS) are compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented for coal fired process boilers. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented.

  4. (DeCentralization of the Global Informational Ecosystem

    Directory of Open Access Journals (Sweden)

    Johanna Möller

    2017-09-01

    Full Text Available Centralization and decentralization are key concepts in debates that focus on the (antidemocratic character of digital societies. Centralization is understood as the control over communication and data flows, and decentralization as giving it (back to users. Communication and media research focuses on centralization put forward by dominant digital media platforms, such as Facebook and Google, and governments. Decentralization is investigated regarding its potential in civil society, i.e., hacktivism, (encryption technologies, and grass-root technology movements. As content-based media companies increasingly engage with technology, they move into the focus of critical media studies. Moreover, as formerly nationally oriented companies now compete with global media platforms, they share several interests with civil society decentralization agents. Based on 26 qualitative interviews with leading media managers, we investigate (decentralization strategies applied by content-oriented media companies. Theoretically, this perspective on media companies as agents of (decentralization expands (decentralization research beyond traditional democratic stakeholders by considering economic actors within the “global informational ecosystem” (Birkinbine, Gómez, & Wasko, 2017. We provide a three-dimensional framework to empirically investigate (decentralization. From critical media studies, we borrow the (decentralization of data and infrastructures, from media business research, the (decentralization of content distribution.

  5. Asynchronous decentralized method for interconnected electricity markets

    International Nuclear Information System (INIS)

    Huang, Anni; Joo, Sung-Kwan; Song, Kyung-Bin; Kim, Jin-Ho; Lee, Kisung

    2008-01-01

    This paper presents an asynchronous decentralized method to solve the optimization problem of interconnected electricity markets. The proposed method decomposes the optimization problem of combined electricity markets into individual optimization problems. The impact of neighboring markets' information is included in the objective function of the individual market optimization problem by the standard Lagrangian relaxation method. Most decentralized optimization methods use synchronous models of communication to exchange updated market information among markets during the iterative process. In this paper, however, the solutions of the individual optimization problems are coordinated through an asynchronous communication model until they converge to the global optimal solution of combined markets. Numerical examples are presented to demonstrate the advantages of the proposed asynchronous method over the existing synchronous methods. (author)

  6. Centralization vs. Decentralization in Medical School Libraries

    Science.gov (United States)

    Crawford, Helen

    1966-01-01

    Does the medical school library in the United States operate more commonly under the university library or the medical school administration? University-connected medical school libraries were asked to indicate (a) the source of their budgets, whether from the central library or the medical school, and (b) the responsibility for their acquisitions and cataloging. Returns received from sixtyeight of the seventy eligible institutions showed decentralization to be much the most common: 71 percent of the libraries are funded by their medical schools; 79 percent are responsible for their own acquisitions and processing. The factor most often associated with centralization of both budget and operation is public ownership. Decentralization is associated with service to one or two rather than three or more professional schools. Location of the medical school in a different city from the university is highly favorable to autonomy. Other factors associated with these trends are discussed. PMID:5945568

  7. Centralized, Decentralized, and Hybrid Purchasing Organizations

    DEFF Research Database (Denmark)

    Bals, Lydia; Turkulainen, Virpi

    This paper addresses one of the focal issues in purchasing and supply management – global sourcing – from an organizational design perspective. In particular, we elaborate the traditional classification of global sourcing organization designs into centralized, decentralized, and hybrid models. We...... illustrate with our empirical analysis on global sourcing organization design at Global Chemical Company (GCC, a pseudonym) that revisiting the conventional wisdom about global sourcing organization designs is required; by engaging in a detailed, subfirm level of analysis on the design of the purchasing...... organization we can identify organization designs beyond the classical centralization-decentralization continuum. We also provide explanations for the observed organization design at GCC. The study contributes to research on purchasing and supply management as well as research on organization design....

  8. DEMONSTRATION BULLETIN: TEXACO GASIFICATION PROCESS TEXACO, INC.

    Science.gov (United States)

    The Texaco Gasification Process (TGP) has operated commercially for nearly 45 years on feeds such as natural gas, liquid petroleum fractions, coal, and petroleum coke. More than 45 plants are either operational or under development in the United States and abroad. Texaco has dev...

  9. Biomass utilization for the process of gasification

    Directory of Open Access Journals (Sweden)

    Josef Spěvák

    2008-01-01

    Full Text Available Biomass as one of the renewable resources of energy has bright future in utilization, especially in obtaining various forms of energy (heat, electrical energy, gas.According to the conception of energy policy of the Czech Republic and according to the fulfillment of the indicators of renewable resources using until the year 2010, the research of thermophysical characteristics of biofuels was realized.There were acquired considerable amount of results by combustion and gasification process on the basis of three-year project „Biomass energy parameters.” By means of combustion and gasification tests of various (biomass fuels were acquired the results which were not published so far.Acquired results are published in the fuel sheets, which are divided into four parts. They consist of information on fuel composition, ash composition, testing conditions and measurand overview. Measurements were realized for the process of combustion, fluidized-bed gasification and fixed-bed gasification. Following fuels were tested: Acacia, Pine, Birch, Beech, Spruce, Poplar, Willow, Rape, Amaranth, Corn, Flax, Wheat, Safflower, Mallow, and Sorrel.

  10. Catalytic gasification of dry and wet biomass

    NARCIS (Netherlands)

    van Rossum, G.; Potic, B.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2009-01-01

    Catalytic gasification of dry biomass and of wet biomass streams in hot compressed water are reviewed and discussed as potential technologies for the production of synthesis gas, hydrogen- and methane-rich gas. Next to literature data also new experimental results from our laboratory on catalytic

  11. Air-gasification of corncobs at fluidization

    Energy Technology Data Exchange (ETDEWEB)

    Hongming Jiang; Morey, R.V. (Minnesota Univ., St. Paul, MN (United States). Dept. of Agricultural Engineering)

    1992-01-01

    Self-sustained air gasification of corncobs was conducted using a gasifier-combustor system to provide data for validating a numerical gasifier model. The performance of the gasifier was analyzed with test results obtained at two bed temperatures (920 and 1050 K). (author).

  12. Fluidized bed combustion and gasification of corncobs

    Energy Technology Data Exchange (ETDEWEB)

    Butuk, N.; Morey, R.V.

    1987-01-01

    A 15.2 cm (6 in) diameter fluidized bed reactor was evaluated in combustion and gasification modes using hammer milled corncobs with average particle size of 0.2 cm (0.08 in). Combustion tests were run at 10 and 32% w.b. moisture contents and 710 degrees C and 815 degrees C bed temperatures. Heat output rates of 13.4 to 16.2 MJ/h were achieved. Gasification tests were run at 10 and 22% w.b. moisture contents and 710 degrees C bed temperature, and heat output rates of 84 to 133 MJ/h were achieved. Particulates in the exhaust gases were determined in both the combustion and gasification modes of operation. The measurements showed the inadequacy of the flame holder for flaring the gas in the gasification mode. A combustion model based on elemental balances and the first law of thermodynamics was developed and compared to experimental results. The model adequately predicted fuel-air ratios and exhaust gas mass fractions in the combustion mode.

  13. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS CHARACTERIZATION

    Science.gov (United States)

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multipl...

  14. Analyzing Von Neumann machines using decentralized symmetries

    Science.gov (United States)

    Fang, Jie

    2013-10-01

    The artificial intelligence method to e-business is defined not only by the study of fiber-optic cables, but also by the unproven need for vacuum tubes. Given the current status of virtual archetypes, theorists clearly desire the exploration of semaphores, which embodies the compelling principles of cryptoanalysis. We present an algorithm for probabilistic theory (Buck), which we use to disprove that write-back caches can be made decentralized, lossless, and reliable.

  15. WATER MARKETS AND DECENTRALIZED WATER RESOURCES MANAGEMENT

    OpenAIRE

    Easter, K. William; Hearne, Robert R.

    1994-01-01

    Because of its importance and the perceived inability of private sector sources to meet water demands, many countries have depended on the public sector to provide water services for their populations. Yet this has resulted in many inefficient public water projects and in inadequate supplies of good quality and reliable water. Decentralization of water management, including the use of water markets, cannot solve all of the water problems, but it can improve the efficiency of water allocation....

  16. Decentralized estimation and control for power systems

    OpenAIRE

    Singh, Abhinav Kumar

    2014-01-01

    This thesis presents a decentralized alternative to the centralized state-estimation and control technologies used in current power systems. Power systems span over vast geographical areas, and therefore require a robust and reliable communication network for centralized estimation and control. The supervisory control and data acquisition (SCADA) systems provide such a communication architecture and are currently employed for centralized estimation and control of power systems in a static ma...

  17. On-site co-generation: cost savings in view

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2004-03-31

    The technical and economic aspects of cogeneration are explained with examples from Alberta and British Columbia. One of the examples is the cogeneration of steam and electricity at the ATCO/EPCOR/NOVA power plant in Joffre, Alberta, which generates enough electricity, steam and heat to supply the whole ethylene and polyethylene plant; it also boosts the provincial grid by four per cent. Another good example cited is TransCanada Pipelines' Carseland, Alberta, operation, which generates 80 MW of electricity, along with about 120 tonnes/hr of steam for Agrium's adjacent Carseland Nitrogen Operation. The electricity is generated by two GE LM6000 PD combustion turbines using natural gas as fuel. Each turbine is equipped with a Heat Recovery Steam Generator (HRSG), which captures the gas turbine exhaust heat to raise steam. The high pressure, superheated steam is sent to the Agrium facility for use by the company's nitrogen operation. Dow Chemical Canada Inc also has a power and utilities combined-cycle cogeneration plant at its Fort Saskatchewan site. By utilizing a steam turbine down the line, Dow Chemicals' Fort Saskatchewan operations are able to achieve at least an 80 per cent thermal efficiency rating for the overall process, or about a 10 to 20 per cent gain on alternate designs. The Dow Canada plant operates three GE gas turbines and two steam turbines for a total rated capacity of 300 MW of power. Cogeneration is not limited to turbines fuelled by natural gas; pulp and paper mills throughout Western Canada use wood residue as fuel to produce steam and the hot water required by the mills. Methane gas is another source of fuel being put to use in the Vancouver Landfill Cogeneration Facility at Delta, BC, which, using three Caterpillar 3532 engines, generates 5.6 MW of electricity and 6.7 MW of thermal energy. The electricity is sold to BC Hydro, while the thermal energy is used by the CanAgro greenhouses. In addition to the substantial

  18. Query Optimizations over Decentralized RDF Graphs

    KAUST Repository

    Abdelaziz, Ibrahim

    2017-05-18

    Applications in life sciences, decentralized social networks, Internet of Things, and statistical linked dataspaces integrate data from multiple decentralized RDF graphs via SPARQL queries. Several approaches have been proposed to optimize query processing over a small number of heterogeneous data sources by utilizing schema information. In the case of schema similarity and interlinks among sources, these approaches cause unnecessary data retrieval and communication, leading to poor scalability and response time. This paper addresses these limitations and presents Lusail, a system for scalable and efficient SPARQL query processing over decentralized graphs. Lusail achieves scalability and low query response time through various optimizations at compile and run times. At compile time, we use a novel locality-aware query decomposition technique that maximizes the number of query triple patterns sent together to a source based on the actual location of the instances satisfying these triple patterns. At run time, we use selectivity-awareness and parallel query execution to reduce network latency and to increase parallelism by delaying the execution of subqueries expected to return large results. We evaluate Lusail using real and synthetic benchmarks, with data sizes up to billions of triples on an in-house cluster and a public cloud. We show that Lusail outperforms state-of-the-art systems by orders of magnitude in terms of scalability and response time.

  19. Towards Automatic Decentralized Control Structure Selection

    DEFF Research Database (Denmark)

    A subtask in integration of design and control of chemical processes is the selection of a control structure. Automating the selection of the control structure enables sequential integration of process and controld esign. As soon as the process is specified or computed, a structure for decentrali......A subtask in integration of design and control of chemical processes is the selection of a control structure. Automating the selection of the control structure enables sequential integration of process and controld esign. As soon as the process is specified or computed, a structure...... for decentralized control is determined automatically, and the resulting decentralized control structure is automatically tuned using standard techniques. Dynamic simulation of the resulting process system gives immediate feedback to the process design engineer regarding practical operability of the process....... The control structure selection problem is formulated as a special MILP employing cost coefficients which are computed using Parseval's theorem combined with RGA and IMC concepts. This approach enables selection and tuning of large-scale plant-wide decentralized controllers through efficient combination...

  20. Towards Automatic Decentralized Control Structure Selection

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Jørgensen, Sten Bay

    2000-01-01

    A subtask in integration of design and control of chemical processes is the selection of a control structure. Automating the selection of the control structure enables sequential integration of process and control design. As soon as the process is specified or computed, a structure for decentrali......A subtask in integration of design and control of chemical processes is the selection of a control structure. Automating the selection of the control structure enables sequential integration of process and control design. As soon as the process is specified or computed, a structure...... for decentralized control is determined automatically, and the resulting decentralized control structure is automatically tuned using standard techniques. Dynamic simulation of the resulting process system gives immediate feedback to the process design engineer regarding practical operability of the process....... The control structure selection problem is formulated as a special MILP employing cost coefficients which are computed using Parseval's theorem combined with RGA and IMC concepts. This approach enables selection and tuning of large-scale plant-wide decentralized controllers through efficient combination...

  1. [Paradoxes of health decentralization policies in Brazil].

    Science.gov (United States)

    Pasche, Dário Frederico; Righi, Liane Beatriz; Thomé, Henrique Inácio; Stolz, Eveline Dischkaln

    2006-12-01

    The constitution of Brazil directs that the country's health system, the Unified Health System (Sistema Unico de Saúde), be politically and administratively decentralized. Nevertheless, handing over competencies, responsibilities, and resources to subnational levels, especially to municipal governments, has been a slow process, lasting almost two decades. Advances have been brought about by the Unified Health System, which, from a analytical perspective, is a public and universal system. Despite that, the decentralization process needs to overcome norms that keep all levels of management dependent on Brazil's federal Government. The subnational levels have consistently faced difficulties in performing their macromanagement functions with autonomy, especially when it comes to financing and to the establishment or organization of health care networks. Boldness and responsibility will be needed to prevent Brazil's health decentralization process from leading to fragmentation. New political agreements between different levels of government, with a reassignment of responsibilities and the enhancement of a culture of technical cooperation, are fundamental requisites to making the Unified Health System have a health policy that is truly public and universal.

  2. Feasibility Study of Coal Gasification/Fuel Cell/Cogeneration Project. Fort Greely, Alaska Site. Project Description,

    Science.gov (United States)

    1985-11-01

    Estimated Water Emissions 147 7-4 Estimated Solid Wastes 148 7-5 Composition of Blowdown from Stretford Process 149 1 I vi J 7862A LIST OF TABLES (Cont’d...due to the high CO2 concentration in the gas (26% Vol). Therefore, a Stretford liquid oxidation process was chosen for this plant. In this process , the...compliance with the sulfur emission levels of tne plant. A liquid phase oxidation Stretford Sulfur Removal Process is used for the removal of H2S to

  3. Feasibility Study of Coal Gasification/Fuel Cell/Cogeneration Project. Fort Hood, Texas Site. Project Description,

    Science.gov (United States)

    1985-07-01

    Estimated Water Emissions14 7-4 Estimated Solid Wastes 149 7-5 Composition of Blowdown from Stretford Process 150 -1774A~ vi LIST OF TA~BLES (Cont’d...a costly alternative for the sulfur recovery process due to the high C02 concentration in the gas (25% Vol). Therefore, a Stretford liquid oxidation...The sulfur is separated from the solution, which is regenerated by air-sparging and recycled. Because the Stretford process cannot remove COS, a

  4. Preliminary experimental studies of waste coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.; Jin, Y.G.; Yu, X.X.; Worrall, R. [CSIRO, Brisbane, QLD (Australia). Advanced Coal Technology

    2013-07-01

    Coal mining is one of Australia's most important industries. It was estimated that coal washery rejects from black coal mining was approximately 1.82 billion tonnes from 1960 to 2009 in Australia, and is projected to produce another one billion tonnes by 2018 at the current production rate. To ensure sustainability of the Australian coal industry, we have explored a new potential pathway to create value from the coal waste through production of liquid fuels or power generation using produced syngas from waste coal gasification. Consequently, environmental and community impacts of the solid waste could be minimized. However, the development of an effective waste coal gasification process is a key to the new pathway. An Australian mine site with a large reserve of waste coal was selected for the study, where raw waste coal samples including coarse rejects and tailings were collected. After investigating the initial raw waste coal samples, float/sink testing was conducted to achieve a desired ash target for laboratory-scale steam gasification testing and performance evaluation. The preliminary gasification test results show that carbon conversions of waste coal gradually increase as the reaction proceeds, which indicates that waste coal can be gasified by a steam gasification process. However, the carbon conversion rates are relatively low, only reaching to 20-30%. Furthermore, the reactivity of waste coal samples with a variety of ash contents under N{sub 2}/air atmosphere have been studied by a home-made thermogravimetric analysis (TGA) apparatus that can make the sample reach the reaction temperature instantly.

  5. Syngas yield during pyrolysis and steam gasification of paper

    International Nuclear Information System (INIS)

    Ahmed, I.; Gupta, A.K.

    2009-01-01

    Main characteristics of gaseous yield from steam gasification have been investigated experimentally. Results of steam gasification have been compared to that of pyrolysis. The temperature range investigated were 600-1000 °C in steps of 100 °C. Results have been obtained under pyrolysis conditions at same temperatures. For steam gasification runs, steam flow rate was kept constant at 8.0 g/min. Investigated characteristics were evolution of syngas flow rate with time, hydrogen flow rate and chemical composition of syngas, energy yield and apparent thermal efficiency. Residuals from both processes were quantified and compared as well. Material destruction, hydrogen yield and energy yield is better with gasification as compared to pyrolysis. This advantage of the gasification process is attributed mainly to char gasification process. Char gasification is found to be more sensitive to the reactor temperature than pyrolysis. Pyrolysis can start at low temperatures of 400 °C; however char gasification starts at 700 °C. A partial overlap between gasification and pyrolysis exists and is presented here. This partial overlap increases with increase in temperature. As an example, at reactor temperature 800 °C this overlap represents around 27% of the char gasification process and almost 95% at reactor temperature 1000 °C.

  6. Energy: decentralized production and sustainable development of territories.... Tomorrow: which roles for the local organizations? Proceedings; Energie: production decentralisee et developpement durable des territoires.... Demain: quels roles pour les collectivites locales? Recueil des interventions

    Energy Technology Data Exchange (ETDEWEB)

    Labrousse, M. [Cabinet Explicit, 75 - Paris (France); Magnin, G. [Energie-Cites, 25 - Besancon (France)

    2002-07-01

    These 4. national energy sittings were organized around 3 invited talks and 16 workshops dealing with: the technological, economical and territorial stakes of decentralized energy; the small cogeneration experience of Frankfurt city (Germany); the new power supply tariff in Geneva (Switzerland), which choice for the consumer? Which role for the city?. Workshop 1 - knowing about the energy situation of a a territory: why? How? What the energy collective services scheme says; the example of a regional energy observatory. Workshop 2 - the electric power law: consequences for the local organizations; role and point of view of a licence holder with respect to the territory energy supply. Workshop 3 - the new legal dispositions for territory projects and the place of energy; a commonwealth of towns integrates the renewable energies in its competences; the solar ordinance of Barcelona (Spain). Workshop 4 - energy, a development tool inside the regional natural parks; a citizenship action for a wind power project; a district heating network supplied by a wood-fueled boiler plant and a gas-fueled cogeneration plant. Workshop 5 - cogeneration and cogeneration systems: what is the matter in France? In other countries? Which place for local systems?; district heating and cooling in Montpellier city: the tri-generation plant of the town hall. Workshop 6 - the success of biomass in Styria (Austria); geothermal energy and other energy sources, from competition to complementarity, the example of two district heating networks: Chevilly-Larue/l'Hay-les-Roses and Fresnes. Workshop 7 - overview of the French and European situation; a micro-hydroelectric power plant on a drinkable water supply; the Vauban district in Freiburg. Workshop 8 - heat pumps; solar thermal energy; solar photovoltaic power: from birth to full development; conversion, coupling and control technologies for the development of distributed power generation; evolution of biomass valorization files. Workshop 9

  7. Grid integration policies of gas-fired cogeneration in Peninsular Malaysia: Fallacies and counterexamples

    International Nuclear Information System (INIS)

    Shaaban, M.; Azit, A.H.; Nor, K.M.

    2011-01-01

    Despite the abundance of natural gas reserves in Malaysia coupled with serious government thrusts to promote cogeneration, its (cogeneration) development pace lags far off expectations. There are widespread fallacies among potential cogeneration developers and concerned professionals that cogeneration is uncompetitive in Malaysia due to existing policies of subsidized gas prices and grid-connection charges. This paper exposes these fallacies through counterexamples of practical cogeneration system design and evaluation of some segments of the industrial and service sectors in Peninsular Malaysia. The electrical and thermal characteristics of the cogeneration were modeled based on heat rate characteristics at partial loading patterns. A hierarchical mathematical programming approach that uses mixed-integer nonlinear optimization and dynamic programming principle, if necessary, is employed to determine the optimal size of cogeneration and its related auxiliary equipment as well as the optimal operation schedule. Financial assessment is integrated at a later stage to assess the economic viability of the system. Analyses of the cogeneration potential for several facilities of miscellaneous activities were carried out using various gas and electricity prices. Results obtained consistently rebuff the perpetuated fallacies and confirm that there is no real barrier to cogeneration development in Malaysia under current policies of gas prices and electricity tariffs. - Highlights: → Mixed-integer nonlinear programming and dynamic programming are used in the design. → Various loading levels are modeled and hourly operation schedule is determined. → Standby electricity charge has a minimal impact on cogeneration feasibility. → Gas and electricity prices are interrelated and affect cogeneration investment. → Under existing policies, there is no barrier to cogeneration adoption in Malaysia.

  8. Grid integration policies of gas-fired cogeneration in Peninsular Malaysia: Fallacies and counterexamples

    Energy Technology Data Exchange (ETDEWEB)

    Shaaban, M., E-mail: m.shaaban@fke.utm.my [Centre of Electrical Energy Systems, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia); Azit, A.H. [Tenaga Nasional Berhad, Wisma TNB, Jalan Timur, 46200 Petaling Jaya, Selangor (Malaysia); Nor, K.M. [Centre of Electrical Energy Systems, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2011-09-15

    Despite the abundance of natural gas reserves in Malaysia coupled with serious government thrusts to promote cogeneration, its (cogeneration) development pace lags far off expectations. There are widespread fallacies among potential cogeneration developers and concerned professionals that cogeneration is uncompetitive in Malaysia due to existing policies of subsidized gas prices and grid-connection charges. This paper exposes these fallacies through counterexamples of practical cogeneration system design and evaluation of some segments of the industrial and service sectors in Peninsular Malaysia. The electrical and thermal characteristics of the cogeneration were modeled based on heat rate characteristics at partial loading patterns. A hierarchical mathematical programming approach that uses mixed-integer nonlinear optimization and dynamic programming principle, if necessary, is employed to determine the optimal size of cogeneration and its related auxiliary equipment as well as the optimal operation schedule. Financial assessment is integrated at a later stage to assess the economic viability of the system. Analyses of the cogeneration potential for several facilities of miscellaneous activities were carried out using various gas and electricity prices. Results obtained consistently rebuff the perpetuated fallacies and confirm that there is no real barrier to cogeneration development in Malaysia under current policies of gas prices and electricity tariffs. - Highlights: > Mixed-integer nonlinear programming and dynamic programming are used in the design. > Various loading levels are modeled and hourly operation schedule is determined. > Standby electricity charge has a minimal impact on cogeneration feasibility. > Gas and electricity prices are interrelated and affect cogeneration investment. > Under existing policies, there is no barrier to cogeneration adoption in Malaysia.

  9. Reviews on Fuel Cell Technology for Valuable Chemicals and Energy Co-Generation

    OpenAIRE

    Wisitsree Wiyaratn

    2010-01-01

    This paper provides a review of co-generation process in fuel cell type reactor to produce valuable chemical compounds along with electricity. The chemicals and energy co-generation processes have been shown to be a promising alternative to conventional reactors and conventional fuel cells with pure water as a byproduct. This paper reviews researches on chemicals and energy co-generation technologies of three types of promising fuel cell i.e. solid oxide fuel cell (SOFC), alkaline fuel cell (...

  10. Operating experience with a flexible cogeneration plant in Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Wadman, B.

    1997-01-01

    Much has been written about the interesting gas turbine cogeneration Project in Fort Lupton, Colorado, U.S.A., as created and developed by the Thermo Cogeneration Partnership under the leadership of Paul Steinway, project general manager. The plant is based on five 40 MW-class gas turbine generator modules supplied by Stewart & Stevenson, who is also responsible for operation and maintenance of the plant through its operating arm, Stewart & Stevenson Operations, Inc. The plant, first placed into service in mid-1994 after only 18 months of construction, is of particular interest because it has to function with a wide degree of flexibility in load management, and it also uses one of the latest-design aeroderivative gas turbines, namely the GE LM6000. This article describes the plant design, equipment and operating experience thus far. 6 figs.

  11. Thermoeconomic analysis of electricity cogeneration of sugarcane origin

    International Nuclear Information System (INIS)

    Coelho, S.T.; Oliveira, S.J.R. de; Zylbersztajn, D.

    1997-01-01

    Most Brazilian sugar/alcohol industries are energy self-sufficient and, in the State of Sao Paulo, some of them even export electricity surplus to local utilities. However, despite the huge potential of electricity surplus to be generated, there are still difficulties to be solved. One of the main problems is the sale price of electricity. Despite the advantages of sugarcane-origin electricity both for the electric sector and alcohol industries, they do not agree about the sale price and most industries are not interested in selling electricity, considering the price offered by local utilities too low. This paper evaluates the cost of the electricity surplus for real plants, using thermoeconomic analysis. Different cogeneration systems are considered and the corresponding electricity costs are evaluated and compared to the current electricity marginal cost of Southeast Brazil. From obtained results, mechanisms are proposed to improve the existing cogeneration program, aiming to accomplish its initial objectives. (author)

  12. Exergoeconomic analysis of small-scale biomass steam cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Sotomonte, Cesar Adolfo; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba, MG (Brazil)], e-mails: c.rodriguez32@unifei.edu.br, electo@unifei.edu.br; Venturini, Osvaldo Jose; Escobar, Jose Carlos [Universidad Federal de Itajuba, MG (Brazil)], e-mail: osvaldo@unifei.edu.br

    2010-07-01

    The principal objective of this work is to develop a calculation process, based on the second law of thermodynamics, for evaluating the thermoeconomic potential of a small steam cogeneration plant using waste from pulp processing and/or sawmills as fuel. Four different configurations are presented and assessed. The exergetic efficiency of the cycles that use condensing turbines is found to be around 11%, which has almost 3 percent higher efficiency than cycles with back pressure turbines. The thermoeconomic equations used in this paper estimated the production costs varying the fuel price. The main results show that present cost of technologies in a small-scale steam cycle cogeneration do not justify the implementation of more efficient systems for biomass prices less than 100 R$/t. (author)

  13. Performance optimization of a gas turbine-based cogeneration system

    Science.gov (United States)

    Yilmaz, Tamer

    2006-06-01

    In this paper an exergy optimization has been carried out for a cogeneration plant consisting of a gas turbine, which is operated in a Brayton cycle, and a heat recovery steam generator (HRSG). In the analysis, objective functions of the total produced exergy and exergy efficiency have been defined as functions of the design parameters of the gas turbine and the HRSG. An equivalent temperature is defined as a new approach to model the exergy rate of heat transfer from the HRSG. The optimum design parameters of the cogeneration cycle at maximum exergy are determined and the effects of these parameters on exergetic performance are investigated. Some practical mathematical relations are also derived to find the optimum values of the adiabatic temperature ratio for given extreme temperatures and consumer temperature.

  14. Fort Hood solar cogeneration facility conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    A study is done on the application of a tower-focus solar cogeneration facility at the US Fort Hood Army Base in Killeen, Texas. Solar-heated molten salt is to provide the steam for electricity and for room heating, room cooling, and domestic hot water. The proposed solar cogeneration system is expected to save the equivalent of approximately 10,500 barrels of fuel oil per year and to involve low development risks. The site and existing plant are described, including the climate and plant performance. The selection of the site-specific configuration is discussed, including: candidate system configurations; technology assessments, including risk assessments of system development, receiver fluids, and receiver configurations; system sizing; and the results of trade studies leading to the selection of the preferred system configuration. (LEW)

  15. Analysis of cogeneration in the present energy framework

    International Nuclear Information System (INIS)

    Conde Lazaro, E.; Ramos Millan, A.; Reina Peral, P.

    2006-01-01

    In this paper, a general vision of cogeneration penetration in the European Union is shown; after this, a case study is included, evaluating as a function of two factors (electricity and emission allowance prices) the suitability of installing, for an industry with a determined thermal demand, two different options. The first one is a gas turbine cogeneration plant generating steam through a heat recovery steam generator (HRSG). The second one consists of installing a natural gas boiler for steam production covering the electricity demand from the grid. The CO 2 emissions from both options are compared regarding different kinds of generation mixes from the electricity grid in the case of using the industrial boiler; taking into account the advantages of using biomass in relation to emissions, a last comparison has been carried out considering a biomass boiler instead of the natural gas boiler. (author)

  16. Devolutionary delusions? The effect of decentralization on corruption.

    OpenAIRE

    Ivar Kolstad; Arne Wiig; Vincent Somville

    2014-01-01

    The effect of government decentralization on corruption is theoretically ambiguous. On the one hand, bringing government closer to the people could increase accountability and reduce corruption. On the other hand, decentralization could increase local capture and uncoordinated bribe taking across government levels. This paper estimates the effect of decentralization on experienced corruption, using individual-level bribery data from 36 countries. Crucially, we distinguish between the effect o...

  17. EFFECT OF FISCAL DECENTRALIZATION ON CAPITAL EXPENDITURE, GROWTH, AND WELFARE

    OpenAIRE

    Badrudin, Rudy

    2013-01-01

    This research analyzes the influence of fiscal decentralization on capital expenditure, economic growth, and social welfare of 29 regencies and 6 cities in Central Java Province based on the data of year 2004 to 2008. The method used to analyze the hypotheses is the Partial Least Square. The results showes that fiscal decentralization has no significant effect on capital expenditure; fiscal decentralization has significant effect on economic growth and social welfare; capital expenditure has ...

  18. Peeling the Onion: Why Centralized Control / Decentralized Execution Works

    Science.gov (United States)

    2014-04-01

    March–April 2014 Air & Space Power Journal | 24 Feature Peeling the Onion Why Centralized Control / Decentralized Execution Works Lt Col Alan Docauer...DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Peeling the Onion : Why Centralized Control / Decentralized Execution Works 5a...Air & Space Power Journal | 25 Docauer Peeling the Onion Feature What Is Centralized Control / Decentralized Execution? Emerging in the aftermath of

  19. Micro cogeneration in residential scale; Bancada de sistema de cogeracao de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Jose Carlos Charamba; Primo, Ana Rosa Mendes; Magnani, Fabio Santana; Henriquez, Jorge R. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Moura, Newton Reis de; Campos, Michel Fabianski [PETROBRAS, Rio de Janeiro, RJ (Brazil); Zimmerle, Sergio Ricardo T.S. [Companhia Pernambucana de Gas (COPERGAS), Recife, PE (Brazil)

    2004-07-01

    Cogeneration is very important to spread the use of natural gas in Brazil. Most of the existing cogeneration plants are of considerable size, as used in industries or commercial centers. Places with low demand on electrical or thermal energy (e.g. small industries, blocs of houses, etc.) could also benefit of cogeneration, but there is no available data about micro-cogeneration in Brazil. In order to verify the technical and economical viability of small size systems of cogeneration, FINEP/PETROBRAS/COPERGAS financed a project of micro-cogeneration at the Federal University of Pernambuco (UFPE), involving experiments on a micro turbine and a generator group, both with 30 kW power. The laboratory is also composed by two heat exchangers to regenerate the heat from the micro-turbine and generator group, a single effect absorption chiller, with 10 TR capacity, two thermal storage tanks (for hot and cold water) and a compression split of 5 TR. Data to build performance curves of the equipment will be stored and analyzed, in order to build their performance curves, allowing the overall cogeneration efficiency to be found. Most probable situations of thermal and electric power demands will be simulated. The aim of the simulations is to achieve the optimal situation for micro-cogeneration, which will offer the best efficiency, the lowest cost for buying the equipment and the lowest operational cost. A software was also developed, which optimizes micro-cogeneration systems. (author)

  20. An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.

    Science.gov (United States)

    Milani, M; Montorsi, L; Stefani, M

    2014-07-01

    The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. © The Author(s) 2014.

  1. Cogeneration for the Rouen hospital; La cogenerationau CHU de Rouen

    Energy Technology Data Exchange (ETDEWEB)

    Bartolucci, P. [CHU, Hopital Charles Nicolle de Rouen, 76 (France)

    1996-07-01

    In order to decrease the annual costs of heat and electric power at the Rouen hospital (France), a cogeneration system has been studied, using gas turbines or gas engines (fuel oil is excluded for environmental reasons). Electric power needs being larger than thermal needs, gas motors were preferred. The technical specifications of the equipment are described and annual power consumptions and generations (sellback to the national grid) are evaluated. An economic analysis is presented together with the technical drawings of the system

  2. Thermoeconomic analysis of a power/water cogeneration plant

    International Nuclear Information System (INIS)

    Hamed, Osman A.; Al-Washmi, Hamed A.; Al-Otaibi, Holayil A.

    2006-01-01

    Cogeneration plants for simultaneous production of water and electricity are widely used in the Arabian Gulf region. They have proven to be more thermodynamically efficient and economically feasible than single purpose power generation and water production plants. Yet, there is no standard or universally applied methodology for determining unit cost of electric power generation and desalinated water production by dual purpose plants. A comprehensive literature survey to critically assess and evaluate different methods for cost application in power/water cogeneration plants is reported in this paper. Based on this analysis, an in-depth thermoeconomic study is carried out on a selected power/water cogeneration plant that employs a regenerative Rankine cycle. The system incorporates a boiler, back pressure turbine (supplying steam to two MSF distillers), a deaerator and two feed water heaters. The turbine generation is rated at 118 MW, while MSF distiller is rated at 7.7 MIGD at a top brine temperature of 105 deg. C. An appropriate costing procedure based on the available energy accounting method which divides benefits of the cogeneration configuration equitably between electricity generation and water production is used to determine the unit costs of electricity and water. Capital charges of common equipment such as the boiler, deaerator and feed water heaters as well as boiler fuel costs are distributed between power generated and desalinated water according to available energy consumption of the major subsystems. A detailed sensitivity analysis was performed to examine the impact of the variation of fuel cost, load and availability factors in addition to capital recovery factor on electricity and water production costs

  3. Firing with wood chips in heating and cogeneration plants

    International Nuclear Information System (INIS)

    Kofman, P.D.

    1992-01-01

    The document was produced for use as detailed teaching material aimed at spreading information on the use of wood chips as fuel for heating and cogeneration plants. It includes information and articles on wood fuels generally, combustion values, chopping machines, suppliers, occupational health hazards connected with the handling of wood chips, measuring amounts, the selection of types, prices, ash, environmental aspects and information on the establishment of a wood-chip fired district heating plant. (AB)

  4. Gasification Plant Cost and Performance Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air

  5. Biomass cogeneration: industry response for energy security and environmental consideration

    International Nuclear Information System (INIS)

    Bacareza-Pacudan, L.; Lacrosse, L.; Pennington, M.; Dale Gonzales, A.

    1999-01-01

    Biomass occurs in abundance in the highly agricultural-based countries of South-East Asia. If these are processed in the wood and agro-processing industries, large volumes of residues are generated. The residue are potential sources of energy which the industries can tap through the use of cogeneration systems, in order to meet their own thermal and electrical requirements. This will reduce the industry's dependence on power from the grid and thus increase their own self-sufficiency in terms of energy. Biomass cogeneration brings the environmental, as well as economic benefits to the industries. It makes use of clean and energy-efficient technologies and utilises biomass as fuels which cause less environment al pollution and the greenhouse effect, as against the use of fossil fuels. A particular mill that embarks on biomass cogeneration is also able to realise, among others, income from the export of excess electricity to the grid. Biomass residue if not used for other purposes have negative values as they need to be disposed of. They can, however, be profit-generating as well. (Author)

  6. Investigations on an oriented cooling design for thermoelectric cogenerations

    International Nuclear Information System (INIS)

    Zheng, X F; Yan, Y Y; Liu, C X

    2012-01-01

    In thermoelectric application, it is widely known that the material limitation has still been the chief barrier of lifting its application to a higher level. Continuous efforts are extensively being made in developing novel material structures and constructions for thermoelectric modules with higher conversion efficiency. However, the overall system efficiency, which is one of the major parameters that most of the engineer and users care about, is not only ruled by the properties of applied thermoelectric materials, but also decided by the design of heat exchangers used on both sides of thermoelectric modules. Focusing on the cooling capacity and hydraulic characteristics of heat exchanger, this paper introduces an oriented cooling method for the domestic thermoelectric cogeneration, which delivers system efficiency up to 80%. This purpose-oriented cooling plate is designed for thermoelectric cogeneration for the residential houses installed with boiler or other heating facilities with a considerable amount of unused heat. The design enables Thermoelectric Cogeneration System (TCS) to be flexibly integrated into the existing hydraulic system. The mathematical model for the cooling plate has been established for a well understanding at the theoretical level. The performance of cooling plate has been investigated in a series of experimental studies which have been conducted under different coolant inlet velocity and temperature. The economic operating zone in which a good system performance could be achieved has been discussed and identified for the current configuration.

  7. Catalytic gasification in fluidized bed, of orange waste. Comparison with non catalytic gasification

    International Nuclear Information System (INIS)

    Aguiar Trujillo, Leonardo; Marquez Montesinos, Francisco; Ramos Robaina, Boris A.; Guerra Reyes, Yanet; Arauzo Perez, Jesus; Gonzalo Callejo, Alberto; Sanchez Cebrian, Jose L

    2011-01-01

    The industry processing of the orange, generates high volumes of solid waste. This waste has been used as complement in the animal feeding, in biochemical processes; but their energy use has not been valued by means of the gasification process. They were carried out gasification studies with air in catalytic fluidized bed (using dolomite and olivine as catalysts in a secondary reactor, also varying the temperature of the secondary reactor and the catalyst mass), of the solid waste of orange and the results are compared with those obtained in the gasification with non catalytic air. In the processes we use a design of complete factorial experiment of 2k, valuing the influence of the independent variables and their interactions in the answers, using the software Design-Expert version 7 and a grade of significance of 95 %. The results demonstrate the qualities of the solid waste of orange in the energy use by means of the gasification process for the treatment of these residuals, obtaining a gas of low caloric value. The use of catalysts also diminishes the yield of tars obtained in the gasification process, being more active the dolomite that the olivine in this process. (author)

  8. Selected Environmental Aspects of Gasification and Co-Gasification of Various Types of Waste

    Directory of Open Access Journals (Sweden)

    Natalia Kamińska-Pietrzak

    2013-01-01

    Full Text Available The process of gasification of carbonaceous fuels is a technology with a long-standing practice. In recent years, the technology has been extensively developing to produce energy or chemicals on the basis of obtained gas. Studies focused on the improvement of the gasification process aims at developing the process by increasing environmental safety, the efficiency and the possibilities to utilize various types of alternative fuels (post-consumer waste, various types of biomass waste, by-products and post-process residues, sewage sludge independently or by co-gasification with coal. The choice of the gas purification system, the process operating parameters and introducing the necessary modifications to the existing technologies are essential steps while processing these kinds of feedstock, with regard to their individual characteristics. This paper discusses selected environmental aspects of the gasification and co-gasification of municipal solid waste, sewage sludge, various types of biomass waste and post-process residues. Selected alternative fuels are also characterized, focusing on the influence of their presence in the feedstock in terms of production and the emission of polychlorinated organic compounds, tars, heavy metals and toxic elements.

  9. Drilling in Underground Coal Gasification with Coiled Tubing Technologies

    Directory of Open Access Journals (Sweden)

    Monika Blišťanová

    2006-04-01

    Full Text Available Underground coal gasification is the potential to provide a clean, efficient and convenient source of energy from coal seams where traditional mining methods are either impossible or uneconomical. The latest drilling technology – drilling directional injection well with down well assembly. The is used world- wide from 1990 injection well is transmitting the coal seam along its location. The coil – tubing equipment transport the gasification agents (oxygen and water into the coal cavity, where give out gasification.

  10. Kinetic study of coals gasification into carbon dioxide atmosphere

    Directory of Open Access Journals (Sweden)

    Korotkikh A.G.

    2015-01-01

    Full Text Available The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The mass loss and gasification time dependencies from temperature were defined to calculate chemical reaction frequency factor and activation energy. Two coal char gasification physico-mathematical models were proposed and recommendations for them were formed.

  11. Wood biomass gasification: Technology assessment and prospects in developing countries

    International Nuclear Information System (INIS)

    Salvadego, C.

    1992-05-01

    This investigation of the technical-economic feasibility of the development and use of wood biomass gasification plants to help meet the energy requirements of developing countries covers the following aspects: resource availability and production; gasification technologies and biomass gasification plant typology; plant operating, maintenance and safety requirements; the use of the biomass derived gas in internal combustion engines and boilers; and the nature of energy requirements in developing countries. The paper concludes with a progress report on biomass gasification research programs being carried out in developing countries world-wide

  12. A review of biomass gasification technologies in Denmark and Sweden

    DEFF Research Database (Denmark)

    Ridjan, Iva; Mathiesen, Brian Vad; Connolly, David

    This report provides an overview of existing technologies and projects in Denmark and Sweden with a focus on the Öresund region. Furthermore it presents the research and development of biomass gasification in the region and these two countries. The list of existing gasification plants from...... laboratory scale projects to big scale plants is given. The report ends with an overview of future gasification projects as well as potential experience exchanges that could occur between the countries. We regard biomass gasification as one of the key technologies in future renewable energy systems....

  13. Kinetics of gasification of black liquor char by steam

    International Nuclear Information System (INIS)

    Li, J.; van Heiningen, A.R.P.

    1991-01-01

    This paper reports on the steam gasification kinetics of kraft black liquor char that were studied in a thermogravimetric analysis reactor. The effect of steam and hydrogen concentration on gasification rate can be described by Langmuir-Hinshelwood type kinetics. An activation energy of 210 kJ/mol was obtained. Methane formation was negligible, and H 2 S was the major gaseous sulfur-containing product obtained over the temperature range studied, 873-973 K. The CO 2 concentration was higher than calculated for the water-shift reaction at equilibrium. A gasification mechanism is proposed whereby CO 2 is one of the primary gasification products

  14. Thermodynamic analysis of gasification-driven direct carbon fuel cells

    Science.gov (United States)

    Lee, Andrew C.; Mitchell, Reginald E.; Gür, Turgut M.

    The gasification-driven direct carbon fuel cell (GD-DCFC) system is compared with systems using separate gasification steps prior to work extraction, under autothermal or indirect constraints. Using simple system exergy analysis, the maximum work output of the indirect gasification scheme is 4-7% lower than the unconstrained direct approach, while the work output of the autothermal gasification approach is 12-13% lower than the unconstrained case. A more detailed calculation for the DCFC and indirect gasification plants, using common solid fuel compositions, gives conversion efficiencies in the range of 51-58% at an operating voltage of 0.7 V selected for both systems in this study. In contrast, the conversion efficiency of the autothermal gasification approach is estimated to be 33-35% at 0.7 V. DCFC efficiencies can be increased to over 60% by an increase in operating voltage and/or inclusion of a bottoming cycle. The thermodynamic model also indicates that steam gasification yields similar work output and thermal efficiency as for CO 2 gasification. Open circuit potential measurements agree with equilibrium calculations both for the C-O and C-H-O gasification systems, confirming the governing mechanism and feasibility of the GD-DCFC. Current-voltage measurements on an un-optimized system demonstrate power densities of 220 mW cm -2 at 0.68 V during operation at 1178 K.

  15. Thermodynamic analysis of gasification-driven direct carbon fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew C.; Mitchell, Reginald E. [Department of Mechanical Engineering, Stanford University, 452 Escondido Mall, Building 520, Stanford, CA 94305 (United States); Guer, Turgut M. [Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Durand Building, Stanford, CA 94305 (United States); Direct Carbon Technologies, LLC, Palo Alto, CA 94301 USA

    2009-12-01

    The gasification-driven direct carbon fuel cell (GD-DCFC) system is compared with systems using separate gasification steps prior to work extraction, under autothermal or indirect constraints. Using simple system exergy analysis, the maximum work output of the indirect gasification scheme is 4-7% lower than the unconstrained direct approach, while the work output of the autothermal gasification approach is 12-13% lower than the unconstrained case. A more detailed calculation for the DCFC and indirect gasification plants, using common solid fuel compositions, gives conversion efficiencies in the range of 51-58% at an operating voltage of 0.7 V selected for both systems in this study. In contrast, the conversion efficiency of the autothermal gasification approach is estimated to be 33-35% at 0.7 V. DCFC efficiencies can be increased to over 60% by an increase in operating voltage and/or inclusion of a bottoming cycle. The thermodynamic model also indicates that steam gasification yields similar work output and thermal efficiency as for CO{sub 2} gasification. Open circuit potential measurements agree with equilibrium calculations both for the C-O and C-H-O gasification systems, confirming the governing mechanism and feasibility of the GD-DCFC. Current-voltage measurements on an un-optimized system demonstrate power densities of 220 mW cm{sup -2} at 0.68 V during operation at 1178 K. (author)

  16. Impact of support schemes and barriers in Europe on the evolution of cogeneration

    International Nuclear Information System (INIS)

    Moya, José Antonio

    2013-01-01

    This paper analyses the effectiveness of different support measures to promote cogeneration in the European Union. The analysis looks into the average progress of cogeneration between two different periods. The economic effect of the support measures in each country is quantified with the help of a cost–benefit analysis carried out by the Cogeneration Observatory and Dissemination Europe (CODE) project. The scope of this study is necessarily affected by the need to limit the number of projects and support measures. However, there is no evidence of a relationship between the economic advantage offered by support measures and the deployment of cogeneration in the Member States. The study considers the effect of different barriers (reported by the Member States) on the promotion of cogeneration. The individual analyses of the barriers differ widely in quality and depth. When some barriers are reported, there is an increase of the variability of the penetration of cogeneration. This counter-intuitive fact leads us to conclude that there is a lack of consistency in the barriers reported, and a clear need for consistent reporting on barriers. The possible effect of competition between measures supporting combined heat and power and renewable energy sources is also analysed. - Highlights: • Support measures to promote cogeneration are analysed. • The growth of cogeneration in European countries is not aligned with the measures in place. • None of the reported barriers for cogeneration can be considered a clear show-stopper. • The variation in the development of cogeneration when some barriers are reported raises questions about the reporting. • Countries with a high share of cogeneration are sensitive to the continuity or discontinuity of support

  17. Fixed bed gasification of solid biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Haavisto, I. [Condens Oy, Haemeenlinna (Finland)

    1996-12-31

    Fixed bed biomass gasifiers are feasible in the effect range of 100 kW -10 MW. Co-current gasification is available only up to 1 MW for technical reasons. Counter-current gasifiers have been used in Finland and Sweden for 10 years in gasification heating plants, which are a combination of a gasifier and an oil boiler. The plants have proved to have a wide control range, flexible and uncomplicated unmanned operation and an excellent reliability. Counter-current gasifiers can be applied for new heating plants or for converting existing oil and natural gas boilers into using solid fuels. There is a new process development underway, aiming at motor use of the producer gas. The development work involves a new, more flexible cocurrent gasifier and a cleaning step for the counter-current producer gas. (orig.)

  18. Gasification characteristics of auto shredder residue

    International Nuclear Information System (INIS)

    Navee, S.; Ramzan, N.

    2011-01-01

    Given the large volume of used tyre waste generated each year it is imperative that suitable re-use and disposal techniques are developed for dealing with this problem; presently these include rethreading, reprocessing for use as safe playground and sports surfaces, use as noise reduction barriers and utilisation as a fuel source. This paper reports on pilot scale studies designed to investigate the suitability of automotive waste for energy recovery via gasification. The study was carried out into auto shredder residue, which is a mixture of three distinct waste streams: tyres, rubber/plastic and general automotive waste. The tests included proximate, ultimate and elemental analysis, TGA, as well as calorific value determinations. In addition, the waste was tested in a desktop gasifier, and analysis was carried out to determine the presence and type of combustible gases. It was concluded that tyre waste and rubber/plastic waste are quite suitable fuels for gasification. (author)

  19. Decentralized Resource Management in Distributed Computer Systems.

    Science.gov (United States)

    1982-02-01

    Interprocess Communication 14 2.3.2.5 Decentralized Resource Management 15 2.3.3 MicroNet 16 * 2.3.3.1 System Goals and Objectives 16 2.3.3.2 Physical...executive level) is moderately low. 16 Background 2.3.3 MicroNet 2.3.3.1 System Goals and Objectives MicroNet [47] was designed to support multiple...tolerate the loss of nodes, allow for a wide variety of interconnect topologies, and adapt to dynamic variations in loading. The designers of MicroNet

  20. Decentralized Pricing in Minimum Cost Spanning Trees

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Moulin, Hervé; Østerdal, Lars Peter

    In the minimum cost spanning tree model we consider decentralized pricing rules, i.e. rules that cover at least the ecient cost while the price charged to each user only depends upon his own connection costs. We de ne a canonical pricing rule and provide two axiomatic characterizations. First......, the canonical pricing rule is the smallest among those that improve upon the Stand Alone bound, and are either superadditive or piece-wise linear in connection costs. Our second, direct characterization relies on two simple properties highlighting the special role of the source cost....

  1. Development of catalytic gas cleaning in gasification

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P.; Kurkela, E.; Staahlberg, P.; Hepola, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas containing dust can be efficiently purified from tars and ammonia with a nickel monolith catalyst. Temperatures of >900 deg C and a residence time of about 1 s (SV 2 500 1/h) were needed at 5 bar pressure to achieve complete tar decomposition and 80 % ammonia conversion. Catalyst deactivation was not observed during test runs of 100 h. At lower pressures dolomites and limestones can also be applied for tar removal at about 900 deg C temperatures. (orig.) 12 refs.

  2. Pilot-scale gasification of woody biomass

    Science.gov (United States)

    Thomas Elder; Leslie H. Groom

    2011-01-01

    The gasification of pine and mixed-hardwood chips has been carried out in a pilot-scale system at a range of gas flow rates. Consuming ~17-30 kgh-1 of feedstock, the producer gas was composed of ~200 dm3 m-3 carbon monoxide, 12 dm3 m-3 carbon dioxide, 30 dm3 m-3 methane and 190 dm3 m-3 hydrogen, with an energy content of ~6 MJ m-3 for both feedstocks. It was found that...

  3. Gasification Product Improvement Facility (GPIF). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

  4. EXPERIMENT OF PEAT GASIFICATION IN PLASMA REACTOR

    OpenAIRE

    Lázár, Marián; Lengyelová, Marta; Kurilla, Peter

    2012-01-01

    Gasification of solid and low quality fuel from the economic point is not a new idea or a new technology. Industrial applications for the production of energo gas from coal dates back to the beginning of the nineteenth century, whilst the construction of several large industrial plants for producing the electricity from coal and heavy oil fractions have been launched in the United States and Europe in the last 40 years. The aim of this contribution is to verify the assessment of u...

  5. Development of coal hydro gasification technology

    International Nuclear Information System (INIS)

    Itoh, Kazuo; Nomura, Kazuo; Asaoka, Yoshikiyo; Kato, Shojiro; Seo, Tomoyuki

    1997-01-01

    Taking a potential future decrease in natural gas supply into consideration, we are looking for a way to secure a stable supply of high quality substitute natural gas made from coal (which occurs abundantly throughout the world) in large volumes at low cost. We are working towards our goal of commercializing coal hydro gasification technology in the 2010's and have started developing elemental technology from FY, 1996 as a part of the governmental new energy program. (au)

  6. Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

  7. Analysis for corruption and decentralization (Case study: earlier decentralization era in Indonesia

    Directory of Open Access Journals (Sweden)

    Joko Tri Haryanto

    2017-06-01

    Full Text Available Abstrak. Di banyak negara, hubungan antara desentralisasi pemerintah dan tingkat ekstraksi sewa oleh pihak swasta merupakan elemen penting dalam perdebatan baru pada desain institusional. Topik korupsi secara aktif, terbuka dan diperdebatkan di Indonesia oleh Pemerintah, mitra pembangunan, dan kelompok berbasis luas dari para pemimpin politik dan masyarakat sipil yang terlibat dalam pertemuan dan pertukaran setiap hari. Dalam perdebatan tentang korupsi banyak perhatian diarahkan untuk peran gaji sektor publik, terutama di era desentralisasi. Berdasarkan fenomena ini, penulis ingin menganalisis hubungan antara korupsi dan desentralisasi. Menggunakan OSL model, kita dapat menemukan hubungan positif yang sangat kuat dan konsisten antara dua variabel di seluruh sampel dari daerah, sehingga memberikan beberapa dukungan untuk teori desentralisasi yang menekankan manfaat. Asosiasi ini adalah kuat untuk mengendalikan berbagai kemungkinan potensial dari upaya menghilangkan sebagian variabel serta bias endogenitas. Kata Kunci: Korupsi, Desentralisasi, OSL Model   Abstract. In many countries, relationship between decentralization of government activities and the extent of rent extraction by private parties is an important element in the recent debate on institutional design. The topic of corruption was actively, openly and debated in Indonesia by government, its development partners, and a broadly based group of political and civil society leaders are engaged in meetings and exchange on a daily basis. In the ongoing debate on corruption a lot of attention is paid to the role of public sector salaries, particularly in the decentralization era. Based on this phenomenon, the authors want to analyze the relationship between corruption and decentralization. Using OSL model, we can find a very strong and consistent positive association between the two variables across a sample of region, thereby providing some support for theories of decentralization that

  8. Decentralization, Local Politics and the Construction of Women's ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project constitutes the first phase of a comparative study of decentralization, local politics and the construction of women's citizenship in Uganda, Kenya and Tanzania. Researchers will examine the gendered subtexts in the decentralization process with a view to understanding how women's citizenship is constructed ...

  9. Transnational Research on Decentralization in West and Central ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Although decentralization keeps coming up in the political discourse, it is fair to question its viability and effectiveness in the hands of local actors. Following on a pilot project in Ghana and Mali (102772), this research project proposes to analyze, evaluate and compare the process of decentralization underway in six ...

  10. Decentralization : Local Partnerships for Health Services in the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cameroon, like most other sub-Saharan African countries, has adopted laws devolving various responsibilities to local administrations. In the local political discourse, decentralization is seen as bringing essential services closer to the users, especially those in greatest need. However, the national decentralization program ...

  11. Decentralization : Local Partnerships for Health Services in the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    However, the national decentralization program is having a hard time getting on track. In the face of day-to-day difficulties Zenü Network, a nongovernmental organization, would like to make a contribution to this social project. The Network would like to demonstrate that civil society can work with decentralized government ...

  12. Decentralization of health services in India: barriers and facilitating factors.

    Science.gov (United States)

    Kaur, Manmeet; Prinja, Shankar; Singh, Pravin K; Kumar, Rajesh

    2012-01-01

    In India, the process of decentralization of health services started taking shape in the mid-1990s. Systemic reforms envisaged delegation of administrative and financial responsibilities at district level for management of health-care institutions in 23 states of India in 1999. Subsequently, some of these reforms became part of the National Rural Health Mission (NRHM) launched in 2005. This study aims to document the process of decentralization in health services with special reference to the barriers and facilitating factors encountered during formulation and implementation of reform policies. Secondary data were reviewed, health facilities were observed, and semi-structured interviews of the key actors involved in decentralization were carried out in Haryana (India). Political and bureaucratic commitment to reforms was found to be the most important facilitating factor. Orientation training on decentralized administrative structures and performance-based resource distribution were the other important facilitators. Structural changes in administrative procedures led to improvement in the financial management system. Significant improvement in the public health infrastructure was observed. From 2004 to 2008, the state government increased the budget of health sector by nearly 60%. Frequent changes in the top administration at the state level hampered the decentralization process. Districts having a dynamic administrative leadership implemented decentralization more effectively than the rest. Decentralization of financial resources has improved the functioning of health services to some extent. Major policy decisions on decentralization of human resource management, increase in financial allocation, and greater involvement of community in decision-making are required.

  13. The Impact of Fiscal Decentralization on Provision of Quality ...

    African Journals Online (AJOL)

    This article uses panel data from 94 LGAs in Tanzania mainland over the period 2005/06 to 2009/10, to examine the impact of Fiscal Decentralization on education spending and provision of quality education. Using local share of total fiscal expenditure as a proxy for fiscal decentralization, this article concludes that Fiscal ...

  14. Decentralization, local power and women rights: global trends in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Unicornis

    Women rights and effective decentralization in the MENA: bridging the gaps between local politics, institutional design and gender outcomes. Dr. Mostafa JARI,. Faculty of legal, economic and social sciences. Marrakech Morocco. Decentralization, local power and women rights: global trends in participation, representation ...

  15. Decentralization: A panacea for functional education and national ...

    African Journals Online (AJOL)

    Decentralization of power from the federal government to state and local governments is the way to go, especially in the management of our education system. Education can be best delivered at the state and local government levels. Decentralization of educational management in Nigeria will encourage creativity and ...

  16. Decentralized Consistency Checking in Cross-organizational Workflows

    NARCIS (Netherlands)

    Wombacher, Andreas

    Service Oriented Architectures facilitate loosely coupled composed services, which are established in a decentralized way. One challenge for such composed services is to guarantee consistency, i.e., deadlock-freeness. This paper presents a decentralized approach to consistency checking, which

  17. Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution

    International Nuclear Information System (INIS)

    Ahmed, I.I.; Gupta, A.K.

    2012-01-01

    Highlights: ► Gasification of sugarcane bagasse has been investigated using a semi batch reactor. ► Global reaction mechanism combining pyrolysis and gasification reactions is presented. ► High flow rates of syngas supported fragmentation and secondary reactions. ► CO flow rate increased at higher heating rates at the expense of CO 2 production. ► At high temperatures merger between pyrolysis and char gasification occurs. -- Abstract: Steam gasification of sugarcane bagasse has been investigated. A semi batch reactor with a fixed amount of sugarcane bagasse sample placed in steady flow of high temperature steam at atmospheric pressure has been used. The gasification of bagasse was examined at reactor and steam temperatures of 800, 900 and 1000 °C. The evolution of syngas flow rate and chemical composition has been monitored. The evolution of chemical composition and total flow rate of the syngas has been used to formulate a global reaction mechanism. The mechanism combines pyrolysis reaction mechanisms from the literature and steam gasification/reforming reactions. Steam gasification steps include steam–hydrocarbons reforming, char gasification and water gas shift reactions. Evidence of fragmentation, secondary ring opening reactions and tertiary reactions resulting in formation of gaseous hydrocarbons is supported by higher flow rates of syngas and hydrogen at high heating rates and high reactor temperatures. Increase in carbon monoxide flow rate at the expense of carbon dioxide flow rate with the increase in reactor temperature has been observed. This increase in the ratio of CO/CO 2 flow rate confirms the production of CO and CO 2 from the competing reaction routes. At 1000 °C gasification a total merging between the pyrolysis step and the char gasification step has been observed. This is attributed to acceleration of char gasification reactions and acceleration of steam–hydrocarbons reforming reactions. These hydrocarbons are the precursors to

  18. Decentralized asset management for collaborative sensing

    Science.gov (United States)

    Malhotra, Raj P.; Pribilski, Michael J.; Toole, Patrick A.; Agate, Craig

    2017-05-01

    There has been increased impetus to leverage Small Unmanned Aerial Systems (SUAS) for collaborative sensing applications in which many platforms work together to provide critical situation awareness in dynamic environments. Such applications require critical sensor observations to be made at the right place and time to facilitate the detection, tracking, and classification of ground-based objects. This further requires rapid response to real-world events and the balancing of multiple, competing mission objectives. In this context, human operators become overwhelmed with management of many platforms. Further, current automated planning paradigms tend to be centralized and don't scale up well to many collaborating platforms. We introduce a decentralized approach based upon information-theory and distributed fusion which enable us to scale up to large numbers of collaborating Small Unmanned Aerial Systems (SUAS) platforms. This is exercised against a military application involving the autonomous detection, tracking, and classification of critical mobile targets. We further show that, based upon monte-carlo simulation results, our decentralized approach out-performs more static management strategies employed by human operators and achieves similar results to a centralized approach while being scalable and robust to degradation of communication. Finally, we describe the limitations of our approach and future directions for our research.

  19. Fusion-supported decentralized nuclear energy system

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1979-04-01

    A decentralized nuclear energy system is proposed comprising mass-produced pressurized water reactors in the size range 10 to 300 MW (thermal), to be used for the production of process heat, space heat, and electricity in applications where petroleum and natural gas are presently used. Special attention is given to maximizing the refueling interval with no interim batch shuffling in order to minimize fuel transport, reactor downtime, and opportunity for fissile diversion. These objectives demand a substantial fissile enrichment (7 to 15%). The preferred fissile fuel is U-233, which offers an order of magnitude savings in ore requirements (compared with U-235 fuel), and whose higher conversion ratio in thermal reactors serves to extend the period of useful reactivity and relieve demand on the fissile breeding plants (compared with Pu-239 fuel). Application of the neutral-beam-driven tokamak fusion-neutron source to a U-233 breeding pilot plant is examined. This scheme can be extended in part to a decentralized fusion energy system, wherein remotely located large fusion reactors supply excess tritium to a distributed system of relatively small nonbreeding D-T reactors

  20. Decentralization and Participatory Rural Development: A Literature Review

    Directory of Open Access Journals (Sweden)

    Muhammad Shakil Ahmad

    2011-12-01

    Full Text Available Most of the developing nations are still struggling for efficient use of their resources. In order to overcome physical and administrative constraints of the development, it is necessary to transfer the power from the central government to local authorities. Distribution of power from improves the management of resources and community participation which is considered key to sustainable development. Advocates of decentralization argue that decentralized government is source to improve community participation in rural development. Decentralized government is considered more responsive towards local needs and development of poor peoples. There are many obstacles to expand the citizen participation in rural areas. There are many approaches for participatory development but all have to face the same challenges. Current paper highlights the literature about Decentralization and participatory rural development. Concept and modalities of Decentralization, dimensions of participation, types of rural participation and obstacles to participation are also the part of this paper.

  1. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    Science.gov (United States)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  2. Feasibility of Biomass Biodrying for Gasification Process

    Science.gov (United States)

    Hamidian, Arash

    An important challenge of biomass gasification is the limitation of feedstock quality especially the moisture content, which plays a significant role on the performance of gasification process. Gasification requires low moisture levels (20% and less) and several reports have emphasized on the moisture as a typical problem while gasifying biomass. Moisture affects overall reaction rates in the gasifiers as a result of temperature drop and ultimately increases tar content, decreases gas yield, changes the composition of produced gas and affects the efficiency. Therefore, it is mandatory to pre-treat the biomass before gasification and reduce the moisture content to the suitable and economic level. The well-known solutions are either natural drying (not practical for commercial plants) or conventional drying technologies (have high operating costs). Biodrying is an alternative process, which uses both convective air and heat of biological reactions as a source of energy, to reduce the moisture. In the biodrying reactor heat is generated from exothermic decomposition of organic fraction of biomass and that is why the process is called "self-heating process". Employing such technology for drying biomass at pre-treatment units of gasification process returns several economic and environmental advantages to mills. In Europe, municipal waste treatment (MSW) plants use the biodrying at commercial scale to degrade a part of the biodegradable fraction of waste to generate heat and reduce the moisture content for high quality SRF (Solid Recovered Fuel) production. In Italy, wine industry is seeking to develop biodrying for energy recovery of grape wastes after fermentation and distillation, which returns economic benefits to the industry. In Canada, the development of biodrying technology for pulp and paper industry was started at Ecole polytechnique de Montreal as an option for sludge management solution. Therefore, batch biodrying reactor was successfully developed in 2004

  3. Succeeding in the grafting of a cogeneration system to an old space heating installation; Reussir la greffe d'une cogeneration sur une installation ancienne

    Energy Technology Data Exchange (ETDEWEB)

    Desjardins, C.

    2003-05-01

    Substantial energy savings can be made in the tertiary sector thanks to the implementation of cogeneration systems. The 'grafting' of a cogeneration system to an existing space heating installation requires to take some precautions which are explained in this technical article using a real example. In particular, it shows why, despite some visible improvements, some installations can suffer from a lack of performance. (J.S.)

  4. Small Nuclear Co-generation Plants Based on Shipbuilding Technology

    International Nuclear Information System (INIS)

    Vasyukov, V. I.; Veshnyakov, K. B.; Goryunov, E. V.; Zalugin, V. I.; Panov, Yu. K.; Polunichev, V. I.

    2002-01-01

    The development of nuclear cogeneration plants and power desalination complexes of relatively small power, using proven shipbuilding technology, becomes more and more attractive for solving the power supply problems of remote districts of the Extreme North and the Far East with small and medium power grids and for removing the shortage of fresh water in different world regions. The idea of transportation of the power unit with high degree of readiness to the place of its location with minimum construction and mounting activities at the site is very attractive. Compactness typical of RP based on shipbuilding technology allows to develop floating or ground-based plants at minimum use of water area and territory. Small construction scope at the site under conditions of minimum anthropogenic loads and high ecological indices are important arguments in favor of floating nuclear cogeneration plant based on ship power units against the alternative fossil sources. At present, the activities on floating nuclear cogeneration plant design, which is developed on the basis of floating power unit with two KLT-40S reactor plant, which is a modified option of standard KLT-40-type ship plant for icebreaker fleet in Russia are the most advanced. To date, a detailed design of reactor plant has been developed and approved, design activities on floating power unit are in the stage of completion, the site for its location has been selected and licensing by GAN, Russia, is in progress. Besides OKBM has developed some designs of nuclear cogeneration plants of different power on the basis of integral reactor plants, using the experience of transport and stationary power plants designing. Nuclear cogeneration plant investment analysis showed acceptable social and economical efficiency of the design that creates conditions for commercial construction of floating power units with KLT-40S reactor plan. At the same time the reduction of the design recovering terms, increase of budget income and

  5. Supercritical Water Gasification of Biomass : A Literature and Technology Overview

    NARCIS (Netherlands)

    Yakaboylu, O.; Harinck, J.; Smit, K.G.; De Jong, W.

    2014-01-01

    The supercritical water gasification process is an alternative to both conventional gasification as well as anaerobic digestion as it does not require drying and the process takes place at much shorter residence times; a few minutes at most. The drastic changes in the thermo-physical properties of

  6. Methods for sequestering carbon dioxide into alcohols via gasification fermentation

    Science.gov (United States)

    Gaddy, James L; Ko, Ching-Whan; Phillips, J. Randy; Slape, M. Sean

    2013-11-26

    The present invention is directed to improvements in gasification for use with synthesis gas fermentation. Further, the present invention is directed to improvements in gasification for the production of alcohols from a gaseous substrate containing at least one reducing gas containing at least one microorganism.

  7. BIOMASS REACTIVITY IN GASIFICATION BY THE HYNOL PROCESS

    Science.gov (United States)

    A thermobalance reactor was used to evaluate the reactivity of poplar wood in gasification under the operating conditions specific for the Hynol process where biomass is gasified at 30 atm and 800E C with a hydrogen-rich gas recycled from methane synthesis. The gasification invol...

  8. Modeling Tar Recirculation in Biomass Fluidized Bed Gasification

    NARCIS (Netherlands)

    Heineken, Wolfram; De la Cuesta de Cal, Daniel; Zobel, Nico

    2016-01-01

    A biomass gasification model is proposed and applied to investigate the benefits of tar recirculation within a gasification plant. In the model, tar is represented by the four species phenol, toluene, naphthalene, and benzene. The model is spatially one-dimensional, assuming plug flow for the

  9. Robustness studies on coal gasification process variables | Coetzer ...

    African Journals Online (AJOL)

    Optimisation of the Sasol-Lurgi gasification process was carried out by utilising the method of Factorial Experimental Design on the process variables of interest from a specifically equipped full-scale test gasifier. The process variables that govern gasification are not always fully controllable during normal operation.

  10. Alternatives to electrical cogeneration: The direct application of steam engines

    International Nuclear Information System (INIS)

    Phillips, W.C.

    1993-01-01

    Although small to medium sized industrial facilities are aware of electrical cogeneration, often they are too small for it to be economically justifiable. The direct application of steam turbine power to equipment formerly powered by electric motors, can allow them to use steam capacity to reduce electrical demand and consumption, bypassing cogeneration. Cogeneration converts the heat energy of steam into circular mechanical motion and then converts the circular mechanical motion into electricity. Each conversion entails a loss of energy due to friction and other conversion losses. A substantial amount of the generated electricity is then converted back into circular motion with electric motors, again incurring energy losses. Directly applying the mechanical motion of turbines eliminates both the motion-to-electricity (generator) and the electricity-to-motion (motor) conversion losses. Excess steam capacity during the summer is not unusual for facilities that use steam to provide winter heating. Similarly, most of these facilities experience a large electrical demand peak during the cooling season due to the electricity needed to operate centrifugal chillers. Steam capacity via a turbine to power the chillers can allow the boilers to operate at a higher loading while reducing electrical consumption and demand precisely those periods when demand reduction is most needed. In facilities where the steam generating capacity is sufficient, air compressors provide an appropriate year-round application for turbine power. This paper is the result of an on-going project by the Energy Division, State of North Carolina, Department of Economic and Community Development, in conjunction with the University of North Carolina at Charlotte. The objective of this project is to educate the operating engineers and managers of small to medium sized manufacturing facilities on the technical application and economic justification of steam turbine power

  11. Electric power generation using biomass gasification systems in nature in isolated communities of the Amazon region: project GASEIBRAS; Geracao de eletricidade utilizando sistemas de gaseificacao de biomassa in natura em comunidades isoladas da regiao amazonica: projeto GASEIBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia M. Stortini Goncalves; Santos, Sandra M. Apolinario dos; Lora, Beatriz Acquaro [Universidade de Sao Paulo (CENBIO/USP), SP (Brazil). Centro de Referencia Nacional em Biomassa], e-mails: suani@iee.usp.br, sgvelaz@iee.usp.br, sandra@iee.usp.br, blora@iee.usp.br

    2006-07-01

    This paper will present the pioneering project of electric energy generation from renewable sources 'GASEIBRAS - Nationalization of the Biomass Gasification Technology and Formation of Human Resources in the Amazon Region', recently approved by the National Advice of Scientific and Technological Development (CNPq) and for the Ministry of Mines and Energy (MME). The GASEIBRAS project intends to use the experience previously acquired in the project GASEIFAMAZ - Comparison between Existing Technologies of Biomass Gasification in Brazil and Exterior and Formation of Human Resources in the North Region, sponsored by FINEP/CTENERG, to develop and construct a 20 kWe biomass gasification system, with total national technology, easy to operate and to maintain, and fed with local available biomass residues. Apart from contributing for the development of the national technology, this project will provide the sustainable development of the isolated communities in the Amazon region. The ongoing development of this project will enable to consolidate the national biomass gasification technology for electricity generation. The implemented prototype will allow the response of this project in other regions of the country, due its tailor made characteristic to attend to small isolated communities, thus supplying decentralized energy from renewable sources, to Amazon region. (author)

  12. Cogeneration plant to be constructed using CFBC technology

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    A circulating fluidized bed (CFB) combustion technology will be used in a cogeneration plant to be constructed in western Pennsylvania by Air Products and Chemicals, Inc., of Allentown, Pennsylvania. The plant will burn bituminous waste coal in two CFB boilers. A 30-year supply of fuel for the plant will be obtained from a 30-million-ton waste coal pile adjacent to the site and from another smaller pile in the area. Ash resulting from the combustion process will be returned to the acidic waste coal piles to aid in their reclamation, Air Products said

  13. The cogeneration and small power production manual. 3rd edition

    International Nuclear Information System (INIS)

    Spiewak, S.A.

    1990-01-01

    This book is divided into six sections covering regulations, environmental issues, engineering, contract, financing, and taxes. The edition adds a comprehensive 80-page chapter outlining how to prepare for electric power shortages, including details on rate structure, tariff negotiation, contract-based rates, partial requirement service, supplementary, backup, and interruptible rates, and retail sale of electric power. The engineering section covers optimum cogeneration system design, operational considerations, and energy efficiency. Combustion turbines, diesel engines, gas engines, rotary engines, steam turbines, and electric generators are covered in detail

  14. Pyrolysis and gasification behavior of black liquor under pressurized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K.

    1997-11-01

    The purpose of this study has been to enhance the understanding of the processes involved in pressurized black liquor gasification. Gasification is known to occur in three stages: drying, pyrolysis and char gasification. The work presented here focuses on the pyrolysis and gasification stages. Experiments were carried out primarily in two laboratory-scale reactors. A pressurized grid heater was used to study black liquor pyrolysis under pressurized conditions. Char yields and the fate of elements in the liquor, as well as the degree of liquor swelling, were measured in this device. A pressurized thermogravimetric reactor was used to measure the rate of the char gasification process under different temperatures and pressures and in various gas atmospheres. Pyrolysis experiments were also carried out in this device, and data on swelling behavior, char yields and component release were obtained 317 refs.

  15. An overview of world history of underground coal gasification

    Science.gov (United States)

    Konovšek, Damjan; Nadvežnik, Jakob; Medved, Milan

    2017-07-01

    We will give an overview of the activities in the field of underground coal gasification in the world through history. Also we will have a detailed presentation of the most successful and the most recent research and development projects. The currency and scope of the study of coal gasification processes are linked through recent history to the price of crude oil. We will show how by changing oil prices always changes the interest for investment in research in the field of coal gasification. Most coal-producing countries have developed comprehensive programs that include a variety of studies of suitable coal fields, to assess the feasibility and design pilot and commercial projects of underground coal gasification. The latest technologies of drilling in oil and gas industry now enable easier, simpler and more economically viable process underground coal gasification. The trend of increasing research in this area will continue forward until the implementation of commercial projects.

  16. Clean Coal and Gasification Technology: How it Works?

    Directory of Open Access Journals (Sweden)

    Marina Sidorová

    2006-10-01

    Full Text Available Gasification of coal is the oldest method for the production of hydrogen. Coal gasification is a process that converts coal from a solid to a gaseous state. The gas that is created is very similar to natural gas and can be used to produce chemicals, fertilizers, and/or the electric power [1]. Cleanest of all coal-based electric power technologies, gasification has significantly lower levels of air emissions (including volatile mercury, solid wastes, and wastewater.Due to its high efficiencies, gasification also uses less coal to produce the same amount of energy, resulting in lower carbon dioxide (CO2 emissions. Some scientists believe that CO2 in the atmosphere contributes to a "greenhouse effect" that will lead to the global warming. Coal gasification has a proven technology for capturing CO2 at a fraction of the cost required for coal combustion technologies.

  17. Energy and air emission implications of a decentralized wastewater system

    International Nuclear Information System (INIS)

    Shehabi, Arman; Stokes, Jennifer R; Horvath, Arpad

    2012-01-01

    Both centralized and decentralized wastewater systems have distinct engineering, financial and societal benefits. This paper presents a framework for analyzing the environmental effects of decentralized wastewater systems and an evaluation of the environmental impacts associated with two currently operating systems in California, one centralized and one decentralized. A comparison of energy use, greenhouse gas emissions and criteria air pollutants from the systems shows that the scale economies of the centralized plant help lower the environmental burden to less than a fifth of that of the decentralized utility for the same volume treated. The energy and emission burdens of the decentralized plant are reduced when accounting for high-yield wastewater reuse if it supplants an energy-intensive water supply like a desalination one. The centralized facility also reduces greenhouse gases by flaring methane generated during the treatment process, while methane is directly emitted from the decentralized system. The results are compelling enough to indicate that the life-cycle environmental impacts of decentralized designs should be carefully evaluated as part of the design process. (letter)

  18. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  19. Catalytic hot gas cleaning of gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The aim of this work was to study the catalytic cleaning of gasification gas from tars and ammonia. In addition, factors influencing catalytic activity in industrial applications were studied, as well as the effects of different operation conditions and limits. Also the catalytic reactions of tar and ammonia with gasification gas components were studied. The activities of different catalyst materials were measured with laboratory-scale reactors fed by slip streams taken from updraft and fluid bed gasifiers. Carbonate rocks and nickel catalysts proved to be active tar decomposing catalysts. Ammonia decomposition was in turn facilitated by nickel catalysts and iron materials like iron sinter and iron dolomite. Temperatures over 850 deg C were required at 2000{sup -1} space velocity at ambient pressure to achieve almost complete conversions. During catalytic reactions H{sub 2} and CO were formed and H{sub 2}O was consumed in addition to decomposing hydrocarbons and ammonia. Equilibrium gas composition was almost achieved with nickel catalysts at 900 deg C. No deactivation by H{sub 2}S or carbon took place in these conditions. Catalyst blocking by particulates was avoided by using a monolith type of catalyst. The apparent first order kinetic parameters were determined for the most active materials. The activities of dolomite, nickel catalyst and reference materials were measured in different gas atmospheres using laboratory apparatus. This consisted of nitrogen carrier, toluene as tar model compound, ammonia and one of the components H{sub 2}, H{sub 2}O, CO, CO{sub 2}, CO{sub 2}+H{sub 2}O or CO+CO{sub 2}. Also synthetic gasification gas was used. With the dolomite and nickel catalyst the highest toluene decomposition rates were measured with CO{sub 2} and H{sub 2}O. In gasification gas, however, the rate was retarded due to inhibition by reaction products (CO, H{sub 2}, CO{sub 2}). Tar decomposition over dolomite was modelled by benzene reactions with CO{sub 2}, H

  20. Decentralized energy supply on the liberalized market

    International Nuclear Information System (INIS)

    Pauli, H.

    1999-01-01

    Starting in 2001, the electricity market is to be progressively liberalized. The process will be completed by the year 2006. What role will decentralized power generation using combined cycle power plants play on a liberalized market ? The background conditions are essentially favourable: both the new energy act, which has been in force since 1 January 1999, and the planned energy levy suggest that this technology will become increasingly widespread. In addition, the price trend for combined cycle plants components together with low energy costs are having a favourable impact. On the other hand, great uncertainty is being created by the process of liberalization and the current flood of investments in power generation. However, electricity supply is unlikely to be in surplus for long in a context of sustained economic growth. (author)

  1. Load scheduling for decentralized CHP plants

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg, orlov 31.07.2008; Madsen, Henrik; Nielsen, Torben Skov

    be obtained. Furthermore, we believe that all relevant forecasting methods are far too complicated to allow for this integration; both uncertainties originating from the dependence of heat load on climate and from meteorological forecasts need to be taken into account. Instead we suggest that the decision......This report considers load scheduling for decentralized combined heat and power plants where the revenue from selling power to the transmission company and the fuel cost may be time-varying. These plants produce both heat and power with a fixed ratio between these outputs. A heat storage facility...... is used to be able to deviate from this restriction. The load scheduling must be performed with only approximate knowledge about the future. At present in Denmark this uncertainty is only associated with the heat demand, but in the future revenues of produced energy and the fuel costs might also...

  2. Influence of cardiac decentralization on cardioprotection.

    Directory of Open Access Journals (Sweden)

    John G Kingma

    Full Text Available The role of cardiac nerves on development of myocardial tissue injury after acute coronary occlusion remains controversial. We investigated whether acute cardiac decentralization (surgical modulates coronary flow reserve and myocardial protection in preconditioned dogs subject to ischemia-reperfusion. Experiments were conducted on four groups of anesthetised, open-chest dogs (n = 32: 1- controls (CTR, intact cardiac nerves, 2- ischemic preconditioning (PC; 4 cycles of 5-min IR, 3- cardiac decentralization (CD and 4- CD+PC; all dogs underwent 60-min coronary occlusion and 180-min reperfusion. Coronary blood flow and reactive hyperemic responses were assessed using a blood volume flow probe. Infarct size (tetrazolium staining was related to anatomic area at risk and coronary collateral blood flow (microspheres in the anatomic area at risk. Post-ischemic reactive hyperemia and repayment-to-debt ratio responses were significantly reduced for all experimental groups; however, arterial perfusion pressure was not affected. Infarct size was reduced in CD dogs (18.6 ± 4.3; p = 0.001, data are mean ± 1 SD compared to 25.2 ± 5.5% in CTR dogs and was less in PC dogs as expected (13.5 ± 3.2 vs. 25.2 ± 5.5%; p = 0.001; after acute CD, PC protection was conserved (11.6 ± 3.4 vs. 18.6 ± 4.3%; p = 0.02. In conclusion, our findings provide strong evidence that myocardial protection against ischemic injury can be preserved independent of extrinsic cardiac nerve inputs.

  3. Hydrogen production from biomass over steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, R.; Potetz, A.; Hofbauer, H. [Vienna Univ. of Technology (Austria). Inst. of Chemical Engineering; Weber, G. [Bioenergy 2020+, Guessing (Austria)

    2010-12-30

    Renewable hydrogen is one option for a clean energy carrier in the future. There were several research programs in the past, to produce hydrogen on a renewable basis by electrolysis, direct conversion of water or by gasification of biomass. None of these options were developed to a stage, that they could be used on a commercial basis. At the moment almost all hydrogen is produced from fossil fuels and one main consumer of hydrogen are refineries. So a good option to demonstrate the production of renewable hydrogen and bring it later into the market is over refineries. The most economic option to produce renewable hydrogen at the moment is over gasification of biomass. In Austria an indirect gasification system was developed and is demonstrated in Guessing, Austria. The biomass CHP Guessing uses the allothermal steam dual fluidised bed gasifier and produces a high grade product gas, which is used at the moment for the CHP in a gas engine. As there is no nitrogen in the product gas and high hydrogen content, this gas can be also used as synthesis gas or for production of hydrogen. The main aim of this paper is to present the experimental and simulation work to convert biomass into renewable hydrogen. The product gas of the indirect gasification system is mainly hydrogen, carbon monoxide, carbon dioxide and methane. Within the ERA-Net project ''OptiBtLGas'' the reforming of methane and the CO-shift reaction was investigated to convert all hydrocarbons and carbon monoxide to hydrogen. On basis of the experimental results the mass- and energy balances of a commercial 100 MW fuel input plant was done. Here 3 different cases of complexity of the overall plant were simulated. The first case was without reforming and CO-shift, only by hydrogen separation. The second case was by including steam - reforming and afterwards separation of hydrogen. The third case includes hydrocarbon reforming, CO-shift and hydrogen separation. In all cases the off-gases (CO

  4. Combustion and gasification rates of lignocellulosic chars

    Energy Technology Data Exchange (ETDEWEB)

    Di Blasi, Colomba [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli ' Federico II' , P.le V. Tecchio, 80125 Napoli (Italy)

    2009-04-15

    This review critically examines the state of the art of rate laws and kinetic constants for the gasification, with carbon dioxide and steam, and the combustion of chars produced from lignocellulosic fuels, including a brief outline about yields and composition of pyrolysis products. The analysis also gives space to the role played by various factors, such as heating rate, temperature and pressure of the pyrolysis stage, feedstock and content/composition of the inorganic matter, on char reactivity. Finally, directions for future research are suggested. (author)

  5. Nordic seminar on biomass gasification and combustion

    International Nuclear Information System (INIS)

    1993-01-01

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs

  6. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  7. Incineration, pyrolysis and gasification of electronic waste

    Directory of Open Access Journals (Sweden)

    Gurgul Agnieszka

    2017-01-01

    Full Text Available Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  8. Incineration, pyrolysis and gasification of electronic waste

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2017-11-01

    Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins) while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  9. Chemicals Derived from Biomass Thermolysis and Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schaidle, Joshua A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Talmadge, Michael S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Biddy, Mary J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nimlos, Mark R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bratis, Adam D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-14

    The United States has the potential to sustainably produce over 1 billion dry tons of nonfood biomass per year by 2030. While conversion of this biomass into fuels has garnished significant attention, these renewable feedstocks can also be converted into valuable chemicals. Analogous to petroleum refining, the coproduction of fuels and chemicals from biomass enables more complete utilization of the feedstock and supports the growth of a bio-economy by improving biorefinery economics. This chapter provides an overview of biomass thermolysis and gasification technologies, highlights existing and future chemical production opportunities, and elaborates on specific challenges associated with product separation and purification.

  10. Analysis and design of robust decentralized controllers for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, D.A.

    1993-07-01

    Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.

  11. Responsiveness and flexibility in a Decentralized Supply Chain

    DEFF Research Database (Denmark)

    Petersen, Kristian Rasmus; Bilberg, Arne; Hadar, Ronen

    Today’s supply chains are not capable of managing the instabilities that is the case in the market. Instead, there is a need to develop supply chains that are capable of adapting to changes. Through a case study of LEGO, the authors suggest a possible solution: a decentralized supply chain serving...... independent and self-sufficient local factories. The decentralized supply chain is provided with materials, parts and pre-assembled elements from local suppliers and supplies the local market in return. Keywords: Decentralize, Responsiveness, Flexibility...

  12. Micro power/heat cogeneration incorporating a stirling engine

    International Nuclear Information System (INIS)

    Luft, S.

    2003-01-01

    The Stirling-engine for CHP-purpose developed by SOLO is a trend-setting technology. It represents the most suspicious perspective apart from the fuel-cell technology in order to become suitable to the requirements of the future power supply in the focus of the sustainability and the decentralized energy supply. The charm of the Stirling technology is based on the external combustion: a so far not known variability with the primary energy choice as well as a life span substantially extending, wear-free operation are possible thereby. The external combustion reduces also the maintenance and the emissions in a measure not known with conventional engine technologies. The development steps are finished. The result is the world-wide first concept for the commercial, stationary application of decentralized micro-CHP on Stirling technology basis, which goes into series. (orig.) [de

  13. Waste-to-Energy Cogeneration Project, Centennial Park

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  14. Studies on Steam Absorption Chillers Performance at a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2014-07-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers can be of either single-effect or double effect configuration and the coefficient of performance (COP depends on the selection made. The COP varies from 0.7 to 1.2 depending on the types of chillers. Single effect chillers normally have COP in the range of 0.68 to 0.79. Double effect chillers COP are higher and can reach 1.2. However due to factors such as inappropriate operations and maintenance practices, COP could drop over a period of time. In this work the performances of double effect steam absorption chillers at a cogeneration plant were studied. The study revealed that during the period of eleven years of operation the COP of the chillers deteriorated from 1.25 to 0.6. Regression models on the operation data indicated that the state of deterioration was projected to persist. Hence, it would be recommended that the chillers be considered for replacement since they had already undergone a series of costly repairs.

  15. GTHTR300 cost reduction through design upgrade and cogeneration

    International Nuclear Information System (INIS)

    Yan, Xing L.; Sato, Hiroyuki; Kamiji, Yu; Imai, Yoshiyuki; Terada, Atsuhiko; Tachibana, Yukio; Kunitomi, Kazuhiko

    2014-01-01

    Japan Atomic Energy Agency began design and development of the Gas Turbine High Temperature Reactor of 300MWe nominal output (GTHTR300) in 2001. The reactor baseline design completed three years later was based on 850°C core outlet temperature and a direct cycle gas turbine balance of plant. It attained 45.6% net power generation efficiency and 3.5US¢/KWh cost of electricity. The cost was estimated 20% lower than LWR. The latest design upgrade has incorporated several major technological advances made in the past ten years to both reactor and balance of plant. As described in this paper, these advances have enabled raising the design basis reactor core outlet temperature to 950°C and increasing power generating efficiency by nearly 5% point. Further implementation of seawater desalination cogeneration is made through employing a newly-proposed multi-stage flash process. Through efficient waste heat recovery of the reactor gas turbine power conversion cycle, a large cost credit is obtained against the conventionally produced water prices. Together, the design upgrade and the cogeneration are shown to reduce the GTHTR300 cost of electricity to under 2.7 US¢/KWh. (author)

  16. Financial considerations affecting implementation of a large multiparty cogeneration project

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    The report identifies problems inhibiting large scale multiparty cogeneration development and suggests means to reconcile the parties' differing interests. The analytical approach adopted for structuring ownership arrangements for a cogeneration project, once engineering studies confirm that the requisite technical advantages exist, is to attempt to resolve three specific issues: (1) identification of the potential participants (industrial customers, the electric utility serving the area, equipment vendors and erectors, design and engineering firms, fuel suppliers and transporters, passive investors, governmental interests, insurance carriers, and others); (2) selection of one or more of the three principal roles which each participant may play: (a) purchaser of project output, (b) provider of other commitments to support financing of the project, and (c) investor in the project; and (3) as to those participants taking an ownership role in the project, deciding whether one participant will act as sole owner or, if joint ownership is selected, deciding which of two structural formats they prefer: (a) an undivided interest approach in which each participant is responsible for and bears the full burden of providing its proportionate share of funding for the project; or (b) a project-entity approach in which each participant owns an interest in a newly organized entity which in turn owns project assets, thereby making the funding of the project the common responsibility of all of the participants.

  17. Desalination of seawater with nuclear power reactors in cogeneration

    International Nuclear Information System (INIS)

    Flores E, R.M.

    2004-01-01

    The growing demand for energy and hydraulic resources for satisfy the domestic, industrial, agricultural activities, etc. has wakened up the interest to carry out concerning investigations to study the diverse technologies guided to increase the available hydraulic resources, as well as to the search of alternatives of electric power generation, economic and socially profitable. In this sense the possible use of the nuclear energy is examined in cogeneration to obtain electricity and drinkable water for desalination of seawater. The technologies are analysed involved in the nuclear cogeneration (desalination technology, nuclear and desalination-nuclear joining) available in the world. At the same time it is exemplified the coupling of a nuclear reactor and a process of hybrid desalination that today in day the adult offers and economic advantages. Finally, the nuclear desalination is presented as a technical and economically viable solution in regions where necessities of drinkable water are had for the urban, agricultural consumption and industrial in great scale and that for local situations it is possible to satisfy it desalinating seawater. (Author)

  18. Impact of cogeneration on integrated resource planning of Turkey

    International Nuclear Information System (INIS)

    Atikol, U.; Gueven, H.

    2003-01-01

    In most developing countries, difficulties in finding sector-specific data on heat rate and power demands make energy planning a hard task. In some countries, although this data is available, it may be four or five years old. In the present work, a new low-cost method is proposed for developing countries aiming at obtaining such data for the industrial sector quickly. Fifty-two textile factories were selected for a survey to represent the industrial sector. The data were processed and used to generate two scenarios of cogeneration applications in the industrial sector; one sized according to the electrical load of the factories, and the other one according to the thermal load. The costs and primary energy requirements of these programs were compared with that of the nuclear alternative. It was found that the most energy efficient and economical option for Turkey was the cogeneration program, the equipment sizing of which was based on the process heat demand of the industrial sector. Turkey would not only save US$ 72.6-billion by deferring the nuclear program, but it will also reduce the total primary energy demand by 11% in 2020

  19. Modern fluidized bed combustion in Ostrava-Karvina cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Mazac, V. [Energoprojekt Praha, Ostrava (Czechoslovakia); Novacek, A. [Moravskoslezske teplamy, Ostrava (Czechoslovakia); Volny, J. [Templamy Karvina (Czechoslovakia)

    1995-12-01

    The contemporary situation of our environment claims the sensitive approach to solving effective conversion of energy. Limited supplies of noble fuels and their prices evoke the need to use new combustion technologies of accessible fuels in given region without negative ecological influences. Energoproject participates in the preparation of the two projects in Ostrava-Karvin{acute a} black coal field in Czech Republic. The most effective usage of fuel energy is the combined of electricity and heat. If this physical principle is supported by a pressurized fluidized bed combustion (PFBC) one obtains a high electricity/heat ratio integrated steam-gas cycle on the basis of solid fuel. Cogeneration plant Toebovice is the dominant source (600 MW{sub th}) of Ostrava district heating system (1100 MW{sub th}). The high utilization of the installed output and utilization of the clean, compact and efficient of the PFBC technology is the principal but not the single reason for the selection of the Toebovice power plant as the first cogeneration plant for installation of the PFBC in Czech Republic. The boiler will burn black coal from the neighboring coal basin.

  20. HTTR demonstration program for nuclear cogeneration of hydrogen and electricity

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sumita, Junya; Terada, Atsuhiko; Ohashi, Hirofumi; Yan, Xing L.; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

    2015-01-01

    Japan Atomic Energy Agency initiated a High Temperature Engineering Test Reactor (HTTR) demonstration program in accordance with recommendations of a task force established by Ministry of Education, Culture, Sports, Science and Technology according to the Strategic Energy Plan as of April 2014. The demonstration program is designed to complete helium gas turbine and hydrogen production system technologies aiming at commercial plant deployment in 2030s. The program begins with coupling a helium gas turbine in the secondary loop of the HTTR and expands by adding the H 2 plant to a tertiary loop to enable hydrogen cogeneration. Safety standards for coupling the helium gas turbine and H 2 plant to the nuclear reactor will be established through safety review in licensing. A system design and its control method are planned to be validated with a series of test operations using the HTTR-GT/H 2 plant. This paper explains the outline of HTTR demonstration program with a plant concept of the heat application system directed at establishing an HTGR cogeneration system with 950°C reactor outlet temperature for production of power and hydrogen as recommended by the task force. Commercial deployment strategy including a development plan for the helium gas turbine is also presented. (author)

  1. Implementation of energy efficiency programs using cogeneration based on internal combustion engines

    Directory of Open Access Journals (Sweden)

    Minciuc Eduard

    2017-07-01

    Full Text Available The paper presents an analysis of implementation of CHP plants based on internal combustion engines at different industrial companies. The authors have presented general aspects regarding utilization of internal combustion engines for cogeneration. There have been presented different possibilities of classification of internal combustion engines. Further on authors have presented different possibilities for increasing the efficiency of internal combustion engines, including: supercharging compression ratio increase, advanced heat recuperation for combined production of heat and power. There have also been presented different measures for increasing energy efficiency on site, including measures for CHP plant and internal combustion engines and measures for other auxiliary equipment and measures for technological equipment. In the second part of the paper authors have presented three case studies of utilization of internal combustion engines at a cogeneration plant for different industrial companies: cogeneration plant at a company from pharmaceutical sector, cogeneration plant at a beer production company and cogeneration plant at a company of electrical insulation materials. The results of the analysis led to following conclusions: implementation of cogeneration solutions based on internal combustion engines lead to significant financial savings, implementation of cogeneration solutions based on internal combustion engines can also lead to reducing environmental impact, it ensures higher global energy production efficiency and higher power efficiency compared to National Power System and to separate power and heat generation, it can lead to increased safety in energy supply of the company, it can also increase the reliability of power supply in cases of National Power Grid faults.

  2. BP Cherry Point Cogeneration Project, Draft Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2003-09-19

    BP West Coast Products, LLC (BP or the Applicant) proposes to construct and operate a nominal 720-megawatt (MW), natural-gas-fired, combined-cycle cogeneration facility next to the existing BP Cherry Point Refinery in Whatcom County, Washington. The Applicant also owns and operates the refinery, but the cogeneration facility and the refinery would be operated as separate business units. The cogeneration facility and its ancillary infrastructure would provide steam and 85 MW of electricity to meet the operating needs of the refinery and 635 MW of electrical power for local and regional consumption. The proposed cogeneration facility would be located between Ferndale and Blaine in northwestern Whatcom County, Washington. The Canadian border is approximately 8 miles north of the proposed project site. The Washington State Energy Facility Site Evaluation Council (EFSEC) has jurisdiction over the evaluation of major energy facilities including the proposed project. As such, EFSEC will recommend approval or denial of the proposed cogeneration facility to the governor of Washington after an environmental review. On June 3, 2002, the Applicant filed an Application for Site Certification (ASC No. 2002-01) with EFSEC in accordance with Washington Administrative Code (WAC) 463-42. On April 22, 2003, the Applicant submitted an amended ASC that included, among other things, a change from air to water cooling. With the submission of the ASC and in accordance with the State Environmental Policy Act (SEPA) (WAC 463-47), EFSEC is evaluating the siting of the proposed project and conducting an environmental review with this Environmental Impact Statement (EIS). Because the proposed project requires federal agency approvals and permits, this EIS is intended to meet the requirements under both SEPA and the National Environmental Policy Act (NEPA). The Bonneville Power Administration (Bonneville) and U.S. Army Corps of Engineers (Corps) also will use this EIS as part of their

  3. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    Science.gov (United States)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the

  4. Diesel engine cogeneration plants in the context of integration of renewable energy sources in power supply; Dieselmotor-Kraft-Waerme-Kopplungsanlagen im Kontext der Integration Erneuerbarer Energien in die Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, John

    2010-10-29

    The aim of this thesis is to investigate and assess future options, potentials, strengths and weaknesses of cogeneration of heat and power. This is carried out against the background of global climate change and the integration of an increasing share of fluctuating renewable energies in power generation considering the necessity of guaranteeing a reliable, efficient, sustainable and cost effective power supply. It is assumed that the transition process to an entirely renewable energy-based electricity generation in Germany will considerably depend on the integration of wind energy because of its economic competitiveness, environmental friendliness and potential. However, power generation using wind energy fluctuates quite considerably. Diesel motors are here investigated as a decentralized integration instrument. Thanks to their great flexibility, high efficiency and relatively low nominal capacity, they perfectly meet the requirements for the simultaneous decentralized use of heat. Boundary conditions of Diesel motor combined heat and power plants (CHP) are analyzed and described in this work, different models for wind energy integration are elaborated, and these models are used for several variations to simulate the balance of wind energy by cogeneration. In this context, environmental impacts are discussed. Common assessment methods on environmental impacts of CHP distort the results. The so-called output method is developed and described, by which the final assessment of environmental impacts is not implicitly mixed - as is commonly the case - with the calculation of environmental impacts. This output method is used to compare CHP generation with other energy conversion processes within the context of power generation including insulation of buildings, the use of different fuels and different applications for cogeneration. This work clearly demonstrates that while bio fuel resources can be optimally used for power generation, cogenerated electricity could also

  5. Kinetics of Pyrolysis and Gasification Using Thermogravimetric and Thermovolumetric Analyses

    Directory of Open Access Journals (Sweden)

    Czerski Grzegorz

    2016-03-01

    Full Text Available The carbon dioxide gasification process of Miscanthus giganteus biomass was examined using two methods. First an isothermal thermovolumetric method was applied. The measurement was conducted at 950°C and pressure of 0.1 MPa. Based on the continuous analysis of different kinds of gases formed during the gasification process, the thermovolumetric method allowed the determination of yields and composition of the resulting gas as well as the rate constant of CO formation. Then a non-isothermal thermogravimetric method was applied, during which the loss of weight of a sample as a function of temperature was recorded. In the course of the measurement, the temperature was raised from ambient to 950°C and the pressure was 0.1 MPa. As a result, a change in the carbon conversion degree was obtained. Moreover, TGA methods allow distinguishing various stages of the gasification process such as primary pyrolysis, secondary pyrolysis and gasification, and determining kinetic parameters for each stage. The presented methods differs from each other as they are based either on the analysis of changes in the resulting product or on the analysis of changes in the supplied feedstock, but both can be successfully used to the effective examination of kinetics of the gasification process. In addition, an important advantage of both methods is the possibility to carry out the gasification process for different solid fuels as coal, biomass, or solid waste in the atmosphere of a variety of gasification agents.

  6. From coal to biomass gasification: Comparison of thermodynamic efficiency

    International Nuclear Information System (INIS)

    Prins, Mark J.; Ptasinski, Krzysztof J.; Janssen, Frans J.J.G.

    2007-01-01

    The effect of fuel composition on the thermodynamic efficiency of gasifiers and gasification systems is studied. A chemical equilibrium model is used to describe the gasifier. It is shown that the equilibrium model presents the highest gasification efficiency that can be possibly attained for a given fuel. Gasification of fuels with varying composition of organic matter, in terms of O/C and H/C ratio as illustrated in a Van Krevelen diagram, is compared. It was found that exergy losses in gasifying wood (O/C ratio around 0.6) are larger than those for coal (O/C ratio around 0.2). At a gasification temperature of 927 deg. C, a fuel with O/C ratio below 0.4 is recommended, which corresponds to a lower heating value above 23 MJ/kg. For gasification at 1227 deg. C, a fuel with O/C ratio below 0.3 and lower heating value above 26 MJ/kg is preferred. It could thus be attractive to modify the properties of highly oxygenated biofuels prior to gasification, e.g. by separation of wood into its components and gasification of the lignin component, thermal pre-treatment, and/or mixing with coal in order to enhance the heating value of the gasifier fuel

  7. Gasification of various types of tertiary coals: A sustainability approach

    International Nuclear Information System (INIS)

    Öztürk, Murat; Özek, Nuri; Yüksel, Yunus Emre

    2012-01-01

    Highlights: ► Production energy by burning of coals including high rate of ash and sulfur is harmful to environment. ► Energy production via coal gasification instead of burning is proposed for sustainable approach. ► We calculate exergy and environmental destruction factor of gasification of some tertiary coals. ► Sustainability index, improvement potential of gasification are evaluated for exergy-based approach. - Abstract: The utilization of coal to produce a syngas via gasification processes is becoming a sustainability option because of the availability and the economic relevance of this fossil source in the present world energy scenario. Reserves of coal are abundant and more geographically spread over the world than crude oil and natural gas. This paper focuses on sustainability of the process of coal gasification; where the synthesis gas may subsequently be used for the production of electricity, fuels and chemicals. The coal gasifier unit is one of the least efficient step in the whole coal gasification process and sustainability analysis of the coal gasifier alone can substantially contribute to the efficiency improvement of this process. In order to evaluate sustainability of the coal gasification process energy efficiency, exergy based efficiency, exergy destruction factor, environmental destruction factor, sustainability index and improvement potential are proposed in this paper.

  8. Wabash River coal gasification repowering project: Public design report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

  9. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES; FINAL

    International Nuclear Information System (INIS)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-01-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO(sub x)). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process

  10. High temperature steam gasification of solid wastes: Characteristics and kinetics

    Science.gov (United States)

    Gomaa, Islam Ahmed

    Greater use of renewable energy sources is of pinnacle importance especially with the limited reserves of fossil fuels. It is expected that future energy use will have increased utilization of different energy sources, including biomass, municipal solid wastes, industrial wastes, agricultural wastes and other low grade fuels. Gasification is a good practical solution to solve the growing problem of landfills, with simultaneous energy extraction and nonleachable minimum residue. Gasification also provides good solution to the problem of plastics and rubber in to useful fuel. The characteristics and kinetics of syngas evolution from the gasification of different samples is examined here. The characteristics of syngas based on its quality, distribution of chemical species, carbon conversion efficiency, thermal efficiency and hydrogen concentration has been examined. Modeling the kinetics of syngas evolution from the process is also examined. Models are compared with the experimental results. Experimental results on the gasification and pyrolysis of several solid wastes, such as, biomass, plastics and mixture of char based and plastic fuels have been provided. Differences and similarities in the behavior of char based fuel and a plastic sample has been discussed. Global reaction mechanisms of char based fuel as well polystyrene gasification are presented based on the characteristic of syngas evolution. The mixture of polyethylene and woodchips gasification provided superior results in terms of syngas yield, hydrogen yield, total hydrocarbons yield, energy yield and apparent thermal efficiency from polyethylene-woodchips blends as compared to expected weighed average yields from gasification of the individual components. A possible interaction mechanism has been established to explain the synergetic effect of co-gasification of woodchips and polyethylene. Kinetics of char gasification is presented with special consideration of sample temperature, catalytic effect of ash

  11. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  12. Methane rich gasification of wood pellets

    Directory of Open Access Journals (Sweden)

    Joka Magdalena

    2016-01-01

    Full Text Available In the work there are shown the results of experimental studies on methane rich gasification of pinewood pellets in Bio-CONOx technology. The experiment was carried out on a laboratory scale gasifier (5 kW, which design features allow producing a high quality gas with a high methane content. In the results there was identified the impact of the quantity of Bio-CONOx on the amount of flammable gas compounds (methane, hydrogen and carbon monoxide in the synthesis gas and the gas calorific value. The additive was added in 10,20,30 and 50% concentrations to the gasifier chamber. It has been shown that increasing the amount of the additive has a positive effect on the calorific value of the synthesis gas (Fig.1,2. Gas with a high content of methane (and high calorific value was obtained from gasification of biomass with a 50% addition of Bio-CONOx. There was also examined the proportion of blowing air (gasifying medium for which the properties of obtained syngas were the best.

  13. Tenth annual underground coal gasification symposium: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Burwell, E.; Docktor, L.; Martin, J.W. (eds.)

    1984-12-01

    The Tenth Annual Underground Coal Gasification Symposium was cosponsored by the Fossil Energy Division of the US Department of Energy and the Morgantown Energy Technology Center's Laramie Projects Office. The purpose of the symposium was to provide a forum for presenting research results and for determining additional research needs in underground coal gasification. This years' meeting was held in Williamsburg, Virginia, during the week of August 12 through 15, 1984. Approximately 120 attendees representing industry, academia, national laboratories, Government, and eight foreign countries participated in the exchange of ideas, results, and future research plans. International representatives included participants from Belgium, Brazil, France, the Netherlands, New Zealand, Spain, West Germany, and Yugoslavia. During the three-day symposium, sixty papers were presented and discussed in four formal presentation sessions and two informal poster sessions. The papers describe interpretation of field test data, results of environmental research, and evaluations of laboratory, modeling, and economic studies. All papers in this Proceedings have been processed for inclusion in the Energy Data Base.

  14. Investigations on catalyzed steam gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

    1981-01-01

    The purpose of the study is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from December 1977 to October 1980. The study was comprised of laboratory studies, process development, and economic analyses. The laboratory studies were conducted to develop operating conditions and catalyst systems for generating methane-rich gas, synthesis gases, hydrogen, and carbon monoxide; these studies also developed techniques for catalyst recovery, regeneration, and recycling. A process development unit (PDU) was designed and constructed to evaluate laboratory systems at conditions approximating commercial operations. The economic analyses, performed by Davy McKee, Inc. for PNL, evaluated the feasibility of adapting the wood-to-methane and wood-to-methanol processes to full-scale commercial operations. Plants were designed in the economic analyses to produce fuel-grade methanol from wood and substitute natural gas (SNG) from wood via catalytic gasification with steam.

  15. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  16. An interactive heuristic for financial planning in decentralized organizations.

    NARCIS (Netherlands)

    M.H. Goedhart; J. Spronk (Jaap)

    1995-01-01

    textabstractPlanning and controlling overall performance in decentralized organizations is a complex task for central management because it is contronted with incomplete information on organizational opportunities and possible conflicts of interest with local managers. Many formal procedures for the

  17. Decentralized Detection in Censoring Sensor Networks under Correlated Observations

    Directory of Open Access Journals (Sweden)

    Abdullah S. Abu-Romeh

    2010-01-01

    Full Text Available The majority of optimal rules derived for different decentralized detection application scenarios are based on an assumption that the sensors' observations are statistically independent. Deriving the optimal decision rule in the canonical decentralized setting with correlated observations was shown to be complicated even for the simple case of two sensors. We introduce an alternative suboptimal rule to deal with correlated observations in decentralized detection with censoring sensors using a modified generalized likelihood ratio test (mGLRT. In the censoring scheme, sensors either send or do not send their complete observations to the fusion center. Using ML estimation to estimate the censored values, the decentralized problem is converted to a centralized problem. Our simulation results indicate that, when sensor observations are correlated, the mGLRT gives considerably better performance in terms of probability of detection than does the optimal decision rule derived for uncorrelated observations.

  18. 8-8-08 International Conference on Decentralization, local power ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    hallas

    2008-08-08

    Saharan Africa, South Asia, and. Latin America. The research findings represent the first regional and global comparative analyses of women's rights, citizenship and governance under decentralization systems and processes.

  19. Engaging Social Capital for Decentralized Urban Stormwater Management

    Science.gov (United States)

    Decentralized approaches to urban stormwater management, whereby installations of green infrastructure (e.g., rain gardens, bioswales, and constructed wetlands) are dispersed throughout a management area, are cost-effective solutions with co-benefits beyond water abatement. Inste...

  20. Papers by the Decentralized Wastewater Management MOU Partnership

    Science.gov (United States)

    Four position papers for state, local, and tribal government officials and interested stakeholders. These papers include information on the uses and benefits of decentralized wastewater treatment and examples of its effective use.

  1. Local Experiences in Decentralization in West and Central Africa ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    associations, private sector) has an essential role to play in the implementation of development activities that fall to local communities. But to what extent do current processes of decentralization allow the integration of actors favorable to ...

  2. Modeling biomass gasification in circulating fluidized beds

    Science.gov (United States)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  3. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Samuel S. Tam

    2002-05-01

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the

  4. DECENTRALIZATION IN THE SYSTEM OF NATIONAL ECONOMY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Stepaniuk Nataliia

    2018-03-01

    Full Text Available Introduction. Article deals with the investigation of the theoretical approaches to the notion of decentralization in the system of management of the national economy. Purpose. It has been found that for the effective functioning of the state it is necessary to achieve a rational relationship between centralization and decentralization, change the role, responsibility and powers for local self-government and executive authority. Results. t is substantiated that most of the scientific works are devoted to the study of the issue of decentralization of power, the implementation of reform of public finances, the transfer of power to the place as a guarantee of the development of the national economy. It is emphasized that the main idea of decentralization is to transfer competence to local government to address local needs issues. Consequently, decentralization is closely linked to the organization of public administration, promotes the building of effective relations between state authorities and local government. The main advantages of decentralization are: simplified management on the local area, establishing closer connection with civil society, increasing transparency of managerial decisions and raising the level of responsibility to the territorial community. Considered organizational and legal aspects of introduction of decentralization in Ukraine. It is noted that the course on decentralization outlines both prospects and implementation problems. Among the main risks of decentralization are the inconsistencies of the development of separate territorial units and strategic goals, the loss of state mobility, reduction of workplaces of the state apparatus, risks of complication of coordination between levels of management. Conclusions. It has been determined that for efficiency and effectiveness of the reform decentralization principles are necessary for wide introduction in the administrative, political, budgetary, financial and social spheres

  5. Entrained flow gasification of coal/bio-oil slurries

    DEFF Research Database (Denmark)

    Feng, Ping; Lin, Weigang; Jensen, Peter Arendt

    2016-01-01

    Coal/bio-oil slurry (CBS) is a new partial green fuel for bio-oil utilization. CBS reacts with gasification agents at high temperatures and converts into hydrogen and carbon monoxide. This paper provides a feasibility study for the gasification of CBS in an atmospheric entrained flow reactor...... with steam/carbon ratio of 5, the syngas components are similar with that in equilibrium. A synergistic effect exists between coal and bio-oil in coal/bio-oil slurry gasification which might be caused by the catalysis effect of alkali metals and alkaline earth metals in bio-oil....

  6. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R.; Lindblom, M. [Lund Univ. (Sweden). Dept. of Chemical Engineering

    1996-12-31

    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  7. Corruption and government spending : The role of decentralization

    OpenAIRE

    Korneliussen, Kristine

    2009-01-01

    This thesis points to a possible weakness of the empirical literature on corruption and government spending. That corruption affects the composition of government spending, and in particular that it affects education and health spending adversely, seems to be empirically well established. However, there exist additional literature closely related to corruption and government spending, treating(i) a relationship between corruption and decentralization, and (ii) a relationship between decentral...

  8. Decentralized Investment Management: Evidence from the Pension Fund Industry

    OpenAIRE

    Blake, David; Timmermann, Allan G; Tonks, Ian; Wermers, Russ

    2010-01-01

    The past few decades have seen amajor shift from centralized to decentralized investment management by pension fund sponsors, despite the increased coordination problems that this brings. Using a unique, proprietary dataset of pension sponsors and managers, we identify two secular decentralization trends: sponsors switched (i) from generalist (balanced) to specialist managers across asset classes and (ii) from single to multiple competing managers within each asset class. We study the effect ...

  9. Corruption, accountability, and decentralization: theory and evidence from Mexico

    OpenAIRE

    Goodspeed, Timothy J.

    2011-01-01

    One of the fundamental tenets of fiscal federalism is that, absent various sorts of externalities, decentralized governments that rely on own-source revenues should be more fiscally efficient than decentralized governments that rely on grant financing. The argument relies in part on the idea that sub-national governments, being closer to the people, are more accountable to its citizens. Accountability to citizens is also important in understanding the presence of corruption in government. Thi...

  10. Emergent Semantics Interoperability in Large-Scale Decentralized Information Systems

    CERN Document Server

    Cudré-Mauroux, Philippe

    2008-01-01

    Peer-to-peer systems are evolving with new information-system architectures, leading to the idea that the principles of decentralization and self-organization will offer new approaches in informatics, especially for systems that scale with the number of users or for which central authorities do not prevail. This book describes a new way of building global agreements (semantic interoperability) based only on decentralized, self-organizing interactions.

  11. Computational State Transfer: An Architectural Style for Decentralized Systems

    OpenAIRE

    Gorlick, Michael Martin

    2016-01-01

    A decentralized system is a distributed system that operates under multiple, distinct spheres of authority in which collaboration among the principals is characterized by mutual distrust. Now commonplace, decentralized systems appear in a number of disparate domains: commerce, logistics, medicine, software development, manufacturing, and financial trading to name but a few. These systems of systems face two overlapping demands: security and safety to protect against errors, omissions and thre...

  12. Subsidiarity in Principle: Decentralization of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Ryan Stoa

    2014-05-01

    Full Text Available The subsidiarity principle of water resources management suggests that water management and service delivery should take place at the lowest appropriate governance level. The principle is attractive for several reasons, primarily because: 1 the governance level can be reduced to reflect environmental characteristics, such as the hydrological borders of a watershed that would otherwise cross administrative boundaries; 2 decentralization promotes community and stakeholder engagement when decision-making is localized; 3 inefficiencies are reduced by eliminating reliance on central government bureaucracies and budgetary constraints; and 4 laws and institutions can be adapted to reflect localized conditions at a scale where integrated natural resources management and climate change adaptation is more focused. Accordingly, the principle of subsidiarity has been welcomed by many states committed to decentralized governance, integrated water resources management, and/or civic participation. However, applications of decentralization have not been uniform, and in some cases have produced frustrating outcomes for states and water resources. Successful decentralization strategies are heavily dependent on dedicated financial resources and human resource capacity. This article explores the nexus between the principle of subsidiarity and the enabling environment, in the hope of articulating factors likely to contribute to, or detract from, the success of decentralized water resources management. Case studies from Haiti, Rwanda, and the United States’ Florida Water Management Districts provide examples of the varied stages of decentralization.

  13. Rethinking Decentralization in Education in terms of Administrative Problems

    Directory of Open Access Journals (Sweden)

    Vasiliki Papadopoulou

    2013-11-01

    Full Text Available The general purpose of this study is to thoroughly examine decentralization in education according to the literature and previous research, and to discuss the applicability of educational decentralization practices in Turkey. The literature was reviewed for the study and findings reported. It has been observed that decentralization in education practices were realized in many countries after the 1980’s. It is obvious that the educational system in Turkey has difficulty in meeting the needs, and encounters many problems due to its present centralist state. Educational decentralization can provide effective solutions for stakeholder engagement, educational financing and for problems in decision making and operation within the education system. However, the present state of local governments, the legal framework, geographical, cultural and social features indicate that Turkey’s conditions are not ready for decentralization in education. A decentralization model realized in the long run according to Turkey’s conditions, and as a result of a social consensus, can help resolve the problems of the Turkish education system.

  14. FISCAL DECENTRALIZATION IN THE DRC: EVIDENCE OFREVENUE ASSIGNMENT

    Directory of Open Access Journals (Sweden)

    Angelita Kithatu-Kiwekete

    2017-07-01

    Full Text Available The rationalefor central government to devolve resources for service provisionhas been debated in decentralization literature. Decentralization enhancesdemocracy,encouragesparticipation in local development initiativesandpromotes local political accountability.This discourse has been complemented bythe implementation of fiscal decentralization to increase the ability of sub-nationalgovernment in financing municipal service delivery. Fiscal decentralization hasoften been adopted by African statessince the onset ofthe New PublicManagement erain an effortto improvethe standard ofgovernance. The concernis that African states have taken minimal steps to adopt fiscal devolution thatpromotes revenue assignment which in turn limits sub-nationalgovernments’ability to generate own source revenues.This article examines the revenue assignment function of fiscal decentralization inthe Democratic Republic of Congo(DRCinthelight of decentralizationconcerns that have been raised by civil society, as the country charts its course todemocracy. The article is a desktop study that will consider documents andpoliciesin theDRCon thenational, provincialand locallevel as far asstaterevenue sourcesare concerned. Revenue assignment should enable DRC’sprovinces and local authoritiestogeneratesignificantrevenueindependently.However, post-conflict reconstruction and development efforts in the Great Lakesregion and in the DRC have largely isolated decentralization which wouldotherwise entrench local fiscalautonomy infinancing for local services anddevelopment. The article concludes that revenue generation for local authoritiesandtheprovinces in the DRC is still very centralised by the national government.Thearticleproposes policy recommendations that will be useful for the country toensurethatdecentralization effortsinclude fiscal devolution toenhance thefinancing for local development initiatives.

  15. FISCAL DECENTRALIZATION IN ALBANIA: EFFECTS OF TERRITORIAL AND ADMINISTRATIVE REFORM

    Directory of Open Access Journals (Sweden)

    Mariola KAPIDANI

    2015-12-01

    Full Text Available The principle of decentralization is a fundamental principle for the establishment and operation of local government. It refers to the process of redistributing the authority and responsibility for certain functions from central government to local government units. In many countries, particularly in developing countries, fiscal decentralization and local governance issues are addressed as highly important to the economic development. According to Stigler (1957, fiscal decentralization brings government closer to the people and a representative government works best when it is closer to the people. Albania is still undergoing the process of decentralization in all aspects: political, economic, fiscal and administrative. Decentralization process is essential to sustainable economic growth and efficient allocation of resources to meet the needs of citizens. Albania has a fragmented system of local government with a very large number of local government units that have neither sufficient fiscal or human capacity to provide public services at a reasonable level (World Bank. However, recent administrative and territorial reform is expected to have a significant impact in many issues related to local autonomy and revenue management. This paper is focused on the progress of fiscal decentralization process in Albania, stating key issues and ongoing challenges for an improved system. The purpose of this study is to analyze the effects of recent territorial reform, identifying problems and opportunities to be addressed in the future.

  16. Perspectives for the electricity surplus generation at the paper and cellulose segment through the gasification of black liquor; Perspectivas para a geracao de excedentes de eletricidade no segmento de papel e celulose atraves da gaseificacao de lixivia

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, Silvia Maria Stortini Gonzalez [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Escola de Engenharia]. E-mail: velazquez@mackenzie.com.br; Coelho, Suani Teixeira [CENBIO - Centro Nacional de Referencia em Biomassa, Sao Paulo, Sp (Brazil)]. E-mail: suani@iee.usp.br

    2006-07-01

    The pulp/paper segment is enclosed enters the most energointensive of the industrial sector. Its industries generate great part of the energy that consume from by-products of the process, but still are not self-sufficient. On the other hand, the difficulties of the industrial sector to the availability energy guarantee are well known, due to lack of trustworthiness of the electricity transmission and distribution. In this context, the increase of the self generation of electricity in the segment's plants certainly would go to collaborate for bigger flexibility in the Brazilian energy matrix, not only for the option of Demand Side Management, but even for the possibility of electricity excesses generation, as it is considered in this study. Thus, this work presents an economic and technique analysis of the energy cogeneration and the generation of electricity excesses in the pulp and paper segment and cellulose using more efficient technologies (although in development), as the black liquor gasification. The perspectives for the use of black liquor gasification systems and coupling of this unit to a gas turbine (BLGCC) are studied, with exploitation of the exhaustion gases in cogeneration systems. One is about technology in development phase in the industrialized countries and that it allows high conversion efficiency. They are, also, calculated the excesses generation costs, by means of the thermo economy, on the basis of the exergy concept, the most adjusted methodology to analyze cogeneration processes. Despite the biggest efficiency, the exceeding electricity, in some of the studied configurations, presented generation costs that do not reveal competitive with the sale's price of electricity, defined for the PROINFA, leaving evident the necessity of other mechanisms that make possible the implementation of new technologies, as the incorporation of the external factors and the carbon credits discouragement of the generation costs. In the pulp and paper

  17. Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog

    Science.gov (United States)

    1980-01-01

    The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.

  18. Fixed-bed gasification research using US coals. Volume 11. Gasification of Minnesota peat. [Peat pellets and peat sods

    Energy Technology Data Exchange (ETDEWEB)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a coooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eleventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of peat pellets and peat sods during 3 different test periods. 2 refs., 20 figs., 13 tabs.

  19. The use of biomass energy in the pulp and paper industry and the prospects for black liquor gasification combined cycle generation

    International Nuclear Information System (INIS)

    Nilsson, L.J.

    1995-01-01

    The world production of paper and paperboard products, which increased 3.3% per year since 1980, reached 243 million tonnes in 1991 and is expected to continue to grow by about 2.5% per year over the next decade. Consumption levels in 1990 ranged from 2.8 kg per capita in India to 313 kg per capita in the United States. The biggest producers of pulp are the United States, Canada and the Scandinavian countries, but much of the expansion of pulp production capacity is taking place in countries such as Brazil, Chile and Indonesia. The pulp and paper industry has always relied on biomass as a fuel source to meet process energy demands. Kraft pulping is the most common process accounting for about two thirds of world wood pulp production. Energy recovered from burning black liquor, a lignin-rich by-product, in a chemicals recovery boiler typically provides most of the on-site demand for heat and electricity in a modem kraft pulp mill. Another important fuel source is bark and wood waste generated at the mill. Aging recovery boilers in industrialized countries and increasing electricity/heat demand ratios are stimulating interest in alternative co-generation technologies. Most of the interest in new biomass and black liquor co-generation technologies focuses on those that would utilize gas turbines rather than steam turbines. Gas turbines are generally characterized by higher electricity/heat ratios than steam turbines, as well as lower unit capital costs. With the black liquor and biomass gasification technologies that are now being developed and demonstrated, the energy needs of an energy-efficient kraft pulp mill could be met and 40-50 MW of baseload power would be available for export. Using, in addition, currently unused logging residues for fuel would increase that potential. The pulp and paper industry is likely to be an important early market for advanced biomass-based cogeneration technology owing to its access to biomass fuels and the potential for co-generation

  20. A study on pyrolytic gasification of coffee grounds and implications to allothermal gasification

    International Nuclear Information System (INIS)

    Masek, Ondrej; Konno, Miki; Hosokai, Sou; Sonoyama, Nozomu; Norinaga, Koyo; Hayashi, Jun-ichiro

    2008-01-01

    The increasing interest in biomass, as a renewable source of energy, is stimulating a search for suitable biomass resources as well as the development of technologies for their effective utilization. This work concentrated on characteristics of processes occurring during pyrolytic gasification of upgraded food industry residues, namely residue from industrial production of liquid coffee, and assessed its suitability for conversion in an allothermal gasifier. The influence of several operating parameters on product composition was examined with three different laboratory-scale reactors, studying the primary pyrolysis and secondary pyrolysis of nascent volatiles, and the steam gasification of char. The experimental results show that a high degree of conversion of UCG into volatiles and gases (up to 88% C-basis) can be achieved by fast pyrolysis even at temperatures as low as 1073 K. In addition, the degree of conversion is not influenced by the presence or concentration of steam, which is an important factor in allothermal gasification. Mathematical simulation of an allothermal gasifier showed that net cold-gas efficiency as high as 86% can be reached