WorldWideScience

Sample records for decellularized pericardial biomaterial

  1. Biomaterial Characterization of Off-the-Shelf Decellularized Porcine Pericardial Tissue for use in Prosthetic Valvular Applications.

    Science.gov (United States)

    Choe, Joshua A; Jana, Soumen; Tefft, Brandon J; Hennessy, Ryan S; Go, Jason; Morse, David; Lerman, Amir; Young, Melissa D

    2018-05-10

    Fixed pericardial tissue is commonly used for commercially available xenograft valve implants, and has proven durability, but lacks the capability to remodel and grow. Decellularized porcine pericardial tissue has the promise to outperform fixed tissue and remodel, but the decellularization process has been shown to damage the collagen structure and reduce mechanical integrity of the tissue. Therefore, a comparison of uniaxial tensile properties was performed on decellularized, decellularized-sterilized, fixed, and native porcine pericardial tissue, versus native valve leaflet cusps. The results of non-parametric analysis showed statistically significant differences (ptesting of the tissues showed no statistical difference between decellularized or decell-sterilized tissue compared to native cusps (p>0.05). SEM confirmed that valvular endothelial and interstitial cells colonized the decellularized pericardial surface when seeded and grown for 30 days in static culture. Collagen assays and TEM analysis showed limited reductions in collagen with processing; yet, GAG assays showed great reductions in the processed pericardium relative to native cusps. Decellularized pericardium had comparatively lower mechanical properties amongst the groups studied; yet, the stiffness was comparatively similar to the native cusps and demonstrated a lack of cytotoxicity. Suture retention, accelerated wear, and hydrodynamic testing of prototype decellularized and decell-sterilized valves showed positive functionality. Sterilized tissue could mimic valvular mechanical environment in vitro, therefore making it a viable potential candidate for off-the-shelf tissue engineered valvular applications. KEYTERMS Decellularization, Sterilization, Pericardial Tissue, Heart Valves, Tissue Engineering, Biomechanics. This article is protected by copyright. All rights reserved.

  2. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.

    Science.gov (United States)

    Lin, Tao; Liu, Sheng; Chen, Shihao; Qiu, Shuai; Rao, Zilong; Liu, Jianghui; Zhu, Shuang; Yan, Liwei; Mao, Haiquan; Zhu, Qingtang; Quan, Daping; Liu, Xiaolin

    2018-06-01

    Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy

  3. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials.

    Science.gov (United States)

    Wang, Raymond M; Johnson, Todd D; He, Jingjin; Rong, Zhili; Wong, Michelle; Nigam, Vishal; Behfar, Atta; Xu, Yang; Christman, Karen L

    2017-06-01

    Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4 + T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Long-term healing of mildly cross-linked decellularized bovine pericardial aortic patch.

    Science.gov (United States)

    Umashankar, P R; Sabareeswaran, A; Shenoy, Sachin J

    2017-10-01

    Glutaraldehyde treated bovine pericardium is extensively used in cardiovascular surgery. However, frequent occurrence of failure modes, such as calcification and structural failure, has hard pressed the need for finding an alternate technology. Decellularized bovine pericardium is an emerging technology. Mildly cross-linked decellularized bovine pericardium promotes positive remodeling with insignificant calcification and acute inflammation. In the present study, mildly cross-linked decellularized bovine pericardium was evaluated as a cardiovascular patch by studying mechanical strength as well as graft remodeling, resistance to calcific degeneration and inflammatory response using long duration porcine aortic implantation. It was observed that decellularized bovine pericardium, although thinner and less elastic had equivalent tensile properties such as tensile strength and stiffness when compared to commercially available glutaraldehyde-treated bovine pericardium. It showed the potential for site appropriate remodeling evidenced by host cell incorporation, thinner neointima, graft degradation, and neocollagenisation making it suitable for vascular patch application, whereas glutaraldehyde-treated pericardium failed to integrate with host tissue through timely degradation and host cell incorporation or neocollagenization. Conversely, it elicited persistent acute inflammation and produced calcification. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2145-2152, 2017. © 2016 Wiley Periodicals, Inc.

  5. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction.

    Science.gov (United States)

    Courtman, D W; Pereira, C A; Kashef, V; McComb, D; Lee, J M; Wilson, G J

    1994-06-01

    There is evidence to suggest that the cellular components of homografts and bioprosthetic xenografts may contribute to calcification or immunogenic reactions. A four-step detergent and enzymatic extraction process has been developed to remove cellular components from bovine pericardial tissue. The process results in an acellular matrix material consisting primarily of elastin, insoluble collagen, and tightly bound glycosaminoglycans. Light and electron microscopy confirmed that nearly all cellular constituents are removed without ultrastructural evidence of damage to fibrous components. Collagen denaturation temperatures remained unaltered. Biochemical analysis confirmed the retention of collagen and elastin and some differential extraction of glycosaminoglycans. Low strain rate fracture testing and high strain rate viscoelastic characterization showed that, with the exception of slightly increased stress relaxation, the mechanical properties of the fresh tissue were preserved in the pericardial acellular matrix. Crosslinking of the material in glutaraldehyde or poly(glycidyl ether) produced mechanical changes consistent with the same treatments of fresh tissue. The pericardial acellular matrix is a promising approach to the production of biomaterials for heart valve or cardiovascular patching applications.

  6. Biomaterials

    NARCIS (Netherlands)

    Van Mourik, P.; Van Dam, J.; Picken, S.J.; Ursem, B.

    2013-01-01

    The metabolic pathways of living organisms produce biomaterials. Hence, in principle biomaterials are fully sustainable. This does not mean that their processing and application have no impact on the environment, e.g. the recycling of natural rubber remains a problem. Biomaterials are applied in a

  7. Biomaterials

    CERN Document Server

    Migonney , Véronique

    2014-01-01

    Discovered in the 20th century, biomaterials have contributed to many of the incredible scientific and technological advancements made in recent decades. This book introduces and details the tenets of biomaterials, their relevance in a various fields, practical applications of their products, and potential advancements of the years to come. A comprehensive resource, the text covers the reasons that certain properties of biomaterials contribute to specific applications, and students and researchers will appreciate this exhaustive textbook.

  8. Decellularization of placentas: establishing a protocol

    Directory of Open Access Journals (Sweden)

    L.C.P.C. Leonel

    2017-11-01

    Full Text Available Biological biomaterials for tissue engineering purposes can be produced through tissue and/or organ decellularization. The remaining extracellular matrix (ECM must be acellular and preserve its proteins and physical features. Placentas are organs of great interest because they are discarded after birth and present large amounts of ECM. Protocols for decellularization are tissue-specific and have not been established for canine placentas yet. This study aimed at analyzing a favorable method for decellularization of maternal and fetal portions of canine placentas. Canine placentas were subjected to ten preliminary tests to analyze the efficacy of parameters such as the type of detergents, freezing temperatures and perfusion. Two protocols were chosen for further analyses using histology, scanning electron microscopy, immunofluorescence and DNA quantification. Sodium dodecyl sulfate (SDS was the most effective detergent for cell removal. Freezing placentas before decellularization required longer periods of incubation in different detergents. Both perfusion and immersion methods were capable of removing cells. Placentas decellularized using Protocol I (1% SDS, 5 mM EDTA, 50 mM TRIS, and 0.5% antibiotic preserved the ECM structure better, but Protocol I was less efficient to remove cells and DNA content from the ECM than Protocol II (1% SDS, 5 mM EDTA, 0.05% trypsin, and 0.5% antibiotic.

  9. Favorable Effects of the Detergent and Enzyme Extraction Method for Preparing Decellularized Bovine Pericardium Scaffold for Tissue Engineered Heart Valves

    NARCIS (Netherlands)

    Yang, Min; Chen, Chang-Zhi; Wang, Xue-Ning; Zhu, Ya-Bin; Gu, Y. John

    2009-01-01

    Bovine pericardium has been extensively applied as the biomaterial for artificial heart valves and may potentially be used as a scaffold for tissue-engineered heart valves after decellularization. Although various methods of decellularization are currently available, it is unknown which method is

  10. Mechanical compliance and immunological compatibility of fixative-free decellularized/cryopreserved human pericardium.

    Directory of Open Access Journals (Sweden)

    Maria Cristina Vinci

    Full Text Available BACKGROUND: The pericardial tissue is commonly used to produce bio-prosthetic cardiac valves and patches in cardiac surgery. The procedures adopted to prepare this tissue consist in treatment with aldehydes, which do not prevent post-graft tissue calcification due to incomplete xeno-antigens removal. The adoption of fixative-free decellularization protocols has been therefore suggested to overcome this limitation. Although promising, the decellularized pericardium has not yet used in clinics, due to the absence of proofs indicating that the decellularization and cryopreservation procedures can effectively preserve the mechanical properties and the immunologic compatibility of the tissue. PRINCIPAL FINDINGS: The aim of the present work was to validate a procedure to prepare decellularized/cryopreserved human pericardium which may be implemented into cardiovascular homograft tissue Banks. The method employed to decellularize the tissue completely removed the cells without affecting ECM structure; furthermore, uniaxial tensile loading tests revealed an equivalent resistance of the decellularized tissue to strain, before and after the cryopreservation, in comparison with the fresh tissue. Finally, immunological compatibility, showed a minimized host immune cells invasion and low levels of systemic inflammation, as assessed by tissue transplantation into immune-competent mice. CONCLUSIONS: Our results indicate, for the first time, that fixative-free decellularized pericardium from cadaveric tissue donors can be banked according to Tissue Repository-approved procedures without compromising its mechanical properties and immunological tolerance. This tissue can be therefore treated as a safe homograft for cardiac surgery.

  11. Imaging of pericardial lymphangioma

    International Nuclear Information System (INIS)

    Zakaria, Rania H; Barsoum, Nadine R; El-Basmy, Ayman A; El-Kaffas, Sameh H

    2011-01-01

    Pericardial cystic lymphangioma is a developmental malformation of the lymphatic system. We report a case of cystic pericardial lymphangioma in the anterior mediastinum in a 1-year-old male child. The lesion was diagnosed with multidetector computed tomography and magnetic resonance imaging (MRI). Histopathological examination showed features of cystic lymphangioma

  12. Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium

    Directory of Open Access Journals (Sweden)

    Antonio Cigliano

    2012-01-01

    Full Text Available Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emerged to create cell repopulated decellularized scaffolds. This study was performed to determine the glycosaminoglycans content, distribution, and disaccharides composition in porcine aortic and pulmonary valves and in pericardium before and after a detergent-based decellularization procedure. The fine structural characteristics of galactosaminoglycans chondroitin sulfate and dermatan sulfate were examined by FACE. Furthermore, the mechanical properties of decellularized pericardium and its propensity to be repopulated by in vitro seeded fibroblasts were investigated. Results show that galactosaminoglycans and hyaluronan are differently distributed between pericardium and valves and within heart valves themselves before and after decellularization. The distribution of glycosaminoglycans is also dependent from the vascular district and topographic localization. The decellularization protocol adopted resulted in a relevant but not selective depletion of galactosaminoglycans. As a whole, data suggest that both decellularized porcine heart valves and bovine pericardium represent promising materials bearing the potential for future development of tissue engineered heart valve scaffolds.

  13. In vivo immunogenicity of bovine bone removed by a novel decellularization protocol based on supercritical carbon dioxide.

    Science.gov (United States)

    You, Ling; Weikang, Xu; Lifeng, Yang; Changyan, Liang; Yongliang, Lin; Xiaohui, Wei; Bin, Xu

    2018-05-04

    Trauma or infections associated critical bone defects lead to a huge economic burden in the healthcare system worldwide. Recent advances in tissue engineering have led to potential new strategies for the repair, replacement, and regeneration of bone defects, especially in biomaterials and decellularization protocols from xenogenic tissues. However, the complexity in bone structure and mechanical environment limits the synthesis of artificial bone with biomaterials. Thus, the purpose of our study is to develop a natural bone scaffold with great immunocompatibility. We combined decellularization techniques base on SC-CO 2 to decellularize bovine bone. In order to study the immune response of mice to materials, the histology, spleen index, immune cells contents and in vitro proliferative performance, cytokine and immunoglobulin light chain expression of mice were characterized. Compared with the fresh bone group, the immune responses of decellularized group were significantly reduced. In conclusion, decellularization via this method can achieve a decellularized scaffold with great immunocompatibility. Our findings suggest the potential of using decellularized BB as a scaffold for bone bioengineering.

  14. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sweta K. [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667 (India); Kumar, Ritesh [Center for Computational Biology, University of Kansas, Kansas 66045 (United States); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667 (India)

    2017-02-01

    In the present study, goat-lung scaffold was fabricated by decellularization of lung tissue and verified for complete cell removal by DNA quantification, DAPI and H&E staining. The scaffold was then modified by crosslinking with quercetin and nanohydroxyapatite (nHAp), and characterized to evaluate the suitability of quercetin-crosslinked nHAp-modified scaffold for regeneration of bone tissue. The crosslinking chemistry between quercetin and decellularized scaffold was established theoretically by AutoDock Vina program (in silico docking study), which predicted multiple intermolecular hydrogen bonding interactions between quercetin and decellularized scaffold, and FTIR spectroscopy analysis also proved the same. From MTT assay and SEM studies, it was found that the quercetin-crosslinked nHAp-modified decellularized scaffold encouraged better growth and proliferation of bone-marrow derived mesenchymal stem cells (BMMSCs) in comparison to unmodified decellularized scaffold, quercetin-crosslinked decellularized scaffold and nHAp-modified decellularized scaffold. Alkaline Phosphatase (ALP) assay results showed highest expression of ALP over quercetin-crosslinked nHAp-modified scaffold among all the tested scaffolds (unmodified decellularized scaffold, quercetin-crosslinked decellularized scaffold and nHAp-modified decellularized scaffold) − indicating that quercetin and nHAp is very much efficient in stimulating the differentiation of BMMSCs into osteoblast cells. Alizarin red test quantified in vitro mineralization (calcium deposits), and increased expression of alizarin red over quercetin-crosslinked nHAp-modified scaffold indicating better stimulation of osteogenesis in BMMSCs. The above findings suggest that quercetin-crosslinked nHAp-modified decellularized goat-lung scaffold provides biomimetic bone-like microenvironment for BMMSCs to differentiate into osteoblast and could be applied as a potential promising biomaterial for bone regeneration. - Highlights:

  15. Feasibility of pig and human-derived aortic valve interstitial cells seeding on fixative-free decellularized animal pericardium.

    Science.gov (United States)

    Santoro, Rosaria; Consolo, Filippo; Spiccia, Marco; Piola, Marco; Kassem, Samer; Prandi, Francesca; Vinci, Maria Cristina; Forti, Elisa; Polvani, Gianluca; Fiore, Gianfranco Beniamino; Soncini, Monica; Pesce, Maurizio

    2016-02-01

    Glutaraldehyde-fixed pericardium of animal origin is the elective material for the fabrication of bio-prosthetic valves for surgical replacement of insufficient/stenotic cardiac valves. However, the pericardial tissue employed to this aim undergoes severe calcification due to chronic inflammation resulting from a non-complete immunological compatibility of the animal-derived pericardial tissue resulting from failure to remove animal-derived xeno-antigens. In the mid/long-term, this leads to structural deterioration, mechanical failure, and prosthesis leaflets rupture, with consequent need for re-intervention. In the search for novel procedures to maximize biological compatibility of the pericardial tissue into immunocompetent background, we have recently devised a procedure to decellularize the human pericardium as an alternative to fixation with aldehydes. In the present contribution, we used this procedure to derive sheets of decellularized pig pericardium. The decellularized tissue was first tested for the presence of 1,3 α-galactose (αGal), one of the main xenoantigens involved in prosthetic valve rejection, as well as for mechanical tensile behavior and distensibility, and finally seeded with pig- and human-derived aortic valve interstitial cells. We demonstrate that the decellularization procedure removed the αGAL antigen, maintained the mechanical characteristics of the native pig pericardium, and ensured an efficient surface colonization of the tissue by animal- and human-derived aortic valve interstitial cells. This establishes, for the first time, the feasibility of fixative-free pericardial tissue seeding with valve competent cells for derivation of tissue engineered heart valve leaflets. © 2015 Wiley Periodicals, Inc.

  16. Nasopharyngeal carcinoma with pericardial metastasis

    Directory of Open Access Journals (Sweden)

    Shang-Wen Chen

    2011-07-01

    Full Text Available Nasopharyngeal carcinoma (NPC is prevalent in Taiwan and is characterized by a high frequency of nodal metastasis. The most common organs with distal metastases are the bones, lungs, and liver, with extremely rare cases to the pericardium. Herein, we report a rare case with NPC who presented with dyspnea and orthopnea. Serial studies, including pericardial biopsy, revealed NPC with pericardial metastasis and pericardial effusion. The tumor cells of both the original and metastatic tumors were positive for Epstein–Barr virus by in situ hybridization. This is the first histologically confirmed case of NPC with pericardial metastasis.

  17. Contemporary management of pericardial diseases.

    Science.gov (United States)

    Imazio, Massimo

    2012-05-01

    Pericardial diseases are relatively common in clinical practice, either as isolated disease or as manifestation of a systemic disorder. The aim of the present study is to review more recent updates on their contemporary management. The cause of pericardial diseases is varied according to the epidemiologic background, patient population, and clinical setting. Most cases remain idiopathic, and empiric anti-inflammatory therapy should be considered as first-line therapy in most cases with the possible adjunct of colchicine in the setting of inflammatory pericardial diseases, especially relapsing or not responding to first-line drugs. A triage has been proposed to select high-risk cases requiring admission and specific cause search. The prognosis of pericardial diseases is essentially determined by the cause. The most feared complication is constriction, the risk of which is higher in bacterial forms, intermediate for postpericardiotomy syndromes and systemic inflammatory diseases, low for viral and idiopathic cases. Chronic constriction has a definite surgical therapy, whereas transient cases should be recognized and may be reversible with empirical anti-inflammatory therapy. Contemporary management of pericardial diseases is largely empirical, although first clinical trials and new studies on diagnostic modalities and prognosis of pericardial diseases are bringing the contemporary management of pericardial diseases along a more evidence-based road. Integrated cardiovascular imaging is required for optimal management of the patient with suspected pericardial disease.

  18. Dextran Preserves Native Corneal Structure During Decellularization.

    Science.gov (United States)

    Lynch, Amy P; Wilson, Samantha L; Ahearne, Mark

    2016-06-01

    Corneal decellularization has become an increasingly popular technique for generating scaffolds for corneal regeneration. Most decellularization procedures result in tissue swelling, thus limiting their application. Here, the use of a polysaccharide, dextran, to reduce swelling and conserve the native corneal structure during decellularization was investigated. Corneas were treated with 1% Triton X-100, 0.5% sodium dodecyl sulfate, and nucleases under constant rotation followed by extensive washing. To reduce swelling, decellularization solutions were supplemented with 5% dextran either throughout the whole decellularization process or during the washing cycles only. Quantitative analysis of DNA content showed a 96% reduction after decellularization regardless of the addition of dextran. Dextran resulted in a significant reduction in swelling from 3.85 ± 0.43 nm without to 1.94 ± 0.29-2.01 ± 0.37 nm (p dextran must be present throughout the decellularization protocol to preserve the native corneal architecture, anisotropy analysis demonstrated comparable results (0.22 ± 0.03) to the native cornea (0.24 ± 0.02), p > 0.05. Dextran can counteract the detrimental effects of decellularizing agents on the biomechanical properties of the tissue resulting in similar compressive moduli (mean before decellularization: 5.40 ± 1.18 kPa; mean after decellularization with dextran: 5.64 ± 1.34 kPa, p > 0.05). Cells remained viable in the presence of decellularized scaffolds. The findings of this study indicate that dextran not only prevents significant corneal swelling during decellularization but also enhances the maintenance of the native corneal ultrastructure.

  19. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  20. A Minimally Invasive, Translational Method to Deliver Hydrogels to the Heart Through the Pericardial Space

    Directory of Open Access Journals (Sweden)

    Jose R. Garcia, MS

    2017-10-01

    Full Text Available Biomaterials are a new treatment strategy for cardiovascular diseases but are difficult to deliver to the heart in a safe, precise, and translatable way. We developed a method to deliver hydrogels to the epicardium through the pericardial space. Our device creates a temporary compartment for hydrogel delivery and gelation using anatomic structures. The method minimizes risk to patients from embolization, thrombotic occlusion, and arrhythmia. In pigs there were no clinically relevant acute or subacute adverse effects from pericardial hydrogel delivery, making this a translatable strategy to deliver biomaterials to the heart.

  1. Solid organ fabrication: comparison of decellularization to 3D bioprinting.

    Science.gov (United States)

    Jung, Jangwook P; Bhuiyan, Didarul B; Ogle, Brenda M

    2016-01-01

    Solid organ fabrication is an ultimate goal of Regenerative Medicine. Since the introduction of Tissue Engineering in 1993, functional biomaterials, stem cells, tunable microenvironments, and high-resolution imaging technologies have significantly advanced efforts to regenerate in vitro culture or tissue platforms. Relatively simple flat or tubular organs are already in (pre)clinical trials and a few commercial products are in market. The road to more complex, high demand, solid organs including heart, kidney and lung will require substantive technical advancement. Here, we consider two emerging technologies for solid organ fabrication. One is decellularization of cadaveric organs followed by repopulation with terminally differentiated or progenitor cells. The other is 3D bioprinting to deposit cell-laden bio-inks to attain complex tissue architecture. We reviewed the development and evolution of the two technologies and evaluated relative strengths needed to produce solid organs, with special emphasis on the heart and other tissues of the cardiovascular system.

  2. Pericardial effusion and pericardial compartments after open heart surgery

    International Nuclear Information System (INIS)

    Duvernoy, O.; Larsson, S.G.; Persson, K.; Thuren, J.; Wikstroem, G.; Akademiska Sjukhuset, Uppsala; Akademiska Sjukhuset, Uppsala

    1990-01-01

    Thirty-three patients with pericardial effusion after open heart surgery were investigated with computed tomography (CT). Twelve of the 33 patients also underwent echocardiography prior to pericardiocentesis. The effusions were typed according to the results of the CT investigation. Because of postoperative adhesions, typical patterns of localized pericardial effusions were found in 16 patients. The localized compartments were seen on the right and left side of the heart and around the aorta and the pulmonary artery. CT was therefore shown to be of value for selecting the approach for drainage with catheter pericardiocentesis. (orig.)

  3. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  4. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering.

    Directory of Open Access Journals (Sweden)

    Amanda J Sutherland

    Full Text Available Extracellular matrix (ECM-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs were cultured in cell pellets containing cells only (control, chondrogenic differentiation medium (TGF-β, chemically decellularized cartilage particles (DCC, or physically devitalized cartilage particles (DVC. The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-β in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the 'raw material' building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration.

  5. Pericardial Effusion and Pericardiocentesis: Role of Echocardiography

    Science.gov (United States)

    2012-01-01

    Pericardial effusion can develop from any pericardial disease, including pericarditis and several systemic disorders, such as malignancies, pulmonary tuberculosis, chronic renal failure, thyroid diseases, and autoimmune diseases. The causes of large pericardial effusion requiring invasive pericardiocentesis may vary according to the time, country, and hospital. Transthoracic echocardiography is the most important tool for diagnosis, grading, the pericardiocentesis procedure, and follow up of pericardial effusion. Cardiac tamponade is a kind of cardiogenic shock and medical emergency. Clinicians should understand the tamponade physiology, especially because it can develop without large pericardial effusion. In addition, clinicians should correlate the echocardiographic findings of tamponade, such as right ventricular collapse, right atrial collapse, and respiratory variation of mitral and tricuspid flow, with clinical signs of clinical tamponade, such as hypotension or pulsus paradoxus. Percutaneous pericardiocentesis has been the most useful procedure in many cases of large pericardial effusion, cardiac tamponade, or pericardial effusion of unknown etiology. The procedure should be performed with the guidance of echocardiography. PMID:23236323

  6. Thoracoscopic pericardial fenestration for persistent pericardial effusion after radiotherapy for esophageal cancer. Report of a case

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Kazuhiro; Tsuchida, Kazuhito; Ariga, Takamitsu [Yokohama Rosai Hospital (Japan)

    2002-11-01

    We performed thoracoscopic pericardial fenestration for persistent pericardial effusion after radiotherapy for esophageal cancer. An 85-year-old man who had radiation therapy (70.2 Gy) for esophageal cancer was admitted for shortness of breath. Chest computed tomography showed a pericardial effusion. During the 6 months prior to this admission, the patient had undergone percutaneous pericardial drainage 3 times for cardiac tamponade. We performed thoracoscopic partial pericardiectomy with creation of a pleuropericardial window via one access port. Histopathologically, no malignant cells were found in either the resected pericardium or the pericardial effusion. Therefore, we believe the persistent pericardial effusion was secondary to radiotherapy. There was no recurrence of the pericardial effusion for 7 months postoperatively. In summary, thoracoscopic pericardial fenestration is useful in both the diagnosis and treatment of persistent pericardial effusion. (author)

  7. Diagnosis and management of pericardial effusion

    Science.gov (United States)

    Sagristà-Sauleda, Jaume; Mercé, Axel Sarrias; Soler-Soler, Jordi

    2011-01-01

    Pericardial effusion is a common finding in everyday clinical practice. The first challenge to the clinician is to try to establish an etiologic diagnosis. Sometimes, the pericardial effusion can be easily related to a known underlying disease, such as acute myocardial infarction, cardiac surgery, end-stage renal disease or widespread metastatic neoplasm. When no obvious cause is apparent, some clinical findings can be useful to establish a diagnosis of probability. The presence of acute inflammatory signs (chest pain, fever, pericardial friction rub) is predictive for acute idiopathic pericarditis irrespective of the size of the effusion or the presence or absence of tamponade. Severe effusion with absence of inflammatory signs and absence of tamponade is predictive for chronic idiopathic pericardial effusion, and tamponade without inflammatory signs for neoplastic pericardial effusion. Epidemiologic considerations are very important, as in developed countries acute idiopathic pericarditis and idiopathic pericardial effusion are the most common etiologies, but in some underdeveloped geographic areas tuberculous pericarditis is the leading cause of pericardial effusion. The second point is the evaluation of the hemodynamic compromise caused by pericardial fluid. Cardiac tamponade is not an “all or none” phenomenon, but a syndrome with a continuum of severity ranging from an asymptomatic elevation of intrapericardial pressure detectable only through hemodynamic methods to a clinical tamponade recognized by the presence of dyspnea, tachycardia, jugular venous distension, pulsus paradoxus and in the more severe cases arterial hypotension and shock. In the middle, echocardiographic tamponade is recognized by the presence of cardiac chamber collapses and characteristic alterations in respiratory variations of mitral and tricuspid flow. Medical treatment of pericardial effusion is mainly dictated by the presence of inflammatory signs and by the underlying disease if

  8. Cartilage extracellular matrix as a biomaterial for cartilage regeneration.

    Science.gov (United States)

    Kiyotake, Emi A; Beck, Emily C; Detamore, Michael S

    2016-11-01

    The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way. © 2016 New York Academy of Sciences.

  9. Decellularized matrices for cardiovascular tissue engineering.

    Science.gov (United States)

    Moroni, Francesco; Mirabella, Teodelinda

    2014-01-01

    Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950's. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to "biointegration". Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption.

  10. Histological Evaluation of Decellularized Skeletal Muscle Tissue Using Two Different Decellularization Agents

    Directory of Open Access Journals (Sweden)

    Hana Hrebíková

    2017-02-01

    Full Text Available The aim of the present study was to determine effect of two decellularized agents, sodium dodecyl sulphate (SDS and Triton X-100, to the skeletal muscle tissue. Final scaffold was evaluated by several histological techniques to analyse preservation of essential structures including collagen and elastic fibres, basement membranes, glycosaminoglycans and also to confirm elimination of nuclear and cytoplasmic components which are redundant in effectively prepared decellularized scaffolds. Comparison of tissue scaffolds processed with different detergents proved that SDS is superior to Triton X-100 as it can effectively decellularize muscle tissue.

  11. Echocardiography: pericardial thickening and constrictive pericarditis.

    Science.gov (United States)

    Schnittger, I; Bowden, R E; Abrams, J; Popp, R L

    1978-09-01

    A total of 167 patients with pericardial thickening noted on M node echocardiography were studied retrospectively. After the echocardiogram, 72 patients underwent cardiac surgery, cardiac catheterization or autopsy for various heart diseases; 96 patients had none of these procedures. In 49 patients the pericardium was directly visualized at surgery or autopsy; 76 percent of these had pericardial thickening or adhesions. In another 8 percent, pericardial adhesions were absent, but no comment had been made about the appearance of the pericardium itself. In the remaining 16 percent, no comment had been made about the pericardium or percardial space. Cardiac catheterization in 64 patients revealed 24 with hemodynamic findings of constrictive pericarditis or effusive constrictive disease. Seven echocardiographic patterns consistent with pericardial adhesions or pericardial thickening are described and related when possible to the subsequent findings at heart surgery or autopsy. The clinical diagnoses of 167 patients with pericardial thickening are presented. The hemodynamic diagnosis of constrictive pericardial disease was associated with the echocardiographic finding of pericardial thickening, but there were no consistent echocardiographic patterns of pericardial thickening diagnostic of constriction. However, certain other echocardiographic abnormalities of left ventricular posterior wall motion and interventricular septal motion and a high E-Fo slope were suggestive of constriction.

  12. Primary pericardial mesothelioma: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yuko; Murakami, Ryusuke; Ogura, Junko; Yamamoto, Kanae; Ichikawa, Taro [Dept. of Radiology, Tama-Nagayama Hospital, Tokyo (Japan); Nagasawa, Kouichi [Dept. of Internal Medicine, Tama-Nagayama Hospital, Tokyo (Japan); Hosone, Masaru [Dept. of Pathology, Tama-Nagayama Hospital, Tokyo (Japan); Kumazaki, Tatsuo [Dept. of Radiology, Nippon Medical School, Tokyo (Japan)

    2001-11-01

    The imaging features of primary pericardial mesothelioma have rarely been described. Herein we present a case report of its diagnostic-pathologic features. Chest computed tomography (CT) revealed an irregularly enhanced mass occupying the entire pericardial space and surrounding the superior vena cava. At autopsy, the tumor was found to fill the pericardial space completely, and to extend to the superior vena cava through the superior pericardial sinus. The CT features of the tumor were correlated well with those revealed at autopsy, and provided satisfactory information regarding the presence and the extension of the tumor. (orig.)

  13. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering

    Science.gov (United States)

    Goh, Saik-Kia; Bertera, Suzanne; Olsen, Phillip; Candiello, Joe; Halfter, Willi; Uechi, Guy; Balasubramani, Manimalha; Johnson, Scott; Sicari, Brian; Kollar, Elizabeth; Badylak, Stephen F.; Banerjee, Ipsita

    2013-01-01

    Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development. Perfusion-decellularized organs are a likely candidate for use in such scaffolds since they mimic compositional, architectural and biomechanical nature of a native organ. In this study, we investigate perfusion-decellularization of whole pancreas and the feasibility to recellularize the whole pancreas scaffold with pancreatic cell types. Our result demonstrates that perfusion-decellularization of whole pancreas effectively removes cellular and nuclear material while retaining intricate three-dimensional microarchitecture with perfusable vasculature and ductal network and crucial extracellular matrix (ECM) components. To mimic pancreatic cell composition, we recellularized the whole pancreas scaffold with acinar and beta cell lines and cultured up to 5 days. Our result shows successful cellular engraftment within the decellularized pancreas, and the resulting graft gave rise to strong up-regulation of insulin gene expression. These findings support biological utility of whole pancreas ECM as a biomaterials scaffold for supporting and enhancing pancreatic cell functionality and represent a step toward bioengineered pancreas using regenerative medicine approaches. PMID:23787110

  14. Results of aortic valve repair using decellularized bovine pericardium in congenital surgery.

    Science.gov (United States)

    Nordmeyer, Sarah; Murin, Peter; Schulz, Antonia; Danne, Friederike; Nordmeyer, Johannes; Kretzschmar, Johanna; Sumbadze, Daria; Schmitt, Katharina Rose Luise; Miera, Oliver; Cho, Mi-Young; Sinzobahamvya, Nicodeme; Berger, Felix; Ovroutski, Stanislav; Photiadis, Joachim

    2018-04-30

    The search for an optimal patch material for aortic valve reconstruction (AVR) is an ongoing challenge. In this study, we report our experience of AVR using decellularized bovine pericardial patch material in congenital heart surgery. Data of 40 consecutive patients who underwent AVR using the CardioCel® patch (Admedus Regen Pty Ltd, Perth, WA, Australia) between February 2014 and August 2016 were retrospectively reviewed. The median age of the patients at operation was 9 (2-34) years, and 18 patients were younger than 7 years. Twenty-six patients initially presented with aortic valve insufficiency (AI) and 14 with stenosis. Clinical and echocardiographic data were available until August 2017 for a median postoperative follow-up (FU) of 22 (6-42) months. Nine of 40 (23%) patients experienced an event during FU (death: n = 1, 2.5%; reoperation: n = 8, 20%). Overall, the probability of freedom from reoperation or death was 97 ± 3%, 76 ± 9% and 57 ± 12% at 12, 24 and 36 months of FU, respectively. Reason for reoperation was stenosis in 3 (37.5%) patients, insufficiency in 4 (50%) patients and 1 (12.5%) patient was diagnosed with aortic valve endocarditis. Of the remaining 31 patients, 2 patients are scheduled for reoperation (aortic valve stenosis: n = 1 and AI: n = 1) and 9 patients exhibit worsening of aortic valve function with moderate AI. Freedom from developing combined end point [death/reoperation/moderate degree of aortic valve dysfunction (aortic valve stenosis, AI)] after AVR was 92 ± 5%, 55 ± 9% and 28 ± 9% at 12, 24 and 36 months, respectively. AVR using decellularized bovine pericardial patch material in patients with congenital aortic valve disease show unsatisfactory results within the first 3 years of FU.

  15. Smart biomaterials

    CERN Document Server

    Ebara, Mitsuhiro; Narain, Ravin; Idota, Naokazu; Kim, Young-Jin; Hoffman, John M; Uto, Koichiro; Aoyagi, Takao

    2014-01-01

    This book surveys smart biomaterials, exploring the properties, mechanics and characterization of hydrogels, particles, assemblies, surfaces, fibers and conjugates. Reviews applications such as drug delivery, tissue engineering, bioseparation and more.

  16. Neoplastic pericardial disease. Analysis of 26 patients

    Directory of Open Access Journals (Sweden)

    Helena Nogueira Soufen

    1999-01-01

    Full Text Available PURPOSE: To characterize patients with neoplastic pericardial disease diagnosed by clinical presentation, complementary test findings, and the histological type of tumor. METHODS: Twenty-six patients with neoplastic pericardial disease were retrospectively analyzed. RESULTS: Clinical manifestations and abnormalities in chest roentgenograms and electrocardiograms were frequent, but were not specific. Most patients underwent surgery. There was a high positivity of the pericardial biopsy when associated with the cytological analysis of the pericardial liquid used to determine the histological type of the tumor, particularly when the procedure was performed with the aid of pericardioscopy. CONCLUSION: The correct diagnosis of neoplastic pericardial disease involves suspicious but nonspecific findings during clinical examination and in screen tests. The suspicious findings must be confirmed through more invasive diagnostic approaches, in particular pericardioscopy with biopsy and cytological study.

  17. Click-coated, heparinized, decellularized vascular grafts.

    Science.gov (United States)

    Dimitrievska, Sashka; Cai, Chao; Weyers, Amanda; Balestrini, Jenna L; Lin, Tylee; Sundaram, Sumati; Hatachi, Go; Spiegel, David A; Kyriakides, Themis R; Miao, Jianjun; Li, Guoyun; Niklason, Laura E; Linhardt, Robert J

    2015-02-01

    A novel method enabling the engineering of a dense and appropriately oriented heparin-containing layer on decellularized aortas has been developed. Amino groups of decellularized aortas were first modified to azido groups using 3-azidobenzoic acid. Azide-clickable dendrons were attached onto the azido groups through "alkyne-azide" click chemistry, affording a tenfold amplification of adhesions sites. Dendron end groups were finally decorated with end-on modified heparin chains. Heparin chains were oriented like heparan sulfate groups on native endothelial cells surface. X-ray photoelectron spectroscopy, nuclear magnetic resonance imaging, mass spectrometry and Fourier transform infrared FTIR spectroscopy were used to characterize the synthesis steps, building the final heparin layered coatings. The continuity of the heparin coating was verified using fluorescent microscopy and histological analysis. The efficacy of heparin linkage was demonstrated with factor Xa anti-thrombogenic assay and platelet adhesion studies. The results suggest that oriented heparin immobilization to decellularized aortas may improve the in vivo blood compatibility of decellularized aortas and vessels. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  18. Pericardial Parietal Mesothelial Cells: Source of the Angiotensin-Converting-Enzyme of the Bovine Pericardial Fluid

    Directory of Open Access Journals (Sweden)

    Ilsione Ribeiro de Sousa Filho

    Full Text Available Abstract Background: Angiotensin II (Ang II, the primary effector hormone of the renin-angiotensin system (RAS, acts systemically or locally, being produced by the action of angiotensin-converting-enzyme (ACE on angiotensin I. Although several tissue RASs, such as cardiac RAS, have been described, little is known about the presence of an RAS in the pericardial fluid and its possible sources. Locally produced Ang II has paracrine and autocrine effects, inducing left ventricular hypertrophy, fibrosis, heart failure and cardiac dysfunction. Because of the difficulties inherent in human pericardial fluid collection, appropriate experimental models are useful to obtain data regarding the characteristics of the pericardial fluid and surrounding tissues. Objectives: To evidence the presence of constituents of the Ang II production paths in bovine pericardial fluid and parietal pericardium. Methods: Albumin-free crude extracts of bovine pericardial fluid, immunoprecipitated with anti-ACE antibody, were submitted to electrophoresis (SDS-PAGE and gels stained with coomassie blue. Duplicates of gels were probed with anti-ACE antibody. In the pericardial membranes, ACE was detected by use of immunofluorescence. Results: Immunodetection on nitrocellulose membranes showed a 146-KDa ACE isoform in the bovine pericardial fluid. On the pericardial membrane sections, ACE was immunolocalized in the mesothelial layer. Conclusions: The ACE isoform in the bovine pericardial fluid and parietal pericardium should account at least partially for the production of Ang II in the pericardial space, and should be considered when assessing the cardiac RAS.

  19. Cardiac and pericardial calcifications on chest radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, E.C., E-mail: ecferguson@hotmail.co [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Section of Thoracic Imaging, Houston, TX 77030 (United States); Berkowitz, E.A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Section of Thoracic Imaging, Houston, TX 77030 (United States)

    2010-09-15

    Many types of cardiac and pericardial calcifications identified on chest radiographs can be recognized and distinguished based on characteristic locations and appearances. The purpose of this review is to emphasize the importance of detecting cardiac and pericardial calcifications on chest radiographs, and to illustrate and describe the various types of calcifications that may be encountered and how they may be differentiated from one another. Each type of cardiac and pericardial calcification is discussed, its location and appearance described, and its significance explained. Recognizing and understanding these calcifications is important as they are often encountered in daily practice and play an important role in patient care.

  20. Pericardial effusion in pulmonary arterial hypertension

    Science.gov (United States)

    2013-01-01

    Abstract Pulmonary arterial hypertension (PAH) is a serious condition that can lead to right heart failure and death. Pericardial effusion in PAH is associated with significant morbidity and mortality, and its pathogenesis is complex and poorly understood. There are few data on the prevalence of pericardial effusion in PAH, and more importantly, the management of pericardial effusion is controversial. Current literature abounds with case reports, case series, and retrospective studies that have limited value for assessing this association. Hence, we summarize the available evidence on this ominous association and identify areas for future research. PMID:24618534

  1. Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold.

    Directory of Open Access Journals (Sweden)

    Haiwei Xu

    Full Text Available Tissue-specific extracellular matrix plays an important role in promoting tissue regeneration and repair. We hypothesized that decellularized annular fibrosus matrix may be an appropriate scaffold for annular fibrosus tissue engineering. We aimed to determine the optimal decellularization method suitable for annular fibrosus. Annular fibrosus tissue was treated with 3 different protocols with Triton X-100, sodium dodecyl sulfate (SDS and trypsin. After the decellularization process, we examined cell removal and preservation of the matrix components, microstructure and mechanical function with the treatments to determine which method is more efficient. All 3 protocols achieved decellularization; however, SDS or trypsin disturbed the structure of the annular fibrosus. All protocols maintained collagen content, but glycosaminoglycan content was lost to different degrees, with the highest content with TritonX-100 treatment. Furthermore, SDS decreased the tensile mechanical property of annular fibrosus as compared with the other 2 protocols. MTT assay revealed that the decellularized annular fibrosus was not cytotoxic. Annular fibrosus cells seeded into the scaffold showed good viability. The Triton X-100-treated annular fibrosus retained major extracellular matrix components after thorough cell removal and preserved the concentric lamellar structure and tensile mechanical properties. As well, it possessed favorable biocompatibility, so it may be a suitable candidate as a scaffold for annular fibrosus tissue engineering.

  2. Prolonged pericardial drainage using a soft drain reduces pericardial effusion and need for additional pericardial drainage following orthotopic heart transplantation.

    Science.gov (United States)

    Kim, Yun Seok; Jung, Sung-Ho; Cho, Won Chul; Yun, Sung-Cheol; Park, Jeong-Jun; Yun, Tae-Jin; Kim, Jae-Joong; Lee, Jae Won

    2016-03-01

    Pericardial effusion can cause haemodynamic compromise after heart transplantation. We identified the effects of soft drains on the development of pericardial effusion. We enrolled 250 patients ≥17 years of age who underwent heart transplantation between July 1999 and April 2012 and received two conventional tubes (n = 96; 32 French), or two tubes with a soft drain (n = 154; 4.8 mm wide). The development of significant pericardial effusion or the need for drainage procedure during 1 month after heart transplantation was compared with the use of the propensity score matching method to adjust for selection bias. At 1 month after transplantation, 69 patients (27.6%) developed significant pericardial effusion. Among these, 13 patients (5.2%) underwent pericardial drainage. According to multivariate analysis, history of previous cardiac surgery [odds ratio (OR) = 0.162; 95% confidence interval (CI) = 0.046-0.565; P = 0.004] and placement of a soft drain (OR = 0.186; 95% CI = 0.100-0.346; P effusion or the need for drainage during the early postoperative period. For the 82 propensity score matched pairs, patients receiving an additional soft drain were at a lower risk of the development of significant pericardial effusion or the need for a pericardial drainage procedure during 1 month (OR = 0.148; 95% CI = 0.068-0.318; P effusion and decreases the need for pericardial drainage after heart transplantation. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  3. Pericarditis and pericardial effusion: management update.

    Science.gov (United States)

    Sparano, Dina M; Ward, R Parker

    2011-12-01

    Prompt recognition of the signs and symptoms of pericardial disease is critical so that appropriate treatments can be initiated. Acute pericarditis has a classical presentation, including symptoms, physical examination findings, and electrocardiography abnormalities. Early recognition of acute pericarditis will avoid unnecessary invasive testing and prompt therapies that provide rapid symptom relief. Non-steroidal anti-inflammatory drugs (NSAIDs) remain first-line therapy for uncomplicated acute pericarditis, although colchicine can be used concomitantly with NSAIDS as the first-line approach, particularly in severely symptomatic cases. Colchicine should be used in all refractory cases and as initial therapy in all recurrences. Aspirin should replace NSAIDS in pericarditis complicating acute myocardial infarction. Systemic corticosteroids can be used in refractory cases or in those with immune-mediated etiologies, although generally should be avoided due to a higher risk of recurrence. Pericardial effusions have many etiologies and the approach to diagnosis and therapy depends on clinical presentation. Pericardial tamponade is a life-threatening clinical diagnosis made on physical examination and supported by characteristic findings on diagnostic testing. Prompt diagnosis and management is critical. Treatment consists of urgent pericardial fluid drainage with a pericardial drain left in place for several days to help prevent acute recurrence. Analysis of pericardial fluid should be performed in all cases as it may provide clues to etiology. Consultation of cardiac surgery for pericardial window should be considered in recurrent cases and may be the first-line approach to malignant effusions, although acute relief of hemodynamic compromise must not be delayed. Constrictive pericarditis is associated with symptoms that mimic many other cardiac conditions. Thus, correct diagnosis is critical and involves identification of pericardial thickening or calcification in

  4. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  5. Engineering of biomaterials

    CERN Document Server

    dos Santos, Venina; Savaris, Michele

    2017-01-01

    This book focuses on biomaterials of different forms used for medical implants. The authors introduce the characteristics and properties of biomaterials and then dedicate special chapters to metallic, ceramic, polymeric and composite biomaterials. Case studies on sterilization methods by biomaterials are also presented. Finally, the authors describe the degradation and effects of biomaterials in living tissue.

  6. Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications.

    Directory of Open Access Journals (Sweden)

    Daniel W Youngstrom

    Full Text Available Natural extracellular matrix provides a number of distinct advantages for engineering replacement orthopedic tissue due to its intrinsic functional properties. The goal of this study was to optimize a biologically derived scaffold for tendon tissue engineering using equine flexor digitorum superficialis tendons. We investigated changes in scaffold composition and ultrastructure in response to several mechanical, detergent and enzymatic decellularization protocols using microscopic techniques and a panel of biochemical assays to evaluate total protein, collagen, glycosaminoglycan, and deoxyribonucleic acid content. Biocompatibility was also assessed with static mesenchymal stem cell (MSC culture. Implementation of a combination of freeze/thaw cycles, incubation in 2% sodium dodecyl sulfate (SDS, trypsinization, treatment with DNase-I, and ethanol sterilization produced a non-cytotoxic biomaterial free of appreciable residual cellular debris with no significant modification of biomechanical properties. These decellularized tendon scaffolds (DTS are suitable for complex tissue engineering applications, as they provide a clean slate for cell culture while maintaining native three-dimensional architecture.

  7. Is Decellularized Porcine Small Intestine Sub-mucosa Patch Suitable for Aortic Arch Repair?

    Science.gov (United States)

    Corno, Antonio F.; Smith, Paul; Bezuska, Laurynas; Mimic, Branko

    2018-01-01

    Introduction: We reviewed our experience with decellularized porcine small intestine sub-mucosa (DPSIS) patch, recently introduced for congenital heart defects. Materials and Methods: Between 10/2011 and 04/2016 a DPSIS patch was used in 51 patients, median age 1.1 months (5 days to 14.5 years), for aortic arch reconstruction (45/51 = 88.2%) or aortic coarctation repair (6/51 = 11.8%). All medical records were retrospectively reviewed, with primary endpoints interventional procedure (balloon dilatation) or surgery (DPSIS patch replacement) due to patch-related complications. Results: In a median follow-up time of 1.5 ± 1.1 years (0.6–2.3years) in 13/51 patients (25.5%) a re-intervention, percutaneous interventional procedure (5/51 = 9.8%) or re-operation (8/51 = 15.7%) was required because of obstruction in the correspondence of the DPSIS patch used to enlarge the aortic arch/isthmus, with median max velocity flow at Doppler interrogation of 4.0 ± 0.51 m/s. Two patients required surgery after failed interventional cardiology. The mean interval between DPSIS patch implantation and re-intervention (percutaneous procedure or re-operation) was 6 months (1–17 months). While there were 3 hospital deaths (3/51 = 5.9%) not related to the patch implantation, no early or late mortality occurred for the subsequent procedure required for DPSIS patch interventional cardiology or surgery. The median max velocity flow at Doppler interrogation through the aortic arch/isthmus for the patients who did not require interventional procedure or surgery was 1.7 ± 0.57 m/s. Conclusions: High incidence of re-interventions with DPSIS patch for aortic arch and/or coarctation forced us to use alternative materials (homografts and decellularized gluteraldehyde preserved bovine pericardial matrix). PMID:29900163

  8. Cardiovascular magnetic resonance in pericardial diseases

    Directory of Open Access Journals (Sweden)

    Francone Marco

    2009-05-01

    Full Text Available Abstract The pericardium and pericardial diseases in particular have received, in contrast to other topics in the field of cardiology, relatively limited interest. Today, despite improved knowledge of pathophysiology of pericardial diseases and the availability of a wide spectrum of diagnostic tools, the diagnostic challenge remains. Not only the clinical presentation may be atypical, mimicking other cardiac, pulmonary or pleural diseases; in developed countries a shift for instance in the epidemiology of constrictive pericarditis has been noted. Accurate decision making is crucial taking into account the significant morbidity and mortality caused by complicated pericardial diseases, and the potential benefit of therapeutic interventions. Imaging herein has an important role, and cardiovascular magnetic resonance (CMR is definitely one of the most versatile modalities to study the pericardium. It fuses excellent anatomic detail and tissue characterization with accurate evaluation of cardiac function and assessment of the haemodynamic consequences of pericardial constraint on cardiac filling. This review focuses on the current state of knowledge how CMR can be used to study the most common pericardial diseases.

  9. Regenerative immunology: the immunological reaction to biomaterials.

    Science.gov (United States)

    Cravedi, Paolo; Farouk, Samira; Angeletti, Andrea; Edgar, Lauren; Tamburrini, Riccardo; Duisit, Jerome; Perin, Laura; Orlando, Giuseppe

    2017-12-01

    Regenerative medicine promises to meet two of the most urgent needs of modern organ transplantation, namely immunosuppression-free transplantation and an inexhaustible source of organs. Ideally, bioengineered organs would be manufactured from a patient's own biomaterials-both cells and the supporting scaffolding materials in which cells would be embedded and allowed to mature to eventually regenerate the organ in question. While some groups are focusing on the feasibility of this approach, few are focusing on the immunogenicity of the scaffolds that are being developed for organ bioengineering purposes. This review will succinctly discuss progress in the understanding of immunological characteristics and behavior of different scaffolds currently under development, with emphasis on the extracellular matrix scaffolds obtained decellularized animal or human organs which seem to provide the ideal template for bioengineering purposes. © 2017 Steunstichting ESOT.

  10. Oral bacterial DNA findings in pericardial fluid

    Directory of Open Access Journals (Sweden)

    Anne-Mari Louhelainen

    2014-11-01

    Full Text Available Background: We recently reported that large amounts of oral bacterial DNA can be found in thrombus aspirates of myocardial infarction patients. Some case reports describe bacterial findings in pericardial fluid, mostly done with conventional culturing and a few with PCR; in purulent pericarditis, nevertheless, bacterial PCR has not been used as a diagnostic method before. Objective: To find out whether bacterial DNA can be measured in the pericardial fluid and if it correlates with pathologic–anatomic findings linked to cardiovascular diseases. Methods: Twenty-two pericardial aspirates were collected aseptically prior to forensic autopsy at Tampere University Hospital during 2009–2010. Of the autopsies, 10 (45.5% were free of coronary artery disease (CAD, 7 (31.8% had mild and 5 (22.7% had severe CAD. Bacterial DNA amounts were determined using real-time quantitative PCR with specific primers and probes for all bacterial strains associated with endodontic disease (Streptococcus mitis group, Streptococcus anginosus group, Staphylococcus aureus/Staphylococcus epidermidis, Prevotella intermedia, Parvimonas micra and periodontal disease (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatus, and Dialister pneumosintes. Results: Of 22 cases, 14 (63.6% were positive for endodontic and 8 (36.4% for periodontal-disease-associated bacteria. Only one case was positive for bacterial culturing. There was a statistically significant association between the relative amount of bacterial DNA in the pericardial fluid and the severity of CAD (p=0.035. Conclusions: Oral bacterial DNA was detectable in pericardial fluid and an association between the severity of CAD and the total amount of bacterial DNA in pericardial fluid was found, suggesting that this kind of measurement might be useful for clinical purposes.

  11. Evaluation of small intestine grafts decellularization methods for corneal tissue engineering.

    Directory of Open Access Journals (Sweden)

    Ana Celeste Oliveira

    Full Text Available Advances in the development of cornea substitutes by tissue engineering techniques have focused on the use of decellularized tissue scaffolds. In this work, we evaluated different chemical and physical decellularization methods on small intestine tissues to determine the most appropriate decellularization protocols for corneal applications. Our results revealed that the most efficient decellularization agents were the SDS and triton X-100 detergents, which were able to efficiently remove most cell nuclei and residual DNA. Histological and histochemical analyses revealed that collagen fibers were preserved upon decellularization with triton X-100, NaCl and sonication, whereas reticular fibers were properly preserved by decellularization with UV exposure. Extracellular matrix glycoproteins were preserved after decellularization with SDS, triton X-100 and sonication, whereas proteoglycans were not affected by any of the decellularization protocols. Tissue transparency was significantly higher than control non-decellularized tissues for all protocols, although the best light transmittance results were found in tissues decellularized with SDS and triton X-100. In conclusion, our results suggest that decellularized intestinal grafts could be used as biological scaffolds for cornea tissue engineering. Decellularization with triton X-100 was able to efficiently remove all cells from the tissues while preserving tissue structure and most fibrillar and non-fibrillar extracellular matrix components, suggesting that this specific decellularization agent could be safely used for efficient decellularization of SI tissues for cornea TE applications.

  12. Recurrent Pericardial Effusion Associated with Hypothyroidism in ...

    African Journals Online (AJOL)

    Background: The complex of Down Syndromehypothyroidism-pericardial effusion is largely unreported in sub-Sahara. Objective: To present and highlight an unusual manifestation of hypothyroidism. Methods: A 16-year-old girl with confirmed Down Syndrome presented with complaints of generalised body swelling of eight ...

  13. Aortic reconstruction with bovine pericardial grafts

    Directory of Open Access Journals (Sweden)

    Silveira Lindemberg Mota

    2003-01-01

    Full Text Available INTRODUCTION: Glutaraldehyde-treated crimped bovine pericardial grafts are currently used in aortic graft surgery. These conduits have become good options for these operations, available in different sizes and shapes and at a low cost. OBJECTIVE:To evaluate the results obtained with bovine pericardial grafts for aortic reconstruction, specially concerning late complications. METHOD: Between January 1995 and January 2002, 57 patients underwent different types of aortic reconstruction operations using bovine pericardial grafts. A total of 29 (50.8% were operated on an urgent basis (mostly acute Stanford A dissection and 28 electively. Thoracotomy was performed in three patients for descending aortic replacement (two patients and aortoplasty with a patch in one. All remaining 54 underwent sternotomy, cardiopulmonary bypass and aortic resection. Deep hypothermia and total circulatory arrest was used in acute dissections and arch operations. RESULTS: Hospital mortality was 17.5%. Follow-up was 24.09 months (18.5 to 29.8 months confidence interval and complication-free actuarial survival curve was 92.3% (standard deviation ± 10.6. Two patients lately developed thoracoabdominal aneurysms following previous DeBakey II dissection and one died from endocarditis. One "patch" aortoplasty patient developed local descending aortic pseudoaneurysm 42 months after surgery. All other patients are asymptomatic and currently clinically evaluated with echocardiography and CT scans, showing no complications. CONCLUSION: Use of bovine pericardial grafts in aortic reconstruction surgery is adequate and safe, with few complications related to the conduits.

  14. Case Roport: Pericardial tamponade and coexisting pulmonary ...

    African Journals Online (AJOL)

    This report describes a case of a patient, who presented with this association, due to an underlying pulmonary adenocarcinoma. When a major pericardial effusion is associated with pulmonary hypertension, some echocardiographic signs may redress the diagnosis. This case emphasizes a challenge diagnostic which may ...

  15. Chylous pericardial effusion after pulmonary lobectomy.

    Science.gov (United States)

    Yang, Weixiong; Luo, Canqiao; Liu, Zhenguo; Cheng, Chao

    2017-07-01

    Chylous pericardial effusion is a rarely reported complication of lung cancer surgery. Here, we report a case of an elderly man who suffered chylous pericardial effusion after radical right upper lung resection for cancer. The massive chylous effusion first occurred in the pericardium, drained to the right chest after the drainage of the hydropericardium and subsequently moved back to the pericardium again. Lymphoscintigraphy examination indicated that a chylous fistula was present in the plane of the tracheal carina. After failure to control the chylous effusion with conservative medical treatment, the patient underwent video-assisted thoracic surgery through the left chest for thoracic duct ligation and pericardial fenestration. The patient was ultimately discharged without recurrence of the effusion after surgical treatment. This case report discusses the possible mechanism of chylopericardium after lung cancer surgery and suggests some strategies to prevent postoperative chylous pericardial effusion. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Pericardial Effusion due to Primary Malignant Pericardial Mesothelioma: A Common Finding but an Uncommon Cause

    Directory of Open Access Journals (Sweden)

    Valery Istomin

    2016-01-01

    Full Text Available This case report describes a 37-year-old female who was admitted to our Emergency Department because of shortness of breath. On physical examination, she had dyspnea and tachycardia and blood pressure was 80/50 mmHg with a pulsus paradoxus of 22 mmHg. Neck veins were distended, heart sounds were distant, and dullness was found on both lung bases. Her chest X-ray revealed bilateral pleural effusion and cardiomegaly. On both computed tomography and echocardiography the heart was of normal size and a large pericardial effusion was noted. The echocardiogram showed signs of impending tamponade, so the patient underwent an emergent pericardiocentesis. No infectious etiology was found and she was assumed to have viral pericarditis and was treated accordingly. However, when the pericardial effusion recurred and empirical therapy for tuberculosis failed, a pericardial window was performed. A typical staining pattern for mesothelioma was found on her pericardial biopsy specimen. Since no other mesodermal tissue was affected, a diagnosis of primary malignant pericardial mesothelioma was made. Chemotherapy was not effective and she passed away a year after the diagnosis was made. This case highlights the difficulties in diagnosing this uncommon disease in patients that present with the common finding of pericardial effusion.

  17. Routes towards Novel Collagen-Like Biomaterials

    Directory of Open Access Journals (Sweden)

    Adrian V. Golser

    2018-04-01

    Full Text Available Collagen plays a major role in providing mechanical support within the extracellular matrix and thus has long been used for various biomedical purposes. Exemplary, it is able to replace damaged tissues without causing adverse reactions in the receiving patient. Today’s collagen grafts mostly are made of decellularized and otherwise processed animal tissue and therefore carry the risk of unwanted side effects and limited mechanical strength, which makes them unsuitable for some applications e.g., within tissue engineering. In order to improve collagen-based biomaterials, recent advances have been made to process soluble collagen through nature-inspired silk-like spinning processes and to overcome the difficulties in providing adequate amounts of source material by manufacturing collagen-like proteins through biotechnological methods and peptide synthesis. Since these methods also open up possibilities to incorporate additional functional domains into the collagen, we discuss one of the best-performing collagen-like type of proteins, which already have additional functional domains in the natural blueprint, the marine mussel byssus collagens, providing inspiration for novel biomaterials based on collagen-silk hybrid proteins.

  18. Comparison of Outcomes of Pericardiocentesis Versus Surgical Pericardial Window in Patients Requiring Drainage of Pericardial Effusions.

    Science.gov (United States)

    Horr, Samuel E; Mentias, Amgad; Houghtaling, Penny L; Toth, Andrew J; Blackstone, Eugene H; Johnston, Douglas R; Klein, Allan L

    2017-09-01

    Comparative outcomes of patients undergoing pericardiocentesis or pericardial window are limited. Development of pericardial effusion after cardiac surgery is common but no data exist to guide best management. Procedural billing codes and Cleveland Clinic surgical registries were used to identify 1,281 patients who underwent either pericardiocentesis or surgical pericardial window between January 2000 and December 2012. The 656 patients undergoing an intervention for a pericardial effusion secondary to cardiac surgery were also compared. Propensity scoring was used to identify well-matched patients in each group. In the overall cohort, in-hospital mortality was similar between the group undergoing pericardiocentesis and surgical drainage (5.3% vs 4.4%, p = 0.49). Similar outcomes were found in the propensity-matched group (4.9% vs 6.1%, p = 0.55). Re-accumulation was more common after pericardiocentesis (24% vs 10%, p <0.0001) and remained in the matched cohorts (23% vs 9%, p <0.0001). The secondary outcome of hemodynamic instability after the procedure was more common in the pericardial window group in both the unmatched (5.2% vs 2.9%, p = 0.036) and matched cohorts (6.1% vs 2.0%, p = 0.022). In the subgroup of patients with a pericardial effusion secondary to cardiac surgery, there was a lower mortality after pericardiocentesis in the unmatched group (1.5% vs 4.6%, p = 0.024); however, after adjustment, this difference in mortality was no longer present (2.6% vs 4.5%, p = 0.36). In conclusion, both pericardiocentesis and surgical pericardial window are safe and effective treatment strategies for the patient with a pericardial effusion. In our study there were no significant differences in mortality in patients undergoing either procedure. Observed differences in outcomes with regard to recurrence rates, hemodynamic instability, and in those with postcardiac surgery effusions may help to guide the clinician in management of the patient

  19. CT features of cardio-pericardial masses

    International Nuclear Information System (INIS)

    Vasile, N.; Nicoleau, F.; Mathieu, D.

    1986-01-01

    The results of dynamic computed tomography (CT) in 13 patients with intracardiac filling defects and one with a pericardial lipoma are presented. The intracardiac filling defects were due to thrombus in five cases, myxoma in three, hydatid cysts in three, haemangiopericytoma in one and sarcoma in one. These kinds of lesions are well identified by CT which seems to be superior to echocardiography in the characterisation of the components and in the evaluation of the malignant spreading masses. (orig.)

  20. Characterization of biomaterials

    CERN Document Server

    Jaffe, M; Tolias, P; Arinzeh, T

    2012-01-01

    Biomaterials and medical devices must be rigorously tested in the laboratory before they can be implanted. Testing requires the right analytical techniques. Characterization of biomaterials reviews the latest methods for analyzing the structure, properties and behaviour of biomaterials. Beginning with an introduction to microscopy techniques for analyzing the phase nature and morphology of biomaterials, Characterization of biomaterials goes on to discuss scattering techniques for structural analysis, quantitative assays for measuring cell adhesion, motility and differentiation, and the evaluation of cell infiltration and tissue formation using bioreactors. Further topics considered include studying molecular-scale protein-surface interactions in biomaterials, analysis of the cellular genome and abnormalities, and the use of microarrays to measure cellular changes induced by biomaterials. Finally, the book concludes by outlining standards and methods for assessing the safety and biocompatibility of biomaterial...

  1. Computed tomography in the diagnosis of pericardial heart disease

    International Nuclear Information System (INIS)

    Isner, J.M.; Carter, B.L.; Bankoff, M.S.; Konstam, M.A.; Salem, D.N.

    1982-01-01

    To evaluate the use of computed tomography (CT) in the diagnosis of pericardial heart disease, 53 patients were prospectively studied by computed tomography of the chest and cardiac ultrasound. A diagnostic-quality CT study was done for all patients; a technically satisfactory ultrasound examination was not possible in six patients. Of 47 patients in whom both chest scans and satisfactory ultrasound studies were obtained, computed tomography showed pericardial thickening not shown by ultrasound in five patients. Estimated size of pericardial effusion was the same for both computed tomography and ultrasound. Computed tomography provided quantifiable evaluation of the composition of pericardial fluid in seven patients with either hemopericardium or purulent pericarditis. Neoplastic pericardial heart disease was detected by CT scan in four of the 53 patients. Computed tomography of the chest provides a sensitive evaluation of the pericardium and quality of pericardial effusion, and is a valuable adjunct in patients in whom cardiac ultrasound is technically unsatisfactory

  2. MRI Findings of Pericardial Fat Necrosis: Case Report

    International Nuclear Information System (INIS)

    Lee, Hyo Hyeok; Ryu, Dae Shick; Jung, Sang Sig; Jung, Seung Mun; Choi, Soo Jung; Shin, Dae Hee

    2011-01-01

    Pericardial fat necrosis is an infrequent cause of acute chest pain and this can mimic acute myocardial infarction and acute pericarditis. We describe here a patient with the magnetic resonance imaging (MRI) findings of pericardial fat necrosis and this was correlated with the computed tomography (CT) findings. The MRI findings may be helpful for distinguishing pericardial fat necrosis from other causes of acute chest pain and from the fat-containing tumors in the cardiophrenic space of the anterior mediastinum.

  3. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Lei Hu

    2017-01-01

    Full Text Available Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  4. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration.

    Science.gov (United States)

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  5. Evaluation of pleural and pericardial effusions by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tscholakoff, D.; Sechtem, U.; De Geer, G.; Schmidt, H.; Higgins, C.B.

    1987-08-01

    MR examinations of 36 patients with pleural and/or pericardial effusions were retrospectively evaluated. The purpose of this study was to determine of MR imaging is capable of differentiating between pleural and pericardial effusions of different compositions using standard electrocardiogram (ECG)-gated and nongated spin echo pulse sequences. Additional data was obtained from experimental pleural effusions in 10 dogs. The results of this study indicate that old haemorhages into the pleural or pericardial space can be differentiated from other pleural or pericardial effusions. However, further differentiation between transudates, exudates and sanguinous effusions is not possible on MR images acquired with standard spin echo pulse sequences. (orig./MG)

  6. Novel "CHASER" pathway for the management of pericardial disease.

    Science.gov (United States)

    Argulian, Edgar; Halpern, Dan G; Aziz, Emad F; Uretsky, Seth; Chaudhry, Farooq; Herzog, Eyal

    2011-06-01

    The diagnosis and management of pericardial disease are very challenging for clinicians. The evidence base in this field is relatively scarce compared with other disease entities in cardiology. In this article, we outline a unified, stepwise pathway-based approach for the management of pericardial disease. We used the "CHASER" acronym to define the entry points into the pathway. These include chest pain, hypotension or arrest, shortness of breath, echocardiographic or other imaging finding of pericardial effusion, and right-predominant heart failure. We propose a score for the assessment of pericardial effusion that is composed of the following 3 parameters: the etiology of the effusion, the size of the effusion, and the echocardiographic assessment of hemodynamic parameters. The score is applied to clinically stable patients with pericardial effusion to quantify the necessity of pericardial effusion drainage. A stepwise, pathway-based approach to the management of pericardial disease is intended to provide guidance for clinicians in decision-making and a patient-tailored evidence-based approach to medical and surgical therapy for pericardial disease. The pathway for the management of pericardial disease is the ninth project to be incorporated into the "Advanced Cardiac Admission Program" at Saint Luke's Roosevelt Hospital Center of Columbia University in New York. Further studies should focus on the validation of the feasibility, efficacy, and reliability of this pathway.

  7. Presumed hydrochlorothiazide-associated immunologic-hypersensitivity-induced pericardial effusion

    Directory of Open Access Journals (Sweden)

    Michael J Chaskes

    2013-08-01

    Full Text Available A 50-year-old Caucasian female presented for a second opinion regarding a newly diagnosed pericardial effusion. Seven months previously, hydrochlorothiazide was introduced into her pharmacologic regimen to aid in the management of her hypertension. A routine echocardiogram indicated a large pericardial effusion with signs of early cardiac tamponade. The patient subsequently underwent successful pericardiocentesis with complete drainage of the pericardial effusion. The effusion was empirically attributed to a viral etiology. Repeat echocardiograms showed recurrence of the pericardial effusion. Prior to undergoing a second pericardiocentesis with pericardial biopsy, as her physicians recommended, the patient sought a second opinion. While obtaining the patient’s history, an allergy to sulfa was elicited. The possibility that the pericardial effusion may be secondary to an immunologic-hypersensitivity reaction was considered. It was recommended the patient discontinue the use of hydrochlorothiazide. Nine days following discontinuation of hydrochlorothiazide and without any other intervention, an echocardiogram was reported to show the size of the pericardial effusion had subsided substantially. Nine weeks following discontinuation, almost complete resolution of the pericardial effusion was reported. It is hypothesized that when treated with hydrochlorothiazide, the patient had an immune response leading to the pericardial effusion.

  8. Predictors of Pericardial Effusion in Patients Undergoing Pulmonary Artery Banding.

    Science.gov (United States)

    Noma, Mio; Matsubara, Muneaki; Tokunaga, Chiho; Nakajima, Tomomi; Mathis, Bryan James; Sakamoto, Hiroaki; Hiramatsu, Yuji

    2018-03-01

    Although pulmonary artery banding (PAB) is a common palliative procedure for pediatric heart malformation, there are concerns of pressure overload and concomitant immune reactions in the right ventricle causing postsurgical complications such as pericardial effusion. At this time, no clear guidelines as to potential risk factors or procedural contraindications have been widely disseminated. Therefore, a study was undertaken to examine wide-ranging factors to find potential biomarkers for postsurgical pericardial effusion formation risk. A retrospective study was conducted on all cardiac surgeries performed over an eight-year period, and the main inclusion criterion was pericardial effusion development after PAB that required surgical drainage. Nine cases were then analyzed against a control group of 45 cases with respect to body measurements, concomitant surgeries, genetic screens, laboratory tests results, and cardiac function parameters. Trisomy 21 was strongly associated with the development of severe pericardial effusion after PAB, and postoperative serum albumin levels in patients with trisomy 21 were associated with pericardial effusion development. Other parameters showed no significant correlation with pericardial effusion development. Our data indicate a strong association between trisomy 21 and pericardial effusion requiring drainage after PAB, which is in line with translational research findings. Pressure overload from PAB may play a role in the formation of severe pericardial effusion that is exacerbated by cardiac structural defects commonly associated with trisomy 21. Surgical teams should therefore use caution and plan to implement drainage in PAB cases, and postoperative serum albumin may serve as a useful biomarker for pericardial effusion formation.

  9. Anticardiac Antibodies in Patients with Chronic Pericardial Effusion

    Directory of Open Access Journals (Sweden)

    Konstantinos Karatolios

    2016-01-01

    Full Text Available Objectives. Chronic pericardial effusion may be challenging in terms of diagnosis and treatment. Specific laboratory parameters predicting the frequency and severity of recurrences after initial drainage of pericardial effusion are lacking. Materials and Methods. Pericardial fluid (PF and serum (SE samples from 30 patients with chronic pericardial effusion (PE who underwent pericardiocentesis and pericardioscopically guided pericardial biopsy were compared with SE and PF samples from 26 control patients. The levels of antimyolemmal (AMLA and antifibrillary antibodies (AFA in PE and SE from patients with pericardial effusion as well as PF and SE from controls were determined and compared. Results. AMLAs and AFAs in PF and SE were significantly higher in patients with chronic pericardial effusion than in the control group (AMLAs: p = 0,01 for PF and p = 0,004 for serum; AFAs: p < 0,001 for PF and p = 0,003 for serum. Patients with recurrence of PE within 3 months after pericardiocentesis had significantly higher levels of AMLAs in SE (p = 0,029 than patients without recurrence of PE. Conclusions. The identification of elevated anticardiac antibodies in PE and SE indicates increased immunological reactivity in chronic pericardial effusion. High titer serum levels of AMLAs also correlate with recurrence of pericardial effusion.

  10. Pericardial effusion following cardiac surgery. A single-center experience.

    Science.gov (United States)

    Nguyen, Hien Sinh; Nguyen, Hung Doan-Thai; Vu, Thang Duc

    2018-01-01

    Background Pericardial effusion is still a common postoperative complication after open heart surgery with cardiopulmonary bypass. Pericardial effusion significantly prolongs the hospital stay and associated costs as well as affecting overall outcomes after open heart surgery in Hanoi Heart Hospital, a tertiary hospital in Vietnam with an annual volume of 1000 patients. This study aimed to investigate the clinical presentation, incidence, and risk factors of postoperative pericardial effusion, which may ensure better prevention of pericardial effusion and improvement in surgical outcomes after open heart surgery. Methods A cross-sectional study was performed on 1127 patients undergoing open heart surgery from January 2015 to December 2015. Results Thirty-six (3.19%) patients developed pericardial effusion. Of these, 16 (44.4%) had cardiac tamponade. Pericardial effusion occurred after valve procedures in 77.8% of cases. Pericardial effusion was detected after discharge in 47.2% of cases at a mean time of 18.1 ± 13.7 days. Univariate logistic regression analysis showed that age > 25 years, body surface area ≥ 1.28 m 2 , preoperative liver dysfunction, New York Heart Association class III/IV, left ventricular end-diastolic diameter z score ≥ 0.55, and postoperative anticoagulant use were associated with postoperative pericardial effusion. Multivariate logistic regression analysis showed that left ventricular end-diastolic diameter z score ≥ 0.55 was an independent risk factor for postoperative pericardial effusion. Conclusions Routine postoperative echocardiography is necessary to detect postoperative pericardial effusion. Increased left ventricular end-diastolic dimension is an independent predictor of postoperative pericardial effusion.

  11. Advancing biomaterials of human origin for tissue engineering

    Science.gov (United States)

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  12. Large pericardial effusion induced by minoxidil.

    Science.gov (United States)

    Çilingiroğlu, Mehmet; Akkuş, Nuri; Sethi, Salil; Modi, Kalgi A

    2012-04-01

    A 53-year-old male admitted with increased shortness of breath. In the physical examination, he had dyspnea, tachycardia and tachypnea. An echocardiogram showed large pericardial effusion (PE) as well as significant pulmonary hypertension. He had been started recently on minoxidil for blood pressure control. PE was reported to occur with minoxidil treatment both in patients undergoing dialysis and those with normal renal function. Pulmonary hypertension has been reported to affect the cardiac tamponade physiology. Because of significant pulmonary hypertension in our patient, a right heart catheterization was also done, which prevented cardiac tamponade. He was treated conservatively without any intervention, and PE resolved spontaneously after discontinuation of minoxidil.

  13. A case of tuberculous pericardial effusion

    Directory of Open Access Journals (Sweden)

    Wanjari K

    2009-01-01

    Full Text Available Tuberculosis accounts for up to 4% of acute pericarditis and 7% cases of cardiac tamponade. Prompt treatment can be life saving but requires accurate diagnosis. We report a case of 30-year-old male who presented with fever, chills, and dry nonproductive cough since one month. The case was diagnosed by radiological findings, which were suggestive of pulmonary tuberculosis, followed by acid fast staining and culture of the aspirated pericardial fluid. The patient was responding to antitubercular treatment at the last follow up.

  14. Emergent radiologically guided drainage of large pericardial effusions

    International Nuclear Information System (INIS)

    Hartz, W.H.; Gatenby, R.A.; Kessler, H.B.

    1987-01-01

    The authors drained eight pericardial effusions on an emergency basis because of profound symptoms of pericardial tamponade. The etiology of the pericardial was metastatic disease in all eight cases. US of the subxyphoid region allowed definition of an optimal percutaneous approach. The pericardium was initially punctured with a 22-gauge needle, followed by tract dilation over a wire, which allowed ultimate placement of either an 8.4-F or 10-F nephrostomy catheter. Some 500 - 1,500 ml of bloody fluid drained from the pericardial space within minutes, and a total of 2 - 4 L over the next 4 days. No significant arrhythmias or immediate hypotensive episodes were observed. Six of the patients were successfully treated with sclerosis of the pericardium by injection of tetracyline into the pericardial catheter before it was removed. No recurrent effusions have been observed in any of these patients. Two patients died, one of unsuspected cerebral edema and uncal herniation and one of intractable congestive heart failure. At autopsy, the pericardial catheter was properly positioned with no significant remaining fluid. Echocardiograms were falsely normal in two patients, but CT findings were uniformly diagnostic. Radiologically guided drainage of large pericardial effusions appears to be a safe and effective technique for the treatment of pericardial tamponade from metastatic effusions. This technique is an alternative to the usual surgical intervention and does not require general anesthesia

  15. Echocardiography in helping to determine the causes of pericardial ...

    African Journals Online (AJOL)

    Pericardial disease is not uncommon in Sudan and the etiology may impose a diagnostic problem. The aim of this study is to determine the etiology of isolated pericardial effusion and to assess the usefulness of the echocardiographic features of the effusion in helping to determine the etiology. Patients and Methods:This is ...

  16. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  17. Massive pericardial effusion associated with hypothyroidism.

    Science.gov (United States)

    Ionescu, Simona Daniela; Tănase, Daniela Maria; Ouatu, Anca; Ambăruş, V; Dosa, Anca; Arsenescu-Georgescu, Cătălina

    2014-01-01

    The diagnosis of hypothyroidism is difficult because hypothyroidism in adults and especially the elderly, classic, has an insidious onset with a range of nonspecific symptoms which may delay diagnosis for months or even years. Old age seems to represent trigger factor for autoimmune diseases, including hypothyroidism. Clinical features in hypothyroidism, such as weight gain, fatigue, cold intolerance, constipation, dry skin, edema and muscle weakness, and decreased osteo-tendinous reflexes are usually subtle and can be overlooked. Thyroid dysfunction may be associated with a negative impact on the cardiovascular system. Pericardial, pleural and peritoneal effusions are common findings in hypothyroidism. This case report represents a typical primary hypothyroidism (autoimmune) and shows the clinical features of this disease. Basically we talked about a severe myxedema with the involvement of internal organs in an elderly woman and the euthyroidism restoration, under thyroid replacement therapy, was correlated with the clinical improvement and cardiovascular and neurological status, with radiographic remission and regression to extinction of pericardial effusion at repeated echocardiographic evaluations.

  18. Biomaterials and their applications

    CERN Document Server

    Reza Rezaie, Hamid; Öchsner, Andreas

    2015-01-01

    This short book presents an overview of different types of biomaterial such as bio ceramics, bio polymers, metals and bio composites, while especially focusing on nano biomaterials and their applications in different tissues. It provides a compact introduction to nano materials for drug delivery systems, tissue engineering and implants, while also reviewing essential trends in the biomaterial field over the last few decades and the latest developments.

  19. An introduction to biomaterials

    CERN Document Server

    Hollinger, Jeffrey O

    2011-01-01

    Consensus Definitions, Fundamental Concepts, and a Standardized Approach to Applied Biomaterials Sciences, J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Wound Healing BiologyCutaneous Wound Pathobiology: Raison d'etre for Tissue Engineering, L.K. Macri and R.A.F. ClarkOsseous Wound Healing, A. Nawab, M. Wong, D. Kwak, L. Schutte, A. Sharma, and J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Cellular MechanicsCell and Tissue Mechanobiology, W. Guo, P. Alvarez, and Y. WangBiology, Biomechanics, Biomaterial Interactions: Materials-Host InteractionsCell-Material In

  20. Biomaterials for MEMS

    CERN Document Server

    Chiao, Mu

    2011-01-01

    This book serves as a guide for practicing engineers, researchers, and students interested in MEMS devices that use biomaterials and biomedical applications. It is also suitable for engineers and researchers interested in MEMS and its applications but who do not have the necessary background in biomaterials.Biomaterials for MEMS highlights important features and issues of biomaterials that have been used in MEMS and biomedical areas. Hence this book is an essential guide for MEMS engineers or researchers who are trained in engineering institutes that do not provide the background or knowledge

  1. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Andrea Porzionato

    2015-07-01

    Full Text Available Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.

  2. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.

    Science.gov (United States)

    Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R

    2017-05-01

    Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Obtaining liver tridimensional scaffold through the decellularization of rabbit whole liver in 24 hours

    Science.gov (United States)

    Federico, Schliamser; Ayelen, Rinaldi; Romina, Comin; Alba Nelly, Borchert; Adrian, Nari Gustavo; Alicia, Salvatierra Nancy; Mariana Paula, Cid

    2016-04-01

    In the present work, we development a new protocol for liver decellularization in which the hole decellularization was reached over 24 h. Introduction: the availability of transplantable livers is not sufficient to fulfill the current demand for grafts, with the search for therapeutic alternatives having generated different lines of research, one of which is the use of decellularized three-dimensional biological matrices and subsequent cell seeding to obtain a functional organ. Objective: to produce a decellularization protocol from rabbit liver to generate a three-dimensional matrixin which the time period involved didn't pass 24 h. Methods: The decellularization is obtained through the use of water and SDS (0,1-0,3 %), after freezing at -80 degrees, is the best alternative of different physical and/or chemical mechanisms to break down organ cells and leave only the extracellular matriz. After 24 h of retrograde perfusion, a decellularized translucent matrix was generated. To evaluate if the decellularization protocol was successful, with the extracellular matrix being preserved, we carried out histological (light microscopy) and biochemical (DNA quantification) studies. Results: the decellularization process was verified by macroscopic observation of the organ using microscopic observation corroborated the macroscopic results, with the hematoxylin-eosin and Masson staining showing no cells or nuclear material. In addition, the DNA quantification was less than 10% in the decellularized liver compared to control. Finally,the time taken to develop the decellularization protocol was less than 24 hours.

  4. Obtaining liver tridimensional scaffold through the decellularization of rabbit whole liver in 24 hours

    International Nuclear Information System (INIS)

    Federico, Schliamser; Ayelen, Rinaldi; Romina, Comin; Alicia, Salvatierra Nancy; Paula, Cid Mariana; Nelly, Borchert Alba; Adrian, Nari Gustavo

    2016-01-01

    In the present work, we development a new protocol for liver decellularization in which the hole decellularization was reached over 24 h. Introduction: the availability of transplantable livers is not sufficient to fulfill the current demand for grafts, with the search for therapeutic alternatives having generated different lines of research, one of which is the use of decellularized three-dimensional biological matrices and subsequent cell seeding to obtain a functional organ. Objective: to produce a decellularization protocol from rabbit liver to generate a three-dimensional matrixin which the time period involved didn't pass 24 h. Methods: The decellularization is obtained through the use of water and SDS (0,1-0,3 %), after freezing at -80 degrees, is the best alternative of different physical and/or chemical mechanisms to break down organ cells and leave only the extracellular matriz. After 24 h of retrograde perfusion, a decellularized translucent matrix was generated. To evaluate if the decellularization protocol was successful, with the extracellular matrix being preserved, we carried out histological (light microscopy) and biochemical (DNA quantification) studies. Results: the decellularization process was verified by macroscopic observation of the organ using microscopic observation corroborated the macroscopic results, with the hematoxylin-eosin and Masson staining showing no cells or nuclear material. In addition, the DNA quantification was less than 10% in the decellularized liver compared to control. Finally,the time taken to develop the decellularization protocol was less than 24 hours. (paper)

  5. Radiation-related pericardial effusions in patients with Hodgkin's disease

    International Nuclear Information System (INIS)

    Ruckdeschel, J.C.; Chang, P.; Martin, R.G.; Byhardt, R.W.; O'Connell, M.J.; Sutherland, J.C.; Wiernik, P.H.

    1975-01-01

    Pericardial effusions following radiotherapy for Hodgkins Disease have previously been described as infrequent and related to the total dose of radiation received. Analysis of all chest x-rays on 81 patients who received upper-mantle radiotherapy for Hodgkins Disease at the Baltimore Cancer Research Center between 1968 and 1972 disclosed an incidence of pericardial effusions of 30.9% (25 of 81), with 13.6% (11 of 81) requiring limitation of activity (5) or pericardiectomy (6). Clinical presentation of radiation-related pericardial effusions was subtle, with signs and symptoms a late finding if they occurred. Radiotherapy data was reviewed and no difference in total dose (rads) or time-dose relationships (rets) was found between the groups who did or did not develop effusions. Analysis of multiple pre-treatment clinical and pathological characteristics disclosed four parameters that were felt to be related to the development of pericardial effusions; elevated ESR, normal absolute lymphocyte count, initial presence of extensive mediastinal adenopathy and the addition of adjuvant chemotherapy. The presence of increasing combinations of these pretreatment 'risk factors' led to an increasing likelihood of developing a radiation-related pericardial effusion such that six of seven patients with all four 'risk factors' developed a pericardial effusion. Nine of 13 clinically significanteffusions were associated with the addition of adjuvant chemotherapy. Possible pathogenetic mechanisms that include factors other than radiation dosage and the clinical management of radiation-related pericardial effusions are discussed

  6. Detection of pericardial inflammation with late-enhancement cardiac magnetic resonance imaging: initial results

    International Nuclear Information System (INIS)

    Taylor, Andrew M.; Dymarkowski, Steven; Bogaert, Jan; Verbeken, Eric K.

    2006-01-01

    To examine the value of late-enhancement cardiac magnetic resonance imaging (MRI) for detection of pericardial inflammation. Late-enhancement cardiac MRI was performed in 16 patients with clinical suspicion of pericardial disease. Pericardial effusion, pericardial thickening and pericardial enhancement were assessed. MRI findings were compared with those of definitive pericardial histology (n=14) or microbiology (n=2). A control group of 12 patients with no clinical evidence of pericardial disease were also imaged with the same MRI protocol. Sensitivity and specificity for late-enhancement MRI detection of pericardial inflammation was of 100%. There was MRI late enhancement of the pericardial layers in all five patients with histological/microbiological evidence of inflammatory pericarditis. MRI demonstrated no pericardial thickening and no MRI late enhancement with or without a pericardial effusion in any of the five patients with histological evidence of a normal pericardium. MRI detected pericardial thickening in the absence of both pericardial effusion and late enhancement in all six patients with histological evidence of chronic fibrosing pericarditis. The 12 control subjects showed no evidence of pericardial MRI late enhancement. These findings demonstrate that MRI late enhancement can be used to visualize pericardial inflammation in patients with clinical suspicion of pericardial disease. (orig.)

  7. Smart Radiation Therapy Biomaterials.

    Science.gov (United States)

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Pericardial disease and myocarditis: management guide

    International Nuclear Information System (INIS)

    Marin, Jorge E; Duque, Mauricio; Uribe, William; Medina, Eduardo

    2005-01-01

    Pericardium is a structure that can be primarily affected by a series of different agents and in a secondary way by systemic processes. Its response is not specific and in general it corresponds to an inflammatory process that can be acute, chronic or recurrent. The recognition of these pathologies is of vital significance in the making of a right therapeutic approach. Some basic orientations for the correct classification, diagnosis and therapy of main pericardial syndromes, based on clinical and etiological aspects and para clinical available aids are presented. Likewise, some recommendations for the specific treatment of each one of the main entities usually affecting the pericardium are given. Next, a brief mention of some pathophysiological aspects of acute myocarditis, its main etiologies, and the treatment of the cardiac failure secondary to the disease with its specific differences, is made, and the controversy on its handling with immuno suppressors and the experimental therapy measures are studied in depth

  9. FUNCTIONAL BIOMATERIALS: Design of Novel Biomaterials

    Science.gov (United States)

    Sakiyama-Elbert, Se; Hubbell, Ja

    2001-08-01

    The field of biomaterials has recently been focused on the design of intelligent materials. Toward this goal, materials have been developed that can provide specific bioactive signals to control the biological environment around them during the process of materials integration and wound healing. In addition, materials have been developed that can respond to changes in their environment, such as a change in pH or cell-associated enzymatic activity. In designing such novel biomaterials, researchers have sought not merely to create bio-inert materials, but rather materials that can respond to the cellular environment around them to improve device integration and tissue regeneration.

  10. Biomaterials for artificial organs

    CERN Document Server

    Lysaght, Michael J

    2010-01-01

    The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs. Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and ...

  11. Biomaterials and their applications

    Science.gov (United States)

    Sharma, Anu; Sharma, Gayatri

    2018-05-01

    There is a growing demand for novel biomaterials for the replacement and repairing of soft and hard tissues such as bones, cartilage and blood vessels, decaying teeth, arthritic hips, injured tissues or even entire organs. The main aim of biomaterial research is to find the appropriate combination of chemical and physical properties matched with tissues replaced in the host. It improves the quality of life. On increasing number of people each year with increasing demands on these materials with higher expectations related to quality of life arising from an aging population. Now a day there is an ever-increasing search for novel biomaterials as the material requirements for complex biomedical devices increases with time. Many materials such as metals, ceramics, polymers, and glasses are being investigated as biomaterials. They are very useful in various fields due to their excellent bioactivity and biocompatibility. This paper includes various eco-friendly biomaterials and their application in various fields.

  12. Untying the Gordian knot of pericardial diseases: A pragmatic approach

    Directory of Open Access Journals (Sweden)

    George Lazaros

    2016-09-01

    Full Text Available Pericardial disorders constitute a relatively common cause of heart disease. Although acute pericarditis, especially the idiopathic forms that are the most prevalent, is considered a benign disease overall, its short- and long-term complications, namely, recurrent pericarditis, cardiac tamponade and constrictive pericarditis, constitute a matter of concern in the medical community. In recent years, several clinical trials contributed to redefining our traditional approach to pericardial diseases. In this review, we provide the most recent evidence concerning diagnosis, treatment modalities and short- and long-term prognosis of the most common pericardial disorders.

  13. Discrete peritoneal and pericardial implants of non-Hodgkin lymphoma

    International Nuclear Information System (INIS)

    Eckel, C.G.; Davis, M.; Mettler, F.A. Jr.; Rosenberg, R.

    1987-01-01

    Peritoneal spread of non-Hodgkin lymphoma is rare: fewer than three percent of persons afflicted with this disease develop peritoneal spread. Pericardial involvement by non-Hodgkin lymphoma is equally rare. We report an instance of peritoneal and pericardial spread in a patient with non-Hodgkin lymphoma that was detected only by CT scan. The peritoneal lesions were not visible by ultrasound examination. A pertinent review of the literature is presented. (author)

  14. Living bacterial sacrificial porogens to engineer decellularized porous scaffolds.

    Directory of Open Access Journals (Sweden)

    Feng Xu

    Full Text Available Decellularization and cellularization of organs have emerged as disruptive methods in tissue engineering and regenerative medicine. Porous hydrogel scaffolds have widespread applications in tissue engineering, regenerative medicine and drug discovery as viable tissue mimics. However, the existing hydrogel fabrication techniques suffer from limited control over pore interconnectivity, density and size, which leads to inefficient nutrient and oxygen transport to cells embedded in the scaffolds. Here, we demonstrated an innovative approach to develop a new platform for tissue engineered constructs using live bacteria as sacrificial porogens. E.coli were patterned and cultured in an interconnected three-dimensional (3D hydrogel network. The growing bacteria created interconnected micropores and microchannels. Then, the scafold was decellularized, and bacteria were eliminated from the scaffold through lysing and washing steps. This 3D porous network method combined with bioprinting has the potential to be broadly applicable and compatible with tissue specific applications allowing seeding of stem cells and other cell types.

  15. Biofilm and Dental Biomaterials

    Directory of Open Access Journals (Sweden)

    Marit Øilo

    2015-05-01

    Full Text Available All treatment involving the use of biomaterials in the body can affect the host in positive or negative ways. The microbiological environment in the oral cavity is affected by the composition and shape of the biomaterials used for oral restorations. This may impair the patients’ oral health and sometimes their general health as well. Many factors determine the composition of the microbiota and the formation of biofilm in relation to biomaterials such as, surface roughness, surface energy and chemical composition, This paper aims to give an overview of the scientific literature regarding the association between the chemical, mechanical and physical properties of dental biomaterials and oral biofilm formation, with emphasis on current research and future perspectives.

  16. Biomaterials a basic introduction

    CERN Document Server

    Chen, Qizhi

    2014-01-01

    Part IBiomaterials ScienceBiomaterials Science and EngineeringLearning ObjectivesMaterials Science and EngineeringMultilevels of Structure and Categorization of MaterialsFour Categories of MaterialsDefinitions of Biomaterials, Biomedical Materials, and Biological MaterialsBiocompatibilityChapter HighlightsActivitiesSimple Questions in ClassProblems and ExercisesBibliographyToxicity and CorrosionLearning ObjectivesElements in the BodyBiological Roles and Toxicities of Trace ElementsSelection of Metallic Elements in Medical-Grade AlloysCorrosion of MetalsEnvironment inside the BodyMinimization of Toxicity of Metal ImplantsChapter HighlightsLaboratory Practice 1Simple Questions in ClassProblems and ExercisesAdvanced Topic: Biological Roles of Alloying ElementsBibliographyMechanical Properties of BiomaterialsLearning ObjectivesRole of Implant BiomaterialsMechanical Properties of General ImportanceHardnessElasticity: Resilience and StrechabilityMechanical Properties Terms Used in the Medical CommunityFailureEssent...

  17. Biomaterials in Artificial Organs.

    Science.gov (United States)

    Kambic, Helen E.; And Others

    1986-01-01

    Biomaterials are substances or combinations of substances that can be used in a system that treats, augments, or replaces any tissue, organ, or body function. The nature and role of these substances, particularly in the cadiovascular system, are discussed. (JN)

  18. [Biomaterials in bone repair].

    Science.gov (United States)

    Puska, Mervi; Aho, Allan J; Vallittu, Pekka K

    2013-01-01

    In orthopedics, traumatology, and craniofacial surgery, biomaterials should meet the clinical demands of bone that include shape, size and anatomical location of the defect, as well as the physiological load-bearing stresses. Biomaterials are metals, ceramics, plastics or materials of biological origin. In the treatment of large defects, metallic endoprostheses or bone grafts are employed, whereas ceramics in the case of small defects. Plastics are employed on the artificial joint surfaces, in the treatment of vertebral compression fractures, and as biodegradable screws and plates. Porosity, bioactivity, and identical biomechanics to bone are fundamental for achieving a durable, well-bonded, interface between biomaterial and bone. In the case of severe bone treatments, biomaterials should also imply an option to add biologically active substances.

  19. Designer biomaterials for mechanobiology

    Science.gov (United States)

    Li, Linqing; Eyckmans, Jeroen; Chen, Christopher S.

    2017-12-01

    Biomaterials engineered with specific bioactive ligands, tunable mechanical properties and complex architecture have emerged as powerful tools to probe cell sensing and response to physical properties of their material surroundings, and ultimately provide designer approaches to control cell function.

  20. Decellularized Human Dental Pulp as a Scaffold for Regenerative Endodontics.

    Science.gov (United States)

    Song, J S; Takimoto, K; Jeon, M; Vadakekalam, J; Ruparel, N B; Diogenes, A

    2017-06-01

    Teeth undergo postnatal organogenesis relatively late in life and only complete full maturation a few years after the crown first erupts in the oral cavity. At this stage, development can be arrested if the tooth organ is damaged by either trauma or caries. Regenerative endodontic procedures (REPs) are a treatment alternative to conventional root canal treatment for immature teeth. These procedures rely on the transfer of apically positioned stem cells, including stem cells of the apical papilla (SCAP), into the root canal system. Although clinical success has been reported for these procedures, the predictability of expected outcomes and the organization of the newly formed tissues are affected by the lack of an available suitable scaffold that mimics the complexity of the dental pulp extracellular matrix (ECM). In this study, we evaluated 3 methods of decellularization of human dental pulp to be used as a potential autograft scaffold. Tooth slices of human healthy extracted third molars were decellularized by 3 different methods. One of the methods generated the maximum observed decellularization with minimal impact on the ECM composition and organization. Furthermore, recellularization of the scaffold supported the proliferation of SCAP throughout the scaffold with differentiation into odontoblast-like cells near the dentinal walls. Thus, this study reports that human dental pulp from healthy extracted teeth can be successfully decellularized, and the resulting scaffold supports the proliferation and differentiation of SCAP. The future application of this form of an autograft in REPs can fulfill a yet unmet need for a suitable scaffold, potentially improving clinical outcomes and ultimately promoting the survival and function of teeth with otherwise poor prognosis.

  1. Tissue engineering by decellularization and 3D bioprinting

    OpenAIRE

    Garreta, Elena; Oria, Roger; Tarantino, Carolina; Pla Roca, Mateu; Prado, Patricia; Fernández Avilés, Francisco; Campistol Plana, Josep M.; Samitier i Martí, Josep; Montserrat, Núria

    2017-01-01

    Discarded human donor organs have been shown to provide decellularized extracellular matrix (dECM) scaffolds suitable for organ engineering. The quest for appropriate cell sources to satisfy the need of multiple cells types in order to fully repopulate human organ-derived dECM scaffolds has opened new venues for the use of human pluripotent stem cells (hPSCs) for recellularization. In addition, three-dimensional (3D) bioprinting techniques are advancing towards the fabrication of biomimetic c...

  2. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    OpenAIRE

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental p...

  3. Biomaterials for Tissue Engineering

    Science.gov (United States)

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  4. Preparation of a three-dimensional extracellular matrix by decellularization of rabbit livers

    Directory of Open Access Journals (Sweden)

    Gustavo A. Nari

    2013-03-01

    Full Text Available Introduction: the availability of transplantable livers is not sufficient to fulfill the current demand for grafts, with the search for therapeutic alternatives having generated different lines of research, one of which is the use of decellularized three-dimensional biological matrices and subsequent cell seeding to obtain a functional organ. Objective: to produce a decellularization protocol from rabbit liver to generate a three-dimensional matrix. Methods: a combination of physical, chemical (Triton X-100 and SDS and enzymatic agents to decellularize rabbit livers was used. After 68 h of retrograde perfusion, a decellularized translucent matrix was generated. To evaluate if the decellularization protocol was successful, with the extracellular matrix being preserved, we carried out histological (light microscopy and scanning electron microscopy and biochemical (DNA quantification studies. Results: the decellularization process was verified by macroscopic observation of the organ using macroscopic staining, which revealed a correct conservation of bile and vascular trees. A microscopic observation corroborated these macroscopic results, with the hematoxylin-eosin staining showing no cells or nuclear material and the presence of a portal triad. Wilde's staining demonstrated the conservation of reticulin fibers in the decellularized matrix. In addition, scanning electron microscopy revealed a preserved Glisson's capsule and a decellularized matrix, with the DNA quantification being less than 10 % in the decellularized liver compared to control. Finally, the time taken to develop the decellularization protocol was less than 96 hours. Conclusions: the proposed decellularization protocol was correct, and was verified by an absence of cells. The hepatic matrix had preserved vascular and bile ducts with a suitable three-dimensional architecture permitting further cell seeding.

  5. Construction of Thymus Organoids from Decellularized Thymus Scaffolds.

    Science.gov (United States)

    Tajima, Asako; Pradhan, Isha; Geng, Xuehui; Trucco, Massimo; Fan, Yong

    2016-10-12

    One of the hallmarks of modern medicine is the development of therapeutics that can modulate immune responses, especially the adaptive arm of immunity, for disease intervention and prevention. While tremendous progress has been made in the past decades, manipulating the thymus, the primary lymphoid organ responsible for the development and education of T lymphocytes, remains a challenge. One of the major obstacles is the difficulty to reproduce its unique extracellular matrix (ECM) microenvironment that is essential for maintaining the function and survival of thymic epithelial cells (TECs), the predominant population of cells in the thymic stroma. Here, we describe the construction of functional thymus organoids from decellularized thymus scaffolds repopulated with isolated TECs. Thymus decellularization was achieved by freeze-thaw cycles to induce intracellular ice crystal formation, followed by detergent-induced cell lysis. Cellular debris was removed with extensive wash. The decellularized thymus scaffolds can largely retain the 3D extracellular matrix (ECM) microenvironment that can support the recolonization of TECs. When transplanted into athymic nude mice, the reconstructed thymus organoids can effectively promote the homing of bone marrow-derived lymphocyte progenitors and support the development of a diverse and functional T cell repertoire. Bioengineering of thymus organoids can be a promising approach to rejuvenate/modulate the function of T-cell mediated adaptive immunity in regenerative medicine.

  6. Traumatic Mitral Valve and Pericardial Injury

    Directory of Open Access Journals (Sweden)

    Nissar Shaikh

    2013-01-01

    Full Text Available Cardiac injury after blunt trauma is common but underreported. Common cardiac trauma after the blunt chest injury (BCI is cardiac contusion; it is very rare to have cardiac valve injury. The mitral valve injury during chest trauma occurs when extreme pressure is applied at early systole during the isovolumic contraction between the closure of the mitral valve and the opening of the aortic valve. Traumatic mitral valve injury can involve valve leaflet, chordae tendineae, or papillary muscles. For the diagnosis of mitral valve injury, a high index of suspicion is required, as in polytrauma patients, other obvious severe injuries will divert the attention of the treating physician. Clinical picture of patients with mitral valve injury may vary from none to cardiogenic shock. The echocardiogram is the main diagnostic modality of mitral valve injuries. Patient’s clinical condition will dictate the timing and type of surgery or medical therapy. We report a case of mitral valve and pericardial injury in a polytrauma patient, successfully treated in our intensive care unit.

  7. Modification of Rat Lung Decellularization Protocol Based on Dynamic Conductometry of Working Solution.

    Science.gov (United States)

    Kuevda, E V; Gubareva, E A; Gumenyuk, I S; Sotnichenko, A S; Gilevich, I V; Nakokhov, R Z; Rusinova, T V; Yudina, T G; Red'ko, A N; Alekseenko, S N

    2017-03-01

    We modified the protocol of obtaining of biological scaffolds of rat lungs based on dynamic recording of specific resistivity of working detergent solution (conductometry) during perfusion decellularization. Termination of sodium deoxycholate exposure after attaining ionic equilibrium plateau did not impair the quality of decellularization and preserved structural matrix components, which was confirmed by morphological analysis and quantitative assay of residual DNA.

  8. Terminal sterilization of equine-derived decellularized tendons for clinical use

    International Nuclear Information System (INIS)

    Pellegata, Alessandro F.; Bottagisio, Marta; Boschetti, Federica; Ferroni, Marco; Bortolin, Monica; Drago, Lorenzo; Lovati, Arianna B.

    2017-01-01

    In the last few years, the demand for tissue substitutes has increased and decellularized matrices has been widely proposed in the medical field to restore severe damages thanks to high biocompatibility and biomechanical properties similar to the native tissues. However, biological grafts represent a potential source of contamination and disease transmission; thus, there is the need to achieve acceptable levels of sterility. Several sterilization methods have been investigated with no consensus on the outcomes in terms of minimizing structural damages and preserving functional features of the decellularized matrix for transplantation in humans. With the aim of making decellularized tendons safe for clinical use, we evaluated the cytocompatibility, and biochemical, structural and biomechanical variations of decellularized equine tendons sterilized with peracetic acid or β-irradiation and differently wet- or dry- stored at 4 °C or − 80 °C, respectively. Considering that both sterilization and long-term storage are crucial steps that could not be avoided, our results pointed at ionizing β-rays as terminal sterilization method for decellularized grafts followed by frozen dry storage. Indeed, this approach can maintain the integrity of collagen-based structures and can avoid biomechanical changes, thus making xenogeneic decellularized tendons a promising candidate for clinical use. - Highlights: • A decellularized tendon matrix has been generated. • The sterility of the decellularized matrix is mandatory for transplantation. • β-irradiation and cold storage preserve the matrix structure and biomechanics.

  9. Terminal sterilization of equine-derived decellularized tendons for clinical use

    Energy Technology Data Exchange (ETDEWEB)

    Pellegata, Alessandro F. [Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Bottagisio, Marta [Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Via Riccardo Galeazzi 4, 20161 Milan (Italy); Boschetti, Federica; Ferroni, Marco [Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Bortolin, Monica [Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopaedic Institute, Via Riccardo Galeazzi 4, 20161 Milan (Italy); Drago, Lorenzo [Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopaedic Institute, Via Riccardo Galeazzi 4, 20161 Milan (Italy); Department of Biomedical Science for Health, University of Milan, via Luigi Mangiagalli 31, 20133 Milan (Italy); Lovati, Arianna B., E-mail: arianna.lovati@grupposandonato.it [Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Via Riccardo Galeazzi 4, 20161 Milan (Italy)

    2017-06-01

    In the last few years, the demand for tissue substitutes has increased and decellularized matrices has been widely proposed in the medical field to restore severe damages thanks to high biocompatibility and biomechanical properties similar to the native tissues. However, biological grafts represent a potential source of contamination and disease transmission; thus, there is the need to achieve acceptable levels of sterility. Several sterilization methods have been investigated with no consensus on the outcomes in terms of minimizing structural damages and preserving functional features of the decellularized matrix for transplantation in humans. With the aim of making decellularized tendons safe for clinical use, we evaluated the cytocompatibility, and biochemical, structural and biomechanical variations of decellularized equine tendons sterilized with peracetic acid or β-irradiation and differently wet- or dry- stored at 4 °C or − 80 °C, respectively. Considering that both sterilization and long-term storage are crucial steps that could not be avoided, our results pointed at ionizing β-rays as terminal sterilization method for decellularized grafts followed by frozen dry storage. Indeed, this approach can maintain the integrity of collagen-based structures and can avoid biomechanical changes, thus making xenogeneic decellularized tendons a promising candidate for clinical use. - Highlights: • A decellularized tendon matrix has been generated. • The sterility of the decellularized matrix is mandatory for transplantation. • β-irradiation and cold storage preserve the matrix structure and biomechanics.

  10. Optimizing Perfusion-Decellularization Methods of Porcine Livers for Clinical-Scale Whole-Organ Bioengineering

    Directory of Open Access Journals (Sweden)

    Qiong Wu

    2015-01-01

    Full Text Available Aim. To refine the decellularization protocol of whole porcine liver, which holds great promise for liver tissue engineering. Methods. Three decellularization methods for porcine livers (1% sodium dodecyl sulfate (SDS, 1% Triton X-100 + 1% sodium dodecyl sulfate, and 1% sodium deoxycholate + 1% sodium dodecyl sulfate were studied. The obtained liver scaffolds were processed for histology, residual cellular content analysis, and extracellular matrix (ECM components evaluation to investigate decellularization efficiency and ECM preservation. Rat primary hepatocytes were seeded into three kinds of scaffold to detect the biocompatibility. Results. The whole liver decellularization was successfully achieved following all three kinds of treatment. SDS combined with Triton had a high efficacy of cellular removal and caused minimal disruption of essential ECM components; it was also the most biocompatible procedure for primary hepatocytes. Conclusion. We have refined a novel, standardized, time-efficient, and reproducible protocol for the decellularization of whole liver which can be further adapted to liver tissue engineering.

  11. Primary Pericardial Mesothelioma: Report of a Patient and Literature Review

    Directory of Open Access Journals (Sweden)

    Åse Nilsson

    2009-07-01

    Full Text Available Primary mesothelioma of the pericardium is a rare tumor and carries a dismal prognosis. This case report presents a 38-year-old man who suffered from recurrent pericardial fluid. Initial symptoms were unspecific, with dry cough and progressing fatigue. Pericardiocentesis was performed, but analyses for malignant cells and tuberculosis were negative. After recurrence a pericardiectomy was planned. At operation, partial resection of tumor tissue surrounding the heart was performed. Histopathologic examination including immunohistochemical staining for calretinin showed a biphasic mesothelioma. During the postoperative period the patient’s condition ameliorated, but symptoms recurred and the patient died 3 months after diagnosis and 15 months after the first symptoms. At autopsy, the pericardium was transformed by the tumor that also expanded into the mediastinum and had set metastases to the liver. A review of 29 cases presented in the recent literature indicates a higher incidence of malignant pericardial mesothelioma among men than women. Median age was 46 (range, 19–76 years. In pleural mesotheliomas, exposure to asbestos is a known risk factor. However, in primary pericardial mesotheliomas the evidence for asbestos as an etiologic factor seems to be less convincing (3 exposed among 14 cases. Symptoms are often unspecific and cytologic examination of pericardial fluid is seldom conclusive (malignant cells demonstrated in 4/17 cases. Partial resection of the tumor can give a period of symptom reduction. Only a few patients have been treated with chemotherapy. Median survival of patients with pericardial mesotheliomas is approximately 6 months.

  12. Performance and morphology of decellularized pulmonary valves implanted in juvenile sheep.

    Science.gov (United States)

    Quinn, Rachael W; Hilbert, Stephen L; Bert, Arthur A; Drake, Bill W; Bustamante, Julie A; Fenton, Jason E; Moriarty, Sara J; Neighbors, Stacy L; Lofland, Gary K; Hopkins, Richard A

    2011-07-01

    Because of cryopreserved heart valve-mediated immune responses, decellularized allograft valves are an attractive option in children and young adults. The objective of this study was to investigate the performance and morphologic features of decellularized pulmonary valves implanted in the right ventricular outflow tract of juvenile sheep. Right ventricular outflow tract reconstructions in juvenile sheep (160±9 days) using cryopreserved pulmonary allografts (n=6), porcine aortic root bioprostheses (n=4), or detergent/enzyme-decellularized pulmonary allografts (n=8) were performed. Valve performance (echocardiography) and morphologic features (gross, radiographic, and histologic examination) were evaluated 20 weeks after implantation. Decellularization reduced DNA in valve cusps by 99.3%. Bioprosthetic valves had the largest peak and mean gradients versus decellularized valves (p=0.03; p<0.001) and cryopreserved valves (p=0.01; p=0.001), which were similar (p=0.45; p=0.40). Regurgitation was minimal and similar for all groups (p=0.16). No cusp calcification was observed in any valve type. Arterial wall calcification was present in cryopreserved and bioprosthetic grafts but not in decellularized valves. No autologous recellularization or inflammation occurred in bioprostheses, whereas cellularity progressively decreased in cryopreserved grafts. Autologous recellularization was present in decellularized arterial walls and variably extending into the cusps. Cryopreserved and decellularized graft hemodynamic performance was comparable. Autologous recellularization of the decellularized pulmonary arterial wall was consistently observed, with variable cusp recellularization. As demonstrated in this study, decellularized allograft valves have the potential for autologous recellularization. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials.

    Science.gov (United States)

    Modulevsky, Daniel J; Cuerrier, Charles M; Pelling, Andrew E

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6-9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson's Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial.

  14. Viscoelasticity of biomaterials

    International Nuclear Information System (INIS)

    Glasser, W.G.; Hatakeyama, H.

    1992-01-01

    Viscoelasticity of Biomaterials is divided into three sections. The first offers a materials design lesson on the architectural arrangement of biopolymers in collagen. Included also are reviews on solution properties of polysacchardies, chiral and liquid crystalline solution characteristics of cellulose derivatives, and viscoelastic properties of wood and wood fiber reinforced thermoplastics. The second section, Biogels and Gelation, discusses the molecular arrangements of highly hydrated biomaterials such as mucus, gums, skinlike tissue, and silk fibroin. The physical effects that result from the transition from a liquid to a solid state are the subject of the third section, which focuses on relaxation phenomena. Gel formation, the conformation of domain structures, and motional aspects of complex biomaterials are described in terms of recent experimental advances in various fields. A relevant chapter on the effects of ionizing radiation on connective tissue is abstracted separately

  15. Bone substitute biomaterials

    CERN Document Server

    Mallick, K

    2014-01-01

    Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for medical applications. One chapter reviews the quantification of bone mechanics at the whole-bone, micro-scale, and non-scale levels, while others discuss biomineralization, osteoductivization, materials to fill bone defects, and bioresorbable materials. Part II focuses on biomaterials as scaffolds and implants, including multi-functional scaffolds, bioceramics, and titanium-based foams. Finally, Part III reviews further materials with the potential to encourage bone repair and regeneration, including cartilage grafts, chitosan, inorganic poly...

  16. Advanced biomaterials and biodevices

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    Biomaterials are the fastest-growing emerging field of  biodevices. Design and development of biomaterials play a significant role in the diagnosis, treatment, and prevention of diseases. Recently, a variety of scaffolds/carriers have been evaluated for tissue regeneration, drug delivery, sensing and imaging.  Liposomes and microspheres have been developed for sustained delivery. Several anti-cancer drugs have been successfully formulated using biomaterial. The targeting of drugs to certain physiological sites has emerged as a promising tool in the treatment with improved drug bioavailability and reduction of dosing frequency. Biodevices-based targeting of drugs may improve the therapeutic success by limiting the adverse drug effects and resulting in more patient compliance and attaining a higher adherence level. Advanced biodevices hold merit as a drug carrier with high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic substances, high stability, as well as the feasibility...

  17. [Primary Malignant Pericardial Mesothelioma;Report of a Case].

    Science.gov (United States)

    Ichikawa, Seiji; Murakami, Fumihiko; Ogiwara, Hiroaki

    2018-02-01

    A 69-year-old male was referred to our hospital after being diagnosed as having pericarditis with pericardial effusion. The symptoms of tamponade disappeared after the effusion was drained;although the cause of pericarditis remained unidentified. About 4 months later, the tamponade symptoms recurred due to the thickened nodular pericardium. Partial pericardiectomy was performed, however the patient died on the 52nd day after surgery. Immunohistological examination with calretinin led to the diagnosis of primary malignant pericardial mesothelioma, which was an extremely rare pathology. Because the hyaluronic acid content of the effusion has been reported as a diagnostic aid for malignant mesothelioma, routine examination of the hyaluronic acid content for pericarditis with pericardial effusion may be necessary for early diagnosis and to improve prognosis.

  18. Biomaterials and therapeutic applications

    Science.gov (United States)

    Ferraro, Angelo

    2016-03-01

    A number of organic and inorganic, synthetic or natural derived materials have been classified as not harmful for the human body and are appropriate for medical applications. These materials are usually named biomaterials since they are suitable for introduction into living human tissues of prosthesis, as well as for drug delivery, diagnosis, therapies, tissue regeneration and many other clinical applications. Recently, nanomaterials and bioabsorbable polymers have greatly enlarged the fields of application of biomaterials attracting much more the attention of the biomedical community. In this review paper I am going to discuss the most recent advances in the use of magnetic nanoparticles and biodegradable materials as new biomedical tools.

  19. PERICARDIAL MESOTHELIOMA WITH THROMBOVASCULAR COMPLICATIONS (CASE FROM PRACTICE

    Directory of Open Access Journals (Sweden)

    N. Yu. Karpova

    2017-01-01

    Full Text Available Primary mesothelioma of the pericardium is a rare heart tumor with a difficult diagnosis, revealed in vivo in less than a quarter of cases. The disease occurs at any age, more common in men and variably exhibits a broad spectrum of non-specific symptoms of congestive heart failure, constrictive pericarditis, pericardial effusion or cardiac tamponade. Patients are usually observed with peripheral edema, ascites, dyspnea, cough, chest pain and atrial fibrillation. Such symptoms, in the absence of cancer alertness, are erroneously attributed by doctors to more common cardiovascular diseases. As a result, primary mesothelioma is detected in 75-90% of cases only at necropsy. The article describes a case of detection at autopsy of primary pericardial mesothelioma sarcomatous type with invasion into the myocardium in a patient of 74 years old. The patient also suffered from concomitant coronary artery disease with a long history of chronic heart failure and recurrent pulmonary embolism, associated with deep vein thrombosis at the final stage of the disease. An objective study revealed signs of chronic heart failure. The laboratory data included mild iron deficiency anemia, insignificant leukocytosis and leukocyturia, as well as signs of moderate chronic kidney disease. Instrumental results corresponded to long-term course of hypertension, signs of congestive heart failure in the presence of atrial fibrillation, atherosclerosis of lower limbs arteries in patient with abdominal obesity. Thus, there were no clinical signs of pericardial damage in a standard examination of the patient. The article describes the complexity of the disease diagnosis, variable clinical picture, as well as the diagnostic value of various instrumental methods from the perspective of evidence-based medicine. It is noted that clinical alertness is still the most important factor in the lifetime diagnosis of pericardial mesothelioma. Disease should be considered in patients with

  20. Newly diagnosed primary hypothyroidism applicant with massive pericardial effusion and acute renal failure

    Directory of Open Access Journals (Sweden)

    Ates I

    2016-01-01

    Full Text Available Objective. While non-symptomatic pericardial effusion is seen in primary hypothyroidism, massive pericardial effusion is a very rare finding. In the literature, newly diagnosed primary hypothyroidism cases presenting with massive pericardial effusion or acute renal failure are present, but we did not encounter any case first presenting with combination of two signs. In this case report, primary hypothyroidism case that presenting with massive pericardial effusion and acute renal failure will be discussed.

  1. Pericardial Tamponade in an Adult Suffering from Acute Mumps Infection

    Directory of Open Access Journals (Sweden)

    Sascha Kahlfuss

    2016-01-01

    Full Text Available Here, we report a case of a 51-year-old man with acute pericardial tamponade requiring emergency pericardiocentesis after he suffered from sore throat, headache, malaise, and sweats for two weeks. Serological analyses revealed increased mumps IgM and IgG indicating an acute mumps infection whereas other bacterial and viral infections were excluded. In addition, MRI revealed atypical swelling of the left submandibular gland. Whereas mumps has become a rare entity in children due to comprehensive vaccination regimens in western civilizations, our case highlights mumps as an important differential diagnosis also in adults, where the virus can induce life-threatening complications such as pericardial tamponade.

  2. Decellularized ovine arteries as small-diameter vascular grafts

    International Nuclear Information System (INIS)

    Mancuso, L; Cao, G; Gualerzi, A; Boschetti, F; Loy, F

    2014-01-01

    Atherosclerosis and its complications still represent the leading cause of death in the developed countries. While autologous blood vessels may be regarded as the best solution for peripheral and coronary bypass, they are unavailable in most patients. Even though tissue engineering techniques are often applied to the development of small-diameter vascular grafts, limiting factors of this approach are represented by the lack of essential extracellular matrix proteins and/or poor biomechanical properties of the scaffolds used. Along these lines, the aim of this study was to develop a decellularization protocol for ovine carotids to be used as suitable small-diameter vascular grafts. Samples were treated either with sodium dodecyl sulphate (SDS) or with Trypsin and Triton X-100; a final nuclease digestion was performed for both protocols. Morphological analyses demonstrate complete removal of nuclei and cellular components in treated vessels, also confirmed by significant reduction in wall thickness and DNA content. Essential extracellular matrix proteins such as collagen, elastin, and fibronectin are well preserved after decellularization. From a mechanical point of view, Trypsin and Triton X-100 treated arteries show elastic modules and compliance comparable to native carotids, whereas the use of SDS makes samples stiffer, with a significant decrease in the compliance mean value and an increase in longitudinal and circumferential Young’s modules. It is demonstrated that the treatment where Trypsin and Triton X-100 are combined guarantees complete decellularization of carotids, with no significant alteration of biomechanical and structural properties, thus preserving a suitable environment for adhesion, proliferation, and migration of cells. (paper)

  3. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  4. Biomaterials modification by ion beam

    International Nuclear Information System (INIS)

    Zhang Tonghe; Yi Zhongzhen; Zhang Xu; Wu Yuguang

    2001-01-01

    Ion beam technology is one of best ways for the modification of biomaterials. The results of ion beam modification of biomaterials are given. The method and results of improved biocompatibility are indicated by ion beam technology. The future development of ion beam modification of biomaterials is discussed

  5. Effectiveness of computed tomography attenuation values in characterization of pericardial effusion.

    Science.gov (United States)

    Çetin, Mehmet Serkan; Özcan Çetin, Elif Hande; Özdemir, Mustafa; Topaloğlu, Serkan; Aras, Dursun; Temizhan, Ahmet; Aydoğdu, Sinan

    2017-04-01

    The aim of this study was to evaluate the effectiveness of computed tomography (CT) attenuation values in the characterization of pericardial effusion. This study consisted of 96 patients with pericardial effusion who underwent pericardiocentesis. For further diagnostic evaluation of pericardial effusion, all the patients were assessed by thorax CT. CT attenuation values were measured from at least 5 different areas of pericardial fluid by specifying the largest region of interest. The average of these measurements was computed and considered as the CT attenuation value of the patient. The patients were classified into two groups: patients with transudative pericardial effusion and those with exudative pericardial effusion. CT attenuation values were significantly higher in patients with exudative pericardial effusion than in those with transudative pericardial effusion [14.85±10.7 Hounsfield unit (HU) vs. 1.13±4.3 HU, peffusion. In addition, a cut-off value of 6.5 HU had 71.4% sensitivity and 72.3% specificity for the prediction of cardiac tamponade. In patients with pericardial effusion, CT attenuation values seem to be correlated with the characterization parameters of the fluid and may distinguish exudative pericardial effusion from transudative pericardial effusion. This parameter was also found to be a predictor of cardiac tamponade. CT attenuation values can be a useful tool in the clinical evaluation of patients with pericardial effusion.

  6. Decellularization of Human Nasal Septal Cartilage for the Novel Filler Material of Vocal Fold Augmentation.

    Science.gov (United States)

    Kang, Dae-Woon; Shin, Sung-Chan; Jang, Jeon-Yeob; Park, Hee-Young; Lee, Jin-Choon; Wang, Soo-Geun; Lee, Byung-Joo

    2017-01-01

    The clinical application of allogenic and/or xenogenic cartilage for vocal fold augmentation requires to remove the antigenic cellular component. The objective of this study was to assess the effect of cartilage decellularization and determine the change in immunogenicity after detergent treatment in human nasal septal cartilage flakes made by the freezing and grinding method. Human nasal septal cartilages were obtained from surgical cases. The harvested cartilages were treated by the freezing and grinding technique. The obtained cartilage flakes were treated with 1% Triton X-100 or 2% sodium dodecyl sulfate (SDS) for decellularization of the cartilage flakes. Hematoxylin and eosin stain (H&E stain), surface electric microscopy, immunohistochemical stain for major histocompatibility complex I and II, and ELISA for DNA contents were performed to assess the effect of cartilage decellularization after detergent treatment. A total of 10 nasal septal cartilages were obtained from surgical cases. After detergent treatment, the average size of the cartilage flakes was significantly decreased. With H&E staining, the cell nuclei of decellularized cartilage flakes were not observed. The expression of major histocompatibility complex (MHC)-I and II antigens was not identified in the decellularized cartilage flakes after treatment with detergent. DNA content was removed almost entirely from the decellularized cartilage flakes. Treatment with 2% SDS or 1% Triton X-100 for 1 hour appears to be a promising method for decellularization of human nasal septal cartilage for vocal fold augmentation. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  7. Silk-based biomaterials.

    Science.gov (United States)

    Altman, Gregory H; Diaz, Frank; Jakuba, Caroline; Calabro, Tara; Horan, Rebecca L; Chen, Jingsong; Lu, Helen; Richmond, John; Kaplan, David L

    2003-02-01

    Silk from the silkworm, Bombyx mori, has been used as biomedical suture material for centuries. The unique mechanical properties of these fibers provided important clinical repair options for many applications. During the past 20 years, some biocompatibility problems have been reported for silkworm silk; however, contamination from residual sericin (glue-like proteins) was the likely cause. More recent studies with well-defined silkworm silk fibers and films suggest that the core silk fibroin fibers exhibit comparable biocompatibility in vitro and in vivo with other commonly used biomaterials such as polylactic acid and collagen. Furthermore, the unique mechanical properties of the silk fibers, the diversity of side chain chemistries for 'decoration' with growth and adhesion factors, and the ability to genetically tailor the protein provide additional rationale for the exploration of this family of fibrous proteins for biomaterial applications. For example, in designing scaffolds for tissue engineering these properties are particularly relevant and recent results with bone and ligament formation in vitro support the potential role for this biomaterial in future applications. To date, studies with silks to address biomaterial and matrix scaffold needs have focused on silkworm silk. With the diversity of silk-like fibrous proteins from spiders and insects, a range of native or bioengineered variants can be expected for application to a diverse set of clinical needs.

  8. Electrophoretic deposition of biomaterials

    Science.gov (United States)

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  9. EPR analysis of biomaterials

    International Nuclear Information System (INIS)

    Sukhodub, L.

    2001-01-01

    There is the review of electron spin resonance application for paramagnetic individual investigation in biomaterials. Especially the bone tissue and tooth enamel can be taken into account. The material composition (e.g. Mn 2+ and Cr 3+ ions) can be measured, also after irradiation (X, γ radiations) when paramagnetic signal appears as a result of physical radiation effects

  10. Hot topics in biomaterials

    CERN Document Server

    Alton, Eric W; Griesenbach, Uta

    2014-01-01

    The expert coverage of the eight chapters in this book reflects the diverse nature of the field of biomaterials science and encompasses contributions from a wide range of fields, highlighting key classes of novel materials and exploring the underlying science and potential applications.

  11. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  12. Hydrothorax, hydromediastinum and pericardial effusion: a complication of intravenous alimentation.

    Science.gov (United States)

    Damtew, B; Lewandowski, B

    1984-01-01

    Complications secondary to intravenous alimentation are rare but potentially lethal. Massive bilateral pleural effusions and a pericardial effusion developed in a patient receiving prolonged intravenous alimentation. Severe respiratory distress and renal failure ensued. He recovered with appropriate treatment. Images Fig. 1 Fig. 2 Fig. 3 PMID:6428731

  13. Pericardiocentesis in massive pericardial effusions due to hypothyroidism

    Science.gov (United States)

    Nainggolan, F. H.; Dalimunthe, N. N.; Harahap, S.; Isnanta, R.; Realsyah, T.; Safri, Z.; Hasan, R.

    2018-03-01

    Pericardial effusion is the accumulation of abnormal fluid in the pericardial cavity. The symptoms are not specific and associated with the underlying disease. It was reported that a 53-year-old male patient entered the Emergency Room with a shortness of breath, and getting worse during activity and position. There was weight loss and smoking history. The history of diabetic, hypertension and malignancy were denied. On physical examination showed the enlarged right and left heart border and weakened heartbeat sheer off is found and edema pretibial and normal the other. The laboratory results;blood routine, renal and liver function within normal; lipid profile: hypercholesterolemia; viral marker is non-reactive.Rontgen thorax suggests cardiomegaly, but there was no infiltrate or nodules. Electrocardiogram (ECG) showed a low voltage. Echocardiography examination showed massive pericardial effusion. Pericardiosynthetis performed produces 750 cc of clear yellow liquid and showed transudate. Other laboratory tests such as ANA test, anti ds-DNA, cyfra were a normal impression. Thyroid function: hypothyroid, Mantoux test is negative. Finally, the patient is a massive pericardial effusion caused by hypothyroidism. The pericardiocentesis took, and the hypothyroid drug of euthirax is administered. The patient was well done and continued for recontrol.

  14. A rare cause of pericardial effusion and ascites: POEMS syndrome

    Directory of Open Access Journals (Sweden)

    Bilal Katipoglu

    2017-12-01

    Full Text Available POEMS syndrome is an important paraneoplastic syndrome associated with multisystem involvement. Extravascular volume overload like pericardial effusion and ascites has a broad differential diagnosis. In addition, it may be initial presentation of disease. For that reason, this case report is highlight to warn of different forms of presentation of poems syndrome.

  15. Pericardial effusion complicated by tamponade: a case report ...

    African Journals Online (AJOL)

    Pericardial effusion complicated by tamponade: a case report. Michele Montandon, Rae Wake, Stephen Raimon. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers ...

  16. External radiotherapy in the management of malignant pericardial effusion

    Energy Technology Data Exchange (ETDEWEB)

    Fairlamb, D.J. (The Royal Hospital, Wolverhampton (UK))

    1989-05-01

    Malignant pericardial effusions that are not causing tamponade can be effectively treated by external beam irradiation - a readily available non-invasive treatment. In a consecutive series six out of eight patients achieved good palliation of their effusions as a result of this treatment. (author).

  17. Pericardial effusion presenting as an anterior mediastinal mass

    International Nuclear Information System (INIS)

    Schlesinger, A.E.; Fernbach, S.K.; Northwestern Univ., Chicago, IL

    1986-01-01

    The authors present a case of pericardial effusion in a patient with previous cardiac surgery. Because the pericardium is opened and not reclosed during surgery, fluid can extend superior to the normal upper reflections of the pericardium and simulate an anterior mediastinal mass. (orig.)

  18. Pericardial effusion with cardiac tamponade caused by a central ...

    African Journals Online (AJOL)

    With more and more extreme premature and very low-birth weight babies being resuscitated, umbilical central venous catheterisation is now being used more frequently in neonatal intensive care. One of the life-threatening complications is pericardial effusion and cardiac tamponade; however, it is potentially reversible ...

  19. A young woman with fever and a pericardial effusion

    NARCIS (Netherlands)

    Muntinghe, Friso; De Filippi,; Breedveld,; Halma,

    2002-01-01

    A 19-year-old woman is presented with high-spiking fever, pericardial tamponade and respiratory failure. A diagnosis of adult onset Still's disease was made. This is a rare inflammatory disease with an unknown aetiology. The diagnosis is made by exclusion and with the help of diagnostic criteria.

  20. A case of diminished pericardial effusion after treatment of a giant hepatic cyst.

    Science.gov (United States)

    Okano, Hiroshi; Tochio, Tomomasa; Kumazawa, Hiroaki; Isono, Yoshiaki; Tanaka, Hiroki; Matsusaki, Shimpei; Sase, Tomohiro; Saito, Tomonori; Mukai, Katsumi; Nishimura, Akira; Kitamura, Tetsuya; Mori, Takuya

    2017-08-01

    A 75-year-old woman was discovered to have a pericardial effusion when she was admitted to our hospital because of a giant hepatic cyst. We could not detect the cause of the effusion and diagnosed idiopathic pericardial effusion. The patient underwent transcutaneous drainage of the hepatic cyst and an injection of antibiotics. There was no communication between the pericardial effusion and the hepatic cyst. Although the hepatic cyst was reduced in size, the pericardial effusion showed no remarkable change immediately after treatment; however, 5 months later, the pericardial effusion was found to be diminished. The pericardial effusion might have been caused by the physical pressure of the giant hepatic cyst and disturbance in the balance between the production and reabsorption of the pericardial fluid. When we experience a huge hepatic cyst, we should take into account its influence against the surrounding organs, including the intrapleural space.

  1. Biomaterials and bone mechanotransduction

    Science.gov (United States)

    Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.

  2. Biomaterials surface science

    CERN Document Server

    Taubert, Andreas; Rodriguez-Cabello, José Carlos

    2013-01-01

    The book provides an overview of the highly interdisciplinary field of surface science in the context of biological and biomedical applications. The covered topics range from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices.

  3. A Comparative Study of Rat Lung Decellularization by Chemical Detergents for Lung Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hamid Tebyanian

    2017-12-01

    CONCLUSION: Decellularized lung tissue can be used in the laboratory to study various aspects of pulmonary biology and physiology and also, these results can be used in the continued improvement of engineered lung tissue.

  4. Supercritical Carbon Dioxide–Based Sterilization of Decellularized Heart Valves

    Directory of Open Access Journals (Sweden)

    Ryan S. Hennessy, MD

    2017-02-01

    Full Text Available Summary: Sterilization of grafts is essential. Supercritical carbon dioxide, electrolyzed water, gamma radiation, ethanol-peracetic acid, and hydrogen peroxide techniques were compared for impact on sterility and mechanical integrity of porcine decellularized aortic valves. Ethanol-peracetic acid– and supercritical carbon dioxide–treated valves were found to be sterile using histology, microbe culture, and electron microscopy assays. The cusp tensile properties of supercritical carbon dioxide–treated valves were higher compared with valves treated with other techniques. Superior sterility and integrity was found in the decellularized valves treated with supercritical carbon dioxide sterilization. This sterilization technique may hold promise for other decellularized soft tissues. Key Words: decellularized, decontamination, heart valve, tensile properties, tissue engineering

  5. Influence of pH on extracellular matrix preservation during lung decellularization.

    Science.gov (United States)

    Tsuchiya, Tomoshi; Balestrini, Jenna L; Mendez, Julio; Calle, Elizabeth A; Zhao, Liping; Niklason, Laura E

    2014-12-01

    The creation of decellularized organs for use in regenerative medicine requires the preservation of the organ extracellular matrix (ECM) as a means to provide critical cues for differentiation and migration of cells that are seeded onto the organ scaffold. The purpose of this study was to assess the influence of varying pH levels on the preservation of key ECM components during the decellularization of rat lungs. Herein, we show that the pH of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)-based decellularization solution influences ECM retention, cell removal, and also the potential for host response upon implantation of acellular lung tissue. The preservation of ECM components, including elastin, fibronectin, and laminin, were better retained in the lower pH conditions that were tested (pH ranges tested: 8, 10, 12); glycosaminoglycans were preserved to a higher extent in the lower pH groups as well. The DNA content following decellularization of the rat lung was inversely correlated with the pH of the decellularization solution. Despite detectible levels of cyotoskeletal proteins and significant residual DNA, tissues decellularized at pH 8 demonstrated the greatest tissue architecture maintenance and the least induction of host response of all acellular conditions. These results highlight the effect of pH on the results obtained by organ decellularization and suggest that altering the pH of the solutions used for decellularization may influence the ability of cells to properly differentiate and home to appropriate locations within the scaffold, based on the preservation of key ECM components and implantation results.

  6. The impact of detergents on the tissue decellularization process: A ToF-SIMS study.

    Science.gov (United States)

    White, Lisa J; Taylor, Adam J; Faulk, Denver M; Keane, Timothy J; Saldin, Lindsey T; Reing, Janet E; Swinehart, Ilea T; Turner, Neill J; Ratner, Buddy D; Badylak, Stephen F

    2017-03-01

    Biologic scaffolds are derived from mammalian tissues, which must be decellularized to remove cellular antigens that would otherwise incite an adverse immune response. Although widely used clinically, the optimum balance between cell removal and the disruption of matrix architecture and surface ligand landscape remains a considerable challenge. Here we describe the use of time of flight secondary ion mass spectroscopy (ToF-SIMS) to provide sensitive, molecular specific, localized analysis of detergent decellularized biologic scaffolds. We detected residual detergent fragments, specifically from Triton X-100, sodium deoxycholate and sodium dodecyl sulphate (SDS) in decellularized scaffolds; increased SDS concentrations from 0.1% to 1.0% increased both the intensity of SDS fragments and adverse cell outcomes. We also identified cellular remnants, by detecting phosphate and phosphocholine ions in PAA and CHAPS decellularized scaffolds. The present study demonstrates ToF-SIMS is not only a powerful tool for characterization of biologic scaffold surface molecular functionality, but also enables sensitive assessment of decellularization efficacy. We report here on the use of a highly sensitive analytical technique, time of flight secondary ion mass spectroscopy (ToF-SIMS) to characterize detergent decellularized scaffolds. ToF-SIMS detected cellular remnants and residual detergent fragments; increased intensity of the detergent fragments correlated with adverse cell matrix interactions. This study demonstrates the importance of maintaining a balance between cell removal and detergent disruption of matrix architecture and matrix surface ligand landscape. This study also demonstrates the power of ToF-SIMS for the characterization of decellularized scaffolds and capability for assessment of decellularization efficacy. Future use of biologic scaffolds in clinical tissue reconstruction will benefit from the fundamental results described in this work. Copyright © 2016 Acta

  7. Preparation of a three-dimensional extracellular matrix by decellularization of rabbit livers

    OpenAIRE

    Nari, Gustavo A.; Cid, Mariana; Comín, Romina; Reyna, Laura; Juri, Gustavo; Taborda, Ricardo; Salvatierra, Nancy A.

    2013-01-01

    Introduction: the availability of transplantable livers is not sufficient to fulfill the current demand for grafts, with the search for therapeutic alternatives having generated different lines of research, one of which is the use of decellularized three-dimensional biological matrices and subsequent cell seeding to obtain a functional organ. Objective: to produce a decellularization protocol from rabbit liver to generate a three-dimensional matrix. Methods: a combination of physical, chemica...

  8. Biomaterials in light amplification

    Science.gov (United States)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living

  9. Pressure Shift Freezing as Potential Alternative for Generation of Decellularized Scaffolds

    Directory of Open Access Journals (Sweden)

    S. Eichhorn

    2013-01-01

    Full Text Available Background. Protocols using chemical reagents for scaffold decellularization can cause changes in the properties of the matrix, depending on the type of tissue and the chemical reagent. Technologies using physical techniques may be possible alternatives for the production grafts with potential superior matrix characteristics. Material and Methods. We tested four different technologies for scaffold decellularization. Group 1: high hydrostatic pressure (HHP, 1 GPa; Group 2: pressure shift freezing (PSF; Group 3: pulsed electric fields (PEF; Group 4: control group: detergent (SDS. The degree of decellularization was assessed by histological analysis and the measurement of residual DNA. Results. Tissue treated with PSF showed a decellularization with a penetration depth (PD of 1.5 mm and residual DNA content of . HHD treatment caused a PD of 0.2 mm with a residual DNA content of . PD in PEF was 0.5 mm, and the residual DNA content was . In the SDS group, PD was found to be 5 mm, and the DNA content was determined at . Conclusion. PSF showed promising results as a possible technique for scaffold decellularization. The penetration depth of PSF has to be optimized, and the mechanical as well as the biological characteristics of decellularized grafts have to be evaluated.

  10. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction

    International Nuclear Information System (INIS)

    Utomo, Lizette; Pleumeekers, Mieke M; Van Osch, Gerjo J V M; Nimeskern, Luc; Stok, Kathryn S; Nürnberger, Sylvia; Hildner, Florian

    2015-01-01

    Scaffolds are widely used to reconstruct cartilage. Yet, the fabrication of a scaffold with a highly organized microenvironment that closely resembles native cartilage remains a major challenge. Scaffolds derived from acellular extracellular matrices are able to provide such a microenvironment. Currently, no report specifically on decellularization of full thickness ear cartilage has been published. In this study, decellularized ear cartilage scaffolds were prepared and extensively characterized. Cartilage decellularization was optimized to remove cells and cell remnants from elastic cartilage. Following removal of nuclear material, the obtained scaffolds retained their native collagen and elastin contents as well as their architecture and shape. High magnification scanning electron microscopy showed no obvious difference in matrix density after decellularization. However, glycosaminoglycan content was significantly reduced, resulting in a loss of viscoelastic properties. Additionally, in contact with the scaffolds, human bone-marrow-derived mesenchymal stem cells remained viable and are able to differentiate toward the chondrogenic lineage when cultured in vitro. These results, including the ability to decellularize whole human ears, highlight the clinical potential of decellularization as an improved cartilage reconstruction strategy. (paper)

  11. Pericardial Tamponade Following CT-Guided Lung Biopsy

    International Nuclear Information System (INIS)

    Mitchell, Michael J.; Montgomery, Mark; Reiter, Charles G.; Culp, William C.

    2008-01-01

    While not free from hazards, CT-guided biopsy of the lung is a safe procedure, with few major complications. Despite its safety record, however, potentially fatal complications do rarely occur. We report a case of pericardial tamponade following CT-guided lung biopsy. Rapid diagnosis and therapy allowed for complete patient recovery. Physicians who perform this procedure should be aware of the known complications and be prepared to treat them appropriately.

  12. Trypsin as enhancement in cyclical tracheal decellularization: Morphological and biophysical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Giraldo-Gomez, D.M., E-mail: davidmauro2008@gmail.com [Posgrado en Ciencia e Ingeniería de Materiales, Universidad Nacional Autónoma de México (UNAM), Unidad de Posgrado Edificio “C” 1er Piso, Circuito de Posgrados, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, C.P. 04510, México D. F., México (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, C.P. 04510, México D.F., México (Mexico); Leon-Mancilla, B. [Departamento de Cirugía, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Edificio “D” Planta Baja, Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, C.P. 04510, México D.F., México (Mexico); Del Prado-Audelo, M.L. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, C.P. 04510, México D.F., México (Mexico); and others

    2016-02-01

    There are different types of tracheal disorders (e.g. cancer, stenosis and fractures). These can cause respiratory failure and lead to death of patients. Several attempts have been made for trachea replacement in order to restore the airway, including anastomosis and implants made from synthetic or natural materials. Tracheal allotransplantation has shown high rejection rates, and decellularization has emerged as a possible solution. Decellularization involves the removal of antigens from cells in the organ or tissue, leaving a matrix that can be used as 3D cell-scaffold. Although this process has been used for tracheal replacement, it usually takes at least two months and time is critical for patients with tracheal disorders. Therefore, there is necessary to develop a tracheal replacement process, which is not only effective, but also quick to prepare. The aim of this research was to develop a faster trachea decellularization protocol using Trypsin enzyme and Ethylenediaminetetraacetic acid (EDTA) as decellularization agents. Three protocols of cyclic trachea decellularization (Protocols A, B, and C) were compared. Following Protocol A (previously described in the literature), 15 consecutive cycles were performed over 32 days. Protocol B (a variation of Protocol A) — EDTA being added — with 15 consecutive cycles performed over 60 days. Finally, Protocol C, with the addition of Trypsin as a decellularization agent, 5 consecutive cycles being performed over 10 days. For the three protocols, hematoxylin–eosin (H&E) staining and DNA residual content quantification were performed to establish the effectiveness of the decellularization process. Scanning Electron Microscopy (SEM) was used to observe the changes in porosity and microarrays. To evaluate the structural matrices integrity, Thermogravimetric Analysis (TGA) and biomechanical test were used. None of the protocols showed significant alteration or degradation in the components of the extracellular matrix

  13. Postmortem computed tomographic (PMCT) findings of pericardial effusion due to acute aortic dissection

    International Nuclear Information System (INIS)

    Shiotani, Seiji; Watanabe, Ko; Kohno, Mototsugu; Ohashi, Noriyoshi; Nakayama, Hidetsugu; Yamazaki, Kentaro

    2004-01-01

    The purpose of this study was to describe the appearance of pericardial effusion in deceased acute aortic dissection patients using postmortem computed tomography (PMCT). PMCT examinations were performed within 2 hours of death in 30 patients with pericardial effusion due to aortic dissection who arrived at our hospital in a state of cardiopulmonary arrest. Pericardial effusion in 18 of 30 patients (60%) showed double concentric rings on PMCT with striking differences in density, a low-density outer ring along the pericardium and a high-density inner ring on the epicardial surface (hyperdense armored heart). Pericardial effusion in two patients (7%) showed a high-density fluid level (hypostasis). Pericardial effusion in the remaining 10 patients (33%) showed no such stratification. A ''hyperdense armored heart'' is the most frequently seen PMCT finding in deceased cases of pericardial effusion due to acute aortic dissection. (author)

  14. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials

    Science.gov (United States)

    Pelling, Andrew E.

    2016-01-01

    There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6–9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson’s Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial. PMID:27328066

  15. Biomaterials: An Introduction for Librarians.

    Science.gov (United States)

    Bush, Renee B.

    1996-01-01

    Contains an overview of biomaterials, an interdisciplinary field in which research combines medicine, biological sciences, physical sciences, and engineering. Biomaterials are substances which improve quality of life by augmenting or replacing bodily tissues or functions. Highlights problems associated with collection development and literature…

  16. [Experimental study on co-culture of human fibroblasts on decellularized Achilles tendon].

    Science.gov (United States)

    Wang, Zhibing; Zhang, Xia; Guo, Xinyu; Qin, Chuan

    2013-07-01

    To investigate the preparation of decellularized Achilles tendons and the effect of co-culture of human fibroblasts on the scaffold so as to provide a scaffold for the tissue engineered ligament reconstruction. Achilles tendons of both hind limbs were harvested from 10 male New Zealand white rabbits (5-month-old; weighing, 4-5 kg). The Achilles tendons were decellularized using trypsin, Triton X-100, and sodium dodecyl sulfate (SDS), and then gross observation, histological examination, and scanning electron microscope (SEM) observation were performed; the human fibroblasts were seeded on the decellularized Achilles tendon, and then cytocompatibility was tested using the cell counting kit 8 method at 1, 3, 5, 7, and 9 days after co-culture. At 4 weeks after co-culture, SEM, HE staining, and biomechanical test were performed for observing cell-scaffold composite, and a comparison was made with before and after decellularization. After decellularization, the tendons had integrated aponeurosis and enlarged volume with soft texture and good toughness; there was no loose connective tissue and tendon cells between tendon bundles, the collagen fibers arranged loosely with three-dimensional network structure and more pores between tendon bundles; and it had good cytocompatibility. At 4 weeks after co-culture, cells migrated into the pores, and three-dimensional network structure disappeared. By biomechanical test, the tensile strength and Young's elastic modulus of the decellularized Achilles tendon group decreased significantly when compared with normal Achilles tendons group and cell-scaffold composite group (P Achilles tendons group and cell-scaffold composite group (P > 0.05). There was no significant difference in elongation at break among 3 groups (P > 0.05). The decellularized Achilles tendon is biocompatible to fibroblasts. It is suit for the scaffold for tissue engineered ligament reconstruction.

  17. Decellularization of Human Internal Mammary Artery: Biomechanical Properties and Histopathological Evaluation.

    Science.gov (United States)

    Kajbafzadeh, Abdol-Mohammad; Khorramirouz, Reza; Kameli, Seyede Maryam; Hashemi, Javad; Bagheri, Amin

    2017-01-01

    This study undertook to create small-diameter vascular grafts and assess their structure and mechanical properties to withstand arterial implantation. Twenty samples of intact human internal mammary arteries (IMAs) were collected and decellularized using detergent-based methods. To evaluate residual cellular and extracellular matrix (ECM) components, histological analysis was performed. Moreover, collagen typing and ECM structure were analyzed by Picrosirius red and Movat's pentachrome staining. Scanning electron microscopy was also applied to assess microarchitecture of both endothelial and adventitial surfaces of native and decellularized arterial samples. Furthermore, mechanical tests were performed to evaluate the rigidity and suture strength of the arteries. Human IMAs were completely decellularized in all three segments (proximal, middle, and distal). ECM proteins such as collagen and elastic fibers were efficiently preserved and no structural distortion in intima, media, and adventitial surfaces was observed. The parameters of the mechanical tests revealed no significant differences in the mechanical properties of decellularized arteries in comparison to native arteries with considerable strength, suture retention, and stress relaxation (Young's modulus [MPa] = 0.22 ± 0.023 [native] and 0.22 ± 0.015 [acellular]; and suture strength 0.56 ± 0.19 [native] vs. 0.56 ± 0.12 [acellular], respectively). Decellularized IMA represents a potential arterial scaffold as an alternative to autologous grafts for future arterial bypass surgeries. By this technique, microarchitecture and mechanical integrity of decellularized arteries were considerably similar to native arteries. The goal of this study was to introduce an efficient method for complete decellularization of human IMA and evaluate the ECM and biomechanical properties.

  18. Incremental benefit of three-dimensional transesophageal echocardiography in the assessment of a primary pericardial hemangioma.

    Science.gov (United States)

    Arisha, Mohammed J; Hsiung, Ming C; Nanda, Navin C; ElKaryoni, Ahmed; Mohamed, Ahmed H; Wei, Jeng

    2017-08-01

    Hemangiomas are rarely found in the heart and pericardial involvement is even more rare. We report a case of primary pericardial hemangioma, in which three-dimensional transesophageal echocardiography (3DTEE) provided incremental benefit over standard two-dimensional images. Our case also highlights the importance of systematic cropping of the 3D datasets in making a diagnosis of pericardial hemangioma with a greater degree of certainty. In addition, we also provide a literature review of the features of cardiac/pericardial hemangiomas in a tabular form. © 2017, Wiley Periodicals, Inc.

  19. The role of bedside ultrasound in the diagnosis of pericardial effusion and cardiac tamponade

    Directory of Open Access Journals (Sweden)

    Adam Goodman

    2012-01-01

    Full Text Available This review article discusses two clinical cases of patients presenting to the emergency department with pericardial effusions. The role of bedside ultrasound in the detection of pericardial effusions is investigated, with special attention to the specific ultrasound features of cardiac tamponade. Through this review, clinicians caring for patients with pericardial effusions will learn to rapidly diagnose this condition directly at the bedside. Clinicians will also learn to differentiate between simple pericardial effusions in contrast to more complicated effusions causing cardiac tamponade. Indications for emergency pericardiocentesis are covered, so that clinicians can rapidly determine which group of patients will benefit from an emergency procedure to drain the effusion.

  20. Biomaterials in orthopaedics

    Science.gov (United States)

    Navarro, M; Michiardi, A; Castaño, O; Planell, J.A

    2008-01-01

    At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field. PMID:18667387

  1. Trends in biomaterials

    CERN Document Server

    Kothiyal, G P

    2016-01-01

    Biomaterials research requires the union of materials scientists, engineers, biologists, biomedical doctors, and surgeons. Societal implications have invoked tremendous interest in this area of research in recent years. What started as a search for strong and durable implant materials has now led to path-breaking developments in tissue engineering, targeted drug delivery, and tissue scaffolds. Viable applications of mesoporous structures, polymer biocomposites, and fibers (synthetic and natural) in the areas of clinical orthopedics, controlled drug delivery, tissue engineering, orthodontics, etc., have emerged as relatively recent concepts. This book presents recent results related to both materials aspects and implant issues. The focus is on structural, magnetic, antibacterial, bioactivity/compatibility, mechanical, and other related properties and the implication of these results on biomedical applications. The book discusses technical problems faced by the surgeon during implant fixation in total hip repla...

  2. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.

    Science.gov (United States)

    Cunniffe, Gráinne M; Vinardell, Tatiana; Murphy, J Mary; Thompson, Emmet M; Matsiko, Amos; O'Brien, Fergal J; Kelly, Daniel J

    2015-09-01

    Clinical translation of tissue engineered therapeutics is hampered by the significant logistical and regulatory challenges associated with such products, prompting increased interest in the use of decellularized extracellular matrix (ECM) to enhance endogenous regeneration. Most bones develop and heal by endochondral ossification, the replacement of a hypertrophic cartilaginous intermediary with bone. The hypothesis of this study is that a porous scaffold derived from decellularized tissue engineered hypertrophic cartilage will retain the necessary signals to instruct host cells to accelerate endogenous bone regeneration. Cartilage tissue (CT) and hypertrophic cartilage tissue (HT) were engineered using human bone marrow derived mesenchymal stem cells, decellularized and the remaining ECM was freeze-dried to generate porous scaffolds. When implanted subcutaneously in nude mice, only the decellularized HT-derived scaffolds were found to induce vascularization and de novo mineral accumulation. Furthermore, when implanted into critically-sized femoral defects, full bridging was observed in half of the defects treated with HT scaffolds, while no evidence of such bridging was found in empty controls. Host cells which had migrated throughout the scaffold were capable of producing new bone tissue, in contrast to fibrous tissue formation within empty controls. These results demonstrate the capacity of decellularized engineered tissues as 'off-the-shelf' implants to promote tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Optimization of SDS exposure on preservation of ECM characteristics in whole organ decellularization of rat kidneys.

    Science.gov (United States)

    He, M; Callanan, A; Lagaras, K; Steele, J A M; Stevens, M M

    2017-08-01

    Renal transplantation is well established as the optimal form of renal replacement therapy but is restricted by the limited pool of organs available for transplantation. The whole organ decellularisation approach is leading the way for a regenerative medicine solution towards bioengineered organ replacements. However, systematic preoptimization of both decellularization and recellularization parameters is essential prior to any potential clinical application and should be the next stage in the evolution of whole organ decellularization as a potential strategy for bioengineered organ replacements. Here we have systematically assessed two fundamental parameters (concentration and duration of perfusion) with regards to the effects of differing exposure to the most commonly used single decellularizing agent (sodium dodecyl sulphate/SDS) in the perfusion decellularization process for whole rat kidney ECM bioscaffolds, with findings showing improved preservation of both structural and functional components of the whole kidney ECM bioscaffold. Whole kidney bioscaffolds based on our enhanced protocol were successfully recellularized with rat primary renal cells and mesenchymal stromal cells. These findings should be widely applicable to decellularized whole organ bioscaffolds and their optimization in the development of regenerated organ replacements for transplantation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1352-1360, 2017. © 2016 Wiley Periodicals, Inc.

  4. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian

    2012-09-11

    In this study, the in vivo recellularization and neovascularization of nanosized bioactive glass (n-BG)-coated decellu-larized trabecular bone scaffolds were studied in a rat model and quantified using stereological analyses. Based on the highest amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm 2), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating density of 0.263 mg/cm2, human fibroblasts produced 4.3 times more VEGF than on uncoated controls. After 8 weeks of implantation in Sprague-Dawley rats, both uncoated and n-BG-coated samples were well infiltrated with newly formed tissue (47-48%) and blood vessels (3-4%). No significant differences were found in cellularization and vascularization between uncoated bone scaffolds and n-BG-coated scaffolds. This finding indicates that the decellularized bone itself may exhibit growth-promoting properties induced by the highly interconnected pore microarchitecture and/or proteins left behind on decellularized scaffolds. Even if we did not find proangiogenic effects in n-BG-coated bone scaffolds, a bioactive coating is considered to be beneficial to impart osteoinductive and osteoconductive properties to decellularized bone. n-BG-coated bone grafts have thus high clinical potential for the regeneration of complex tissue defects given their ability for recellularization and neovascularization. © 2012 Wiley Periodicals, Inc.

  5. Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

    Directory of Open Access Journals (Sweden)

    Amin Tavassoli

    2015-12-01

    Full Text Available Objective (s: The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (BM-MSCs. Materials and Methods: Bovine articular cartilage that was cut into pieces with 2 mm thickness, were decellularized by combination of physical and chemical methods including snap freeze-thaw and treatment with sodium dodecyl sulfate (SDS. The scaffolds were then seeded with 1, 1’-dioctadecyl-3, 3, 3’, 3’-tetramethylindocarbocyanine perchlorate (DiI labeled BM-MSCs and cultured for up to two weeks. Results: Histological studies of decellularized bovine articular cartilage showed that using 5 cycles of snap freeze-thaw in liquid nitrogen and treatment with 2.5% SDS for 4 hr led to the best decellularization, while preserving the articular cartilage structure. Adherence and penetration of seeded BM-MSCs on to the scaffold were displayed by histological and florescence examinations and also confirmed by electron microscopy. Conclusion: ECM-derived decellularized articular cartilage scaffold provides a suitable environment to support adhesion and maintenance of cultured BM-MSCs and could be applied to investigate cellular behaviors in this system and may also be useful for studies of cartilage tissue engineering.

  6. Mechanics of additively manufactured biomaterials.

    Science.gov (United States)

    Zadpoor, Amir A

    2017-06-01

    Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. PCR evaluation of selected vector-borne pathogens in dogs with pericardial effusion.

    Science.gov (United States)

    Tabar, M-D; Movilla, R; Serrano, L; Altet, L; Francino, O; Roura, X

    2018-04-01

    To investigate evidence for selected vector-borne pathogen infections in dogs with pericardial effusion living in a Mediterranean area in which several canine vector-borne diseases are endemic. Archived EDTA blood (n=68) and pericardial fluid samples (n=58) from dogs with pericardial effusion (n=68) were included. Dogs without pericardial effusion examined for other reasons were included as controls (n=60). Pericardial effusion was classified as neoplastic in 40 dogs, idiopathic in 23 dogs and of unknown aetiology in 5 dogs. Real-time PCR was performed for Leishmania infantum, Ehrlichia/Anaplasma species, Hepatozoon canis, Babesia species, Rickettsia species and Bartonella species, and sequencing of PCR products from positive samples was used to confirm species specificity. Vector-borne pathogens were found in 18 dogs: 16 of 68 dogs with pericardial effusion (23·5%) and two of 60 control dogs (3·3%). Positive dogs demonstrated DNA of Leishmania infantum (n=7), Anaplasma platys (n=2, one dog coinfected with Leishmania infantum), Babesia canis (n=5), Babesia gibsoni (n=3) and Hepatozoon canis (n=2). Vector-borne pathogens were more commonly detected among dogs with pericardial effusion than controls (P=0·001). There was no relationship between aetiology of the pericardial effusion and evidence of vector-borne pathogens (P=0·932). Vector-borne pathogens are often detected in dogs with pericardial effusion and require further investigation, especially in dogs with idiopathic pericardial effusion. PCR can provide additional information about the potential role of vector-borne pathogens in dogs with pericardial effusion living in endemic areas. © 2018 British Small Animal Veterinary Association.

  8. Biomaterials. The Behavior of Stainless Steel as a Biomaterial

    Directory of Open Access Journals (Sweden)

    Sanda VISAN

    2011-06-01

    Full Text Available The biomaterials belong to the broad range of biocompatible chemical substances (sometimes even an element, which can be used for a period of time to treat or replace a tissue, organ or function of the human body. These materials bring many advantages in the diagnosis, prevention and medical therapy, reducing downtime for patients, restoring their biological functions, improving hospital management. The market in Romania sells a wide range of biomaterials for dental, cardiovascular medicine, renal, etc. Scientific research contributes to the discovery of new biomaterials or testing known biomaterials, for finding new applications. The paper exemplifies this contribution by presenting the testing of passive stainless steel behaviour in albumin solution using technique of cyclic voltammetry. It was shown that passivation contribute to increased stability of stainless steel implants to corrosive body fluids.

  9. Biomaterials for tissue engineering applications.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  10. Effects of combined cryopreservation and decellularization on the biomechanical, structural and biochemical properties of porcine pulmonary heart valves.

    Science.gov (United States)

    Theodoridis, Karolina; Müller, Janina; Ramm, Robert; Findeisen, Katja; Andrée, Birgit; Korossis, Sotirios; Haverich, Axel; Hilfiker, Andres

    2016-10-01

    Non-fixed, decellularized allogeneic heart valve scaffolds seem to be the best choice for heart valve replacement, their availability, however, is quite limited. Cryopreservation could prolong their shelf-life, allowing for their ideal match to a recipient. In this study, porcine pulmonary valves were decellularized using detergents, either prior or after cryopreservation, and analyzed. Mechanical integrity was analyzed by uniaxial tensile testing, histoarchitecture by histological staining, and composition by DNA, collagen (hydroxyproline) and GAG (chondroitin sulfate) quantification. Residual sodium dodecyl sulfate (SDS) in the scaffold was quantified by applying a methylene blue activation assay (MBAS). Cryopreserved decellularized scaffolds (DC) and scaffolds that were decellularized after cryopreservation (CD) were compared to fresh valves (F), cryopreserved native valves (C), and decellularized only scaffolds (D). The E-modulus and tensile strength of decellularized (D) tissue showed no significant difference compared to DC and CD. The decellularization resulted in an overall reduction of DNA and GAG, with DC containing the lowest amount of GAGs. The DNA content in the valvular wall of the CD group was higher than in the D and DC groups. CD valves showed slightly more residual SDS than DC valves, which might be harmful to recipient cells. In conclusion, cryopreservation after decellularization was shown to be preferable over cryopreservation before decellularization. However, in vivo testing would be necessary to determine whether these differences are significant in biocompatibility or immunogenicity of the scaffolds. Absence of adverse effects on biomechanical stability of acellular heart valve grafts by cryopreservation, neither before nor after decellularization, allows the identification of best matching patients in a less time pressure dictated process, and therefore to an optimized use of a very limited, but best-suited heart valve prosthesis

  11. Cardiac juvenile xanthogranuloma in an infant presenting with pericardial effusion.

    Science.gov (United States)

    Kobayashi, Daisuke; Delius, Ralph E; Debelenko, Larisa V; Aggarwal, Sanjeev

    2013-01-01

    Juvenile xanthogranuloma is a rare histiocytic disorder of childhood mainly affecting skin and rarely deep soft tissues and viscera. We report a 2-month-old infant who presented with respiratory distress secondary to a large pericardial effusion associated with an epicardial mass. Excisional biopsy was performed and the mass was diagnosed as juvenile xanthogranuloma. The child is well without evidence of disease 8 months following the excision. The corresponding literature on juvenile xanthogranuloma with cardiac manifestations is reviewed. © 2012 Wiley Periodicals, Inc.

  12. Contemporary management of pericardial effusion: practical aspects for clinical practice.

    Science.gov (United States)

    Imazio, Massimo; Gaido, Luca; Battaglia, Alberto; Gaita, Fiorenzo

    2017-03-01

    A pericardial effusion (PE) is a relatively common finding in clinical practice. It may be either isolated or associated with pericarditis with or without an underlying disease. The aetiology is varied and may be either infectious (especially tuberculosis as the most common cause in developing countries) or non-infectious (cancer, systemic inflammatory diseases). The management is essentially guided by the hemodynamic effect (presence or absence of cardiac tamponade), the presence of concomitant pericarditis or underlying disease, and its size and duration. The present paper reviews the current knowledge on the aetiology, classification, diagnosis, management, therapy, and prognosis of PE in clinical practice.

  13. Production of decellularized porcine lung scaffolds for use in tissue engineering†

    Science.gov (United States)

    Balestrini, Jenna L.; Gard, Ashley L.; Liu, Angela; Leiby, Katherine L.; Schwan, Jonas; Kunkemoeller, Britta; Calle, Elizabeth A.; Sivarapatna, Amogh; Lin, Tylee; Dimitrievska, Sashka; Cambpella, Stuart G.; Niklason, Laura E.

    2015-01-01

    There is a growing body of work dedicated to producing acellular lung scaffolds for use in regenerative medicine by decellularizing donor lungs of various species. These scaffolds typically undergo substantial matrix damage due to the harsh conditions required to remove cellular material (e.g., high pH, strong detergents), lengthy processing times, or pre-existing tissue contamination from microbial colonization. In this work, a new decellularization technique is described that maintains the global tissue architecture, key matrix components, mechanical composition and cell-seeding potential of lung tissue while effectively removing resident cellular material. Acellular lung scaffolds were produced from native porcine lungs using a combination of Triton X-100 and sodium deoxycholate (SDC) at low concentrations in 24 hours. We assessed the effect of matrix decellularization by measuring residual PMID:26426090

  14. Production of decellularized porcine lung scaffolds for use in tissue engineering.

    Science.gov (United States)

    Balestrini, Jenna L; Gard, Ashley L; Liu, Angela; Leiby, Katherine L; Schwan, Jonas; Kunkemoeller, Britta; Calle, Elizabeth A; Sivarapatna, Amogh; Lin, Tylee; Dimitrievska, Sashka; Cambpell, Stuart G; Niklason, Laura E

    2015-12-01

    There is a growing body of work dedicated to producing acellular lung scaffolds for use in regenerative medicine by decellularizing donor lungs of various species. These scaffolds typically undergo substantial matrix damage due to the harsh conditions required to remove cellular material (e.g., high pH, strong detergents), lengthy processing times, or pre-existing tissue contamination from microbial colonization. In this work, a new decellularization technique is described that maintains the global tissue architecture, key matrix components, mechanical composition and cell-seeding potential of lung tissue while effectively removing resident cellular material. Acellular lung scaffolds were produced from native porcine lungs using a combination of Triton X-100 and sodium deoxycholate (SDC) at low concentrations in 24 hours. We assessed the effect of matrix decellularization by measuring residual DNA, biochemical composition, mechanical characteristics, tissue architecture, and recellularization capacity.

  15. Extracellular matrix hydrogels from decellularized tissues: Structure and function.

    Science.gov (United States)

    Saldin, Lindsey T; Cramer, Madeline C; Velankar, Sachin S; White, Lisa J; Badylak, Stephen F

    2017-02-01

    Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed. More than 70 papers have been published on extracellular matrix (ECM) hydrogels created from source tissue in almost every organ system. The present manuscript represents a review of ECM hydrogels and attempts to identify structure-function relationships that influence the tissue remodeling outcomes and gaps in the understanding thereof. There is a Phase 1 clinical trial now in progress for an ECM hydrogel. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Efficient decellularization for tissue engineering of the tendon-bone interface with preservation of biomechanics.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available Interfaces between tendon/ligament and bone ("entheses" are highly specialized tissues that allow for stress transfer between mechanically dissimilar materials. Entheses show very low regenerative capacity resulting in high incidences of failure after surgical repair. Tissue engineering is a promising approach to recover functionality of entheses. Here, we established a protocol to decellularize porcine entheses as scaffolds for enthesis tissue engineering. Chemical detergents as well as physical treatments were investigated with regard to their efficiency to decellularize 2 mm thick porcine Achilles tendon entheses. A two-phase approach was employed: study 1 investigated the effect of various concentrations of sodium dodecyl sulfate (SDS and t-octylphenoxypolyethoxy-ethanol (Triton X-100 as decellularization agents. The most efficient combination of SDS and Triton was then carried forward into study 2, where different physical methods, including freeze-thaw cycles, ultrasound, perfusion, and hydrostatic washing were used to enhance the decellularization effect. Cell counts, DNA quantification, and histology showed that washing with 0.5% SDS + 1% Triton X-100 for 72 h at room temperature could remove ~ 98% cells from the interface. Further investigation of physical methods proved that washing under 200 mmHg hydrostatic pressure shortened the detergent exposing time from 72 h to 48 h. Biomechanical tensile testing showed that the biomechanical features of treated samples were preserved. Washing under 200 mmHg hydrostatic pressure with 0.5% SDS + 1% Triton X-100 for 48 h efficiently decellularized entheses with preservation of matrix structure and biomechanical features. This protocol can be used to efficiently decellularize entheses as scaffolds for tissue engineering.

  17. Effects of Chondroitinase ABC-Mediated Proteoglycan Digestion on Decellularization and Recellularization of Articular Cartilage.

    Directory of Open Access Journals (Sweden)

    Catherine A Bautista

    Full Text Available Articular cartilage has a limited capacity to heal itself and thus focal defects often result in the development of osteoarthritis. Current cartilage tissue engineering strategies seek to regenerate injured tissue by creating scaffolds that aim to mimic the unique structure and composition of native articular cartilage. Decellularization is a novel strategy that aims to preserve the bioactive factors and 3D biophysical environment of the native extracellular matrix while removing potentially immunogenic factors. The purpose of this study was to develop a procedure that can enable decellularization and recellularization of intact articular cartilage matrix. Full-thickness porcine articular cartilage plugs were decellularized with a series of freeze-thaw cycles and 0.1% (w/v sodium dodecyl sulfate detergent cycles. Chondroitinase ABC (ChABC was applied before the detergent cycles to digest glycosaminoglycans in order to enhance donor chondrocyte removal and seeded cell migration. Porcine synovium-derived mesenchymal stem cells were seeded onto the decellularized cartilage scaffolds and cultured for up to 28 days. The optimized decellularization protocol removed 94% of native DNA per sample wet weight, while collagen content and alignment were preserved. Glycosaminoglycan depletion prior to the detergent cycles increased removal of nuclear material. Seeded cells infiltrated up to 100 μm into the cartilage deep zone after 28 days in culture. ChABC treatment enhances decellularization of the relatively dense, impermeable articular cartilage by reducing glycosaminoglycan content. ChABC treatment did not appear to affect cell migration during recellularization under static, in vitro culture, highlighting the need for more dynamic seeding methods.

  18. Use of PTFE patch for pericardial closure after minimal invasive LVAD implantation.

    Science.gov (United States)

    Mohite, Prashant N; Sabashnikov, Anton; Popov, Aron F; Fatullayev, Javid; Simon, André R

    2016-07-01

    The left ventricular assist device (LVAD) is now a routine therapy for advanced heart failure. The thoracotomy approach for LVAD implantation, in which the left ventricle is approached through a pericardial rent, is becoming popular. We demonstrate closure of the pericardial rent with a polytetrafluoroethylene (PTFE) patch and its advantages. © The Author(s) 2015.

  19. Pericardial Effusion with Cardiac Tamponade as a Form of Presentation of Primary Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Rachid Acir

    2002-01-01

    Full Text Available The authors describe a case of pericardial effusion accompanied by cardiac tamponade caused by primary hypothyroidism. Diagnosis was made by exclusion, because other causes of cardiac tamponade are more frequent. Emergency treatment of cardiac tamponade is pericardiocentesis (with possible pericardial window, and, after stabilization, performance of hormonal reposition therapy with L-thyroxin.

  20. Pericardial sinuses and recesses effusion of 16-slice helical CT imaging and anatomic correlation

    International Nuclear Information System (INIS)

    Lu Chunyan; Yang Zhigang; Zhou Xiangping; Yu Jianqun; Zhu Jie; Yang Kaiqing

    2007-01-01

    Objective: To evaluate the CT features and implications of the pericardial sinuses and recesses effusion by combining the sectional cadavers and 16 multi-slice CT (MSCT) reformation. Methods: The anatomy and communication of the pericardial sinuses and recesses on the axial, coronal and saggital sectional cadavers (respectively 1 case), and the morphologic features on MSCT reformatted images in 104 patients were observed. The detection rate of effusion was analyzed. Results: The sectional cadavers and CT images showed that the pericardial sinuses and recesses were formed by the reflections of the pericardium on the root of the great vessels. The detection rate of the sinuses and recesses was lower in small effusion than in moderate and large effusion (P<0.05). The superior aortic recess was the most common recess for pericardial effusion. Conclusion: The MSCT reformatted images can show the morphologic features of pericardial sinuses and recesses effusion and communications with the pericardial cavity, help differentiate pericardial effusion from other mediastinal or pericardial lesions. (authors)

  1. PERICARDIAL FEATURES OF IN-HOSPITAL RHEUMATOLOGY PATIENTS: AN OBSERVATIONAL STUDY.

    Science.gov (United States)

    Bakalli, Aurora; Rexhepi, Mjellma; Rexhepi, Blerta; Koçinaj, Dardan

    Rheumatic disorders can be associated with pericarditis, but severe forms of pericarditis are rare. The aim of this observational study was to evaluate pericardial features in patients with different rheumatic diseases. Thirty-five patients hospitalized at the Clinic of Rheumatology, University Clinical Center of Kosovo, from October 1 to October 21, 2014 were included in the study. Demographic data, history, laboratory, ECG, and echocardiography data, with special emphasis on the analysis of the pericardium, were obtained from each patient. Echocardiography was especially focused on the amount of pericardial fluid and pericardial thickness in the posterior wall of the heart. Mean patient age was 51.5 ± 13.8 years. 65.7% of the patients were women. Out of the patients that we analyzed, 88.6% had an inflammatory rheumatologic disease. 11.3% of the patients had mild symptoms, in 68.7% the symptoms were moderate, and in 20% severe. In all patients, pericardial hyperechogenicity was marked, with a mean pericardial thickness of 4.68 ± 1.66 mm. Pericardial effusion in a small amount was present in 57.1% of patients, with a mean pericardial fluid amount of 3.3 ± 1.9 mm. The severity of rheumatic disease had a positive and significant correlation with the presence of pericardial effusion (r= 0.29, p=0.04) and its amount (r= 0.28, p=0.05). The patients had not been aware of the pericardial involvement and did not have any clinical symptoms. In conclusion, in this short-term small observational study pericardial changes were a frequent finding in the rheumatology patients. In general, the pericarditis was subclinical and with small amounts of effusion. The disease activity of rheumatic disorders can be associated with pericarditis. Further studies with larger samples of patients and of longer duration are needed to further explore this issue.

  2. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  3. Upcyte® Microvascular Endothelial Cells Repopulate Decellularized Scaffold

    Science.gov (United States)

    Dally, Iris; Hartmann, Nadja; Münst, Bernhard; Braspenning, Joris; Walles, Heike

    2013-01-01

    A general problem in tissue engineering is the poor and insufficient blood supply to guarantee tissue cell survival as well as physiological tissue function. To address this limitation, we have developed an in vitro vascularization model in which a decellularized porcine small bowl segment, representing a capillary network within a collagen matrix (biological vascularized scaffold [BioVaSc]), is reseeded with microvascular endothelial cells (mvECs). However, since the supply of mvECs is limited, in general, and as these cells rapidly dedifferentiate, we have applied a novel technology, which allows the generation of large batches of quasi-primary cells with the ability to proliferate, whilst maintaining their differentiated functionality. These so called upcyte mvECs grew for an additional 15 population doublings (PDs) compared to primary cells. Upcyte mvECs retained endothelial characteristics, such as von Willebrandt Factor (vWF), CD31 and endothelial nitric oxide synthase (eNOS) expression, as well as positive Ulex europaeus agglutinin I staining. Upcyte mvECs also retained biological functionality such as tube formation, cell migration, and low density lipoprotein (LDL) uptake, which were still evident after PD27. Initial experiments using MTT and Live/Dead staining indicate that upcyte mvECs repopulate the BioVaSc Scaffold. As with conventional cultures, these cells also express key endothelial molecules (vWF, CD31, and eNOS) in a custom-made bioreactor system even after a prolonged period of 14 days. The combination of upcyte mvECs and the BioVaSc represents a novel and promising approach toward vascularizing bioreactor models which can better reflect organs, such as the liver. PMID:22799502

  4. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds

    KAUST Repository

    Gerhardt, Lutz Christian; Widdows, Kate L.; Erol, Melek M.; Nandakumar, Anandkumar; Roqan, Iman S.; Ansari, Tahera I.; Boccaccini, Aldo R.

    2012-01-01

    amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm 2), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating

  5. Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering

    Science.gov (United States)

    Cheng, Christina W.; Solorio, Loran D.; Alsberg, Eben

    2014-01-01

    The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic. PMID:24417915

  6. Decellularized Rat Lung Scaffolds Using Sodium Lauryl Ether Sulfate for Tissue Engineering.

    Science.gov (United States)

    Ma, Jinhui; Ju, Zhihai; Yu, Jie; Qiao, Yeru; Hou, Chenwei; Wang, Chen; Hei, Feilong

    Perfusion decellularization with detergents is effective to maintain the architecture and proteins of extracellular matrix (ECM) for use in the field of lung tissue engineering (LTE). However, it is unclear which detergent is ideal to produce an acellular lung scaffold. In this study, we obtained two decellularized rat lung scaffolds using a novel detergent sodium lauryl ether sulfate (SLES) and a conventional detergent sodium dodecyl sulfate (SDS). Both decellularized lung scaffolds were assessed by histology, immunohistochemistry, scanning electron microscopy, DNA quantification, sulfated glycosaminoglycans (GAGs) quantification and western blot. Subsequently, the scaffolds were implanted subcutaneously in rats for 6 weeks and were evaluated via hematoxylin and eosin staining and Masson staining. Results indicated that SLES was effective to remove cells; moreover, lungs decellularized with SLES showed better preservation of sulfated GAGs, lung architecture, and ECM proteins than SDS. After 6 weeks, SLES scaffolds demonstrated a significantly greater potential for cell infiltration and blood vessel formation compared with SDS scaffolds. Taken together, we conclude that SLES is a promising detergent to produce an acellular scaffold using LTE for eventual transplantation.

  7. Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine.

    Science.gov (United States)

    Balestrini, Jenna L; Gard, Ashley L; Gerhold, Kristin A; Wilcox, Elise C; Liu, Angela; Schwan, Jonas; Le, Andrew V; Baevova, Pavlina; Dimitrievska, Sashka; Zhao, Liping; Sundaram, Sumati; Sun, Huanxing; Rittié, Laure; Dyal, Rachel; Broekelmann, Tom J; Mecham, Robert P; Schwartz, Martin A; Niklason, Laura E; White, Eric S

    2016-09-01

    Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. On the nature of biomaterials.

    Science.gov (United States)

    Williams, David F

    2009-10-01

    The situations in which biomaterials are currently used are vastly different to those of just a decade ago. Although implantable medical devices are still immensely important, medical technologies now encompass a range of drug and gene delivery systems, tissue engineering and cell therapies, organ printing and cell patterning, nanotechnology based imaging and diagnostic systems and microelectronic devices. These technologies still encompass metals, ceramics and synthetic polymers, but also biopolymers, self assembled systems, nanoparticles, carbon nanotubes and quantum dots. These changes imply that our original concepts of biomaterials and our expectations of their performance also have to change. This Leading Opinion Paper addresses these issues. It concludes that many substances which hitherto we may not have thought of as biomaterials should now be considered as such so that, alongside the traditional structural biomaterials, we have substances that have been engineered to perform functions within health care where their performance is directly controlled by interactions with tissues and tissue components. These include engineered tissues, cells, organs and even viruses. This essay develops the arguments for a radically different definition of a biomaterial.

  9. Radiation produced biomaterials

    International Nuclear Information System (INIS)

    Rosiak, J.M.

    1998-01-01

    Medical advances that have prolonged the average life span have generated increased need for new materials that can be used as tissue and organ replacements, drug delivery systems and/or components of devices related to therapy and diagnosis. The first man-made plastic used as surgical implant was celluloid, applied for cranial defect repair. However, the first users applied commercial materials with no regard for their purity, biostability and post-operative interaction with the organism. Thus, these materials evoked a strong tissue reaction and were unacceptable. The first polymer which gained acceptance for man-made plastic was poly(methyl methacrylate). But the first polymer of choice, precursor of the broad class of materials known today as hydrogels, was poly(hydroxyethyl methacrylate) synthesized in the fifties by Wichterle and Lim. HEMA and its various combinations with other, both hydrophilic and hydrophobic, polymers are till now the most often used hydrogels for medical purposes. In the early fifties, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking, also with hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of phenomena associated with mechanism of reactions, topology of network, and relations between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by Charlesby (1960) and Chapiro (1962) proceed from this time. The noticeable interest in application of radiation to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents published by Japanese and American scientists. Among others, the team of the Takasaki Radiation Chemistry Research Establishment headed by Kaetsu as well as Hoffman and his colleagues from the Center of Bioengineering, University of Washington have created the base for spreading interest in the field of biomaterials formed by means of

  10. Fisics-Incor bovine pericardial bioprostheses: 15 year results.

    Science.gov (United States)

    Pomerantzeff, P M; Brandao, C M; Cauduro, P; Puig, L B; Grinberg, M; Tarasoutchi, F; Cardoso, L F; Lerner, A; Stolf, N A; Verginelli, G; Jatene, A D

    1998-01-01

    From March 1982 to December 1995, 2,607 Fisics-Incor bovine pericardial bioprostheses were implanted in 2,259 patients. Mean age was 47.2 +/- 17.5 years, and 55% were male. Rheumatic fever was present in 1,301 (45.7%) patients. One thousand and seventy-three aortic valve replacements, 1,085 mitral replacements, 27 tricuspid replacements, 195 mitral-aortic replacements, and 16 other combined valve replacements were carried out. Combined procedures were performed in 788 (32.9%) patients, the most frequent being tricuspid valve repair (9.2%) and coronary artery bypass grafting (7.7%). Hospital mortality was 8.6% (194 patients), 8.6% for the mitral group, 4.7% for the aortic group, and 12.8% for double-valve replacements. The linear rates for calcification, thromboembolism, rupture, leak and endocarditis were, respectively, 1.1%, 0.2%, 0.9%, 0.1% and 0.5% patient-year. The actuarial survival curve was 56.7 +/- 5.4% in 15 years. Survival free from endocarditis was 91.92%, survival free from thromboembolism was 95 +/- 1.7%, survival free from rupture was 43.7 +/- 9.8%, survival free from leak was 98.9 +/- 4.5%, and survival free from calcification was 48.8 +/- 7.9% in 15 years. In the late postoperative period, 1,614 (80.6%) patients were in New York Heart Association functional Class I. We conclude that the results with the Fisics-Incor bovine pericardial prostheses were satisfactory in our group of patients.

  11. Decellularized Bovine Articular Cartilage Matrix Reinforced by Carboxylated-SWCNT for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Zari Majidi Mohammadie

    2018-01-01

    Full Text Available ABSTRACT Nanotubes with their unique properties have diversified mechanical and biological applications. Due to similarity of dimensions with extracellular matrix (ECM elements, these materials are used in designing scaffolds. In this research, Carboxylated Single-Wall Carbon Nanotubes in optimization of decellularized scaffold of bovine articular cartilage was used. At first, the articular cartilage was decellularized. Then the scaffolds were analyzed in: (i decellularized scaffolds, and (ii scaffolds plunged into homogenous suspension of nanotubes in distilled water, were smeared with Carboxylated-SWCNT. The tissue rings derived from the rabbit's ear were assembled with reinforced scaffolds and they were placed in a culture media for 15 days. The scaffolds in two groups and the assembled scaffolds underwent histologic and electron microscopy. Scanning electron microscopy showed that the structure of ECM of articular cartilage has been maintained well after decellularization. Fourier transform infrared analysis showed that the contents of ECM have not been changed under treatment process. Atomic force microscopy analysis showed the difference in surface topography and roughness of group (ii scaffolds in comparison with group (i. Transmission electron microscopy studies showed the Carboxylated-SWCNT bond with the surface of decellularized scaffold and no penetration of these compounds into the scaffold. The porosity percentage with median rate of 91.04 in group (i scaffolds did not have significant difference with group (ii scaffolds. The electron microscopy observations confirmed migration and penetration of the blastema cells into the group (ii assembled scaffolds. This research presents a technique for provision of nanocomposite scaffolds for cartilage engineering applications.

  12. Massive pericardial effusion and rhabdomyolysis secondary to untreated severe hypothyroidism: the first report.

    Science.gov (United States)

    Zare-Khormizi, M R; Rahmanian, M; Pourrajab, F; Akbarnia, S

    2014-10-01

    Hypothyroidism is an endocrine disease with various clinical manifestations. It is a rare cause for rhabdomyolysis and massive pericardial effusion. We describe a case of severe hypothyroidism secondary to autoimmune hashimoto thyroiditis with massive pericardial effusion and rhabdomyolysis. Improvement of mentioned complications after hypothyroidism treatment and rule out of other possible causes are supportive clues that hypothyroidism is the main cause of patient's rare presentation. With the best of our knowledge, it is the first report of rhabdomyolysis and massive pericardial effusion coincidence in a patient of adult population with primary uncontrolled hypothyroidism for years.

  13. Recurrent hemorrhagic pericardial effusion in a child due to diffuse lymphangiohemangiomatosis: a case report

    Directory of Open Access Journals (Sweden)

    Bakhshi Sameer

    2010-02-01

    Full Text Available Abstract Introduction Recurrent hemorrhagic pericardial effusion in children with no identifiable cause is a rare presentation. Case presentation We report the case of a 4-year-old Indian girl who presented with recurrent hemorrhagic pericardial effusion. Diffuse lymphangiomatosis was suspected when associated pulmonary involvement, soft tissue mediastinal mass, and lytic bone lesions were found. Pericardiectomy and lung biopsy confirmed the diagnosis of diffuse lymphangiohemangiomatosis. Partial clinical improvement occurred with thalidomide and low-dose radiotherapy, but our patient died from progressive respiratory failure. Conclusion Diffuse lymphangiohemangiomatosis should be considered in the differential diagnosis of hemorrhagic pericardial effusion of unclear cause.

  14. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  15. Biomaterials Evaluation: Conceptual Refinements and Practical Reforms.

    Science.gov (United States)

    Masaeli, Reza; Zandsalimi, Kavosh; Tayebi, Lobat

    2018-01-01

    Regarding the widespread and ever-increasing applications of biomaterials in different medical fields, their accurate assessment is of great importance. Hence the safety and efficacy of biomaterials is confirmed only through the evaluation process, the way it is done has direct effects on public health. Although every biomaterial undergoes rigorous premarket evaluation, the regulatory agencies receive a considerable number of complications and adverse event reports annually. The main factors that challenge the process of biomaterials evaluation are dissimilar regulations, asynchrony of biomaterials evaluation and biomaterials development, inherent biases of postmarketing data, and cost and timing issues. Several pieces of evidence indicate that current medical device regulations need to be improved so that they can be used more effectively in the evaluation of biomaterials. This article provides suggested conceptual refinements and practical reforms to increase the efficiency and effectiveness of the existing regulations. The main focus of the article is on strategies for evaluating biomaterials in US, and then in EU.

  16. Fabrication method, structure, mechanical, and biological properties of decellularized extracellular matrix for replacement of wide bone tissue defects.

    Science.gov (United States)

    Anisimova, N Y; Kiselevsky, M V; Sukhorukova, I V; Shvindina, N V; Shtansky, D V

    2015-09-01

    The present paper was focused on the development of a new method of decellularized extracellular matrix (DECM) fabrication via a chemical treatment of a native bone tissue. Particular attention was paid to the influence of chemical treatment on the mechanical properties of native bones, sterility, and biological performance in vivo using the syngeneic heterotopic and orthotopic implantation models. The obtained data indicated that after a chemical decellularization treatment in 4% aqueous sodium chlorite, no noticeable signs of the erosion of compact cortical bone surface or destruction of trabeculae of spongy bone in spinal channel were observed. The histological studies showed that the chemical treatment resulted in the decellularization of both bone and cartilage tissues. The DECM samples demonstrated no signs of chemical and biological degradation in vivo. Thorough structural characterization revealed that after decellularization, the mineral frame retained its integrity with the organic phase; however clotting and destruction of organic molecules and fibers were observed. FTIR studies revealed several structural changes associated with the destruction of organic molecules, although all organic components typical of intact bone were preserved. The decellularization-induced structural changes in the collagen constituent resulted changed the deformation under compression mechanism: from the major fracture by crack propagation throughout the sample to the predominantly brittle fracture. Although the mechanical properties of radius bones subjected to decellularization were observed to degrade, the mechanical properties of ulna bones in compression and humerus bones in bending remained unchanged. The compressive strength of both the intact and decellularized ulna bones was 125-130 MPa and the flexural strength of humerus bones was 156 and 145 MPa for the intact and decellularized samples, respectively. These results open new avenues for the use of DECM samples as

  17. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis.

    Science.gov (United States)

    Seo, Yoojin; Jung, Youngmee; Kim, Soo Hyun

    2018-02-01

    Initial angiogenesis within the first 3 days is critical for healing ischemic diseases such as myocardial infarction. Recently, decellularized extracellular matrix (dECM) has been reported to provide tissue-derived ECM components and can be used as a scaffold for cell delivery for angiogenesis in tissue engineering. Decellularization by various detergents such as sodium dodecyl sulfate (SDS) and triton X-100 can remove the cell nuclei in tissue organs. However, this leads to ECM structure denaturation, decreased presence of various ECM proteins and cytokines, and loss of mechanical properties. To overcome these limitations, in this study, we developed a supercritical carbon dioxide and ethanol co-solvent (scCO 2 -EtOH) decellularization method, which is a detergent-free system that prevents ECM structure disruption and retains various angiogenic proteins in the heart dECM, and tested on rat heart tissues. The heart tissue was placed into the scCO 2 reactor and decellularized at 37 °C and 350 bar. After scCO 2 -EtOH treatment, the effects were evaluated by DNA, collagen, and glycosaminoglycan (GAG) quantification and hematoxylin and eosin and immunofluorescence staining to determine the absence of nucleic acids and preservation of heart ECM components. Similar to the native group, the scCO 2 -EtOH group contained more ECM components such as collagen, GAGs, collagen I, laminin, and fibronectin and angiogenic factors including vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor and others in comparison to the detergent group. In addition, to estimate angiogenesis of the dECM hydrogels, the neutralized dECM solution was injected in a rat subcutaneous layer (n = 6 in each group: collagen, scCO 2 -EOH, and detergent group), after which the solution naturally formed gelation in the subcutaneous layer. After 3 days, the gels were harvested and estimated by immunofluorescence staining and the ImageJ program for

  18. Short-term minoxidil use associated with pericardial effusion and cardiac tamponade: an uncommon presentation.

    Science.gov (United States)

    Pasala, Krishna K; Gujja, Karthik; Prabhu, Hejmadi; Vasavada, Balendu; Konka, Sudarsanam

    2012-11-01

    A 48-year-old man presented with complaints of shortness of breath and lower extremity swelling. His medical history was significant for hypertension on minoxidil and recent intracerebellar hemorrhage. Electrocardiography showed sinus tachycardia with left ventricular hypertrophy, and cardiomegaly was noted in the chest x-ray. The patient was hypertensive and tachypneic on admission. An echocardiogram taken immediately showed a large pericardial effusion with evidence of cardiac tamponade. He underwent immediate pericardiocentesis with drainage of 900 mL of pericardial fluid with significant improvement in the symptoms. Analysis of the pericardial fluid proved to be nondiagnostic. Infectious and rheumatologic causes were ruled out. After an extensive battery of tests, not yielding any diagnostic results, the pericardial effusion was attributed to minoxidil therapy. Closer monitoring is needed to prevent potentially fatal complications such as cardiac tamponade as in our patient.

  19. STUDY OF AGE, SEX AND ETIOLOGIC SPECTRUM OF PERICARDIAL EFFUSION IN TERTIARY CARE HOSPITAL

    Directory of Open Access Journals (Sweden)

    Ravikaladhar Reddy

    2015-10-01

    Full Text Available Pericardial effusion is perhaps one of the most commonly overlooked clinical conditions and definite establishment of etiological agent is not always easy, successful or satisfactory. In this study, 50 cases of pericardial effusion admitted in Medical wards were analysed with emphasis on pattern of age and gender distribution, clinical presentation and et iology. The incidence of pericardial effusion common in age group between 21 - 40 years. The incidence of pericardial effusion is more in males. In the present study, the youngest patient is 15 year old and the oldest is 62 year old. Breathlessness being com monest symptom and raised JVP Is commonest sign. 60% of cases are of tuberculosis etiology, 15% are due to uremia and malignancy each, and 5% due to collagen vascular disease

  20. Continuous Postoperative Pericardial Flushing: A Pilot Study on Safety, Feasibility, and Effect on Blood Loss

    NARCIS (Netherlands)

    Manshanden, Johan S. J.; Gielen, Chantal L. I.; de Borgie, Corianne A. J. M.; Klautz, Robert J. M.; de Mol, Bas A. J. M.; Koolbergen, David R.

    2015-01-01

    Background: Prolonged or excessive blood loss is a common complication after cardiac surgery. Blood remnants and clots, remaining in the pericardial space in spite of chest tube drainage, induce high fibrinolytic activity that may contribute to bleeding complications. Continuous postoperative

  1. Predoctoral Curriculum Guidelines for Biomaterials.

    Science.gov (United States)

    Journal of Dental Education, 1986

    1986-01-01

    The American Association of Dental Schools' predoctoral guidelines for biomaterials curricula includes notes on interrelationships between this and other fields, a curriculum overview, primary educational goals, prerequisites, a core content outline, specific behavioral objectives for each content area, and information on sequencing, faculty and…

  2. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  3. Generation of Femtosecond Laser-Cut Decellularized Corneal Lenticule Using Hypotonic Trypsin-EDTA Solution for Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Man-Il Huh

    2018-01-01

    Full Text Available Purpose. To establish an optimized and standardized protocol for the development of optimal scaffold for bioengineering corneal substitutes, we used femtosecond laser to process human corneal tissue into stromal lenticules and studied to find the most efficient decellularization method among various reagents with different tonicities. Methods. The decellularization efficacy of several agents (0.1%, 0.25%, and 0.5% of Triton X-100, SDS, and trypsin-EDTA (TE, resp. with different tonicities was evaluated. Of all protocols, the decellularization methods, which efficiently removed nuclear materials examined as detected by immunofluorescent staining, were quantitatively tested for sample DNA and glycosaminoglycan (GAG contents, recellularization efficacy, and biocompatibilities. Results. 0.5% SDS in hypertonic and isotonic buffer, 0.25% TE in hypotonic buffer, and 0.5% TE in all tonicities completely decellularized the corneal lenticules. Of the protocols, decellularization with hypotonic 0.25 and 0.5% TE showed the lowest DNA contents, while the GAG content was the highest. Furthermore, the recellularization efficacy of the hypotonic TE method was better than that of the SDS-based method. Hypotonic TE-treated decellularized corneal lenticules (DCLs were sufficiently transparent and biocompatible. Conclusion. We generated an ideal protocol for DCLs using a novel method. Furthermore, it is possible to create a scaffold using a bioengineered corneal substitute.

  4. Massive pericardial effusion without cardiac tamponade due to subclinical hypothyroidism (Hashimoto's disease).

    Science.gov (United States)

    Papakonstantinou, Panteleimon E; Gourniezakis, Nikolaos; Skiadas, Christos; Patrianakos, Alexandros; Gikas, Achilleas

    2018-05-01

    Hypothyroidism is a significant cause of pericardial effusion. However, large pericardial effusions due to hypothyroidism are extremely rare. Hormone replacement therapy is the cornerstone of treatment for hypothyroidism and regular follow-up of patients after initiation of the therapy is indicated. Herein, the case of a 70-year-old woman with a massive pericardial effusion due to Hashimoto's disease is presented. A 70-year-old female from a rural village on the island of Crete, Greece, was admitted to our hospital due to a urinary tract infection. She was under hormone replacement therapy with levothyroxine 100 µg once a day for Hashimoto's disease. Two years previously, the patient had had an episode of pericarditis due to hypothyroidism and had undergone a computed tomography-guided pericardiocentesis. The patient did not have regular follow-up and did not take the hormone replacement therapy properly. On admission, the patient's chest X-ray incidentally showed a possible pericardial effusion. The patient was referred for echocardiography, which revealed a massive pericardial effusion. Beck's triad was absent. Thyroid hormones were consistent with subclinical hypothyroidism: thyroid-stimulating hormone (TSH) 30.25 mIU/mL (normal limits: 0.25-3.43); free thyroxin 4 0.81 ng/dL (normal limits: 0.7-1.94). The patient had a score of 5 on the scale outlined by the European Society of Cardiology (ESC) position statement on triage strategy for cardiac tamponade and, despite the absence of cardiac tamponade, a pericardiocentesis was performed after 48 hours. The patient was treated with 125 µg levothyroxine orally once daily. This was a rare case of an elderly female patient from a rural village with chronic massive pericardial effusion due to subclinical hypothyroidism without cardiac tamponade. Hypothyroidism should be included in the differential diagnosis of pericardial effusion, especially in a case of unexplained pericardial fluid. Initiation of hormone

  5. Value of polymerase chain reaction in patients with presumptively diagnosed and treated as tuberculous pericardial effusion

    International Nuclear Information System (INIS)

    Rehman, H.; Hafizullah, M.; Shah, S.T.; Khan, S.B.; Hadi, A.; Ahmad, F.; Shah, I.; Gul, A.M.

    2012-01-01

    Objective: To know the sensitivity of polymerase chain reaction (PCR) in pericardial fluid and response to antituberculous treatment (ATT) in PCR positive patients who were presumptively diagnosed and treated as tuberculous pericardial effusion. Methodology: This was a descriptive cross sectional study carried out from June 1, 2009 to 31 May 2010 at Cardiology Department, Lady Reading Hospital, Peshawar. Patients with presumptive diagnosis and receiving treatment for tuberculous pericardial effusion were included. Pericardial fluid sample was aspirated under fluoroscopy for the routine work up. The specimens were subjected to PCR detection of mycobacterium tuberculous DNA. Results: During 12 month study period, a total of 54 patients with large pericardial effusion presented to Cardiology department, Lady Reading Hospital, Peshawar. Of them, 46 patients fulfilled the criteria for presumptive diagnosis of tuberculous pericardial effusion. PCR for mycobacterium tuberculous DNA in pericardial fluid was positive in 45.7%(21). Patients were followed for three months. In PCR positive group, 01 patient while in PCR negative group 3 patients were lost to follow up. Among PCR positive patients 17(85%) while in PCR negative group 11(47.82%) patient responded to ATT both clinically and echo-cardio graphically. We found that patients who were PCR positive responded better to therapy than those who were PCR negative and this finding was statistically significant (p=0.035). Conclusion: PCR, with all its limitations, is potentially a useful diagnostic test in patients with presumptively diagnosed tuberculous pericardial effusion. A PCR positive patient responds better to therapy as compared to PCR negative patient. (author)

  6. Clinical Predictors and Outcomes of Patients with Pericardial Effusion in Chronic Kidney Disease.

    Science.gov (United States)

    Ravi, Venkatesh; Iskander, Fady; Saini, Abhimanyu; Brecklin, Carolyn; Doukky, Rami

    2018-03-13

    Pericardial effusion is common in hospitalized patients with chronic kidney disease (CKD). We sought to identify predictors of pericardial effusion in CKD patients and to evaluate the impact of pericardial effusion on their mortality and morbidity. In a retrospective nested case control study design, we analyzed hospitalized adult patients with CKD stage 4, 5, and end-stage renal disease (ESRD) diagnosed with pericardial effusion. Randomly selected patients with CKD stage 4, 5, and ESRD without pericardial effusion were used as controls. We analyzed 84 cases and 61 controls, of whom 44% and 34% were on dialysis, respectively. The mean blood urea nitrogen and creatinine were 70±27 mg/dL and 8.4±6.0 mg/dL among cases, 54±26 mg/dL and 6.0±3.4 mg/dL among controls, respectively. Effusion was moderate to large in 46% of cases. Predictors of any pericardial effusion were serum potassium (OR, 1.95 per 1 mEq/L increment in level; CI, 1.21-3.13; p=0.006), serum corrected calcium (OR, 1.33 per 1mg/dl decrement in level; CI, 1.11-1.67; p=0.015) and admission heart rate (OR, 1.29 per 10 beats/minute increment in heart rate; CI, 1.03-1.62; p=0.027). Corrected calcium level was an independent predictor of moderate to large pericardial effusion, (OR, 1.38 per 1 mg/dL decrement in level; CI, 1.04-1.82, p=0.023). Corrected calcium effusion. Patients with effusion had no significant difference in mortality or cardiovascular re-hospitalization (log-rank p=0.408). In hospitalized CKD patients, hypocalcemia may be useful in identifying those with moderate to large pericardial effusion. This article is protected by copyright. All rights reserved.

  7. Tissue-engineered trachea regeneration using decellularized trachea matrix treated with laser micropore technique.

    Science.gov (United States)

    Xu, Yong; Li, Dan; Yin, Zongqi; He, Aijuan; Lin, Miaomiao; Jiang, Gening; Song, Xiao; Hu, Xuefei; Liu, Yi; Wang, Jinpeng; Wang, Xiaoyun; Duan, Liang; Zhou, Guangdong

    2017-08-01

    Tissue-engineered trachea provides a promising approach for reconstruction of long segmental tracheal defects. However, a lack of ideal biodegradable scaffolds greatly restricts its clinical translation. Decellularized trachea matrix (DTM) is considered a proper scaffold for trachea cartilage regeneration owing to natural tubular structure, cartilage matrix components, and biodegradability. However, cell residual and low porosity of DTM easily result in immunogenicity and incomplete cartilage regeneration. To address these problems, a laser micropore technique (LMT) was applied in the current study to modify trachea sample porosity to facilitate decellular treatment and cell ingrowth. Decellularization processing demonstrated that cells in LMT treated samples were more easily removed compared with untreated native trachea. Furthermore, after optimizing the protocols of LMT and decellular treatments, the LMT-treated DTM (LDTM) could retain their original tubular shape with only mild extracellular matrix damage. After seeding with chondrocytes and culture in vitro for 8 weeks, the cell-LDTM constructs formed tubular cartilage with relatively homogenous cell distribution in both micropores and bilateral surfaces. In vivo results further confirmed that the constructs could form mature tubular cartilage with increased DNA and cartilage matrix contents, as well as enhanced mechanical strength, compared with native trachea. Collectively, these results indicate that LDTM is an ideal scaffold for tubular cartilage regeneration and, thus, provides a promising strategy for functional reconstruction of trachea cartilage. Lacking ideal biodegradable scaffolds greatly restricts development of tissue-engineered trachea. Decellularized trachea matrix (DTM) is considered a proper scaffold for trachea cartilage regeneration. However, cell residual and low porosity of DTM easily result in immunogenicity and incomplete cartilage regeneration. By laser micropore technique (LMT), the

  8. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  9. Diagnosis of pericardial cysts using diffusion weighted magnetic resonance imaging: A case series

    Directory of Open Access Journals (Sweden)

    Mousavi Negareh

    2011-09-01

    Full Text Available Abstract Introduction Congenital pericardial cysts are benign lesions that arise from the pericardium during embryonic development. The diagnosis is based on typical imaging features, but atypical locations and signal magnetic resonance imaging sequences make it difficult to exclude other lesions. Diffusion-weighted magnetic resonance imaging is a novel method that can be used to differentiate tissues based on their restriction to proton diffusion. Its use in differentiating pericardial cysts from other pericardial lesions has not yet been described. Case presentation We present three cases (a 51-year-old Caucasian woman, a 66-year-old Caucasian woman and a 77-year-old Caucasian woman with pericardial cysts evaluated with diffusion-weighted imaging using cardiac magnetic resonance imaging. Each lesion demonstrated a high apparent diffusion coefficient similar to that of free water. Conclusion This case series is the first attempt to investigate the utility of diffusion-weighted magnetic resonance imaging in the assessment of pericardial cysts. Diffusion-weighted imaging may be a useful noninvasive diagnostic tool for pericardial cysts when conventional imaging findings are inconclusive.

  10. The pericardial reflection and the tip of the central venous catheter - topographical analysis in stillborn babies

    Energy Technology Data Exchange (ETDEWEB)

    Eifinger, Frank; Vierzig, Anne; Roth, Bernhard [University Children' s Hospital, Department of Pediatric Critical Care Medicine and Neonatology, Cologne (Germany); Scaal, Martin [University of Cologne, Institute of Anatomy II, Cologne (Germany); Koerber, Friederike [University of Cologne, Department of Radiology, Cologne (Germany)

    2016-10-15

    Central venous cannulation is widely used in neonatal critical care. Pericardial tamponade caused by vessel wall perforation can occur if the catheter tip induces extravasation at the level of the pericardium. To investigate the level of the superior pericardial reflection in stillborn babies. We dissected 20 bodies (11 female, mean gestational age 33 6/7 weeks, range 25-43 weeks), with careful opening of the thoracic area. After injecting contrast medium into the pericardial sac, we introduced a catheter through the right internal jugular vein. We then took radiographs to analyse the relationship between visual osseous landmarks and the pericardium. Mean distance between the pericardial reflection at its upper end and the first thoracic vertebra was 1.3 cm (standard deviation [SD]: 0.3 cm) and did not extend over the 3rd intercostal space. The mean distance from the entry of the superior vena cava into the pericardial sac and the 1st thoracic vertebra was 2.3 cm (SD: 0.5). The upper end of the pericardial reflection in neonates at autopsy lies below the middle of the 3rd thoracic vertebra. The tip of an upper inserted catheter should not extend below the level of the 3rd intercostal space. (orig.)

  11. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  12. Pericardial effusion in patients with cancer: outcome with contemporary management strategies.

    Science.gov (United States)

    Laham, R. J.; Cohen, D. J.; Kuntz, R. E.; Baim, D. S.; Lorell, B. H.; Simons, M.

    1996-01-01

    OBJECTIVE--To investigate the clinical presentation and current management strategies of pericardial effusion in patients with malignancy. DESIGN--Retrospective single centre, consecutive observational study. SETTING--University hospital. PATIENTS--93 consecutive patients with a past or present diagnosis of cancer and a pericardial effusion, including 50 with a pericardial effusion > 1 cm. RESULTS--Of the 50 patients with pericardial effusions > 1 cm, most had stage 4 cancer (64%), were symptomatic at the time of presentation (74%), and had right atrial collapse (74%). Twenty patients were treated conservatively (without pericardiocentesis) and were less symptomatic (55% v 87%, P = 0.012), had smaller pericardial effusions (1.5 (0.4) v 1.8 (0.5), P = 0.02), and less frequent clinical (10% v 40%, P = 0.02) and echocardiographic evidence of tamponade (40% v 97%, P < 0.001) than the 30 patients treated invasively with initial pericardiocentesis (n = 29) or pericardial window placement (n = 1). Pericardial tamponade requiring repeat pericardiocentesis occurred in 18 (62%) of 29 patients after a median of 7 days. In contrast, only four (20%) of 20 patients in the conservative group progressed to frank clinical tamponade and required pericardiocentesis (P = 0.005 v invasive group). The overall median survival was 2 months with a survival rate at 48 months of 26%. Survival, duration of hospital stay, and hospital charges were similar with both strategies. By multivariable analysis, the absence of symptoms was the only independent predictor of long-term survival (relative hazards ratio = 3.2, P = 0.05). Survival was similar in the 43 patients with cancer and pericardial effusions of < or = 1 cm. CONCLUSION--Asymptomatic patients with cancer and pericardial effusion can be managed conservatively with close follow up. In patients with symptoms or clinical cardiac tamponade, pericardiocentesis provides relief of symptoms but does not improve survival and has a high recurrence

  13. A case of Meigs' syndrome with preceding pericardial effusion in advance of pleural effusion.

    Science.gov (United States)

    Okuda, Kenichi; Noguchi, Satoshi; Narumoto, Osamu; Ikemura, Masako; Yamauchi, Yasuhiro; Tanaka, Goh; Takai, Daiya; Fukayama, Masashi; Nagase, Takahide

    2016-05-10

    Meigs' syndrome is defined as the presence of a benign ovarian tumor with pleural effusion and ascites that resolve after removal of the tumor. The pathogenesis of the production of ascites and pleural effusion in this syndrome remains unknown. Aside from pleural effusion and ascites, pericardial effusion is rarely observed in Meigs' syndrome. Here, we report the first case of Meigs' syndrome with preceding pericardial effusion in advance of pleural effusion. An 84-year-old Japanese non-smoking woman with a history of lung cancer, treated by surgery, was admitted due to gradual worsening of dyspnea that had occurred over the previous month. She had asymptomatic and unchanging pericardial effusion and a pelvic mass, which had been detected 3 and 11 years previously, respectively. The patient was radiologically followed-up without the need for treatment. Two months before admission, the patient underwent a right upper lobectomy for localized lung adenocarcinoma and intraoperative pericardial fenestration confirmed that the pericardial effusion was not malignant. However, she began to experience dyspnea on exertion leading to admission. A chest, abdomen, and pelvis computed tomography scan confirmed the presence of right-sided pleural and pericardial effusion and ascites with a left ovarian mass. Repeated thoracentesis produced cultures that were negative for any microorganism and no malignant cells were detected in the pleural effusions. Pleural fluid accumulation persisted despite a tube thoracostomy for pleural effusion drainage. With a suspicion of Meigs' syndrome, the patient underwent surgical resection of the ovarian mass and histopathological examination of the resected mass showed ovarian fibroma. Pleural and pericardial effusion as well as ascites resolved after tumor resection, confirming a diagnosis of Meigs' syndrome. This clinical course suggests a strong association between pericardial effusion and ovarian fibroma, as well as pleural and peritoneal

  14. Angiotensin antagonists in the dog with chronic pericardial tamponade

    International Nuclear Information System (INIS)

    Moore, G.J.; Taub, K.J.

    1980-01-01

    Assessing the role played by angiotensin in the pathogenesis and maintenance of the renal function and perfusion abnormalities dogs with chronic pericardial tamponade were used in the experiment as a stable model of chronic low output heart failure. The heptapeptide and octapeptide antagonist were used. The results of the experiments suggest that there is a role for angiotensin in the pathologenesis of congestive heart failure. The renin-angiotensin system was activated in the model. Plasma renin activity was elevated and increased further in response to angiotensin blockade. Under the experiment condition there was no evidence for a role for angiotensin in the maintenance of arterial blood pressure. But there was angiotensin-mediated renal vasoconstriction and a reduction in renal blood flow. Both analogues of angiotensin were able to antagonize this effect in similar fashion. Failure to achieve a natriuresis in response to angiotensin blockade may reflect the redistribution of blood flow that occured and suggests that additional factors are operative in this model. (APR)

  15. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix liver scaffolds.

    Science.gov (United States)

    Sabetkish, Shabnam; Kajbafzadeh, Abdol-Mohammad; Sabetkish, Nastaran; Khorramirouz, Reza; Akbarzadeh, Aram; Seyedian, Sanam Ladi; Pasalar, Parvin; Orangian, Saghar; Beigi, Reza Seyyed Hossein; Aryan, Zahra; Akbari, Hesam; Tavangar, Seyyed Mohammad

    2015-04-01

    To report the results of whole liver decellularization by two different methods. To present the results of grafting rat and sheep decellularized liver matrix (DLM) into the normal rat liver and compare natural cell seeding process in homo/xenograft of DLM. To compare the results of in vitro whole liver recellularization with rats' neonatal green fluorescent protein (GFP)-positive hepatic cells with outcomes of in vivo recellularization process. Whole liver of 8 rats and 4 sheep were resected and cannulated via the hepatic vein and perfused with sodium dodecyl sulfate (SDS) or Triton + SDS. Several examinations were performed to compare the efficacy of these two decellularization procedures. In vivo recellularization of sheep and rat DLMs was performed following transplantation of multiple pieces of both scaffolds in the subhepatic area of four rats. To compare the efficacy of different scaffolds in autologous cell seeding, biopsies of homograft and xenograft were assessed 8 weeks postoperatively. Whole DLMs of 4 rats were also recellularized in vitro by perfusion of rat's fetal GFP-positive hepatic cells with pulsatile bioreactor. Histological evaluation and enzymatic assay were performed for both in vivo and in vitro recellularized samples. The results of this study demonstrated that the triton method was a promising decellularization approach for preserving the three-dimensional structure of liver. In vitro recellularized DLMs were more similar to natural ones compared with in vivo recellularized livers. However, homografts showed better characteristics with more organized structure compared with xenografts. In vitro recellularization of liver scaffolds with autologous cells represents an attractive prospective for regeneration of liver as one of the most compound organs. In vivo cell seeding on the scaffold of the same species may have more satisfactory outcomes when compared with the results of xenotransplantation. This study theoretically may pave the road for

  16. Microgel Mechanics in Biomaterial Design

    OpenAIRE

    Saxena, Shalini; Hansen, Caroline E.; Lyon, L. Andrew

    2014-01-01

    Conspectus The field of polymeric biomaterials has received much attention in recent years due to its potential for enhancing the biocompatibility of systems and devices applied to drug delivery and tissue engineering. Such applications continually push the definition of biocompatibility from relatively straightforward issues such as cytotoxicity to significantly more complex processes such as reducing foreign body responses or even promoting/recapitulating natural body functions. Hydrogels a...

  17. CD133 antibody conjugation to decellularized human heart valves intended for circulating cell capture.

    Science.gov (United States)

    Vossler, John D; Min Ju, Young; Williams, J Koudy; Goldstein, Steven; Hamlin, James; Lee, Sang Jin; Yoo, James J; Atala, Anthony

    2015-09-03

    The long term efficacy of tissue based heart valve grafts may be limited by progressive degeneration characterized by immune mediated inflammation and calcification. To avoid this degeneration, decellularized heart valves with functionalized surfaces capable of rapid in vivo endothelialization have been developed. The aim of this study is to examine the capacity of CD133 antibody-conjugated valve tissue to capture circulating endothelial progenitor cells (EPCs). Decellularized human pulmonary valve tissue was conjugated with CD133 antibody at varying concentrations and exposed to CD133 expressing NTERA-2 cl.D1 (NT2) cells in a microflow chamber. The amount of CD133 antibody conjugated on the valve tissue surface and the number of NT2 cells captured in the presence of shear stress was measured. Both the amount of CD133 antibody conjugated to the valve leaflet surface and the number of adherent NT2 cells increased as the concentration of CD133 antibody present in the surface immobilization procedure increased. The data presented in this study support the hypothesis that the rate of CD133(+) cell adhesion in the presence of shear stress to decellularized heart valve tissue functionalized by CD133 antibody conjugation increases as the quantity of CD133 antibody conjugated to the tissue surface increases.

  18. Effect of Decellularization Protocol on the Mechanical Behavior of Porcine Descending Aorta

    Directory of Open Access Journals (Sweden)

    John C. Fitzpatrick

    2010-01-01

    Full Text Available Enzymatic-detergent decellularization treatments may use a combination of chemical reagents to reduce vascular tissue to sterilized scaffolds, which may be seeded with endothelial cells and implanted with a low risk of rejection. However, these chemicals may alter the mechanical properties of the native tissue and contribute to graft compliance mismatch. Uniaxial tensile data obtained from native and decellularized longitudinal aortic tissue samples was analyzed in terms of engineering stress and fit to a modified form of the Yeoh rubber model. One decellularization protocol used SDS, while the other two used TritonX-100, RNase-A, and DNase-I in combination with EDTA or sodium-deoxycholate. Statistical significance of Yeoh model parameters was determined by paired t-test analysis. The TritonX-100/EDTA and 0.075% SDS treatments resulted in relatively variable mechanical changes and did not effectively lyse VSMCs in aortic tissue. The TritonX-100/sodium-deoxycholate treatment effectively lysed VSMCs and was characterized by less variability in mechanical behavior. The data suggests a TritonX-100/sodium-deoxycholate treatment is a more effective option than TritonX-100/EDTA and SDS treatments for the preparation of aortic xenografts and allografts because it effectively lyses VSMCs and is the least likely treatment, among those considered, to promote a decrease in mechanical compliance.

  19. A Protocol for Decellularizing Mouse Cochleae for Inner Ear Tissue Engineering.

    Science.gov (United States)

    Neal, Christopher A; Nelson-Brantley, Jennifer G; Detamore, Michael S; Staecker, Hinrich; Mellott, Adam J

    2018-01-01

    In mammals, mechanosensory hair cells that facilitate hearing lack the ability to regenerate, which has limited treatments for hearing loss. Current regenerative medicine strategies have focused on transplanting stem cells or genetic manipulation of surrounding support cells in the inner ear to encourage replacement of damaged stem cells to correct hearing loss. Yet, the extracellular matrix (ECM) may play a vital role in inducing and maintaining function of hair cells, and has not been well investigated. Using the cochlear ECM as a scaffold to grow adult stem cells may provide unique insights into how the composition and architecture of the extracellular environment aids cells in sustaining hearing function. Here we present a method for isolating and decellularizing cochleae from mice to use as scaffolds accepting perfused adult stem cells. In the current protocol, cochleae are isolated from euthanized mice, decellularized, and decalcified. Afterward, human Wharton's jelly cells (hWJCs) that were isolated from the umbilical cord were carefully perfused into each cochlea. The cochleae were used as bioreactors, and cells were cultured for 30 days before undergoing processing for analysis. Decellularized cochleae retained identifiable extracellular structures, but did not reveal the presence of cells or noticeable fragments of DNA. Cells perfused into the cochlea invaded most of the interior and exterior of the cochlea and grew without incident over a duration of 30 days. Thus, the current method can be used to study how cochlear ECM affects cell development and behavior.

  20. Repair of a common bile duct defect with a decellularized ureteral graft

    Science.gov (United States)

    Cheng, Yao; Xiong, Xian-Ze; Zhou, Rong-Xing; Deng, Yi-Lei; Jin, Yan-Wen; Lu, Jiong; Li, Fu-Yu; Cheng, Nan-Sheng

    2016-01-01

    AIM To evaluate the feasibility of repairing a common bile duct defect with a decellularized ureteral graft in a porcine model. METHODS Eighteen pigs were randomly divided into three groups. An approximately 1 cm segment of the common bile duct was excised from all the pigs. The defect was repaired using a 2 cm long decellularized ureteral graft over a T-tube (T-tube group, n = 6) or a silicone stent (stent group, n = 6). Six pigs underwent bile duct reconstruction with a graft alone (stentless group). The surviving animals were euthanized at 3 mo. Specimens of the common bile ducts were obtained for histological analysis. RESULTS The animals in the T-tube and stent groups survived until sacrifice. The blood test results were normal in both groups. The histology results showed a biliary epithelial layer covering the neo-bile duct. In contrast, all the animals in the stentless group died due to biliary peritonitis and cholangitis within two months post-surgery. Neither biliary epithelial cells nor accessory glands were observed at the graft sites in the stentless group. CONCLUSION Repair of a common bile duct defect with a decellularized ureteral graft appears to be feasible. A T-tube or intraluminal stent was necessary to reduce postoperative complications. PMID:28082809

  1. CT measurement of normal pericardial thickness in adults on computed tomography

    International Nuclear Information System (INIS)

    Choi, Young Woo; Park, Chan Sup; Jeon, Yong Sun; Bae, In Young; Choi, Sung Gyu; Koo, Jin Hoe; Chung, Won Kyun

    1998-01-01

    The purpose of this study was to establish, using computed tomography, the normal thickness of the pericardium in adults. Materials and Methods: CT scans of 50 patients, including sections through the level of the heart, were reviewed. Patients were excluded if there were any suspicions of pericardial abnormality such as infectious or neoplastic diseases. Twenty-four of the 50 were men and 26 were women; their mean age was 47.0(range,18-76) years. We measured pericardial thickness at the level of the right ventricle, interventricular septum and left ventricle, and also compared pericardial thickness in terms of age and sex. Results: In all patients, the pericardium was observed in the right ventricular region; in 41 (82%) at the interventricular septum; and in 41 (82%) along the left ventricle. The mean thickness of normal pericardium at the level of the right ventricle, interventricular septum, and left ventricle was 1.8 mm ± 0.5 mm, 1.8 mm ± 0.4 mm, and 1.7 mm ± 0.5 mm, respectively. No statistically significant correlation was apparent between pericardial thickness and age group (p > 0.63, ANOVA test). Mean pericardial thickness was 1.9 mm ± 0.6 mm in males and 1.7 mm ± 0.4 mm in females; thus, no statistically significant correlation was apparent between pericardial thickness and sex (p >0.29, Student's t-test). Conclusion: The pericardium was best visualized in sections through the right ventricle.The mean thickness of normal pericardium was 1.8 mm ± 0.5 mm and pericardial thickness did not differ according to age or sex

  2. A coarse-to-fine approach for pericardial effusion localization and segmentation in chest CT scans

    Science.gov (United States)

    Liu, Jiamin; Chellamuthu, Karthik; Lu, Le; Bagheri, Mohammadhadi; Summers, Ronald M.

    2018-02-01

    Pericardial effusion on CT scans demonstrates very high shape and volume variability and very low contrast to adjacent structures. This inhibits traditional automated segmentation methods from achieving high accuracies. Deep neural networks have been widely used for image segmentation in CT scans. In this work, we present a two-stage method for pericardial effusion localization and segmentation. For the first step, we localize the pericardial area from the entire CT volume, providing a reliable bounding box for the more refined segmentation step. A coarse-scaled holistically-nested convolutional networks (HNN) model is trained on entire CT volume. The resulting HNN per-pixel probability maps are then threshold to produce a bounding box covering the pericardial area. For the second step, a fine-scaled HNN model is trained only on the bounding box region for effusion segmentation to reduce the background distraction. Quantitative evaluation is performed on a dataset of 25 CT scans of patient (1206 images) with pericardial effusion. The segmentation accuracy of our two-stage method, measured by Dice Similarity Coefficient (DSC), is 75.59+/-12.04%, which is significantly better than the segmentation accuracy (62.74+/-15.20%) of only using the coarse-scaled HNN model.

  3. Effect of prednisolone on inflammatory markers in pericardial tuberculosis: A pilot study

    Directory of Open Access Journals (Sweden)

    Justin Shenje

    2018-03-01

    Full Text Available Background: Pericardial disorders are a common cause of heart disease, and the most common cause of pericarditis in developing countries is tuberculous (TB pericarditis. It has been shown that prednisolone added to standard anti-TB therapy leads to a lower rate of constrictive pericarditis. We conducted a pilot study to evaluate the effect of adjunctive prednisolone treatment on the concentration of inflammatory markers in pericardial tuberculosis, in order to inform immunological mechanisms at the disease site. Methods: Pericardial fluid, plasma and saliva samples were collected from fourteen patients with pericardial tuberculosis, at multiple time points. Inflammatory markers were measured using multiplex luminex analysis and ELISA. Results: In samples from 14 patients we confirmed a strongly compartmentalized immune response at the disease site and found that prednisolone significantly reduced IL-6 concentrations in plasma by 8 hours of treatment, IL-1beta concentrations in saliva, as well as IL-8 concentrations in both pericardial fluid and saliva by 24 hours. Conclusion: Monitoring the early effect of adjunctive immunotherapy in plasma or saliva is a possibility in pericarditis. Keywords: Tuberculosis, HIV, Pericarditis, Steroids, Treatment monitoring

  4. [Percutaneous tubing and drainage for the diagnosis and treatment of malignant pericardial effusion].

    Science.gov (United States)

    Li, Y; Zhou, J; Zhang, J

    2000-01-01

    To insert a tube into pericardial cavity as an emergent measure of diagnosis and treatment in patients with malignant pericardial effusion. Pericardial puncture was followed by insertion of drainage tube (diameter = 1.8 mm) through the puncture needle. The effusion collected was examined for cancer cells. After drainage, chemotherapeutic agents were administered. Four hours later, drainage was continued for 2 days (drained in 24 hr) and the tube was removed. In 34 cases with malignant pericardial effusion, tube draining was successful to relieve cardiac temponade within 15-60 minutes. Clots were present in 91.2% of the cases and cancer diagnosis was confirmed in all of them. The cytologic diagnosis of effusion was positive in 61.8%, and the cyto-pathologic typing of clots was 81.0%. The difference was statistically significant. When the results of the 2 examinations were put together, the positive rate increased to 94.1%. Tube drainage of malignant pericardial effusion is useful in diagnosis and emergency treatment.

  5. Dynamic Variables Fail to Predict Fluid Responsiveness in an Animal Model With Pericardial Effusion.

    Science.gov (United States)

    Broch, Ole; Renner, Jochen; Meybohm, Patrick; Albrecht, Martin; Höcker, Jan; Haneya, Assad; Steinfath, Markus; Bein, Berthold; Gruenewald, Matthias

    2016-10-01

    The reliability of dynamic and volumetric variables of fluid responsiveness in the presence of pericardial effusion is still elusive. The aim of the present study was to investigate their predictive power in a porcine model with hemodynamic relevant pericardial effusion. A single-center animal investigation. Twelve German domestic pigs. Pigs were studied before and during pericardial effusion. Instrumentation included a pulmonary artery catheter and a transpulmonary thermodilution catheter in the femoral artery. Hemodynamic variables like cardiac output (COPAC) and stroke volume (SVPAC) derived from pulmonary artery catheter, global end-diastolic volume (GEDV), stroke volume variation (SVV), and pulse-pressure variation (PPV) were obtained. At baseline, SVV, PPV, GEDV, COPAC, and SVPAC reliably predicted fluid responsiveness (area under the curve 0.81 [p = 0.02], 0.82 [p = 0.02], 0.74 [p = 0.07], 0.74 [p = 0.07], 0.82 [p = 0.02]). After establishment of pericardial effusion the predictive power of dynamic variables was impaired and only COPAC and SVPAC and GEDV allowed significant prediction of fluid responsiveness (area under the curve 0.77 [p = 0.04], 0.76 [p = 0.05], 0.83 [p = 0.01]) with clinically relevant changes in threshold values. In this porcine model, hemodynamic relevant pericardial effusion abolished the ability of dynamic variables to predict fluid responsiveness. COPAC, SVPAC, and GEDV enabled prediction, but their threshold values were significantly changed. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. CT-Guided Drainage of Pericardial Effusion after Open Cardiac Surgery.

    Science.gov (United States)

    Nour-Eldin, Nour-Eldin Abdelrehim; Alsubhi, Mohammed; Gruber-Rouh, Tatjana; Vogl, Thomas J; Kaltenbach, Benjamin; Soliman, Hazem Hamed; Hassan, Wael Eman; Abolyazid, Sherif Maher; Naguib, Nagy N

    2017-08-01

    This study was designed to evaluate the safety and efficacy of CT-guided drainage of the pericardial effusion in patients after cardiac surgery. The study included 128 consecutive patients (82 males, 46 females; mean age 66.6 years, SD: 4.2) complicated by pericardial effusion or hemopericardium after cardiac surgeries between June 2008 and June 2016. The medical indication for therapeutic pericardiocentesis in all patients was hemodynamic instability caused by pericardial effusion. The treatment criteria for intervention were evidence of pericardial tamponade with ejection fraction (EF) effusion was 260 ml (range 80-900 ml; standard deviation [SD]: ±70). Directly after pericardiocentesis, there was a significant improvement of the ejection fraction to 40-55% (mean: 45%; SD: ±5; p effusion drainage was 10%. The drainage was applied anteriorly (preventricular) in 39 of 128 (30.5%), retroventricularly in 33 of 128 (25.8%), and infracardiac in 56 of 128 (43.8%). Recurrence rate of pericardial effusion after removal of drains was 4.7% (67/128). Complete drainage was achieved in retroventricular and infracardiac positioning of the catheter (p effusion is a minimally invasive technique for the release of the tamponade effect of the effusion and improvement of cardiac output.

  7. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...... for tissue engineering and drug screening applications....... cell differentiation into tissue-specifi c lineages. The use of 3D biomaterial microarrays can, if optimized correctly, result in a more than 1000-fold reduction in biomaterials and cells consumption when engineering optimal materials combinations, which makes these miniaturized systems very attractive...

  8. Biomaterials in Relation to Dentistry.

    Science.gov (United States)

    Deb, Sanjukta; Chana, Simran

    2015-01-01

    Dental caries remains a challenge in the improvement of oral health. It is the most common and widespread biofilm-dependent oral disease, resulting in the destruction of tooth structure by the acidic attack from cariogenic bacteria. The tooth is a heavily mineralised tissue, and both enamel and dentine can undergo demineralisation due to trauma or dietary conditions. The adult population worldwide affected by dental caries is enormous and despite significant advances in caries prevention and tooth restoration, treatments continue to pose a substantial burden to healthcare. Biomaterials play a vital role in the restoration of the diseased or damaged tooth structure and, despite providing reasonable outcomes, there are some concerns with clinical performance. Amalgam, the silver grey biomaterial that has been widely used as a restorative material in dentistry, is currently in throes of being phased out, especially with the Minimata convention and treaty being signed by a number of countries (January 2013; http://mercuryconvention.org/Convention/) that aims to control the anthropogenic release of mercury in the environment, which naturally impacts the use of amalgam, where mercury is a component. Thus, the development of alternative restoratives and restoration methods that are inexpensive, can be used under different climatic conditions, withstand storage and allow easy handling, the main prerequisites of dental biomaterials, is important. The potential for using biologically engineered tissue and consequent research to replace damaged tissues has also seen a quantum leap in the last decade. Ongoing research in regenerative treatments in dentistry includes alveolar ridge augmentation, bone tissue engineering and periodontal ligament replacement, and a future aim is bioengineering of the whole tooth. Research towards developing bioengineered teeth is well underway and identification of adult stem cell sources to make this a viable treatment is advancing; however, this

  9. Nanotechnology in medicine: nanofilm biomaterials.

    Science.gov (United States)

    Van Tassel, Paul R

    2013-12-13

    By interrogating nature at the length scale of important biological molecules (proteins, DNA), nanotechnology offers great promise to biomedicine. We review here our recent work on nanofilm biomaterials: "nanoscopically" thin, functional, polymer-based films serving as biocompatible interfaces. In one thrust, films containing carbon nanotubes are shown to be highly antimicrobial and, thus, to be promising as biomedical device materials inherently resistive to microbial infection. In another thrust, strategies are developed toward films of independently controllable bioactivity and mechanical rigidity - two key variables governing typical biological responses.

  10. Profiling stem cell states in three-dimensional biomaterial niches using high content image informatics.

    Science.gov (United States)

    Dhaliwal, Anandika; Brenner, Matthew; Wolujewicz, Paul; Zhang, Zheng; Mao, Yong; Batish, Mona; Kohn, Joachim; Moghe, Prabhas V

    2016-11-01

    A predictive framework for the evolution of stem cell biology in 3-D is currently lacking. In this study we propose deep image informatics of the nuclear biology of stem cells to elucidate how 3-D biomaterials steer stem cell lineage phenotypes. The approach is based on high content imaging informatics to capture minute variations in the 3-D spatial organization of splicing factor SC-35 in the nucleoplasm as a marker to classify emergent cell phenotypes of human mesenchymal stem cells (hMSCs). The cells were cultured in varied 3-D culture systems including hydrogels, electrospun mats and salt leached scaffolds. The approach encompasses high resolution 3-D imaging of SC-35 domains and high content image analysis (HCIA) to compute quantitative 3-D nuclear metrics for SC-35 organization in single cells in concert with machine learning approaches to construct a predictive cell-state classification model. Our findings indicate that hMSCs cultured in collagen hydrogels and induced to differentiate into osteogenic or adipogenic lineages could be classified into the three lineages (stem, adipogenic, osteogenic) with ⩾80% precision and sensitivity, within 72h. Using this framework, the augmentation of osteogenesis by scaffold design exerted by porogen leached scaffolds was also profiled within 72h with ∼80% high sensitivity. Furthermore, by employing 3-D SC-35 organizational metrics, differential osteogenesis induced by novel electrospun fibrous polymer mats incorporating decellularized matrix could also be elucidated and predictably modeled at just 3days with high precision. We demonstrate that 3-D SC-35 organizational metrics can be applied to model the stem cell state in 3-D scaffolds. We propose that this methodology can robustly discern minute changes in stem cell states within complex 3-D architectures and map single cell biological readouts that are critical to assessing population level cell heterogeneity. The sustained development and validation of bioactive

  11. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix

    DEFF Research Database (Denmark)

    Mayorca-Guiliani, Alejandro E.; Madsen, Chris D.; Cox, Thomas R.

    2017-01-01

    The extracellular matrix (ECM) is a master regulator of cellular phenotype and behavior. It has a crucial role in both normal tissue homeostasis and disease pathology. Here we present a fast and efficient approach to enhance the study of ECM composition and structure. Termed in situ...... decellularization of tissues (ISDoT), it allows whole organs to be decellularized, leaving native ECM architecture intact. These three-dimensional decellularized tissues can be studied using high-resolution fluorescence and second harmonic imaging, and can be used for quantitative proteomic interrogation of the ECM....... Our method is superior to other methods tested in its ability to preserve the structural integrity of the ECM, facilitate high-resolution imaging and quantitatively detect ECM proteins. In particular, we performed high-resolution sub-micron imaging of matrix topography in normal tissue and over...

  12. Pericardial tamponade complicated by interventional management for Budd-Chiari syndrome: clinical analysis and treatment

    International Nuclear Information System (INIS)

    Zhang Luxi; Zu Maoheng; Wu Jinping; Xu Hao; Jiao Xudong; Chen Zhengkan

    2011-01-01

    Objective: To discuss the cases and treatment of pericardial tamponade (PT) occurred in the interventional management for Budd-Chiari syndrome (BCS). Methods: During the period from 1990 to 2006, interventional treatment was performed in 812 patients with BCS. Pericardial tamponade occurred in nine patients during the period of interventional treatment. The clinical data, including angiographic findings, clinical symptoms, management and outcomes, of the nine patients were retrospectively analyzed. The possible causes of pericardial tamponade were discussed. Results: Of the nine patients occurring pericardial tamponade, successful treatment was obtained in eight and death occurred in one. The lesions of BCS in the nine cases included inferior vena cava obstruction type (n=7), hepatic venous obstruction type (n=1) and mixed type (n=1). Pericardial tamponade was caused by mistakenly puncturing into pericardium (n=5), mistakenly puncturing together with laceration of pericardium by balloon (n=3), and breaking of pericardium by displaced stent (n=1). Conventional pericardicentesis was employed in one case, surgery was carried out in three cases, and infra-xiphoid catheterization and drainage using Seldinger technique was performed in two cases. Conservative treatment was adopted in one case and aspiration through the wrongly inserted catheter was tried in one case. In the remaining one case, aspiration through the wrongly inserted catheter together with infra-xiphoid catheterization and drainage by using Seldinger technique was carried out. Conclusion: The pericardial tamponade is an severe complication occurred in the interventional management for Budd-Chiari syndrome, although it is rarely seen. Preoperative prevention, prompt detection and rational treatment are the keys avoid serious consequences. (authors)

  13. Mediastinoscope-controlled parasternal fenestration of the pericardium: definitive surgical palliation of malignant pericardial effusion

    Directory of Open Access Journals (Sweden)

    Toth Imre

    2012-06-01

    Full Text Available Abstract Background The tumorous infiltration or carcinosis of the pericardium could cause pericardial effusion in up to one-third of cases of malignancy, thus potentially interfere with the otherwise desirable oncological treatment. The existing surgical methods for the management of pericardial fluid are well-established but are not without limitations in the symptomatic relief of malignant pericardial effusion (MPE. The recurrence rate ranges between 43 and 69% after pericardiocentesis and 9 to 16% after pericardial drainage. The desire to overcome relative limitations of the existing methods led us to explore an alternative approach. Methods The standard armamentarium of the Carlens collar mediastinoscopy procedure was utilized in a Chamberlain parasternal approach of the pericardial sac. The laterality of approach was decided based upon the pleural involvement, as tumor-free pericardiopleural reflection is required. A pericardio-pleural window at least 3 cm in diameter was created. From January 2000 to December 2009, 22 cases were operated on with mediastinoscope-controlled parasternal fenestration (MCPF. Considering the type of the primary tumor, there were 11 lung cancer, 6 breast cancers, 2 haematologic malignancies and in 3 patients the origin of malignancy could not be verified. Results There were no operative deaths. We lost one patient (4.5% in the postoperative hospital period. All of the surviving patients had a minimum of 2 months of symptom-free survival. We detected transient recurrence of MPE in one patient (4.5% 14 days after the MCPF, which disappeared spontaneously after 24 hours. Conclusion The MCPF offers a real alternative in certain cases of pericardial effusion. We recommend this method especially for the definitive surgical palliation of MPE.

  14. Non-invasive diagnosis of isolated chylopericardium using precordial pericardial imaging after oral administration of 131I-triolein

    International Nuclear Information System (INIS)

    Fujiseki, Yoshiki; Katsura, Tadahiko; Goto, Masakatsu; Kawanishi, Katsuyuki

    1982-01-01

    Chylopericardium is a rare disease and affects both sexes equally from neonate to adult. Usually, there are abnormal connections between the pericardial cavity and thoracic lymphatic systems. These connections are detected by (1) recovery of orally administered Sudan III from pericardial fluid, (2) evidence of radioactivity in the pericardial fluid by paracentesis after oral administration of 131 I-labeled triolein, and (3) lymphangiography. However, these method are technically difficult and invasive, thus sometimes dangerous for children. We employed precordial pericardial imaging after oral administration of 131 I-labeled triolein on a 9-year-old Japanese girl wth isolated chylopericardium before and after surgery. Abnormal connections and the back-ward flow to the pulmonary lymphatics were demonstrated by this method. This is an easy, non-invasive, reliable and safe method for detecting the abnormal connections of pericardial and lymphatic systems in children with chylopericardium. (author)

  15. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  16. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  17. Properties and clinical relevance of osteoinductive biomaterials

    NARCIS (Netherlands)

    Habibovic, Pamela

    2005-01-01

    This thesis had two main goals: (¿) to investigate parameters influencing osteoinductive potential of biomaterials in order to unravel the mechanism underlying osteoinduction and (¿¿) to investigate performance of osteoinductive biomaterials orthotopically in order to get insight into their clinical

  18. Biomaterials and tissue engineering in reconstructive surgery

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    functional components are not generally considered to be biomaterials since by definition they are not in ... The requirements in these cases will be varied depending upon the stress transfer system within the ... few widely used biomaterials in clinical practice but rather a whole range of metals and alloys, ceramic and ...

  19. Biomaterial applications in neural therapy and repair

    Institute of Scientific and Technical Information of China (English)

    Harmanvir Ghuman; Michel Modo

    2017-01-01

    The use of biomaterials,such as hydrogels,as a scaffold to deliver cells and drugs is becoming increasingly common to treat neurological conditions,including stroke.With a limited intrinsic ability to regenerate after injury,innovative tissue engineering strategies have shown the potential of biomaterials in facilitating neural tissue regeneration and functional recovery.Using biomaterials can not only promote the survival and integration of transplanted cells in the existing circuitry,but also support controlled site specific delivery of therapeutic drugs.This review aims to provide the reader an understanding of the brain tissue microenvironment after injury,biomaterial criteria that support tissue repair,commonly used natural and synthetic biomaterials,benefits of incorporating cells and neurotrophic factors,as well as the potential of endogenous neurogenesis in repairing the injured brain.

  20. Leveraging advances in biology to design biomaterials

    Science.gov (United States)

    Darnell, Max; Mooney, David J.

    2017-12-01

    Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.

  1. Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction

    Science.gov (United States)

    Burns, Jorge S.; Kristiansen, Malthe; Kristensen, Lars P.; Larsen, Kenneth H.; Nielsen, Maria O.; Christiansen, Helle; Nehlin, Jan; Andersen, Jens S.; Kassem, Moustapha

    2011-01-01

    Background Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. Methodology/Principal Findings Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. Conclusions Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was

  2. Poly(ethylmethacrylate-co-diethylaminoethyl acrylate) coating improves endothelial re-population, bio-mechanical and anti-thrombogenic properties of decellularized carotid arteries for blood vessel replacement.

    Science.gov (United States)

    López-Ruiz, Elena; Venkateswaran, Seshasailam; Perán, Macarena; Jiménez, Gema; Pernagallo, Salvatore; Díaz-Mochón, Juan J; Tura-Ceide, Olga; Arrebola, Francisco; Melchor, Juan; Soto, Juan; Rus, Guillermo; Real, Pedro J; Diaz-Ricart, María; Conde-González, Antonio; Bradley, Mark; Marchal, Juan A

    2017-03-24

    Decellularized vascular scaffolds are promising materials for vessel replacements. However, despite the natural origin of decellularized vessels, issues such as biomechanical incompatibility, immunogenicity risks and the hazards of thrombus formation, still need to be addressed. In this study, we coated decellularized vessels obtained from porcine carotid arteries with poly (ethylmethacrylate-co-diethylaminoethylacrylate) (8g7) with the purpose of improving endothelial coverage and minimizing platelet attachment while enhancing the mechanical properties of the decellularized vascular scaffolds. The polymer facilitated binding of endothelial cells (ECs) with high affinity and also induced endothelial cell capillary tube formation. In addition, platelets showed reduced adhesion on the polymer under flow conditions. Moreover, the coating of the decellularized arteries improved biomechanical properties by increasing its tensile strength and load. In addition, after 5 days in culture, ECs seeded on the luminal surface of 8g7-coated decellularized arteries showed good regeneration of the endothelium. Overall, this study shows that polymer coating of decellularized vessels provides a new strategy to improve re-endothelialization of vascular grafts, maintaining or enhancing mechanical properties while reducing the risk of thrombogenesis. These results could have potential applications in improving tissue-engineered vascular grafts for cardiovascular therapies with small caliber vessels.

  3. Comparison of four decontamination treatments on porcine renal decellularized extracellular matrix structure, composition, and support of human renal cortical tubular epithelium cells.

    Science.gov (United States)

    Poornejad, Nafiseh; Nielsen, Jeffery J; Morris, Ryan J; Gassman, Jason R; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D

    2016-03-01

    Engineering whole organs from porcine decellularized extracellular matrix and human cells may lead to a plentiful source of implantable organs. Decontaminating the porcine decellularized extracellular matrix scaffolds is an essential step prior to introducing human cells. However, decontamination of whole porcine kidneys is a major challenge because the decontamination agent or irradiation needs to diffuse deep into the structure to eliminate all microbial contamination while minimizing damage to the structure and composition of the decellularized extracellular matrix. In this study, we compared four decontamination treatments that could be applicable to whole porcine kidneys: 70% ethanol, 0.2% peracetic acid in 1 M NaCl, 0.2% peracetic acid in 4% ethanol, and gamma (γ)-irradiation. Porcine kidneys were decellularized by perfusion of 0.5% (w/v) aqueous solution of sodium dodecyl sulfate and the four decontamination treatments were optimized using segments (n = 60) of renal tissue to ensure a consistent comparison. Although all four methods were successful in decontamination, γ-irradiation was very damaging to collagen fibers and glycosaminoglycans, leading to less proliferation of human renal cortical tubular epithelium cells within the porcine decellularized extracellular matrix. The effectiveness of the other three optimized solution treatments were then all confirmed using whole decellularized porcine kidneys (n = 3). An aqueous solution of 0.2% peracetic acid in 1 M NaCl was determined to be the best method for decontamination of porcine decellularized extracellular matrix. © The Author(s) 2015.

  4. Is a modified Senning with pericardial patch associated with less complications and better prognosis?

    Directory of Open Access Journals (Sweden)

    Amir Mohamed

    2016-08-01

    Conclusion: The modified Senning procedure using autologous pericardial patch augmentation, showed less incidence of late PVPS, and higher incidence of restoration of sinus rhythm at the time of discharge in comparison to the published results of the standard technique in the literature. It had a low mortality and comparatively better survival.

  5. Marked pericardial inhomogeneity of specific ventilation at total lung capacity and beyond

    DEFF Research Database (Denmark)

    Sun, Yanping; Butler, James P; Lindholm, Peter

    2009-01-01

    uniform at FRC+1L, with a small non-gravitational cephalocaudal gradient of specific ventilation in the supine posture. Our observations at high lung volumes are consistent with the effect of high pleural tension in the concave pericardial region, which promotes expansion of the subjacent lung, leading...

  6. Masseter Muscle Hypertrophy and Pericardial Effusion in Kocher-Debre-Semelaigne Syndrome Child

    Directory of Open Access Journals (Sweden)

    Taksande AM

    2015-10-01

    Full Text Available Muscular pseudohypertrophy associated with severe congenital hypothyroidism has been described as Kocher Debre Semelaigne syndrome, which is a rare disorder. We report a case of 9year old female child with hypothyroidism, limb muscular pseudo-hypertrophy with involvement of masseter muscle along with pericardial effusion in Kocher-Debré-Semelaigne syndrome.

  7. Pericardial cyst with atypical location: densimetric evaluation of mediastinal masses by computerized tomography

    International Nuclear Information System (INIS)

    Franquet, T.; Jiminez, F.J.; Eguizabal, C.; Bescos, J.M.

    1991-01-01

    We present a case of pericardial cyst with atypical location. CT has been very usefull for densitometric evaluation of mediastinal masses. Using a combination of cross-section diagnostic methods and fine-needle aspiration (FNA), we can carry out accurate diagnoses of cystic lesions located in uncommom sites. (Author)

  8. Adrenal gland volume, intra-abdominal and pericardial adipose tissue in major depressive disorder.

    Science.gov (United States)

    Kahl, Kai G; Schweiger, Ulrich; Pars, Kaweh; Kunikowska, Alicja; Deuschle, Michael; Gutberlet, Marcel; Lichtinghagen, Ralf; Bleich, Stefan; Hüper, Katja; Hartung, Dagmar

    2015-08-01

    Major depressive disorder (MDD) is associated with an increased risk for the development of cardio-metabolic diseases. Increased intra-abdominal (IAT) and pericardial adipose tissue (PAT) have been found in depression, and are discussed as potential mediating factors. IAT and PAT are thought to be the result of a dysregulation of the hypothalamus-pituitary-adrenal axis (HPAA) with subsequent hypercortisolism. Therefore we examined adrenal gland volume as proxy marker for HPAA activation, and IAT and PAT in depressed patients. Twenty-seven depressed patients and 19 comparison subjects were included in this case-control study. Adrenal gland volume, pericardial, intraabdominal and subcutaneous adipose tissue were measured by magnetic resonance imaging. Further parameters included factors of the metabolic syndrome, fasting cortisol, fasting insulin, and proinflammatory cytokines. Adrenal gland and pericardial adipose tissue volumes, serum concentrations of cortisol and insulin, and serum concentrations tumor-necrosis factor-α were increased in depressed patients. Adrenal gland volume was positively correlated with intra-abdominal and pericardial adipose tissue, but not with subcutaneous adipose tissue. Our findings point to the role of HPAA dysregulation and hypercortisolism as potential mediators of IAT and PAT enlargement. Further studies are warranted to examine whether certain subtypes of depression are more prone to cardio-metabolic diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Atypical presentation of multicentric Castleman disease in a pediatric patient: pleural and pericardial effusion.

    Science.gov (United States)

    Akman, Alkim Oden; Basaran, Ozge; Ozyoruk, Derya; Han, Unsal; Sayli, Tulin; Cakar, Nilgun

    2016-06-01

    Castleman disease (CD) is a rare poorly understood lymphoproliferative disorder. Pediatric onset CD has been reported before. However, most of them have benign unicentric pattern. Multicentric CD (MCD) is quite rare in children. Herein, we report a 13-year-old adolescent boy with MCD of the hyaline vascular variant presenting with pleural and pericardial effusion, which is an uncommon presentation. MCD should be considered in the differential diagnosis of pleural and/or pericardial effusion with unexplained lymph nodes in children. What is Known •Pediatric Castleman disease (CD) most commonly occurs in the unicentric form, which typically is asymptomatic and cured by lymph node excision. •The diagnosis of MCD can be difficult owing to the heterogeneity of presentation and potential for nonspecific multisystem involvement. What is New •A 13-year-old adolescent boy was diagnosed with MCD of the hyaline vascular variant presenting with pleural and pericardial effusion, which is an uncommon presentation. •In a pediatric patient with fever, pleural-pericardial effusion and multiple lymph nodes, MCD should be considered in differantial diagnosis.

  10. Outcomes of using a sutureless bovine pericardial patch graft for Ahmed glaucoma valve implantation.

    Science.gov (United States)

    Quaranta, Luciano; Riva, Ivano; Floriani, Irene C

    2013-01-01

    To evaluate the long-term outcomes of a surgical technique using a sutureless bovine pericardial patch graft for the implantation of an Ahmed glaucoma valve (AGV). 
 This was a pilot study on patients with primary open-angle glaucoma refractory to repeated surgical filtering procedures. All patients underwent AGV implant technique using a sutureless bovine pericardial patch graft. The pericardial membrane was cut using an ordinary corneal trephine with a diameter of 9.0 or 10.0 mm. The anterior part of the tube was covered with the graft and kept in place with fibrin glue. Subsequently, the cap was stitched all around the tube and the dissected conjunctiva was laid over it. Intraocular pressure (IOP) and complications were evaluated 1 week and 1, 3, 6, 12, and 24 months after surgery.
 The procedure was used to treat 20 eyes of 20 consecutive patients (12 men and 8 women: mean age [SD] 64.8 [7.8] years). Mean IOP was 28.1 mm Hg (SD 4.9) at baseline and decreased to 14.9 mm Hg (SD 1.5) 24 months after surgery (pendophthalmitis were recorded.
 The results suggest that the sutureless technique using a bovine pericardial graft patch is a safe and rapid procedure for AGV implantation.

  11. Lambda light chain disease associated with myelomatous pericardial and pleural effusion

    International Nuclear Information System (INIS)

    Helbig, G.; Wieczorkiewicz, A.; Dziaczkowska-Suszek, J.; Krzemien, S.

    2009-01-01

    The paper presents the case of a 53-year patient with lambda light chain disease and concomitant myelomatous pleural and pericardial effusions. The symptoms of cardiac failure dominated the clinical manifestation. Only moderate plasma cell infiltration in bone marrow was present, whereas 100% of these cells infiltrated the pleura. Chemotherapy appeared to be ineffective and patient died from cardiac failure. (authors)

  12. Bioresorption and degradation of biomaterials.

    Science.gov (United States)

    Das, Debarun; Zhang, Ziyang; Winkler, Thomas; Mour, Meenakshi; Gunter, Christina; Morlock, Michael; Machens, Hans-Gunther; Schilling, Arndt F

    2012-01-01

    The human body is a composite structure, completely constructed of biodegradable materials. This allows the cells of the body to remove and replace old or defective tissue with new material. Consequently, artificial resorbable biomaterials have been developed for application in regenerative medicine. We discuss here advantages and disadvantages of these bioresorbable materials for medical applications and give an overview of typically used metals, ceramics and polymers. Methods for the quantification of bioresorption in vitro and in vivo are described. The next challenge will be to better understand the interface between cell and material and to use this knowledge for the design of “intelligent” materials that can instruct the cells to build specific tissue geometries and degrade in the process.

  13. New biomaterials for orthopedic implants

    Directory of Open Access Journals (Sweden)

    Ong KL

    2015-09-01

    Full Text Available Kevin L Ong, Brian Min Yun, Joshua B WhiteExponent, Inc., Philadelphia, PA, USAAbstract: With the increasing use of orthopedic implants worldwide, there continues to be great interest in the development of novel technologies to further improve the effective clinical performance of contemporary treatment modalities and devices. Continuing research interest also exists in developing novel bulk biomaterials (eg, polycarbonate urethanes, silicon or novel formulations of existing but less widely used biomaterials (eg, polyaryletherketones, polyetheretherketone. There is also growing focus on customizing the material properties of bioabsorbables and composite materials with fillers such as bioactive ceramics. In terms of tissue engineering, more recent developments have focused on basic engineering and biological fundamentals to use cells, signaling factors, and the scaffold material itself to better restore tissue and organ structure and function. There has also been recent controversy with the use of injectables as a nonsurgical approach to treat joint disorders, but more attention is being directed toward the development of newer formulations with different molecular weights. The industry has also continuously sought to improve coatings to supplement the function of existing implants, with the goal of improving their osseointegrative qualities and incorporating antimicrobial properties. These include the use of bone morphogenetic protein, bisphosphonates, calcium phosphate, silicon nitride, and iodine. Due to the widespread use of bone graft materials, recent developments in synthetic graft materials have explored further development of bioactive glass, ceramic materials, and porous titanium particles. This review article provides an overview of ongoing efforts in the above research areas.Keywords: coatings, scaffolds, bioabsorbables, bone graft, injectables

  14. Patient with Small Cell Lung Carcinoma and Suspected Right Upper Lobe Abscess Presenting with a Purulent Pericardial Effusion.

    Science.gov (United States)

    Goel, Khushboo; Ateeli, Huthayfa; Ampel, Neil M; L'heureux, Dena

    2016-07-22

    BACKGROUND Cardiac tamponade caused by pericardial effusion has a high mortality rate; thus, it is important to diagnose and treat this condition immediately. Specifically, bacterial pericarditis, although now very rare, is often fatal because of its fulminant process. CASE REPORT We present a case of a 61-year-old man with metastatic small cell lung cancer undergoing chemotherapy who presented with fatigue, poor appetite, and altered mental status. He was found to have a large-volume pericardial effusion with tamponade physiology. He underwent emergent pericardiocentesis. The pericardial effusion was nonmalignant, with cultures growing Streptococcus pneumoniae. It was only after his emergent pericardiocentesis that previous imaging from one month prior was able to be reviewed, which showed possible right upper lobe abscess. CONCLUSIONS Most pericardial effusions in cancer patients are related to their malignancy, either due to direct metastasis or secondary physiologic effects. This case is a unique example of a lung cancer patient presenting with a pneumococcal pericardial effusion, which in itself is a rare phenomenon. This case report demonstrates the importance of considering early antibiotic therapy in patients presenting with pericardial effusion, especially given the high mortality rates of infectious pericardial effusions.

  15. Surgical Management of Massive Pericardial Effusion and Predictors for Development of Constrictive Pericarditis in a Resource Limited Setting

    Science.gov (United States)

    Okokhere, Peter O.; Iruolagbe, Christopher Ojemiega; Odike, Angela; Owobu, Clifford; Akhigbe, Theophilus

    2016-01-01

    Background. The diagnosis and treatment of massive pericardial effusion and cardiac tamponade have evolved over the years with a tendency towards a more comprehensive diagnostic workup and less traumatic intervention. Method. We reviewed and analysed the data of 32 consecutive patients who underwent surgery on account of massive pericardial effusion and cardiac tamponade in a semiurban university hospital in Nigeria from February 2010 to February 2016. Results. The majority of patients (34.4%) were between 31 and 40 years. Fourteen patients (43.8%) presented with clinical and echocardiographic feature of cardiac tamponade. The majority of patients (59.4%) presented with haemorrhagic pericardial effusion and the average volume of fluid drained intraoperatively was 846 mL  ± 67 mL. Pericardium was thickened in 50% of cases. Subxiphoid pericardiostomy was performed under local anaesthesia in 28 cases. No postoperative recurrence was observed; however 5 patients developed features of constrictive pericarditis. The relationship between pericardial thickness and development of pericardial constriction was statistically significant (p = 0.004). Conclusion. Subxiphoid pericardiostomy is a very effective way of treating massive pericardial effusion. Removing tube after adequate drainage (50 mL/day) and treatment of primary pathology are key to preventing recurrence. There is also a need to follow up patients to detect pericardial constriction especially those with thickened pericardium. PMID:27517082

  16. Creating biomaterials with spatially organized functionality.

    Science.gov (United States)

    Chow, Lesley W; Fischer, Jacob F

    2016-05-01

    Biomaterials for tissue engineering provide scaffolds to support cells and guide tissue regeneration. Despite significant advances in biomaterials design and fabrication techniques, engineered tissue constructs remain functionally inferior to native tissues. This is largely due to the inability to recreate the complex and dynamic hierarchical organization of the extracellular matrix components, which is intimately linked to a tissue's biological function. This review discusses current state-of-the-art strategies to control the spatial presentation of physical and biochemical cues within a biomaterial to recapitulate native tissue organization and function. © 2016 by the Society for Experimental Biology and Medicine.

  17. Polymeric biomaterials structure and function, v.1

    CERN Document Server

    Dumitriu, Severian

    2013-01-01

    Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume

  18. Metallic Biomaterials: Current Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Karthika Prasad

    2017-07-01

    Full Text Available Metallic biomaterials are engineered systems designed to provide internal support to biological tissues and they are being used largely in joint replacements, dental implants, orthopaedic fixations and stents. Higher biomaterial usage is associated with an increased incidence of implant-related complications due to poor implant integration, inflammation, mechanical instability, necrosis and infections, and associated prolonged patient care, pain and loss of function. In this review, we will briefly explore major representatives of metallic biomaterials along with the key existing and emerging strategies for surface and bulk modification used to improve biointegration, mechanical strength and flexibility of biometals, and discuss their compatibility with the concept of 3D printing.

  19. Bioinspired surface functionalization of metallic biomaterials.

    Science.gov (United States)

    Su, Yingchao; Luo, Cheng; Zhang, Zhihui; Hermawan, Hendra; Zhu, Donghui; Huang, Jubin; Liang, Yunhong; Li, Guangyu; Ren, Luquan

    2018-01-01

    Metallic biomaterials are widely used for clinical applications because of their excellent mechanical properties and good durability. In order to provide essential biofunctionalities, surface functionalization is of particular interest and requirement in the development of high-performance metallic implants. Inspired by the functional surface of natural biological systems, many new designs and conceptions have recently emerged to create multifunctional surfaces with great potential for biomedical applications. This review firstly introduces the metallic biomaterials, important surface properties, and then elaborates some strategies on achieving the bioinspired surface functionalization for metallic biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Repopulating Decellularized Kidney Scaffolds: An Avenue for Ex Vivo Organ Generation

    Directory of Open Access Journals (Sweden)

    Robert A. McKee

    2016-03-01

    Full Text Available Recent research has shown that fully developed organs can be decellularized, resulting in a complex scaffold and extracellular matrix (ECM network capable of being populated with other cells. This work has resulted in a growing field in bioengineering focused on the isolation, characterization, and modification of organ derived acellular scaffolds and their potential to sustain and interact with new cell populations, a process termed reseeding. In this review, we cover contemporary advancements in the bioengineering of kidney scaffolds including novel work showing that reseeded donor scaffolds can be transplanted and can function in recipients using animal models. Several major areas of the field are taken into consideration, including the decellularization process, characterization of acellular and reseeded scaffolds, culture conditions, and cell sources. Finally, we discuss future avenues based on the advent of 3D bioprinting and recent developments in kidney organoid cultures as well as animal models of renal genesis. The ongoing mergers and collaborations between these fields hold the potential to produce functional kidneys that can be generated ex vivo and utilized for kidney transplantations in patients suffering with renal disease.

  1. Preparation and Characterization of a Novel Decellularized Fibrocartilage "Book" Scaffold for Use in Tissue Engineering.

    Directory of Open Access Journals (Sweden)

    Liyun Guo

    Full Text Available At the tendon-to-bone insertion, there is a unique transitional structure: tendon, non-calcified fibrocartilage, calcified fibrocartilage, and bone. The reconstruction of this special graded structure after defects or damage is an important but challenging task in orthopedics. In particular, reconstruction of the fibrocartilage zone has yet to be successfully achieved. In this study, the development of a novel book-shape scaffold derived from the extracellular matrix of fibrocartilage was reported. Specifically, fibrocartilage from the pubic symphysis was obtained from rabbits and sliced into the shape of a book (dimensions: 10 mm × 3 mm × 1 mm with 10 layers, each layer (akin to a page of a book with a thickness of 100-μm. These fibrocartilage "book" scaffolds were decellularized using sequentially 3 freeze-thaw cycles, 0.1% Triton X-100 with 1.5 M KCl, 0.25% trypsin, and a nuclease. Histology and DNA quantification analysis confirmed substantial removal of cells from the fibrocartilage scaffolds. Furthermore, the quantities of DNA, collagen, and glycosaminoglycan in the fibrocartilage were markedly reduced following decellularization. Scanning electron microscopy confirmed that the intrinsic ultrastructure of the fibrocartilage tissue was well preserved. Therefore, the results of this study suggest that the novel "book" fibrocartilage scaffold could have potential applications in tissue engineering.

  2. Preparation and Characterization of a Novel Decellularized Fibrocartilage "Book" Scaffold for Use in Tissue Engineering.

    Science.gov (United States)

    Guo, Liyun; Qu, Jin; Zheng, Cheng; Cao, Yong; Zhang, Tao; Lu, Hongbin; Hu, Jianzhong

    2015-01-01

    At the tendon-to-bone insertion, there is a unique transitional structure: tendon, non-calcified fibrocartilage, calcified fibrocartilage, and bone. The reconstruction of this special graded structure after defects or damage is an important but challenging task in orthopedics. In particular, reconstruction of the fibrocartilage zone has yet to be successfully achieved. In this study, the development of a novel book-shape scaffold derived from the extracellular matrix of fibrocartilage was reported. Specifically, fibrocartilage from the pubic symphysis was obtained from rabbits and sliced into the shape of a book (dimensions: 10 mm × 3 mm × 1 mm) with 10 layers, each layer (akin to a page of a book) with a thickness of 100-μm. These fibrocartilage "book" scaffolds were decellularized using sequentially 3 freeze-thaw cycles, 0.1% Triton X-100 with 1.5 M KCl, 0.25% trypsin, and a nuclease. Histology and DNA quantification analysis confirmed substantial removal of cells from the fibrocartilage scaffolds. Furthermore, the quantities of DNA, collagen, and glycosaminoglycan in the fibrocartilage were markedly reduced following decellularization. Scanning electron microscopy confirmed that the intrinsic ultrastructure of the fibrocartilage tissue was well preserved. Therefore, the results of this study suggest that the novel "book" fibrocartilage scaffold could have potential applications in tissue engineering.

  3. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities

    International Nuclear Information System (INIS)

    Sangkert, Supaporn; Meesane, Jirut; Kamonmattayakul, Suttatip; Chai, Wen Lin

    2016-01-01

    Cleft palate is a congenital malformation that generates a maxillofacial bone defect around the mouth area. The creation of performance scaffolds for bone tissue engineering in cleft palate is an issue that was proposed in this research. Because of its good biocompatibility, high stability, and non-toxicity, silk fibroin was selected as the scaffold of choice in this research. Silk fibroin scaffolds were prepared by freeze-drying before immerging in a solution of collagen, decellularized pulp, and collagen/decellularized pulp. Then, the immersed scaffolds were freeze-dried. Structural organization in solution was observed by Atomic Force Microscope (AFM). The molecular organization of the solutions and crystal structure of the scaffolds were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The weight increase of the modified scaffolds and the pore size were determined. The morphology was observed by a scanning electron microscope (SEM). Mechanical properties were tested. Biofunctionalities were considered by seeding osteoblasts in silk fibroin scaffolds before analysis of the cell proliferation, viability, total protein assay, and histological analysis. The results demonstrated that dendrite structure of the fibrils occurred in those solutions. Molecular organization of the components in solution arranged themselves into an irregular structure. The fibrils were deposited in the pores of the modified silk fibroin scaffolds. The modified scaffolds showed a beta-sheet structure. The morphological structure affected the mechanical properties of the silk fibroin scaffolds with and without modification. Following assessment of the biofunctionalities, the modified silk fibroin scaffolds could induce cell proliferation, viability, and total protein particularly in modified silk fibroin with collagen/decellularized pulp. Furthermore, the histological analysis indicated that the cells could adhere in modified silk fibroin

  4. Tissue engineering approaches to develop decellularized tendon matrices functionalized with progenitor cells cultured under undifferentiated and tenogenic conditions

    Directory of Open Access Journals (Sweden)

    Daniele D’Arrigo

    2017-11-01

    Full Text Available Tendon ruptures and retractions with an extensive tissue loss represent a major clinical problem and a great challenge in surgical reconstruction. Traditional approaches consist in autologous or allogeneic grafts, which still have some drawbacks. Hence, tissue engineering strategies aimed at developing functionalized tendon grafts. In this context, the use of xenogeneic tissues represents a promising perspective to obtain decellularized tendon grafts. This study is focused on the identification of suitable culture conditions for the generation of reseeded and functional decellularized constructs to be used as tendon grafts. Equine superficial digital flexor tendons were decellularized, reseeded with mesenchymal stem cells (MSCs from bone marrow and statically cultured in two different culture media to maintain undifferentiated cells (U-MSCs or to induce a terminal tenogenic differentiation (T-MSCs for 24 hours, 7 and 14 days. Cell viability, proliferation, morphology as well as matrix deposition and type I and III collagen production were assessed by means of histological, immunohistochemical and semi-quantitative analyses. Results showed that cell viability was not affected by any culture conditions and active proliferation was maintained 14 days after reseeding. However, seeded MSCs were not able to penetrate within the dense matrix of the decellularized tendons. Nevertheless, U-MSCs synthesized a greater amount of extracellular matrix rich in type I collagen compared to T-MSCs. In spite of the inability to deeply colonize the decellularized matrix in vitro, reseeding tendon matrices with U-MSCs could represent a suitable method for the functionalization of biological constructs, considering also any potential chemoattractant capability of the newly deposed extracellular matrix to recruit resident cells. This bioengineering approach can be exploited to produce functionalized tendon constructs for the substitution of large tendon defects.

  5. Plant Products for Innovative Biomaterials in Dentistry

    Directory of Open Access Journals (Sweden)

    Elena M. Varoni

    2012-07-01

    Full Text Available Dental biomaterials and natural products represent two of the main growing research fields, revealing plant-derived compounds may play a role not only as nutraceuticals in affecting oral health, but also in improving physico-chemical properties of biomaterials used in dentistry. Therefore, our aim was to collect all available data concerning the utilization of plant polysaccharides, proteins and extracts rich in bioactive phytochemicals in enhancing performance of dental biomaterials. Although compelling evidences are suggestive of a great potential of plant products in promoting material-tissue/cell interface, to date, only few authors have investigated their use in development of innovative dental biomaterials. A small number of studies have reported plant extract-based titanium implant coatings and periodontal regenerative materials. To the best of our knowledge, this review is the first to deal with this topic, highlighting a general lack of research findings in an interesting field which still needs to be investigated.

  6. Designing Biomaterials for 3D Printing.

    Science.gov (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  7. Biomaterials in the repair of sports injuries

    Science.gov (United States)

    Ducheyne, Paul; Mauck, Robert L.; Smith, Douglas H.

    2012-08-01

    The optimal stimulation of tissue regeneration in bone, cartilage and spinal cord injuries involves a judicious selection of biomaterials with tailored chemical compositions, micro- and nanostructures, porosities and kinetic release properties for the delivery of relevant biologically active molecules.

  8. Medical applications for biomaterials in Bolivia

    CERN Document Server

    Arias, Susan

    2015-01-01

    This book investigates the potential medical benefits natural biomaterials can offer in developing countries by analyzing the case of Bolivia. The book explores the medical and health related applications of Bolivian commodities: quinoa, barley, sugarcane, corn, sorghum and sunflower seeds. This book helps readers better understand some of the key health concerns facing countries like Bolivia and how naturally derived biomaterials and therapeutics could help substantially alleviate many of their problems.

  9. Molecular Characterization of Macrophage-Biomaterial Interactions

    OpenAIRE

    Moore, Laura Beth; Kyriakides, Themis R.

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulati...

  10. Biomaterials innovation bundling technologies and life

    CERN Document Server

    Styhre, A

    2014-01-01

    Rapid advances in the life sciences means that there is now a far more detailed understanding of biological systems on the cellular, molecular and genetic levels. Sited at the intersection between the life sciences, the engineering sciences and the design sciences, innovations in the biomaterials industry are expected to garner increasing attention and play a key role in future development. This book examines the biomaterials innovations taking place in corporations and in academic research settings today.

  11. Special Issue “Biomaterials and Bioprinting”

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2016-09-01

    Full Text Available The emergence of bioprinting in recent years represents a marvellous advancement in 3D printing technology. It expands the range of 3D printable materials from the world of non-living materials into the world of living materials. Biomaterials play an important role in this paradigm shift. This Special Issue focuses on biomaterials and bioprinting and contains eight articles covering a number of recent topics in this emerging area.

  12. Current Strategies in Cardiovascular Biomaterial Functionalization

    Directory of Open Access Journals (Sweden)

    Karla Lehle

    2010-01-01

    Full Text Available Prevention of the coagulation cascade and platelet activation is the foremost demand for biomaterials in contact with blood. In this review we describe the underlying mechanisms of these processes and offer the current state of antithrombotic strategies. We give an overview of methods to prevent protein and platelet adhesion, as well as techniques to immobilize biochemically active molecules on biomaterial surfaces. Finally, recent strategies in biofunctionalization by endothelial cell seeding as well as their possible clinical applications are discussed.

  13. 2010 Panel on the Biomaterials Grand Challenges

    Science.gov (United States)

    Reichert, William “Monty”; Ratner, Buddy D.; Anderson, James; Coury, Art; Hoffman, Allan S.; Laurencin, Cato T.; Tirrell, David

    2014-01-01

    In 2009, the National Academy for Engineering issued the Grand Challenges for Engineering in the 21st Century comprised of 14 technical challenges that must be addressed to build a healthy, profitable, sustainable, and secure global community (http://www.engineeringchallenges.org). Although crucial, none of the NEA Grand Challenges adequately addressed the challenges that face the biomaterials community. In response to the NAE Grand Challenges, Monty Reichert of Duke University organized a panel entitled Grand Challenges in Biomaterials at the at the 2010 Society for Biomaterials Annual Meeting in Seattle. Six members of the National Academies—Buddy Ratner, James Anderson, Allan Hoffman, Art Coury, Cato Laurencin, and David Tirrell—were asked to propose a grand challenge to the audience that, if met, would significantly impact the future of biomaterials and medical devices. Successfully meeting these challenges will speed the 60-plus year transition from commodity, off-the-shelf biomaterials to bioengineered chemistries, and biomaterial devices that will significantly advance our ability to address patient needs and also to create new market opportunities. PMID:21171147

  14. Biocompatibility and Toxicity of Nano biomaterials 2014

    International Nuclear Information System (INIS)

    Li, X.; Lee, S.Ch.; Zhang, Sh.; Akasaka, T.

    2014-01-01

    It is well known that nano materials have developed rapidly over the past few decades. Based on their unique physicochemical properties and special mechanical properties, nano materials have provided application possibility in many different fields. Currently, as nano biomaterials, they are widely used in various biomedical applications, such as drug delivery systems, tissue engineering, dental/bone implant, and biosensors. For example, nano biomaterials have been used in tissue engineering because of their satisfactory bioactivity, high mechanical properties, and large surface area to adsorb specific proteins. Many kinds of nano biomaterials are used to prepare composite scaffolds to get better biocompatibility and higher ability in repairing specific tissues. Several antibacterial metallic nano biomaterials are used to coat implant surfaces to improve the speed of healing fractures. In addition, lots of nano biomaterials have the potential to break the limitations of the traditional delivery systems. They can load larger amount of drugs and provide stable drug release for long time at the targeted sites, such as tumors. Moreover, they can combine with polymers to furnish simultaneous drug delivery systems with the controllable release rate. Besides these applications, more and more nano biomaterials show great potential to be applied as highly sensitive biosensors because they have higher ability in loading firmly or interacting completely with recognition aptamers.

  15. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Su, Zhongchun; Ma, Huan; Wu, Zhengzheng [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China); Zeng, Huilan [Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Li, Zhizhong [Department of Bone, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Wang, Yuechun; Liu, Gexiu [Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632 (China); Xu, Bin; Lin, Yongliang; Zhang, Peng [Grandhope Biotech Co., Ltd., Building D, #408, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou 510663, Guangdong (China); Wei, Xing, E-mail: wei70@hotmail.com [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China)

    2014-11-01

    Current therapy for skin wound healing still relies on skin transplantation. Many studies were done to try to find out ways to replace skin transplantation, but there is still no effective alternative therapy. In this study, decellularized scaffolds were prepared from pig peritoneum by a series of physical and chemical treatments, and scaffolds loaded with hyaluronic acid (HA) and epidermal growth factor (EGF) were tested for their effect on wound healing. MTT assay showed that EGF increased NIH3T3 cell viability and confirmed that EGF used in this study was biologically active in vitro. Scanning electron microscope (SEM) showed that HA stably attached to scaffolds even after soaking in PBS for 48 h. ELISA assay showed that HA increased the adsorption of EGF to scaffolds and sustained the release of EGF from scaffolds. Animal study showed that the wounds covered with scaffolds containing HA and EGF recovered best among all 4 groups and had wound healing rates of 49.86%, 70.94% and 87.41% respectively for days 10, 15 and 20 post-surgery compared to scaffolds alone with wound healing rates of 29.26%, 42.80% and 70.14%. In addition, the wounds covered with scaffolds containing EGF alone were smaller than no EGF scaffolds on days 10, 15 and 20 post-surgery. Hematoxylin–Eosin (HE) staining confirmed these results by showing that on days 10, 15 and 20 post-surgery, the thicker epidermis and dermis layers were observed in the wounds covered with scaffolds containing HA and EGF than scaffolds alone. In addition, the thicker epidermis and dermis layers were also observed in the wounds covered with scaffolds containing EGF than scaffolds alone. Skin appendages were observed on day 20 only in the wound covered with scaffolds containing HA and EGF. These results demonstrate that the scaffolds containing HA and EGF can enhance wound healing. - Highlights: • HA can increase the adsorption of EGF to decellularized scaffolds. • HA can sustain the release of EGF from

  16. Decellularized matrix from tumorigenic human mesenchymal stem cells promotes neovascularization with galectin-1 dependent endothelial interaction.

    Directory of Open Access Journals (Sweden)

    Jorge S Burns

    Full Text Available BACKGROUND: Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC strain (hMSC-TERT20 immortalized by retroviral vector mediated human telomerase (hTERT gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+ and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. CONCLUSIONS: Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1

  17. Decellularized allogeneic heart valves demonstrate self-regeneration potential after a long-term preclinical evaluation.

    Directory of Open Access Journals (Sweden)

    Laura Iop

    Full Text Available Tissue-engineered heart valves are proposed as novel viable replacements granting longer durability and growth potential. However, they require extensive in vitro cell-conditioning in bioreactor before implantation. Here, the propensity of non-preconditioned decellularized heart valves to spontaneous in body self-regeneration was investigated in a large animal model. Decellularized porcine aortic valves were evaluated for right ventricular outflow tract (RVOT reconstruction in Vietnamese Pigs (n = 11 with 6 (n = 5 and 15 (n = 6 follow-up months. Repositioned native valves (n = 2 for each time were considered as control. Tissue and cell components from explanted valves were investigated by histology, immunohistochemistry, electron microscopy, and gene expression. Most substitutes constantly demonstrated in vivo adequate hemodynamic performances and ex vivo progressive repopulation during the 15 implantation months without signs of calcifications, fibrosis and/or thrombosis, as revealed by histological, immunohistochemical, ultrastructural, metabolic and transcriptomic profiles. Colonizing cells displayed native-like phenotypes and actively synthesized novel extracellular matrix elements, as collagen and elastin fibers. New mature blood vessels, i.e. capillaries and vasa vasorum, were identified in repopulated valves especially in the medial and adventitial tunicae of regenerated arterial walls. Such findings correlated to the up-regulated vascular gene transcription. Neoinnervation hallmarks were appreciated at histological and ultrastructural levels. Macrophage populations with reparative M2 phenotype were highly represented in repopulated valves. Indeed, no aspects of adverse/immune reaction were revealed in immunohistochemical and transcriptomic patterns. Among differentiated elements, several cells were identified expressing typical stem cell markers of embryonic, hematopoietic, neural and mesenchymal lineages in significantly

  18. The effect of riboflavin/UVA cross-linking on anti-degeneration and promoting angiogenic capability of decellularized liver matrix.

    Science.gov (United States)

    Xiang, Junxi; Liu, Peng; Zheng, Xinglong; Dong, Dinghui; Fan, Shujuan; Dong, Jian; Zhang, Xufeng; Liu, Xuemin; Wang, Bo; Lv, Yi

    2017-10-01

    Weak mechanical property and unstable degradation rate limited the application of decellularized liver matrix in tissue engineering. The aim of this study was to explore a new method for improving the mechanical properties, anti-degeneration and angiogenic capability of decellularized liver matrix. This was achieved by a novel approach using riboflavin/ultraviolet A treatment to induce collagen cross-linking of decellularized matrix. Histological staining and scanning electron microscope showed that the diameter of cross-linked fibers significantly increased compared with the control group. The average peak load and Young's modulus of decellularized matrix were obviously improved after cross-linking. Then we implanted the modified matrix into the rat hepatic injury model to test the anti-degeneration and angiogenic capability of riboflavin/UVA cross-linked decellularized liver scaffolds in vivo. The results indicated that cross-linked scaffolds degrade more slowly than those in the control group. In the experiment group, average microvessel density in the implanted matrix was higher than that in the control group since the first week after implantation. In conclusion, we initiated the method to improve the biomechanical properties of decellularized liver scaffolds by riboflavin/UVA cross-linking, and more importantly, its improvement on anti-degeneration and angiogenesis was identified. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2662-2669, 2017. © 2017 Wiley Periodicals, Inc.

  19. Inflammation and Rupture of a Congenital Pericardial Cyst Manifesting Itself as an Acute Chest Pain Syndrome.

    Science.gov (United States)

    Aertker, Robert A; Cheong, Benjamin Y C; Lufschanowski, Roberto

    2016-12-01

    We present the case of a 63-year-old woman with a remote history of supraventricular tachycardia and hyperlipidemia, who presented with recurrent episodes of acute-onset chest pain. An electrocardiogram showed no evidence of acute coronary syndrome. A chest radiograph revealed a prominent right-sided heart border. A suspected congenital pericardial cyst was identified on a computed tomographic chest scan, and stranding was noted around the cyst. The patient was treated with nonsteroidal anti-inflammatory drugs, and the pain initially abated. Another flare-up was treated similarly. Cardiac magnetic resonance imaging was then performed after symptoms had resolved, and no evidence of the cyst was seen. The suspected cause of the patient's chest pain was acute inflammation of a congenital pericardial cyst with subsequent rupture and resolution of symptoms.

  20. Biomaterials and medical devices a perspective from an emerging country

    CERN Document Server

    Hermawan, Hendra

    2016-01-01

    This book presents an introduction to biomaterials with the focus on the current development and future direction of biomaterials and medical devices research and development in Indonesia. It is the first biomaterials book written by selected academic and clinical experts experts on biomaterials and medical devices from various institutions and industries in Indonesia. It serves as a reference source for researchers starting new projects, for companies developing and marketing products and for governments setting new policies. Chapter one covers the fundamentals of biomaterials, types of biomaterials, their structures and properties and the relationship between them. Chapter two discusses unconventional processing of biomaterials including nano-hybrid organic-inorganic biomaterials. Chapter three addresses biocompatibility issues including in vitro cytotoxicity, genotoxicity, in vitro cell models, biocompatibility data and its related failure. Chapter four describes degradable biomaterial for medical implants...

  1. False negative pericardial Focused Assessment with Sonography for Trauma examination following cardiac rupture from blunt thoracic trauma: a case report.

    Science.gov (United States)

    Baker, Laura; Almadani, Ammar; Ball, Chad G

    2015-07-15

    The Focused Assessment with Sonography for Trauma examination is an invaluable tool in the initial assessment of any injured patient. Although highly sensitive and accurate for identifying hemoperitoneum, occasional false negative results do occur in select scenarios. We present a previously unreported case of survival following blunt cardiac rupture with associated negative pericardial window due to a concurrent pericardial wall laceration. A healthy 46-year-old white woman presented to our level 1 trauma center with hemodynamic instability following a motor vehicle collision. Although her abdominal Focused Assessment with Sonography for Trauma windows were positive for fluid, her pericardial window was negative. After immediate transfer to the operating room in the setting of persistent instability, a subsequent thoracotomy identified a blunt cardiac rupture that was draining into the ipsilateral pleural space via an adjacent tear in the pericardium. The cardiac injury was controlled with digital pressure, resuscitation completed, and then repaired using standard cardiorrhaphy techniques. Following repair of her injuries (left ventricle, left atrial appendage, and liver), her postoperative course was uneventful. Evaluation of the pericardial space using Focused Assessment with Sonography for Trauma is an important component in the initial assessment of the severely injured patient. Even in cases of blunt mechanisms however, clinicians must be wary of occasional false negative pericardial ultrasound evaluations secondary to a concomitant pericardial laceration and subsequent decompression of hemorrhage from the cardiac rupture into the ipsilateral pleural space.

  2. Marine Structural Biomaterials in Medical Biomimicry.

    Science.gov (United States)

    Green, David W; Lee, Jong-Min; Jung, Han-Sung

    2015-10-01

    Marine biomaterials display properties, behaviors, and functions that have not been artificially matched in relation to their hierarchical construction, crack-stopping properties, growth adaptation, and energy efficiency. The discovery and understanding of such features that are characteristic of natural biomaterials can be used to manufacture more energy-efficient and lightweight materials. However, a more detailed understanding of the design of natural biomaterials with good performance and the mechanism of their design is required. Far-reaching biomolecular characterization of biomaterials and biostructures from the ocean world is possible with sophisticated analytical methods, such as whole-genome RNA-seq, and de novo transcriptome sequencing and mass spectrophotometry-based sequencing. In combination with detailed material characterization, the elements in newly discovered biomaterials and their properties can be reconstituted into biomimetic or bio-inspired materials. A major aim of harnessing marine biomaterials is their translation into biomimetic counterparts. To achieve full translation, the genome, proteome, and hierarchical material characteristics, and their profiles in space and time, have to be associated to allow for smooth biomimetic translation. In this article, we highlight the novel science of marine biomimicry from a materials perspective. We focus on areas of material design and fabrication that have excelled in marine biological models, such as embedded interfaces, chiral organization, and the use of specialized composite material-on-material designs. Our emphasis is primarily on key materials with high value in healthcare in which we evaluate their future prospects. Marine biomaterials are among the most exquisite and powerful aspects in materials science today.

  3. A primary intestinal lymphangiectasia hiding the diagnosis of pleural and pericardial tuberculosis: a clinical observation.

    Science.gov (United States)

    Hammi, Sanaa; Berrani, Hajar; Benouchen, Thami; Lamlami, Naima; Elkhiyat, Imane; Bourkadi, Jamal Eddine

    2017-01-01

    Primary intestinal lymphangiectasia (Waldmann's disease) is an exudative enteropathy characterized by lymph leakage into the small bowel lumen leading to hypoalbuminemia, hypogammaglobulinemia and lymphopenia (particularly T-cell). The diagnosis is based on viewing the duodenal lymphangiectasia. A 20 years old female patient, treated for a primary intestinal lymphangiectasia, has consulted for anasarca. Etiological work-up reveals pleural and pericardial tuberculosis. The clinical aggravation of an enteropathy, particularly in adulthood, requires a search for a secondary etiology. Tuberculosis should be sought systematically.

  4. Lung herniation into pericardial cavity: A case of partial congenital absence of right pericardium

    Directory of Open Access Journals (Sweden)

    Sadashiv B Tamagond

    2012-01-01

    Full Text Available Congenital absence of pericardium is rarely seen, often diagnosed intraoperatively during cardiac and thoracic surgeries. Left-sided pericardial defects are more common than right-sided ones. We present a case of an incidentally detected congenital absence of right pericardium with herniation of part of the right lung during ventricular septal defect closure surgery in a male child aged 4 years.

  5. A large pericardial effusion and bilateral pleural effusions as the initial manifestations of Familial Mediterranean Fever

    OpenAIRE

    Schembri, Emma Louise; Mifsud, Simon; Cassar Demarco, Daniela; Coleiro, Bernard; Mallia, Carmel

    2015-01-01

    Familial Mediterranean Fever (FMF) is a condition characterized by recurrent febrile poly-serositis. Typical presentations of the disease include episodes of fever, abdominal pain and joint pains. Chest pain is a less common presentation. We report a case of FMF which presented with a large pericardial effusion and bilateral pleural effusions in a lady who had no positive family history and negative genetic testing.

  6. Bronchovascular reconstruction with a bovine pericardial conduit and surgical reintervention due to thrombosis with revascularisation.

    Science.gov (United States)

    Peña, Emilio; Blanco, Montserrat; Otero, Teresa

    2014-01-01

    We present the case of a 57-year-old male with left hilar squamous cell carcinoma infiltrating the pulmonary artery and in whom a sleeve bronchoplasty and angioplasty were performed using a bovine pericardial conduit. Three days post-operatively, graft thrombosis was detected; thrombectomy and graft reconstruction were performed with revascularisation of the graft. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  7. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.

    Science.gov (United States)

    Pati, Falguni; Cho, Dong-Woo

    2017-01-01

    Bioprinting provides an exciting opportunity to print and pattern all the components that make up a tissue-cells and extracellular matrix (ECM) material-in three dimensions (3D) to generate tissue analogues. A large number of materials have been used for making bioinks; however, majority of them cannot represent the complexity of natural ECM and thus are unable to reconstitute the intrinsic cellular morphologies and functions. We present here a method for making of bioink from decellularized extracellular matrices (dECMs) and a protocol for bioprinting of cell-laden constructs with this novel bioink. The dECM bioink is capable of providing an optimized microenvironment that is conducive to the growth of 3D structured tissue. We have prepared bioinks from different tissues, including adipose, cartilage and heart tissues and achieved high cell viability and functionality of the bioprinted tissue structures using our novel bioink.

  8. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink

    Science.gov (United States)

    Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo

    2014-06-01

    The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.

  9. Therapeutic effects of 5-fluorouracil sustained-release particles in 81 malignant pericardial effusion patients

    Directory of Open Access Journals (Sweden)

    Yong-Li Ji

    2015-02-01

    Full Text Available This study aimed to investigate the clinical application value of the 5-fluorouracil (5-FU sustained-release particles implanted along the cardiac tangent direction into malignant pericardial effusion (MPCE. A total of 81 MPCE patients underwent pericardiocentesis, and were implanted with 5-FU sustained-release particles into the pericardial cavity under ultrasound guidance. The puncturing path was along the cardiac tangent direction. Ultrasound examinations were performed every week, and the efficacy was evaluated 4 weeks after treatment. The 45 patients who were treated with pericardial catheter drainage and simultaneous intracavitary chemotherapy were used as the control group. The success rate of pericardiocentesis was 100%. Ultrasound reviews performed 4 weeks after treatment showed that 71 cases achieved complete remission and eight cases achieved partial remission, while treatment was completely ineffective in two cases. The total remission rate was 97.53%, which was significantly higher than that of the control group (77.78%, p < 0.01. The implantation of 5-FU sustained-release particles along the cardiac tangent direction was safe, and demonstrated good efficacy and fewer adverse reactions. Thus, this method could be ideal for the treatment of MPCE.

  10. Pericardial and congestive heart failure diagnostic with CT-and MR-imaging

    International Nuclear Information System (INIS)

    Rienmueller, R.; Seiderer, M.; Doliva, R.; Kemkes, B.; Lissner, J.

    1986-01-01

    Angiocardiography is still considered the gold standard in the estimation of functional parameters of the heart. However because of the inferior density resolution and the draw back of superimposition of cardiac structures angiocardiography provides only limited information about non cardiac and some cardiac structures for instance: The perimyo-, endocardium, the valves, the myocardial perfusion and metabolism or coronary blood flow. The present diagnostic and prognostic validity of CT and MR in visualizing the pericardium, the left ventricular myocardium, the heart chambers and the great heart vessels in the clinical work up of patients with pericardial and congestive heart failure is demonstrated. MR is more reliable in the diagnosis of left ventricular myocardial atrophy or fibrosis than CT. Disadvantages of MR include the failure to identify endo-, myo-and pericardial calcifications. The measurable improvement in the visualization of systolic and diastolic myocardial wall thickness using MR is of marked prognostic value in the preoperative exclusion of myocardial atrophy or fibrosis in patients with pericardial constriction

  11. Pericardial Mesothelioma in a Yellow-naped Amazon Parrot (Amazona auropalliata).

    Science.gov (United States)

    McCleery, Brynn; Jones, Michael P; Manasse, Jorden; Johns, Sara; Gompf, Rebecca E; Newman, Shelley

    2015-03-01

    A 37-year-old female yellow-naped Amazon parrot (Amazona auropalliata) was presented with a history of lethargy, inappetence, and decreased vocalizations. On examination, the coelom was moderately distended and palpated fluctuant, and the heart was muffled on auscultation. Coelomic ultrasound, coelomocentesis, and radiographs were performed and revealed an enlarged cardiac silhouette and marked coelomic effusion. Pericardial effusion was confirmed by echocardiography. A well-circumscribed, hyperechoic soft tissue density was observed at the level of the right atrium on initial echocardiography; however, a cardiac mass was not identified by computed tomography scan or repeat echocardiograms. Ultrasound-guided pericardiocentesis was performed under anesthesia, and cytology results were consistent with hemorrhage; no neoplastic cells were identified. A repeat echocardiogram 4 days after pericardiocentesis revealed recurrence of the pericardial effusion. Due to the grave prognosis, the owners declined endoscopic pericardiectomy, and the patient died the following day. On postmortem examination, the pericardial surface of the heart was covered in a white to yellow, multinodular mass layer. Histologic analysis revealed a multinodular mass extending from the atria, running along the epicardium distally, and often extending into the myocardium. Neoplastic cells present in the heart mass and pericardium did not stain with a Churukian-Schenk stain, and thyroglobulin immunohistochemistry was negative. Cytokeratin and vimentin stains showed positive expression in the neoplastic cells within the mass. These results are consistent with a diagnosis of mesothelioma. This is the first report of mesothelioma in a psittacine bird.

  12. Post-irradiation pericardial malignant mesothelioma with deletion of p16: a case report.

    Science.gov (United States)

    Naeini, Yalda B; Arcega, Ramir; Hirschowitz, Sharon; Rao, Nagesh; Xu, Haodong

    2018-02-01

    Malignant mesotheliomas are rather uncommon neoplasms associated primarily with asbestos exposure; however, they may also arise as second primary malignancies after radiation therapy, with a latency period of 15-25 years. Numerous studies have reported an association between pleural malignant mesothelioma and chest radiation performed for other malignancies; on the other hand, post-irradiation mesotheliomas of the pericardium have been reported in only a few published cases to date, and no homozygous deletion of 9p21 has been described in such cases. We report the case of a 48-year-old man with a history of Hodgkin's lymphoma and no prior asbestos exposure who developed pericardial malignant epithelioid mesothelioma. We further discuss the cytologic, histologic, immunophenotypic, and fluorescence in situ hybridization findings in this case. To our knowledge, this is the first well-documented case of post-radiation pericardial malignant mesothelioma showing homozygous deletion of 9p21. Homozygous deletion of 9p21, the locus harboring the p16 gene, is present in post-irradiation pericardial malignant mesothelioma.

  13. Perfusion decellularization of a human limb: A novel platform for composite tissue engineering and reconstructive surgery.

    Directory of Open Access Journals (Sweden)

    Mattia Francesco Maria Gerli

    Full Text Available Muscle and fasciocutaneous flaps taken from autologous donor sites are currently the most utilized approach for trauma repair, accounting annually for 4.5 million procedures in the US alone. However, the donor tissue size is limited and the complications related to these surgical techniques lead to morbidities, often involving the donor sites. Alternatively, recent reports indicated that extracellular matrix (ECM scaffolds boost the regenerative potential of the injured site, as shown in a small cohort of volumetric muscle loss patients. Perfusion decellularization is a bioengineering technology that allows the generation of clinical-scale ECM scaffolds with preserved complex architecture and with an intact vascular template, from a variety of donor organs and tissues. We recently reported that this technology is amenable to generate full composite tissue scaffolds from rat and non-human primate limbs. Translating this platform to human extremities could substantially benefit soft tissue and volumetric muscle loss patients providing tissue- and species-specific grafts. In this proof-of-concept study, we show the successful generation a large-scale, acellular composite tissue scaffold from a full cadaveric human upper extremity. This construct retained its morphological architecture and perfusable vascular conduits. Histological and biochemical validation confirmed the successful removal of nuclear and cellular components, and highlighted the preservation of the native extracellular matrix components. Our results indicate that perfusion decellularization can be applied to produce human composite tissue acellular scaffolds. With its preserved structure and vascular template, these biocompatible constructs, could have significant advantages over the currently implanted matrices by means of nutrient distribution, size-scalability and immunological response.

  14. Delineation of in vitro chondrogenesis of human synovial stem cells following preconditioning using decellularized matrix

    Science.gov (United States)

    Zhang, Ying; Li, Jingting; Davis, Mary E.; Pei, Ming

    2015-01-01

    As a tissue-specific stem cell for chondrogenesis, synovium-derived stem cells (SDSCs) are a promising cell source for cartilage repair. However, a small biopsy can only provide a limited number of cells. Cell senescence from both in vitro expansion and donor age presents a big challenge for stem cell based cartilage regeneration. Here we found that expansion on decellularized extracellular matrix (dECM) full of three-dimensional nanostructured fibers provided SDSCs with unique surface profiles, low elasticity but large volume as well as fibroblast-like shape. dECM expanded SDSCs yielded larger pellets with intensive staining of type II collagen and sulfated glycosaminoglycans compared to those grown on plastic flasks while SDSCs grown in ECM yielded 28-day pellets with minimal matrix as evidenced by pellet size and chondrogenic marker staining, which was confirmed by both biochemical data and real-time PCR data. Our results also found lower levels of inflammatory genes in dECM expanded SDSCs that might be responsible for enhanced chondrogenic differentiation. Despite an increase in type X collagen in chondrogenically induced cells, dECM expanded cells had significantly lower potential for endochondral bone formation. Wnt and MAPK signals were actively involved in both expansion and chondrogenic induction of dECM expanded cells. Since young and healthy people can be potential donors for this matrix expansion system and decellularization can minimize immune concerns, human SDSCs expanded on this future commercially available dECM could be a potential cell source for autologous cartilage repair. PMID:25861949

  15. Human decellularized bone scaffolds from aged donors show improved osteoinductive capacity compared to young donor bone.

    Directory of Open Access Journals (Sweden)

    Christopher A Smith

    Full Text Available To improve the safe use of allograft bone, decellularization techniques may be utilized to produce acellular scaffolds. Such scaffolds should retain their innate biological and biomechanical capacity and support mesenchymal stem cell (MSC osteogenic differentiation. However, as allograft bone is derived from a wide age-range, this study aimed to determine whether donor age impacts on the ability an osteoinductive, acellular scaffold produced from human bone to promote the osteogenic differentiation of bone marrow MSCs (BM-MSC. BM-MSCs from young and old donors were seeded on acellular bone cubes from young and old donors undergoing osteoarthritis related hip surgery. All combinations resulted in increased osteogenic gene expression, and alkaline phosphatase (ALP enzyme activity, however BM-MSCs cultured on old donor bone displayed the largest increases. BM-MSCs cultured in old donor bone conditioned media also displayed higher osteogenic gene expression and ALP activity than those exposed to young donor bone conditioned media. ELISA and Luminex analysis of conditioned media demonstrated similar levels of bioactive factors between age groups; however, IGF binding protein 1 (IGFBP1 concentration was significantly higher in young donor samples. Additionally, structural analysis of old donor bone indicated an increased porosity compared to young donor bone. These results demonstrate the ability of a decellularized scaffold produced from young and old donors to support osteogenic differentiation of cells from young and old donors. Significantly, the older donor bone produced greater osteogenic differentiation which may be related to reduced IGFBP1 bioavailability and increased porosity, potentially explaining the excellent clinical results seen with the use of allograft from aged donors.

  16. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci

    International Nuclear Information System (INIS)

    Gao, Shuang; Yuan, Zhiguo; Guo, Weimin; Chen, Mingxue; Liu, Shuyun; Xi, Tingfei; Guo, Quanyi

    2017-01-01

    The objectives of this study were to fabricate porous scaffolds using decellularized meniscus, and to explore a preferable crosslinking condition to enhance mechanical properties of scaffolds. Moreover, the microstructure, porosity, biodegradation and cytotoxicity were also evaluated. EDAC or GTA in different concentration was used to crosslink scaffolds. FTIR demonstrated functional groups change in crosslinking process. SEM photography showed that crosslinked scaffolds had blurry edges, which resulted scaffolds crosslinked by 1.2 mol/l EDAC had smaller porosity than other groups. The structure change enhanced antidegradation property. After immersing in enzyme solution for 96 h, scaffolds crosslinked by GTA and EDAC could maintain their mass > 70% and 80%. Most importantly, mechanical properties of crosslinked scaffolds were also improved. Uncrosslinked Scaffolds had only 0.49 kPa in compression modulus and 12.81 kPa in tensile modulus. The compression and tensile modulus of scaffolds crosslinked by 1.0% GTA were 1.42 and 567.44 kPa respectively. The same value of scaffolds crosslinked by 1.2 mol/l EDAC were 1.49 and 532.50 kPa. Scaffolds crosslinked by 1.0% and 2.5% GTA were toxic to cells, while EDAC groups showed no cytotoxicity. Chondrocytes could proliferate and infiltrate within scaffolds after seeding. Overall, 1.2 mol/l EDAC was a preferable crosslinking condition. - Highlights: • Porous meniscus scaffolds were fabricated using decellularized meniscus tissue. • Mechanical properties of meniscus scaffolds were enhanced by chemical crosslinking. • The crosslinked scaffold showed enhanced anti-degradation properties. • Chondrocytes could infiltrate and proliferate within crosslinked scaffolds.

  17. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Shuang [Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Yuan, Zhiguo; Guo, Weimin; Chen, Mingxue; Liu, Shuyun [Beijing Key Lab of Regenerative Medicine in Orthopaedics, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Key Laboratory of Musculoskeletal Trauma & War Injuries, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Xi, Tingfei, E-mail: tingfeixi@163.com [Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Shenzhen Institute, Peking University, Shenzhen 518057 (China); Guo, Quanyi, E-mail: doctorguo_301@163.com [Beijing Key Lab of Regenerative Medicine in Orthopaedics, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Key Laboratory of Musculoskeletal Trauma & War Injuries, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China)

    2017-02-01

    The objectives of this study were to fabricate porous scaffolds using decellularized meniscus, and to explore a preferable crosslinking condition to enhance mechanical properties of scaffolds. Moreover, the microstructure, porosity, biodegradation and cytotoxicity were also evaluated. EDAC or GTA in different concentration was used to crosslink scaffolds. FTIR demonstrated functional groups change in crosslinking process. SEM photography showed that crosslinked scaffolds had blurry edges, which resulted scaffolds crosslinked by 1.2 mol/l EDAC had smaller porosity than other groups. The structure change enhanced antidegradation property. After immersing in enzyme solution for 96 h, scaffolds crosslinked by GTA and EDAC could maintain their mass > 70% and 80%. Most importantly, mechanical properties of crosslinked scaffolds were also improved. Uncrosslinked Scaffolds had only 0.49 kPa in compression modulus and 12.81 kPa in tensile modulus. The compression and tensile modulus of scaffolds crosslinked by 1.0% GTA were 1.42 and 567.44 kPa respectively. The same value of scaffolds crosslinked by 1.2 mol/l EDAC were 1.49 and 532.50 kPa. Scaffolds crosslinked by 1.0% and 2.5% GTA were toxic to cells, while EDAC groups showed no cytotoxicity. Chondrocytes could proliferate and infiltrate within scaffolds after seeding. Overall, 1.2 mol/l EDAC was a preferable crosslinking condition. - Highlights: • Porous meniscus scaffolds were fabricated using decellularized meniscus tissue. • Mechanical properties of meniscus scaffolds were enhanced by chemical crosslinking. • The crosslinked scaffold showed enhanced anti-degradation properties. • Chondrocytes could infiltrate and proliferate within crosslinked scaffolds.

  18. Wear Characteristics of Metallic Biomaterials: A Review

    Science.gov (United States)

    Hussein, Mohamed A.; Mohammed, Abdul Samad; Al-Aqeeli, Naser

    2015-01-01

    Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  19. Video-assisted thoracoscopic pericardial window placement for radiation pericarditis induced by definitive chemoradiotherapy in a patient with thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Hisakura, Katsuji; Terashima, Hideo; Nagai, Kentaro; Nozaki, Reiji; Akashi, Yoshimasa; Tadano, Sosuke; Ohkohchi, Nobuhiro

    2007-01-01

    We report surgical management of radiation-induced massive pericardial effusion. A 55-year-old man undergoing definitive chemoradiotherapy (CRT) for esophageal squamous cell carcinoma in the middle thorax was treated with megavoltage equipment using anterior-posterior opposed fields up to 45 Gy, including the primary tumor and regional lymphnodes. A booster dose of 25 Gy was given to the primary tumor for a total dose of 70 Gy, using bilateral oblique fields. Three years and 6 months later, he was treated with an additional 30 Gy for mediastinal lymphnode metastasis, followed by percutaneous pericardiocentesis for cardiac tamponade with massive pericardial effusion 4 times in 5 months. Because medical intervention was inadequate, he underwent pericardial effusion via video-assisted thoracoscopic pericardial window placement 4 years and 6 months after definitive CRT. Histopathological examination of the pericardial tissue specimen showed marked fibrosis but no cancer recurrence, compatible with radiation pericarditis. The postoperative course was uneventful, and pericardial effusion completely disappeared. (author)

  20. Microgel mechanics in biomaterial design.

    Science.gov (United States)

    Saxena, Shalini; Hansen, Caroline E; Lyon, L Andrew

    2014-08-19

    The field of polymeric biomaterials has received much attention in recent years due to its potential for enhancing the biocompatibility of systems and devices applied to drug delivery and tissue engineering. Such applications continually push the definition of biocompatibility from relatively straightforward issues such as cytotoxicity to significantly more complex processes such as reducing foreign body responses or even promoting/recapitulating natural body functions. Hydrogels and their colloidal analogues, microgels, have been and continue to be heavily investigated as viable materials for biological applications because they offer numerous, facile avenues in tailoring chemical and physical properties to approach biologically harmonious integration. Mechanical properties in particular are recently coming into focus as an important manner in which biological responses can be altered. In this Account, we trace how mechanical properties of microgels have moved into the spotlight of research efforts with the realization of their potential impact in biologically integrative systems. We discuss early experiments in our lab and in others focused on synthetic modulation of particle structure at a rudimentary level for fundamental drug delivery studies. These experiments elucidated that microgel mechanics are a consequence of polymer network distribution, which can be controlled by chemical composition or particle architecture. The degree of deformability designed into the microgel allows for a defined response to an imposed external force. We have studied deformation in packed colloidal phases and in translocation events through confined pores; in all circumstances, microgels exhibit impressive deformability in response to their environmental constraints. Microgels further translate their mechanical properties when assembled in films to the properties of the bulk material. In particular, microgel films have been a large focus in our lab as building blocks for self

  1. Thromboelastometric and platelet responses to silk biomaterials.

    Science.gov (United States)

    Kundu, Banani; Schlimp, Christoph J; Nürnberger, Sylvia; Redl, Heinz; Kundu, S C

    2014-05-13

    Silkworm's silk is natural biopolymer with unique properties including mechanical robustness, all aqueous base processing and ease in fabrication into different multifunctional templates. Additionally, the nonmulberry silks have cell adhesion promoting tri-peptide (RGD) sequences, which make it an immensely potential platform for regenerative medicine. The compatibility of nonmulberry silk with human blood is still elusive; thereby, restricts its further application as implants. The present study, therefore, evaluate the haematocompatibility of silk biomaterials in terms of platelet interaction after exposure to nonmulberry silk of Antheraea mylitta using thromboelastometry (ROTEM). The mulberry silk of Bombyx mori and clinically used Uni-Graft W biomaterial serve as references. Shortened clotting time, clot formation times as well as enhanced clot strength indicate the platelet mediated activation of blood coagulation cascade by tested biomaterials; which is comparable to controls.

  2. Manufacturing Cell Therapies Using Engineered Biomaterials.

    Science.gov (United States)

    Abdeen, Amr A; Saha, Krishanu

    2017-10-01

    Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    Science.gov (United States)

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures.

  4. Applications of biomaterials in corneal wound healing

    Directory of Open Access Journals (Sweden)

    I-Lun Tsai

    2015-04-01

    Full Text Available Disease affecting the cornea is a common cause of blindness worldwide. To date, the amniotic membrane (AM is the most widely used clinical method for cornea regeneration. However, donor-dependent differences in the AM may result in variable clinical outcomes. To overcome this issue, biomaterials are currently under investigation for corneal regeneration in vitro and in vivo. In this article, we highlight the recent advances in hydrogels, bioengineered prosthetic devices, contact lenses, and drug delivery systems for corneal regeneration. In clinical studies, the therapeutic effects of biomaterials, including fibrin and collagen-based hydrogels and silicone contact lenses, have been demonstrated in damaged cornea. The combination of cells and biomaterials may provide potential treatment in corneal wound healing in the future.

  5. The superiority of the autografts inactivated by high hydrostatic pressure to decellularized allografts in a porcine model.

    Science.gov (United States)

    Morimoto, Naoki; Mahara, Atsushi; Jinno, Chizuru; Ogawa, Mami; Kakudo, Natsuko; Suzuki, Shigehiko; Fujisato, Toshia; Kusumoto, Kenji; Yamaoka, Tetsuji

    2017-11-01

    We are developing a novel skin regeneration therapy in which the inactivation of nevus tissue via high hydrostatic pressure (HHP) is used in the reconstruction of the dermis in combination with a cultured epidermal autograft. In this study, we used a porcine skin graft model to explore whether autologous skin including cellular debris inactivated by HHP or allogeneic skin decellularized by HHP is better for dermal reconstruction. Grafts (n = 6) were prepared for five groups each: autologous skin without pressurization group (control group), autologous skin inactivated by 200 MPa group, autologous skin inactivated by 1000 MPa group, allogeneic skin decellularized by 200 MPa group, and allogeneic skin decellularized by 1000 MPa group. All of the grafts at 1, 4, and 12 weeks showed complete engraftment macroscopically. The mean areas of the grafts of the control group (p < 0.01) and autologous 200 MPa group (p < 0.01) were larger than that of the allogeneic 1000 MPa group at four weeks after implantation. The thickness of the control group and autologous 200 MPa group was comparable, and that of the autologous 200 MPa group was significantly thicker than that of the allogeneic 200 MPa group (p < 0.01). This suggests that the autologous dermis was superior to the allogeneic decellularized dermis as a skin graft, and that HHP at 200 MPa provided a better outcome than HHP at 1000 MPa. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2653-2661, 2017. © 2016 Wiley Periodicals, Inc.

  6. Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve Repair and Functional Outcomes

    Science.gov (United States)

    2017-07-01

    with autologous mesenchymal stem cells . Exp Neurol. 2007 Apr; 204(2):658-66. 19. Dezawa M., et al., Sciatic nerve regeneration in rats induced by...36 23. Mimura T., et al., Peripheral nerve regeneration by transplantation of bone marrow stromal cell -derived Schwann cells in adult rats. J...AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve

  7. Regulatory affairs for biomaterials and medical devices

    CERN Document Server

    Amato, Stephen F; Amato, B

    2015-01-01

    All biomaterials and medical devices are subject to a long list of regulatory practises and policies which must be adhered to in order to receive clearance. This book provides readers with information on the systems in place in the USA and the rest of the world. Chapters focus on a series of procedures and policies including topics such as commercialization, clinical development, general good practise manufacturing and post market surveillance.Addresses global regulations and regulatory issues surrounding biomaterials and medical devicesEspecially useful for smaller co

  8. Sustainable Biomaterials: Current Trends, Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Girish Kumar Gupta

    2015-12-01

    Full Text Available Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  9. Sustainable Biomaterials: Current Trends, Challenges and Applications.

    Science.gov (United States)

    Kumar Gupta, Girish; De, Sudipta; Franco, Ana; Balu, Alina Mariana; Luque, Rafael

    2015-12-30

    Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  10. Facile design of biomaterials by 'click' chemistry

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    The advent of the so‐called ‘click chemistry’ a decade ago has significantly improved the chemical toolbox for producing novel biomaterials. This review focuses primarily on the application of Cu(I)‐catalysed azide–alkyne 1,3‐cycloadditon in the preparation of numerous, diverse biomaterials...... chemistry is elaborated. The present state of creating functional and biologically active surfaces by click chemistry is presented. Finally, conducting surfaces based on an azide‐functionalized polymer with prospective biological sensor potential are introduced. Copyright © 2012 Society of Chemical Industry...

  11. Preparation of a nano- and micro-fibrous decellularized scaffold seeded with autologous mesenchymal stem cells for inguinal hernia repair

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2017-02-01

    Full Text Available Yinlong Zhang,1,* Yuanyuan Zhou,1,* Xu Zhou,2,* Bin Zhao,1,* Jie Chai,1 Hongyi Liu,1 Yifei Zheng,1 Jinling Wang,3 Yaozong Wang,4 Yilin Zhao2 1Medical College, Xiamen University, 2Department of Oncology and Vascular Intervention Radiology, 3Department of Emergency, 4Department of Orthopaedics, Zhongshan Hospital, Xiamen University, Xiamen, People’s Republic of China *These authors contributed equally to this work Abstract: Prosthetic meshes used for hernioplasty are usually complicated with chronic pain due to avascular fibrotic scar or mesh shrinkage. In this study, we developed a tissue-engineered mesh (TEM by seeding autologous bone marrow-derived mesenchymal stem cells onto nanosized fibers decellularized aorta (DA. DA was achieved by decellularizing the aorta sample sequentially with physical, mechanical, biological enzymatic digestion, and chemical detergent processes. The tertiary structure of DA was constituted with micro-, submicro-, and nanosized fibers, and the original strength of fresh aorta was retained. Inguinal hernia rabbit models were treated with TEMs or acellular meshes (AMs. After implantation, TEM-treated rabbit models showed no hernia recurrence, whereas AM-treated animals displayed bulges in inguinal area. At harvest, TEMs were thicker, have less adhesion, and have stronger mechanical strength compared to AMs (P<0.05. Moreover, TEM showed better cell infiltration, tissue regeneration, and neovascularization (P<0.05. Therefore, these cell-seeded DAs with nanosized fibers have potential for use in inguinal hernioplasty. Keywords: nanobiomaterial, tissue engineering, inguinal hernia, hernioplasty, decellularized aorta 

  12. Reconstruction of structure and function in tissue engineering of solid organs: Toward simulation of natural development based on decellularization.

    Science.gov (United States)

    Zheng, Chen-Xi; Sui, Bing-Dong; Hu, Cheng-Hu; Qiu, Xin-Yu; Zhao, Pan; Jin, Yan

    2018-04-27

    Failure of solid organs, such as the heart, liver, and kidney, remains a major cause of the world's mortality due to critical shortage of donor organs. Tissue engineering, which uses elements including cells, scaffolds, and growth factors to fabricate functional organs in vitro, is a promising strategy to mitigate the scarcity of transplantable organs. Within recent years, different construction strategies that guide the combination of tissue engineering elements have been applied in solid organ tissue engineering and have achieved much progress. Most attractively, construction strategy based on whole-organ decellularization has become a popular and promising approach, because the overall structure of extracellular matrix can be well preserved. However, despite the preservation of whole structure, the current constructs derived from decellularization-based strategy still perform partial functions of solid organs, due to several challenges, including preservation of functional extracellular matrix structure, implementation of functional recellularization, formation of functional vascular network, and realization of long-term functional integration. This review overviews the status quo of solid organ tissue engineering, including both advances and challenges. We have also put forward a few techniques with potential to solve the challenges, mainly focusing on decellularization-based construction strategy. We propose that the primary concept for constructing tissue-engineered solid organs is fabricating functional organs based on intact structure via simulating the natural development and regeneration processes. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Decellularization and Delipidation Protocols of Bovine Bone and Pericardium for Bone Grafting and Guided Bone Regeneration Procedures.

    Directory of Open Access Journals (Sweden)

    Chiara Gardin

    Full Text Available The combination of bone grafting materials with guided bone regeneration (GBR membranes seems to provide promising results to restore bone defects in dental clinical practice. In the first part of this work, a novel protocol for decellularization and delipidation of bovine bone, based on multiple steps of thermal shock, washes with detergent and dehydration with alcohol, is described. This protocol is more effective in removal of cellular materials, and shows superior biocompatibility compared to other three methods tested in this study. Furthermore, histological and morphological analyses confirm the maintenance of an intact bone extracellular matrix (ECM. In vitro and in vivo experiments evidence osteoinductive and osteoconductive properties of the produced scaffold, respectively. In the second part of this study, two methods of bovine pericardium decellularization are compared. The osmotic shock-based protocol gives better results in terms of removal of cell components, biocompatibility, maintenance of native ECM structure, and host tissue reaction, in respect to the freeze/thaw method. Overall, the results of this study demonstrate the characterization of a novel protocol for the decellularization of bovine bone to be used as bone graft, and the acquisition of a method to produce a pericardium membrane suitable for GBR applications.

  14. Collagen based Biomaterials from CLRI: An Inspiration from the ...

    Indian Academy of Sciences (India)

    Collagen-based Smart Biomaterials · Smart materials: As smart people see them · Some Biomaterials based on Collagen in Human Health care · Questions of Value to this presentation ... Collagen based biomaterials · COLLAGEN IN VISION CARE · Slide 57 · Bandage lens: A smart device · Work at CLRI: In summary.

  15. Pericardial tamponade and pancytopenia as the first manifestation of mixed connective tissue disorder and its complete reversal with corticosteroids

    Directory of Open Access Journals (Sweden)

    Ankur Jain

    2014-09-01

    Full Text Available We report a case of a 25-year-old lady who presented to our department with complaints of easy fatigability and shortness of breath since one week. She had a history of Raynaud’s phenomenon. Examination revealed scleroderma like skin changes and pericardial friction rub. Investigations revealed high titer of anti-U1 RNP antibodies along with co-existing pancytopenia. Chest x-ray and echocardiography confirmed pericardial tamponade. Patient was diagnosed as having mixed connective tissue disorder (MCTD and she was started on high dose prednisolone, which led to complete reversal of pancytopenia and pericardial tamponade after 1 month of treatment. There are only 6 reported cases of pericardial tamponade in a patient with MCTD, and none of them had pancytopenia. Present case highlights the need to investigate the patient of pericardial tamponade for MCTD, especially in the presence of pancytopenia and relevant clinical history, as prompt treatment with corticosteroids can avoid invasive procedures like pericardiocentesis.

  16. Elastin as a biomaterial for tissue engineering.

    NARCIS (Netherlands)

    Daamen, W.F.; Veerkamp, J.H.; Hest, J.C.M. van; Kuppevelt, A.H.M.S.M. van

    2007-01-01

    Biomaterials based upon elastin and elastin-derived molecules are increasingly investigated for their application in tissue engineering. This interest is fuelled by the remarkable properties of this structural protein, such as elasticity, self-assembly, long-term stability, and biological activity.

  17. Biomaterials and the U.S. Navy.

    Science.gov (United States)

    1984-07-10

    genetics, immunology, cell biology, micro- biology (including procaryotes and eucaryotes as well as heterotropha and autotrophs), biochemistry...expression in a marine animal and associated cellular events. Metallothionein genes offer a mechanism for detoxification of chemical effluents, as well as...cross-linked, would have interesting structural and cellular effector properties for a biomaterial. In addition, the regular cross-linking sequences

  18. Building blocks of Collagen based biomaterial devices

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Building blocks of Collagen based biomaterial devices. Collagen as a protein. Collagen in tissues and organs. Stabilizing and cross linking agents. Immunogenicity. Hosts (drugs). Controlled release mechanisms of hosts. Biodegradability, workability into devices ...

  19. Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation.

    Science.gov (United States)

    Caralt, M; Uzarski, J S; Iacob, S; Obergfell, K P; Berg, N; Bijonowski, B M; Kiefer, K M; Ward, H H; Wandinger-Ness, A; Miller, W M; Zhang, Z J; Abecassis, M M; Wertheim, J A

    2015-01-01

    The ability to generate patient-specific cells through induced pluripotent stem cell (iPSC) technology has encouraged development of three-dimensional extracellular matrix (ECM) scaffolds as bioactive substrates for cell differentiation with the long-range goal of bioengineering organs for transplantation. Perfusion decellularization uses the vasculature to remove resident cells, leaving an intact ECM template wherein new cells grow; however, a rigorous evaluative framework assessing ECM structural and biochemical quality is lacking. To address this, we developed histologic scoring systems to quantify fundamental characteristics of decellularized rodent kidneys: ECM structure (tubules, vessels, glomeruli) and cell removal. We also assessed growth factor retention--indicating matrix biofunctionality. These scoring systems evaluated three strategies developed to decellularize kidneys (1% Triton X-100, 1% Triton X-100/0.1% sodium dodecyl sulfate (SDS) and 0.02% Trypsin-0.05% EGTA/1% Triton X-100). Triton and Triton/SDS preserved renal microarchitecture and retained matrix-bound basic fibroblast growth factor and vascular endothelial growth factor. Trypsin caused structural deterioration and growth factor loss. Triton/SDS-decellularized scaffolds maintained 3 h of leak-free blood flow in a rodent transplantation model and supported repopulation with human iPSC-derived endothelial cells and tubular epithelial cells ex vivo. Taken together, we identify an optimal Triton/SDS-based decellularization strategy that produces a biomatrix that may ultimately serve as a rodent model for kidney bioengineering. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  20. New biomaterials obtained with ionizing radiations

    International Nuclear Information System (INIS)

    Gaussens, G.

    1982-01-01

    In present-day surgery and medicine use is increasingly made of materials foreign to the organism in order to remedy a physiological defect either temporarily or permanently. These materials, known as ''biomaterials'', take widely varying forms: plastics, metals, cements, ceramics, etc. Biomaterials can be classified in accordance with their function: (a) Devices designed to be fully implanted in the human body in order to replace an anatomical structure, either temporarily or permanently, such as articular, vascular, mammary and osteosynthetic prostheses, etc.; (b) Devices having prolonged contact with mucous tissues, such as intra-uterine devices, contact lenses, etc.; (c) Extracorporeal devices designed to treat blood such as artificial kidneys, blood oxygenators, etc.; and (d) Biomaterials can also be taken to mean chemically inert, implantable materials designed to produce a continuous discharge of substances containing pharmacologically active molecules, such as contraceptive devices or ocular devices (for treating glaucoma). The two most important criteria for a biomaterial are those of biological compatibility and biological functionality. Techniques using ionizing radiation as an energy source provide an excellent tool for synthesizing or modifying the properties of plastics. The properties of polymers can be improved, new polymers can be synthesized without chemical additives (often the cause of incompatibility with tissue or blood) and without increased temperature, and polymerization can be induced in the solid state using deep-frozen monomers. Also, radiation-induced modifications in polymers can be applied to semi-finished or finished products. Examples are also given of marketed biomaterials that have been produced using radiation chemistry techniques

  1. Silk film biomaterials for ocular surface repair

    Science.gov (United States)

    Lawrence, Brian David

    Current biomaterial approaches for repairing the cornea's ocular surface upon injury are partially effective due to inherent material limitations. As a result there is a need to expand the biomaterial options available for use in the eye, which in turn will help to expand new clinical innovations and technology development. The studies illustrated here are a collection of work to further characterize silk film biomaterials for use on the ocular surface. Silk films were produced from regenerated fibroin protein solution derived from the Bombyx mori silkworm cocoon. Methods of silk film processing and production were developed to produce consistent biomaterials for in vitro and in vivo evaluation. A wide range of experiments was undertaken that spanned from in vitro silk film material characterization to in vivo evaluation. It was found that a variety of silk film properties could be controlled through a water-annealing process. Silk films were then generated that could be use in vitro to produce stratified corneal epithelial cell sheets comparable to tissue grown on the clinical standard substrate of amniotic membrane. This understanding was translated to produce a silk film design that enhanced corneal healing in vivo on a rabbit injury model. Further work produced silk films with varying surface topographies that were used as a simplified analog to the corneal basement membrane surface in vitro. These studies demonstrated that silk film surface topography is capable of directing corneal epithelial cell attachment, growth, and migration response. Most notably epithelial tissue development was controllably directed by the presence of the silk surface topography through increasing cell sheet migration efficiency at the individual cellular level. Taken together, the presented findings represent a comprehensive characterization of silk film biomaterials for use in ocular surface reconstruction, and indicate their utility as a potential material choice in the

  2. Predictors of Post Pericardiotomy Low Cardiac Output Syndrome in Patients With Pericardial Effusion

    Directory of Open Access Journals (Sweden)

    Sabzi Feridoun

    2015-03-01

    Full Text Available Introduction: Pathological involvement of pericardium by any disease that resulting in effusion may require decompression and pericardiectomy. The current article describes rare patients with effusion who after pericadiectomy and transient hemodynamic improvement rapidly developed progressive heart failure and subsequent multi organ failure.Methods: During periods of five years, 423 patients in our hospital underwent pericardiotomy for decompression of effusion. The clinical characteristics of those patient with postoperative low cardiac output (B group (14 cases recorded and compared with other patients without this postoperative complication (A group by test and X2. Significant variables in invariables (P≤0.1 entered in logistic regression analysis and odd ratio of these significant variables obtained. Results: Idiopathic pericardial effusion, malignancy, renal failure, connective tissue disease, viral pericarditis was found in 125 patients (27%, 105 patients (25.4%, 65 patients (15.6%, 50 (17.1% and 10 (2.4% of patients subsequently. The factors that predict post-operative death in logistic regression analysis were malignancy, radiotherapy, constrictive pericarditis inotropic drug using IABP using, pre-operative EF and pericardial calcification.Conclusion: Certain preoperative variables such as malignancy, radiotherapy, low EF, calcified pericardium and connective tissue disease are associated with POLCOS and post-operative risk of death. This paradoxical response to pericardial decompression may be more frequent than currently appreciated. Its cause may relate to the sudden removal of the chronic external ventricular support from the effusion or thicken pericardium resulting in ventricular dilatation and failure or intra operative myocardial injury due to pericardiectomy of calcified pericardium, radiation and cardiomyopathy.

  3. Incidental finding of congenital pericardial and mediastinal pleural defect by pneumothorax in an adult

    International Nuclear Information System (INIS)

    Sugiura, Y.; Matsusaka, Y.; Nemoto, E.; Hashizume, T.; Kaseda, S.

    2015-01-01

    Introduction: Congenital pericardial defect (CPD) is an uncommon anomaly. If once cardiac herniation occurs, it threatens life. We report a case of left-sided pneumothorax with consequent protrusion of the heart into left thoracic cavity through not only a large CPD but also congenital pleuropericardium window. Case presentation: A 67-year-old man presenting with sudden-onset left-sided chest pain and slight dyspnea was referred to our hospital. Chest X-ray showed a left lung collapse, and also revealed a pneumopericardium along the right border of the ascending aorta. Subsequent computed tomography (CT) scan revealed that the heart was displaced into the left hemithorax. Thus, we diagnosed the patient with pneumothorax and a defect of the pericardial and mediastinal pleurae. Subsequently, a chest tube was inserted into the left thoracic cavity, and the collapsed lung was promptly inflated. The cardiac position was reinstated within mediastinum as evidenced by follow-up CT scan. The QRS axis on his electrocardiogram (ECG) was altered from 52° to 73°. Together with the cardiac relocation evidenced by the QRS axis shift on ECG and findings of CT, we determined that there was a low potential for complications and opted against surgical repair. Discussion: When the CPD is sufficiently large, surgical intervention is not necessary. The size of the CPD can be assessed not only by CT findings, but the alteration of the QRS axis on ECG also provides useful information whether cardiac herniation can be resolved by the inflated lung. - Highlights: • We reported a case of congenital pericardial defect (CPD) with pneumothorax. • We described how to manage to alleviate life-threatening complications. • The size of CPD was assessed by CT findings and the alteration of QRS axis on ECG

  4. Freeze-thaw decellularization of the trabecular meshwork in an ex vivo eye perfusion model

    Directory of Open Access Journals (Sweden)

    Yalong Dang

    2017-08-01

    Full Text Available Objective The trabecular meshwork (TM is the primary substrate of outflow resistance in glaucomatous eyes. Repopulating diseased TM with fresh, functional TM cells might be a viable therapeutic approach. Decellularized TM scaffolds have previously been produced by ablating cells with suicide gene therapy or saponin, which risks incomplete cell removal or dissolution of the extracellular matrix, respectively. We hypothesized that improved trabecular meshwork cell ablation would result from freeze-thaw cycles compared to chemical treatment. Materials and Methods We obtained 24 porcine eyes from a local abattoir, dissected and mounted them in an anterior segment perfusion within two hours of sacrifice. Intraocular pressure (IOP was recorded continuously by a pressure transducer system. After 72 h of IOP stabilization, eight eyes were assigned to freeze-thaw (F ablation (−80 °C × 2, to 0.02% saponin (S treatment, or the control group (C, respectively. The TM was transduced with an eGFP expressing feline immunodeficiency viral (FIV vector and tracked via fluorescent microscopy to confirm ablation. Following treatment, the eyes were perfused with standard tissue culture media for 180 h. TM histology was assessed by hematoxylin and eosin staining. TM viability was evaluated by a calcein AM/propidium iodide (PI assay. The TM extracellular matrix was stained with Picro Sirius Red. We measured IOP and modeled it with a linear mixed effects model using a B-spline function of time with five degrees of freedom. Results F and S experienced a similar IOP reduction of 30% from baseline (P = 0.64. IOP reduction of about 30% occurred in F within 24 h and in S within 48 h. Live visualization of eGFP demonstrated that F conferred a complete ablation of all TM cells and only a partial ablation in S. Histological analysis and Picro Sirius staining confirmed that no TM cells survived in F while the extracellular matrix remained. The viability assay showed

  5. Pericardial abscess occurring after tuberculous pericarditis: image morphology on computed tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gulati, G.S.; Sharma, S.

    2004-01-01

    AIM: To study the image morphology on computed tomography (CT) and magnetic resonance imaging (MRI) of pericardial abscess, an uncommon complication of tuberculous pericarditis. MATERIAL AND METHODS: In a 9-year period, 120 patients with clinical and imaging features of constrictive pericarditis were retrospectively reviewed. Of them, 13 patients (age range, 1-51 years; seven females, six males), who had a pericardial mass on echocardiography, and were subjected to CT (11 patients) and MRI (7 patients), were included as subjects of the present study. Five patients underwent both the investigations. The intra-lesional morphology, location, extent, mass effect on adjacent cardiac chambers, secondary effects on the atria and venae cavae, and pericardial thickness were studied. Histopathological confirmation of tubercular infection was available in nine patients. In the remaining four patients, the diagnosis was based on typical extra-cardiac manifestations of tuberculosis. RESULTS: A total of 15 abscesses were detected. CT showed a lesion with a hypodense core and an enhancing rim in all patients. On spin-echo T1-weighted MRI, 57% of the paients had a lesion with a hyperintense core, suggesting an exudative process. Seventy-one percent of patients showed a lesion with a hyperintense core on T2-weighted MRI, while one lesion was hypointense. Post-gadolinium MRI was performed in two patients and showed an enhancing rim in both, with enhancing septa in one. The predominant site of involvement was in the right atrioventricular (AV) groove (77%). Localized tamponade, suggested by the presence of mass effect on an adjacent cardiac chamber, was noted in nine (69%) cases, with proximal atrial dilatation in 78% of them. Four other patients (31%) had atrial dilatation without a localized mass effect. CONCLUSION: Pericardial abscess is an uncommon complication of constrictive pericarditis. Tuberculosis was responsible for abscess formation in all cases in this study. The

  6. Pericardial abscess occurring after tuberculous pericarditis: image morphology on computed tomography and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gulati, G.S.; Sharma, S. E-mail: meetisv@vsnl.commeetisv@yahoo.com

    2004-06-01

    AIM: To study the image morphology on computed tomography (CT) and magnetic resonance imaging (MRI) of pericardial abscess, an uncommon complication of tuberculous pericarditis. MATERIAL AND METHODS: In a 9-year period, 120 patients with clinical and imaging features of constrictive pericarditis were retrospectively reviewed. Of them, 13 patients (age range, 1-51 years; seven females, six males), who had a pericardial mass on echocardiography, and were subjected to CT (11 patients) and MRI (7 patients), were included as subjects of the present study. Five patients underwent both the investigations. The intra-lesional morphology, location, extent, mass effect on adjacent cardiac chambers, secondary effects on the atria and venae cavae, and pericardial thickness were studied. Histopathological confirmation of tubercular infection was available in nine patients. In the remaining four patients, the diagnosis was based on typical extra-cardiac manifestations of tuberculosis. RESULTS: A total of 15 abscesses were detected. CT showed a lesion with a hypodense core and an enhancing rim in all patients. On spin-echo T1-weighted MRI, 57% of the paients had a lesion with a hyperintense core, suggesting an exudative process. Seventy-one percent of patients showed a lesion with a hyperintense core on T2-weighted MRI, while one lesion was hypointense. Post-gadolinium MRI was performed in two patients and showed an enhancing rim in both, with enhancing septa in one. The predominant site of involvement was in the right atrioventricular (AV) groove (77%). Localized tamponade, suggested by the presence of mass effect on an adjacent cardiac chamber, was noted in nine (69%) cases, with proximal atrial dilatation in 78% of them. Four other patients (31%) had atrial dilatation without a localized mass effect. CONCLUSION: Pericardial abscess is an uncommon complication of constrictive pericarditis. Tuberculosis was responsible for abscess formation in all cases in this study. The

  7. Biventricular heart failure secondary to a pericardial cystic mass: case report

    Energy Technology Data Exchange (ETDEWEB)

    Nizzero, A. [Sudbury Regional Hospital, Dept. of Diagnostic Imaging, Sudbury, Ontario (Canada); Dobranowski, J. [St. Joseph' s Hospital, Dept. of Radiology, Hamilton, Ontario (Canada); Tanser, P. [St. Joseph' s Hospital, Dept. of Cardiology, Hamilton, Ontario (Canada)

    2000-07-01

    Cystic masses of the pericardium causing symptoms due to cardiac compression are very unusual. Such cysts may be congenital, or they may occur secondary to inflammatory processes or hemorrhage, similar to cysts seen in the pleura or peritoneum. Echocardiography, computed tomography (CT) and magnetic resonance imaging (MRI) are useful for noninvasive investigation of the pericardium, although in the remote past, definitive diagnosis was possible only with thoracotomy. We present a case of biventricular cardiac failure secondary to a calcified pericardial cystic mass in a patient with constrictive pericarditis. Because of the extensive calcification, echocardiography was not helpful. CT and MRI allowed excellent delineation of the nature and effects of this abnormality. (author)

  8. Acute rhabdomyolysis and delayed pericardial effusion in an Italian patient with Ebola virus disease: a case report.

    Science.gov (United States)

    Nicastri, Emanuele; Brucato, Antonio; Petrosillo, Nicola; Biava, Gianluigi; Uyeki, Timothy M; Ippolito, Giuseppe

    2017-08-30

    During the 2013-2016 West Africa Ebola virus disease (EVD) epidemic, some EVD patients, mostly health care workers, were evacuated to Europe and the USA. In May 2015, a 37-year old male nurse contracted Ebola virus disease in Sierra Leone. After Ebola virus detection in plasma, he was medically-evacuated to Italy. At admission, rhabdomyolysis was clinically and laboratory-diagnosed and was treated with aggressive hydration, oral favipiravir and intravenous investigational monoclonal antibodies against Ebola virus. The recovery clinical phase was complicated by a febrile thrombocytopenic syndrome with pericardial effusion treated with corticosteroids for 10 days and indomethacin for 2 months. No evidence of recurrence is reported. A febrile thrombocytopenic syndrome with pericardial effusion during the recovery phase of EVD appears to be uncommon. Clinical improvement with corticosteroid treatment suggests that an immune-mediated mechanism contributed to the pericardial effusion.

  9. Targeting Heparin to Collagen within Extracellular Matrix Significantly Reduces Thrombogenicity and Improves Endothelialization of Decellularized Tissues.

    Science.gov (United States)

    Jiang, Bin; Suen, Rachel; Wertheim, Jason A; Ameer, Guillermo A

    2016-12-12

    Thrombosis within small-diameter vascular grafts limits the development of bioartificial, engineered vascular conduits, especially those derived from extracellular matrix (ECM). Here we describe an easy-to-implement strategy to chemically modify vascular ECM by covalently linking a collagen binding peptide (CBP) to heparin to form a heparin derivative (CBP-heparin) that selectively binds a subset of collagens. Modification of ECM with CBP-heparin leads to increased deposition of functional heparin (by ∼7.2-fold measured by glycosaminoglycan composition) and a corresponding reduction in platelet binding (>70%) and whole blood clotting (>80%) onto the ECM. Furthermore, addition of CBP-heparin to the ECM stabilizes long-term endothelial cell attachment to the lumen of ECM-derived vascular conduits, potentially through recruitment of heparin-binding growth factors that ultimately improve the durability of endothelialization in vitro. Overall, our findings provide a simple yet effective method to increase deposition of functional heparin on the surface of ECM-based vascular grafts and thereby minimize thrombogenicity of decellularized tissue, overcoming a significant challenge in tissue engineering of bioartificial vessels and vascularized organs.

  10. Laser surface modification of decellularized extracellular cartilage matrix for cartilage tissue engineering.

    Science.gov (United States)

    Goldberg-Bockhorn, Eva; Schwarz, Silke; Subedi, Rachana; Elsässer, Alexander; Riepl, Ricarda; Walther, Paul; Körber, Ludwig; Breiter, Roman; Stock, Karl; Rotter, Nicole

    2018-02-01

    The implantation of autologous cartilage as the gold standard operative procedure for the reconstruction of cartilage defects in the head and neck region unfortunately implicates a variety of negative effects at the donor site. Tissue-engineered cartilage appears to be a promising alternative. However, due to the complex requirements, the optimal material is yet to be determined. As demonstrated previously, decellularized porcine cartilage (DECM) might be a good option to engineer vital cartilage. As the dense structure of DECM limits cellular infiltration, we investigated surface modifications of the scaffolds by carbon dioxide (CO 2 ) and Er:YAG laser application to facilitate the migration of chondrocytes inside the scaffold. After laser treatment, the scaffolds were seeded with human nasal septal chondrocytes and analyzed with respect to cell migration and formation of new extracellular matrix proteins. Histology, immunohistochemistry, SEM, and TEM examination revealed an increase of the scaffolds' surface area with proliferation of cell numbers on the scaffolds for both laser types. The lack of cytotoxic effects was demonstrated by standard cytotoxicity testing. However, a thermal denaturation area seemed to hinder the migration of the chondrocytes inside the scaffolds, even more so after CO 2 laser treatment. Therefore, the Er:YAG laser seemed to be better suitable. Further modifications of the laser adjustments or the use of alternative laser systems might be advantageous for surface enlargement and to facilitate migration of chondrocytes into the scaffold in one step.

  11. Focal intramural pericardial effusion and cardiac tamponade associated with necrotic adipose tissue in a dog.

    Science.gov (United States)

    Krentz, Terence A; Schutrumpf, Robert J; Zitz, Julie C

    2017-07-15

    CASE DESCRIPTION A 1-year-old castrated male German Shepherd Dog was examined because of an acute onset of lethargy, tachypnea, and inappetence. CLINICAL FINDINGS On initial physical examination, the dog was tachypneic with muffled heart sounds on thoracic auscultation and a palpable abdominal fluid wave. Transthoracic echocardiography revealed focal intramural pericardial effusion and cardiac tamponade. TREATMENT AND OUTCOME The patient underwent emergency therapeutic pericardiocentesis, followed by right lateral intercostal thoracotomy and subtotal pericardiectomy. A 3 × 5-cm mass located between the parietal and visceral layers of the pericardium was resected. The histologic diagnosis was necrotic adipose tissue with granulomatous inflammation and fibroplasia. The patient also underwent exploratory laparotomy and umbilical herniorrhaphy during the same anesthetic episode and recovered from surgery without apparent complications. There were no further clinical signs of cardiac disease. CLINICAL RELEVANCE The patient described in the present report underwent successful subtotal pericardiectomy for treatment of a benign focal lesion causing recurrent pericardial effusion and cardiac tamponade. Prompt diagnosis and intervention may have contributed to the positive outcome in this case.

  12. Effects of colchicine on pericardial diseases: a review of the literature and current evidence

    Directory of Open Access Journals (Sweden)

    Syed Raza Shah

    2016-07-01

    Full Text Available Colchicine, extracted from the colchicum autumnale plant, used by the ancient Greeks more than 20 centuries ago, is one of the most ancient drugs still prescribed even today. The major mechanism of action is binding to microtubules thereby interfering with mitosis and subsequent modulation of polymorphonuclear leukocyte function. Colchicine has long been of interest in the treatment of cardiovascular disease; however, its efficacy and safety profile for specific conditions have been variably established in the literature. In the subset of pericardial diseases, colchicine has been shown to be effective in recurrent pericarditis and post-pericardiotomy syndrome (PPS. The future course of treatment and management will therefore highly depend on the results of the ongoing large randomized placebo-controlled clinical trial to evaluate the efficacy and safety of colchicine for the primary prevention of several postoperative complications and in the perioperative period. Also, given the positive preliminary outcomes of colchicine usage in pericardial effusions, the future therapeutical use of colchicine looks promising. Further study is needed to clarify its role in these disease states, as well as explore other its role in other cardiovascular conditions.

  13. Occult constrictive pericardial disease emerging 40 years after chest radiation therapy: a case report.

    Science.gov (United States)

    Goten, Chiaki; Murai, Hisayoshi; Takashima, Shin-Ichiro; Kato, Takeshi; Usui, Soichiro; Furusho, Hiroshi; Saeki, Takahiro; Sakagami, Satoru; Takemura, Hirofumi; Kaneko, Shuichi; Takamura, Masayuki

    2018-05-31

    The main etiology of constrictive pericarditis (CP) has changed from tuberculosis to therapeutic mediastinal radiation and cardiac surgery. Occult constrictive pericardial disease (OCPD) is a covert disease in which CP is manifested in a condition of volume overload. A 60-year-old patient with a history of thoracic radiation therapy for non-Hodgkin's lymphoma (40 years earlier) was transferred to our hospital for treatment of repeated congestive heart failure. For a preoperative hemodynamic study, pre-hydration with intravenous normal saline (50 mL/hour) was used to manifest the pericardial disease and prevent contrast-induced nephropathy. The hemodynamic study showed a right ventricular dip-plateau pattern and discordance of right and left ventricular systolic pressures during inspiration, which was not seen in the volume-controlled state. These responses were concordant with OCPD. A pericardiectomy, aortic valve replacement, and mitral and tricuspid valve repair were performed. Postoperatively, the heart failure was controlled with standard medication. This case revealed a volume-induced change in hemodynamics in OCPD with severe combined valvular heart disease, which suggests the importance of considering OCPD in patients who had undergone radiation therapy 40 years before.

  14. Pericardial Effusion as a Presenting Symptom of Hashimoto Thyroiditis: A Case Report

    Directory of Open Access Journals (Sweden)

    Alberto Leonardi

    2017-12-01

    Full Text Available Background: Hashimoto thyroiditis (HT is the most frequent cause of acquired hypothyroidism in paediatrics. HT is usually diagnosed in older children and adolescents, mainly in females and is rare in infants and toddlers with cardiac involvement, including pericardial effusion, that can be found in 10% to 30% of adult HT cases. In this paper, a child with HT and pericardial effusion as the most important sign of HT is described. Case presentation: A four-year-old male child suffering for a few months from recurrent abdominal pain sometimes associated with vomiting underwent an abdominal ultrasound scan outside the hospital. This led to the identification of a significant pericardial effusion. At admission, his family history revealed that both his mother and maternal grandmother suffered from HT and that both were treated with l-thyroxine (LT4. The clinical examination did not reveal any pathological signs other than a palpable thyroid. His weight was 21 kg (78th percentile, his height was 101.8 cm (12th percentile and his body max index (BMI was 20.26 (96th percentile. On a chest radiograph, his heart had a globular appearance and the lung fields were normal. An echocardiography confirmed and determined the effusion amount (max, 23 mm; 600 mL with light impairment of the heart kinetics. The ECG showed sinus bradycardia with a normal ST tract. Based on the blood test results, an infectious cause of the pericardial fluid excess was considered unlikely. Thyroid function testing revealed very high thyrotropin (TSH, 487 μIU/mL; normal range, 0.340–5.600 μIU/mL and low serum-free thyroxine (fT4, 0.04 ng/dL; normal range, 0.54–1.24 ng/dL levels. High thyroid peroxidase antibody titres in the blood were evidenced (>1500 UI/L; normal values, 0.0–9.0 UI/L. The thyroid ultrasound was consistent with thyroiditis. HT was diagnosed, and LT4 replacement therapy with levothyroxine sodium 1.78 µg/kg/die was initiated, with a gradual increase of the

  15. Pericardial Effusion as a Presenting Symptom of Hashimoto Thyroiditis: A Case Report.

    Science.gov (United States)

    Leonardi, Alberto; Penta, Laura; Cofini, Marta; Lanciotti, Lucia; Principi, Nicola; Esposito, Susanna

    2017-12-14

    Background: Hashimoto thyroiditis (HT) is the most frequent cause of acquired hypothyroidism in paediatrics. HT is usually diagnosed in older children and adolescents, mainly in females and is rare in infants and toddlers with cardiac involvement, including pericardial effusion, that can be found in 10% to 30% of adult HT cases. In this paper, a child with HT and pericardial effusion as the most important sign of HT is described. Case presentation : A four-year-old male child suffering for a few months from recurrent abdominal pain sometimes associated with vomiting underwent an abdominal ultrasound scan outside the hospital. This led to the identification of a significant pericardial effusion. At admission, his family history revealed that both his mother and maternal grandmother suffered from HT and that both were treated with l-thyroxine (LT4). The clinical examination did not reveal any pathological signs other than a palpable thyroid. His weight was 21 kg (78th percentile), his height was 101.8 cm (12th percentile) and his body max index (BMI) was 20.26 (96th percentile). On a chest radiograph, his heart had a globular appearance and the lung fields were normal. An echocardiography confirmed and determined the effusion amount (max, 23 mm; 600 mL) with light impairment of the heart kinetics. The ECG showed sinus bradycardia with a normal ST tract. Based on the blood test results, an infectious cause of the pericardial fluid excess was considered unlikely. Thyroid function testing revealed very high thyrotropin (TSH, 487 μIU/mL; normal range, 0.340-5.600 μIU/mL) and low serum-free thyroxine (fT4, 0.04 ng/dL; normal range, 0.54-1.24 ng/dL) levels. High thyroid peroxidase antibody titres in the blood were evidenced (>1500 UI/L; normal values, 0.0-9.0 UI/L). The thyroid ultrasound was consistent with thyroiditis. HT was diagnosed, and LT4 replacement therapy with levothyroxine sodium 1.78 µg/kg/die was initiated, with a gradual increase of the administered dose

  16. Review of biomaterials for electronics and photonics

    Science.gov (United States)

    Ouchen, Fahima; Rau, Ileana; Kajzar, François; Heckman, Emily; Grote, James G.

    2018-03-01

    Much work has been done developing and utilizing biomaterials over the last decade. Biomaterials not only includes deoxyribonucleic acid (DNA), but nucleobases and silk. These materials are abundant, inexpensive, non-fossil fuel-based and green. Researchers have demonstrated their potential to enhance the performance of organic and inorganic electronic and photonic devices, such as light emitting diodes, thin film transistors, capacitors, electromagnetic interference shielding and electro-optic modulators. Starting around the year 2000, with only a hand full of researchers, including researchers at the Air Force Research Laboratory (AFRL) and researchers at the Chitose Institute of Technology (CIST), it has grown into a large US, Asia and European consortium, producing over 3400 papers, three books, many book chapters and multiple patents. Presented here is a short overview of the progress in this exciting field of nano bio-engineering.

  17. Molecular Characterization of Macrophage-Biomaterial Interactions.

    Science.gov (United States)

    Moore, Laura Beth; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes.

  18. Maggot excretions inhibit biofilm formation on biomaterials.

    Science.gov (United States)

    Cazander, Gwendolyn; van de Veerdonk, Mariëlle C; Vandenbroucke-Grauls, Christina M J E; Schreurs, Marco W J; Jukema, Gerrolt N

    2010-10-01

    Biofilm-associated infections in trauma surgery are difficult to treat with conventional therapies. Therefore, it is important to develop new treatment modalities. Maggots in captured bags, which are permeable for larval excretions/secretions, aid in healing severe, infected wounds, suspect for biofilm formation. Therefore we presumed maggot excretions/secretions would reduce biofilm formation. We studied biofilm formation of Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella oxytoca, Enterococcus faecalis, and Enterobacter cloacae on polyethylene, titanium, and stainless steel. We compared the quantities of biofilm formation between the bacterial species on the various biomaterials and the quantity of biofilm formation after various incubation times. Maggot excretions/secretions were added to existing biofilms to examine their effect. Comb-like models of the biomaterials, made to fit in a 96-well microtiter plate, were incubated with bacterial suspension. The formed biofilms were stained in crystal violet, which was eluted in ethanol. The optical density (at 595 nm) of the eluate was determined to quantify biofilm formation. Maggot excretions/secretions were pipetted in different concentrations to (nonstained) 7-day-old biofilms, incubated 24 hours, and finally measured. The strongest biofilms were formed by S. aureus and S. epidermidis on polyethylene and the weakest on titanium. The highest quantity of biofilm formation was reached within 7 days for both bacteria. The presence of excretions/secretions reduced biofilm formation on all biomaterials. A maximum of 92% of biofilm reduction was measured. Our observations suggest maggot excretions/secretions decrease biofilm formation and could provide a new treatment for biofilm formation on infected biomaterials.

  19. Pericardial Effusion

    Science.gov (United States)

    ... heart was within the field of radiation Chemotherapy treatment for cancer, such as doxorubicin (Doxil) and cyclophosphamide Waste products in the blood due to kidney failure (uremia) Underactive thyroid (hypothyroidism) Viral, bacterial, fungal or parasitic infections Trauma or ...

  20. Trends in prosthetic biomaterials in implant dentistry

    Directory of Open Access Journals (Sweden)

    Saranjit Singh Bhasin

    2015-01-01

    Full Text Available The most important criterion for the success of dental implants is the selection of a suitable implant biomaterial. To improve the biologic performance of an implant, it is necessary to select a material that does not elicit any negative biological response and at the same time maintains adequate function. It is mandatory for a dentist to have a comprehensive knowledge of various biomaterials used for dental implants. The material of choice for fabrication of the dental implant till date is titanium. With the advancements in the field of implants, zirconia seems to be propitious in the future. However, more advanced in vitro and in vivo studies are required before reaching any such conclusion. To increase the success of zirconia implants, care should be taken to reduce the incidence of mechanical failures. Such failures can be taken care of by having a thorough technical knowledge of implant designing and manufacturing defects. This article attempts to compare the advantages and disadvantages of various dental implant biomaterials. Focus is placed on the recent advances in this field with the recently introduced zirconia and its comparison to conventional titanium.

  1. Biomaterial associated impairment of local neutrophil function.

    Science.gov (United States)

    Kaplan, S S; Basford, R E; Kormos, R L; Hardesty, R L; Simmons, R L; Mora, E M; Cardona, M; Griffith, B L

    1990-01-01

    The effect of biomaterials on neutrophil function was studied in vitro to determine if these materials activated neutrophils and to determine the subsequent response of these neutrophils to further stimulation. Two biomaterials--polyurethane, a commonly used substance, and Velcro pile (used in the Jarvik 7 heart)--were evaluated. Two control substances, polyethylene and serum-coated polystyrene, were used for comparison. Neutrophil superoxide release was measured following incubation with these materials for 10, 30, and 120 min in the absence of additional stimulation and after stimulation with formylmethionylleucylphenylalanine (fMLP) or phorbol myristate acetate (PMA). The authors observed that the incubation of neutrophils on both polyurethane and Velcro resulted in substantially increased superoxide release that was greater after the 10 min than after the 30 or 120 min association. These activated neutrophils exhibited a poor additional response to fMLP but responded well to PMA. The effect of implantation of the Novacor left ventricular assist device on peripheral blood neutrophil function was also evaluated. The peripheral blood neutrophils exhibited normal superoxide release and chemotaxis. These studies suggest that biomaterials may have a profound local effect on neutrophils, which may predispose the patient to periprosthetic infection, but that the reactivity of circulating neutrophils is unimpaired.

  2. Bone bonding at natural and biomaterial surfaces.

    Science.gov (United States)

    Davies, John E

    2007-12-01

    Bone bonding is occurring in each of us and all other terrestrial vertebrates throughout life at bony remodeling sites. The surface created by the bone-resorbing osteoclast provides a three-dimensionally complex surface with which the cement line, the first matrix elaborated during de novo bone formation, interdigitates and is interlocked. The structure and composition of this interfacial bony matrix has been conserved during evolution across species; and we have known for over a decade that this interfacial matrix can be recapitulated at a biomaterial surface implanted in bone, given appropriate healing conditions. No evidence has emerged to suggest that bone bonding to artificial materials is any different from this natural biological process. Given this understanding it is now possible to explain why bone-bonding biomaterials are not restricted to the calcium-phosphate-based bioactive materials as was once thought. Indeed, in the absence of surface porosity, calcium phosphate biomaterials are not bone bonding. On the contrary, non-bonding materials can be rendered bone bonding by modifying their surface topography. This paper argues that the driving force for bone bonding is bone formation by contact osteogenesis, but that this has to occur on a sufficiently stable recipient surface which has micron-scale surface topography with undercuts in the sub-micron scale-range.

  3. Biomaterials based strategies for rotator cuff repair.

    Science.gov (United States)

    Zhao, Song; Su, Wei; Shah, Vishva; Hobson, Divia; Yildirimer, Lara; Yeung, Kelvin W K; Zhao, Jinzhong; Cui, Wenguo; Zhao, Xin

    2017-09-01

    Tearing of the rotator cuff commonly occurs as among one of the most frequently experienced tendon disorders. While treatment typically involves surgical repair, failure rates to achieve or sustain healing range from 20 to 90%. The insufficient capacity to recover damaged tendon to heal to the bone, especially at the enthesis, is primarily responsible for the failure rates reported. Various types of biomaterials with special structures have been developed to improve tendon-bone healing and tendon regeneration, and have received considerable attention for replacement, reconstruction, or reinforcement of tendon defects. In this review, we first give a brief introduction of the anatomy of the rotator cuff and then discuss various design strategies to augment rotator cuff repair. Furthermore, we highlight current biomaterials used for repair and their clinical applications as well as the limitations in the literature. We conclude this article with challenges and future directions in designing more advanced biomaterials for augmentation of rotator cuff repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Advances in biomaterials for preventing tissue adhesion.

    Science.gov (United States)

    Wu, Wei; Cheng, Ruoyu; das Neves, José; Tang, Jincheng; Xiao, Junyuan; Ni, Qing; Liu, Xinnong; Pan, Guoqing; Li, Dechun; Cui, Wenguo; Sarmento, Bruno

    2017-09-10

    Adhesion is one of the most common postsurgical complications, occurring simultaneously as the damaged tissue heals. Accompanied by symptoms such as inflammation, pain and even dyskinesia in particular circumstances, tissue adhesion has substantially compromised the quality of life of patients. Instead of passive treatment, which involves high cost and prolonged hospital stay, active intervention to prevent the adhesion from happening has been accepted as the optimized strategy against this complication. Herein, this paper will cover not only the mechanism of adhesion forming, but also the biomaterials and medicines used in its prevention. Apart from acting as a direct barrier, biomaterials also show promising anti-adhesive bioactivity though their intrinsic physical and chemical are still not completely unveiled. Considering the diversity of human tissue organization, it is imperative that various biomaterials in combination with specific medicine could be tuned to fit the microenvironment of targeted tissues. With the illustration of different adhesion mechanism and solutions, we hope this review can become a beacon and further inspires the development of anti-adhesion biomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold.

    Science.gov (United States)

    Hassanein, Wessam; Uluer, Mehmet C; Langford, John; Woodall, Jhade D; Cimeno, Arielle; Dhru, Urmil; Werdesheim, Avraham; Harrison, Joshua; Rivera-Pratt, Carlos; Klepfer, Stephen; Khalifeh, Ali; Buckingham, Bryan; Brazio, Philip S; Parsell, Dawn; Klassen, Charlie; Drachenberg, Cinthia; Barth, Rolf N; LaMattina, John C

    2017-01-02

    Recent years have seen a proliferation of methods leading to successful organ decellularization. In this experiment we examine the feasibility of a decellularized liver construct to support growth of functional multilineage cells. Bio-chamber systems were used to perfuse adult rat livers with 0.1% SDS for 24 hours yielding decellularized liver scaffolds. Initially, we recellularized liver scaffolds using a human tumor cell line (HepG2, introduced via the bile duct). Subsequent studies were performed using either human tumor cells co-cultured with human umbilical vein endothelial cells (HUVECs, introduced via the portal vein) or rat neonatal cell slurry (introduced via the bile duct). Bio-chambers were used to circulate oxygenated growth medium via the portal vein at 37C for 5-7 days. Human HepG2 cells grew readily on the scaffold (n = 20). HepG2 cells co-cultured with HUVECs demonstrated viable human endothelial lining with concurrent hepatocyte growth (n = 10). In the series of neonatal cell slurry infusion (n = 10), distinct foci of neonatal hepatocytes were observed to repopulate the parenchyma of the scaffold. The presence of cholangiocytes was verified by CK-7 positivity. Quantitative albumin measurement from the grafts showed increasing albumin levels after seven days of perfusion. Graft albumin production was higher than that observed in traditional cell culture. This data shows that rat liver scaffolds support human cell ingrowth. The scaffold likewise supported the engraftment and survival of neonatal rat liver cell slurry. Recellularization of liver scaffolds thus presents a promising model for functional liver engineering.

  6. Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Liu, Xiaozhen; Zhou, Long; Chen, Xi; Liu, Tao; Pan, Guoqing; Cui, Wenguo; Li, Mao; Luo, Zong-Ping; Pei, Ming; Yang, Huilin; Gong, Yihong; He, Fan

    2016-01-01

    Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) have attracted great interest in clinical application because of their regenerative potential and their lack of ethical issues. Our previous studies showed that decellularized cell-deposited extracellular matrix (ECM) provided an in vivo-mimicking microenvironment for MSCs and facilitated in vitro cell expansion. This study was conducted to analyze the cellular response of UC-MSCs when culturing on the ECM, including reactive oxygen species (ROS), intracellular antioxidative enzymes, and the resistance to exogenous oxidative stress. After decellularization, the architecture of cell-deposited ECM was characterized as nanofibrous, collagen fibrils and the matrix components were identified as type I and III collagens, fibronectin, and laminin. Compared to tissue culture polystyrene (TCPS) plates, culturing on ECM yielded a 2-fold increase of UC-MSC proliferation and improved the percentage of cells in the S phase by 2.4-fold. The levels of intracellular ROS and hydrogen peroxide (H_2O_2) in ECM-cultured cells were reduced by 41.7% and 82.9%, respectively. More importantly, ECM-cultured UC-MSCs showed enhanced expression and activity of intracellular antioxidative enzymes such as superoxide dismutase and catalase, up-regulated expression of silent information regulator type 1, and suppressed phosphorylation of p38 mitogen-activated protein kinase. Furthermore, a continuous treatment with exogenous 100 μM H_2O_2 dramatically inhibited osteogenic differentiation of UC-MSCs cultured on TCPS, but culturing on ECM retained the differentiation capacity for matrix mineralization and osteoblast-specific marker gene expression. Collectively, by providing sufficient cell amounts and enhancing antioxidant capacity, decellularized ECM can be a promising cell culture platform for in vitro expansion of UC-MSCs. - Highlights: • Decellularization preserved the architecture and components of cell-deposited ECM.

  7. Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaozhen [School of Engineering, Sun Yat-sen University, Guangzhou 510006 (China); Zhou, Long; Chen, Xi [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Liu, Tao [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Pan, Guoqing; Cui, Wenguo; Li, Mao; Luo, Zong-Ping [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Pei, Ming [Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506 (United States); Yang, Huilin [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Gong, Yihong, E-mail: gongyih@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510006 (China); He, Fan, E-mail: fanhe@suda.edu.cn [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China)

    2016-04-01

    Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) have attracted great interest in clinical application because of their regenerative potential and their lack of ethical issues. Our previous studies showed that decellularized cell-deposited extracellular matrix (ECM) provided an in vivo-mimicking microenvironment for MSCs and facilitated in vitro cell expansion. This study was conducted to analyze the cellular response of UC-MSCs when culturing on the ECM, including reactive oxygen species (ROS), intracellular antioxidative enzymes, and the resistance to exogenous oxidative stress. After decellularization, the architecture of cell-deposited ECM was characterized as nanofibrous, collagen fibrils and the matrix components were identified as type I and III collagens, fibronectin, and laminin. Compared to tissue culture polystyrene (TCPS) plates, culturing on ECM yielded a 2-fold increase of UC-MSC proliferation and improved the percentage of cells in the S phase by 2.4-fold. The levels of intracellular ROS and hydrogen peroxide (H{sub 2}O{sub 2}) in ECM-cultured cells were reduced by 41.7% and 82.9%, respectively. More importantly, ECM-cultured UC-MSCs showed enhanced expression and activity of intracellular antioxidative enzymes such as superoxide dismutase and catalase, up-regulated expression of silent information regulator type 1, and suppressed phosphorylation of p38 mitogen-activated protein kinase. Furthermore, a continuous treatment with exogenous 100 μM H{sub 2}O{sub 2} dramatically inhibited osteogenic differentiation of UC-MSCs cultured on TCPS, but culturing on ECM retained the differentiation capacity for matrix mineralization and osteoblast-specific marker gene expression. Collectively, by providing sufficient cell amounts and enhancing antioxidant capacity, decellularized ECM can be a promising cell culture platform for in vitro expansion of UC-MSCs. - Highlights: • Decellularization preserved the architecture and components of cell

  8. Pericardial effusion in a diabetic patient with prostatic abscess; Derrame pericardico associado a abscesso prostatico em paciente diabetico

    Energy Technology Data Exchange (ETDEWEB)

    Omais, Ali Kassen; Oliveira, Julio Cesar; Tenuta, Marcos de Thadeu; Marchese, Miriam; Ricca, Rene A. Mattos; Tenuta, Maria Carolina Antunes de Oliveira, E-mail: aliomais@yahoo.com [Hospital Geral Universitario (HGU/UNIC), Cuiaba, MT (Brazil); Chauchar, Fause; Cardoso Junior, Valdiro Jose; Carvalho, Valdinei Vieira de [Centro de Cardiologia, Cuiaba, MT (Brazil)

    2009-04-15

    Purulent pericarditis is a rare and potentially fatal disease. Its diagnosis and treatment is difficult. An aggressive antibiotic treatment and pericardial drainage are essentials for the treatment of purulent pericarditis. We report an unusual case of a diabetic patient with purulent pericarditis and prostatic abscess with good evolution after appropriate treatment. (author)

  9. The alterations of plasma ET-1 and NO post selective pericardial devascularization in patients with hepatic portal hypertension

    International Nuclear Information System (INIS)

    Wang Chunxi; Niu Lei; Xia Shaoyou; Peng Zheng

    2011-01-01

    Objective: To investigate the alterations of plasma endothelin-1 (ET-1) and nitric oxide (NO) post the selective pericardial devascularization in patients with hepatic portal hypertension,and to investigate the relationship between such alterations with illness and therapeutic effects. Methods: Before treatment,plasma ET-1 and NO contents were determined by radioimmunoassay (RIA) and Griss method respectively in 92 patients with hepatic portal hypertension. One day and three weeks after operation, 66 operated cases with selective pericardial devascularization in patients with hepatic protal hypertension were also determined the levels of plasma ET-1 and NO with RIA. Results: The levels of plasma ET-1 and NO were increased in 92 patients with hepatic portal hypertension, and which closely related to the stage of illness. Post effective selective pericardial devascularization the high levels of plasma ET-1 and No were improved and were closely returned to normal after 3 week's. Conclusion: Clinical detection of plasma ET-1 and NO levels were useful for assessment of the therapeutic effects of selective pericardial devascularization in patients with hepatic portal hypertension. (authors)

  10. Epicardial Ablation: Prevention of Phrenic Nerve Damage by Pericardial Injection of Saline and the Use of a Steerable Sheath

    Directory of Open Access Journals (Sweden)

    Kars Neven, MD

    2014-03-01

    Full Text Available Because of the close proximity of the phrenic nerve to the pericardium, phrenic nerve damage caused by epicardial ablation can easily occur. We report two cases of epicardial VT ablation where pericardial injection of saline, combined with the use of a steerable sheath, successfully prevents the phrenic nerve from being damaged.

  11. Pericardial mesothelioma: A case studied by CT and MR. Mesotelioma pericardico: Descripcion de un caso estudiado por TC y RM

    Energy Technology Data Exchange (ETDEWEB)

    Barrera Portillo, M.C.; Garmendia Larraaga, G.; Villanua Bernues, J.; Barrera Bermejo, J.F. de; Ruiz Diaz, (Hospital Nuestra Seaora de Aranzazu, San Sebastian (Spain))

    1994-01-01

    A case is presented of pericardial mesothelioma, studied by CT and MR. The lesion was a rare meso dermal tumor, difficult to diagnose clinically because of the non specificity of the symptomatology. The clinical, radiological and pathological features of this lesion are described. (Author)

  12. Current concepts of regenerative biomaterials in implant dentistry

    Directory of Open Access Journals (Sweden)

    Annapurna Ahuja

    2015-01-01

    Full Text Available The primary objective of any implant system is to achieve firm fixation to the bone and this could be influenced by biomechanical as well as biomaterial selection. An array of materials is used in the replacement of missing teeth through implantation. The appropriate selection of biomaterials directly influences the clinical success and longevity of implants. Thus the clinician needs to have adequate knowledge of the various biomaterials and their properties for their judicious selection and application in his/her clinical practice. The recent materials such as bioceramics and composite biomaterials that are under consideration and investigation have a promising future. For optimal performance, implant biomaterials should have suitable mechanical strength, biocompatibility, and structural biostability in the physiological environment. This article reviews the various implant biomaterials and their ease of use in implant dentistry.

  13. Innate Immunity and Biomaterials at the Nexus: Friends or Foes

    OpenAIRE

    Christo, Susan N.; Diener, Kerrilyn R.; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D.

    2015-01-01

    Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestati...

  14. Mechanics of Biological Tissues and Biomaterials: Current Trends

    OpenAIRE

    Amir A. Zadpoor

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  15. Inspiration and application in the evolution of biomaterials

    OpenAIRE

    Huebsch, Nathaniel; Mooney, David J.

    2009-01-01

    Biomaterials, traditionally defined as materials used in medical devices, have been used since antiquity, but recently their degree of sophistication has increased significantly. Biomaterials made today are routinely information rich and incorporate biologically active components derived from nature. In the future, biomaterials will assume an even greater role in medicine and will find use in a wide variety of non-medical applications through biologically inspired design and incorporation of ...

  16. Mechanics of Biological Tissues and Biomaterials: Current Trends (editorial)

    OpenAIRE

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  17. Inspiration and application in the evolution of biomaterials.

    Science.gov (United States)

    Huebsch, Nathaniel; Mooney, David J

    2009-11-26

    Biomaterials, traditionally defined as materials used in medical devices, have been used since antiquity, but recently their degree of sophistication has increased significantly. Biomaterials made today are routinely information rich and incorporate biologically active components derived from nature. In the future, biomaterials will assume an even greater role in medicine and will find use in a wide variety of non-medical applications through biologically inspired design and incorporation of dynamic behaviour.

  18. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    M Pei

    2011-11-01

    Full Text Available Cell-based therapy is a promising biological approach for the treatment of cartilage defects. Due to the small size of autologous cartilage samples available for cell transplantation in patients, cells need to be expanded to yield a sufficient cell number for cartilage repair. However, chondrocytes and adult stem cells tend to become replicatively senescent once they are expanded on conventional plastic flasks. Many studies demonstrate that the loss of cell properties is concomitant with the decreased cell proliferation capacity. This is a significant challenge for cartilage tissue engineering and regeneration. Despite much progress having been made in cell expansion, there are still concerns over expanded cell size and quality for cell transplantation applications. Recently, in vivo investigations in stem cell niches have suggested the importance of developing an in vitro stem cell microenvironment for cell expansion and tissue-specific differentiation. Our and other investigators’ work indicates that a decellularized stem cell matrix (DSCM may provide such an expansion system to yield large-quantity and high-quality cells for cartilage tissue engineering and regeneration. This review briefly introduces key parameters in an in vivo stem cell niche and focuses on our recent work on DSCM for its rejuvenating or reprograming effect on various adult stem cells and chondrocytes. Since research in DSCM is still in its infancy, we are only able to discuss some potential mechanisms of DSCM on cell proliferation and chondrogenic potential. Further investigations of the underlying mechanism and in vivo regeneration capacity will allow this approach to be used in clinics.

  19. A bilaminated decellularized scaffold for islet transplantation: Structure, properties and functions in diabetic mice.

    Science.gov (United States)

    Wang, Xi; Wang, Kai; Zhang, Wei; Qiang, Ming; Luo, Ying

    2017-09-01

    Ectopic transplantation of islets provides a beta cell-replacement approach that may allow the recovery of physiological regulation of the blood sugar level in patients with Type I diabetes (T1D). In development of new extrahepatic islet transplantation protocols in support of the islet engraftment, it is pivotal to develop scaffold materials with multifaceted functions to provide beneficial microenvironment, mediate host response in favor of vascularization/islet integration and maintain long-term islet function at the transplantation site. In this study, a new composite bilaminar decellularized scaffold (CDS) was fabricated with differential structural, degradation and mechanical properties by the combination of a fast-degrading porous collagen matrix and a mechanically supportive porcine pericardium. When investigated in the epididymal fat pad in syngeneic mouse models, it was shown that CDS could serve as superior scaffolds to promote islet adhesion and viability, and islet-CDS constructs also allowed rapid reversal of the hyperglycemic condition in the host. The engraftment and effects of islets were achieved at low islet numbers, accompanied by minimal adverse tissue reactions and optimal islet integration with the surrounding fat tissue. The bioactive surface, mechanical/chemical durability and biocompatibility of the CDS may all have played important roles in facilitating the engraftment of islets. Our study provided new insights into scaffold's function in the interplay of cells, materials and host tissue and the extracellular matrix-based scaffolds have potential for clinical translation in the beta cell-replacement therapy to treat T1D. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Risk factors for pericardial effusion after chemoradiotherapy for thoracic esophageal cancer-comparison of four-field technique and traditional two opposed fields technique.

    Science.gov (United States)

    Takata, Noriko; Kataoka, Masaaki; Hamamoto, Yasushi; Tsuruoka, Shintaro; Kanzaki, Hiromitsu; Uwatsu, Kotaro; Nagasaki, Kei; Mochizuki, Teruhito

    2018-04-11

    Pericardial effusion is an important late toxicity after concurrent chemoradiotherapy (CCRT) for locally advanced esophageal cancer. We investigated the clinical and dosimetric factors that were related to pericardial effusion among patients with thoracic esophageal cancer who were treated with definitive CCRT using the two opposed fields technique (TFT) or the four-field technique (FFT), as well as the effectiveness of FFT. During 2007-2015, 169 patients with middle and/or lower thoracic esophageal cancer received definitive CCRT, and 94 patients were evaluable (51 FFT cases and 43 TFT cases). Pericardial effusion was observed in 74 patients (79%) and appeared at 1-18.5 months (median: 5.25 months) after CCRT. The 1-year incidences of pericardial effusions were 73.2% and 76.7% in the FFT and TFT groups, respectively (P = 0.6395). The mean doses to the pericardium were 28.6 Gy and 31.8 Gy in the FFT and TFT groups, respectively (P = 0.0259), and the V40 Gy proportions were 33.5% and 48.2% in the FFT and TFT groups, respectively (P effusion was not observed in patients with a pericardial V40 Gy of effusion after CCRT were similar in both groups. As symptomatic pericardial effusion was not observed in patients with a pericardial V40 Gy of effusion.

  1. Relation of Pericardial Fat, Intrathoracic Fat, and Abdominal Visceral Fat with Incident Atrial Fibrillation (From the Framingham Heart Study)

    Science.gov (United States)

    Lee, Jane J.; Yin, Xiaoyan; Hoffmann, Udo; Fox, Caroline S.; Benjamin, Emelia J.

    2016-01-01

    Obesity is associated with increased risk of developing atrial fibrillation (AF). Different fat depots may have differential associations with cardiac pathology. We examined the longitudinal associations between pericardial, intrathoracic, and visceral fat with incident AF. We studied Framingham Heart Study Offspring and Third Generation Cohorts who participated in the multi-detector computed tomography sub-study examination 1. We constructed multivariable-adjusted Cox proportional hazard models for risk of incident AF. Body mass index (BMI) was included in the multivariable-adjusted model as a secondary adjustment. We included 2,135 participants (53.3% women; mean age 58.8 years). During a median follow-up of 9.7 years, we identified 162 cases of incident AF. Across the increasing tertiles of pericardial fat volume, age- and sex-adjusted incident AF rate per 1000 person-years of follow-up were 8.4, 7.5, and 10.2. Based on an age- and sex-adjusted model, greater pericardial fat [hazard ratio (HR) 1.17, 95% confidence interval (CI) 1.03-1.34] and intrathoracic fat (HR 1.24, 95% CI 1.06-1.45) were associated with increased risk of incident AF. The HRs (95% CI) for incident AF were 1.13 (0.99-1.30) for pericardial fat, 1.19 (1.01-1.40) for intrathoracic fat, and 1.09 (0.93-1.28) for abdominal visceral fat after multivariable adjustment. After additional adjustment of BMI, none of the associations remained significant (all p>0.05). Our findings suggest that cardiac ectopic fat depots may share common risk factors with AF, which may have led to a lack of independence in the association between pericardial fat with incident AF. PMID:27666172

  2. Predicting outcome of rethoracotomy for suspected pericardial tamponade following cardio-thoracic surgery in the intensive care unit

    Directory of Open Access Journals (Sweden)

    Beishuizen Albertus

    2011-05-01

    Full Text Available Abstract Objectives Pericardial tamponade after cardiac surgery is difficult to diagnose, thereby rendering timing of rethoracotomy hard. We aimed at identifying factors predicting the outcome of surgery for suspected tamponade after cardio-thoracic surgery, in the intensive care unit (ICU. Methods Twenty-one consecutive patients undergoing rethoracotomy for suspected pericardial tamponade in the ICU, admitted after primary cardio-thoracic surgery, were identified for this retrospective study. We compared patients with or without a decrease in severe haemodynamic compromise after rethoracotomy, according to the cardiovascular component of the sequential organ failure assessment (SOFA score. Results A favourable haemodynamic response to rethoracotomy was observed in 11 (52% of patients and characterized by an increase in cardiac output, and less fluid and norepinephrine requirements. Prior to surgery, the absence of treatment by heparin, a minimum cardiac index 2 and a positive fluid balance (> 4,683 mL were predictive of a beneficial haemodynamic response. During surgery, the evacuation of clots and > 500 mL of pericardial fluid was associated with a beneficial haemodynamic response. Echocardiographic parameters were of limited help in predicting the postoperative course, even though 9 of 13 pericardial clots found at surgery were detected preoperatively. Conclusion Clots and fluids in the pericardial space causing regional tamponade and responding to surgical evacuation after primary cardio-thoracic surgery, are difficult to diagnose preoperatively, by clinical, haemodynamic and even echocardiographic evaluation in the ICU. Only absence of heparin treatment, a large positive fluid balance and low cardiac index predicted a favourable haemodynamic response to rethoracotomy. These data might help in deciding and timing of reinterventions after primary cardio-thoracic surgery.

  3. Additively manufactured metallic porous biomaterials based on minimal surfaces

    DEFF Research Database (Denmark)

    Bobbert, F. S. L.; Lietaert, K.; Eftekhari, Ali Akbar

    2017-01-01

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different...... of bone properties is feasible, biomaterials that could simultaneously mimic all or most of the relevant bone properties are rare. We used rational design and additive manufacturing to develop porous metallic biomaterials that exhibit an interesting combination of topological, mechanical, and mass...

  4. Complement activation on the surface of cell-derived microparticles during cardiac surgery with cardiopulmonary bypass - is retransfusion of pericardial blood harmful?

    Science.gov (United States)

    Biró, E; van den Goor, J M; de Mol, B A; Schaap, M C; Ko, L-Y; Sturk, A; Hack, C E; Nieuwland, R

    2011-01-01

    To investigate whether cell-derived microparticles play a role in complement activation in pericardial blood of patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and whether microparticles in pericardial blood contribute to systemic complement activation upon retransfusion. Pericardial blood of 13 patients was retransfused in 9 and discarded in 4 cases. Microparticles were isolated from systemic blood collected before anesthesia (T1) and at the end of CPB (T2), and from pericardial blood. The microparticles were analyzed by flow cytometry for bound complement components C1q, C4 and C3, and bound complement activator molecules C-reactive protein (CRP), serum amyloid P-component (SAP), immunoglobulin (Ig)M and IgG. Fluid-phase complement activation products (C4b/c, C3b/c) and activator molecules were determined by ELISA. Compared with systemic T1 blood, pericardial blood contained increased C4b/c and C3b/c, and increased levels of microparticles with bound complement components. In systemic T1 samples, microparticle-bound CRP, whereas in pericardial blood, microparticle-bound SAP and IgM were associated with complement activation. At the end of CPB, increased C3b/c (but not C4b/c) was present in systemic T2 blood compared with T1, while concentrations of microparticles binding complement components and of those binding complement activator molecules were similar. Concentrations of fluid-phase complement activation products and microparticles were similar in patients whether or not retransfused with pericardial blood. In pericardial blood of patients undergoing cardiac surgery with CPB, microparticles contribute to activation of the complement system via bound SAP and IgM. Retransfusion of pericardial blood, however, does not contribute to systemic complement activation.

  5. Elastin organization in pig and cardiovascular disease patients' pericardial resistance arteries

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Leurgans, Thomas; Nissen, Inger

    2015-01-01

    Peripheral vascular resistance is increased in essential hypertension. This involves structural changes of resistance arteries and stiffening of the arterial wall, including remodeling of the extracellular matrix. We hypothesized that biopsies of the human parietal pericardium, obtained during...... coronary artery bypass grafting or cardiac valve replacement surgeries, can serve as a source of resistance arteries for structural research in cardiovascular disease patients. We applied two-photon excitation fluorescence microscopy to study the parietal pericardium and isolated pericardial resistance...... of 100 mm Hg) is fiber like, and no prominent external elastic lamina could be observed. This microarchitecture is very different from that in rat mesenteric arteries frequently used for resistance artery research. In conclusion, we add three-dimensional information on the structure of the extracellular...

  6. Pannus overgrowth after mitral valve replacement with a Carpentier-Edwards pericardial bioprosthesis.

    Science.gov (United States)

    Oda, Takeshi; Kato, Seiya; Tayama, Eiki; Fukunaga, Shuji; Akashi, Hidetoshi; Aoyagi, Shigeaki

    2009-01-01

    A Carpentier-Edwards pericardial (CEP) bioprosthesis was explanted from an 81-year-old woman due to nonstructural dysfunction 9 years after mitral valve replacement. The nonstructural dysfunction produced severe regurgitation in the mitral position. During the surgery, excessive pannus overgrowth was seen on the left ventricular side of the CEP bioprosthesis. Pannus overgrowth was prominent on one leaflet. That leaflet was stiff and shortened due to the excessive overgrowth of pannus. In this patient, the distortion of one leaflet was the main reason for transvalvular leakage of the CEP bioprosthesis in the mitral position. A new CEP bioprosthesis was implanted in the mitral position. Pathological analysis revealed fibrotic pannus with a small amount of cellular material over the leaflets of the resected CEP valve. This change was marked on the distorted leaflet.

  7. Etiology and characteristics of large symptomatic pericardial effusion in a community hospital in the contemporary era.

    Science.gov (United States)

    Abdallah, R; Atar, S

    2014-05-01

    The etiology and laboratory characteristics of large symptomatic pericardial effusion (LSPE) in the Western world have evolved over the years, and vary between regions, community and tertiary hospitals. We reviewed data of 86 consecutive patients who underwent pericardiocentesis or pericardial window due to LSPE in a community hospital from 2001 to 2010. The characteristics of the PE including chemistry, hematology, bacteriology, serology and cytology have been analyzed. We correlated the etiologies of PE with age, gender and clinical presentation. The most frequent etiology of LSPE was idiopathic [36% (77% with a clinical diagnosis of pericarditis)], followed by malignancy (31.4%), ischemic heart disease (16.3%), renal failure (4.6%), trauma (4.6%) and autoimmune disease (4.6%). The average age of all the etiological groups excluding trauma was over 50 years. Laboratory tests did not modify the pre-procedure diagnosis in any of the patients. The most frequent presenting symptom was dyspnea (76.6%). Chest pain was mostly common in patients with idiopathic etiology (58.06%). The most frequent medical condition associated with LSPE was the use of anticoagulant or antiplatelet drugs (31.40%), especially aspirin, and in those, the PE tended to be bloody (73%, P = 0.11). Most of the effusions were exudates (70.9%). PE due to renal failure was the largest (1467 ± 1387 ml). The spectrum of etiologies of LSPE in a community hospital in the Western world in the contemporary era is continuously evolving. The most frequent etiology is now idiopathic, followed by malignancy. Routine laboratory testing still rarely modifies the pre-procedure diagnosis.

  8. Cardiac and pericardial tumors: A potential application of positron emission tomography-magnetic resonance imaging.

    Science.gov (United States)

    Fathala, Ahmed; Abouzied, Mohei; AlSugair, Abdul-Aziz

    2017-07-26

    Cardiac and pericardial masses may be neoplastic, benign and malignant, non-neoplastic such as thrombus or simple pericardial cysts, or normal variants cardiac structure can also be a diagnostic challenge. Currently, there are several imaging modalities for diagnosis of cardiac masses; each technique has its inherent advantages and disadvantages. Echocardiography, is typically the initial test utilizes in such cases, Echocardiography is considered the test of choice for evaluation and detection of cardiac mass, it is widely available, portable, with no ionizing radiation and provides comprehensive evaluation of cardiac function and valves, however, echocardiography is not very helpful in many cases such as evaluation of extracardiac extension of mass, poor tissue characterization, and it is non diagnostic in some cases. Cross sectional imaging with cardiac computed tomography provides a three dimensional data set with excellent spatial resolution but utilizes ionizing radiation, intravenous iodinated contrast and relatively limited functional evaluation of the heart. Cardiac magnetic resonance imaging (CMR) has excellent contrast resolution that allows superior soft tissue characterization. CMR offers comprehensive evaluation of morphology, function, tissue characterization. The great benefits of CMR make CMR a highly useful tool in the assessment of cardiac masses. (Fluorine 18) fluorodeoxygluocse (FDG) positron emission tomography (PET) has become a corner stone in several oncological application such as tumor staging, restaging, treatment efficiency, FDG is a very useful imaging modality in evaluation of cardiac masses. A recent advance in the imaging technology has been the development of integrated PET-MRI system that utilizes the advantages of PET and MRI in a single examination. FDG PET-MRI provides complementary information on evaluation of cardiac masses. The purpose of this review is to provide several clinical scenarios on the incremental value of PET

  9. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering.

    Science.gov (United States)

    Jiang, Wei-Cheng; Cheng, Yu-Hao; Yen, Meng-Hua; Chang, Yin; Yang, Vincent W; Lee, Oscar K

    2014-04-01

    Liver transplantation is the ultimate treatment for severe hepatic failure to date. However, the limited supply of donor organs has severely hampered this treatment. So far, great potentials of using mesenchymal stem cells (MSCs) to replenish the hepatic cell population have been shown; nevertheless, there still is a lack of an optimal three-dimensional scaffold for generation of well-transplantable hepatic tissues. In this study, we utilized a cryo-chemical decellularization method which combines physical and chemical approach to generate acellular liver scaffolds (ALS) from the whole liver. The produced ALS provides a biomimetic three-dimensional environment to support hepatic differentiation of MSCs, evidenced by expression of hepatic-associated genes and marker protein, glycogen storage, albumin secretion, and urea production. It is also found that hepatic differentiation of MSCs within the ALS is much more efficient than two-dimensional culture in vitro. Importantly, the hepatic-like tissues (HLT) generated by repopulating ALS with MSCs are able to act as functional grafts and rescue lethal hepatic failure after transplantation in vivo. In summary, the cryo-chemical method used in this study is suitable for decellularization of liver and create acellular scaffolds that can support hepatic differentiation of MSCs and be used to fabricate functional tissue-engineered liver constructs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Novel decellularized liver matrix-alginate hybrid gel beads for the 3D culture of hepatocellular carcinoma cells.

    Science.gov (United States)

    Sun, Dongsheng; Liu, Yang; Wang, Huihui; Deng, Fei; Zhang, Ying; Zhao, Shan; Ma, Xiaojun; Wu, Huijian; Sun, Guangwei

    2018-04-01

    Developing reliable three-dimensional (3D) cell culture systems that can mimic native tumor microenvironments is necessary for investigating the mechanism of hepatocellular carcinoma (HCC) metastasis and screen therapeutic drugs. In the present study, we developed decellularized liver matrix-alginate (DLM-ALG) hybrid gel beads. DLM powder was prepared by optimized decellularization methods and liquid nitrogen grinding. DLM-ALG beads were generated by dropping alginate solution containing DLM powder into a gelling bath. DLM powder concentration in alginate solution was ≤1% (w/v) and had no effect on the sphericity and mechanical stability of the beads. In addition, HCCLM3 cells cultured in 1% (w/v) DLM-ALG beads presented gradually enhanced viability during in vitro culture. The protein expression of urokinase plasminogen activator system and activity of matrix metalloproteinases (MMPs) of HCCLM3 cells, including MMP2 and MMP9, were more significantly promoted in DLM-ALG beads compared with that in conventional ALG beads without DLM powder. Moreover, the dose-dependent increase in HCCLM3 cell MMP activities was observed along with the DLM powder concentration in 0.5% and 1% DLM-ALG groups. Therefore, DLM-ALG beads might serve as a novel 3D culture system for exploring the mechanisms of HCC metastasis and screening therapeutic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Preparation and Characterization of a Novel Decellularized Fibrocartilage “Book” Scaffold for Use in Tissue Engineering

    Science.gov (United States)

    Guo, Liyun; Qu, Jin; Zheng, Cheng; Cao, Yong; Zhang, Tao; Lu, Hongbin; Hu, Jianzhong

    2015-01-01

    At the tendon-to-bone insertion, there is a unique transitional structure: tendon, non-calcified fibrocartilage, calcified fibrocartilage, and bone. The reconstruction of this special graded structure after defects or damage is an important but challenging task in orthopedics. In particular, reconstruction of the fibrocartilage zone has yet to be successfully achieved. In this study, the development of a novel book-shape scaffold derived from the extracellular matrix of fibrocartilage was reported. Specifically, fibrocartilage from the pubic symphysis was obtained from rabbits and sliced into the shape of a book (dimensions: 10 mm × 3 mm × 1 mm) with 10 layers, each layer (akin to a page of a book) with a thickness of 100-μm. These fibrocartilage “book” scaffolds were decellularized using sequentially 3 freeze-thaw cycles, 0.1% Triton X-100 with 1.5 M KCl, 0.25% trypsin, and a nuclease. Histology and DNA quantification analysis confirmed substantial removal of cells from the fibrocartilage scaffolds. Furthermore, the quantities of DNA, collagen, and glycosaminoglycan in the fibrocartilage were markedly reduced following decellularization. Scanning electron microscopy confirmed that the intrinsic ultrastructure of the fibrocartilage tissue was well preserved. Therefore, the results of this study suggest that the novel “book” fibrocartilage scaffold could have potential applications in tissue engineering. PMID:26636672

  12. Repair of facial nerve defects with decellularized artery allografts containing autologous adipose-derived stem cells in a rat model.

    Science.gov (United States)

    Sun, Fei; Zhou, Ke; Mi, Wen-Juan; Qiu, Jian-Hua

    2011-07-20

    The purpose of this study was to investigate the effects of a decellularized artery allograft containing autologous adipose-derived stem cells (ADSCs) on an 8-mm facial nerve branch lesion in a rat model. At 8 weeks postoperatively, functional evaluation of unilateral vibrissae movements, morphological analysis of regenerated nerve segments and retrograde labeling of facial motoneurons were all analyzed. Better regenerative outcomes associated with functional improvement, great axonal growth, and improved target reinnervation were achieved in the artery-ADSCs group (2), whereas the cut nerves sutured with artery conduits alone (group 1) achieved inferior restoration. Furthermore, transected nerves repaired with nerve autografts (group 3) resulted in significant recovery of whisking, maturation of myelinated fibers and increased number of labeled facial neurons, and the latter two parameters were significantly different from those of group 2. Collectively, though our combined use of a decellularized artery allograft with autologous ADSCs achieved regenerative outcomes inferior to a nerve autograft, it certainly showed a beneficial effect on promoting nerve regeneration and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Hybrid laser technology and doped biomaterials

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Zemek, Josef; Remsa, Jan; Mikšovský, Jan; Kocourek, Tomáš; Písařík, Petr; Trávníčková, Martina; Filová, Elena; Bačáková, Lucie

    2017-01-01

    Roč. 417, Sep (2017), s. 73-83 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GA15-05864S Institutional support: RVO:68378271 ; RVO:67985823 Keywords : hybrid PLD * Cr: DLC * Ti: DLC. comparison of properties * in vitro tests Subject RIV: BM - Solid Matter Physics ; Magnetism; EI - Biotechnology ; Bionics (FGU-C) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Biomaterials (as related to medical implants, devices, sensors) (FGU-C) Impact factor: 3.387, year: 2016

  14. Biomaterials and scaffolds in reparative medicine

    Science.gov (United States)

    Chaikof, Elliot L.; Matthew, Howard; Kohn, Joachim; Mikos, Antonios G.; Prestwich, Glenn D.; Yip, Christopher M.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Most approaches currently pursued or contemplated within the framework of reparative medicine, including cell-based therapies, artificial organs, and engineered living tissues, are dependent on our ability to synthesize or otherwise generate novel materials, fabricate or assemble materials into appropriate 2-D and 3-D forms, and precisely tailor material-related physical and biological properties so as to achieve a desired clinical response. This paper summarizes the scientific and technological opportunities within the fields of biomaterials science and molecular engineering that will likely establish new enabling technologies for cellular and molecular therapies directed at the repair, replacement, or reconstruction of diseased or damaged organs and tissues.

  15. The case study of biomaterials and biominerals

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    The teaching of biomaterials as case study by on-line platform , susceptible to develop both individually and in groups, got different objectives proposed by the European Higher Education System, among which include: participate actively in the teaching-learning process by students, interpreting situations, adapt processes and solutions. It also improves oral and written communication, analytical skills and synthesis and also the ability to think critically. Biomaterials have their origin in biominerals. These are solid inorganic compounds of defined structure, consisting of molecular control mechanisms that operate in biological systems. Its main functions are: structural support, a reservoir of essential elements, sensors, mechanical protection and storage of toxic elements. Following the demand of materials compatible with certain functional systems of our body, developed biomaterials. Always meet the condition of biocompatibility. Should be tolerated by the body and do not provoke rejection. This involves a comprehensive study of physiological conditions and the anatomy of the body where a biomaterial has to be implemented. The possibility of generating new materials from biominerals has a major impact in medicine and other fields could reach as geology, construction, crystallography, etc. While the study of these issues is in its infancy today, can be viewed as an impact on the art and future technology. Planning case study that students would prepare its report for discussion in subgroups. Occurs then the pooling of individual analysis, joint case discussion and adoption by the subgroup of a consensual solution to the problem. The teacher as facilitator and coordinator of the final case analysis, sharing leads to group-wide class and said the unanimous decision reached by the students and gives his opinion on the resolution of the case. REFERENCES D.P. Ausubel. Psicología Educativa. Un punto de vista cognoscitivo. Trillas. Ed. 1983. E.W. Eisner. Procesos

  16. Minimizing Skin Scarring through Biomaterial Design

    Directory of Open Access Journals (Sweden)

    Alessandra L. Moore

    2017-01-01

    Full Text Available Wound healing continues to be a major burden to patients, though research in the field has expanded significantly. Due to an aging population and increasing comorbid conditions, the cost of chronic wounds is expected to increase for patients and the U.S. healthcare system alike. With this knowledge, the number of engineered products to facilitate wound healing has also increased dramatically, with some already in clinical use. In this review, the major biomaterials used to facilitate skin wound healing will be examined, with particular attention allocated to the science behind their development. Experimental therapies will also be evaluated.

  17. Improvement of the in vivo cellular repopulation of decellularized cardiovascular tissues by a detergent-free, non-proteolytic, actin-disassembling regimen.

    Science.gov (United States)

    Assmann, Alexander; Struß, Marc; Schiffer, Franziska; Heidelberg, Friederike; Munakata, Hiroshi; Timchenko, Elena V; Timchenko, Pavel E; Kaufmann, Tim; Huynh, Khon; Sugimura, Yukiharu; Leidl, Quentin; Pinto, Antonio; Stoldt, Volker R; Lichtenberg, Artur; Akhyari, Payam

    2017-12-01

    Low immunogenicity and high repopulation capacity are crucial determinants for the functional and structural performance of acellular cardiovascular implants. The present study evaluates a detergent-free, non-proteolytic, actin-disassembling regimen (BIO) for decellularization of heart valve and vessel grafts, particularly focusing on their bio-functionality. Rat aortic conduits (rAoC; n = 89) and porcine aortic valve samples (n = 106) are decellularized using detergents (group DET) or the BIO regimen. BIO decellularization results in effective elimination of cellular proteins and significantly improves removal of DNA as compared with group DET, while the extracellular matrix (ECM) structure as well as mechanical properties are preserved. The architecture of rAoC in group BIO allows for improved bio-functionalization with fibronectin (FN) in a standardized rat implantation model: BIO treatment significantly increases speed and amount of autologous medial cellular repopulation in vivo (p < 0.001) and decreases the formation of hyperplastic intima (p < 0.001) as compared with FN-coated DET-decellularized grafts. Moreover, there are no signs of infiltration with inflammatory cells. The present biological, detergent-free, non-proteolytic regimen balances effective decellularization and ECM preservation in cardiovascular grafts, and provides optimized bio-functionality. Additionally, this study implies that the actin-disassembling regimen may be a promising approach for bioengineering of acellular scaffolds from other muscular tissues, as for example myocardium or intestine. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Biomaterials and Magnetic fields for Cancer Therapy

    Science.gov (United States)

    Ramachandran, Narayanan; Mazuruk, Konstanty

    2003-01-01

    The field of biomaterials has emerged as an important topic in the purview of NASA s new vision of research activities in the Microgravity Research Division. Although this area has an extensive track record in the medical field as borne out by the routine use of polymeric sutures, implant devices, and prosthetics, novel applications such as tissue engineering, artificial heart valves and controlled drug delivery are beginning to be developed. Besides the medical field, biomaterials and bio-inspired technologies are finding use in a host of emerging interdisciplinary fields such as self-healing and self-assembling structures, biosensors, fuel systems etc. The field of magnetic fluid technology has several potential applications in medicine. One of the emerging fields is the area of controlled drug delivery, which has seen its evolution from the basic oral delivery system to pulmonary to transdermal to direct inoculations. In cancer treatment by chemotherapy for example, targeted and controlled drug delivery has received vast scrutiny and substantial research and development effort, due to the high potency of the drugs involved and the resulting requirement to keep the exposure of the drugs to surrounding healthy tissue to a minimum. The use of magnetic particles in conjunction with a static magnetic field allows smart targeting and retention of the particles at a desired site within the body with the material transport provided by blood perfusion. Once so located, the therapeutical aspect (radiation, chemotherapy, hyperthermia, etc.) of the treatment, now highly localized, can be implemented.

  19. Plasma assisted surface treatments of biomaterials.

    Science.gov (United States)

    Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G

    2017-10-01

    The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Use of radiation in biomaterials science

    International Nuclear Information System (INIS)

    Benson, Roberto S.

    2002-01-01

    Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue

  1. Translating Regenerative Biomaterials Into Clinical Practice.

    Science.gov (United States)

    Stace, Edward T; Dakin, Stephanie G; Mouthuy, Pierre-Alexis; Carr, Andrew J

    2016-01-01

    Globally health care spending is increasing unsustainably. This is especially true of the treatment of musculoskeletal (MSK) disease where in the United States the MSK disease burden has doubled over the last 15 years. With an aging and increasingly obese population, the surge in MSK related spending is only set to worsen. Despite increased funding, research and attention to this pressing health need, little progress has been made toward novel therapies. Tissue engineering and regenerative medicine (TERM) strategies could provide the solutions required to mitigate this mounting burden. Biomaterial-based treatments in particular present a promising field of potentially cost-effective therapies. However, the translation of a scientific development to a successful treatment is fraught with difficulties. These barriers have so far limited translation of TERM science into clinical treatments. It is crucial for primary researchers to be aware of the barriers currently restricting the progression of science to treatments. Researchers need to act prospectively to ensure the clinical, financial, and regulatory hurdles which seem so far removed from laboratory science do not stall or prevent the subsequent translation of their idea into a treatment. The aim of this review is to explore the development and translation of new treatments. Increasing the understanding of these complexities and barriers among primary researchers could enhance the efficiency of biomaterial translation. © 2015 Wiley Periodicals, Inc.

  2. Cell reactions with biomaterials: the microscopies

    Directory of Open Access Journals (Sweden)

    Curtis A. S.G.

    2001-01-01

    Full Text Available The methods and results of optical microscopy that can be used to observe cell reactions to biomaterials are Interference Reflection Microscopy (IRM, Total Internal Reflection Fluorescence Microscopy (TIRFM, Surface Plasmon Resonance Microscopy (SPRM and Forster Resonance Energy Transfer Microscopy (FRETM and Standing Wave Fluorescence Microscopy. The last three are new developments, which have not yet been fully perfected. TIRFM and SPRM are evanescent wave methods. The physics of these methods depend upon optical phenomena at interfaces. All these methods give information on the dimensions of the gap between cell and the substratum to which it is adhering and thus are especially suited to work with biomaterials. IRM and FRETM can be used on opaque surfaces though image interpretation is especially difficult for IRM on a reflecting opaque surface. These methods are compared with several electron microscopical methods for studying cell adhesion to substrata. These methods all yield fairly consistent results and show that the cell to substratum distance on many materials is in the range 5 to 30 nm. The area of contact relative to the total projected area of the cell may vary from a few per cent to close to 100% depending on the cell type and substratum. These methods show that those discrete contact areas well known as focal contacts are frequently present. The results of FRETM suggest that the separation from the substratum even in a focal contact is about 5 nm.

  3. Biomaterials for integration with 3-D bioprinting.

    Science.gov (United States)

    Skardal, Aleksander; Atala, Anthony

    2015-03-01

    Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine.

  4. Use of radiation in biomaterials science

    Science.gov (United States)

    Benson, Roberto S.

    2002-05-01

    Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue.

  5. Immunologically active biomaterials for cancer therapy.

    Science.gov (United States)

    Ali, Omar A; Mooney, David J

    2011-01-01

    Our understanding of immunological regulation has progressed tremendously alongside the development of materials science, and at their intersection emerges the possibility to employ immunologically active biomaterials for cancer immunotherapy. Strong and sustained anticancer, immune responses are required to clear large tumor burdens in patients, but current approaches for immunotherapy are formulated as products for delivery in bolus, which may be indiscriminate and/or shortlived. Multifunctional biomaterial particles are now being developed to target and sustain antigen and adjuvant delivery to dendritic cells in vivo, and these have the potential to direct and prolong antigen-specific T cell responses. Three-dimensional immune cell niches are also being developed to regulate the recruitment, activation and deployment of immune cells in situ to promote potent antitumor responses. Recent studies demonstrate that materials with immune targeting and stimulatory capabilities can enhance the magnitude and duration of immune responses to cancer antigens, and preclinical results utilizing material-based immunotherapy in tumor models show a strong therapeutic benefit, justifying translation to and future testing in the clinic.

  6. Innate Immunity and Biomaterials at the Nexus: Friends or Foes.

    Science.gov (United States)

    Christo, Susan N; Diener, Kerrilyn R; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D

    2015-01-01

    Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical "antigen." In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a "combined" immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.

  7. Innate Immunity and Biomaterials at the Nexus: Friends or Foes

    Directory of Open Access Journals (Sweden)

    Susan N. Christo

    2015-01-01

    Full Text Available Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.

  8. Mechanics of Biological Tissues and Biomaterials : Current Trends (editorial)

    NARCIS (Netherlands)

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the

  9. Low-temperature plasma techniques in surface modification of biomaterials

    International Nuclear Information System (INIS)

    Feng Xiangfen; Xie Hankun; Zhang Jing

    2002-01-01

    Since synthetic polymers usually can not meet the biocompatibility and bio-functional demands of the human body, surface treatment is a prerequisite for them to be used as biomaterials. A very effective surface modification method, plasma treatment, is introduced. By immobilizing the bio-active molecules with low temperature plasma, polymer surfaces can be modified to fully satisfy the requirements of biomaterials

  10. Biomaterials science an introduction to materials in medicine

    CERN Document Server

    Ratner, Buddy D; Lemons, Jack E; Yaszemski, Michael J; Yaszemski, Michael

    2004-01-01

    The second edition of this bestselling title provides the most up-to-date comprehensive review of all aspects of biomaterials science by providing a balanced, insightful approach to learning biomaterials. This reference integrates a historical perspective of materials engineering principles with biological interactions of biomaterials. Also provided within are regulatory and ethical issues in addition to future directions of the field, and a state-of-the-art update of medical and biotechnological applications. All aspects of biomaterials science are thoroughly addressed, from tissue engineering to cochlear prostheses and drug delivery systems. Over 80 contributors from academia, government and industry detail the principles of cell biology, immunology, and pathology. Focus within pertains to the clinical uses of biomaterials as components in implants, devices, and artificial organs. This reference also touches upon their uses in biotechnology as well as the characterization of the physical, chemical, biochemi...

  11. Study on MCP-1 related to inflammation induced by biomaterials

    International Nuclear Information System (INIS)

    Ding Tingting; Sun Jiao; Zhang Ping

    2009-01-01

    The study of inflammation is important for understanding the reaction between biomaterials and the human body, in particular, the interaction between biomaterials and immune system. In the current study, rat macrophages were induced by multiple biomaterials with different biocompatibilities, including polyvinyl chloride (PVC) containing 8% of organic tin, a positive control material with cellular toxicity. Human umbilical vein endothelial cells (ECV-304), cultured with PRMI-1640, were detached from cells cultured with the supernatant of macrophages containing TNF-α and IL-1β because of stimulation by biomaterials. The cells were then treated with different biomaterials. Then both TNF-α and IL-1β in macrophages were detected by ELISA. Levels of monocyte chemoattractant protein-1 (MCP-1) were measured by RT-PCR. The results suggested that the expression of TNF-α and IL-1β was elevated by polytetrafluoroethylene (PTFE), polylactic-co-glycolic acid (PLGA) and American NPG alloy (p < 0.001). The level of MCP-1 cultured in supernatant of macrophages was higher than in PRMI-1640 with the same biomaterials. And the exposure to PTFE, PLGA and NPG resulted in the high expression of MCP-1 (p < 0.001) following cytokine stimulation. MCP-1 was also significantly expressed in β-tricalcium phosphate (β-TCP) and calcium phosphate cement samples (CPC) (p < 0.01). Thus, TNF-α, IL-1β and MCP-1 had played an important role in the immune reaction induced by biomaterials and there was a close relationship between the expression of cytokines and biomcompatibility of biomaterials. Furthermore, these data suggested that MCP-1 was regulated by TNF-α and IL-1β, and activated by both cytokines and biomaterials. The data further suggested that the expression of MCP-1 could be used as a marker to indicate the degree of immune reaction induced by biomaterials.

  12. Unusual Thymic Hyperplasia Mimicking Lipomatous Tumor in an Eight-Year-Old Boy with Concomitant Pericardial Lipomatosis and Right Facial Hemihypertrophy

    International Nuclear Information System (INIS)

    Kim, Yoo Jin; Kim Woo Sun; Cheon, Jung Eun; Lim, Yun Jung; Kim, In One; Yeon, Kyung Mo; Jung, Kyeong Cheon; Byun, Sun Ju

    2011-01-01

    We report a case of thymic hyperplasia accompanied by pericardial lipomatosis and right facial hemihypertrophy in an 8-year-old boy. On imaging studies, the hyperplastic thymus had prominent curvilinear and nodular fatty areas simulating a fat-containing anterior mediastinal mass, which is an unusual finding in children. To our knowledge, this is the first report on a child with a combination of thymic hyperplasia, pericardial lipomatosis, and right facial hemihypertrophy. The radiologic findings are presented with a brief discussion.

  13. Combined Rex-bypass shunt with pericardial devascularization alleviated prehepatic portal hypertension caused by cavernomatous transformation of portal vein.

    Science.gov (United States)

    Wang, Ruo-Yi; Wang, Jun-Feng; Liu, Qian; Ma, Nan; Chen, Wei-Xiu; Li, Jin-Liang

    2017-09-01

    To evaluate the effects of combined Rex-bypass shunt and pericardial devascularization on prehepatic portal hypertension secondary to cavernomatous transformation of portal vein (CTPV). Forty-two patients aged from 3 years to 49 years (divided into 3 groups), 26 cases male and 16 female, with prehepatic vascular hepertention were treated with Rex-bypass shunt combined with pericardial devascularization. In each patient, preoperative assessment included ultrasound and computed tomographic angiography of the portal vein and blood analysis. The procedure was Rex-bypass shunt (with or without graft), and patients with moderate or severe gastroesophageal varices required additional paraesophagogastric devascularization. Splenectomy or subtotal splenectomy was performed if combined hypersplenism co-existed. All data were analyzed retrospectively. No intraoperative death occurred, blood routine analysis improved (P portal vein (LPV) significantly increased, the esophageal and gastric varices significantly relieved in 34 patients (P portal hypertension caused by CTPV.

  14. Analysis of risk factors for rebleeding after splenectomy and pericardial devascularization in treatment of portal hypertension due to liver cirrhosis

    Directory of Open Access Journals (Sweden)

    ZHANG Lei

    2015-03-01

    Full Text Available ObjectiveTo investigate the possible risk factors for rebleeding after splenectomy and pericardial devascularization in the treatment of portal hypertension due to liver cirrhosis, and to provide a certain basis for reducing the incidence of digestive tract re-hemorrhage for these patients. MethodsA retrospective analysis was performed on 238 cirrhotic patients with portal hypertension who underwent splenectomy and pericardial devascularization in the First Hospital of Lanzhou University from December 2003 to December 2013. These patients were divided into postoperative rebleeding group (n=32 and non-bleeding group (n=206. Univariate analysis (t test or chi-square test and multivariate logistic regression analysis were performed to investigate the risk factors for rebleeding after splenectomy and pericardial devascularization. ResultsOf the 32 patients with postoperative rebleeding, 17 had esophagogastric variceal bleeding, 11 had bleeding due to portal hypertensive gastropathy, and 4 had stress ulcer bleeding. The univariate analysis showed that there were significant differences between the two groups in the following factors: Child-Pugh classification of liver function, degree of liver cirrhosis evaluated intraoperatively, pathological changes of the gastric mucosa, platelet count, prothrombin time (PT, activated partial thromboplastin time (APTT, and presence of diabetes (all P<0.05. The multivariate logistic regression analysis suggested that the significant independent influential factors for postoperative rebleeding were presence of diabetes, Child-Pugh classification of liver function, degree of liver cirrhosis evaluated intraoperatively, diffuse lesion of the gastric mucosa, PT, and APTT. ConclusionFor cirrhotic patients with portal hypertension, the appropriate methods for managing these risk factors are of great clinical significance for preventing rebleeding after splenectomy and pericardial devascularization.

  15. Relaxing Responses to Hydrogen Peroxide and Nitric Oxide in Human Pericardial Resistance Arteries Stimulated with Endothelin-1

    DEFF Research Database (Denmark)

    Leurgans, Thomas M; Bloksgaard, Maria; Irmukhamedov, Akhmadjon

    2018-01-01

    In human pericardial resistance arteries, effects of the endothelium-dependent vasodilator bradykinin are mediated by NO during contraction induced by K(+) or the TxA2 analogue U46619 and by H2 O2 during contraction by endothelin-1 (ET-1), respectively. We tested the hypotheses that ET-1 reduces...... also acts as an endothelium-dependent vasodilator. This article is protected by copyright. All rights reserved....

  16. Total venous inflow occlusion and pericardial auto-graft reconstruction for right atrial hemangiosarcoma resection in a dog

    Science.gov (United States)

    Verbeke, Fei; Binst, Dominique; Stegen, Ludo; Waelbers, Tim; de Rooster, Hilde; Van Goethem, Bart

    2012-01-01

    A sizeable right atrial hemangiosarcoma in a 6-year-old Bordeaux dog, World Health Organization (WHO) stage 2, was excised using total venous inflow occlusion. The defect was restored with a non-vascularized pericardial auto-graft. The dog had a disease-free interval of 7 mo. The dog was euthanized 9 months later, at which time there were distant metastases but no indication of local recurrence. PMID:23543933

  17. The evaluation of cardiac tamponade risk in patients with pericardial effusion detected by non-gated chest CT.

    Science.gov (United States)

    Ohta, Yasutoshi; Miyoshi, Fuminori; Kaminou, Toshio; Kaetsu, Yasuhiro; Ogawa, Toshihide

    2016-05-01

    Although pericardial effusion is often identified using non-gated chest computed tomography (CT), findings predictive of cardiac tamponade have not been adequately established. To determine the findings predictive of clinical cardiac tamponade in patients with moderate to large pericardial effusion using non-gated chest CT. We performed a retrospective analysis of 134 patients with moderate to large pericardial effusion who were identified from among 4581 patients who underwent non-gated chest CT. Cardiac structural changes, including right ventricular outflow tract (RVOT), were qualitatively evaluated. The inferior vena cava ratio with hepatic (IVCupp) and renal portions (IVClow) and effusion size were measured. The diagnostic performance of each structural change was calculated, and multivariate analysis was used to determine the predictors of cardiac tamponade. Of the 134 patients (mean age, 70.3 years; 64 men), 37 (28%) had cardiac tamponade. The sensitivity and specificity were 76% and 74% for RVOT compression; 87% and 84% for an IVClow ratio ≥0.77; and 60% and 77% for an effusion size ≥25.5 mm, respectively. Multivariate logistic regression analysis demonstrated that RVOT compression, an IVClow ratio ≥0.77, and an effusion size ≥25.5 mm were independent predictors of cardiac tamponade. The combination of these three CT findings had a sensitivity, specificity, and accuracy of 81%, 95%, and 91%, respectively. In patients with moderate to large pericardial effusion, non-gated chest CT provides additional information for predicting cardiac tamponade. © The Foundation Acta Radiologica 2015.

  18. North American trial results at 1 year with the Sorin Freedom SOLO pericardial aortic valve.

    Science.gov (United States)

    Heimansohn, David; Roselli, Eric E; Thourani, Vinod H; Wang, Shaohua; Voisine, Pierre; Ye, Jian; Dabir, Reza; Moon, Michael

    2016-02-01

    A North American prospective, 15-centre Food and Drug Administration (FDA) valve trial was designed to assess the safety and effectiveness of the Freedom SOLO stentless pericardial aortic valve in the treatment of surgical aortic valve disease. Beginning in 2010, 251 patients (mean: 74.7 ± 7.5 years), were recruited in the Freedom SOLO aortic valve trial. One hundred eighty-nine patients have been followed for at least 1 year and are the basis for this review. Preoperatively, 54% of patients had NYHA functional class III or IV symptoms, and the majority of patients had a normal ejection fraction (EF) (median EF = 61%). Concomitant procedures were performed in 61.9% of patients, with coronary artery bypass grafting (CABG) (48.7%) being the most common followed by a MAZE procedure (13.7%). Reoperations were performed in 8.5% of patients in the study. The entire cohort of 251 patients enrolled had 7 deaths prior to 30 days, 2 of which were valve-related (aspiration pneumonia and sudden death) and 5 were not valve-related. There were 11 deaths after 30 days, 1 valve-related (unknown cardiac death) and 10 not valve-related. Five valves were explanted, 3 early (endocarditis, acute insufficiency and possible root dissection) and 2 late (endocarditis). Thirty-day adverse events include arrhythmias requiring permanent pacemaker (4.2%), thromboembolic events (3.7%) and thrombocytopenia (7.4%). One-year follow-up of all 189 patients demonstrated mean gradients for valve sizes 19, 21, 23, 25 and 27 mm of 11.7, 7.8, 6.3, 4.6 and 5.0 mmHg, respectively. Effective orifice areas for the same valve sizes were 1.2, 1.3, 1.6, 1.8 and 1.9 cm(2), respectively. Ninety-six percent of patients (181/189) were in NYHA class I or II at the 1-year follow-up. The Freedom SOLO stentless pericardial aortic valve demonstrated excellent haemodynamics and a good safety profile out to the 1 year of follow-up. © The Author 2015. Published by Oxford University Press on behalf of the European

  19. Numerical Modeling of Porous Structure of Biomaterial and Fluid Flowing Through Biomaterial

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A Cellular Automata model of simulating body fluid flowing into porous bioceramic implants generated with stochastic methods is described, of which main parameters and evolvement rule are determined in terms of flow behavior of body fluid in porous biomaterials. The model is implemented by GUI( Graphical User Interface) program in MATLAB, and the results of numerical modeling show that the body fluid percolation is related to the size of pores and porosity.

  20. Biomaterials in search of a meniscus substitute.

    Science.gov (United States)

    Rongen, Jan J; van Tienen, Tony G; van Bochove, Bas; Grijpma, Dirk W; Buma, Pieter

    2014-04-01

    The menisci fulfill key biomechanical functions in the tibiofemoral (knee) joint. Unfortunately meniscal injuries are quite common and most often treated by (partial) meniscectomy. However, some patients experience enduring symptoms, and, more importantly, it leads to an increased risk for symptomatic osteoarthritis. Over the past decades, researchers have put effort in developing a meniscal substitute able to prevent osteoarthritis and treat enduring clinical symptoms. Grossly, two categories of substitutes are observed: First, a resorbable scaffold mimicking biomechanical function which slowly degrades while tissue regeneration and organization is promoted. Second, a non resorbable, permanent implant which mimics the biomechanical function of the native meniscus. Numerous biomaterials with different (material) properties have been used in order to provide such a substitute. Nevertheless, a clinically applicable cartilage protecting material is not yet emerged. In the current review we provide an overview, and discuss, these different materials and extract recommendations regarding material properties for future developmental research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Biomaterials for intervertebral disc regeneration and repair.

    Science.gov (United States)

    Bowles, Robert D; Setton, Lori A

    2017-06-01

    The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mini Review: Biomaterials for Enhancing Neuronal Repair

    Science.gov (United States)

    Cangellaris, Olivia V.; Gillette, Martha U.

    2018-04-01

    As they differentiate from neuroblasts, nascent neurons become highly polarized and elongate. Neurons extend and elaborate fine and fragile cellular extensions that form circuits enabling long-distance communication and signal integration within the body. While other organ systems are developing, projections of differentiating neurons find paths to distant targets. Subsequent post-developmental neuronal damage is catastrophic because the cues for reinnervation are no longer active. Advances in biomaterials are enabling fabrication of micro-environments that encourage neuronal regrowth and restoration of function by recreating these developmental cues. This mini-review considers new materials that employ topographical, chemical, electrical, and/or mechanical cues for use in neuronal repair. Manipulating and integrating these elements in different combinations will generate new technologies to enhance neural repair.

  3. Tribological characteristics of dental metal biomaterials

    Directory of Open Access Journals (Sweden)

    Walczak Mariusz

    2016-12-01

    Full Text Available The paper is a report of the examination of the tribological wear characteristics of certain dental metal biomaterials. In the study, tests were undertaken on the following materials: 316L steel, NiCrMo alloy, technically pure titanium (ASTM-grade 2 and Ti6Al4V ELI alloy (ASTM-grade 5. The tribological tests were performed in artificial saliva to determine the coefficient of friction and wear factor; the traces of wear were then ascertained through SEM. The significance of variations in the wear factor, was subsequently assessed by the U Mann-Whitney test. The resistance to wear in the ball-on-disc test under in vitro conditions was observed for the tested materials in the following order: NiCrMo>316L>Ti6Al4V>Ti grade 2.

  4. Supporting Biomaterials for Articular Cartilage Repair

    Science.gov (United States)

    Duarte Campos, Daniela Filipa; Drescher, Wolf; Rath, Björn; Tingart, Markus

    2012-01-01

    Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application. PMID:26069634

  5. Toward biomaterial-based implantable photonic devices

    Directory of Open Access Journals (Sweden)

    Humar Matjaž

    2017-03-01

    Full Text Available Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.

  6. Chitosan dan Aplikasi Klinisnya Sebagai Biomaterial

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-10-01

    Full Text Available The development of new materials with both organic and inorganic structures is of great interest to obtain special material properties. Chitosan [2-amino-2-deoxy-D-glucan] can be obtained by N-deacetylation of chitin. Chitin is the second most abundant biopolymer in nature and the supporting material of crustaceans, insects, fungi etc. Chitosan is unique polysaccharide and has been widely used in various biomedical application due to its biocompatibility, low toxicity, biodegradability, non-immunogenic and non-carcinogenic character. In the past few years, chitosan and some of its modifications have been reported for use in biomedical applications such as artificial skin, wound dressing, anticoagulant, suture, drug delivery, vaccine carrier and dietary fibers. Recently, the use of chitosan and its derivatives has received much attention as temporary scaffolding to promotie mineralization or stimulate endochodral ossification. This article aims to give a broad overview of chitosan and its clinical applications as biomaterial.

  7. Pulmonary emboli from blood-biomaterial interaction

    International Nuclear Information System (INIS)

    Coleman, J.E.; Ramberg, K.; McEnroe, C.S.; Connolly, R.J.; Callow, A.D.

    1988-01-01

    The problem of surface thrombosis and subsequent embolization remains entrenched as a yet incompletely surmounted barrier to the development of truly satisfactory intravascular prosthetic devices. A baboon ex vivo shunt was used to determine the interaction of Indium-111 platelets and potential biomaterials. The uptake of Indium-111 platelets was monitored continuously by gamma camera scanning. Several of the materials tested demonstrated a saw-toothed pattern of platelet activity, with accumulation followed by rapid decline. Neither PTFE nor Dacron exhibited this pattern. Post shunt scans of the animals' chests showed discrete foci of platelet activity in the lungs, corresponding to each embolic event noted on the material's scan. In conclusion, the search for a smooth surface as a blood material interface may produce a material which accumulates and then sloughs significant platelet aggregates. It is crucial that these materials be subjected to vigorous testing to determine their safety prior to initiation of clinical trials

  8. A new approach to the rationale discovery of polymeric biomaterials

    Science.gov (United States)

    Kohn, Joachim; Welsh, William J.; Knight, Doyle

    2007-01-01

    This paper attempts to illustrate both the need for new approaches to biomaterials discovery as well as the significant promise inherent in the use of combinatorial and computational design strategies. The key observation of this Leading Opinion Paper is that the biomaterials community has been slow to embrace advanced biomaterials discovery tools such as combinatorial methods, high throughput experimentation, and computational modeling in spite of the significant promise shown by these discovery tools in materials science, medicinal chemistry and the pharmaceutical industry. It seems that the complexity of living cells and their interactions with biomaterials has been a conceptual as well as a practical barrier to the use of advanced discovery tools in biomaterials science. However, with the continued increase in computer power, the goal of predicting the biological response of cells in contact with biomaterials surfaces is within reach. Once combinatorial synthesis, high throughput experimentation, and computational modeling are integrated into the biomaterials discovery process, a significant acceleration is possible in the pace of development of improved medical implants, tissue regeneration scaffolds, and gene/drug delivery systems. PMID:17644176

  9. Calcium-based biomaterials for diagnosis, treatment, and theranostics.

    Science.gov (United States)

    Qi, Chao; Lin, Jing; Fu, Lian-Hua; Huang, Peng

    2018-01-22

    Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.

  10. Biomimetic approaches to modulate cellular adhesion in biomaterials: A review.

    Science.gov (United States)

    Rahmany, Maria B; Van Dyke, Mark

    2013-03-01

    Natural extracellular matrix (ECM) proteins possess critical biological characteristics that provide a platform for cellular adhesion and activation of highly regulated signaling pathways. However, ECM-based biomaterials can have several limitations, including poor mechanical properties and risk of immunogenicity. Synthetic biomaterials alleviate the risks associated with natural biomaterials but often lack the robust biological activity necessary to direct cell function beyond initial adhesion. A thorough understanding of receptor-mediated cellular adhesion to the ECM and subsequent signaling activation has facilitated development of techniques that functionalize inert biomaterials to provide a biologically active surface. Here we review a range of approaches used to modify biomaterial surfaces for optimal receptor-mediated cell interactions, as well as provide insights into specific mechanisms of downstream signaling activation. In addition to a brief overview of integrin receptor-mediated cell function, so-called "biomimetic" techniques reviewed here include (i) surface modification of biomaterials with bioadhesive ECM macromolecules or specific binding motifs, (ii) nanoscale patterning of the materials and (iii) the use of "natural-like" biomaterials. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Rectocele repair using biomaterial augmentation: current documentation and clinical experience.

    Science.gov (United States)

    Altman, Daniel; Mellgren, Anders; Zetterström, Jan

    2005-11-01

    Although the etiology of rectocele remains debated, surgical innovations are currently promoted to improve anatomic outcome while avoiding dyspareunia and alleviating rectal emptying difficulties following rectocele surgery. Use of biomaterials in rectocele repair has become widespread in a short time, but the clinical documentation of their effectiveness and complications is limited. Medline and the Cochrane database were searched electronically from 1964 to May 2005 using the Pubmed and Ovid search engines. All English language publications including any of the search terms "rectocele," "implant," "mesh," "biomaterial," "prolapse," "synthetical," "pelvic floor," "biological," and "compatibility" were reviewed. This review outlines the basic principles for use of biomaterials in pelvic reconstructive surgery and provides a condensation of peer-reviewed articles describing clinical use of biomaterials in rectocele surgery. Historical and new concepts in rectocele surgery are discussed. Factors of importance for human in vivo biomaterial compatibility are presented together with current knowledge from clinical studies. Potential risks and problems associated with the use of biomaterials in rectocele and pelvic reconstructive surgery in general are described. Although use of biomaterials in rectocele and other pelvic organ prolapse surgery offers exciting possibilities, it raises treatment costs and may be associated with unknown and potentially severe complications at short and long term. Clinical benefits are currently unknown and need to be proven in clinical studies. Obstetricians & Gynecologists, Family Physicians After completion of this article, the reader should be able to explain that the objective of surgical treatment is to improve anatomic outcome and alleviate rectal emptying difficulties, describe the efficacy of biomaterials in rectocele repair, and summarize the potential risks and problems associated with use of biomaterials in rectocele and pelvic

  12. Netrin-1 regulates fibrocyte accumulation in the decellularized fibrotic scleroderma lung microenvironment and in bleomycin induced pulmonary fibrosis

    Science.gov (United States)

    Sun, Huanxing; Zhu, Yangyang; Pan, Hongyi; Chen, Xiaosong; Balestrini, Jenna L.; Lam, TuKiet T.; Kanyo, Jean E.; Eichmann, Anne; Gulati, Mridu; Fares, Wassim H.; Bai, Hanwen; Feghali-Bostwick, Carol A.; Gan, Ye; Peng, Xueyan; Moore, Meagan W.; White, Eric S.; Sava, Parid; Gonzalez, Anjelica L.; Cheng, Yuwei; Niklason, Laura E.; Herzog, Erica L.

    2017-01-01

    Objectives Fibrocytes are collagen-producing leukocytes that accumulate in Scleroderma-associated interstitial lung disease (SSc-ILD) via unknown mechanisms. The extracellular matrix (ECM) influences cellular phenotypes. However, a relationship between the lung ECM and fibrocytes in Scleroderma has not been explored. This study uses a novel translational platform based on decellularized human lungs to determine whether the scleroderma lung ECM controls fibrocyte development from peripheral blood mononuclear cells. Methods Decellularized scaffolds prepared from healthy and fibrotic Scleroderma lung explants underwent biomechanical evaluation using tensile testing and biochemical analysis using proteomics. Cells from healthy and SSc-ILD subjects were cultured on these scaffolds, and CD45+Pro-ColIα1+ cells meeting criteria for fibrocytes were quantified. The contribution of Netrin-1 to fibrosis was assessed using neutralizing antibodies in this system and via the inhalational administration of bleomycin to Netrin-1+/− mice. Results Compared to control lung scaffold, SSc-ILD lung scaffolds showed aberrant anatomy, enhanced stiffness, and abnormal extracellular matrix composition. Culture of control cells in Scleroderma scaffolds increased Pro-ColIα1+ production, which was stimulated by enhanced stiffness and abnormal ECM composition. SSc-ILD cells demonstrated increased Pro-ColIα1 responsiveness to Scleroderma lung scaffolds, but not enhanced stiffness. Enhanced Netrin-1 expression was seen on CD14lo SSc-ILD cells and antibody mediated Netrin-1 neutralization attenuated CD45+Pro-ColIα1+ detection in all settings. Netrin-1+/− mice were protected from bleomycin induced lung fibrosis and fibrocyte accumulation. Conclusion Factors present in Scleroderma lung matrices regulate fibrocyte accumulation via a Netrin-1-dependent pathway. Netrin-1 regulates bleomycin induced murine pulmonary fibrosis. Netrin-1 might be a novel therapeutic target in SSc-ILD. PMID:26749424

  13. Application of Fourier transform infrared spectroscopy with chemometrics on postmortem interval estimation based on pericardial fluids.

    Science.gov (United States)

    Zhang, Ji; Li, Bing; Wang, Qi; Wei, Xin; Feng, Weibo; Chen, Yijiu; Huang, Ping; Wang, Zhenyuan

    2017-12-21

    Postmortem interval (PMI) evaluation remains a challenge in the forensic community due to the lack of efficient methods. Studies have focused on chemical analysis of biofluids for PMI estimation; however, no reports using spectroscopic methods in pericardial fluid (PF) are available. In this study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) accessory was applied to collect comprehensive biochemical information from rabbit PF at different PMIs. The PMI-dependent spectral signature was determined by two-dimensional (2D) correlation analysis. The partial least square (PLS) and nu-support vector machine (nu-SVM) models were then established based on the acquired spectral dataset. Spectral variables associated with amide I, amide II, COO - , C-H bending, and C-O or C-OH vibrations arising from proteins, polypeptides, amino acids and carbohydrates, respectively, were susceptible to PMI in 2D correlation analysis. Moreover, the nu-SVM model appeared to achieve a more satisfactory prediction than the PLS model in calibration; the reliability of both models was determined in an external validation set. The study shows the possibility of application of ATR-FTIR methods in postmortem interval estimation using PF samples.

  14. Effect of pretreatment with epoxy compounds on the mechanical properties of bovine pericardial bioprosthetic materials.

    Science.gov (United States)

    Xi, T; Liu, F; Xi, B

    1992-07-01

    Early failures of bovine pericardial heart valves are due to leaflet perforation, tearing and calcification. Since glutaraldehyde fixation has been shown to produce marked changes in leaflet mechanics and has been linked to development of calcification, bovine pericardium fixed with the four hydrophilic epoxy formulations and their mechanical properties are studied in this paper. We measured the thicknesses, shrinkage temperatures, stress relaxations and stress-strain curves of bovine pericardiums after different treatments with (1) non-treatment (fresh), (2) glutaraldehyde (GA), (3) epoxy compounds followed by the posttreatment with GA (EP 1#, EP 2#), and (4) epoxy compounds (EP 3# and EP 4#). Results of this study showed that the hydrophilic epoxy compounds are good crosslinking agents. There are no significant differences of shrinkage temperature and ultimate tensile stress among all tissue samples pretreated with GA, EP 1# and EP 2#. However, the stress relaxations of tissue-samples pretreated with epoxy compounds followed by the posttreatment with GA (EP 1# and EP 2#) are significantly slower than that pretreated with GA, and the strains at fracture of EP 1# and EP 2# are also significantly larger than that of GA or epoxy compounds. These facts show that the bovine pericardium pretreated with the epoxy compound followed by the posttreatment with GA (EP 1# and EP 2#) possesses greater tenacity and potential durability in dynamic stress.

  15. Percutaneous drainage of fluid collection in the pleural and pericardial spaces. Perkutan pleura- og perikarddrenasje

    Energy Technology Data Exchange (ETDEWEB)

    Drolsum, A.; Skjennald, A. (Ullevaal sykehus, Oslo (Norway))

    1994-11-01

    Both MRI, CT and sonography will give a good presentation of fluid collection in pleura and pericardium. Sonography is the ideal imaging method for monitoring interventional procedures. Its ability to visualize superficial fluid collection and its real-time capability allows precise control of needle and catheter insertions. If the abnormality is poorly seen with ultrasound, often because of air in the collection, CT can be used as a guidance system. Diagnostic thoracocentesis and pericardiocentesis are performed mainly to exclude malignancy and infections, and the punctions are made with small needles. Therapeutic thoracocentesis is usually performed to relieve dyspnoe and small catheters are used. Drainage of empyema is performed with larger catheters because of the high viscosity of the infected fluid. Patients with threatening cardiac tamponade will often respond immediately to drainage of the pericardial space by catheter. These procedures can be done with local anesthesia only. If complications occur, it is mainly the pneumothorax that has to be treated. This can be managed directly under the procedure as the drainage catheter is attached to continuous pleural suction, or a catheter can be inserted in the pleural space after diagnostic punction. Patients with coagulation abnormalities must be evaluated especially before any intervention, otherwise there are no contraindications for these image-guided percutaneous procedures. 14 refs., 6 figs.

  16. Engineering Biomaterials to Integrate and Heal: The Biocompatibility Paradigm Shifts

    Science.gov (United States)

    Bryers, James D.; Giachelli, Cecilia M.; Ratner, Buddy D.

    2012-01-01

    This article focuses on one of the major failure routes of implanted medical devices, the foreign body reaction (FBR)—that is, the phagocytic attack and encapsulation by the body of the so-called “biocompatible” biomaterials comprising the devices. We then review strategies currently under development that might lead to biomaterial constructs that will harmoniously heal and integrate into the body. We discuss in detail emerging strategies to inhibit the FBR by engineering biomaterials that elicit more biologically pertinent responses. PMID:22592568

  17. Bone regeneration with biomaterials and active molecules delivery.

    Science.gov (United States)

    D' Este, Matteo; Eglin, David; Alini, Mauro; Kyllonen, Laura

    2015-01-01

    The combination of biomaterials and drug delivery strategies is a promising avenue towards improved synthetic bone substitutes. With the delivery of active species biomaterials can be provided with the bioactivity they still lack for improved bone regeneration. Recently, a lot of research efforts have been put towards this direction. Biomaterials for bone regeneration have been supplemented with small or biological molecules for improved osteoprogenitor cell recruitment, osteoinductivity, anabolic or angiogenic response, regulation of bone metabolism and others. The scope of this review is to summarize the most recent results in this field.

  18. Radiation techniques in the formulation of synthetic biomaterials

    International Nuclear Information System (INIS)

    Kaetsu, Isao

    1992-01-01

    This chapter reviews the uses of various radiation techniques, such as radiation polymerization, grafting, and crosslinking, for the formulation of synthetic biomaterials. The biomaterials are divided into four categories: Biocompatible polymers, immobilized proteins, immobilized cells, and drug delivery systems. The recent achievements in each category are described, and the contributions of novel radiation techniques to this field are discussed. Work on drug delivery systemsis also reviewed, and the status of the practical applications of drug delivery systems for therapy is summarized. Future trends in the field of radiation-synthesized biomaterials are indicated. (orig.)

  19. Evolving the use of peptides as biomaterials components

    Science.gov (United States)

    Collier, Joel H.; Segura, Tatiana

    2012-01-01

    This manuscript is part of a debate on the statement that “the use of short synthetic adhesion peptides, like RGD, is the best approach in the design of biomaterials that guide cell behavior for regenerative medicine and tissue engineering”. We take the position that although there are some acknowledged disadvantages of using short peptide ligands within biomaterials, it is not necessary to discard the notion of using peptides within biomaterials entirely, but rather to reinvent and evolve their use. Peptides possess advantageous chemical definition, access to non-native chemistries, amenability to de novo design, and applicability within parallel approaches. Biomaterials development programs that require such aspects may benefit from a peptide-based strategy. PMID:21515167

  20. Simulation of Protein and Peptide-Based Biomaterials

    National Research Council Canada - National Science Library

    Daggett, Valerie

    2002-01-01

    The overall goal of the proposed research is to pursue realistic molecular modeling studies of the stability, dynamics, structure, function, and folding of proteins and protein-based biomaterials in solution...

  1. Mechanics of Biological Tissues and Biomaterials: Current Trends

    Directory of Open Access Journals (Sweden)

    Amir A. Zadpoor

    2015-07-01

    Full Text Available Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address various topics within the general theme of “mechanics of biomaterials”. This editorial aims to present the context within which the studies of this Special Issue could be better understood. I, therefore, try to identify some of the most important research trends in the study of the mechanical behavior of biological tissues and biomaterials.

  2. Design and development of reactive injectable and settable polymeric biomaterials.

    Science.gov (United States)

    Page, Jonathan M; Harmata, Andrew J; Guelcher, Scott A

    2013-12-01

    Injectable and settable biomaterials are a growing class of therapeutic technologies within the field of regenerative medicine. These materials offer advantages compared to prefabricated implants because of their ability to be utilized as part of noninvasive surgical procedures, fill complex defect shapes, cure in situ, and incorporate cells and other active biologics. However, there are significant technical barriers to clinical translation of injectable and settable biomaterials, such as achieving clinically relevant handling properties and benign reaction conditions. This review focuses on the engineering challenges associated with the design and development of injectable and chemically settable polymeric biomaterials. Additionally, specific examples of the diverse chemistries utilized to overcome these challenges are covered. The future translation of injectable and settable biomaterials is anticipated to improve patient outcomes for a number of clinical conditions. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  3. Preparation of uniform porous hydroxyapatite biomaterials by a new method

    International Nuclear Information System (INIS)

    Tang Yuejun; Tang Yuefeng; Lv Chuntang; Zhou Zhonghua

    2008-01-01

    In this paper, a new method of preparation of uniform porous hydroxyapatite biomaterials was reported. In order to obtain uniform porous biomaterials, disk samples were formed by the mixture of hydroxyapatite (HAP) powders and monodispersed polystyrene microspheres, and then HAP uniform porous materials with different diameter and different porosity (diameter: 436 ± 25 nm, 892 ± 20 nm and 1890 ± 20 nm, porosity: 46.5%, 41.3% and 34.7%, respectively) were prepared by sintering these disk samples at 1250 deg. C for 5 h. The pure phase of HAP powders fabricated by the hydrothermal technology was confirmed by X-ray diffraction (XRD). The surface and size distribution of pores in HAP biomaterials were observed by scanning electron microscopy (SEM), and the pore size distribution in porous HAP biomaterials was tested by mercury intrusion method

  4. Application of detergents or high hydrostatic pressure as decellularization processes in uterine tissues and their subsequent effects on in vivo uterine regeneration in murine models.

    Directory of Open Access Journals (Sweden)

    Erna G Santoso

    Full Text Available Infertility caused by ovarian or tubal problems can be treated using In Vitro Fertilization and Embryo Transfer (IVF-ET; however, this is not possible for women with uterine loss and malformations that require uterine reconstruction for the treatment of their infertility. In this study, we are the first to report the usefulness of decellularized matrices as a scaffold for uterine reconstruction. Uterine tissues were extracted from Sprague Dawley (SD rats and decellularized using either sodium dodecyl sulfate (SDS or high hydrostatic pressure (HHP at optimized conditions. Histological staining and quantitative analysis showed that both SDS and HHP methods effectively removed cells from the tissues with, specifically, a significant reduction of DNA contents for HHP constructs. HHP constructs highly retained the collagen content, the main component of extracellular matrices in uterine tissue, compared to SDS constructs and had similar content levels of collagen to the native tissue. The mechanical strength of the HHP constructs was similar to that of the native tissue, while that of the SDS constructs was significantly elevated. Transmission electron microscopy (TEM revealed no apparent denaturation of collagen fibers in the HHP constructs compared to the SDS constructs. Transplantation of the decellularized tissues into rat uteri revealed the successful regeneration of the uterine tissues with a 3-layer structure 30 days after the transplantation. Moreover, a lot of epithelial gland tissue and Ki67 positive cells were detected. Immunohistochemical analyses showed that the regenerated tissues have a normal response to ovarian hormone for pregnancy. The subsequent pregnancy test after 30 days transplantation revealed successful pregnancy for both the SDS and HHP groups. These findings indicate that the decellularized matrix from the uterine tissue can be a potential scaffold for uterine regeneration.

  5. XPS - an essential tool in biomaterial research

    Energy Technology Data Exchange (ETDEWEB)

    StJohn, H.A.W.; Greisser, H.J. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC (Australia). Molecular Science

    1999-12-01

    Full text: Increased life expectancy has markedly enhanced the need for biomedical devices to combat life-threatening conditions (e.g., pacemakers, artificial blood vessels) or improve the quality of life (e.g., intraocular lenses, artificial ligaments, contact lenses). While the biomedical device industry has delivered remarkable benefits, many existing and emerging needs and applications are not adequately met with existing synthetic materials. Depending on the application, a biomaterial needs to meet a number of requirements to be `biocompatible`, such as appropriate mechanical properties, transparency, resistance to enzymatic degradation, and appropriate biological responses by the host environment. Surface science and surface analysis plays a key role in understanding and optimizing the molecular interfacial interactions between synthetic materials surfaces and biological media which lead to biological responses to implants. Many biological molecules such as proteins and lipids have surfactant activity and respond to interfaces on contact. Thus, an important part of achieving `biocompatibility` is to produce an appropriate surface chemical composition that avoids undesirable biological consequences triggered by biological molecules recognizing a `foreign` material interface. XPS surface analysis has proved uniquely suitable for studying several aspects of biomaterials. In order to interpret biological responses in terms of surface chemistry, it is essential that the surface be well characterized. However, for polymers this can be quite a challenge due to the inherent mobility of polymer chains. For instance, polyurethanes present a surface chemistry that differs from the `bulk` chemistry. It is often desirable to utilize a bulk material with desirable bulk properties and improve its biocompatibility by the application of a surface modification or a thin coating. XPS has been used to verify the intended coating chemistry and the uniformity of thin coatings. On

  6. XPS - an essential tool in biomaterial research

    International Nuclear Information System (INIS)

    StJohn, H.A.W.; Greisser, H.J.

    1999-01-01

    Full text: Increased life expectancy has markedly enhanced the need for biomedical devices to combat life-threatening conditions (e.g., pacemakers, artificial blood vessels) or improve the quality of life (e.g., intraocular lenses, artificial ligaments, contact lenses). While the biomedical device industry has delivered remarkable benefits, many existing and emerging needs and applications are not adequately met with existing synthetic materials. Depending on the application, a biomaterial needs to meet a number of requirements to be 'biocompatible', such as appropriate mechanical properties, transparency, resistance to enzymatic degradation, and appropriate biological responses by the host environment. Surface science and surface analysis plays a key role in understanding and optimizing the molecular interfacial interactions between synthetic materials surfaces and biological media which lead to biological responses to implants. Many biological molecules such as proteins and lipids have surfactant activity and respond to interfaces on contact. Thus, an important part of achieving 'biocompatibility' is to produce an appropriate surface chemical composition that avoids undesirable biological consequences triggered by biological molecules recognizing a 'foreign' material interface. XPS surface analysis has proved uniquely suitable for studying several aspects of biomaterials. In order to interpret biological responses in terms of surface chemistry, it is essential that the surface be well characterized. However, for polymers this can be quite a challenge due to the inherent mobility of polymer chains. For instance, polyurethanes present a surface chemistry that differs from the 'bulk' chemistry. It is often desirable to utilize a bulk material with desirable bulk properties and improve its biocompatibility by the application of a surface modification or a thin coating. XPS has been used to verify the intended coating chemistry and the uniformity of thin coatings. On

  7. Bio-Functional Design, Application and Trends in Metallic Biomaterials

    OpenAIRE

    Ke Yang; Changchun Zhou; Hongsong Fan; Yujiang Fan; Qing Jiang; Ping Song; Hongyuan Fan; Yu Chen; Xingdong Zhang

    2017-01-01

    Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1) m...

  8. Interactions of Bacteria and Amoebae with Ocular Biomaterials

    OpenAIRE

    John, Thomas

    1991-01-01

    The use of biomaterials in periocular and intraocular sites has resulted in some ocular inflammations and infections which can result in vision-threatening ocular disease. This review addresses bacterial interactions with, and adherence to ocular biomaterials such as soft contact lenses, surgical suture materials, and intraocular lenses. In addition, adherence of Acanthamoeba to soft contact lenses is described, and the role of these lenses in the development of Acanthamoeba keratitis is disc...

  9. Conducting polymer-based multilayer films for instructive biomaterial coatings

    OpenAIRE

    Hardy, John G; Li, Hetian; Chow, Jacqueline K; Geissler, Sydney A; McElroy, Austin B; Nguy, Lindsey; Hernandez, Derek S; Schmidt, Christine E

    2015-01-01

    Aim: To demonstrate the design, fabrication and testing of conformable conducting biomaterials that encourage cell alignment. Materials & methods: Thin conducting composite biomaterials based on multilayer films of poly (3,4-ethylenedioxythiophene) derivatives, chitosan and gelatin were prepared in a layer-by-layer fashion. Fibroblasts were observed with fluorescence microscopy and their alignment (relative to the dipping direction and direction of electrical current passed through the films)...

  10. Novel Biomaterials Used in Medical 3D Printing Techniques

    OpenAIRE

    Karthik Tappa; Udayabhanu Jammalamadaka

    2018-01-01

    The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and c...

  11. Advancing biomaterials of human origin for tissue engineering

    OpenAIRE

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking in...

  12. Preparation and mechanical property of polymer-based biomaterials

    International Nuclear Information System (INIS)

    Zhang, P; Chen, G; Zheng, X F

    2010-01-01

    The porous polymer-based biomaterial has been synthesized from PLGA, dioxane and tricalcium phosphate (TCP) by low-temperature deposition process. The deformation behaviours and fracture mechanism of polymer-based biomaterials were investigated using the compression test and the finite element (FE) simulation. The results show that the stress-strain curve of compression process includes linear elastic stage I, platform stage II and densification stage III, and the fracture mechanism can be considered as brittle fracture.

  13. Combined use of decellularized allogeneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats.

    Science.gov (United States)

    Sun, Fei; Zhou, Ke; Mi, Wen-juan; Qiu, Jian-hua

    2011-11-01

    Natural biological conduits containing seed cells have been widely used as an alternative strategy for nerve gap reconstruction to replace traditional nerve autograft techniques. The purpose of this study was to investigate the effects of a decellularized allogeneic artery conduit containing autologous transdifferentiated adipose-derived stem cells (dADSCs) on an 8-mm facial nerve branch lesion in a rat model. After 8 weeks, functional evaluation of vibrissae movements and electrophysiological assessment, retrograde labeling of facial motoneurons and morphological analysis of regenerated nerves were performed to assess nerve regeneration. The transected nerves reconstructed with dADSC-seeded artery conduits achieved satisfying regenerative outcomes associated with morphological and functional improvements which approached those achieved with Schwann cell (SC)-seeded artery conduits, and superior to those achieved with artery conduits alone or ADSC-seeded artery conduits, but inferior to those achieved with nerve autografts. Besides, numerous transplanted PKH26-labeled dADSCs maintained their acquired SC-phenotype and myelin sheath-forming capacity inside decellularized artery conduits and were involved in the process of axonal regeneration and remyelination. Collectively, our combined use of decellularized allogeneic artery conduits with autologous dADSCs certainly showed beneficial effects on nerve regeneration and functional restoration, and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Applications of Biomaterials in Corneal Endothelial Tissue Engineering.

    Science.gov (United States)

    Wang, Tsung-Jen; Wang, I-Jong; Hu, Fung-Rong; Young, Tai-Horng

    2016-11-01

    When corneal endothelial cells (CECs) are diseased or injured, corneal endothelium can be surgically removed and tissue from a deceased donor can replace the original endothelium. Recent major innovations in corneal endothelial transplantation include replacement of diseased corneal endothelium with a thin lamellar posterior donor comprising a tissue-engineered endothelium carried or cultured on a thin substratum with an organized monolayer of cells. Repairing CECs is challenging because they have restricted proliferative ability in vivo. CECs can be cultivated in vitro and seeded successfully onto natural tissue materials or synthetic polymeric materials as grafts for transplantation. The optimal biomaterials for substrata of CEC growth are being investigated. Establishing a CEC culture system by tissue engineering might require multiple biomaterials to create a new scaffold that overcomes the disadvantages of single biomaterials. Chitosan and polycaprolactone are biodegradable biomaterials approved by the Food and Drug Administration that have superior biological, degradable, and mechanical properties for culturing substratum. We successfully hybridized chitosan and polycaprolactone into blended membranes, and demonstrated that CECs proliferated, developed normal morphology, and maintained their physiological phenotypes. The interaction between cells and biomaterials is important in tissue engineering of CECs. We are still optimizing culture methods for the maintenance and differentiation of CECs on biomaterials.

  15. The pathology of the foreign body reaction against biomaterials.

    Science.gov (United States)

    Klopfleisch, R; Jung, F

    2017-03-01

    The healing process after implantation of biomaterials involves the interaction of many contributing factors. Besides their in vivo functionality, biomaterials also require characteristics that allow their integration into the designated tissue without eliciting an overshooting foreign body reaction (FBR). The targeted design of biomaterials with these features, thus, needs understanding of the molecular mechanisms of the FBR. Much effort has been put into research on the interaction of engineered materials and the host tissue. This elucidated many aspects of the five FBR phases, that is protein adsorption, acute inflammation, chronic inflammation, foreign body giant cell formation, and fibrous capsule formation. However, in practice, it is still difficult to predict the response against a newly designed biomaterial purely based on the knowledge of its physical-chemical surface features. This insufficient knowledge leads to a high number of factors potentially influencing the FBR, which have to be analyzed in complex animal experiments including appropriate data-based sample sizes. This review is focused on the current knowledge on the general mechanisms of the FBR against biomaterials and the influence of biomaterial surface topography and chemical and physical features on the quality and quantity of the reaction. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 927-940, 2017. © 2016 Wiley Periodicals, Inc.

  16. Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation.

    Science.gov (United States)

    Wang, Lan; Zhang, Jie; Zhang, Wen; Yang, Hui-Lin; Luo, Zong-Ping

    2017-01-01

    We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20-3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science.

  17. Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation

    Science.gov (United States)

    Zhang, Jie; Zhang, Wen; Yang, Hui-Lin

    2017-01-01

    We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20–3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science. PMID:28116309

  18. From supramolecular polymers to multi-component biomaterials.

    Science.gov (United States)

    Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W

    2017-10-30

    The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.

  19. Additive Manufacturing of Biomaterials, Tissues, and Organs.

    Science.gov (United States)

    Zadpoor, Amir A; Malda, Jos

    2017-01-01

    The introduction of additive manufacturing (AM), often referred to as three-dimensional (3D) printing, has initiated what some believe to be a manufacturing revolution, and has expedited the development of the field of biofabrication. Moreover, recent advances in AM have facilitated further development of patient-specific healthcare solutions. Customization of many healthcare products and services, such as implants, drug delivery devices, medical instruments, prosthetics, and in vitro models, would have been extremely challenging-if not impossible-without AM technologies. The current special issue of the Annals of Biomedical Engineering presents the latest trends in application of AM techniques to healthcare-related areas of research. As a prelude to this special issue, we review here the most important areas of biomedical research and clinical practice that have benefited from recent developments in additive manufacturing techniques. This editorial, therefore, aims to sketch the research landscape within which the other contributions of the special issue can be better understood and positioned. In what follows, we briefly review the application of additive manufacturing techniques in studies addressing biomaterials, (re)generation of tissues and organs, disease models, drug delivery systems, implants, medical instruments, prosthetics, orthotics, and AM objects used for medical visualization and communication.

  20. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Blunt traumatic pericardial rupture and cardiac herniation with a penetrating twist: two case reports

    Directory of Open Access Journals (Sweden)

    Galloway Robert

    2009-12-01

    Full Text Available Abstract Background Blunt Traumatic Pericardial Rupture (BTPR with resulting cardiac herniation following chest trauma is an unusual and often fatal condition. Although there has been a multitude of case reports of this condition in past literature, the recurring theme is that of a missed injury. Its occurrence in severe blunt trauma is in the order of 0.4%. It is an injury that frequently results in pre/early hospital death and diagnosis at autopsy, probably owing to a combination of diagnostic difficulties, lack of familiarity and associated polytrauma. Of the patients who survive to hospital attendance, the mortality rate is in the order of 57-64%. Methods We present two survivors of BTPR and cardiac herniation, one with a delayed penetrating cardiac injury secondary to rib fractures. With these two cases and literature review, we hope to provide a greater awareness of this injury Conclusion BTPR and cardiac herniation is a complex and often fatal injury that usually presents under the umbrella of polytrauma. Clinicians must maintain a high index of suspicion for BTPR but, even then, the diagnosis is fraught with difficulty. In blunt chest trauma, patients should be considered high risk for BTPR when presenting with: Cardiovascular instability with no obvious cause Prominent or displaced cardiac silhouette and asymmetrical large volume pneumopericardium Potentially, with increasing awareness of the injury and improved use and availability of imaging modalities, the survival rates will improve and cardiac Herniation could even be considered the 5th H of reversible causes of blunt traumatic PEA arrest.

  2. The relationship of socioeconomic status with coronary artery calcification and pericardial fat.

    Science.gov (United States)

    Nafakhi, Hussein; Almosawi, Abdulameer; Alnafakh, Hasan; Mousa, Widad

    2017-01-01

    Little data currently exist supporting the correlation of socioeconomic status (SES) to markers of subclinical coronary atherosclerosis. The main aim was to investigate the relationship of SES measured by economic status and educational level with coronary artery calcification (CAC) and pericardial fat volume (PFV) assessed by multi-detector computed tomography (MDCT). A total of 220 consecutive patients with suspected coronary artery disease, who underwent 64-slice MDCT angiography for assessment of coronary atherosclerosis, were recruited between January 2014 and March 2015. Of these, 186 patients were enrolled in this cross sectional study. Low economic status patients showed higher PFV values; median (inter-quartile range [IQR] was 94 [50-140] cm3, p = 0.00001 and r = 0.37, compared to patients with high economic status, and this association persisted even after multiple logistic regression to conventional cardiac risk factors (p = 0.004, CI 7.3-30.4), while patients with low economic status reported a higher calcium score (but statistically non significant) (p = 0.12) compared to high economic status patients. Pa-tients with no formal education showed higher PFV (median [IQR] was 93 [48-140] cm3, p = 0.01) compared to patients with bachelor's degree (median [IQR] was 56 [28-92] cm3), but this association was attenuated after further adjustment for conventional cardiac risk factors (p = 0.1, CI -9.52-10.88), while CAC showed no significant correlation with educational level (p = 0.2, r = 0.117). Socioeconomic status, particularly economic status measure, reported a significant inverse relationship with PFV independent of conventional cardiac risk factors.

  3. ORGANIC TRICUSPID VALVE REPAIR WITH AUTOLOGOUS GLUTARALDEHYDE FIXED PERICARDIAL PATCH : A SINGLE CENTER RESULTS

    Directory of Open Access Journals (Sweden)

    Murtaza A

    2015-10-01

    Full Text Available AIM AND OBJECTIVE: The aim of this study was to determine the effectiveness and results of repair of Organic Tricuspid Valve disease. INTRODUCTION : since tricuspid valve disease most often found in association with other valve disease. Isolated tricuspid valve disease is ra re. Pattern of involvement of tricuspid valve disease shows functional (75% and primary (organic in (25%. Surgical repair of organic tricuspid valve disease often fails because of abnormal valve. This usually leads to limited options. This study examine s our experience of tricuspid valve repair with autologous pericardium for organic tricuspid valve disease. MATERIAL AND METHODS : From Jan 2014 to May 2015, 22 patients underwent repairs for organic tricuspid valve disease. The patient aged 15 to 65 years and all were in New York Heart Association (NYHA class of III or IV. All patients presented with severe tricuspid disease coexisting with other cardiac pathology, usually left - sided heart valve disease. Repair techniques included Commisurotomy, division o f secondary chordae, Glutaraldehyde treated autologous pericardial patch augmentation of tricuspid valve leaflets, anterior papillary muscle advancement etc with or without ring/suture annuloplasty. Follow - up duration was 3 to 18 months. RESULTS : No deaths or late reoperations occurred. All patients demonstrated clinical improvements on follow up. Echocardiographic studies before hospital discharge showed less than mild tricuspid regurgitation in all patients except one. CONCLUSIONS : Large majorit y of organic tricuspid valve regurgitation is repairable with acceptable early results. Tricuspid stenosis and mixed tricuspid valve disease are more challenging. In the latter group, it is a judgment call whether to accept a suboptimal result or replace t he valve

  4. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  5. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Science.gov (United States)

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  6. Post-mortem diagnosis of chronic Chagas's disease comparative evaluation of three serological tests on pericardial fluid.

    Science.gov (United States)

    Lopes, E R; Chapadeiro, E; Batista, S M; Cunha, J G; Rocha, A; Miziara, L; Ribeiro, J U; Patto, R J

    1978-01-01

    In an attempt to improve the post-mortem diagnosis of Chagas's disease the authors performed haemagglutination tests (HAT), fluorescent Trypanosoma cruzi antibody tests (FAT), and complement fixation tests (CFT) on the pericardial fluid obtained at autopsy of 50 individuals with Chagas's heart disease, and 93 patients in whom this disease was not thought to be present. The results demonstrate that all three tests are efficient for the post-mortem diagnosis of Chagas's disease but suggest that their combined use would detect more cases than would one isolated reaction only.

  7. Measurements of pericardial adipose tissue using contrast enhanced cardiac multidetector computed tomography—comparison with cardiac magnetic resonance imaging

    DEFF Research Database (Denmark)

    Elming, Marie Bayer; Lønborg, Jacob; Rasmussen, Thomas

    2013-01-01

    and CMRI scans were performed. The optimal fit for measuring PAT using contrast MDCT was developed and validated by the corresponding measures on CMRI. The median for PAT volume in patients was 175 ml (SD 68) and 153 ml (SD 60) measured by MDCT and CMRI respectively. Four different attenuation values were...... tested, and the smallest difference in PAT was noted when -30 to -190 HU were used in MDCT measures. The median difference between MDCT and CMRI for the assessment of PAT was 9 ml (SD 50) suggesting a reasonable robust method for the assessment of PAT in a large-scale study. Pericardial adipose tissue...

  8. The use of bovine pericardial patch for vascular reconstruction in infected fields for transplant recipients

    Directory of Open Access Journals (Sweden)

    Sandra Garcia Aroz, MD

    2017-03-01

    Full Text Available Infectious vascular complications affecting transplant recipients may lead to severe morbidity and graft loss. This is a retrospective review of vascular repair with bovine pericardial patch (BPP in infected fields for immunosuppressed patients. BPP was used as either a patch or an interposition graft. Five cases of arterial reconstruction in infected fields using BPP were performed. There were no complications related to bleeding, thrombosis, or recurrent infection. In our limited experience, the use of BPP as a vascular patch is successful, and it represents an alternative when vascular reconstruction is needed in the context of infected fields.

  9. Phrenic nerve protection via packing of gauze into the pericardial space during ablation of cristal atrial tachycardia in a child.

    Science.gov (United States)

    Takahashi, Kazuhiro; Fuchigami, Tai; Nabeshima, Taisuke; Sashinami, Arata; Nakayashiro, Mami

    2016-03-01

    The success of catheter ablation of focal atrial tachycardia is limited by possible collateral damage to the phrenic nerve. Protection of the phrenic nerve is required. Here we present a case of a 9-year-old girl having a history of an unsuccessful catheter ablation of a focal atrial tachycardia near the crista terminalis (because of proximity of the phrenic nerve) who underwent a successful ablation by means of a novel technique for phrenic nerve protection: packing of gauze into the pericardial space. This method is a viable approach for patients with a failed endocardial ablation due to the proximity of the phrenic nerve.

  10. Mechanically-competent and cytocompatible polycaprolactone-borophosphosilicate hybrid biomaterials.

    Science.gov (United States)

    Mondal, Dibakar; Dixon, S Jeffrey; Mequanint, Kibret; Rizkalla, Amin S

    2017-11-01

    Organic-inorganic class II hybrid materials have domain sizes at the molecular level and chemical bonding between the organic and inorganic phases. We have previously reported the synthesis of class II hybrid biomaterials from alkoxysilane-functionalized polycaprolactone (PCL) and borophosphosilicate (B 2 O 3 -P 2 O 5 -SiO 2 ) glass (BPSG) through a non-aqueous sol-gel process. In the present study, the mechanical properties and degradability of these PCL/BPSG hybrid biomaterials were studied and compared to those of their conventional composite counterparts. The compressive strength, modulus and toughness of the hybrid biomaterials were significantly greater compared to the conventional composites, likely due to the covalent bonding between the organic and inorganic phases. A hybrid biomaterial (50wt% PCL and 50wt% BPSG) exhibited compressive strength, modulus and toughness values of 32.2 ± 3.5MPa, 573 ± 85MPa and 1.54 ± 0.03MPa, respectively; whereas the values for composite of similar composition were 18.8 ± 1.6MPa, 275 ± 28MPa and 0.76 ± 0.03MPa, respectively. Degradation in phosphate-buffered saline was slower for hybrid biomaterials compared to their composite counterparts. Thus, these hybrid materials possess superior mechanical properties and more controlled degradation characteristics compared to their corresponding conventional composites. To assess in vitro cytocompatibility, MC3T3-E1 pre-osteoblastic cells were seeded onto the surfaces of hybrid biomaterials and polycaprolactone (control). Compared to polycaprolactone, cells on the hybrid material displayed enhanced spreading, focal adhesion formation, and cell number, consistent with excellent cytocompatibility. Thus, based on their mechanical properties, degradability and cytocompatibility, these novel biomaterials have potential for use as scaffolds in bone tissue engineering and related applications. Copyright © 2017. Published by Elsevier Ltd.

  11. Netrin-1 Regulates Fibrocyte Accumulation in the Decellularized Fibrotic Sclerodermatous Lung Microenvironment and in Bleomycin-Induced Pulmonary Fibrosis.

    Science.gov (United States)

    Sun, Huanxing; Zhu, Yangyang; Pan, Hongyi; Chen, Xiaosong; Balestrini, Jenna L; Lam, TuKiet T; Kanyo, Jean E; Eichmann, Anne; Gulati, Mridu; Fares, Wassim H; Bai, Hanwen; Feghali-Bostwick, Carol A; Gan, Ye; Peng, Xueyan; Moore, Meagan W; White, Eric S; Sava, Parid; Gonzalez, Anjelica L; Cheng, Yuwei; Niklason, Laura E; Herzog, Erica L

    2016-05-01

    Fibrocytes are collagen-producing leukocytes that accumulate in patients with systemic sclerosis (SSc; scleroderma)-related interstitial lung disease (ILD) via unknown mechanisms that have been associated with altered expression of neuroimmune proteins. The extracellular matrix (ECM) influences cellular phenotypes. However, a relationship between the lung ECM and fibrocytes in SSc has not been explored. The aim of this study was to use a novel translational platform based on decellularized human lungs to determine whether the lung ECM of patients with scleroderma controls the development of fibrocytes from peripheral blood mononuclear cells. We performed biomechanical evaluation of decellularized scaffolds prepared from lung explants from healthy control subjects and patients with scleroderma, using tensile testing and biochemical and proteomic analysis. Cells obtained from healthy controls and patients with SSc-related ILD were cultured on these scaffolds, and CD45+pro-ColIα1+ cells meeting the criteria for fibrocytes were quantified. The contribution of the neuromolecule netrin-1 to fibrosis was assessed using neutralizing antibodies in this system and by administering bleomycin via inhalation to netrin-1(+/-) mice. Compared with control lung scaffolds, lung scaffolds from patients with SSc-related ILD showed aberrant anatomy, enhanced stiffness, and abnormal ECM composition. Culture of control cells in lung scaffolds from patients with SSc-related ILD increased production of pro-ColIα1+ cells, which was stimulated by enhanced stiffness and abnormal ECM composition. Cells from patients with SSc-related ILD demonstrated increased pro-ColIα1 responsiveness to lung scaffolds from scleroderma patients but not enhanced stiffness. Enhanced detection of netrin-1-expressing CD14(low) cells in patients with SSc-related ILD was observed, and antibody-mediated netrin-1 neutralization attenuated detection of CD45+pro-ColIα1+ cells in all settings. Netrin-1(+/-) mice were

  12. Region-Specific Effect of the Decellularized Meniscus Extracellular Matrix on Mesenchymal Stem Cell-Based Meniscus Tissue Engineering.

    Science.gov (United States)

    Shimomura, Kazunori; Rothrauff, Benjamin B; Tuan, Rocky S

    2017-03-01

    The meniscus is the most commonly injured knee structure, and surgical repair is often ineffective. Tissue engineering-based repair or regeneration may provide a needed solution. Decellularized, tissue-derived extracellular matrices (ECMs) have received attention for their potential use as tissue-engineered scaffolds. In considering meniscus-derived ECMs (mECMs) for meniscus tissue engineering, it is noteworthy that the inner and outer regions of the meniscus have different structural and biochemical features, potentially directing the differentiation of cells toward region-specific phenotypes. To investigate the applicability of mECMs for meniscus tissue engineering by specifically comparing region-dependent effects of mECMs on 3-dimensional constructs seeded with human bone marrow mesenchymal stem cells (hBMSCs). Controlled laboratory study. Bovine menisci were divided into inner and outer halves and were minced, treated with Triton X-100 and DNase, and extracted with urea. Then, hBMSCs (1 × 10 6 cells/mL) were encapsulated in a photo-cross-linked 10% polyethylene glycol diacrylate scaffold containing mECMs (60 μg/mL) derived from either the inner or outer meniscus, with an ECM-free scaffold as a control. The cell-seeded constructs were cultured with chondrogenic medium containing recombinant human transforming growth factor β3 (TGF-β3) and were analyzed for expression of meniscus-associated genes as well as for the collagen (hydroxyproline) and glycosaminoglycan content as a function of time. Decellularization was verified by the absence of 4',6-diamidino-2-phenylindole (DAPI)-stained cell nuclei and a reduction in the DNA content. Quantitative real-time polymerase chain reaction showed that collagen type I expression was significantly higher in the outer mECM group than in the other groups, while collagen type II and aggrecan expression was highest in the inner mECM group. The collagen (hydroxyproline) content was highest in the outer mECM group, while the

  13. Biomaterials and mesenchymal stem cells for regenerative medicine.

    Science.gov (United States)

    Zippel, Nina; Schulze, Margit; Tobiasch, Edda

    2010-01-01

    The reconstruction of hard and soft tissues is a major challenge in regenerative medicine, since diseases or traumas are causing increasing numbers of tissue defects due to the aging of the population. Modern tissue engineering is increasingly using three-dimensional structured biomaterials in combination with stem cells as cell source, since mature cells are often not available in sufficient amounts or quality. Biomaterial scaffolds are developed that not only serve as cell carriers providing mechanical support, but actively influence cellular responses including cell attachment and proliferation. Chemical modifications such as the incorporation of chemotactic factors or cell adhesion molecules are examined for their ability to enhance tissue development successfully. E.g. growth factors have been investigated extensively as substances able to support cell growth, differentiation and angiogenesis. Thus, continuously new patents and studies are published, which are investigating the advantages and disadvantages of different biomaterials or cell types for the regeneration of specific tissues. This review focuses on biomaterials, including natural and synthetic polymers, ceramics and corresponding composites used as scaffold materials to support cell proliferation and differentiation for hard and soft tissues regeneration. In addition, the local delivery of drugs by scaffold biomaterials is discussed.

  14. The influence of biomaterials on endothelial cell thrombogenicity

    Science.gov (United States)

    McGuigan, Alison P.; Sefton, Michael V.

    2007-01-01

    Driven by tissue engineering and regenerative medicine, endothelial cells are being used in combination with biomaterials in a number of applications for the purpose of improving blood compatibility and host integration. Endothelialized vascular grafts are beginning to be used clinically with some success in some centers, while endothelial seeding is being explored as a means of creating a vasculature within engineered tissues. The underlying assumption of this strategy is that when cultured on artificial biomaterials, a confluent layer of endothelial cells maintain their non-thrombogenic phenotype. In this review the existing knowledge base of endothelial cell thrombogenicity cultured on a number of different biomaterials is summarized. The importance of selecting appropriate endpoint measures that are most reflective of overall surface thrombogenicity is the focus of this review. Endothelial cells inhibit thrombosis through three interconnected regulatory systems (1) the coagulation cascade (2) the cellular components of the blood such as leukocytes and platelets and (3) the complement cascade, and also through effects on fibrinolysis and vascular tone, the latter which influences blood flow. Thus, in order to demonstrate the thromobgenic benefit of seeding a biomaterial with EC, the conditions under which EC surfaces are more likely to exhibit lower thrombogenicity than unseeded biomaterial surfaces need to be consistent with the experimental context. The endpoints selected should be appropriate for the dominant thrombotic process that occurs under the given experimental conditions. PMID:17316788

  15. Surface modification of biomaterials and biomedical devices using additive manufacturing.

    Science.gov (United States)

    Bose, Susmita; Robertson, Samuel Ford; Bandyopadhyay, Amit

    2018-01-15

    The demand for synthetic biomaterials in medical devices, pharmaceutical products and, tissue replacement applications are growing steadily due to aging population worldwide. The use for patient matched devices is also increasing due to availability and integration of new technologies. Applications of additive manufacturing (AM) or 3D printing (3DP) in biomaterials have also increased significantly over the past decade towards traditional as well as innovative next generation Class I, II and III devices. In this review, we have focused our attention towards the use of AM in surface modified biomaterials to enhance their in vitro and in vivo performances. Specifically, we have discussed the use of AM to deliberately modify the surfaces of different classes of biomaterials with spatial specificity in a single manufacturing process as well as commented on the future outlook towards surface modification using AM. It is widely understood that the success of implanted medical devices depends largely on favorable material-tissue interactions. Additive manufacturing has gained traction as a viable and unique approach to engineered biomaterials, for both bulk and surface properties that improve implant outcomes. This review explores how additive manufacturing techniques have been and can be used to augment the surfaces of biomedical devices for direct clinical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Novel Biomaterials Used in Medical 3D Printing Techniques

    Directory of Open Access Journals (Sweden)

    Karthik Tappa

    2018-02-01

    Full Text Available The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  17. Novel Biomaterials Used in Medical 3D Printing Techniques.

    Science.gov (United States)

    Tappa, Karthik; Jammalamadaka, Udayabhanu

    2018-02-07

    The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  18. Biocomposites and hybrid biomaterials based on calcium orthophosphates

    Science.gov (United States)

    Dorozhkin, Sergey V.

    2011-01-01

    The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development. PMID:23507726

  19. The Freedom Solo pericardial stentless valve: Single-center experience, outcomes, and long-term durability.

    Science.gov (United States)

    Stanger, Olaf; Bleuel, Irina; Gisler, Fabian; Göber, Volkhard; Reineke, Sylvia; Gahl, Brigitta; Aymard, Thierry; Englberger, Lars; Carrel, Thierry; Tevaearai, Hendrik

    2015-07-01

    To report our institutional experience and long-term results with the Freedom Solo bovine pericardial stentless bioprosthesis (Sorin Group, Saluggia, Italy). Between January 2005 and November 2009, 149 patients (mean age, 73.6 ± 8.7 years; 68 [45.6%] female) underwent isolated (n = 75) or combined (n = 74) aortic valve replacement (AVR) using the Solo in our institution. Follow-up was 100% complete with an average follow-up time of 5.9 ± 2.6 years (maximum, 9.6 years) and a total of 885.3 patient years. Operative (30-day) mortality was 2.7% (1.3% for isolated AVR [n = 1] and 4.0% for combined procedures [n = 3]). All causes of death were not valve-related. Preoperative peak (mean) gradients of 74.2 ± 23.0 mm Hg (48.6 ± 16.3 mm Hg) decreased to 15.6 ± 5.4 mm Hg (8.8 ± 3.0 mm Hg) after AVR, and remained low for up to 9 years. The postoperative effective orifice area was 1.6 ± 0.57 cm(2), 1.90 ± 0.45 cm(2), 2.12 ± 0.48 cm(2), and 2.20 ± 0.66 cm(2) for the valve sizes 21, 23, 25, and 27, respectively, with absence of severe prosthesis-patient mismatch and 0.7% (n = 1) experienced moderate prosthesis-patient mismatch. During follow-up, 26 patients experienced structural valve deterioration (SVD) and 14 patients underwent explantation. Kaplan-Meier estimates for freedom from death, explantation, and SVD at 9 years averaged 0.57 (range, 0.47-0.66), 0.82 (range, 0.69-0.90), and 0.70 (range, 0.57-0.79), respectively. The Freedom Solo stentless aortic valve is safe to implant and shows excellent early and midterm hemodynamic performance. However, SVD was observed in a substantial number of patients after only 5-6 years and the need for explantation increased markedly, suggesting low durability. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  20. Lymphangiopathy in neurofibromatosis 1 manifesting with chylothorax, pericardial effusion, and leg edema

    Directory of Open Access Journals (Sweden)

    Finsterer J

    2013-09-01

    Full Text Available Josef Finsterer,1 Claudia Stollberger,2 Elisabeth Stubenberger,3 Sasan Tschakoschian4 1Krankenanstalt Rudolfstiftung, Vienna, Austria; 2Medical Department, Krankenanstalt Rudolfstiftung, Vienna, Austria; 3Thoracic Surgery Department, Vienna, Austria; 4Interne Lungenabt, Vienna, Austria Background: This case report documents the affliction of the lymph vessels as a phenotypic feature of neurofibromatosis-1 (NF-1. Methodology: Routine transthoracic echocardiography, computed tomography scan of the thorax, magnetic resonance angiography of the renal arteries, and conventional digital subtraction angiography were applied. Comprehensive NF-1 mutation analysis was carried out by fluorescence in situ hybridization analysis, long-range reverse transcriptase polymerase chain reaction, and multiple-ligation probe assay. All other investigations were performed using routine, well-established techniques. Results: The subject is a 34-year-old, half-Chinese male; NF-1 was suspected at age 15 years for the first time. His medical history included preterm birth, mild facial dysmorphism, "café au lait" spots, subcutaneous and paravertebral fibromas, multifocal tachycardia, atrial fibrillation, and heart failure in early infancy. Noncalcified bone fibromas in the femur and tibia were detected at age 8 years. Surgical right leg lengthening was carried out at age 11 years. Bilateral renal artery stenosis, stenosis and aneurysm of the superior mesenteric artery, and an infrarenal aortic stenosis were detected at age 15 years. Leg edema and ectasia of the basilar artery were diagnosed at age 18 years. After an episode with an erysipela at age 34 years, he developed pericardial and pleural effusion during a 4-month period. Stenosis of the left subclavian vein at the level of thoracic duct insertion was detected. After repeated pleural punctures, pleural effusion was interpreted as chylothorax. Reduction of lymph fluid production by diet and injection of talcum into

  1. A difficult case of esophageal and gastric double cancer with pleural and pericardial effusion following chemo-radiotherapy (CRT)

    International Nuclear Information System (INIS)

    Aoki, Taro; Kobayashi, Kenji; Tanida, Tsukasa; Hatano, Hisanori; Komori, Takamichi; Matsumoto, Takashi; Nishioka, Kiyonori; Uemura, Yoshio

    2007-01-01

    A 70-year-old man was presented with esophageal and gastric cancer pointed by his personal doctor in November 2002. Both of the esophageal and gastric cancer were diagnosed as multiples with cStage II and cStage IA, respectively. In consideration of the patient's quality of life (QOL), chemo-radiotherapy (CRT) for esophageal cancer was preceded, and then total gastrectomy was done. Although esophageal cancer was responded as being complete response (CR), 14 courses of FP therapy were added as supportive chemotherapy. Ten months following CRT, pericardial effusion was noticed, so that pericardiocentesis was performed. Also diuretic has been administered up to the present. Nineteen months following CRT, pleural effusion was noticed and thoracentesis was performed several times into both of the pleural cavities, and that was depending on the degree with OK-432 infusion. Consequently, the patient has been controlled well. As a treatment for esophageal and gastric double cancer, we chose CRT rather than esophagectomy because of the excessive invasiveness. Despite of CR, we have had a difficulty with pleural and pericardial effusions due to the late toxicity of radiotherapy. We need to pay attention to the late toxicity in the case of long-term survival following CRT. (author)

  2. Colchicine in Pericardial Disease: from the Underlying Biology and Clinical Benefits to the Drug-Drug Interactions in Cardiovascular Medicine.

    Science.gov (United States)

    Schenone, Aldo L; Menon, Venu

    2018-06-14

    This is an in-depth review on the mechanism of action, clinical utility, and drug-drug interactions of colchicine in the management of pericardial disease. Recent evidence about therapeutic targets on pericarditis has demonstrated that NALP3 inflammasome blockade is the cornerstone in the clinical benefits of colchicine. Such benefits extend from acute and recurrent pericarditis to transient constriction and post-pericardiotomy syndrome. Despite the increased utilization of colchicine in cardiovascular medicine, safety concerns remains unsolved regarding the long-term use of colchicine in the cardiac patient. Moreover, recent evidence has demonstrated that numerous cardiovascular medications, ranging from antihypertensive medication to antiarrhythmics, are known to interact with the CYP3A4 and/or P-gp system increasing the toxicity potential of colchicine. The use of adjunctive colchicine in the management of inflammatory pericardial diseases is standard of care in current practice. It is advised that a careful medication reconciliation with emphasis on pharmacokinetic is completed before prescribing colchicine in order to avoid harmful interaction by finding an alternative regimen or adjusting colchicine dosing.

  3. Biological Assessment of a Calcium Silicate Incorporated Hydroxyapatite-Gelatin Nanocomposite: A Comparison to Decellularized Bone Matrix

    Directory of Open Access Journals (Sweden)

    Dong Joon Lee

    2014-01-01

    Full Text Available Our laboratory utilized biomimicry to develop a synthetic bone scaffold based on hydroxyapatite-gelatin-calcium silicate (HGCS. Here, we evaluated the potential of HGCS scaffold in bone formation in vivo using the rat calvarial critical-sized defect (CSD. Twelve Sprague-Dawley rats were randomized to four groups: control (defect only, decellularized bone matrix (DECBM, and HGCS with and without multipotent adult progenitor cells (MAPCs. DECBM was prepared by removing all the cells using SDS and NH4OH. After 12 weeks, the CSD specimens were harvested to evaluate radiographical, histological, and histomorphometrical outcomes. The in vitro osteogenic effects of the materials were studied by focal adhesion, MTS, and alizarin red. Micro-CT analysis indicated that the DECBM and the HGCS scaffold groups developed greater radiopaque areas than the other groups. Bone regeneration, assessed using histological analysis and fluorochrome labeling, was the highest in the HGCS scaffold seeded with MAPCs. The DECBM group showed limited osteoinductivity, causing a gap between the implant and host tissue. The group grafted with HGCS+MAPCs resulting in twice as much new bone formation seems to indicate a role for effective bone regeneration. In conclusion, the novel HGCS scaffold could improve bone regeneration and is a promising carrier for stem cell-mediated bone regeneration.

  4. Bio-Functional Design, Application and Trends in Metallic Biomaterials

    Directory of Open Access Journals (Sweden)

    Ke Yang

    2017-12-01

    Full Text Available Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1 mechanical properties that mimic the host tissues; (2 sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3 a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed.

  5. Bio-Functional Design, Application and Trends in Metallic Biomaterials.

    Science.gov (United States)

    Yang, Ke; Zhou, Changchun; Fan, Hongsong; Fan, Yujiang; Jiang, Qing; Song, Ping; Fan, Hongyuan; Chen, Yu; Zhang, Xingdong

    2017-12-22

    Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1) mechanical properties that mimic the host tissues; (2) sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3) a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed.

  6. Research in Biomaterials and Tissue Engineering: Achievements and perspectives.

    Science.gov (United States)

    Ventre, Maurizio; Causa, Filippo; Netti, Paolo A; Pietrabissa, Riccardo

    2015-01-01

    Research on biomaterials and related subjects has been active in Italy. Starting from the very first examples of biomaterials and biomedical devices, Italian researchers have always provided valuable scientific contributions. This trend has steadily increased. To provide a rough estimate of this, it is sufficient to search PubMed, a free search engine accessing primarily the MEDLINE database of references and abstracts on life sciences and biomedical topics, with the keywords "biomaterials" or "tissue engineering" and sort the results by affiliation. Again, even though this is a crude estimate, the results speak for themselves, as Italy is the third European country, in terms of publications, with an astonishing 3,700 products in the last decade.

  7. Hydration behaviors of calcium silicate-based biomaterials.

    Science.gov (United States)

    Lee, Yuan-Ling; Wang, Wen-Hsi; Lin, Feng-Huie; Lin, Chun-Pin

    2017-06-01

    Calcium silicate (CS)-based biomaterials, such as mineral trioxide aggregate (MTA), have become the most popular and convincing material used in restorative endodontic treatments. However, the commercially available CS-based biomaterials all contain different minor additives, which may affect their hydration behaviors and material properties. The purpose of this study was to evaluate the hydration behavior of CS-based biomaterials with/without minor additives. A novel CS-based biomaterial with a simplified composition, without mineral oxides as minor additives, was produced. The characteristics of this biomaterial during hydration were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The hydration behaviors of commercially available gray and white MTAs with mineral oxide as minor additives were also evaluated for reference. For all three test materials, the XRD analysis revealed similar diffraction patterns after hydration, but MTAs presented a significant decrease in the intensities of Bi 2 O 3 -related peaks. SEM results demonstrated similar porous microstructures with some hexagonal and facetted crystals on the outer surfaces. In addition, compared to CS with a simplified composition, the FTIR plot indicated that hydrated MTAs with mineral oxides were better for the polymerization of calcium silicate hydrate (CSH), presenting Si-O band shifting to higher wave numbers, and contained more water crystals within CSH, presenting sharper bands for O-H bending. Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level. Copyright © 2016. Published by Elsevier B.V.

  8. Biomaterials approaches to treating implant-associated osteomyelitis.

    Science.gov (United States)

    Inzana, Jason A; Schwarz, Edward M; Kates, Stephen L; Awad, Hani A

    2016-03-01

    Orthopaedic devices are the most common surgical devices associated with implant-related infections and Staphylococcus aureus (S. aureus) is the most common causative pathogen in chronic bone infections (osteomyelitis). Treatment of these chronic bone infections often involves combinations of antibiotics given systemically and locally to the affected site via a biomaterial spacer. The gold standard biomaterial for local antibiotic delivery against osteomyelitis, poly(methyl methacrylate) (PMMA) bone cement, bears many limitations. Such shortcomings include limited antibiotic release, incompatibility with many antimicrobial agents, and the need for follow-up surgeries to remove the non-biodegradable cement before surgical reconstruction of the lost bone. Therefore, extensive research pursuits are targeting alternative, biodegradable materials to replace PMMA in osteomyelitis applications. Herein, we provide an overview of the primary clinical treatment strategies and emerging biodegradable materials that may be employed for management of implant-related osteomyelitis. We performed a systematic review of experimental biomaterials systems that have been evaluated for treating established S. aureus osteomyelitis in an animal model. Many experimental biomaterials were not decisively more efficacious for infection management than PMMA when delivering the same antibiotic. However, alternative biomaterials have reduced the number of follow-up surgeries, enhanced the antimicrobial efficacy by delivering agents that are incompatible with PMMA, and regenerated bone in an infected defect. Understanding the advantages, limitations, and potential for clinical translation of each biomaterial, along with the conditions under which it was evaluated (e.g. animal model), is critical for surgeons and researchers to navigate the plethora of options for local antibiotic delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Integrin-directed modulation of macrophage responses to biomaterials.

    Science.gov (United States)

    Zaveri, Toral D; Lewis, Jamal S; Dolgova, Natalia V; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2014-04-01

    Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Biomaterials and host versus graft response: A short review

    Science.gov (United States)

    Velnar, Tomaz; Bunc, Gorazd; Klobucar, Robert; Gradisnik, Lidija

    2016-01-01

    Biomaterials and biotechnology are increasing becoming an important area in modern medicine. The main aim in this area is the development of materials, which are biocompatible to normal tissue. Tissue-implant interactions with molecular, biological and cellular characteristics at the implant-tissue interface are important for the use and development of implants. Implantation may cause an inflammatory and immune response in tissue, foreign body reaction, systemic toxicity and imminent infection. Tissue-implant interactions determine the implant life-period. The aims of the study are to consider the biological response to implants. Biomaterials and host reactions to implants and their mechanisms are also briefly discussed. PMID:26894284

  11. Oligoaniline-based conductive biomaterials for tissue engineering.

    Science.gov (United States)

    Zarrintaj, Payam; Bakhshandeh, Behnaz; Saeb, Mohammad Reza; Sefat, Farshid; Rezaeian, Iraj; Ganjali, Mohammad Reza; Ramakrishna, Seeram; Mozafari, Masoud

    2018-05-01

    The science and engineering of biomaterials have improved the human life expectancy. Tissue engineering is one of the nascent strategies with an aim to fulfill this target. Tissue engineering scaffolds are one of the most significant aspects of the recent tissue repair strategies; hence, it is imperative to design biomimetic substrates with suitable features. Conductive substrates can ameliorate the cellular activity through enhancement of cellular signaling. Biocompatible polymers with conductivity can mimic the cells' niche in an appropriate manner. Bioconductive polymers based on aniline oligomers can potentially actualize this purpose because of their unique and tailoring properties. The aniline oligomers can be positioned within the molecular structure of other polymers, thus painter acting with the side groups of the main polymer or acting as a comonomer in their backbone. The conductivity of oligoaniline-based conductive biomaterials can be tailored to mimic the electrical and mechanical properties of targeted tissues/organs. These bioconductive substrates can be designed with high mechanical strength for hard tissues such as the bone and with high elasticity to be used for the cardiac tissue or can be synthesized in the form of injectable hydrogels, particles, and nanofibers for noninvasive implantation; these structures can be used for applications such as drug/gene delivery and extracellular biomimetic structures. It is expected that with progress in the fields of biomaterials and tissue engineering, more innovative constructs will be proposed in the near future. This review discusses the recent advancements in the use of oligoaniline-based conductive biomaterials for tissue engineering and regenerative medicine applications. The tissue engineering applications of aniline oligomers and their derivatives have recently attracted an increasing interest due to their electroactive and biodegradable properties. However, no reports have systematically reviewed

  12. Photon absorption of calcium phosphate-based dental biomaterials

    International Nuclear Information System (INIS)

    Singh, V. P.; Badiger, N. M.; Tekin, H. O.; Kara, U.; Vega C, H. R.; Fernandes Z, M. A.

    2017-10-01

    Effective atomic number and mass energy absorption buildup factors for four calcium phosphate-based biomaterials used in dental treatments were calculated for 0.015 to 15 MeV photons. The mass energy absorption coefficients were calculated for 0.5 to 40 mean free paths of photons. In the energy region important for dental radiology the Zeff for all studied biomaterials are larger in comparison to larger energies. In x-rays for dental radiology and the energy absorption buildup factors are low, however CbMDI bio material shows a resonance at 80 keV. (Author)

  13. An Overview of Biomaterials in Periodontology and Implant Dentistry

    Directory of Open Access Journals (Sweden)

    Young-Dan Cho

    2017-01-01

    Full Text Available Material is a crucial factor for the restoration of the tooth or periodontal structure in dentistry. Various biomaterials have been developed and clinically applied for improved periodontal tissue regeneration and osseointegration, especially in periodontology and dental implantology. Furthermore, the biomimetic approach has been the subject of active research in recent years. In this review, the most widely studied biomaterials (bone graft material, barrier membrane, and growth or differentiation factors and biomimetic approaches to obtain optimal tissue regeneration by making the environment almost similar to that of the extracellular matrix are discussed and specifically highlighted.

  14. Wettability and surface free energy of polarised ceramic biomaterials

    International Nuclear Information System (INIS)

    Nakamura, Miho; Hori, Naoko; Namba, Saki; Yamashita, Kimihiro; Toyama, Takeshi; Nishimiya, Nobuyuki

    2015-01-01

    The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces. (note)

  15. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    International Nuclear Information System (INIS)

    Safonov, V; Zykova, A; Smolik, J; Rogovska, R; Donkov, N; Goltsev, A; Dubrava, T; Rassokha, I; Georgieva, V

    2012-01-01

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  16. Three-dimensional analysis of micro- and nanostructure of biomaterials and cells by method of scanning probe nanotomography

    Directory of Open Access Journals (Sweden)

    A. E. Efimov

    2017-01-01

    Full Text Available Aim: to perform a three-dimensional analysis of micro- and nanosctucture and quantitative morphological parameters of alginate spherical microcarriers and porous regenerated silk macrocarriers modifi ed by microparticles of decellularized rat liver matrix and human hepatoma HepG2 cells adhered to micro- and macro carriers. Materials and methods. Three-dimensional porous matrices made from regenerated silk by salt leaching technique and alginate spherical microcarriers fabricated by encapsulation were vitalized by human hepatome HepG2 cells. Study of three-dimensional structure of cells and micro- and macro carriers was carried out at –120 °С by scanning probe cryonanotomography technique with use of experimental setup combining cryoultramicrotome and scanning probe microscope.Results. Three-dimensional nanotomographical reconstructions of HepG2 cells adhered to macropore wall of regenerated silk macrocarrier and to spherical alginate microcarrier are obtained. Morphological parameters (mean roughness, effective surface area and autocorrelation length are determined for surfaces of macro and microcarriers and adhered cells. The determined mean roughness of alginate microcarrier surface is 76.4 ± 7.5 nm, while that of surface of macropore wall of regenerated silk macrocarrier is 133.8 ± 16.2 nm. At the same time mean roughness of cells adhered to micro- and macrocarriers are 118.5 ± 9.0 и 158.8 ± 21.6 nm correspondingly. Three-dimensional reconstructions of intracellular compartments with dimensions from 140 to 500 nm are also obtained.Conclusion. Obtained as a result of study quantitative morphology characteristics of surfaces of cell carriers and adhered cells show signifi cant degree of correlation of morphological parameters of cells and their carriers. Use of scanning probe cryonanotomography technique for three-dimensional analysis of structure and characteristics of biomaterials, cells and bio-artifi cial cellular systems

  17. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials.

    Science.gov (United States)

    Franz, Sandra; Rammelt, Stefan; Scharnweber, Dieter; Simon, Jan C

    2011-10-01

    A key for long-term survival and function of biomaterials is that they do not elicit a detrimental immune response. As biomaterials can have profound impacts on the host immune response the concept emerged to design biomaterials that are able to trigger desired immunological outcomes and thus support the healing process. However, engineering such biomaterials requires an in-depth understanding of the host inflammatory and wound healing response to implanted materials. One focus of this review is to outline the up-to-date knowledge on immune responses to biomaterials. Understanding the complex interactions of host response and material implants reveals the need for and also the potential of "immunomodulating" biomaterials. Based on this knowledge, we discuss strategies of triggering appropriate immune responses by functional biomaterials and highlight recent approaches of biomaterials that mimic the physiological extracellular matrix and modify cellular immune responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Dosimetric predictors of radiation-induced pericardial effusion in esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, Ichiro; Watanabe, Shigenobu [Yokohama City University Medical Center, Department of Radiation Oncology, Minami-ku, Yokohama, Kanagawa-prefecture (Japan); Sakamaki, Kentaro [Yokohama City University, Department of Biostatistics, Yokohama City University, Yokohama (Japan); Ogino, Yuka [Tokyo Institute of Technology, Department of Systems and Control Engineering, Tokyo (Japan); Kunisaki, Chikara [Yokohama City University Medical Center, Department of Surgery, Gastroenterological Center, Yokohama (Japan); Kimura, Kazuo [Yokohama City University Medical Center, Division of Cardiology, Yokohama (Japan)

    2017-07-15

    To evaluate the dose-volume parameters of the pericardium and heart in order to reduce the risk of radiation-induced pericardial effusion (PE) and symptomatic PE (SPE) in esophageal cancer patients treated with concurrent chemoradiotherapy. In 86 of 303 esophageal cancer patients, follow-up CT was obtained at least 24 months after concurrent chemoradiotherapy. Correlations between clinical factors, including risk factors for cardiac disease, dosimetric factors, and the incidence of PE and SPE after radiotherapy were analyzed using Cox proportional hazard regression analysis. Significant dosimetric factors with the highest hazard ratios were investigated using zones separated according to their distance from esophagus. PE developed in 49 patients. Univariate analysis showed the mean heart dose, heart V{sub 5}-V{sub 55}, mean pericardium dose, and pericardium V{sub 5}-V{sub 50} to all significantly affect the incidence of PE. Additionally, body surface area was correlated with the incidence of PE in multivariate analysis. Grade 3 and 4 SPE developed in 5 patients. The pericardium V{sub 50} and pericardium D{sub 10} significantly affected the incidence of SPE. The pericardium V{sub 50} in patients with SPE ranged from 17.1 to 21.7%. Factors affecting the incidence of SPE were the V{sub 50} of the pericardium zones within 3 cm and 4 cm of the esophagus. A wide range of radiation doses to the heart and pericardium were related to the incidence of PE. A pericardium V{sub 50} ≤ 17% is important to avoid symptomatic PE in esophageal cancer patients treated with concurrent chemoradiotherapy. (orig.) [German] Beurteilung der Dosis-Volumen-Parameter fuer Perikard und Herz zur Risikoreduzierung eines strahleninduzierten Perikardergusses (PE) und eines symptomatischen PE (SPE) bei mit kombinierter Strahlenchemotherapie behandelten Speiseroehrenkrebspatienten. Bei 86 von 303 Speiseroehrenkrebspatienten wurde mindestens 24 Monate nach der Strahlenchemotherapie ein Kontroll

  19. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms

    NARCIS (Netherlands)

    Barradas, A.M.C.; Yuan, Huipin; van Blitterswijk, Clemens; Habibovic, Pamela

    2010-01-01

    In the past thirty years, a number of biomaterials have shown the ability to induce bone formation when implanted at heterotopic sites, an ability known as osteoinduction. Such biomaterials – osteoinductive biomaterials – hold great potential for the development of new therapies in bone

  20. Macrophage phagocytic activity toward adhering staphylococci on cationic and patterned hydrogel coatings versus common biomaterials

    NARCIS (Netherlands)

    Da Silva Domingues, Joana; Roest, Steven; Wang, Yi; van der Mei, Henny C.; Libera, Matthew; van Kooten, Theo G.; Busscher, Henk J.

    Biomaterial-associated-infection causes failure of biomaterial implants. Many new biomaterials have been evaluated for their ability to inhibit bacterial colonization and stimulate tissue-cell-integration, but neglect the role of immune cells. This paper compares macrophage phagocytosis of adhering

  1. The Effect of Biomaterials Used for Tissue Regeneration Purposes on Polarization of Macrophages

    NARCIS (Netherlands)

    G.S.A. ter Hoeve-Boersema (Simone); N. Grotenhuis (Nienke); Y. Bayon (Yves); J.F. Lange (Johan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    textabstractActivation of macrophages is critical in the acute phase of wound healing after implantation of surgical biomaterials. To understand the response of macrophages, they are often cultured in vitro on biomaterials. Since a wide range of biomaterials is currently used in the clinics, we

  2. Pericardial tissue valves and Gore-Tex conduits as an alternative for right ventricular outflow tract replacement in children.

    Science.gov (United States)

    Allen, Bradley S; El-Zein, Chawki; Cuneo, Betina; Cava, Joseph P; Barth, Mary Jane; Ilbawi, Michel N

    2002-09-01

    There is still no perfect conduit for reconstruction of the right ventricular outflow tract (RVOT) in children. Homografts are not always available in the appropriate size, and degenerate in a few years. This study evaluates the pericardial valve with Gore-Tex conduit as an alternative for RVOT construction. From January 1, 1993, to September 30, 1999, a pericardial tissue valve was inserted in all patients undergoing RVOT reconstruction or pulmonary valve replacement (PVR) who were large enough to accommodate a tissue valve. In patients without a native main pulmonary artery, a new technique was used to construct an RV-PA conduit out of a flat sheet of Gore-Tex, as Dacron frequently leads to stenosis. Data were collected by retrospective review, follow-up echocardiograms, and assessment by a single cardiologist. There were 48 patients, 22 undergoing a PVR alone and 26 a RV-PA valved Gore-Tex conduit. Diagnosis included tetralogy of Fallot (n = 25); truncus arteriosis (n = 9); ventricular septal defect with PA (n = 5); DORV (n = 4); D-TGA with PS (n = 2); and 1 each IAA with sub AS, VSD with PI, and PS s/p Ross procedure. Patient age ranged from 3 to 33 years and 98% were reoperations. The valve sizes ranged from 19 to 33 mm and the median hospital length of stay was 4 days. There were 2 (4.2%) perioperative and 1 (2.1%) late deaths, none related to the valve or Gore-Tex conduit. At a follow-up of 15 to 86 months (mean 43 +/- 16 months), all remaining 45 patients are New York Heart Association class I, all valves are functional, and no patient has required valve or conduit replacement or revision; more importantly, echocardiogram revealed no significant valve or conduit stenosis (mean gradient 16 +/- 8 mm Hg) and no evidence of regurgitation or structural degeneration. A pericardial tissue valve and Gore-Tex conduit provides a reliable alternative for RVOT reconstruction in pediatric patients. It is readily available, molds in the limited retrosternal space, and

  3. Some Biomaterials based on Collagen in Human Health care

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Some Biomaterials based on Collagen in Human Health care. Ophthalmology. Wound healing. Burn Dressing. Tumor Treatment. Tissue Engineered devices. for cardio-vascular functions; For managing chronic illnesses including diabetic ulcers and foot. Smart shoe.

  4. Microarrays for the evaluation of cell-biomaterial surface interactions

    Science.gov (United States)

    Thissen, H.; Johnson, G.; McFarland, G.; Verbiest, B. C. H.; Gengenbach, T.; Voelcker, N. H.

    2007-01-01

    The evaluation of cell-material surface interactions is important for the design of novel biomaterials which are used in a variety of biomedical applications. While traditional in vitro test methods have routinely used samples of relatively large size, microarrays representing different biomaterials offer many advantages, including high throughput and reduced sample handling. Here, we describe the simultaneous cell-based testing of matrices of polymeric biomaterials, arrayed on glass slides with a low cell-attachment background coating. Arrays were constructed using a microarray robot at 6 fold redundancy with solid pins having a diameter of 375 μm. Printed solutions contained at least one monomer, an initiator and a bifunctional crosslinker. After subsequent UV polymerisation, the arrays were washed and characterised by X-ray photoelectron spectroscopy. Cell culture experiments were carried out over 24 hours using HeLa cells. After labelling with CellTracker ® Green for the final hour of incubation and subsequent fixation, the arrays were scanned. In addition, individual spots were also viewed by fluorescence microscopy. The evaluation of cell-surface interactions in high-throughput assays as demonstrated here is a key enabling technology for the effective development of future biomaterials.

  5. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  6. Gradient biomaterials and their influences on cell migration

    Science.gov (United States)

    Wu, Jindan; Mao, Zhengwei; Tan, Huaping; Han, Lulu; Ren, Tanchen; Gao, Changyou

    2012-01-01

    Cell migration participates in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. The cells specifically migrate to destiny sites induced by the gradually varying concentration (gradient) of soluble signal factors and the ligands bound with the extracellular matrix in the body during a wound healing process. Therefore, regulation of the cell migration behaviours is of paramount importance in regenerative medicine. One important way is to create a microenvironment that mimics the in vivo cellular and tissue complexity by incorporating physical, chemical and biological signal gradients into engineered biomaterials. In this review, the gradients existing in vivo and their influences on cell migration are briefly described. Recent developments in the fabrication of gradient biomaterials for controlling cellular behaviours, especially the cell migration, are summarized, highlighting the importance of the intrinsic driving mechanism for tissue regeneration and the design principle of complicated and advanced tissue regenerative materials. The potential uses of the gradient biomaterials in regenerative medicine are introduced. The current and future trends in gradient biomaterials and programmed cell migration in terms of the long-term goals of tissue regeneration are prospected. PMID:23741610

  7. Antibiotic-Releasing Silk Biomaterials for Infection Prevention and Treatment

    OpenAIRE

    Pritchard, Eleanor M.; Valentin, Thomas; Panilaitis, Bruce; Omenetto, Fiorenzo; Kaplan, David L.

    2012-01-01

    Effective treatment of infections in avascular and necrotic tissues can be challenging due to limited penetration into the target tissue and systemic toxicities. Controlled release polymer implants have the potential to achieve the high local concentrations needed while also minimizing systemic exposure. Silk biomaterials possess unique characteristics for antibiotic delivery including biocompatibility, tunable biodegradation, stabilizing effects, water-based processing and diverse material f...

  8. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  9. PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants

    Science.gov (United States)

    Kurtz, S. M.; Devine, J. N.

    2007-01-01

    Since the 1980s, polyaryletherketones (PAEKs) have been increasingly employed as biomaterials for trauma, orthopedic, and spinal implants. We have synthesized the extensive polymer science literature as it relates to structure, mechanical properties, and chemical resistance of PAEK biomaterials. With this foundation, one can more readily appreciate why this family of polymers will be inherently strong, inert, and biocompatible. Due to its relative inertness, PEEK biomaterials are an attractive platform upon which to develop novel bioactive materials, and some steps have already been taken in that direction, with the blending of HA and TCP into sintered PEEK. However, to date, blended HA-PEEK composites have involved a trade-off in mechanical properties in exchange for their increased bioactivity. PEEK has had the greatest clinical impact in the field of spine implant design, and PEEK is now broadly accepted as a radiolucent alternative to metallic biomaterials in the spine community. For mature fields, such as total joint replacements and fracture fixation implants, radiolucency is an attractive but not necessarily critical material feature. PMID:17686513

  10. A Multidisciplined Teaching Reform of Biomaterials Course for Undergraduate Students

    Science.gov (United States)

    Li, Xiaoming; Zhao, Feng; Pu, Fang; Liu, Haifeng; Niu, Xufeng; Zhou, Gang; Li, Deyu; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Watari, Fumio

    2015-01-01

    The biomaterials science has advanced in a high speed with global science and technology development during the recent decades, which experts predict to be more obvious in the near future with a more significant position for medicine and health care. Although the three traditional subjects, such as medical science, materials science and biology…

  11. Logic of Biomaterial devices from CLRI for wound management

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Logic of Biomaterial devices from CLRI for wound management. Designing of biodegradable scaffolds. Designing the scaffold. Host drugs and growth factors. Design controlled drug release only to the wound area (based on pH differentials). Smartness is built in ...

  12. Standardization of incubation conditions for hemolysis testing of biomaterials

    NARCIS (Netherlands)

    Henkelman, Sandra; Rakhorst, Gerhard; Blanton, John; van Oeveren, Willem

    2009-01-01

    Hemolysis testing is the most common method to determine the hemocompatibility properties of biomaterials. There is however no consensus on the procedures of hemolysis testing due to insufficient comparative studies on the quality of the red blood cells used and the experimental conditions of

  13. Harnessing the potential of biomaterials for brain repair after stroke

    Science.gov (United States)

    Tuladhar, Anup; Payne, Samantha L.; Shoichet, Molly S.

    2018-03-01

    Stroke is a devastating disease for which no clinical treatment exists to regenerate lost tissue. Strategies for brain repair in animal models of stroke include the delivery of drug or cell-based therapeutics; however, the complex anatomy and functional organization of the brain presents many challenges. Biomaterials may alleviate some of these challenges by providing a scaffold, localizing the therapy to the site of action, and/or modulating cues to brain cells. Here, the challenges associated with delivery of therapeutics to the brain and the biomaterial strategies used to overcome these challenges are described. For example, innovative hydrogel delivery systems have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. Novel treatments, such as electrical stimulation of transplanted cells and the delivery of factors for the direct reprogramming of astrocytes into neurons, may be further enhanced by biomaterial delivery systems. Ultimately, improved clinical translation will be achieved by combining clinically relevant therapies with biomaterials strategies.

  14. Engineering Biomaterials to Influence Oligodendroglial Growth, Maturation, and Myelin Production.

    Science.gov (United States)

    Russell, Lauren N; Lampe, Kyle J

    2016-01-01

    Millions of people suffer from damage or disease to the nervous system that results in a loss of myelin, such as through a spinal cord injury or multiple sclerosis. Diminished myelin levels lead to further cell death in which unmyelinated neurons die. In the central nervous system, a loss of myelin is especially detrimental because of its poor ability to regenerate. Cell therapies such as stem or precursor cell injection have been investigated as stem cells are able to grow and differentiate into the damaged cells; however, stem cell injection alone has been unsuccessful in many areas of neural regeneration. Therefore, researchers have begun exploring combined therapies with biomaterials that promote cell growth and differentiation while localizing cells in the injured area. The regrowth of myelinating oligodendrocytes from neural stem cells through a biomaterials approach may prove to be a beneficial strategy following the onset of demyelination. This article reviews recent advancements in biomaterial strategies for the differentiation of neural stem cells into oligodendrocytes, and presents new data indicating appropriate properties for oligodendrocyte precursor cell growth. In some cases, an increase in oligodendrocyte differentiation alongside neurons is further highlighted for functional improvements where the biomaterial was then tested for increased myelination both in vitro and in vivo. © 2016 S. Karger AG, Basel.

  15. Role of biomaterials in neurorestoration after spinal cord injuries

    Directory of Open Access Journals (Sweden)

    Ioana Stanescu

    2016-05-01

    Full Text Available Despite advances in knowledge and technology SCI remains one of the most severe and disabling disorders affecting young people. Spinal cord lesions result in permanent loss of motor, sensory and autonomic functions, causing an enormous impact on patient’s personal, social, familial and professional life. There is currently no effective treatment available to improve severe neurologic deficits and to decrease disability. Tissue-engineering techniques have developed a variety of scaffolds, made by biomaterials, used alone, incapsulated with cells or embedded with molecules, which are delivered to lesion site to achieve neural regeneration. Biomaterials may provide structural support and/or serve as a delivery vehicle for factors to arrest growth inhibition and promote axonal growth. Biomaterials acts like cell-carriers for the injury site, but also as reservoirs for growth factors or biomolecules. Hydrogels are a promising therapeutical strategy in spinal cord repair. Nano-fibers provide a three-dimensional network, which mimic closely the native extracellular matrix, thus offering a better support for cell attachment and proliferation than traditional micro-structure. New strategies like pharmacologic treatments, cell therapies, gene therapies and biomaterial tissue engineering should combine to increase their synergistic effect and to obtain the expected functional recovery in spinal cord injured patients

  16. Current and future biocompatibility aspects of biomaterials for hip prosthesis

    Directory of Open Access Journals (Sweden)

    Amit Aherwar

    2015-12-01

    Full Text Available The field of biomaterials has turn into an electrifying area because these materials improve the quality and longevity of human life. The first and foremost necessity for the selection of the biomaterial is the acceptability by human body. However, the materials used in hip implants are designed to sustain the load bearing function of human bones for the start of the patient’s life. The most common classes of biomaterials used are metals, polymers, ceramics, composites and apatite. These five classes are used individually or in combination with other materials to form most of the implantation devices in recent years. Numerous current and promising new biomaterials i.e. metallic, ceramic, polymeric and composite are discussed to highlight their merits and their frailties in terms of mechanical and metallurgical properties in this review. It is concluded that current materials have their confines and there is a need for more refined multi-functional materials to be developed in order to match the biocompatibility, metallurgical and mechanical complexity of the hip prosthesis.

  17. Advances in the development of supramolecular polymeric biomaterials

    NARCIS (Netherlands)

    Goor, O.J.G.M.; Dankers, P.Y.W.

    2016-01-01

    Regenerative medicine applications aim to recreate or repair the living functional environment of the human body. Many biomaterials that are designed and synthesized in recent years are inspired by the extracellular matrix (ECM) that is responsible for mechanical, structural, and biochemical support

  18. Cell Physiology and Interactions of Biomaterials and Matrices

    Czech Academy of Sciences Publication Activity Database

    Hunkeler, D.; Vaňková, Radomíra

    2003-01-01

    Roč. 28, č. 6 (2003), s. 193-197 ISSN 0032-3918 R&D Projects: GA MŠk OC 840.20 Institutional research plan: CEZ:AV0Z5038910 Keywords : Biomaterials * Cell physiology * Encapsulation Subject RIV: CE - Biochemistry

  19. Biomaterials Influence Macrophage-Mesenchymal Stem Cell Interaction In Vitro

    NARCIS (Netherlands)

    N. Grotenhuis (Nienke); S.F. De Witte (Samantha Fh); G.J.V.M. van Osch (Gerjo); Y. Bayon (Yves); J.F. Lange (Johan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    textabstractBackground: Macrophages and mesenchymal stem cells (MSCs) are important cells in wound healing. We hypothesized that the cross-talk between macrophages and adipose tissue-derived MSCs (ASCs) is biomaterial dependent, thereby influencing processes involved in wound healing. Materials and

  20. Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials

    NARCIS (Netherlands)

    Habibovic, Pamela; van der Valk, C.M.; van Blitterswijk, Clemens; de Groot, K.

    2004-01-01

    In this study, we investigated the influence of octacalcium phosphate (OCP) coating on osteoinductive behaviour of the biomaterials. Porous titanium alloy (Ti6Al4V), hydroxyapatite (HA), biphasic calcium phosphate (BCP) and polyethylene glyco terephtalate/polybuthylene terephtalate (PEGT–PBT)