On the decay of homogeneous isotropic turbulence
Skrbek, L.; Stalp, Steven R.
2000-08-01
Decaying homogeneous, isotropic turbulence is investigated using a phenomenological model based on the three-dimensional turbulent energy spectra. We generalize the approach first used by Comte-Bellot and Corrsin [J. Fluid Mech. 25, 657 (1966)] and revised by Saffman [J. Fluid Mech. 27, 581 (1967); Phys. Fluids 10, 1349 (1967)]. At small wave numbers we assume the spectral energy is proportional to the wave number to an arbitrary power. The specific case of power 2, which follows from the Saffman invariant, is discussed in detail and is later shown to best describe experimental data. For the spectral energy density in the inertial range we apply both the Kolmogorov -5/3 law, E(k)=Cɛ2/3k-5/3, and the refined Kolmogorov law by taking into account intermittency. We show that intermittency affects the energy decay mainly by shifting the position of the virtual origin rather than altering the power law of the energy decay. Additionally, the spectrum is naturally truncated due to the size of the wind tunnel test section, as eddies larger than the physical size of the system cannot exist. We discuss effects associated with the energy-containing length scale saturating at the size of the test section and predict a change in the power law decay of both energy and vorticity. To incorporate viscous corrections to the model, we truncate the spectrum at an effective Kolmogorov wave number kη=γ(ɛ/v3)1/4, where γ is a dimensionless parameter of order unity. We show that as the turbulence decays, viscous corrections gradually become more important and a simple power law can no longer describe the decay. We discuss the final period of decay within the framework of our model, and show that care must be taken to distinguish between the final period of decay and the change of the character of decay due to the saturation of the energy containing length scale. The model is applied to a number of experiments on decaying turbulence. These include the downstream decay of turbulence in
A generalized self-similar spectrum for decaying homogeneous and isotropic turbulence
Yang, Pingfan; Pumir, Alain; Xu, Haitao
2017-11-01
The spectrum of turbulence in dissipative and inertial range can be described by the celebrated Kolmogorov theory. However, there is no general solution of the spectrum in the large scales, especially for statistically unsteady turbulent flows. Here we propose a generalized self-similar form that contains two length-scales, the integral scale and the Kolmogorov scale, for decaying homogeneous and isotropic turbulence. With the help of the local spectral energy transfer hypothesis by Pao (Phys. Fluids, 1965), we derive and solve for the explicit form of the energy spectrum and the energy transfer function, from which the second- and third-order velocity structure functions can also be obtained. We check and verify our assumptions by direct numerical simulations (DNS), and our solutions of the velocity structure functions compare well with hot-wire measurements of high-Reynolds number wind-tunnel turbulence. Financial supports from NSFC under Grant Number 11672157, from the Alexander von Humboldt Foundation, and from the MPG are gratefully acknowledged.
Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation
Swanson, R. C.; Rumsey, Christopher L.; Rubinstein, Robert; Balakumar, Ponnampalam; Zang, Thomas A.
2012-01-01
Numerical simulations of decaying homogeneous isotropic turbulence are performed with both low-order and high-order spatial discretization schemes. The turbulent Mach and Reynolds numbers for the simulations are 0.2 and 250, respectively. For the low-order schemes we use either second-order central or third-order upwind biased differencing. For higher order approximations we apply weighted essentially non-oscillatory (WENO) schemes, both with linear and nonlinear weights. There are two objectives in this preliminary effort to investigate possible schemes for large eddy simulation (LES). One is to explore the capability of a widely used low-order computational fluid dynamics (CFD) code to perform LES computations. The other is to determine the effect of higher order accuracy (fifth, seventh, and ninth order) achieved with high-order upwind biased WENO-based schemes. Turbulence statistics, such as kinetic energy, dissipation, and skewness, along with the energy spectra from simulations of the decaying turbulence problem are used to assess and compare the various numerical schemes. In addition, results from the best performing schemes are compared with those from a spectral scheme. The effects of grid density, ranging from 32 cubed to 192 cubed, on the computations are also examined. The fifth-order WENO-based scheme is found to be too dissipative, especially on the coarser grids. However, with the seventh-order and ninth-order WENO-based schemes we observe a significant improvement in accuracy relative to the lower order LES schemes, as revealed by the computed peak in the energy dissipation and by the energy spectrum.
Yamamoto, Keisuke; Nakayama, Katsuyuki
2017-11-01
Development or decay of a vortex in terms of the local flow topology has been shown to be highly correlated with its topological feature, i.e., vortical flow symmetry (skewness), in an isotropic homogeneous turbulence. Since a turbulent flow might include vortices in multi-scales, the present study investigates the characteristics of this relationships between the development or decay of a vortex and the vortical flow symmetry in several scales in an isotropic homogeneous turbulence in low Reynols number. Swirlity is a physical quantity of an intensity of swirling in terms of the geometrical average of the azimuthal flow, and represents the behavior of the development or decay of a vortex in this study. Flow scales are decomposed into three scales specified by the Fourier coefficients of the velocity applying the band-pass filter. The analysis shows that vortices in the different scales have a universal feature that the time derivative of swirlity and that of the symmetry have high correlation. Especially they have more stronger correlation at their birth and extinction.
The self-preservation of dissipation elements in homogeneous isotropic decaying turbulence
Gauding, Michael; Danaila, Luminita; Varea, Emilien
2017-11-01
The concept of self-preservation has played an important role in shaping the understanding of turbulent flows. The assumption of complete self-preservation imposes certain constrains on the dynamics of the flow, allowing to express statistics by choosing an appropriate unique length scale. Another approach in turbulence research is to study the dynamics of geometrical objects, like dissipation elements (DE). DE appear as coherent space-filling structures in turbulent scalar fields and can be parameterized by the linear length between their ending points. This distance is a natural length scale that provides information about the local structure of turbulence. In this work, the evolution of DE in decaying turbulence is investigated from a self-preservation perspective. The analysis is based on data obtained from direct numerical simulations (DNS). The temporal evolution of DE is governed by a complex process, involving cutting and reconnection events, which change the number and consequently also the length of DE. An analysis of the evolution equation for the probability density function of the length of DE is carried out and leads to specific constraints for the self-preservation of DE, which are justified from DNS. Financial support was provided by Labex EMC3 (under the Grant VAVIDEN), Normandy Region and FEDER.
Depression of nonlinearity in decaying isotropic turbulence
International Nuclear Information System (INIS)
Kraichnan, R.H.; Panda, R.
1988-01-01
Simulations of decaying isotropic Navier--Stokes turbulence exhibit depression of the normalized mean-square nonlinear term to 57% of the value for a Gaussianly distributed velocity field with the same instantaneous velocity spectrum. Similar depression is found for dynamical models with random coupling coefficients (modified Betchov models). This suggests that the depression is dynamically generic rather than specifically driven by alignment of velocity and vorticity
Valente, Pedro C.; da Silva, Carlos B.; Pinho, Fernando T.
2013-11-01
We report a numerical study of statistically steady and decaying turbulence of FENE-P fluids for varying polymer relaxation times ranging from the Kolmogorov dissipation time-scale to the eddy turnover time. The total turbulent kinetic energy dissipation is shown to increase with the polymer relaxation time in both steady and decaying turbulence, implying a ``drag increase.'' If the total power input in the statistically steady case is kept equal in the Newtonian and the viscoelastic simulations the increase in the turbulence-polymer energy transfer naturally lead to the previously reported depletion of the Newtonian, but not the overall, kinetic energy dissipation. The modifications to the nonlinear energy cascade with varying Deborah/Weissenberg numbers are quantified and their origins investigated. The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia under grant PTDC/EME-MFE/113589/2009.
Electromagnetic illusion with isotropic and homogeneous materials through scattering manipulation
International Nuclear Information System (INIS)
Yang, Fan; Mei, Zhong Lei; Jiang, Wei Xiang; Cui, Tie Jun
2015-01-01
A new isotropic and homogeneous illusion device for electromagnetic waves is proposed. This single-shelled device can change the fingerprint of the covered object into another one by manipulating the scattering of the composite structure. We show that an electrically small sphere can be disguised as another small one with different electromagnetic parameters. The device can even make a dielectric sphere (electrically small) behave like a conducting one. Full-wave simulations confirm the performance of proposed illusion device. (paper)
Zito, Gianluigi; Rusciano, Giulia; Pesce, Giuseppe; Dochshanov, Alden; Sasso, Antonio
2015-04-01
Label-free chemical imaging of live cell membranes can shed light on the molecular basis of cell membrane functionalities and their alterations under membrane-related diseases. In principle, this can be done by surface-enhanced Raman scattering (SERS) in confocal microscopy, but requires engineering plasmonic architectures with a spatially invariant SERS enhancement factor G(x, y) = G. To this end, we exploit a self-assembled isotropic nanostructure with characteristics of homogeneity typical of the so-called near-hyperuniform disorder. The resulting highly dense, homogeneous and isotropic random pattern consists of clusters of silver nanoparticles with limited size dispersion. This nanostructure brings together several advantages: very large hot spot density (~104 μm-2), superior spatial reproducibility (SD nanotoxicity issues. See DOI: 10.1039/c5nr01341k
Eaton, John; Hwang, Wontae; Cabral, Patrick
2002-11-01
This research addresses turbulent gas flows laden with fine solid particles at sufficiently large mass loading that strong two-way coupling occurs. By two-way coupling we mean that the particle motion is governed largely by the flow, while the particles affect the gas-phase mean flow and the turbulence properties. Our main interest is in understanding how the particles affect the turbulence. Computational techniques have been developed which can accurately predict flows carrying particles that are much smaller than the smallest scales of turbulence. Also, advanced computational techniques and burgeoning computer resources make it feasible to fully resolve very large particles moving through turbulent flows. However, flows with particle diameters of the same order as the Kolmogorov scale of the turbulence are notoriously difficult to predict. Some simple flows show strong turbulence attenuation with reductions in the turbulent kinetic energy by up to a factor of five. On the other hand, some seemingly similar flows show almost no modification. No model has been proposed that allows prediction of when the strong attenuation will occur. Unfortunately, many technological and natural two-phase flows fall into this regime, so there is a strong need for new physical understanding and modeling capability. Our objective is to study the simplest possible turbulent particle-laden flow, namely homogeneous, isotropic turbulence with a uniform dispersion of monodisperse particles. We chose such a simple flow for two reasons. First, the simplicity allows us to probe the interaction in more detail and offers analytical simplicity in interpreting the results. Secondly, this flow can be addressed by numerical simulation, and many research groups are already working on calculating the flow. Our detailed data can help guide some of these efforts. By using microgravity, we can further simplify the flow to the case of no mean velocity for either the turbulence or the particles. In fact
Modelling of the decay of isotropic turbulence by the LES
Energy Technology Data Exchange (ETDEWEB)
Abdibekov, U S; Zhakebaev, D B, E-mail: uali1@mail.ru, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University (Kazakhstan)
2011-12-22
This work deals with the modelling of degeneration of isotropic turbulence. To simulate the turbulent process the filtered three-dimensional nonstationary Navier-Stokes equation is used. The basic equation is closed with the dynamic model. The problem is solved numerically, and the equation of motion is solved by a modified method of fractional steps using compact schemes, the equation for pressure is solved by the Fourier method with a combination of matrix factorization. In the process of simulation changes of the kinetic energy of turbulence in the time, micro scale of turbulence and changes of inlongitudinal-transverse correlation functions are obtained, longitudinal and transverse one-dimensional spectra are defined.
Evolution of a homogeneous isotropic universe, dark matter, and the absence of monopoles
Loskutov, Yu. M.
1993-03-01
It is shown that the field theory of gravitation leads to a unique scenario for the evolution of a homogeneous isotropic universe. It pulsates with time (with half-priod) ≅3.75×1010 yr between states with maximum (≅ 1067 g/cm3) and minimum (≅ 1.25× g/cm3) matter densities. The dark matter has a density about 25 times greater than the luminous matter. The maximum temperature corresponding to maximum matter density (˜1025°K ≅1012GeV) is insufficient for strong prodaction of monopoles (in a grand unified theory).
Asinari, Pietro
2010-10-01
The homogeneous isotropic Boltzmann equation (HIBE) is a fundamental dynamic model for many applications in thermodynamics, econophysics and sociodynamics. Despite recent hardware improvements, the solution of the Boltzmann equation remains extremely challenging from the computational point of view, in particular by deterministic methods (free of stochastic noise). This work aims to improve a deterministic direct method recently proposed [V.V. Aristov, Kluwer Academic Publishers, 2001] for solving the HIBE with a generic collisional kernel and, in particular, for taking care of the late dynamics of the relaxation towards the equilibrium. Essentially (a) the original problem is reformulated in terms of particle kinetic energy (exact particle number and energy conservation during microscopic collisions) and (b) the computation of the relaxation rates is improved by the DVM-like correction, where DVM stands for Discrete Velocity Model (ensuring that the macroscopic conservation laws are exactly satisfied). Both these corrections make possible to derive very accurate reference solutions for this test case. Moreover this work aims to distribute an open-source program (called HOMISBOLTZ), which can be redistributed and/or modified for dealing with different applications, under the terms of the GNU General Public License. The program has been purposely designed in order to be minimal, not only with regards to the reduced number of lines (less than 1000), but also with regards to the coding style (as simple as possible). Program summaryProgram title: HOMISBOLTZ Catalogue identifier: AEGN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 23 340 No. of bytes in distributed program, including test data, etc.: 7 635 236 Distribution format: tar
Energy Technology Data Exchange (ETDEWEB)
Sanchez G, J., E-mail: julian.sanchez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2015-09-15
The solution of the so-called Canonical problems of neutron transport theory has been given by Case, who developed a method akin to the classical eigenfunction expansion procedure, extended to admit singular eigenfunctions. The solution is given as a set consisting of a Fredholm integral equation coupled with a transcendental equation, which has to be solved for the expansion coefficients by iteration. CASE's method make extensive use of the results of the theory of functions of a complex variable and many successful approaches to solve in an approximate form the above mentioned set have been reported in the literature. We present here an entirely different approach which deals with the canonical problems in a more direct and elementary manner. As far as we know, the original idea for the latter method is due to Carlvik who devised the escape probability approximation to the solution of the neutron transport equation in its integral form. In essence, the procedure consists in assuming a sectionally constant form of the neutron density that in turn yields a set of linear algebraic equations obeyed by the assumed constant values of the density. Very well established techniques of numerical analysis for the solution of integral equations consist in independent approaches that generalize the sectionally constant approach by assuming a sectionally low degree polynomial for the unknown function. This procedure also known as the arbitrary quadratures method is especially suited to deal with cases where the kernel of the integral equation is singular. The author wishes to present the results obtained with the arbitrary quadratures method for the numerical calculation of the monoenergetic neutron density in a critical, homogeneous sphere of finite radius with isotropic scattering. The singular integral equation obeyed by the neutron density in the critical sphere is introduced, an outline of the method's main features is given, and tables and graphs of the density
International Nuclear Information System (INIS)
Sanchez G, J.
2015-09-01
The solution of the so-called Canonical problems of neutron transport theory has been given by Case, who developed a method akin to the classical eigenfunction expansion procedure, extended to admit singular eigenfunctions. The solution is given as a set consisting of a Fredholm integral equation coupled with a transcendental equation, which has to be solved for the expansion coefficients by iteration. CASE's method make extensive use of the results of the theory of functions of a complex variable and many successful approaches to solve in an approximate form the above mentioned set have been reported in the literature. We present here an entirely different approach which deals with the canonical problems in a more direct and elementary manner. As far as we know, the original idea for the latter method is due to Carlvik who devised the escape probability approximation to the solution of the neutron transport equation in its integral form. In essence, the procedure consists in assuming a sectionally constant form of the neutron density that in turn yields a set of linear algebraic equations obeyed by the assumed constant values of the density. Very well established techniques of numerical analysis for the solution of integral equations consist in independent approaches that generalize the sectionally constant approach by assuming a sectionally low degree polynomial for the unknown function. This procedure also known as the arbitrary quadratures method is especially suited to deal with cases where the kernel of the integral equation is singular. The author wishes to present the results obtained with the arbitrary quadratures method for the numerical calculation of the monoenergetic neutron density in a critical, homogeneous sphere of finite radius with isotropic scattering. The singular integral equation obeyed by the neutron density in the critical sphere is introduced, an outline of the method's main features is given, and tables and graphs of the density
International Nuclear Information System (INIS)
Gama, R.M.S. da; Sampaio, R.
1985-01-01
The flow of an incompressible Newtonian fluid through a rigid, homogeneous, isotropic and infinite porous medium which has a given inicial distribuition of the mentioned fluid, is analyzed. It is proposed a model that assumes that the motion is caused by concentration gradient, but it does not consider the friction between the porous medium and the fluid. We solve an onedimensional case where the mathematical problem is reduced to the solution of a non-linear hyperbolic system of differential equations, subjected to an inicial condition given by a step function, called 'Riemann Problem'. (Author) [pt
RSS-based localization of isotropically decaying source with unknown power and pathloss factor
International Nuclear Information System (INIS)
Sun, Shunyuan; Sun, Li; Ding, Zhiguo
2016-01-01
This paper addresses the localization of an isotropically decaying source based on the received signal strength (RSS) measurements that are collected from nearby active sensors that are position-known and wirelessly connected, and it propose a novel iterative algorithm for RSS-based source localization in order to improve the location accuracy and realize real-time location and automatic monitoring for hospital patients and medical equipment in the smart hospital. In particular, we consider the general case where the source power and pathloss factor are both unknown. For such a source localization problem, we propose an iterative algorithm, in which the unknown source position and two other unknown parameters (i.e. the source power and pathloss factor) are estimated in an alternating way based on each other, with our proposed sub-optimum initial estimate on source position obtained based on the RSS measurements that are collected from a few (closest) active sensors with largest RSS values. Analysis and simulation study show that our proposed iterative algorithm guarantees globally convergence to the least-squares (LS) solution, where for our suitably assumed independent and identically distributed (i.i.d.) zero-mean Gaussian RSS measurement errors the converged localization performance achieves the optimum that corresponds to the Cramer–Rao lower bound (CRLB).
Mastracci, Brian; Guo, Wei
2018-01-01
The superfluid phase of helium-4, known as He ii, exhibits extremely small kinematic viscosity and may be a useful tool for economically producing and studying high Reynolds number turbulent flow. Such applications are not currently possible because a comprehensive understanding of the complex two-fluid behavior of He ii is lacking. This situation could be remedied by a systematic investigation of simple, well controlled turbulence that can be directly compared with theoretical models. To this end, we have developed a new apparatus that combines flow visualization with second sound attenuation to study turbulence in the wake of a mesh grid towed through a He ii filled channel. One of three mesh grids (mesh number M = 3, 3.75, or 5 mm) can be pulled at speeds between 0.1 and 60 cm/s through a cast acrylic flow channel which has a 16 mm × 16 mm cross section and measures 330 mm long. The motion of solidified deuterium tracer particles, with diameter of the order 1 μm, in the resulting flow is captured by a high speed camera, and a particle tracking velocimetry algorithm resolves the Lagrangian particle trajectories through the turbulent flow field. A pair of oscillating superleak second sound transducers installed in the channel allows complementary measurement of vortex line density in the superfluid throughout the turbulent decay process. Success in early experiments demonstrates the effectiveness of both probes, and preliminary analysis of the data shows that both measurements strongly correlate with each other. Further investigations will provide comprehensive information that can be used to address open questions about turbulence in He ii and move toward the application of this fluid to high Reynolds number fluid research.
Skalsky, Vladimir
2010-01-01
Assuming that the relativistic universe is homogeneous and isotropic, we can unambiguously determine its model and physical properties, which correspond with the Einstein general theory of relativity (and with its two special partial solutions: Einstein special theory of relativity and Newton gravitation theory), quantum mechanics, and observations, too.
International Nuclear Information System (INIS)
Li Feng-Chen; Cai Wei-Hua; Zhang Hong-Na; Wang Yue
2012-01-01
Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FHIT of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case
International Nuclear Information System (INIS)
Patra, A.; Saha Ray, S.
2014-01-01
Highlights: • A stationary transport equation has been solved using the technique of Haar wavelet Collocation Method. • This paper intends to provide the great utility of Haar wavelets to nuclear science problem. • In the present paper, two-dimensional Haar wavelets are applied. • The proposed method is mathematically very simple, easy and fast. - Abstract: This paper emphasizes on finding the solution for a stationary transport equation using the technique of Haar wavelet Collocation Method (HWCM). Haar wavelet Collocation Method is efficient and powerful in solving wide class of linear and nonlinear differential equations. Recently Haar wavelet transform has gained the reputation of being a very effective tool for many practical applications. This paper intends to provide the great utility of Haar wavelets to nuclear science problem. In the present paper, two-dimensional Haar wavelets are applied for solution of the stationary Neutron Transport Equation in homogeneous isotropic medium. The proposed method is mathematically very simple, easy and fast. To demonstrate about the efficiency of the method, one test problem is discussed. It can be observed from the computational simulation that the numerical approximate solution is much closer to the exact solution
International Nuclear Information System (INIS)
Antoci, S.; Mihich, L.
1997-01-01
Given the present status of the problem of the electromagnetic energy tensor in matter, there is perhaps use in recalling a forgotten argument given in 1923 by W. Gordon. Let us consider a material medium which is homogeneous and isotropic when observed in its rest frame. For such a medium, Gordon's argument allows to reduce the above-mentioned problem to an analogous one, defined in a general relativistic vacuum. For the latter problem the form of the Lagrangian is known already, hence the determination of the energy tensor is a straightforward matter. One just performs the Hamiltonian derivative of the Lagrangian chosen in this way with respect to the true metric g ik . Abraham's tensor is thus selected as the electromagnetic energy tensor for a medium which is homogeneous and isotropic in its rest frame
International Nuclear Information System (INIS)
Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin
2016-01-01
As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained
Ribeiro, F B
1999-01-01
Solutions of the diffusion equation in cylindrical coordinates are presented for a radionuclide produced by the decay of a not diffusing parent isotope with arbitrary activity distribution. General initial and Dirichlet boundary conditions are considered and the diffusion equation is solved for a finite cylinder. Solutions corresponding to two particular boundary conditions that can be imposed in laboratory diffusion coefficient measurements are presented. An analysis of the speed of convergence and of the series truncation error is done for these particular solutions. An example of the escape to production ratio derived from one of the solutions is also presented.
Chen, Jiangwei; Dai, Yuyao; Yan, Lin; Zhao, Huimin
2018-04-01
In this paper, we shall demonstrate theoretically that steady bound electromagnetic eigenstate can arise in an infinite homogeneous isotropic linear metamaterial with zero-real-part-of-impedance and nonzero-imaginary-part-of-wave-vector, which is partly attributed to that, here, nonzero-imaginary-part-of-wave-vector is not involved with energy losses or gain. Altering value of real-part-of-impedance of the metamaterial, the bound electromagnetic eigenstate may become to be a progressive wave. Our work may be useful to further understand energy conversion and conservation properties of electromagnetic wave in the dispersive and absorptive medium and provides a feasible route to stop, store and release electromagnetic wave (light) conveniently by using metamaterial with near-zero-real-part-of-impedance.
Dou, Zhongwang; Ireland, Peter J.; Bragg, Andrew D.; Liang, Zach; Collins, Lance R.; Meng, Hui
2018-02-01
The radial relative velocity (RV) between particles suspended in turbulent flow plays a critical role in droplet collision and growth. We present a simple and accurate approach to RV measurement in isotropic turbulence—planar 4-frame particle tracking velocimetry—using routine PIV hardware. It improves particle positioning and pairing accuracy over the 2-frame holographic approach by de Jong et al. (Int J Multiphas Flow 36:324-332; de Jong et al., Int J Multiphas Flow 36:324-332, 2010) without using high-speed cameras and lasers as in Saw et al. (Phys Fluids 26:111702, 2014). Homogeneous and isotropic turbulent flow ({R_λ }=357) in a new, fan-driven, truncated iscosahedron chamber was laden with either low-Stokes (mean St=0.09, standard deviation 0.05) or high-Stokes aerosols (mean St=3.46, standard deviation 0.57). For comparison, DNS was conducted under similar conditions ({R_λ }=398; St=0.10 and 3.00, respectively). Experimental RV probability density functions (PDF) and mean inward RV agree well with DNS. Mean inward RV increases with St at small particle separations, r, and decreases with St at large r, indicating the dominance of "path-history" and "inertial filtering" effects, respectively. However, at small r, the experimental mean inward RV trends higher than DNS, possibly due to the slight polydispersity of particles and finite light sheet thickness in experiments. To confirm this interpretation, we performed numerical experiments and found that particle polydispersity increases mean inward RV at small r, while finite laser thickness also overestimates mean inward RV at small r, This study demonstrates the feasibility of accurately measuring RV using routine hardware, and verifies, for the first time, the path-history and inertial filtering effects on particle-pair RV at large particle separations experimentally.
Kumar, P.; Patel, S. R.
1974-01-01
A method is described for studying theoretically the concentration fluctuations of a dilute contaminate undergoing a first-order chemical reaction. The method is based on Deissler's (1958) theory for homogeneous turbulence for times before the final period, and it follows the approach used by Loeffler and Deissler (1961) to study temperature fluctuations in homogeneous turbulence. Four-point correlation equations are obtained; it is assumed that terms containing fifth-order correlation are very small in comparison with those containing fourth-order correlations, and can therefore be neglected. A spectrum equation is obtained in a form which can be solved numerically, yielding the decay law for the concentration fluctuations in homogeneous turbulence for the period much before the final period of decay.
Directory of Open Access Journals (Sweden)
Yoonhee Lee
2016-06-01
Full Text Available As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1 matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2 preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1 they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2 they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.
International Nuclear Information System (INIS)
Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin
2016-01-01
In Part I of this paper, the two-temperature homogenized model for the fully ceramic microencapsulated fuel, in which tristructural isotropic particles are randomly dispersed in a fine lattice stochastic structure, was discussed. In this model, the fuel-kernel and silicon carbide matrix temperatures are distinguished. Moreover, the obtained temperature profiles are more realistic than those obtained using other models. Using the temperature-dependent thermal conductivities of uranium nitride and the silicon carbide matrix, temperature-dependent homogenized parameters were obtained. In Part II of the paper, coupled with the COREDAX code, a reactor core loaded by fully ceramic microencapsulated fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure is analyzed via a two-temperature homogenized model at steady and transient states. The results are compared with those from harmonic- and volumetric-average thermal conductivity models; i.e., we compare keff eigenvalues, power distributions, and temperature profiles in the hottest single channel at a steady state. At transient states, we compare total power, average energy deposition, and maximum temperatures in the hottest single channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized model for Doppler temperature feedback lead to significant differences
Directory of Open Access Journals (Sweden)
Vebil Yıldırım
2017-07-01
Full Text Available Heat-induced, pressure-induced, and centrifugal force-induced axisymmetric exact deformation and stresses in a thick-walled spherical vessel, a cylindrical vessel, and a uniform disk are all determined analytically at a specified constant surface temperature and at a constant angular velocity. The inner and outer pressures are both included in the formulation of annular structures made of an isotropic and homogeneous linear elastic material. Governing equations in the form of Euler-Cauchy differential equation with constant coefficients are solved and results are presented in compact forms. For disks, three different boundary conditions are taken into account to consider mechanical engineering applications. The present study is also peppered with numerical results in graphical forms.
Oneal, J. B., Jr.; Natarajan, T. R.
1976-01-01
Rate distortion functions for two-dimensional homogeneous isotropic images are compared with the performance of 5 source encoders designed for such images. Both unweighted and frequency weighted mean square error distortion measures are considered. The coders considered are differential PCM (DPCM) using six previous samples in the prediction, herein called 6 pel (picutre element) DPCM; simple DPCM using single sample prediction; 6 pel DPCM followed by entropy coding; 8 x 8 discrete cosine transform coder, and 4 x 4 Hadamard transform coder. Other transform coders were studied and found to have about the same performance as the two transform coders above. With the mean square error distortion measure DPCM with entropy coding performed best. The relative performance of the coders changes slightly when the distortion measure is frequency weighted mean square error. The performance of all the coders was separated by only about 4 dB.
Mixing and chemical reaction in sheared and nonsheared homogeneous turbulence
Leonard, Andy D.; Hill, James C.
1992-01-01
Direct numerical simulations were made to examine the local structure of the reaction zone for a moderately fast reaction between unmixed species in decaying, homogeneous turbulence and in a homogeneous turbulent shear flow. Pseudospectral techniques were used in domains of 64 exp 3 and higher wavenumbers. A finite-rate, single step reaction between non-premixed reactants was considered, and in one case temperature-dependent Arrhenius kinetics was assumed. Locally intense reaction rates that tend to persist throughout the simulations occur in locations where the reactant concentration gradients are large and are amplified by the local rate of strain. The reaction zones are more organized in the case of a uniform mean shear than in isotropic turbulence, and regions of intense reaction rate appear to be associated with vortex structures such as horseshoe vortices and fingers seen in mixing layers. Concentration gradients tend to align with the direction of the most compressive principal strain rate, more so in the isotropic case.
International Nuclear Information System (INIS)
Zaichik, Leonid I; Alipchenkov, Vladimir M
2009-01-01
The purpose of this paper is twofold: (i) to advance and extend the statistical two-point models of pair dispersion and particle clustering in isotropic turbulence that were previously proposed by Zaichik and Alipchenkov (2003 Phys. Fluids15 1776-87; 2007 Phys. Fluids 19, 113308) and (ii) to present some applications of these models. The models developed are based on a kinetic equation for the two-point probability density function of the relative velocity distribution of two particles. These models predict the pair relative velocity statistics and the preferential accumulation of heavy particles in stationary and decaying homogeneous isotropic turbulent flows. Moreover, the models are applied to predict the effect of particle clustering on turbulent collisions, sedimentation and intensity of microwave radiation as well as to calculate the mean filtered subgrid stress of the particulate phase. Model predictions are compared with direct numerical simulations and experimental measurements.
Optical isotropic negative index metamaterials
DEFF Research Database (Denmark)
Menzel, Christoph; Paul, Thomas; Rockstuhl, Carsten
2010-01-01
Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers....
Isotropic Single Negative Metamaterials
Directory of Open Access Journals (Sweden)
P. Protiva
2008-09-01
Full Text Available This paper presents the application of simple, and therefore cheap, planar resonators for building 3D isotropic metamaterials. These resonators are: a broadside-coupled split ring resonator with a magnetic response providing negative permeability; an electric dipole terminated by a loop inductor together with a double H-shaped resonator with an electric response providing negative permittivity. Two kinds of 3D isotropic single negative metamaterials are reported. The first material consists of unit cells in the form of a cube bearing on its faces six equal planar resonators with tetrahedral symmetry. In the second material, the planar resonators boxed into spherical plastic shells and randomly distributed in a hosting material compose a real 3D volumetric metamaterial with an isotropic response. In both cases the metamaterial shows negative permittivity or permeability, according to the type of resonators that are used. The experiments prove the isotropic behavior of the cells and of the metamaterial specimens.
Isotropic optical metamaterials
DEFF Research Database (Denmark)
Lederer, Falk; Rockstuhl, C.; Menzel, C.
2010-01-01
Metamaterial imaging applications require optical isotropy. We show that highly symmetric unit cells do not necessarily exhibit this property. We prove that the dispersion relation can be tailored using a supercell metama-terial. Such metamaterial exhibits an isotropic negative index close to -1...
Homogeneous and isotropic cosmologies with nonlinear electromagnetic radiation
International Nuclear Information System (INIS)
Vollick, Dan N.
2008-01-01
In this paper I examine cosmological models that contain a stochastic background of nonlinear electromagnetic radiation. I show that for Born-Infeld electrodynamics the equation of state parameter, w=P/ρ, remains close to 1/3 throughout the evolution of the universe if E 2 =B 2 in the late universe to a high degree of accuracy. Theories with electromagnetic Lagrangians of the form L=-(1/4)F 2 +αF 4 have recently been studied in magnetic universes, where the electric field vanishes. It was shown that the F 4 term can produce a bounce in the early universe, avoiding an initial singularity. Here I show that the inclusion of an electric field, with E 2 ≅B 2 in the late universe, eliminates the bounce and the universe begins with an initial singularity. I also examine theories with Lagrangians of the form L=-(1/4)F 2 -μ 8 /F 2 , which have been shown to produce a period of late time accelerated expansion in magnetic universes. I show that, if an electric field is introduced, the accelerated phase will only occur if E 2 2 .
On vectorial irreversible processes in homogeneous isotropic cosmological models
International Nuclear Information System (INIS)
Meier, W.
1990-01-01
In a given Friedman metric in the framework of usual thermodynamics of irreversible processes, the general relativistic diffusion equation is derived. To give solutions to the equation for special assumptions, the results in a Schroedinger paper are used. (author)
Static deformation due to a long buried dip-slip fault in an isotropic ...
Indian Academy of Sciences (India)
Abstract. Closed-form analytical expressions for the displacements and the stresses at any point of a two-phase medium consisting of a homogeneous, isotropic, perfectly elastic half-space in welded contact with a homogeneous, orthotropic, perfectly elastic half-space due to a dip-slip fault of finite width located at an.
Static deformation due to a long buried dip-slip fault in an isotropic ...
Indian Academy of Sciences (India)
Closed-form analytical expressions for the displacements and the stresses at any point of a two-phase medium consisting of a homogeneous, isotropic, perfectly elastic half-space in welded contact with a homogeneous, orthotropic, perfectly elastic half-space due to a dip-slip fault of ﬁnite width located at an arbitrary ...
Static deformation due to a long buried dip-slip fault in an isotropic
Indian Academy of Sciences (India)
Closed-form analytical expressions for the displacements and the stresses at any point of a two-phase medium consisting of a homogeneous, isotropic, perfectly elastic half-space in welded contact with a homogeneous, orthotropic, perfectly elastic half-space due to a dip-slip fault of ﬁnite width located at an arbitrary ...
International Nuclear Information System (INIS)
Kornreich, D.E.; Ganapol, B.D.
1997-01-01
The linear Boltzmann equation for the transport of neutral particles is investigated with the objective of generating benchmark-quality evaluations of solutions for homogeneous infinite media. In all cases, the problems are stationary, of one energy group, and the scattering is isotropic. The solutions are generally obtained through the use of Fourier transform methods with the numerical inversions constructed from standard numerical techniques such as Gauss-Legendre quadrature, summation of infinite series, and convergence acceleration. Consideration of the suite of benchmarks in infinite homogeneous media begins with the standard one-dimensional problems: an isotropic point source, an isotropic planar source, and an isotropic infinite line source. The physical and mathematical relationships between these source configurations are investigated. The progression of complexity then leads to multidimensional problems with source configurations that also emit particles isotropically: the finite line source, the disk source, and the rectangular source. The scalar flux from the finite isotropic line and disk sources will have a two-dimensional spatial variation, whereas a finite rectangular source will have a three-dimensional variation in the scalar flux. Next, sources emitting particles anisotropically are considered. The most basic such source is the point beam giving rise to the Green's function, which is physically the most fundamental transport problem, yet may be constructed from the isotropic point source solution. Finally, the anisotropic plane and anisotropically emitting infinite line sources are considered. Thus, a firm theoretical and numerical base is established for the most fundamental neutral particle benchmarks in infinite homogeneous media
Ellipsoidal basis for isotropic oscillator
International Nuclear Information System (INIS)
Kallies, W.; Lukac, I.; Pogosyan, G.S.; Sisakyan, A.N.
1994-01-01
The solutions of the Schroedinger equation are derived for the isotropic oscillator potential in the ellipsoidal coordinate system. The explicit expression is obtained for the ellipsoidal integrals of motion through the components of the orbital moment and Demkov's tensor. The explicit form of the ellipsoidal basis is given for the lowest quantum numbers. 10 refs.; 1 tab. (author)
Energy Technology Data Exchange (ETDEWEB)
Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr
2004-07-01
The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)
Depression of Nonlinearity in Decaying Isotropic MHD Turbulence
International Nuclear Information System (INIS)
Servidio, S.; Matthaeus, W. H.; Dmitruk, P.
2008-01-01
Spectral method simulations show that undriven magnetohydrodynamic turbulence spontaneously generates coherent spatial correlations of several types, associated with local Beltrami fields, directional alignment of velocity and magnetic fields, and antialignment of magnetic and fluid acceleration components. These correlations suppress nonlinearity to levels lower than what is obtained from Gaussian fields, and occur in spatial patches. We suggest that this rapid relaxation leads to non-Gaussian statistics and spatial intermittency
Light monitoring by isotropic and by integrated fiber detectors
Sroka, Ronald; Baumgartner, Reinhold; Beyer, Wolfgang; Ell, Christian; Gebhardt, G.; Heinze, Armin; Jocham, Dieter; Unsoeld, Eberhard
1990-07-01
In the medical field of laser light application detector systems are required for measuring the light power applied to the tissue and monitoring instabilities caused by the delivery system during the application of the laser light. An isotropic detector was developed consisting of a fiber tip molded to a sphere and covered with diffuse backscattering layers. The homogeneity of the isotropic detection is 85-90% in an angular field of Additionally a monitoring device has been developed which consists of a darkened chamber holding a part of the fiber bent to a curve. Integrated photodiodes detect the photons "stepping" out of the fiber. Defects of the fiber, the fiber tip, changes in the medium around the fiber tip, and variations of the laser output have influences on the detector signal. Both devices could be useful in evaluating an exact dosimetry for light.
How Isotropic is the Universe?
Saadeh, Daniela; Feeney, Stephen M; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D
2016-09-23
A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}Universe is strongly disfavored, with odds of 121 000:1 against.
Induced piezoelectricity in isotropic biomaterial.
Zimmerman, R L
1976-01-01
Isotropic material can be made to exhibit piezoelectric effects by the application of a constant electric field. For insulators, the piezoelectric strain constant is proportional to the applied electric field and for semiconductors, an additional out-of-phase component of piezoelectricity is proportional to the electric current density in the sample. The two induced coefficients are proportional to the strain-dependent dielectric constant (depsilon/dS + epsilon) and resistivity (drho/dS - rho), respectively. The latter is more important at frequencies such that rhoepsilonomega less than 1, often the case in biopolymers.Signals from induced piezoelectricity in nature may be larger than those from true piezoelectricity. PMID:990389
International Nuclear Information System (INIS)
Sachs, A.M.; Sirlin, A.
1975-01-01
The traditional theory of the dominant mode of muon decay is presented, a survey of the experiments which have measured the observable features of the decay is given, and those things which can be learned about the parameters and nature of the theory from the experimental results are indicated. The following aspects of the theory of muon decay are presented first: general four-fermion theory, two-component theory of the neutrino, V--A theory, two-component and V--A theories vs general four-fermion theory, intermediate-boson hypothesis, radiative corrections, radiative corrections in the intermediate-boson theory, and endpoint singularities and corrections of order α 2 . Experiments on muon lifetime, isotropic electron spectrum, total asymmetry and energy dependence of asymmetry of electrons from polarized muons, and electron polarization are described, and a summary of experimental results is given. 7 figures, 2 tables, 109 references
Isotropic Negative Thermal Expansion Metamaterials.
Wu, Lingling; Li, Bo; Zhou, Ji
2016-07-13
Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.
International Nuclear Information System (INIS)
Paranjape, S.D.; Kumar, V.; Sahni, D.C.
1993-01-01
The one-speed, time-dependent, isotropically scattering, integral transport equation in a homogeneous sphere has been converted into a criticality-like problem by considering exponential time behaviour of the scalar flux. This criticality problem has been converted into a matrix eigenvalue problem using the Fourier transform technique. The time eigenvalues λ, which are complex in general, have been determined for spherically symmetric as well as asymmetric modes. For the former case, the real decay constants and the real parts of complex decay constants decrease monotonically with increasing system size and form two distinct families of single-valued functions. For the spherically asymmetric modes, certain new features emerge. The real decay constants are found to be multi-valued functions of system size and they do not always decrease monotonically with increasing system size. As the system size increases from zero onwards, the decay constants alternate between complex and real values and the real and complex decay constant curves interlace. (Author)
Thermalization vs. isotropization and azimuthal fluctuations
International Nuclear Information System (INIS)
Mrowczynski, Stanislaw
2005-01-01
Hydrodynamic description requires a local thermodynamic equilibrium of the system under study but an approximate hydrodynamic behaviour is already manifested when a momentum distribution of liquid components is not of equilibrium form but merely isotropic. While the process of equilibration is relatively slow, the parton system becomes isotropic rather fast due to the plasma instabilities. Azimuthal fluctuations observed in relativistic heavy-ion collisions are argued to distinguish between a fully equilibrated and only isotropic parton system produced in the collision early stage
Isotropic transformation acoustics and applications
Su, Xiaoshi; Norris, Andrew N.
2017-04-01
A novel class of acoustic metamaterial is proposed for directional collimation of a cylindrical source into a plane wave beam. The effect is based on transformation acoustics which retains the exact form of the wave equation under conformal mapping from a circular region to a triangular area. The transformation is adjustable, allowing the acoustic energy to be equally radiated in three directions, or preferentially in a single direction. Importantly, the material properties in the physical domain are isotropic and therefore practically realizable. Two example devices are proposed using cylindrical elastic shells in water as the metamaterial elements and demonstrated using full wave simulations. This approach has potential applications beyond acoustic antenna design in beam-steering and wavefront manipulation.
On metallic gratings coated conformally with isotropic negative-phase-velocity materials
Energy Technology Data Exchange (ETDEWEB)
Inchaussandague, Marina E. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: mei@df.uba.ar; Lakhtakia, Akhlesh [CATMAS-Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States)], E-mail: akhlesh@psu.edu; Depine, Ricardo A. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: rdep@df.uba.ar
2008-03-31
Application of the differential method (also called the C method) to plane-wave diffraction by a perfectly conducting, sinusoidally corrugated metallic grating coated with a linear, homogeneous, isotropic, lossless dielectric-magnetic material shows that coating materials with negative index of refraction may deliver enhanced maximum nonspecular reflection efficiencies in comparison to coating materials with positive index of refraction.
Isotropic gates and large gamma detector arrays versus angular distributions
International Nuclear Information System (INIS)
Iacob, V.E.; Duchene, G.
1997-01-01
Angular information extracted from in-beam γ ray measurements are of great importance for γ ray multipolarity and nuclear spin assignments. In our days large Ge detector arrays became available allowing the measurements of extremely weak γ rays in almost 4π sr solid angle (e.g., EUROGAM detector array). Given the high detector efficiency it is common for the mean suppressed coincidence multiplicity to reach values as high as 4 to 6. Thus, it is possible to gate on particular γ rays in order to enhance the relative statistics of a definite reaction channel and/or a definite decaying path in the level scheme of the selected residual nucleus. As compared to angular correlations, the conditioned angular distribution spectra exhibit larger statistics because in the latter the gate-setting γ ray may be observed by all the detectors in the array, relaxing somehow the geometrical restrictions of the angular correlations. Since the in-beam γ ray emission is anisotropic one could inquire that gate setting as mentioned above, based on anisotropic γ ray which would perturb the angular distributions in the unfolded events. As our work proved, there is no reason to worry about this if the energy gate runs over the whole solid angle in an ideal 4π sr detector, i.e., if the gate is isotropic. In real quasi 4π sr detector arrays the corresponding quasi isotropic gate preserves the angular properties of the unfolded data, too. However extraction of precise angular distribution coefficient especially a 4 , requires the consideration of the deviation of the quasi isotropic gate relative to the (ideal) isotropic gate
The π+ Decay of Light Hypernuclei
International Nuclear Information System (INIS)
Gibson, B.F.
1999-01-01
The observed π + emission from the weak decay of the 4 Λ He hypernucleus has been an intriguing puzzle for more than 30 years, because the Lambda decays in free space only by emission of a π - or a π 0 . We re-examine this puzzling weak decay with our focus upon a decay mechanism involving the Σ + N r a rrow π + nN decay of a virtual Σ + , stemming from ΛN to ΣN conversion (mixing) within the hypernucleus. We emphasize the observed energy distribution of the observed π + s compared to that of π - s in standard mesonic decay as well as the isotropic angular distribution of the π + s. Competing suggestions to explain the positive pion weak decay have been offered. A possible search for π + decay from the other Λ hypernuclei is explored as means to test our hypothesis
Empirical isotropic chemical shift surfaces
International Nuclear Information System (INIS)
Czinki, Eszter; Csaszar, Attila G.
2007-01-01
A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles φ and ψ characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS(φ,ψ) surfaces obtained for the model peptides For-(l-Ala) n -NH 2 , with n = 1, 3, and 5, resulted in so-called empirical ICS(φ,ψ) surfaces for all major nuclei of the 20 naturally occurring α-amino acids. Out of the many empirical surfaces determined, it is the 13C α ICS(φ,ψ) surface which seems to be most promising for identifying major secondary structure types, α-helix, β-strand, left-handed helix (α D ), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring α-amino acids. Two-dimensional empirical 13C α - 1 H α ICS(φ,ψ) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins
Isotropic coordinates for Schwarzschild black hole radiation
International Nuclear Information System (INIS)
Wang Fujun; Gui Yuanxing; Ma Chunrui
2007-01-01
The isotropic coordinate system of Schwarzschild spacetime has several attractive properties similar with the Painleve-Gullstrand coordinates. The purpose for us to choose the isotropic coordinates is to resolve the ambiguities of the tunneling picture in Hawking radiation. Based on energy conservation, we investigate Hawking radiation as massless particles tunneling across the event horizon of the Schwarzschild black hole in the isotropic coordinates. Because the amplitude for a black hole to emit particles is related to the amplitude for it to absorb, we must take into account the contribution of ingoing solution to the action, ImS=ImS out -ImS in . It will be shown that the imaginary part of action for ingoing particles is zero (ImS in =0) in the Painleve-Gullstrand coordinates, so the equation ImS=ImS out -ImS in is valid in both the isotropic coordinates and the Painleve-Gullstrand coordinates
Isotropic metal deposition technique for metamaterials fabrication
DEFF Research Database (Denmark)
Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei
2009-01-01
In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented....
Applied homogeneous catalysis; Angewandte homogene Katalyse
Energy Technology Data Exchange (ETDEWEB)
Behr, Arno [Dortmund Univ. (Germany). Lehrstuhl fuer Technische Chemie A
2008-07-01
In the book under consideration, all persons which are interested in the homogeneous transition metal catalysis and their application in the chemical technology find a practice-orientated and didactically skilled worked-up introduction. This book is addressed to students in the training and also to practicians in occupation. Apart from the chemical fundamentals concerning to the homogeneous catalysis, also fundamentals of process engineering as well as homogeneous catalytic reactions are described. Typical homogeneous catalyzed reactions are hydroformylation, carbonylation, oligomerization and polymerization, metathesis, hydrogenations as well as oxidation reactions. Additionally, new trends in the homogeneous catalysis are described such as tandem reactions, combinatorial chemistry, high throughput catalyst testing, green solvents, activation of paraffines, activation of nitrogen, efficient ligands, nano-catalysis, homogeneous catalysis with regenerating raw materials, process development belong to electrical catalysis / sono-catalysis / photocatalysis / microwave irradiation / maximum pressure.
Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.
Scanning anisotropy parameters in horizontal transversely isotropic media
Masmoudi, Nabil
2016-10-12
The horizontal transversely isotropic model, with arbitrary symmetry axis orientation, is the simplest effective representative that explains the azimuthal behaviour of seismic data. Estimating the anisotropy parameters of this model is important in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous elliptic background model (which might be obtained from velocity analysis and well velocities). This is accomplished through a Taylor\\'s series expansion of the travel-time solution (of the eikonal equation) as a function of parameter η and azimuth angle ϕ. The accuracy of the travel time expansion is enhanced by the use of Shanks transform. This results in an accurate approximation of the solution of the non-linear eikonal equation and provides a mechanism to scan simultaneously for the best fitting effective parameters η and ϕ, without the need for repetitive modelling of travel times. The analysis of the travel time sensitivity to parameters η and ϕ reveals that travel times are more sensitive to η than to the symmetry axis azimuth ϕ. Thus, η is better constrained from travel times than the azimuth. Moreover, the two-parameter scan in the homogeneous case shows that errors in the background model affect the estimation of η and ϕ differently. While a gradual increase in errors in the background model leads to increasing errors in η, inaccuracies in ϕ, on the other hand, depend on the background model errors. We also propose a layer-stripping method valid for a stack of arbitrary oriented symmetry axis horizontal transversely isotropic layers to convert the effective parameters to the interval layer values.
Isotropic extensions of the vacuum solutions in general relativity
Energy Technology Data Exchange (ETDEWEB)
Molina, C. [Universidade de Sao Paulo (USP), SP (Brazil); Martin-Moruno, Prado [Victoria University of Wellington (New Zealand); Gonzalez-Diaz, Pedro F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain)
2012-07-01
Full text: Spacetimes described by spherically symmetric solutions of Einstein's equations are of paramount importance both in astrophysical applications and theoretical considerations. And among those, black holes are highlighted. In vacuum, Birkhoff's theorem and its generalizations to non-asymptotically flat cases uniquely fix the metric as the Schwarzschild, Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter geometries, the vacuum solutions of the usual general relativity with zero, positive or negative values for the cosmological constant, respectively. In this work we are mainly interested in black holes in a cosmological environment. Of the two main assumptions of the cosmological principle, homogeneity is lost when compact objects are considered. Nevertheless isotropy is still possible, and we enforce this condition. Within this context, we investigate spatially isotropic solutions close - continuously deformable - to the usual vacuum solutions. We obtain isotropic extensions of the usual spherically symmetric vacuum geometries in general relativity. Exact and perturbative solutions are derived. Maximal extensions are constructed and their causal structures are discussed. The classes of geometries obtained include black holes in compact and non-compact universes, wormholes in the interior region of cosmological horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are applicable in more general contexts, with extensions subjected to other constraints. (author)
Thermographic investigation of heat source in transversely isotropic composites
Valès, B.; Munoz, V.; Welemane, H.; Pastor, M.-L.; Trajin, B.; Perrin, M.; Cantarel, A.; Karama, M.
2018-02-01
This paper deals with the estimation of heat sources from infrared thermographic measures on anisotropic CFRP (Carbon-Fibre Reinforced Composites). Such procedure combines the data processing of the thermal signal, especially as spatial and temporal derivation quantities involved in the heat equation are notably affected by the measurement noise, and the determination of thermo-physical properties of the material, especially to account for the anisotropic conductivity behavior of the material. A comparative analysis of different filtering techniques is done to define a filtering method able to decrease the noise while keeping the useful features of the signal. Then, we use a homogenization scheme based on single-inhomogeneity solutions of Eshelby to derive the transversely isotropic thermal conductivity tensor.
International Nuclear Information System (INIS)
Wojcicki, S.
1978-11-01
Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references
Isotropic Growth of Graphene toward Smoothing Stitching.
Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei
2016-07-26
The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect.
Homogenization of Elliptic Differential Equations in One-Dimensional Spaces
Directory of Open Access Journals (Sweden)
G. Grammel
2007-01-01
are considered. The approximation properties of the homogenized system are investigated. For H−1-data, it turns out that the order of approximation is strongly related to the decay of the Fourier coefficients of the L2-functions involved.
Gamma ray constraints on decaying dark matter
DEFF Research Database (Denmark)
Cirelli, M.; Moulin, E.; Panci, P.
2012-01-01
We derive new bounds on decaying dark matter from the gamma ray measurements of (i) the isotropic residual (extragalactic) background by Fermi and (ii) the Fornax galaxy cluster by H.E.S.S. We find that those from (i) are among the most stringent constraints currently available, for a large range...... of dark matter masses and a variety of decay modes, excluding half-lives up to similar to 10(26) to few 10(27) seconds. In particular, they rule out the interpretation in terms of decaying dark matter of the e(+/-) spectral features in PAMELA, Fermi and H.E.S.S., unless very conservative choices...
A non-isotropic newtonian cosmological model
International Nuclear Information System (INIS)
Baptista, J.P.
1978-01-01
A simple newtonian non rotating cosmological model is proposed using expansion modified functions and Raychaudhuri's equation is obtained. The application of it to the supercluster of Coma Berenicae shows that the distribution of matter produces a variation of about 28% in the redshift if compared to the isotropic one [pt
Isotropic-nematic spinodal decomposition dynamics
Dhont, Jan K.G.; Briels, Willem J.
2005-01-01
The initial stage of isotropic-nematic spinodal demixing kinetics of suspensions of very long and thin, stiff, repulsive rods is analyzed on the basis of the N -particle Smoluchowski equation. Equations of motion for the reduced probability density function of the position and orientation of a rod
Mapping of moveout in tilted transversely isotropic media
Stovas, A.
2013-09-09
The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.
Gravitational wave propagation in isotropic cosmologies
International Nuclear Information System (INIS)
Hogan, P.A.; O'Shea, E.M.
2002-01-01
We study the propagation of gravitational waves carrying arbitrary information through isotropic cosmologies. The waves are modeled as small perturbations of the background Robertson-Walker geometry. The perfect fluid matter distribution of the isotropic background is, in general, modified by small anisotropic stresses. For pure gravity waves, in which the perturbed Weyl tensor is radiative (i.e. type N in the Petrov classification), we construct explicit examples for which the presence of the anisotropic stress is shown to be essential and the histories of the wave fronts in the background Robertson-Walker geometry are shear-free null hypersurfaces. The examples derived in this case are analogous to the Bateman waves of electromagnetic theory
Computations of Quasiconvex Hulls of Isotropic Sets
Czech Academy of Sciences Publication Activity Database
Heinz, S.; Kružík, Martin
2017-01-01
Roč. 24, č. 2 (2017), s. 477-492 ISSN 0944-6532 R&D Projects: GA ČR GA14-15264S; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : quasiconvexity * isotropic compact sets * matrices Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.496, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/kruzik-0474874.pdf
Isotropization of the quark gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Epelbaum, T.; Gelis, F.
2014-06-15
We report here recent analytical and numerical work on the theoretical treatment of the early stages of heavy ion collisions, that amounts to solving the classical Yang–Mills equations with fluctuating initial conditions. Our numerical simulations suggest a fast isotropization of the pressure tensor of the system. This trend appears already for small values of the coupling constant α{sub s}. In addition, the system exhibits an anomalously small shear viscosity.
THE EVOLUTION OF HOMOGENEOUS AND ISOTROPIC UNIVERSE IN THE RELATIVISTIC THEORY OF GRAVITATION
Directory of Open Access Journals (Sweden)
Modestov Konstantin Anatol'evich
2015-03-01
Full Text Available The application of the relativistic theory of gravitation with nonzero graviton rest mass to the Universe evolution is being considered in the paper. The authors made an attempt to explain its observed acceleration of expansion due to the presence of graviton rest mass. The evolution half-cycle and the Universe present age is being calculated.
Energy Technology Data Exchange (ETDEWEB)
Lee, Jeong Ki; Kwon, Jin O; Kim, Young H. [Korea Inspection and Engineering Co., Seoul (Korea, Republic of)
1999-10-15
Ultrasonic pulse-echo methods measuring the transit time through specimens have been widely used in determination of ultrasonic velocity and thickness of specimens. Usually, to determine the velocity of the ultrasonic. Tthe transit time of the ultrasonic pulse through specimen is measured by using the ultrasonic measuring equipment such as the oscilloscope including ultrasonic pulser/receiver and the thickness of the specimen is measured by using the length measuring instrument such as micrometer or vernier calipers etc., i. e. each parameter is measured by using each measuring method. In the case of the measuring the thickness of a specimen by using the ultrasonics. the ultrasonic equipment, which measure the thickness, such as the ultrasonic thickness gauge must be calibrated by using the reference block of which the ultrasonic velocity is known beforehand. In the present work, we proposed a new method for simultaneous measurement of ultrasonic velocity and thickness without reference blocks. Experimental results for several specimens show that proposed method have good agreements with those by traditional ultrasonic method
Sinai, G.; Dirksen, C.
2006-01-01
This paper describes laboratory experimental evidence for lateral flow in the top layer of unsaturated sloping soil due to rainfall. Water was applied uniformly on horizontal and V-shaped surfaces of fine sand, at rates about 100 times smaller than the saturated hydraulic conductivity. Flow regimes
Functionality and homogeneity.
2011-01-01
Functionality and homogeneity are two of the five Sustainable Safety principles. The functionality principle aims for roads to have but one exclusive function and distinguishes between traffic function (flow) and access function (residence). The homogeneity principle aims at differences in mass,
Homogeneous bilateral block shifts
Indian Academy of Sciences (India)
Homogeneous bilateral block shifts. ADAM KORÁNYI. Department of Mathematics, The Graduate Center, City University of New York,. New York, NY 10016, USA. E-mail: Adam.Koranyi@lehman.cuny.edu. MS received 18 January 2013. Abstract. A new 3-parameter family of homogeneous 2-by-2 block shifts is described.
Homogeneous bilateral block shifts
Indian Academy of Sciences (India)
A new 3-parameter family of homogeneous 2-by-2 block shifts is described. These are the first examples of irreducible homogeneous bilateral block shifts of block size larger than 1. Author Affiliations. Adam Korányi1. Department of Mathematics, The Graduate Center, City University of New York, New York, NY 10016, USA ...
MEAN VALUES FOR HOMOGENEOUS STIT TESSELLATIONS IN 3D
Directory of Open Access Journals (Sweden)
Werner Nagel
2011-05-01
Full Text Available Recently (Nagel and Weiss, 2005, the class of homogeneous random tessellations that are stable under the operation of iteration (STIT was introduced. In the present paper this model is reviewed and new results for the mean values of essential geometric features of STIT tessellations in two and three dimensions are provided and proved. For the isotropic model, these mean values are compared with those ones of the Poisson-Voronoi and of the Poisson plane tessellations, respectively.
Gluon fragmentation in T(1S) decays
International Nuclear Information System (INIS)
Bienlein, J.K.
1983-05-01
In T(1S) decays most observables (sphericity, charged multiplicity, photonic energy fraction, inclusive spectra) can be understood assuming that gluons fragment like quarks. New results from LENA use the (axis-independent) Fox-Wolfram moments for the photonic energy deposition. Continuum reactions show 'standard' Field-Feynman fragmentation. T(1S) decays show a significant difference in the photonic energy topology. It is more isotropic than with the Field-Feynman fragmentation scheme. Gluon fragmentation into isoscalar mesons (a la Peterson and Walsh) is excluded. But if one forces the leading particle to be isoscalar, one gets good agreement with the data. (orig.)
Cosmic homogeneity: a spectroscopic and model-independent measurement
Gonçalves, R. S.; Carvalho, G. C.; Bengaly, C. A. P., Jr.; Carvalho, J. C.; Bernui, A.; Alcaniz, J. S.; Maartens, R.
2018-03-01
Cosmology relies on the Cosmological Principle, i.e. the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale θh. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.
The SPH homogeneization method
International Nuclear Information System (INIS)
Kavenoky, Alain
1978-01-01
The homogeneization of a uniform lattice is a rather well understood topic while difficult problems arise if the lattice becomes irregular. The SPH homogeneization method is an attempt to generate homogeneized cross sections for an irregular lattice. Section 1 summarizes the treatment of an isolated cylindrical cell with an entering surface current (in one velocity theory); Section 2 is devoted to the extension of the SPH method to assembly problems. Finally Section 3 presents the generalisation to general multigroup problems. Numerical results are obtained for a PXR rod bundle assembly in Section 4
Stress propagation in isotropic packs with anisotropic boundaries
Krapf, Nathan; Witten, Thomas
2010-03-01
Stresses in marginally jammed, anisotropic packs built up from a solid floor propagate along oblique rays toward the floor footnotetext D. A. Head, A. V. Tkachenko, and T. A. Witten. Eur. Phys. J. E 6, 99-105 (2001)). This clear anisotropic propagation must result from anisotropic packing and/or anisotropic boundary conditions. Here we numerically isolate the effect of anisotropic boundaries by using an explicitly isotropic periodic pack in a marginally jammed, isostatic state. We then remove the periodicity in one direction and anchor the beads along one edge to a substrate. This preserves the isostatic condition while rendering the boundary anisotropic. However, we find hyperstatic modes along one edge of the pack and hypostatic modes at the other. We show that these extra modes decay rapidly away from the boundaries. Remarkably the hypostatic modes cause the pack to be unstable under any force applied to a single bead. This instability can be remedied by applying a suitable cluster of forces to adjacent beads, allowing a clear measurement of the bulk response. We discuss the resulting stress response.
Isotropic isotopy and symplectic null sets
Tokieda, Tadashi F.
1997-01-01
Capacity is an important numerical invariant of symplectic manifolds. This paper studies when a subset of a symplectic manifold is null, i.e., can be removed without affecting the ambient capacity. After examples of open null sets and codimension-2 non-null sets, geometric techniques are developed to perturb any isotopy of a loop to a hamiltonian flow; it follows that sets of dimension 0 and 1 are null. For isotropic sets of higher dimensions, obstructions to the perturbation are found in homotopy groups of the orthogonal groups. PMID:9391037
Isotropic isotopy and symplectic null sets.
Tokieda, T F
1997-12-09
Capacity is an important numerical invariant of symplectic manifolds. This paper studies when a subset of a symplectic manifold is null, i.e., can be removed without affecting the ambient capacity. After examples of open null sets and codimension-2 non-null sets, geometric techniques are developed to perturb any isotopy of a loop to a hamiltonian flow; it follows that sets of dimension 0 and 1 are null. For isotropic sets of higher dimensions, obstructions to the perturbation are found in homotopy groups of the orthogonal groups.
Isotropic Broadband E-Field Probe
Directory of Open Access Journals (Sweden)
Béla Szentpáli
2008-01-01
Full Text Available An E-field probe has been developed for EMC immunity tests performed in closed space. The leads are flexible resistive transmission lines. Their influence on the field distribution is negligible. The probe has an isotropic reception from 100 MHz to 18 GHz; the sensitivity is in the 3 V/m–10 V/m range. The device is an accessory of the EMC test chamber. The readout of the field magnitude is carried out by personal computer, which fulfils also the required corrections of the raw data.
Homogeneity of Inorganic Glasses
DEFF Research Database (Denmark)
Jensen, Martin; Zhang, L.; Keding, Ralf
2011-01-01
Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....
Stone, Sheldon
1994-01-01
This book reviews the study of b quarks and also looks at the implications of future studies. The most important observations thus far - including measurement of the ""B"" lifetime and observations of b -> u transitions - as well as the more mundane results of hadronic and semileptonic transitions are described in detail by experimentalists who have been closely involved with the measurements. Theoretical progress in understanding b quark decays, including the mechanisms of hadronic and semileptonic decays, are described. Synthesizing the experimental and theoretical information, the authors d
Stone, Sheldon
1992-01-01
The study of b quarks has now reached a stage where it is useful to review what has been learned so far and also to look at the implications of future studies. The most important observations thus far - measurement of the "B" lifetime, B 0 - B 0 mixing, and the observation of b? u transitions, as well as more mundane results on hadronic and semileptonic transitions - are described in detail by experimentalists who have been closely involved with the measurements. Theoretical progress in understanding b quark decays, including the mechanisms of hadronic and semileptonic decays, are described. S
Isotropic Navier-Stokes turbulence. II. Statistical approximation methods
International Nuclear Information System (INIS)
Kraichnan, R.H.
1990-01-01
This chapter is concerned with the construction of systematic approximations to the statistics of Navier-Stokes (NS) turbulence. There are difficulties related both to nonlinearity and to the complexity of the dynamical system. The basic task in forming statistical approximations is to use partial information about a very large system in order to make valid predictions of desired averages. This can be a nontrivial undertaking even for linear systems whose exact solutions are completely understood. Guiding principles should include preservation of invariance and conservation properties in approximations and care not to violate realizability (positivity of probability density). The chapter surveys some kinds of statistical description and some approximation methods that have been applied to homogeneous, isotropic turbulence in an incompressible NS fluid. This is followed by an outline of one approach, centered about the construction of stochastic models, that has had some success. Finally, a little is said about new approaches. All of this discussion is tied back to the qualitative physics discussed in the preceding chapter. Equation numbering reflects the chapter number, the section number, and then the consecutive equation number. 32 refs
Acoustic reflection log in transversely isotropic formations
Ronquillo Jarillo, G.; Markova, I.; Markov, M.
2018-01-01
We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.
Hao, Qi
2014-12-30
Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.
Grimm, U
2005-01-01
A homogeneous medium is characterised by a point set in Euclidean space (for the atomic positions, say), together with some self-averaging property. Crystals and quasicrystals are homogeneous, but also many structures with disorder still are. The corresponding shelling is concerned with the number of points on shells around an arbitrary, but fixed centre. For non-periodic point sets, where the shelling depends on the chosen centre, a more adequate quantity is the averaged shelling, obtained by averaging over points of the set as centres. For homogeneous media, such an average is still well defined, at least almost surely (in the probabilistic sense). Here, we present a two-step approach for planar model sets.
New bounds on isotropic Lorentz violation
International Nuclear Information System (INIS)
Carone, Christopher D.; Sher, Marc; Vanderhaeghen, Marc
2006-01-01
Violations of Lorentz invariance that appear via operators of dimension four or less are completely parametrized in the Standard Model Extension (SME). In the pure photonic sector of the SME, there are 19 dimensionless, Lorentz-violating parameters. Eighteen of these have experimental upper bounds ranging between 10 -11 and 10 -32 ; the remaining parameter, k-tilde tr , is isotropic and has a much weaker bound of order 10 -4 . In this Brief Report, we point out that k-tilde tr gives a significant contribution to the anomalous magnetic moment of the electron and find a new upper bound of order 10 -8 . With reasonable assumptions, we further show that this bound may be improved to 10 -14 by considering the renormalization of other Lorentz-violating parameters that are more tightly constrained. Using similar renormalization arguments, we also estimate bounds on Lorentz-violating parameters in the pure gluonic sector of QCD
A tilted transversely isotropic slowness surface approximation
Stovas, A.
2012-05-09
The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.
Gravitational instability in isotropic MHD plasma waves
Indian Academy of Sciences (India)
Alemayehu Mengesha Cherkos
2018-03-06
Mar 6, 2018 ... Abstract. The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for ...
Dynamics of homogeneous nucleation
DEFF Research Database (Denmark)
Toxværd, Søren
2015-01-01
The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...
Homogeneous bilateral block shifts
Indian Academy of Sciences (India)
Douglas class were classified in [3]; they are unilateral block shifts of arbitrary block size (i.e. dim H(n) can be anything). However, no examples of irreducible homogeneous bilateral block shifts of block size larger than 1 were known until now.
Homogeneous Poisson structures
International Nuclear Information System (INIS)
Shafei Deh Abad, A.; Malek, F.
1993-09-01
We provide an algebraic definition for Schouten product and give a decomposition for any homogenenous Poisson structure in any n-dimensional vector space. A large class of n-homogeneous Poisson structures in R k is also characterized. (author). 4 refs
Topological optimization for the design of microstructures of isotropic cellular materials
Radman, A.; Huang, X.; Xie, Y. M.
2013-11-01
The aim of this study was to design isotropic periodic microstructures of cellular materials using the bidirectional evolutionary structural optimization (BESO) technique. The goal was to determine the optimal distribution of material phase within the periodic base cell. Maximizing bulk modulus or shear modulus was selected as the objective of the material design subject to an isotropy constraint and a volume constraint. The effective properties of the material were found using the homogenization method based on finite element analyses of the base cell. The proposed BESO procedure utilizes the gradient-based sensitivity method to impose the isotropy constraint and gradually evolve the microstructures of cellular materials to an optimum. Numerical examples show the computational efficiency of the approach. A series of new and interesting microstructures of isotropic cellular materials that maximize the bulk or shear modulus have been found and presented. The methodology can be extended to incorporate other material properties of interest such as designing isotropic cellular materials with negative Poisson's ratio.
Analysis of Shear Flexible Layered Isotropic and Composite Shells by ‘EPSA’
Directory of Open Access Journals (Sweden)
Pawel Woelke
2012-01-01
Full Text Available We present a simple and efficient method for the analysis of shear flexible isotropic and orthotropic composite shells. Classical thin shell constitutive equations used in the explicit finite element code EPSA to model homogenous isotropic shells using "through-the-thickness-integration" and layered orthotropic composite shells [1–3,5] are modified to account for transverse shear deformation. This effect is important in the analysis of thick plates and shells as well as composite laminates, where interlaminar effects matter. Transverse shear stresses are calculated using a linear normal strain distribution, where first the shear forces are calculated and then the stresses are calculated by means of the generalized section properties, i.e., first and second moments of area. The formulation is a generalization of the analytical method of analyzing composite beams. It is simple and computationally inexpensive, and it yields accurate results without employing higher order displacement interpolations. In the case of isotropic shells, the transverse shear stresses are distributed parabolically, based on the assumption of linear normal strain distribution through the thickness and on application of the quadratic shape function to transverse shear strains. The transverse shear stresses are included in the elastic-perfectly plastic yield function of the Huber-Mises-Hencky type.
Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation
Zhang, Zhendong
2017-12-17
The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyze the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artifacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration (RTM) applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modeling engine performs better than an isotropic migration.
Isotropic compression of cohesive-frictional particles with rolling resistance
Luding, Stefan; Benz, Thomas; Nordal, Steinar
2010-01-01
Cohesive-frictional and rough powders are the subject of this study. The behavior under isotropic compression is examined for different material properties involving Coulomb friction, rolling-resistance and contact-adhesion. Under isotropic compression, the density continuously increases according
Contact mechanics and friction for transversely isotropic viscoelastic materials
Mokhtari, Milad; Schipper, Dirk J.; Vleugels, N.; Noordermeer, Jacobus W.M.; Yoshimoto, S.; Hashimoto, H.
2015-01-01
Transversely isotropic materials are an unique group of materials whose properties are the same along two of the principal axes of a Cartesian coordinate system. Various natural and artificial materials behave effectively as transversely isotropic elastic solids. Several materials can be classified
Pre-inflationary homogenization of scalar field cosmologies
Energy Technology Data Exchange (ETDEWEB)
Alho, Artur, E-mail: aalho@math.uminho.pt [Centro de Matematica, Universidade do Minho, Gualtar, 4710-057 Braga (Portugal); Mena, Filipe C., E-mail: fmena@math.uminho.pt [Centro de Matematica, Universidade do Minho, Gualtar, 4710-057 Braga (Portugal); Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520 (United States)
2011-09-26
We consider the evolution of covariant and gauge invariant linear density perturbations of scalar field cosmologies using a dynamical systems' approach. We find conditions for which the perturbations decay in time, so that the spacetime approaches a homogeneous solution which inflates, for quadratic and exponential potentials. This pre-inflationary homogenization is found to be stable in the potentials' parameter spaces. Furthermore, in each case, we determine the minimum size of the resultant homogeneous patch and show that, for quadratic potentials, the resulting inflationary solutions include those with the necessary number of e-folds.
Traveltime approximations for transversely isotropic media with an inhomogeneous background
Alkhalifah, Tariq
2011-05-01
A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor\\'s series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter θ, the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in and θ with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor\\'s series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis. © 2011 Society of Exploration Geophysicists.
Cosmological simulations of isotropic conduction in galaxy clusters
International Nuclear Information System (INIS)
Smith, Britton; O'Shea, Brian W.; Voit, G. Mark; Ventimiglia, David; Skillman, Samuel W.
2013-01-01
Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of 10 galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, though not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density, but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the intracluster medium (ICM), instead of raising its temperature. In general, conduction tends reduce temperature inhomogeneity in the ICM, but our simulations indicate that those homogenizing effects would be extremely difficult to observe in ∼5 keV clusters. Outside the virial radius, our conduction implementation lowers the gas densities and temperatures because it reduces the Mach numbers of accretion shocks. We conclude that, despite the numerous small ways in which conduction alters the structure of galaxy clusters, none of these effects are significant enough to make the efficiency of conduction easily measurable, unless its effects are more pronounced in clusters hotter than those we have simulated.
Quasi-Rayleigh waves in transversely isotropic half-space with inclined axis of symmetry
International Nuclear Information System (INIS)
Yanovskaya, T.B.; Savina, L.S.
2003-09-01
A method for determination of characteristics of quasi-Rayleigh (qR) wave in a transversely isotropic homogeneous half-space with inclined axis of symmetry is outlined. The solution is obtained as a superposition of qP, qSV and qSH waves, and surface wave velocity is determined from the boundary conditions at the free surface and at infinity, as in the case of Rayleigh wave in isotropic half-space. Though the theory is simple enough, a numerical procedure for the calculation of surface wave velocity presents some difficulties. The difficulty is conditioned by necessity to calculate complex roots of a non-linear equation, which in turn contains functions determined as roots of nonlinear equations with complex coefficients. Numerical analysis shows that roots of the equation corresponding to the boundary conditions do not exist in the whole domain of azimuths and inclinations of the symmetry axis. The domain of existence of qR wave depends on the ratio of the elastic parameters: for some strongly anisotropic models the wave cannot exist at all. For some angles of inclination qR wave velocities deviate from those calculated on the basis of the perturbation method valid for weak anisotropy, though they have the same tendency of variation with azimuth. The phase of qR wave varies with depth unlike Rayleigh wave in isotropic half-space. Unlike Rayleigh wave in isotropic half-space, qR wave has three components - vertical, radial and transverse. Particle motion in horizontal plane is elliptic. Direction of the major axis of the ellipsis coincide with the direction of propagation only in azimuths 0 deg. (180 deg.) and 90 deg. (270 deg.). (author)
Homogenous finitary symmetric groups
Directory of Open Access Journals (Sweden)
Otto. H. Kegel
2015-03-01
Full Text Available We characterize strictly diagonal type of embeddings of finitary symmetric groups in terms of cardinality and the characteristic. Namely, we prove the following. Let kappa be an infinite cardinal. If G=underseti=1stackrelinftybigcupG i , where G i =FSym(kappan i , (H=underseti=1stackrelinftybigcupH i , where H i =Alt(kappan i , is a group of strictly diagonal type and xi=(p 1 ,p 2 ,ldots is an infinite sequence of primes, then G is isomorphic to the homogenous finitary symmetric group FSym(kappa(xi (H is isomorphic to the homogenous alternating group Alt(kappa(xi , where n 0 =1,n i =p 1 p 2 ldotsp i .
Homogeneous group, research, institution
Directory of Open Access Journals (Sweden)
Francesca Natascia Vasta
2014-09-01
Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome
Homogeneous turbulence dynamics
Sagaut, Pierre
2018-01-01
This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...
Homogen Mur - et udviklingsprojekt
DEFF Research Database (Denmark)
Dahl, Torben; Beim, Anne; Sørensen, Peter
1997-01-01
Mølletorvet i Slagelse er det første byggeri i Danmark, hvor ydervæggen er udført af homogene bærende og isolerende teglblokke. Byggeriet viser en række af de muligheder, der både med hensyn til konstruktioner, energiforhold og arkitektur ligger i anvendelsen af homogent blokmurværk....
An Improved Isotropic Periodic Sum Method That Uses Linear Combinations of Basis Potentials
Takahashi, Kazuaki Z.
2012-11-13
Isotropic periodic sum (IPS) is a technique that calculates long-range interactions differently than conventional lattice sum methods. The difference between IPS and lattice sum methods lies in the shape and distribution of remote images for long-range interaction calculations. The images used in lattice sum calculations are identical to those generated from periodic boundary conditions and are discretely positioned at lattice points in space. The images for IPS calculations are "imaginary", which means they do not explicitly exist in a simulation system and are distributed isotropically and periodically around each particle. Two different versions of the original IPS method exist. The IPSn method is applied to calculations for point charges, whereas the IPSp method calculates polar molecules. However, both IPSn and IPSp have their advantages and disadvantages in simulating bulk water or water-vapor interfacial systems. In bulk water systems, the cutoff radius effect of IPSn strongly affects the configuration, whereas IPSp does not provide adequate estimations of water-vapor interfacial systems unless very long cutoff radii are used. To extend the applicability of the IPS technique, an improved IPS method, which has better accuracy in both homogeneous and heterogeneous systems has been developed and named the linear-combination-based isotropic periodic sum (LIPS) method. This improved IPS method uses linear combinations of basis potentials. We performed molecular dynamics (MD) simulations of bulk water and water-vapor interfacial systems to evaluate the accuracy of the LIPS method. For bulk water systems, the LIPS method has better accuracy than IPSn in estimating thermodynamic and configurational properties without the countercharge assumption, which is used for IPSp. For water-vapor interfacial systems, LIPS has better accuracy than IPSp and properly estimates thermodynamic and configurational properties. In conclusion, the LIPS method can successfully estimate
In-trap decay spectroscopy for {beta}{beta} decays
Energy Technology Data Exchange (ETDEWEB)
Brunner, Thomas
2011-01-18
The presented work describes the implementation of a new technique to measure electron-capture (EC) branching ratios (BRs) of intermediate nuclei in {beta}{beta} decays. This technique has been developed at TRIUMF in Vancouver, Canada. It facilitates one of TRIUMF's Ion Traps for Atomic and Nuclear science (TITAN), the Electron Beam Ion Trap (EBIT) that is used as a spectroscopy Penning trap. Radioactive ions, produced at the radioactive isotope facility ISAC, are injected and stored in the spectroscopy Penning trap while their decays are observed. A key feature of this technique is the use of a strong magnetic field, required for trapping. It radially confines electrons from {beta} decays along the trap axis while X-rays, following an EC, are emitted isotropically. This provides spatial separation of X-ray and {beta} detection with almost no {beta}-induced background at the X-ray detector, allowing weak EC branches to be measured. Furthermore, the combination of several traps allows one to isobarically clean the sample prior to the in-trap decay spectroscopy measurement. This technique has been developed to measure ECBRs of transition nuclei in {beta}{beta} decays. Detailed knowledge of these electron capture branches is crucial for a better understanding of the underlying nuclear physics in {beta}{beta} decays. These branches are typically of the order of 10{sup -5} and therefore difficult to measure. Conventional measurements suffer from isobaric contamination and a dominating {beta} background at theX-ray detector. Additionally, X-rays are attenuated by the material where the radioactive sample is implanted. To overcome these limitations, the technique of in-trap decay spectroscopy has been developed. In this work, the EBIT was connected to the TITAN beam line and has been commissioned. Using the developed beam diagnostics, ions were injected into the Penning trap and systematic studies on injection and storage optimization were performed. Furthermore, Ge
Anisotropic Charged Fluid Sphere in Isotropic Coordinates
Directory of Open Access Journals (Sweden)
Neeraj Pant
2014-01-01
Full Text Available We have presented a class of charged superdense star models, starting with a static spherically symmetric metric in isotropic coordinates for anisotropic fluid by considering Hajj-Boutros-(1986 type metric potential and a specific choice of electrical intensity E and anisotropy factor Δ which involve charge parameter K and anisotropy parameter α. The solution is well behaved for all the values of Schwarzschild compactness parameter u lying in the range 0
A reformulated flexoelectric theory for isotropic dielectrics
International Nuclear Information System (INIS)
Li, Anqing; Zhou, Shenjie; Qi, Lu; Chen, Xi
2015-01-01
In flexoelectricity, a strain gradient can induce polarization and a polarization gradient can induce mechanical stress. In this paper, in order to identify the contributions of each strain gradient component, the flexoelectric theory is reformulated by splitting the strain gradient tensor into mutually independent parts. Two sets of orthogonal higher-order deformation metrics are inherited and perfected to reformulate the internal energy density for isotropic materials. The deviatoric stretch gradient and the symmetric part of the rotation gradient are proved to disappear in the coupling of strain gradient to polarization and, moreover, the independent higher-order constants associated with the coupling of strain gradient to strain gradient reduce from five to three. The constitutive relations are then reformulated in terms of the new deformation and electric field metrics, and the governing equations and boundary conditions are derived according to the variational principle of electric enthalpy. On the basis of the present simplified flexoelectric theory, a flexoelectric Bernoulli–Euler beam theory is specified. Solutions for a cantilever subjected to a force at the free end and a voltage cross the thickness are constructed and the size-dependent direct and inverse flexoelectric effects are captured. (paper)
A reformulated flexoelectric theory for isotropic dielectrics
Li, Anqing; Zhou, Shenjie; Qi, Lu; Chen, Xi
2015-11-01
In flexoelectricity, a strain gradient can induce polarization and a polarization gradient can induce mechanical stress. In this paper, in order to identify the contributions of each strain gradient component, the flexoelectric theory is reformulated by splitting the strain gradient tensor into mutually independent parts. Two sets of orthogonal higher-order deformation metrics are inherited and perfected to reformulate the internal energy density for isotropic materials. The deviatoric stretch gradient and the symmetric part of the rotation gradient are proved to disappear in the coupling of strain gradient to polarization and, moreover, the independent higher-order constants associated with the coupling of strain gradient to strain gradient reduce from five to three. The constitutive relations are then reformulated in terms of the new deformation and electric field metrics, and the governing equations and boundary conditions are derived according to the variational principle of electric enthalpy. On the basis of the present simplified flexoelectric theory, a flexoelectric Bernoulli-Euler beam theory is specified. Solutions for a cantilever subjected to a force at the free end and a voltage cross the thickness are constructed and the size-dependent direct and inverse flexoelectric effects are captured.
Nonlinear elastic inclusions in isotropic solids
Yavari, A.
2013-10-16
We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.
Isotropic thaw subsidence in undisturbed permafrost landscapes
Shiklomanov, Nikolay I.; Streletskiy, Dmitry A.; Little, Jonathon D.; Nelson, Frederick E.
2013-12-01
in undisturbed terrain within some regions of the Arctic reveal limited correlation between increasing air temperature and the thickness of the seasonally thawed layer above ice-rich permafrost. Here we describe landscape-scale, thaw-induced subsidence lacking the topographic contrasts associated with thermokarst terrain. A high-resolution, 11 year record of temperature and vertical movement at the ground surface from contrasting physiographic regions of northern Alaska, obtained with differential global positioning systems technology, indicates that thaw of an ice-rich layer at the top of permafrost has produced decimeter-scale subsidence extending over the entire landscapes. Without specialized observation techniques the subsidence is not apparent to observers at the surface. This "isotropic thaw subsidence" explains the apparent stability of active layer thickness records from some landscapes of northern Alaska, despite warming near-surface air temperatures. Integrated over extensive regions, it may be responsible for thawing large volumes of carbon-rich substrate and could have negative impacts on infrastructure.
Homogenization of Elliptic Differential Equations in One-Dimensional Spaces
Grammel, G.
2007-01-01
Linear elliptic differential equations with periodic coefficients in one-dimensional domains are considered. The approximation properties of the homogenized system are investigated. For $H^{-1}$ -data, it turns out that the order of approximation is strongly related to the decay of the Fourier coefficients of the $L^{2}$ -functions involved.
Improved bound on isotropic Lorentz violation in the photon sector from extensive air showers
Klinkhamer, F. R.; Niechciol, M.; Risse, M.
2017-12-01
Cosmic rays have extremely high particle energies (up to 1 020 eV ) and can be used to search for violations of Lorentz invariance. We consider isotropic nonbirefringent Lorentz violation in the photon sector for the case of a photon velocity larger than the maximum attainable velocity of the standard fermions. Up to now, Earth-based bounds on this type of Lorentz violation have been determined from observations of TeV gamma rays. Here, we elaborate on a novel approach to test Lorentz invariance with greatly improved sensitivity. This approach is based on investigating extensive air showers which are induced by cosmic-ray particles in the Earth's atmosphere. We study the impact of two Lorentz-violating decay processes on the longitudinal development of air showers, notably the atmospheric depth of the shower maximum Xmax. Specifically, the two Lorentz-violating decay processes considered are photon decay into an electron-positron pair and modified neutral-pion decay into two photons. We use Monte Carlo simulations performed with the conex code which was extended to include these two Lorentz-violating decay processes at a magnitude allowed by the best previous Earth-based bound. Compared to standard physics, these Lorentz-violating decay processes reduce the average Xmax for showers with primary energies above 1 018 eV by an amount that is significantly larger than the average resolution of current air shower experiments. Comparing the simulations of the average Xmax to observations, new Earth-based bounds on this type of Lorentz violation are obtained, which are better than the previous bounds by more than three orders of magnitude. Prospects of further studies are also discussed.
The radiated noise from isotropic turbulence revisited
Lilley, Geoffrey M.
1993-01-01
The noise radiated from isotropic turbulence at low Mach numbers and high Reynolds numbers, as derived by Proudman (1952), was the first application of Lighthill's Theory of Aerodynamic Noise to a complete flow field. The theory presented by Proudman involves the assumption of the neglect of retarded time differences and so replaces the second-order retarded-time and space covariance of Lighthill's stress tensor, Tij, and in particular its second time derivative, by the equivalent simultaneous covariance. This assumption is a valid approximation in the derivation of the second partial derivative of Tij/derivative of t exp 2 covariance at low Mach numbers, but is not justified when that covariance is reduced to the sum of products of the time derivatives of equivalent second-order velocity covariances as required when Gaussian statistics are assumed. The present paper removes these assumptions and finds that although the changes in the analysis are substantial, the change in the numerical result for the total acoustic power is small. The present paper also considers an alternative analysis which does not neglect retarded times. It makes use of the Lighthill relationship, whereby the fourth-order Tij retarded-time covariance is evaluated from the square of similar second order covariance, which is assumed known. In this derivation, no statistical assumptions are involved. This result, using distributions for the second-order space-time velocity squared covariance based on the Direct Numerical Simulation (DNS) results of both Sarkar and Hussaini(1993) and Dubois(1993), is compared with the re-evaluation of Proudman's original model. These results are then compared with the sound power derived from a phenomenological model based on simple approximations to the retarded-time/space covariance of Txx. Finally, the recent numerical solutions of Sarkar and Hussaini(1993) for the acoustic power are compared with the results obtained from the analytic solutions.
Homogeneity spoil spectroscopy
International Nuclear Information System (INIS)
Hennig, J.; Boesch, C.; Martin, E.; Grutter, R.
1987-01-01
One of the problems of in vivo MR spectroscopy of P-31 is spectra localization. Surface coil spectroscopy, which is the method of choice for clinical applications, suffers from the high-intensity signal from subcutaneous muscle tissue, which masks the spectrum of interest from deeper structures. In order to suppress this signal while maintaining the simplicity of surface coil spectroscopy, the authors introduced a small sheet of ferromagnetically dotted plastic between the surface coil and the body. This sheet destroys locally the field homogeneity and therefore all signal from structures around the coil. The very high reproducibility of the simple experimental procedure allows long-term studies important for monitoring tumor therapy
Deng, Shaoqiang
2012-01-01
"Homogeneous Finsler Spaces" is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduc
Homogenized models for a short-time filtration in elastic porous media
Directory of Open Access Journals (Sweden)
Anvarbek M. Meirmanov
2008-01-01
Full Text Available We consider a linear system of differential equations describing a joint motion of elastic porous body and fluid occupying porous space. The rigorous justification, under various conditions imposed on physical parameters, is fulfilled for homogenization procedures as the dimensionless size of the pores tends to zero, while the porous body is geometrically periodic and a characteristic time of processes is small enough. Such kind of models may describe, for example, hydraulic fracturing or acoustic or seismic waves propagation. As the results, we derive homogenized equations involving non-isotropic Stokes system for fluid velocity coupled with two different types of acoustic equations for the solid component, depending on ratios between physical parameters, or non-isotropic Stokes system for one-velocity continuum. The proofs are based on Nguetseng's two-scale convergence method of homogenization in periodic structures.
Cosmology the homogeneous universe and the evolution of structures
CERN. Geneva. Audiovisual Unit
2003-01-01
In my course I will first give and introduction to standard cosmology. I discuss the equations of the homogeneous and isotropic universe and I'll briefly summarize its thermal history. After that I want to concentrate on the fluctuations in the universe. We will study anisotropies in the cosmic microwave background, fluctuations of the matter density and the velocity field and weak lensing. I want to explain especially new cosmological data which are coming up right now and their implication for the cosmological model. N.B. This lecture series will be held in the Auditorium, bldg. 500 on 27, 28, 30, 31 January and in the Council room on 29 January.
Zhan, Yongxiang; Yao, Hailin; Lu, Zheng; Yu, Dongming
2014-12-01
The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE < 1 and RG < 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.
CSIR Research Space (South Africa)
Joubert, S
2006-05-01
Full Text Available and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 1 φ φ r z a x y Ω P P O u v w z ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ... ∂ ∂ ∂ + + + − = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ && && && 6 CSIR Material Science and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 2 ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ...
Length of the intense vorticity structures in isotropic turbulence
Ghira, Afonso; Silva, Carlos; Elsinga, Gerrit; Lasef Collaboration
2017-11-01
The length scale l of the intense vorticity structures or 'worms' of isotropic turbulence is reassessed using new direct numerical simulations (DNS). The new simulations cover a Reynolds number range from 96 Portuguese Foundation for Science and Technology (FST); PRACE.
Ductile-brittle transition in transverse isotropic fibrous networks
Luo, Guoquan; Shi, Liping; Li, Mingwei; Zhong, Yesheng; He, Xiaodong; Wang, Jiazhi
2018-01-01
Anisotropic fibrous networks, especially transverse isotropic fibrous networks, are widely used to model the microstructures of biological tissues, polymer gels, fibrous thermal insulations, and other fibrous materials. In this letter, we build a three-dimensional transverse isotropic fibrous network model and study its mechanical properties along the through-thickness direction. We propose a measurement of anisotropy for transverse isotropic fibrous networks and then study the influence of anisotropy on the networks' mechanical properties, including its elastic modulus, maximum elongation, and stress-strain curve, by means of finite-element simulation. We also study theoretically the influence of anisotropy on maximum elongation. We find that as the anisotropy of the networks becomes stronger, the elastic modulus decreases and the maximum elongation increases, indicating a transition in mechanical properties from brittle to ductile. We identify this transition as the "ductile-brittle transition." This transition can help guide the design and regulate the mechanical properties of a transverse isotropic fibrous network.
Hammond, R.P.; Busey, H.M.
1959-02-17
Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.
A Generalization of Refined Similarity Hypothesis for Isotropic Turbulence*
Hosokawa, Iwao
2000-03-01
The refined similarity hypothesis for isotropic turbulenceestablished by Kolmogorov in 1962 is generalized so that thestatistics of similarity variable may have a slight scale-ratiodependence. A reasonable form of the dependence is given on the basisof a recent multifractal model of intermittent energy dissipation andon some theoretical and experimental knowledge. This modificationleads us to predict reasonable values of all the Kolmogorov prefactorsand the scalings of longitudinal as well as transverse velocitystructure functions in isotropic turbulence.
Isotropic neutrino flux from supernova explosions in the universe
Petkov, V. B.
2018-01-01
Neutrinos of all types are emitted from the gravitational collapse of massive star cores, and have been amassed in the Universe throughout the history of evolution of galaxies. The isotropic and stable flux of these neutrinos is a source of information on the spectra of neutrinos from individual supernovae and on their redshift distribution. The prospects for detecting the isotropic neutrino flux with the existing and upcoming experimental facilities and the current upper limits are discussed in this paper.
Open bosonic strings in a background isotropic electromagnetic field
International Nuclear Information System (INIS)
Koshkarov, A.L.; Nesterenko, V.V.
1989-01-01
The first-quantized theory of open bosonic strings in a background isotropic electromagnetic field is constructed. Two types of the open strings, neutral and charged, are considered. The modified light-like gauge conditions are introduced, general solutions of the equations of motion are obtained and the consistency of the theory does not entails the constraints on the strength of an external isotropic electromagnetic field. 11 refs
Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials
International Nuclear Information System (INIS)
Ma, Young Wha; Yoon, Kee Bong
2009-01-01
Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials
The role of material in homogeneities in biological growth
Directory of Open Access Journals (Sweden)
Grillo A.
2005-01-01
Full Text Available We investigate the influence of the material in homogeneities that are generated by an isotropic growth on the source of mass acting within a growing living tissue. In order to do that, we need to study the interaction between these material in homogeneities and the chemical agents dissolved within the tissue. For this purpose, we use some ideas and methods from Condensed Matter Physics (e.g., the Path Integral technique employed in modeling Brownian processes and apply them to the Continuum Mechanics description of volumetric Growth. We believe that this approach may provide new physical insight into the interactions between the macroscopic dynamics of living systems and the evolution of the subsystems which activate biological processes.
The relationship between continuum homogeneity and statistical homogeneity in cosmology
International Nuclear Information System (INIS)
Stoeger, W.R.; Ellis, G.F.R.; Hellaby, C.
1987-01-01
Although the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe models are based on the concept that the Universe is spatially homogeneous, up to the present time no definition of this concept has been proposed that could in principle be tested by observation. Such a definition is here proposed, based on a simple spatial averaging procedure, which relates observable properties of the Universe to the continuum homogeneity idea that underlies the FLRW models. It turns out that the statistical homogeneity often used to describe the distribution of matter on a large scale does not imply spatial homogeneity according to this definition, and so cannot be simply related to a FLRW Universe model. Values are proposed for the homogeneity parameter and length scale of homogeneity of the Universe. (author)
Homogeneous cosmologies as group field theory condensates
Energy Technology Data Exchange (ETDEWEB)
Gielen, Steffen [Perimeter Institute for Theoretical Physics,31 Caroline St. N., Waterloo, Ontario N2L 2Y5 (Canada); Oriti, Daniele; Sindoni, Lorenzo [Max Planck Institute for Gravitational Physics (Albert Einstein Institute),Am Mühlenberg 1, 14476 Golm (Germany)
2014-06-03
We give a general procedure, in the group field theory (GFT) formalism for quantum gravity, for constructing states that describe macroscopic, spatially homogeneous universes. These states are close to coherent (condensate) states used in the description of Bose-Einstein condensates. The condition on such states to be (approximate) solutions to the quantum equations of motion of GFT is used to extract an effective dynamics for homogeneous cosmologies directly from the underlying quantum theory. The resulting description in general gives nonlinear and nonlocal equations for the ‘condensate wavefunction’ which are analogous to the Gross-Pitaevskii equation in Bose-Einstein condensates. We show the general form of the effective equations for current quantum gravity models, as well as some concrete examples. We identify conditions under which the dynamics becomes linear, admitting an interpretation as a quantum-cosmological Wheeler-DeWitt equation, and give its semiclassical (WKB) approximation in the case of a kinetic term that includes a Laplace-Beltrami operator. For isotropic states, this approximation reproduces the classical Friedmann equation in vacuum with positive spatial curvature. We show how the formalism can be consistently extended from Riemannian signature to Lorentzian signature models, and discuss the addition of matter fields, obtaining the correct coupling of a massless scalar in the Friedmann equation from the most natural extension of the GFT action. We also outline the procedure for extending our condensate states to include cosmological perturbations. Our results form the basis of a general programme for extracting effective cosmological dynamics directly from a microscopic non-perturbative theory of quantum gravity.
Effect of non-homogeneity on orthotropic creep stresses in a pressurized circular cylinder
Sharma, Sanjeev; Panchal, Rekha
2017-10-01
The effect of anisotropy on the creep stresses of a functionally graded infinite hollow cylinder with inhomogeneity in terms of compressibility varying according to power law is investigated. Transition theory given by Seth for finite deformation is used for analysis of creep stresses which overcome the use of creep strain laws and jump conditions. Analytical solution for orthotropic and isotropic cylinder subjected to internal and external pressure is derived. The results indicate that the effect of inhomogeneity is very pronounced. Highly non-homogeneous isotropic material Steel with non-linear measure is safer for the design as compared to orthotropic material Barite and Uranium (alpha) as hoop stress generated are less. Circumferential creep stresses generated for the cylinder are less for highly functionally graded cylinder as compared to less functionally graded cylinder. Also, the cylinder with isotropic properties is on the safer side of design.
Probing decaying heavy dark matter with the 4-year IceCube HESE data
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Atri [Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Bât. B5a, 4000 Liège (Belgium); Esmaili, Arman [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, C.P. 38071, 22452- 970, Rio de Janeiro (Brazil); Palomares-Ruiz, Sergio [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Sarcevic, Ina, E-mail: a.bhattacharya@ulg.ac.be, E-mail: arman@puc-rio.br, E-mail: sergio.palomares.ruiz@ific.uv.es, E-mail: ina@physics.arizona.edu [Department of Physics, University of Arizona, 1118 E. 4th St. Tucson, AZ 85704 (United States)
2017-07-01
After the first four years of data taking, the IceCube neutrino telescope has observed 54 high-energy starting events (HESE) with deposited energies between 20 TeV and 2 PeV . The background from atmospheric muons and neutrinos is expected to be of about 20 events, all below 100 TeV, thus pointing towards the astrophysical origin of about 8 events per year in that data set. However, their precise origin remains unknown. Here, we perform a detailed analysis of this event sample (considering simultaneously the energy, hemisphere and topology of the events) by assuming two contributions for the signal events: an isotropic power-law flux and a flux from decaying heavy dark matter. We fit the mass and lifetime of the dark matter and the normalization and spectral index of an isotropic power-law flux, for various decay channels of dark matter. We find that a significant contribution from dark matter decay is always slightly favored, either to explain the excess below 100 TeV, as in the case of decays to quarks or, as in the case of neutrino channels, to explain the three multi-PeV events. Also, we consider the possibility to interpret all the data by dark matter decays only, considering various combinations of two decay channels. We show that the decaying dark matter scenario provides a better fit to HESE data than the isotropic power-law flux.
A transversely isotropic medium with a tilted symmetry axis normal to the reflector
Alkhalifah, Tariq Ali
2010-05-01
The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.
Alkhalifah, Tariq Ali
2012-04-30
Traveltime information is crucial for parameter estimation, especially if the medium is described by a set of anisotropy parameters. We can efficiently estimate these parameters if we are able to relate them analytically to traveltimes, which is generally hard to do in inhomogeneous media. I develop traveltime approximations for transversely isotropic media with a horizontal symmetry axis (HTI) as simplified and even linear functions of the anisotropy parameters. This is accomplished by perturbing the solution of the HTI eikonal equation with respect to the anellipticity parameter, η and the azimuth of the symmetry axis (typically associated with the fracture direction) from a generally inhomogeneous, elliptically anisotropic background medium. Such a perturbation is convenient since the elliptically anisotropic information might be obtained from well velocities in HTI media. Thus, we scan for only η and the symmetry-axis azimuth. The resulting approximations can provide a reasonably accurate analytical description of the traveltime in a homogenous background compared to other published moveout equations. They also help extend the inhomogenous background isotropic or elliptically anisotropic models to an HTI one with a smoothly variable η and symmetry-axis azimuth. © 2012 European Association of Geoscientists & Engineers.
International Nuclear Information System (INIS)
Waga, I.
1983-01-01
A new class of inhogeneous cosmological models, whose curvature source is a mixture of dust fluid with a isotropic radiation not interacting among themselves and an electromagnetic field that also not interacting with the fluids, is presented. It is shown that this class evolue for homogeneity and isotropy, in the limit of big values of the time coordinate. The asymptotic behaviours, near to the singularity, of two models of the class is studied and it is exhibited that the magnetic field modifies the type of singularity, being able to reduce the anisotropy in the initial phase. Killing's equations are integrated and it is demonstrated that the space-time shows an isometry group of three parameters whose orbits are space-like two-dimensional surfaces. It is shown that the models are expansionists, geodeticals, irrotationals and of D-like Petrov's classification with conformally plane three-dimensional spatial sections. (L.C.) [pt
Calculation of point isotropic buildup factors of gamma rays for water and lead
Directory of Open Access Journals (Sweden)
A. S. H.
2001-12-01
Full Text Available Exposure buildup factors for water and lead have been calculated by the Monte-Carlo method for an isotropic point source in an infinite homogeneous medium, using the latest cross secions available on the Internet. The types of interactions considered are ,photoelectric effect, incoherent (or bound-electron Compton. Scattering, coherent (or Rayleigh scattering and pair production. Fluorescence radiations have also been taken into acount for lead. For each material, calculations were made at 10 gamma ray energies in the 40 keV to 10 MeV range and up to penetration depths of 10 mean free paths at each energy point. The results presented in this paper can be considered as modified gamma ray exposure buildup factors and be used in radiation shielding designs.
Free Vibrations of a Nonlinearly Deformable Isotropic on the Average Composite Rectangular Membrane
Tarasyuk, I. A.; Kravchuk, A. S.; Mikhasev, G. I.
2018-03-01
A refined vibration equation of a rectangular membrane is derived in this paper. It allows determining the natural frequencies as functions of the mechanical characteristics of an asymmetrically stretched membrane. The dynamic equation is generalized to the case of a nonlinearly deformable isotropic on the average composite material. An approximate analytical solution of the problem is found employing a new homogenization technique. This method is based on estimation of the effective deformation characteristics of the composite material. The range of its effective characteristics is obtained from the rule of mixtures for the stresses and strains found assuming Voigt and Reuss hypotheses. The nonlinear behavior of the material is modeled using the bilinear Prandtl diagrams as constitutive equations for components of the composite. The effective elastic moduli, hardening modulus, yield stress, and the natural frequencies as functions of elastoplastic characteristics of the composite are obtained analytically in a closed form.
Bilipschitz embedding of homogeneous fractals
Lü, Fan; Lou, Man-Li; Wen, Zhi-Ying; Xi, Li-Feng
2014-01-01
In this paper, we introduce a class of fractals named homogeneous sets based on some measure versions of homogeneity, uniform perfectness and doubling. This fractal class includes all Ahlfors-David regular sets, but most of them are irregular in the sense that they may have different Hausdorff dimensions and packing dimensions. Using Moran sets as main tool, we study the dimensions, bilipschitz embedding and quasi-Lipschitz equivalence of homogeneous fractals.
Efficient anisotropic wavefield extrapolation using effective isotropic models
Alkhalifah, Tariq Ali
2013-06-10
Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.
Energy Technology Data Exchange (ETDEWEB)
Kichimi, H. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan). Institute of Particle and Nuclear Studies
2005-07-01
We present recent results of Baryonic B decays from Belle, which contain charmed and charmless baryonic decays into two to four body final states. We report the branching fractions, including new observations of the baryonic decays into two charmed baryons in the final states, and the charmless baryonic decay proceeding through b {yields} s{gamma} transition, and the low di-baryon mass enhancement structures observed in the three-body decays, based on 357 fb{sup -1} data. (author)
3D geometrically isotropic metamaterial for telecom wavelengths
DEFF Research Database (Denmark)
Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei
2009-01-01
We present a new design for a unit cell with the cubic symmetry and sizes less than one sixth of the vacuum wavelength possessing a negative refractive index in the IR region. The main challenges in designing and fabricating metamaterials nowadays are in obtaining isotropic electric and magnetic...... of the unit cell is not infinitely small, certain geometrical constraints have to be fulfilled to obtain an isotropic response of the material [3]. These conditions and the metal behaviour close to the plasma frequency increase the design complexity. Our unit cell is composed of two main parts. The first part......). At this wavelength the refraction index is equal to -1.44. These values together with the effective cubic symmetry of the unit cell entitle us to assume the high potential of the suggested design as a constitutive block for an isotropic, relatively low-loss, metamaterial in the near IR region....
Visualization and computer graphics on isotropically emissive volumetric displays.
Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S
2009-01-01
The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.
Homogenization of resonant chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten
2010-01-01
a critical density exists above which increasing coupling between neighboring meta-atoms prevails a reasonable homogenization. On the contrary, a dilution in excess will induce features reminiscent to photonic crystals likewise prevailing a homogenization. Based on Bloch mode dispersion we introduce...
A simple mechanical model for the isotropic harmonic oscillator
International Nuclear Information System (INIS)
Nita, Gelu M
2010-01-01
A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels.
Thermalization and isotropization in heavy-ion collisions
Indian Academy of Sciences (India)
2015-05-01
May 1, 2015 ... that classical Yang–Mills simulations find power-law scaling associated with turbulence emerging at .... the unstable gauge field dynamics, the time-scale for isotropization of the system is very long [54,116]. .... lytically in the high-energy limit [58,59], within scalar φ4 theory subject to parametric resonance ...
Higher gradient expansion for linear isotropic peridynamic materials
Czech Academy of Sciences Publication Activity Database
Šilhavý, Miroslav
2017-01-01
Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http://journals.sagepub.com/doi/10.1177/1081286516637235
Seeing is believing : communication performance under isotropic teleconferencing conditions
Werkhoven, P.J.; Schraagen, J.M.C.; Punte, P.A.J.
2001-01-01
The visual component of conversational media such as videoconferencing systems communicates important non-verbal information such as facial expressions, gestures, posture and gaze. Unlike the other cues, selective gaze depends critically on the configuration of cameras and monitors. Under isotropic
Isotropic Scattering in a Flatland Half-Space
d'Eon, Eugene; Williams, MMR
2018-01-01
We solve the Milne, constant-source and albedo problems for isotropic scattering in a two-dimensional "Flatland" half-space via the Wiener-Hopf method. The Flatland $H$-function is derived and benchmark values and some identities unique to Flatland are presented. A number of the derivations are supported by Monte Carlo simulation.
Thermo elastic waves with thermal relaxation in isotropic micropolar ...
Indian Academy of Sciences (India)
Fourier's law, is a parabolic type partial differential equation and it allows an infinite speed of thermal ... Another generalization of thermoelasticity is considered first by Muller (1967, 1971), which includes the ... The basic governing equations in generalized isotropic micropolar thermoelasticity without heat sources and body ...
Coupling of Elastic Isotropic Medium Parameters in Iterative Linearized Inversion
Anikiev, D.V.; Kashtan, B.M.; Mulder, W.A.; Troyan, V.N.
2014-01-01
An elastic isotropic medium is described with three parameters. In seismic migration the perturbation of one elastic parameter affects the images of all the three, which means that these parameters are coupled. For an effective quantitative reconstruction of the true elastic medium reflectivity one
Higher gradient expansion for linear isotropic peridynamic materials
Czech Academy of Sciences Publication Activity Database
Šilhavý, Miroslav
2017-01-01
Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http:// journals .sagepub.com/doi/10.1177/1081286516637235
Homogenization theory for periodic distributions of elastic cylinders embedded in a viscous fluid.
Reyes-Ayona, Edgar; Torrent, Daniel; Sánchez-Dehesa, José
2012-10-01
A multiple-scattering theory is applied to study the homogenization of clusters of elastic cylinders distributed in a isotropic lattice and embedded in a viscous fluid. Asymptotic relations are derived and employed to obtain analytical formulas for the effective parameters of homogenized clusters in which the underlying lattice has a low filling fraction. It is concluded that such clusters behave, in the low frequency limit, as an effective elastic medium. Particularly, it is found that the effective dynamical mass density follows the static estimate; i.e., the homogenization procedure does not recover the non-linear behavior obtained for the inviscid case. Moreover, the longitudinal and transversal sound speeds do not show any dependence on fluid viscosity. Numerical simulations performed for clusters made of brass cylinders embedded in glycerin support the reliability of the effective parameters resulting from the homogenization procedure reported here.
Homogeneous Spaces and Equivariant Embeddings
Timashev, DA
2011-01-01
Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space it is natural and helpful to compactify it keeping track of the group action, i.e. to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on classification of equivariant em
CSIR Research Space (South Africa)
De Beer, Morris
2008-07-01
Full Text Available , such as creep speed measurements of elastic surface deflection basins carried out with the Benkelman Beam (BB) (or Road Surface Deflectometer (RSD) associated with Heavy Vehicle Simulator (HVS) testing, and those measured under relatively short time impulse...
CSIR Research Space (South Africa)
De Beer, Morris
2008-07-01
Full Text Available , such as creep speed measurements of elastic surface deflection basins carried out with the Benkelman Beam (BB) (or Road Surface Deflectometer (RSD)) associated with Heavy Vehicle Simulator (HVS) testing, and those measured under relatively short time impulse...
Directory of Open Access Journals (Sweden)
Cătălina IANĂŞI
2011-07-01
Full Text Available Conventional materials used in their natural state can not simultaneously achieve a satisfactory levelof complex requirements so that recourse to the completion of their combinations, generically called compositematerials. They optimize the technical design of various structures, primarily based on high diversity, practicallyinexhaustible, of combinations that can be implemented. It must be added the possibility (if no use ordinarymaterials to predict and even to "steer" a composite properties by suitable choice of nature, form andpresentation of the weight of its constituents, or through application of appropriate technological steps.
CSIR Research Space (South Africa)
Shatalov, MY
2010-01-01
Full Text Available . In (Siao et al., 1994) the authors solved the problem of wave propagation in a laminated piezoelectric cylinder via the FEM. Their paper contains tables and graphs of dispersion curves for real and imaginary values of wavenumbers. Unfortunately the data... the logarithm of modulus of determinant (37) on the mesh ( )1 2 1 2, , 1 1, , ; 2 1, ,j jk j N j Nω = =… … (Shatalov et al., 2009). In those points where the real and imaginary parts of determinant (37) are close to zero substantial negative spikes...
CSIR Research Space (South Africa)
Shatalov, MY
2009-01-01
Full Text Available piezoelectric cylinder via the FEM. Their paper contains tables and graphs of dispersion curves for real and imaginary values of wavenumbers. Unfortunately the data contains a misprint in a scale factor for the dimensionless wave number, making it quite... will be shown that for complete solution 3N = ), 2 1i = − , ω is the angular frequency, and k is the wavenumber (real for propagating and imaginary or complex for evanescent waves). After substitution Eqn. (4) in (3) and further in (2) and (1...
Directory of Open Access Journals (Sweden)
R.I. Parovik
2012-06-01
Full Text Available In a model of radioactive decay of radon in the sample (222Rn. The model assumes that the probability of the decay of radon and its half-life depends on the fractal properties of the geological environment. The dependencies of the decay parameters of the fractal dimension of the medium.
Homogeneous Operators and Projective Representations
Indian Academy of Sciences (India)
Abstract. This paper surveys the existing literature on homogeneous operators and their relationships with projective representations of P S L ( 2 , R ) and other Lie groups. It also includes a list of open problems in this area.
A personal view on homogenization
International Nuclear Information System (INIS)
Tartar, L.
1987-02-01
The evolution of some ideas is first described. Under the name homogenization are collected all the mathematical results who help understanding the relations between the microstructure of a material and its macroscopic properties. Homogenization results are given through a critically detailed bibliography. The mathematical models given are systems of partial differential equations, supposed to describe some properties at a scale ε and we want to understand what will happen to the solutions if ε tends to 0
G3-homogeneous gravitational instantons
Energy Technology Data Exchange (ETDEWEB)
Bourliot, F; Petropoulos, P M [Centre de Physique Theorique, CNRS-UMR 7644, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Estes, J [Laboratoire de Physique Theorique, CNRS-UMR 8549, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris cedex 05 (France); Spindel, Ph, E-mail: bourliot@cpht.polytechnique.f, E-mail: estes@cpht.polytechnique.f, E-mail: marios@cpht.polytechnique.f, E-mail: philippe.spindel@umons.ac.b [Service de Mecanique et Gravitation, Universite de Mons, 20 Place du Parc, 7000 Mons, Belgique (Belgium)
2010-05-21
We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.
G3-homogeneous gravitational instantons
Bourliot, F; Petropoulos, P M; Spindel, Ph
2009-01-01
We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.
arXiv Charmless B decays in modes with similar tree and penguin contributions
INSPIRE-00065546
2014-01-01
Charmless $B$ decays are dominated by contributions from the short distance amplitudes from tree level and penguin loop-level amplitudes. The Tree contribution presents a weak phase $\\gamma$. The relationship between these two amplitudes can generated a CP asymmetry depending from the relative amount among them in a particular decay. In multi-body charmless $B$ decays, these relative contribution can change along the phase space, given a non isotropic distribution of CP asymmetries in the Dalitz plot. Two recent LHCb analyses involving charmless multi-body B decays are discussed: the obsevation of CP asymmetries in the phase space of the three-body decays $B^\\pm \\to \\pi^\\pm \\pi^+ \\pi^-$ and $B^\\pm \\to \\pi^\\pm K^+ K^-$; and the angular analysis of the $B^0 \\to \\phi K^*(892)^0$ decay.
Homogeneity properties with isometries and Lipschitz functions
Dijkstra, J.J.
2010-01-01
We consider metric variants of homogeneity, countable dense homogeneity (CDH) and strong local homogeneity (SLH) by requiring that the homeomorphisms that witness the homogeneity be isometries, respectively bi-Lipschitz maps that are almost isometries: iso-homogeneity, iso-CDH, iso-SLH,
Isotropic Optical Mouse Placement for Mobile Robot Velocity Estimation
Directory of Open Access Journals (Sweden)
Sungbok Kim
2014-06-01
Full Text Available This paper presents the isotropic placement of multiple optical mice for the velocity estimation of a mobile robot. It is assumed that there can be positional restriction on the installation of optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is obtained and the resulting Jacobian matrix is analysed symbolically. Second, the isotropic, anisotropic and singular optical mouse placements are identified, along with the corresponding characteristic lengths. Third, the least squares mobile robot velocity estimation from the noisy optical mouse velocity measurements is discussed. Finally, simulation results for several different placements of three optical mice are given.
Parity-time symmetric cloak with isotropic modulation
International Nuclear Information System (INIS)
Yang, Fan; Lei Mei, Zhong
2016-01-01
In this work, a different kind of parity-time ( PT ) symmetric one-way cloak is proposed. Different from conventional PT -cloak, it enjoys the property of isotropic modulation for refractive index profiles. By combining PT -symmetry with the concept of cloaking at a distance, the dilemma of realizing anisotropic modulation is removed. This combination facilitates the practical realization of PT -symmetric one-way cloak. (letter)
Isotropic three-dimensional left-handed meta-materials
Koschny, Th.; Zhang, L.; Soukoulis, C. M.
2005-01-01
We investigate three-dimensional left-handed and related meta-materials based on a fully symmetric multi-gap single-ring SRR design and crossing continuous wires. We demonstrate isotropic transmission properties of a SRR-only meta-material and the corresponding left-handed material which possesses a negative effective index of refraction due to simultaneously negative effective permeability and permittivity. Minor deviations from complete isotropy are due to the finite thickness of the meta-m...
The Isotropic Radio Background and Annihilating Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Belikov, Alexander V. [Institut d' Astrophysique (France); Jeltema, Tesla E. [Univ. of California, Santa Cruz, CA (United States); Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Profumo, Stefano [Univ. of California, Santa Cruz, CA (United States); Slatyer, Tracy R. [Princeton Univ., Princeton, NJ (United States)
2012-11-01
Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.
Hall, Sam
2014-04-01
Rare decays of beauty and charm hadrons provide an effective method of testing the Standard Model and probing possible new physics scenarios. The LHCb experiment has published a variety of interesting results in this field, some of which are presented here. In particular the measurements of the branching fractions of B(s)0 → μ+μ- which, in combination with CMS, resulted in the first observation of the Bs0 → μ+μ- decay. Other topics include searches for the rare decay D0 → μ+μ-, the lepton flavour violating decays B(s)0 → e±μ∓, and the observation of the ψ(4160) resonance in the region of low recoil in B+ → K+μ+μ- decay. New results on the angular analysis of the decay B0 → K*0μ+μ- with form factor independent observables are also shown.
International Nuclear Information System (INIS)
Kinnison, W.W.
1983-01-01
A short theoretical review of the weak interaction is presented with particular emphasis on the implications to normal and rare muon decay processes. This review addresses the standard theory, left-right symmetry theories, theories with horizontal symmetries, and composite models. A survey of experiments currently in progress to study both rare and normal muon decays is then presented with particular emphasis on the Los Alamos high statistics muon decay experiment and its implications for left-right symmetric theories. 16 references
Neutrinoless double beta decay
Indian Academy of Sciences (India)
2012-10-06
Oct 6, 2012 ... nuclear decay of neutrinoless double beta decay typically leading to sub-eV values as well. (Z, A) → (Z + 2, A) + 2e .... Here again energy resolution matters, because of the continuous spectrum of the 2νββ- decay mode, its high .... The benefit of using Te is its high natural abundance. This experiment is in ...
Effective Majorana neutrino decay
Energy Technology Data Exchange (ETDEWEB)
Duarte, Lucia [Instituto de Fisica, Facultad de Ingenieria,Universidad de la Republica, Montevideo (Uruguay); Romero, Ismael; Peressutti, Javier; Sampayo, Oscar A. [Universidad Nacional de Mar del Plata, Departamento de Fisica, Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR) CONICET, UNMDP, Mar del Plata (Argentina)
2016-08-15
We study the decay of heavy sterile Majorana neutrinos according to the interactions obtained from an effective general theory. We describe the two- and three-body decays for a wide range of neutrino masses. The results obtained and presented in this work could be useful for the study of the production and detection of these particles in a variety of high energy physics experiments and astrophysical observations. We show in different figures the dominant branching ratios and the total decay width. (orig.)
International Nuclear Information System (INIS)
Faustov, R.N.; Vasilevskaya, I.G.
1990-01-01
Chiral-colour model predicts the existence of axigluons which is an octet of massive axial-vector gauge bosons. In this respect toponium decays into axigluons and gluons are of interest. The following toponium decays are considered: θ → Ag, θ → AAg, θ → ggg → AAg. The width of toponium S-state decays is calculated under various possible values of axigluon mass
International Nuclear Information System (INIS)
Kudenko, Y.
1999-01-01
The past few years have seen an evolution in the study of rare K decays from a concentration on explicitly Standard Model (SM) violating decays such as K L 0 → μe, to one on SM-allowed but suppressed decays such as K → πν| ν, in which short-distance interactions are dominant. There are also a number of recent experimental and theoretical studies of long-distance-dominated decays, but they do not have space to cover these, with the exception of those that are needed in the discussion of the short-distance-dominated processes
Deviations from exponential decay
Petridis, Athanasios; Staunton, Lawrence; Luban, Marshall; Vermedahl, Jon
2003-10-01
We study deviations from exponetial decay in cases when the initial wavefunction is set in a potential well and is not an eigenstate of this potential. We numerically solve the time-dependent Schroedinger equation and observe a decaying but oscillatory behavior of the survival probability. Analytical calculations have been performed proving that even in the case of a simple finite square-well potential deviations from exponential decay persist for large times. Possible explanations for the limiting exponential decay for many-particle systems are developed.
Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P
2017-12-01
Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS ® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Spontaneous compactification to homogeneous spaces
International Nuclear Information System (INIS)
Mourao, J.M.
1988-01-01
The spontaneous compactification of extra dimensions to compact homogeneous spaces is studied. The methods developed within the framework of coset space dimensional reduction scheme and the most general form of invariant metrics are used to find solutions of spontaneous compactification equations
Adrover Pacheco, Cosme
2012-01-01
Rare decays are excellent tests to infer the presence of physics beyond the Standard Model (BSM), as they occur through processes prohibited at tree level in the SM. Any deviation from the SM prediction in branching fraction or angular distributions of such decays can lead to indications of new physics.
International Nuclear Information System (INIS)
Faller, Sven
2011-01-01
B-meson decays are a good probe for testing the flavour sector of the standard model of particle physics. The standard model describes at present all experimental data satisfactorily, although some ''tensions'' exist, i.e. two to three sigma deviations from the predictions, in particular in B decays. The arguments against the standard model are thus purely theoretical. These tensions between experimental data and theoretical predictions provide an extension of the standard model by new physics contributions. Within the flavour sector main theoretical uncertainties are related to the hadronic matrix elements. For exclusive semileptonic anti B → D (*) l anti ν decays QCD sum rule techniques, which are suitable for studying hadronic matrix elements, however, with substantial, but estimable hadronic uncertainties, are used. The exploration of new physics effects in B-meson decays is done in an twofold way. In exclusive semileptonic anti B → D (*) l anti ν decays the effect of additional right-handed vector as well as left- and right-handed scalar and tensor hadronic current structures in the decay rates and the form factors are studied at the non-recoil point. As a second approach one studied the non-leptonic B 0 s →J/ψφ and B 0 →J/ψK S,L decays discussing CP violating effects in the time-dependent decay amplitudes by considering new physics phase in the B 0 - anti B 0 mixing phase. (orig.)
International Nuclear Information System (INIS)
Reiss, H.R.
1986-01-01
Certain nuclear beta decay transitions normally inhibited by angular momentum or parity considerations can be induced to occur by the application of an electromagnetic field. Such decays can be useful in the controlled production of power, and in fission waste disposal
Multiple preequilibrium decay processes
International Nuclear Information System (INIS)
Blann, M.
1987-11-01
Several treatments of multiple preequilibrium decay are reviewed with emphasis on the exciton and hybrid models. We show the expected behavior of this decay mode as a function of incident nucleon energy. The algorithms used in the hybrid model treatment are reviewed, and comparisons are made between predictions of the hybrid model and a broad range of experimental results. 24 refs., 20 figs
Indian Academy of Sciences (India)
We note that two-body decays to baryons are suppressed relative to three- and four-body decays. In most of these analyses, the invariant baryon–antibaryon mass shows an enhancement near the threshold. We propose a phenomenological interpretation of this quite common feature of hadronization to baryons.
Dan Cullen
2014-01-01
A significant portion of global carbon is sequestered in forest systems. Specialized fungi have evolved to efficiently deconstruct woody plant cell walls. These important decay processes generate litter, soil bound humic substances, or carbon dioxide and water. This chapter reviews the enzymology and molecular genetics of wood decay fungi, most of which are members of...
... a process that occurs over time. Here's how tooth decay develops: Plaque forms. Dental plaque is a clear sticky film that coats ... by a lack of saliva, which helps prevent tooth decay by washing away food and plaque from your teeth. Substances found in saliva also help counter the ...
Verma, M. K.; Chandel, S.; Ram, Shri
2017-01-01
The present study deals with hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez-Ballester theory of gravitation. Exact solutions of field equations are obtained by applying a special law of variation of Hubble's parameter that yields a constant negative value of the deceleration parameter. Three physically viable cosmological models of the Universe are presented for the values of parameter K occurring in the metric of the space-time. The model for K = 0 corresponds to an accelerating Universe with isotropic dark energy. The other two models for K = 1 and -1 represent accelerating Universe with anisotropic dark energy, which isotropize for large time. The physical and geometric behaviours of the models are also discussed.
International Nuclear Information System (INIS)
Bando, H.
1985-01-01
The pionic and non-mesonic decays of hypernuclei are discussed. In the first part, various decay processes which could be useful to obtain information of hypernuclear structure are discussed. The experimental data concerning the pionic and non-mesonic decays are discussed in the second part. As the experimental data, there are only few lifetime data and some crude data on the non-mesonic to π decay ratio. In the third and the fourth parts, some theoretical analyses are made on the pionic and the nonmesonic decays. DDHF calculation was performed for Λ and N systems by using Skyrme type ΛN and NN effective interactions. A suppression factor of the order of 10 -3 for A nearly equal 100 was obtained. (Aoki, K.)
Numerical Analysis of Permittivity with Loss in Isotropic Binary Composites
1992-06-01
correlation length or power law 5550 REM Relay(4)=for l=exp then correl lenght , for 4= pwr then power 5560 IF NOT Rcyc AND Rptr=l AND Rep>l THEN 5570 DISP...permittivity is known as the "lossy" part as it is proportional to the energy lost during a cycle of a time harmonic field. When a medium is isotropic, both...Percolation mixtures have been extensively studied [38, 46, 47]. It has been found that two-dimensional mixtures with a random sputtering of iso-sized
Genericness of Big Bounce in isotropic loop quantum cosmology
Date, Ghanashyam; Hossain, Golam Mortuza
2004-01-01
The absence of isotropic singularity in loop quantum cosmology can be understood in an effective classical description as the universe exhibiting a Big Bounce. We show that with scalar matter field, the big bounce is generic in the sense that it is independent of quantization ambiguities and details of scalar field dynamics. The volume of the universe at the bounce point is parametrized by a single parameter. It provides a minimum length scale which serves as a cut-off for computations of den...
Isotropic 2D quadrangle meshing with size and orientation control
Pellenard, Bertrand
2011-12-01
We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.
Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion
DEFF Research Database (Denmark)
Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada
2017-01-01
Designing novel diffusion-weighted NMR and MRI pulse sequences aiming to probe tissue microstructure with techniques extending beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford...... model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...
Silicone elastomers capable of large isotropic dimensional change
Lewicki, James; Worsley, Marcus A.
2017-07-18
Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.
Isotropic Stars in Higher-Order Torsion Scalar Theories
Directory of Open Access Journals (Sweden)
Gamal G. L. Nashed
2016-01-01
Full Text Available Two different nondiagonal tetrad spaces reproducing spherically symmetric spacetime are applied to the field equations of higher-order torsion scalar theories. Assuming the existence of conformal Killing vector, two isotropic solutions are derived. We show that the first solution is not stable while the second one confirms a stable behavior. We also discuss the construction of the stellar model and show that one of our solutions is capable of such construction while the other is not. Finally, we discuss the generalized Tolman-Oppenheimer-Volkoff and show that one of our models has a tendency to equilibrium.
Localization by Acoustic Emission in Transversely Isotropic Slate
Directory of Open Access Journals (Sweden)
Bjorn Debecker
2011-01-01
Full Text Available A method for localization by acoustic emission in transversely isotropic media is developed and validated. Velocities are experimentally measured and then used to calculate a database of theoretical arrival times for a large number of positions. During an actual test, positions are assigned by comparing measured arrival times with the database's arrival times. The method is applied during load tests on slate samples and compared with visual observations of fractures. The localization method allowed for a good identification of the regions of fracturing at different stages during the test.
Isotropic collision-induced light scattering by gaseous CF4
International Nuclear Information System (INIS)
Elliasmine, A.; Godet, J.L.; Le Duff, Y.; Bancewicz, T.
1997-01-01
The binary isotropic collision-induced scattering spectra of the gaseous tetrafluoromethane has been measured in absolute units in the 50 - 150cm -1 frequency range. Corresponding theoretical intensities taking into account multipolar polarizabilities have been calculated in a semiclassical way. From a comparison with experiment, the independent components of dipole-quadrupole and dipole-octupole polarizability tensors have been estimated. They have been compared with those previously deduced from depolarized spectrum and with recent theoretical ab initio calculations. copyright 1997 The American Physical Society
A note on the time decay of solutions for the linearized Wigner-Poisson system
Gamba, Irene
2009-01-01
We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give an explicit algebraic decay rate.
Observational homogeneity of the Universe
International Nuclear Information System (INIS)
Bonnor, W.B.; Ellis, G.F.R.
1986-01-01
A new approach to observational homogeneity is presented. The observation that stars and galaxies in distant regions appear similar to those nearby may be taken to imply that matter has had a similar thermodynamic history in widely separated parts of the Universe (the Postulate of Uniform Thermal Histories, or PUTH). The supposition is now made that similar thermodynamic histories imply similar dynamical histories. Then the distant apparent similarity is evidence for spatial homogeneity of the Universe. General Relativity is used to test this idea, taking a perfect fluid model and implementing PUTH by the condition that the density and entropy per baryon shall be the same function of the proper time along all galaxy world-lines. (author)
Velocity derivative skewness in isotropic turbulence and its measurement with hot wires
Energy Technology Data Exchange (ETDEWEB)
Burattini, Paolo [Universite Libre de Bruxelles, Physique Statistique et des Plasmas, Brussels (Belgium); University of Newcastle, Discipline of Mechanical Engineering, Newcastle, NSW (Australia); Lavoie, Philippe [Imperial College London, Department of Aeronautics, London (United Kingdom); Antonia, Robert A. [University of Newcastle, Discipline of Mechanical Engineering, Newcastle, NSW (Australia)
2008-09-15
We investigate the effect of the hot wire resolution on the measurement of the velocity derivative skewness in homogeneous isotropic turbulence. Single- and cross-wire configurations (with different lengths and separations of the wires, and temporal sampling resolution) are considered. Predictions of the attenuation on the basis of a model for the energy spectrum are compared to experimental and numerical data in grid and box turbulence, respectively. It is shown that the model-based correction is accurate for the single wire but not for the cross-wire. In the latter case, the effect of the separation between the wires is opposite to that found in the experiments and simulations. Moreover, the attenuation predicted by the numerical data is in good agreement with that observed in the experiment. For both probe configurations, the sampling resolution has a sizeable attenuation effect, but, for the X-probe, the impact of the separation between the wires is more important. In both cases, the length of the wires has only a minor effect, in the non-dimensional range of wire length investigated. Finally, the present experimental data support the conclusion that the skewness is constant with the Reynolds number, in agreement with Kolmogorov's 41 theory. (orig.)
International Nuclear Information System (INIS)
Konstantinovich, A.V.; Melnychuk, S.V.; Konstantinovich, I.A.
2002-01-01
The integral expressions for spectral-angular and spectral distributions of the radiation power of heterogeneous charged particles system moving on arbitrary trajectory in nonabsorbable isotropic media media with ε≠1 , μ≠1 are obtained using the Lorentz's self-interaction method. In this method a proper electromagnetic field, acting on electron, is defined as a semi difference between retarded and advanced potentials (Dirac, 1938). The power spectrum of Cherenkov radiation for the linear uniformly moving heterogeneous system of charged particles are obtained. It is found that the expression for the radiation power of heterogeneous system of charged particles becomes simplified when a system of charged particles is homogeneous. In this case the radiation power includes the coherent factor. It is shown what the redistribution effects in energy of the radiation spectrum of the studied system are caused by the coherent factor. The radiation spectrum of the system of electrons moving in a circle in this medium is discrete. The Doppler effect causes the appearance of the new harmonics for the system of electrons moving in a spiral. These harmonics form the region of continuous radiation spectrum. (authors)
Non-collinear interaction of guided elastic waves in an isotropic plate
Ishii, Yosuke; Biwa, Shiro; Adachi, Tadaharu
2018-04-01
The nonlinear wave propagation in a homogeneous and isotropic elastic plate is analyzed theoretically to investigate the non-collinear interaction of plate wave modes. In the presence of two primary plate waves (Rayleigh-Lamb or shear horizontal modes) propagating in arbitrary directions, an explicit expression for the modal amplitude of nonlinearly generated wave fields with the sum or difference frequency of the primary modes is derived by using the perturbation analysis. The modal amplitude is shown to grow in proportion with the propagation distance when the resonance condition is satisfied, i.e., when the wavevector of secondary wave coincides with the sum or difference of those of primary modes. Furthermore, the non-collinear interaction of two symmetric or two antisymmetric modes is shown to produce the secondary wave fields consisting only of the symmetric modes, while a pair of symmetric and antisymmetric primary modes is shown to produce only the antisymmetric modes. The influence of the intersection angle, the primary frequencies, and the mode combinations on the modal amplitude of secondary wave is examined for a low-frequency range where the lowest-order symmetric and antisymmetric Rayleigh-Lamb waves and the lowest-order symmetric shear horizontal wave are the only propagating modes.
International Nuclear Information System (INIS)
Charles, M.
2004-01-01
The results of several studies of charmed mesons and baryons at BABAR are presented. First, searches for the rare decays D 0 → l + l - are presented and new upper limits on these processes are established. Second, a measurement of the branching fraction of the isospin-violating hadronic decay D* s (2112) + → D s + π 0 relative to the radiative decay D* s (2112) + → D s + γ is made. Third, the decays of D* sJ (2317) + and D sJ (2460) + mesons are studied and ratios of branching fractions are measured. Fourth, Cabibbo-suppressed decays of the Λ c + are examined and their branching fractions measured relative to Cabibbo-allowed modes. Fifth, the Χ c 0 is studied through its decays to Χ - π + and (Omega) - K + ; in addition to measuring the ratio of branching fractions for Χ c 0 produced from the c(bar c) continuum, the uncorrected momentum spectrum is measured, providing clear confirmation of Χ c 0 production in B decays
Geometric Models for Isotropic Random Porous Media: A Review
Directory of Open Access Journals (Sweden)
Helmut Hermann
2014-01-01
Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.
Compatible quantum correlations: Extension problems for Werner and isotropic states
Johnson, Peter D.; Viola, Lorenza
2013-09-01
We investigate some basic scenarios in which a given set of bipartite quantum states may consistently arise as the set of reduced states of a global N-partite quantum state. Intuitively, we say that the multipartite state “joins” the underlying correlations. Determining whether, for a given set of states and a given joining structure, a compatible N-partite quantum state exists is known as the quantum marginal problem. We restrict to bipartite reduced states that belong to the paradigmatic classes of Werner and isotropic states in d dimensions and focus on two specific versions of the quantum marginal problem which we find to be tractable. The first is Alice-Bob, Alice-Charlie joining, with both pairs being in a Werner or isotropic state. The second is m-n sharability of a Werner state across N subsystems, which may be seen as a variant of the N-representability problem to the case where subsystems are partitioned into two groupings of m and n parties, respectively. By exploiting the symmetry properties that each class of states enjoys, we determine necessary and sufficient conditions for three-party joinability and 1-n sharability for arbitrary d. Our results explicitly show that although entanglement is required for sharing limitations to emerge, correlations beyond entanglement generally suffice to restrict joinability, and not all unentangled states necessarily obey the same limitations. The relationship between joinability and quantum cloning as well as implications for the joinability of arbitrary bipartite states are discussed.
Thermal analysis of isotropic plates using hyperbolic shear deformation theory
Directory of Open Access Journals (Sweden)
Shinde B.M.
2013-12-01
Full Text Available In this paper, thermal analysis of a thick isotropic rectangular plate is carried out using the hyperbolic shear deformation theory (HYSDT. The displacement field of the theory contains three variables. The hyperbolic sine and cosine functions are used in the displacement field in-terms of thickness coordinate to represent the effect of shear deformation. The most important feature of the theory is that, the transverse shear stresses can be obtained directly from the use of constitutive relations, hence the theory does not need shear correction factor. The theory accounts for parabolic distribution of transverse shear stresses across the thickness satisfying the stress free boundary conditions at top and bottom surfaces of the plate. Governing differential equations and boundary conditions of the theory are obtained using the principle of virtual work. The results obtained for bending analysis of isotropic plates subjected to uniformly distributed thermal load are compared with those obtained by other theories, to validate the accuracy of the presented theory.
Charged isotropic non-Abelian dyonic black branes
Directory of Open Access Journals (Sweden)
Yves Brihaye
2015-05-01
Full Text Available We construct black holes with a Ricci-flat horizon in Einstein–Yang–Mills theory with a negative cosmological constant, which approach asymptotically an AdSd spacetime background (with d≥4. These solutions are isotropic, i.e. all space directions in a hypersurface of constant radial and time coordinates are equivalent, and possess both electric and magnetic fields. We find that the basic properties of the non-Abelian solutions are similar to those of the dyonic isotropic branes in Einstein–Maxwell theory (which, however, exist in even spacetime dimensions only. These black branes possess a nonzero magnetic field strength on the flat boundary metric, which leads to a divergent mass of these solutions, as defined in the usual way. However, a different picture is found for odd spacetime dimensions, where a non-Abelian Chern–Simons term can be incorporated in the action. This allows for black brane solutions with a magnetic field which vanishes asymptotically.
Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials
Energy Technology Data Exchange (ETDEWEB)
Plohr, Bradley J. [Los Alamos National Laboratory; Plohr, Jeeyeon N. [Los Alamos National Laboratory
2012-07-25
We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable
Elastoplastic properties of transversely isotropic sintered metal fiber sheets
Energy Technology Data Exchange (ETDEWEB)
Zhao, T.F. [School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics and Center for Nano and Micro Mechanics, AML, Tsinghua University, Beijing 100084 (China); Deng, Z.C. [School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); State Key Laboratory of Structural Analysis of Industrial Equipment, Dalian University of Technology, Dalian 116024 (China)
2016-04-26
Sintering of layered metal fiber sheets produces a structured, tunable, paper-like material that holds promise for thermal and biomaterial applications. Particularly promising for these areas is a material system synthesized by the sequential-overlap method, which produces a networked, transversely isotropic open cell porous material. Engineering application of these materials has been limited due in part to uncertainty about their mechanical responses. Here, we present a comprehensive structural and mechanical characterization of these materials, and define a modeling framework suitable for engineering design. X-ray tomography revealed a layered structure with an isotropic fiber distribution within each layer. In-plane uniaxial compression and tension tests revealed a linear dependence of Young's modulus and yield strength upon relative fiber density. Out-of-plane tests, however, revealed much lower Young's modulus and strength, with quartic and cubic dependence upon relative density, respectively. Fiber fracture was the dominant mode of failure for tension within the “in-plane” directions of the fiber layers, and fiber decohesion was the dominant mode of failure for tension applied in the “out-of-plane” direction, normal to the layers. Models based upon dispersions of beams predicted both in-plane and out-of-plane elastoplastic properties as a function of the relative density of fibers. These models provide a foundation for mechanical design with and optimization of these materials for a broad range of potential applications.
Simple theory of transitions between smectic, nematic, and isotropic phases
Emelyanenko, A. V.; Khokhlov, A. R.
2015-05-01
The transitions between smectic, nematic, and isotropic phases are investigated in the framework of a unified molecular-statistical approach. The new translational order parameter is different from the one introduced in K. Kobayashi [Phys. Lett. A 31, 125 (1970)] and W. L. McMillan [Phys. Rev. A 4, 1238 (1971)]. The variance of the square sine of intermolecular shift angle along the director is introduced to take self-consistently into account the most probable location of the molecules with respect to each other, which is unique for every liquid crystal (LC) material and is mainly responsible for the order parameters and phase sequences. The mean molecular field was treated in terms of only two parameters specific to any intermolecular potential of elongated molecules: (1) its global minimum position with respect to the shift of two interacting molecules along the director and (2) its inhomogeneity/anisotropy ratio. A simple molecular model is also introduced, where the global minimum position is determined by the linking groups elongation Δ/d, while the inhomogeneity/anisotropy ratio Gβ/Gγ is determined by the ratio of electrostatic and dispersion contributions. All possible phase sequences, including abrupt/continuous transformation between the smectic and nematic states and the direct smectic-isotropic phase transition, are predicted. The theoretical prediction is in a good agreement with experimental data for some simple materials correlating with our molecular model, but it is expected to be valid for any LC material.
PDF Modeling of Evaporating Droplets in Isotropic Turbulence.
Mashayek, F.; Pandya, R. V. R.
2000-11-01
We use a statistical closure scheme of Van Kampen [1] to obtain an approximate equation for probability density function p(τ_d, t) to predict the time (t) evolution of statistical properties related to particle time constant τd of collisionless evaporating droplets suspended in isothermal isotropic turbulent flows. The resulting Fokker-Planck equation for p(τ_d, t) has non-linear, time-dependent drift and diffusion coefficients that depend on the statistical properties of droplet's slip velocity. Approximate analytical expressions for these properties are derived and the equation is solved numerically after implementing a numerical method based on path-integral formalism. Time evolution of various droplet diameter related statistical properties are then calculated and are compared with the data available from the stochastic and direct numerical simulations (DNS) studies performed by Mashayek[2]. A good agreement for temporal evolution of mean and standard deviation of particle diameter is observed with DNS results. Reference [1] Van Kampen, N.G., Stochastic Processes in Physics and Chemistry, Elsevier Science Publishers, North Holland, Amsterdam, 1992. [2] Mashayek, F., Stochastic Simulations of Particle-Laden Isotropic Turbulent Flow, Int. J. Multiphase Flow, 25(8):1575-1599 (1999).
Scaling, Intermittency and Decay of MHD Turbulence
International Nuclear Information System (INIS)
Lazarian, A.; Cho, Jungyeon
2005-01-01
We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field
International Nuclear Information System (INIS)
Anon.
1989-01-01
Late last year, a symposium entitled 'Rare Decays' attracted 115 participants to a hotel in Vancouver, Canada. These participants were particle physicists interested in checking conventional selection rules to look for clues of possible new behaviour outside today's accepted 'Standard Model'. For physicists, 'rare decays' include processes that have so far not been seen, explicitly forbidden by the rules of the Standard Model, or processes highly suppressed because the decay is dominated by an easier route, or includes processes resulting from multiple transitions
International Nuclear Information System (INIS)
Roberts, B.L.; Booth, E.C.; Gall, K.P.; McIntyre, E.K.; Miller, J.P.; Whitehouse, D.A.; Bassalleck, B.; Hall, J.R.; Larson, K.D.; Wolfe, D.M.; Fickinger, W.J.; Robinson, D.K.; Hallin, A.L.; Hasinoff, M.D.; Measday, D.F.; Noble, A.J.; Waltham, C.E.; Hessey, N.P.; Lowe, J.; Horvath, D.; Salomon, M.
1990-01-01
New measurements of the Σ + and Λ weak radiative decays are discussed. The hyperons were produced at rest by the reaction K - p → Yπ where Y = Σ + or Λ. The monoenergetic pion was used to tag the hyperon production, and the branching ratios were determined from the relative amplitudes of Σ + → pγ to Σ + → pπ 0 and Λ → nγ to Λ → nπ 0 . The photons from weak radiative decays and from π 0 decays were detected with modular NaI arrays. (orig.)
Non-leptonic decays of beauty decays
Bigi, Ikaros I; Shifman, M; Uraltsev, N; Vainshtein, A I
1994-01-01
"Anyone who keeps the ability to see beauty never grows old" (Franz Kafka). In the last few years considerable progress has been achieved in our understanding of the decays of heavy flavour hadrons. One can now calculate inclusive transition rates in QCD proper through an expansion in inverse powers of the heavy flavour quark mass without recourse to phenomenological assumptions. The non-perturbative contributions are treated systematically in this way; they are found to produce corrections of order a few percent in beauty decays, i.e. typically somewhat smaller than the perturbative corrections. One finds, among other things: (a) The lifetime of $B^-$ mesons is predicted to be longer than that of $B^0$ mesons by several percent. (b) The QCD prediction for the semileptonic branching ratio of $B$ mesons appears to exceed present experimental values.
Chancé, A; Bouquerel, E; Hancock, S; Jensen, E
The study of the neutrino oscillation between its different flavours needs pureand very intense fluxes of high energy, well collimated neutrinos with a welldetermined energy spectrum. A dedicated machine seems to be necessarynowadays to reach the required flux. A new concept based on the β-decayof radioactive ions which were accelerated in an accelerator chain was thenproposed. After ion production, stripping, bunching and acceleration, the unstableions are then stored in a racetrack-shaped superconducting decay ring.Finally, the ions are accumulated in the decay ring until being lost. The incomingbeam is merged to the stored beam by using a specific RF system, whichwill be presented here.We propose here to study some aspects of the decay ring, such as its opticalproperties, its RF system or the management of the losses which occur in thering (mainly by decay or by collimation).
Inflaton decay in supergravity
International Nuclear Information System (INIS)
Endo, M.; Takahashi, F.; Yanagida, T.T.; Tokyo Univ.
2007-06-01
We discuss inflaton decay in supergravity, taking account of the gravitational effects. It is shown that, if the inflaton has a nonzero vacuum expectation value, it generically couples to any matter fields that appear in the superpotential at the tree level, and to any gauge sectors through anomalies in the supergravity. Through these processes, the inflaton generically decays into the supersymmetry breaking sector, producing many gravitinos. The inflaton also directly decays into a pair of the gravitinos. We derive constraints on both inflation models and supersymmetry breaking scenarios for avoiding overproduction of the gravitinos. Furthermore, the inflaton naturally decays into the visible sector via the top Yukawa coupling and SU(3) C gauge interactions. (orig.)
Neutrinoless double beta decay
Indian Academy of Sciences (India)
Abstract. The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given.
Homogeneous catalysis by transition metals
International Nuclear Information System (INIS)
Masters, K.
1983-01-01
Fundamentals of homogeneous catalysis by metal complex aAe presented in the monograph along with the mechanisms of practically all types of catalytic reactions proceeding in the presence of transition metal complexes. In particular, considered are: catalytic cycles for olefin hydrogenation in the presence of Ru(2) complex; for alkene epoxidation catalyzed by Mo(6); for alkene metathesis reaction catalyzed by Ta and W compounds. Catalytic systems on the basis of Zr, Mo, W, Ru complexes being in the stage of development of the processes of nitrogen fixation reductive oligomerization alkene activation are described. Bibliography contains more than 400 references
1992-01-01
The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.
Energy Technology Data Exchange (ETDEWEB)
Faller, Sven
2011-03-04
B-meson decays are a good probe for testing the flavour sector of the standard model of particle physics. The standard model describes at present all experimental data satisfactorily, although some ''tensions'' exist, i.e. two to three sigma deviations from the predictions, in particular in B decays. The arguments against the standard model are thus purely theoretical. These tensions between experimental data and theoretical predictions provide an extension of the standard model by new physics contributions. Within the flavour sector main theoretical uncertainties are related to the hadronic matrix elements. For exclusive semileptonic anti B {yields} D{sup (*)}l anti {nu} decays QCD sum rule techniques, which are suitable for studying hadronic matrix elements, however, with substantial, but estimable hadronic uncertainties, are used. The exploration of new physics effects in B-meson decays is done in an twofold way. In exclusive semileptonic anti B {yields} D{sup (*)}l anti {nu} decays the effect of additional right-handed vector as well as left- and right-handed scalar and tensor hadronic current structures in the decay rates and the form factors are studied at the non-recoil point. As a second approach one studied the non-leptonic B{sup 0}{sub s}{yields}J/{psi}{phi} and B{sup 0}{yields}J/{psi}K{sub S,L} decays discussing CP violating effects in the time-dependent decay amplitudes by considering new physics phase in the B{sup 0}- anti B{sup 0} mixing phase. (orig.)
International Nuclear Information System (INIS)
Finkemeier, M.; Mirkes, E.
1995-04-01
Predictions for semi-leptonic decay rates of the τ lepton into two meson final states and three meson final states are derived. The hadronic matrix elements are expressed in terms of form factors, which can be predicted by chiral Lagrangians supplemented by informations about all possible low-lying resonances in the different channels. Isospin symmetry relations among the different final states are carefully taken into account. The calculated brancing ratios are compared with measured decay rates where data are available
A finite-density calculation of the surface tension of isotropic-nematic interfaces
International Nuclear Information System (INIS)
Moore, B.G.; McMullen, W.E.
1992-01-01
The surface tension of the isotropic-nematic interface in a fluid of intermediate-sized hard particles is studied and calculated. The transition from isotropic to nematic is fixed to occur in a continuous fashion by varying the biaxiality of the model particles. A reversal in the preferred orientation of the bulk nematic relative to the isotropic-nematic interface suggests an oblique orientation of the bulk nematic. 32 refs., 8 figs
ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.
Energy Technology Data Exchange (ETDEWEB)
BULLOCK,R.M.; BENDER,B.R.
2000-12-01
The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.
Homogenization scheme for acoustic metamaterials
Yang, Min
2014-02-26
We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.
Optimizing homogenization by chaotic unmixing?
Weijs, Joost; Bartolo, Denis
2016-11-01
A number of industrial processes rely on the homogeneous dispersion of non-brownian particles in a viscous fluid. An ideal mixing would yield a so-called hyperuniform particle distribution. Such configurations are characterized by density fluctuations that grow slower than the standard √{ N}-fluctuations. Even though such distributions have been found in several natural structures, e.g. retina receptors in birds, they have remained out of experimental reach until very recently. Over the last 5 years independent experiments and numerical simulations have shown that periodically driven suspensions can self-assemble hyperuniformally. Simple as the recipe may be, it has one important disadvantage. The emergence of hyperuniform states co-occurs with a critical phase transition from reversible to non reversible particle dynamics. As a consequence the homogenization dynamics occurs over a time that diverges with the system size (critical slowing down). Here, we discuss how this process can be sped up by exploiting the stirring properties of chaotic advection. Among the questions that we answer are: What are the physical mechanisms in a chaotic flow that are relevant for hyperuniformity? How can we tune the flow parameters such to obtain optimal hyperuniformity in the fastest way? JW acknowledges funding by NWO (Netherlands Organisation for Scientific Research) through a Rubicon Grant.
Renormalization Group Running of Newton's G: The Static Isotropic Case
Hamber, H W; Hamber, Herbert W.; Williams, Ruth M.
2007-01-01
Corrections are computed to the classical static isotropic solution of general relativity, arising from non-perturbative quantum gravity effects. A slow rise of the effective gravitational coupling with distance is shown to involve a genuinely non-perturbative scale, closely connected with the gravitational vacuum condensate, and thereby, it is argued, related to the observed effective cosmological constant. Several analogies between the proposed vacuum condensate picture of quantum gravitation, and non-perturbative aspects of vacuum condensation in strongly coupled non-abelian gauge theories are developed. In contrast to phenomenological approaches, the underlying functional integral formulation of the theory severely constrains possible scenarios for the renormalization group evolution of couplings. The expected running of Newton's constant $G$ is compared to known vacuum polarization induced effects in QED and QCD. The general analysis is then extended to a set of covariant non-local effective field equati...
X-ray and Moessbauer investigations of isotropic barium ferrites
International Nuclear Information System (INIS)
Kirichok, P.P.; Pashchenko, V.A.; Dem'yaniv, T.O.; Ryabova, G.N.; Lisovskij, A.M.
1984-01-01
Using the methods of X-ray and γ-resonance spectroscopy the crystal chemical and magnetic structure of isotropic barium hexaferrites is studied. compacting pressure the lattice parameter c of ferrite of the BaOx5.7Fe 2 O 3 is decreased and the diffraction line width on its X-ray p attern is increased. Due to increasing the isoststical compacting pressure quadrupole splitting of the γ-resonance absorption spectrum of 57 Fe nuclei in tetrahedral positions 4f 1 and in positions 2a decreases. The sintering temperature growth leads to increasing the lattice parameter c and diffraction line widths and decreasing the effeutive field values and isomeric s hifts on 57 Fe nuclei. Isostatical compacting pressure does not affect the electron configuration of iron ions
Sand - rubber mixtures submitted to isotropic loading: a minimal model
Platzer, Auriane; Rouhanifar, Salman; Richard, Patrick; Cazacliu, Bogdan; Ibraim, Erdin
2017-06-01
The volume of scrap tyres, an undesired urban waste, is increasing rapidly in every country. Mixing sand and rubber particles as a lightweight backfill is one of the possible alternatives to avoid stockpiling them in the environment. This paper presents a minimal model aiming to capture the evolution of the void ratio of sand-rubber mixtures undergoing an isotropic compression loading. It is based on the idea that, submitted to a pressure, the rubber chips deform and partially fill the porous space of the system, leading to a decrease of the void ratio with increasing pressure. Our simple approach is capable of reproducing experimental data for two types of sand (a rounded one and a sub-angular one) and up to mixtures composed of 50% of rubber.
Charged Particle Diffusion in Isotropic Random Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
Subedi, P.; Matthaeus, W. H.; Chuychai, P.; Parashar, T. N.; Chhiber, R. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sonsrettee, W. [Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi 11120 (Thailand); Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5—I-50125 Firenze (Italy); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Montgomery, D. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Dmitruk, P. [Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, 1428 Buenos Aires (Argentina); Wan, M. [Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China)
2017-03-10
The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.
Circular random motion in diatom gliding under isotropic conditions
International Nuclear Information System (INIS)
Gutiérrez-Medina, Braulio; Maldonado, Ana Iris Peña; Guerra, Andrés Jiménez; Rubio, Yadiralia Covarrubias; Meza, Jessica Viridiana García
2014-01-01
How cells migrate has been investigated primarily for the case of trajectories composed by joined straight segments. In contrast, little is known when cellular motion follows intrinsically curved paths. Here, we use time-lapse optical microscopy and automated trajectory tracking to investigate how individual cells of the diatom Nitzschia communis glide across surfaces under isotropic environmental conditions. We find a distinct kind of random motion, where trajectories are formed by circular arcs traveled at constant speed, alternated with random stoppages, direction reversals and changes in the orientation of the arcs. Analysis of experimental and computer-simulated trajectories show that the circular random motion of diatom gliding is not optimized for long-distance travel but rather for recurrent coverage of limited surface area. These results suggest that one main biological role for this type of diatom motility is to efficiently build the foundation of algal biofilms. (paper)
Uhlmann's geometric phase in presence of isotropic decoherence
International Nuclear Information System (INIS)
Tidstroem, Jonas; Sjoeqvist, Erik
2003-01-01
Uhlmann's mixed state geometric phase [Rep. Math. Phys. 24, 229 (1986)] is analyzed in the case of a qubit affected by isotropic decoherence treated in the Markovian approximation. It is demonstrated that this phase decreases rapidly with increasing decoherence rate and that it is most fragile to weak decoherence for pure or nearly pure initial states. In the unitary case, we compare Uhlmann's geometric phase for mixed states with that occurring in standard Mach-Zehnder interferometry [Phys. Rev. Lett. 85, 2845 (2000)] and show that the latter is more robust to reduction in the length of the Bloch vector. We also describe how Uhlmann's geometric phase in the present case could in principle be realized experimentally
Anisotropic to Isotropic Phase Transitions in the Early Universe
Directory of Open Access Journals (Sweden)
Ajaib M. A.
2012-04-01
Full Text Available We attempt to develop a minimal formalism to describe an anisotropic to isotropic tran- sition in the early Universe. Assuming an underlying theory that violates Lorentz in- variance, we start with a Dirac like equation, involving four massless fields, and which does not exhibit Lorentz invariance. We then perform transformations that restore it to its covariant form along with a mass term for the fermion field. It is proposed that these transformations can be visualized as waves traveling in an anisotropic media. The trans- formation it = ℏ ! is then utilized to transit to a statistical thermodynamics system and the partition function then gives a better insight into the character of this transition. The statistical system hence realized is a two level system with each state doubly degenerate. We propose that modeling the transition this way can help explain the matter antimatter asymmetry of the Universe.
Temperature Dependence of the Viscosity of Isotropic Liquids
Jadzyn, J.; Czechowski, G.; Lech, T.
1999-04-01
Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.
Shape memory polymers: three-dimensional isotropic modeling
Balogun, Olaniyi; Mo, Changki
2014-04-01
This paper presents a comprehensive three-dimensional isotropic numerical simulation for a thermo-mechanical constitutive model of shape memory polymers (SMPs). In order to predict the thermo-mechanical behavior of SMPs, a one-dimensional rheological thermo-mechanical constitutive model is adopted, translated into a three-dimensional form and a time discrete form of the three-dimensional model is then presented. Numerical simulation of this model was developed using the UMAT subroutine capabilities of the finite element software ABAQUS. Evolution of the analysis was conducted by making use of the backward difference scheme, which was applied to all quantities within the model, including the material properties. A comparison of the numerical simulation results was carried out with the available experimental data. Numerical simulation results clearly exhibit the thermo-mechanical properties of the material which include shape fixity, shape recovery, and recovery stress. Finally, a prediction for the transverse and shear directions of the material is presented.
Reverse time migration in tilted transversely isotropic media
Energy Technology Data Exchange (ETDEWEB)
Zhang, Linbing; Rector III, James W.; Hoversten, G. Michael
2004-07-01
This paper presents a reverse time migration (RTM) method for the migration of shot records in tilted transversely isotropic (TTI) media. It is based on the tilted TI acoustic wave equation that was derived from the dispersion relation. The RTM is a full depth migration allowing for velocity to vary laterally as well as vertically and has no dip limitations. The wave equation is solved by a tenth-order finite difference scheme. Using 2D numerical models, we demonstrate that ignoring the tilt angle will introduce both lateral and vertical shifts in imaging. The shifts can be larger than 0.5 wavelength in the vertical direction and 1.5 wavelength in the lateral direction.
Nested structures approach in designing an isotropic negative-index material for infrared
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei
2009-01-01
We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report on the refra......We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report...
Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness
Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.
2017-02-01
A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple
Efficient experimental designs for isotropic generalized diffusion tensor MRI (IGDTI).
Avram, Alexandru V; Sarlls, Joelle E; Hutchinson, Elizabeth; Basser, Peter J
2018-01-01
We propose a new generalized diffusion tensor imaging (GDTI) experimental design and analysis framework for efficiently measuring orientationally averaged diffusion-weighted images (DWIs), which remove bulk signal modulations attributed to diffusion anisotropy and quantify isotropic higher-order diffusion tensors (HOT). We illustrate how this framework accelerates the clinical measurement of rotation-invariant tissue microstructural parameters derived from HOT, such as the HOT-Trace and the mean t-kurtosis. For a large range of b-values, we compare orientationally averaged DWIs measured with high angular resolution diffusion imaging to those obtained with the proposed isotropic GDTI (IGDTI) experimental design. We compare rotation-invariant microstructural parameters measured with IGDTI to those derived from HOTs measured explicitly with GDTI. In both fixed-brain microimaging and in vivo clinical experiments, IGDTI accurately quantifies mean apparent diffusion coefficient (mADC)-weighted DWIs over a wide range of b-values and allows efficient computation of HOT-derived scalar tissue parameters from a small number of DWIs. IGDTI provides direct and accurate estimates of orientationally averaged tissue water mobilities over a wide range of b-values. This efficient method may enable new, sensitive, and quantitative assessments for clinical applications in which changes in mADC can be observe,d such as detecting and characterizing stroke, cancers, and neurodegenerative diseases. Magn Reson Med 79:180-194, 2018. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Rebecca E. Ibach; Patricia K. Lebow
2014-01-01
Wood is a durable engineering material when used in an appropriate manner, but it is susceptible to biological decay when a log, sawn product, or final product is not stored, handled, or designed properly. Even before the biological decay of wood becomes visually apparent, the decay can cause the wood to become structurally unsound. The progression of decay to that...
Yamamoto, Hitoshi
2001-01-01
We review the physics of CP violation in B decays. After introducing the CKM matrix and how it causes CP violation, we cover three types of CP violation that can occur in B decays: CP violation in mixing, CP violation by mixing-decay interference, and CP violation in decay.
Lateral Coherence in Isotropic Turbulence and in the Natural Wind
DEFF Research Database (Denmark)
Jensen, Niels Otto; Kristensen, Leif
1979-01-01
A short review of experimental findings is given, followed by a theoretical derivation, based on Taylor's hypothesis, of formulas for lateral coherences. It is assumed that the flow is stationary and homogeneous. Explicit formulas are derived assuming an energy spectrum pertaining to the inertial...
Orthogonality Measurement for Homogenous Projects-Bases
Ivan, Ion; Sandu, Andrei; Popa, Marius
2009-01-01
The homogenous projects-base concept is defined. Next, the necessary steps to create a homogenous projects-base are presented. A metric system is built, which then will be used for analyzing projects. The indicators which are meaningful for analyzing a homogenous projects-base are selected. The given hypothesis is experimentally verified. The…
Improving homogeneity by dynamic speed limit systems.
Nes, N. van Brandenberg, S. & Twisk, D.A.M.
2010-01-01
Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12
Shi, Ming F.; Zhang, Li; Zhu, Xinhai
2016-08-01
The Yoshida nonlinear isotropic/kinematic hardening material model is often selected in forming simulations where an accurate springback prediction is required. Many successful application cases in the industrial scale automotive components using advanced high strength steels (AHSS) have been reported to give better springback predictions. Several issues have been raised recently in the use of the model for higher strength AHSS including the use of two C vs. one C material parameters in the Armstrong and Frederick model (AF model), the original Yoshida model vs. Original Yoshida model with modified hardening law, and constant Young's Modulus vs. decayed Young's Modulus as a function of plastic strain. In this paper, an industrial scale automotive component using 980 MPa strength materials is selected to study the effect of two C and one C material parameters in the AF model on both forming and springback prediction using the Yoshida model with and without the modified hardening law. The effect of decayed Young's Modulus on the springback prediction for AHSS is also evaluated. In addition, the limitations of the material parameters determined from tension and compression tests without multiple cycle tests are also discussed for components undergoing several bending and unbending deformations.
The evaporative vector: Homogeneous systems
International Nuclear Information System (INIS)
Klots, C.E.
1987-05-01
Molecular beams of van der Waals molecules are the subject of much current research. Among the methods used to form these beams, three-sputtering, laser ablation, and the sonic nozzle expansion of neat gases - yield what are now recognized to be ''warm clusters.'' They contain enough internal energy to undergo a number of first-order processes, in particular that of evaporation. Because of this evaporation and its attendant cooling, the properties of such clusters are time-dependent. The states of matter which can be arrived at via an evaporative vector on a typical laboratory time-scale are discussed. Topics include the (1) temperatures, (2) metastability, (3) phase transitions, (4) kinetic energies of fragmentation, and (5) the expression of magical properties, all for evaporating homogeneous clusters
Wang, Peng; Wang, Lian-Ping; Guo, Zhaoli
2016-10-01
The main objective of this work is to perform a detailed comparison of the lattice Boltzmann equation (LBE) and the recently developed discrete unified gas-kinetic scheme (DUGKS) methods for direct numerical simulation (DNS) of the decaying homogeneous isotropic turbulence and the Kida vortex flow in a periodic box. The flow fields and key statistical quantities computed by both methods are compared with those from the pseudospectral method at both low and moderate Reynolds numbers. The results show that the LBE is more accurate and efficient than the DUGKS, but the latter has a superior numerical stability, particularly for high Reynolds number flows. In addition, we conclude that the DUGKS can adequately resolve the flow when the minimum spatial resolution parameter k_{max}η>3, where k_{max} is the maximum resolved wave number and η is the flow Kolmogorov length. This resolution requirement can be contrasted with the requirements of k_{max}η>1 for the pseudospectral method and k_{max}η>2 for the LBE. It should be emphasized that although more validations should be conducted before the DUGKS can be called a viable tool for DNS of turbulent flows, the present work contributes to the overall assessment of the DUGKS, and it provides a basis for further applications of DUGKS in studying the physics of turbulent flows.
International Nuclear Information System (INIS)
Jackson, S.V.; Henry, E.A.; Meyer, R.A.
1975-01-01
For the decay of 49 Cr the intensities of the 1361-, 1423-, 1508-, 1514-, and 1570-keV γ rays are found to be 0.85, 0.19, 0.15, 0.49, and 0.37, respectively, relative to I/sub gamma/ = 1000 for the 90-keV γ ray. Four other previously reported γ rays are shown to be sum peaks or contaminants. The recalculated β-decay branches and logft values (in parentheses) for 49 Cr decay are ground state (5.51), 90.639- (4.94), 152.928- (4.74), 1514.5- (5.71), 1661.1- (6.06), 2181.7- (7.0), 2236- (6.6), and 2310-keV (7.1). The known 3/2 + level at 748 keV was not observed to be populated and a limit of logft > 9 was found for that level
Energy Technology Data Exchange (ETDEWEB)
Galindo, A.; Pascual, P.
1967-07-01
These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)
Energy Technology Data Exchange (ETDEWEB)
Snoek, Hella Leonie [Vrije Univ., Amsterdam (Netherlands)
2009-06-02
This thesis describes the measurement of the branching fractions of the suppressed charmed B^{0} → D^{*-} a_{0}^{+} decays and the non-resonant B^{0} → D^{*-} ηπ^{+} decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B^{0} → D^{*-} a{sub 0}^{+} decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10^{-6}. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B^{0} → D^{*-} a_{0}^{+} decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly
International Nuclear Information System (INIS)
Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.
1995-01-01
One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in 194 Hg. 42 refs., 5 figs
Simon, Martin
2015-01-01
This monograph is concerned with the analysis and numerical solution of a stochastic inverse anomaly detection problem in electrical impedance tomography (EIT). Martin Simon studies the problem of detecting a parameterized anomaly in an isotropic, stationary and ergodic conductivity random field whose realizations are rapidly oscillating. For this purpose, he derives Feynman-Kac formulae to rigorously justify stochastic homogenization in the case of the underlying stochastic boundary value problem. The author combines techniques from the theory of partial differential equations and functional analysis with probabilistic ideas, paving the way to new mathematical theorems which may be fruitfully used in the treatment of the problem at hand. Moreover, the author proposes an efficient numerical method in the framework of Bayesian inversion for the practical solution of the stochastic inverse anomaly detection problem. Contents Feynman-Kac formulae Stochastic homogenization Statistical inverse problems Targe...
High-frequency homogenization of zero frequency stop band photonic and phononic crystals
Antonakakis, Tryfon; Guenneau, Sebastien
2013-01-01
We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...
International Nuclear Information System (INIS)
Litchfield, P.J.
1984-09-01
The experimental status of proton decay is reviewed after the Leipzig International conference, July 1984. A brief comparative description of the currently active experiments is given. From the overall samples of contained events it can be concluded that the experiments are working well and broadly agree with each other. The candidates for proton decay from each experiment are examined. Although several experiments report candidates at a higher rate than expected from background calculations, the validity of these calculations is still open to doubt. (author)
Dell'Asta, Lidia; The ATLAS collaboration
2016-01-01
Since the discovery of a Higgs-like boson by the ATLAS and CMS experiments at the LHC, the emphasis has shifted towards measurements of its properties and the search in the less sensitive channels in order to determine whether the new particle is the Standard Model (SM) Higgs boson. Of particular importance is the direct observation of the coupling of the Higgs boson to fermions. In this presentation a review of ATLAS and CMS results in the search for the Higgs boson in muon, tau-lepton, b-quark pair decay channels will be given. Moreover, the searches for lepton flavor violating decays will be presented.
Experimental Study of Inertial Particle-Pair Relative Velocity in Isotropic Turbulence
Dou, Zhongwang
The investigation of turbulence-enhanced inertial particle collision in isotropic turbulence could improve our understanding and modeling of many particle-laden turbulent flows in engineering and nature. In this study, we investigate one of the most critical factors of particle collision - particle-pair relative velocity (RV) in three major steps. First, to generate a reliable homogeneous and isotropic turbulence (HIT) field, we have designed and implemented a high Reynolds number (R lambda), enclosed, fan-driven HIT chamber in the shape of 'soccer ball', conducive for studying inertial particle dynamics using whole-field imaging techniques. The characterization of turbulence in this near-zero-mean flow chamber was performed using a new two-scale particle imaging velocimetry (PIV) approach. The measurement results showed that turbulence in the apparatus achieved high homogeneity and isotropy in a large central region (48mm diameter) of the chamber with minimized gravity effect. A maximum Rlambda of 384 was achieved. Second, to measure particle-pair RV accurately, we have employed numerical experiments to systemically analyze the measurement error in the previous particle-pair RV measurement by holographic PIV. We found that accurate RV measurement requires high accuracy of both particle positioning and particle pairing. To meet these requirements, we have devised a novel planar 4-frame particle tracking velocimetry technique (4F-PTV) combining two PIV systems. It tracks particles in four consecutive frames in high speed to increase particle pairing accuracy. Furthermore, the particles are tracked only in a thin laser light sheet, thus negating the intrinsic position uncertainty in the depth direction in holographic PIV. In addition, we have studied the laser thickness effect on the RV measurement and attempted to use Monte Carlo analysis to correct this effect. Third, and most importantly, to better understand turbulence-enhanced inertial particle collision, we
Diffraction Coefficients of a Semi-Infinite Planar Crack Embedded in a Transversely-Isotropic Space
Gautesen, A.; Fradkin, L.; Zernov, V.
2007-03-01
We develop a semi-analytical procedure for calculating the diffraction coefficients for cracks perpendicular to the symmetry axis of a transversely-isotropic medium. The problem is of interest in the mathematical modeling of NDE (non-destructive evaluation) of austenitic steels, which are found in claddings and other welds in the nuclear reactors and can be modelled as transversely isotropic.
An Isotropic Light Sensor for Measurements of Visible Actinic Flux in Clouds
Hage, J.C.H. van der; Roode, S.R. de
1999-01-01
A low-cost isotropic light sensor is described consisting of a spherical diffuser connected to a single photodiode by a light conductor. The directional response to light is isotropic to a high degree. The small, lightweight, and rugged construction makes this instrument suitable not only for
Löwer, Alexander; Junge, Andreas
2017-05-01
The influence of anisotropic conductivity structures on magnetotelluric transfer functions is not easy to analyse in its entire complexity. In this study, we investigate the spatial and frequency-dependent behaviour of phase tensors and tipper vectors above a 3D anisotropic conductivity anomaly. The anomaly consists of a simple cubic block embedded in a homogeneous half space. Using a 3D FD code, we compare an isotropic, 2 anisotropic models with an anisotropy factor of 10 and one anisotropic model with the anisotropy factor of 100. The results show characteristic differences between the isotropic and anisotropic cases. For the anisotropic anomalies, the tipper vectors are parallel over the entire area despite the 3D geometry of the anomalous body. The size of the tipper vectors depends on the position of the site relative to the anomaly's boundaries and the direction of the anisotropic strike. Above the anomalous anisotropic body, the main diagonal elements of the phase tensor show the well-known split. Outside the anomaly, the phase tensor principal axis rotates according to the site position in contrast to the constant tipper direction. The 3D inversion of the forward data using an isotropic 3D code (ModEM) yields a very good fit for all cases. Whereas the inversion result matches the isotropic model, wave-like structures with high conductivity contrast occur for the anisotropic models. These structures extend far beyond the extension of the original anomalous body. Thus, the study reveals important indications of the existence of anisotropic conductivity structures for observed magnetotelluric transfer functions.
Hao, Qi
2016-11-21
Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter υS0 in Thomsen\\'s notation and the S-wave attenuation coefficient AS0 in Zhu and Tsvankin\\'s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the
Reciprocity theory of homogeneous reactions
Agbormbai, Adolf A.
1990-03-01
The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.
Energy Technology Data Exchange (ETDEWEB)
Coyne, D.G.
1984-10-01
Selected topics in the investigations of decays of members of the Upsilon family are examined; the confrontation of theory with experiment is not yet adequate. The current evidence regarding the zeta(8322 MeV) is reviewed and future directions of study are indicated. 15 references.
Indian Academy of Sciences (India)
Abstract. We present a rare example of a decay mechanism playing a constructive role in quantum information processing. We show how the state of an atom trapped in a cavity can be teleported to a second atom trapped in a distant cavity by the joint detection of photon leakage from the cavities. The scheme, which is ...
Indian Academy of Sciences (India)
2015-11-27
Nov 27, 2015 ... We present a rare example of a decay mechanism playing a constructive role in quantum information processing. We show how the state of an atom trapped in a cavity can be teleported to a second atom trapped in a distant cavity by the joint detection of photon leakage from the cavities. The scheme, which ...
International Nuclear Information System (INIS)
Choudhury, Debajyoti; Ghosh, Dilip Kumar; Mamta
2008-01-01
Recently Georgi has discussed the possible existence of 'Unparticles' describable by operators having non-integral scaling dimensions. With the interaction of these with the Standard Model particles being constrained only by gauge and Lorentz symmetries, it affords a new source for lepton flavour violation. Current and future muon decay experiments are shown to be very sensitive to such scenarios
Energy Technology Data Exchange (ETDEWEB)
Choudhury, Debajyoti [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Ghosh, Dilip Kumar [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)], E-mail: dkghosh@physics.du.ac.in; Mamta [Department of Physics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110 007 (India)
2008-01-03
Recently Georgi has discussed the possible existence of 'Unparticles' describable by operators having non-integral scaling dimensions. With the interaction of these with the Standard Model particles being constrained only by gauge and Lorentz symmetries, it affords a new source for lepton flavour violation. Current and future muon decay experiments are shown to be very sensitive to such scenarios.
International Nuclear Information System (INIS)
Fonda, L.; Ghirardi, G.C.; Weber, T.
1983-07-01
The problem of the proton decay is considered taking into account that in actual experiments there is an interaction of the proton with its environment which could imply an increase of its theoretical lifetime. It is seen that, by application of the time-energy uncertainty relation, no prolongation of the lifetime is obtained in this case. (author)
Indian Academy of Sciences (India)
be quantified later. All SUSY models available in the market can be divided into two broad categories: R- .... β. ¼ =β +φSUSY, α. ¼ =α φSUSY. (2) so that their sum remains unchanged. γ measured from Bs decays will also be changed by a different amount, and hence the unitarity triangle (UT) will not close: this is the signal.
Chance, A
2008-01-01
The aim of "beta-beams" is to produce highly energetic pure electron neutrino and anti-neutrino beams coming from β-decay of radioactive ions. In CERN baseline, after accelerating, the ions 6He2+ and 18Ne10+ are stored in a racetrack-shaped-decay ring until they are lost [1]. Consequently, the injection compensates the losses which occurred between two cycles. Two main loss sources were identified: the β decay and the injection scheme. After giving the optics, we will see how to protect the magnetic elements from the decay products. The injections scheme will be then detailed with its implications. We will see that the injection process makes a collimation section in energy necessary. Since the magnetic elements are not perfect, we will take into account the magnet misalignment and the multipole defects in the dipoles. We will talk then about the closed orbit distortion due to misalignment defects and about the long-term transverse stability with the dynamic aperture.
Neutrinoless double beta decay
Indian Academy of Sciences (India)
2012-10-06
Oct 6, 2012 ... 2003 [13], the measured averaged 2νββ-decay half-lives as recommended in [14] plus the recent measurement of 136Xe [15,24]. The last column shows the experiments addressing the measurement of the corresponding isotope. For some experiments, only the 'default' isotope is mentioned as they have ...
International Nuclear Information System (INIS)
Hubert, P.; Mennrath, P.
1985-01-01
The processes of double beta decay with and without emission of neutrinos are briefly reviewed. After the definitions of the processes and implications for the neutrino properties, the present status of the experimental results is discussed. We conclude with a description of the Bordeaux-Zaragoza-Strasbourg experimental which will run in the Frejus tunnel
Indian Academy of Sciences (India)
2012-11-10
Nov 10, 2012 ... Figure 3. Effective Feynman diagrams for the initial meson–meson configuration. Figure 4. Effective Feynman diagrams for the initial diquark–antidiquark configuration. explain the absence of a threshold enhancement in B decays to baryons. There, all con- tributing Feynman diagrams are divided into two ...
Three-dimensional magnetospheric equilibrium with isotropic pressure
International Nuclear Information System (INIS)
Cheng, C.Z.
1995-05-01
In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section
Line-scanning tomographic optical microscope with isotropic transfer function
International Nuclear Information System (INIS)
Gajdátsy, Gábor; Dudás, László; Erdélyi, Miklós; Szabó, Gábor
2010-01-01
An imaging method and optical system, referred to as a line-scanning tomographic optical microscope (LSTOM) using a combination of line-scanning technique and CT reconstruction principle, is proposed and studied theoretically and experimentally. In our implementation a narrow focus line is scanned over the sample and the reflected light is measured in a confocal arrangement. One such scan is equivalent to a transverse projection in tomography. Repeating the scanning procedure in several directions, a number of transverse projections are recorded from which the image can be obtained using conventional CT reconstruction algorithms. The resolution of the image is independent of the spatial dimensions and structure of the applied detector; furthermore, the transfer function of the system is isotropic. The imaging performance of the implemented confocal LSTOM was compared with a point-scanning confocal microscope, based on recorded images. These images demonstrate that the resolution of the confocal LSTOM exceeds (by 15%) the resolution limit of a point-scanning confocal microscope
ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE
Energy Technology Data Exchange (ETDEWEB)
Belluzzi, Luca [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); Landi Degl’Innocenti, Egidio [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50125 Firenze (Italy); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)
2015-10-10
A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.
Magnetic hysteresis measurements of thin films under isotropic stress.
Holland, Patrick; Dubey, Archana; Geerts, Wilhelmus
2000-10-01
Nowadays, ferromagnetic thin films are widely applied in devices for information technology (credit cards, video recorder tapes, floppies, hard disks) and sensors (air bags, anti-breaking systems, navigation systems). Thus, with the increase in the use of magnetic media continued investigation of magnetic properties of materials is necessary to help in determining the useful properties of materials for new or improved applications. We are currently interested in studying the effect of applied external stress on Kerr hysteresis curves of thin magnetic films. The Ni and NiFe films were grown using DC magnetron sputtering with Ar as the sputter gas (pAr=4 mTorr; Tsub=55-190 C). Seed and cap layers of Ti were used on all films for adhesion and oxidation protection, respectively. A brass membrane pressure cell was designed to apply in-plane isotropic stress to thin films. In this pressure cell, gas pressure is used to deform a flexible substrate onto which a thin magnetic film has been sputtered. The curvature of the samples could be controlled by changing the gas pressure to the cell. Magneto-Optical in-plane hysteresis curves at different values of strain were measured. The results obtained show that the stress sensitivity is dependent on the film thickness. For the 500nm NiFe films, the coercivity strongly decreased as a function of the applied stress.
An efficient Helmholtz solver for acoustic transversely isotropic media
Wu, Zedong
2017-11-11
The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.
Classification of decays involving variable decay chains with convolutional architectures
CERN. Geneva
2018-01-01
Vidyo contribution We present a technique to perform classification of decays that exhibit decay chains involving a variable number of particles, which include a broad class of $B$ meson decays sensitive to new physics. The utility of such decays as a probe of the Standard Model is dependent upon accurate determination of the decay rate, which is challenged by the combinatorial background arising in high-multiplicity decay modes. In our model, each particle in the decay event is represented as a fixed-dimensional vector of feature attributes, forming an $n \\times k$ representation of the event, where $n$ is the number of particles in the event and $k$ is the dimensionality of the feature vector. A convolutional architecture is used to capture dependencies between the embedded particle representations and perform the final classification. The proposed model performs outperforms standard machine learning approaches based on Monte Carlo studies across a range of variable final-state decays with the Belle II det...
Charmless Hadronic Beauty Decays at LHCb
Williams, Timothy
2017-10-01
A summary of six LHCb results on the topic of charmless hadronic b-hadron decays is presented. These are comprised of: a search for the decay and updated branching fraction measurements of decays (h=K,π) [1]; the first observation of the decays and strong evidence for the decay [2]; the first observation of the decay [3]; a search for the decay [4]; the first observation of the decay [5] and evidence for CP-violation in decays [6].
Fleischmann, J. A.; Drugan, W. J.; Plesha, M. E.
2013-07-01
We derive the macroscopic elastic moduli of a statistically isotropic particulate aggregate material via the homogenization methods of Voigt (1928) (kinematic hypothesis), Reuss (1929) (static hypothesis), and Hershey (1954) and Kröner (1958) (self-consistent hypothesis), originally developed to treat crystalline materials, from the directionally averaged elastic moduli of three regular cubic packings of uniform spheres. We determine analytical expressions for these macroscopic elastic moduli in terms of the (linearized) elastic inter-particle contact stiffnesses on the microscale under the three homogenization assumptions for the three cubic packings (simple, body-centered, and face-centered), assuming no particle rotation. To test these results and those in the literature, we perform numerical simulations using the discrete element method (DEM) to measure the overall elastic moduli of large samples of randomly packed uniform spheres with constant normal and tangential contact stiffnesses (linear spring model). The beauty of DEM is that simulations can be run with particle rotation either prohibited or unrestrained. In this first part of our two-part series of papers, we perform DEM simulations with particle rotation prohibited, and we compare these results with our theoretical results that assumed no particle rotation. We show that the self-consistent homogenization assumption applied to the locally body-centered cubic (BCC) packing most accurately predicts the measured values of the overall elastic moduli obtained from the DEM simulations, in particular Poisson's ratio. Our new analytical self-consistent results lead to significantly better predictions of Poisson's ratio than all prior published theoretical results. Moreover, our results are based on a direct micromechanics analysis of specific geometrical packings of uniform spheres, in contrast to all prior theoretical analyses, which were based on difficult-to-verify hypotheses involving overall inter
AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT
Energy Technology Data Exchange (ETDEWEB)
Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.
2010-12-03
Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.
STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR
Busey, H.M.
1958-06-01
A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.
Homogeneity and thermodynamic identities in geometrothermodynamics
Energy Technology Data Exchange (ETDEWEB)
Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); ICRANet, Rome (Italy); Quevedo, Maria N. [Universidad Militar Nueva Granada, Departamento de Matematicas, Facultad de Ciencias Basicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)
2017-03-15
We propose a classification of thermodynamic systems in terms of the homogeneity properties of their fundamental equations. Ordinary systems correspond to homogeneous functions and non-ordinary systems are given by generalized homogeneous functions. This affects the explicit form of the Gibbs-Duhem relation and Euler's identity. We show that these generalized relations can be implemented in the formalism of black hole geometrothermodynamics in order to completely fix the arbitrariness present in Legendre invariant metrics. (orig.)
RSA Asymmetric Cryptosystem beyond Homogeneous Transformation
African Journals Online (AJOL)
PROF. O. E. OSUAGWU
2013-12-01
, Decryption, Homogeneous, Heterogeneous ... commutations devices that can communicate with one another and share applications and data [7]. A computer network is a collection of communicating computers and the.
Statistics of fracture in two grades of isotropic graphite
International Nuclear Information System (INIS)
Kennedy, C.R.; Montgomery, S.C.
1990-01-01
Properties in large billets of graphite used in critical applications demand a high level of quality assurance. Therefore, it must be determined if sample test results represent the properties of the entire billet. Flexure tests were performed on specimens from 27 populations in each grade with respect to billet, position, and orientation to establish the confidence levels for estimation of overall variance and mean strength in the billet. Comparisons of tensile and brittle ring to flexure strengths were made. Homogeneity of variance was found to be a tenable hypothesis; however, estimates of the billet mean strength were not as confidently predicted by the samples. (orig.)
Statistics of fracture in two grades of isotropic graphite
Kennedy, C. R.; Montgomery, S. C.
1990-04-01
Properties in large billets of graphite used in critical applications demand a high level of quality assurance. Therefore, it must be determined if sample test results represent the properties of the entire billet. Flexure tests were performed on specimens from 27 populations in each grade with respect to billet, position, and orientation to establish the confidence levels for estimation of overall variance and mean strength in the billet. Comparisons of tensile and brittle ring to flexure strengths were made. Homogeneity of variance was found to be a tenable hypothesis; however, estimates of the billet mean strength were not as confidently predicted by the samples.
Visible neutrino decay at DUNE
Energy Technology Data Exchange (ETDEWEB)
Coloma, Pilar [Fermilab; Peres, Orlando G. [ICTP, Trieste
2017-05-09
If the heaviest neutrino mass eigenstate is unstable, its decay modes could include lighter neutrino eigenstates. In this case part of the decay products could be visible, as they would interact at neutrino detectors via mixing. At neutrino oscillation experiments, a characteristic signature of such \\emph{visible neutrino decay} would be an apparent excess of events at low energies. We focus on a simple phenomenological model in which the heaviest neutrino decays as $\
International Nuclear Information System (INIS)
Yamamoto, Tohru; Akiyama, Masatsugu
1981-02-01
The decay data file for fission product nuclides (FP DECAY DATA FILE) has been prepared for summation calculation of the decay heat of fission products. The average energies released in β- and γ-transitions have been calculated with computer code PROFP. The calculated results and necessary information have been arranged in tabular form together with the estimated results for 470 nuclides of which decay data are not available experimentally. (author)
Fleischmann, J. A.; Drugan, W. J.; Plesha, M. E.
2013-07-01
In Part I, Fleischmann et al. (2013), we performed theoretical analyses of three cubic packings of uniform spheres (simple, body-centered, and face-centered) assuming no particle rotation, employed these results to derive the effective elastic moduli for a statistically isotropic particulate material, and assessed these results by performing numerical discrete element method (DEM) simulations with particle rotations prohibited. In this second part, we explore the effect that particle rotation has on the overall elastic moduli of a statistically isotropic particulate material. We do this both theoretically, by re-analyzing the elementary cells of the three cubic packings with particle rotation allowed, which leads to the introduction of an internal parameter to measure zero-energy rotations at the local level, and numerically via DEM simulations in which particle rotation is unrestrained. We find that the effects of particle rotation cannot be neglected. For unrestrained particle rotation, we find that the self-consistent homogenization assumption applied to the locally body-centered cubic packing incorporating particle rotation effects most accurately predicts the measured values of the overall elastic moduli obtained from the DEM simulations, in particular Poisson's ratio. Our new self-consistent results and theoretical modeling of particle rotation effects together lead to significantly better theoretical predictions of Poisson's ratio than all prior published results. Moreover, our results are based on a direct micromechanics analysis of specific geometrical packings of uniform spheres, in contrast to prior theoretical analyses based on hypotheses involving overall inter-particle contact distributions. Thus, our results permit a direct assessment of the reasons for the theory-experiment discrepancies noted in the literature with regard to previous theoretical derivations of the macroscopic elastic moduli for particulate materials, and our new theoretical results
Hu, Ting; Han, Yang; Dong, Jinming
2014-11-14
The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson's ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.
Modulation of homogeneous space-time rainfall cascades to account for orographic influences
Directory of Open Access Journals (Sweden)
M. G. Badas
2006-01-01
Full Text Available The development of efficient space-time rainfall downscaling procedures is highly important for the implementation of a meteo-hydrological forecasting chain operating over small watersheds. Multifractal models based on homogeneous cascade have been successfully applied in literature to reproduce space-time rainfall events retrieved over ocean, where the hypothesis of spatial homogeneity can be reasonably accepted. The feasibility to apply this kind of models to rainfall fields occurring over a mountainous region, where spatial homogeneity may not hold, is herein investigated. This issue is examined through the analysis of rainfall data retrieved by the high temporal resolution rain gage network of the Sardinian Hydrological Survey. The proposed procedure involves the introduction of a modulating function which is superimposed to homogeneous and isotropic synthetic fields to take into account the spatial heterogeneity detected in observed precipitation events. Specifically the modulating function, which reproduces the differences in local mean values of the precipitation intensity probability distribution, has been linearly related to the terrain elevation of the analysed spatial domain. Comparisons performed between observed and synthetic data show how the proposed procedure preserves the observed rainfall fields features and how the introduction of the modulating function improves the reproduction of spatial heterogeneity in rainfall probability distributions.
Isotropic sources and attenuation structure: Nuclear tests, mine collapses, and Q
Ford, Sean Ricardo
This dissertation investigates two different, but related, topics: isotropic sources and attenuation structure. The first section reports the analysis of explosions, earthquakes, and collapses in the western US using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. We find that in the band of interest (0.02-0.10 Hz) the source-type is insensitive to small velocity model perturbations and several kilometers of incorrect depth when the signal-to-noise ratio (SNR) is greater than 5. However, error in the isotropic moment grows from 50% to 200% as the source depth decreases from 1 km to 200 m. We add an analysis of the Crandall Canyon Mine collapse that occurred on 6 August 2007 in Utah to our dataset. The results show that most of the recorded seismic wave energy is consistent with an underground collapse in the mine. We contrast the waveforms and moment tensor results of the Crandall Canyon Mine seismic event to a similar sized tectonic earthquake about 200 km away near Tremonton, Utah, that occurred on September 1, 2007 demonstrating the low frequency regional waveforms carry sufficient information to distinguish the source-type. Finally, confidence in the regional full moment tensor inversion solution is described via the introduction of the network sensitivity solution (NSS), which takes into account the unique station distribution, frequency band, and signal-to-noise ratio of a given event scenario. The method is tested for the well-recorded nuclear test, JUNCTION, at the Nevada Test Site and the October 2006 North Korea test, where the station coverage is poor and the event magnitude is small. Both events contain large isotropic components that are 60% of the total moment, though the NTS event is much better constrained than the North Korea test. The network solutions illustrate the effect
Searching for exotic tau decays
Alemany, R; González-Garciá, M Concepción; Valle, José W F
1993-01-01
We discuss the potential of $\\tau$-charm and B factories for the search of new physics through the study of rare $\\tau$ decays. We consider decays that involve the violation of lepton flavour conservation. Such decays bear a close relationship to the physics of neutrino mass and the properties of the lepton sector of the electroweak theory.
Energy transfer and constrained simulations in isotropic turbulence
Jimenez, Javier
1993-01-01
The defining characteristic of turbulent flows is their ability to dissipate energy, even in the limit of zero viscosity. The Euler equations, if constrained in such a way that the velocity derivatives remain bounded, conserve energy. But when they arise as the limit of the Navier-Stokes (NS) equations, when the Reynolds number goes to infinity, there is persuasive empirical evidence that the gradients become singular as just the right function of Re for the dissipation to remain non-zero and to approach a well defined limit. It is generally believed that this limiting value of the dissipation is a property of the Euler equations themselves, independent of the particular dissipative mechanism involved, and that it can be normalized with the large scale properties of the turbulent flow (e.g. the kinetic energy per unit volume u'(exp 2)/2, and the integral scale L) without reference to the Reynolds number or to other dissipative quantities. This is usually taken to imply that the low wave number end of the energy spectrum, far from the dissipative range, is also independent of the particular mechanism chosen to dispose of the energy transfer. In the following sections, we present some numerical experiments on the effect of substituting different dissipation models into the truncated Euler equations. We will see that the effect is mainly felt in the 'near dissipation' range of the energy spectrum, but that this range can be quite wide in some cases, contaminating a substantial range of wave numbers. In the process, we will develop a 'practical' approximation to the subgrid energy transfer in isotropic turbulence, and we will gain insight into the structure of the nonlinear interactions among turbulent scales of comparable size, and into the nature of energy backscatter. Some considerations on future research directions are offered at the end.
A Transversely Isotropic Thermo-mechanical Framework for Oil Shale
Semnani, S. J.; White, J. A.; Borja, R. I.
2014-12-01
The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers
Self-consolidating concrete homogeneity
Directory of Open Access Journals (Sweden)
Jarque, J. C.
2007-08-01
Full Text Available Concrete instability may lead to the non-uniform distribution of its properties. The homogeneity of self-consolidating concrete in vertically cast members was therefore explored in this study, analyzing both resistance to segregation and pore structure uniformity. To this end, two series of concretes were prepared, self-consolidating and traditional vibrated materials, with different w/c ratios and types of cement. The results showed that selfconsolidating concretes exhibit high resistance to segregation, albeit slightly lower than found in the traditional mixtures. The pore structure in the former, however, tended to be slightly more uniform, probably as a result of less intense bleeding. Such concretes are also characterized by greater bulk density, lower porosity and smaller mean pore size, which translates into a higher resistance to pressurized water. For pore diameters of over about 0.5 Î¼m, however, the pore size distribution was found to be similar to the distribution in traditional concretes, with similar absorption rates.En este trabajo se estudia la homogeneidad de los hormigones autocompactantes en piezas hormigonadas verticalmente, determinando su resistencia a la segregación y la uniformidad de su estructura porosa, dado que la pérdida de estabilidad de una mezcla puede conducir a una distribución no uniforme de sus propiedades. Para ello se han fabricado dos tipos de hormigones, uno autocompactante y otro tradicional vibrado, con diferentes relaciones a/c y distintos tipos de cemento. Los resultados ponen de manifiesto que los hormigones autocompactantes presentan una buena resistencia a la segregación, aunque algo menor que la registrada en los hormigones tradicionales. A pesar de ello, su estructura porosa tiende a ser ligeramente más uniforme, debido probablemente a un menor sangrado. Asimismo, presentan una mayor densidad aparente, una menor porosidad y un menor tamaño medio de poro, lo que les confiere mejores
International Nuclear Information System (INIS)
Santos Scardino, A.M. dos.
1987-01-01
The decay of 57 Ni to 57 Co was studied by gamma ray spectroscopy using both singles and coincidence spectra. The sources were obtained with the 58 Ni (Y,n) 57 Ni reaction. Natural metallic nickel was irradiated in the bremsstrahluhng beam of the linear accelerator of the Instituto de Fisica da Universidade de Sao Paulo with 30 MeV electrons. The singles espectra were taken with 104 cc HPGe detector and the coincidences espectra with 27 and 53cc Ge(Li) and 104 cc. HPGe detectors. The energies of transitions that follow the 57 Ni decay were measured using 56 Co as standard (which was obtained by (Y,np) reaction in 58 Ni) and taking into account the cascade cross-over relations. (author) [pt
Nikodem, Thomas
2016-01-01
Flavour Changing Neutral Currents (FCNC) are sensitive probes for physics beyond the Standard Model (SM), so-called New Physics. An example of a FCNC is the $b \\to s$ quark transition described by the electroweak penguin Feynman diagram shown in Figure 1. In the SM such FCNC are only allowed with a loop structure (as e:g: shown in the figure) and not by tree level processes. In the loops heavy particles appear virtually and do not need to be on shell. Therefore also not yet discovered heavy particles with up to a mass $\\mathcal{O}$(TeV) could virtually contribute significantly to observables. Several recent measurements of electroweak penguin B decays exhibit interesting tensions with SM predictions, most prominently in the angular observable $P'_5$ 5 of the decay $B^0 \\to K^{*0} \\mu^+ \\mu^1$[1], which triggered a lot of discussion in the theory community [2]-[14].
International Nuclear Information System (INIS)
Levy, J.M.
1984-01-01
Massive neutrinos mixing with weak interaction eigenstates are expected to decay into various channels depending on their masses and their mixing pattern. The author reviews some of these decay modes in the simpliest possible frame (νsub(H) → e - e + νsub(e), νsub(n) → γνsub(e), νsub(n) → γγνsub(e) and considers only the addition of right handed neutrino fields to the spectrum of the standard Glashow-Salam-Weinberg theory of weak interactions, thereby allowing for the existence of Dirac masses generated through the coupling of these fields and their left handed mates with the usual Higgs doublet and its charge conjugate, as is the case for quarks
International Nuclear Information System (INIS)
Yu Xiaohan; Shi Shuanghui; Gu Jiahui
1997-01-01
The decay of 83 Sr was reinvestigated using γ singles and γ-γ-t coincidence measurement. A new level scheme of Rb, which contains 41 excited levels and about 180 transitions, is constructed. 19 new levels were added to the old level scheme and 8 formerly adopted levels were denied. A new data set of branching ratio, log(ft) value and spin parity was obtained
2-D isotropic negative refractive index in a N-type four-level atomic system
Zhao, Shun-Cai; Wu, Qi-Xuan; Ma, Kun
2015-11-01
2-D(Two-dimensional) isotropic negative refractive index (NRI) is explicitly realized via the orthogonal signal and coupling standing-wave fields coupling the Ntype four-level atomic system. Under some key parameters of the dense vapour media, the atomic system exhibits isotropic NRI with simultaneous negative permittivity and permeability (i.e. left-handedness) in the 2-D x-y plane. Compared with other 2-D NRI schemes, the coherent atomic vapour media in our scheme may be an ideal 2-D isotropic NRI candidate and has some potential advantages, significance or applications in the further investigation.
Energy Technology Data Exchange (ETDEWEB)
Kocher, D.C.
1981-01-01
The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.
MULTIFLUID MAGNETOHYDRODYNAMIC TURBULENT DECAY
International Nuclear Information System (INIS)
Downes, T. P.; O'Sullivan, S.
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation that occurs within them. Non-ideal magnetohydrodynamic (MHD) effects are known to influence the nature of this turbulence. We present the results of a suite of 512 3 resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity, and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power law in nature.
Energy Technology Data Exchange (ETDEWEB)
Donega, Mauro; /Geneva U.
2005-07-01
The authors report on the charmless B decays measurements performed on 180 pb{sup -1} of data collected with the CDF II detector at the Fermilab Tevatron collider. This paper describes: the first observation of the decay mode B{sub s} {yields} K{sup +}K{sup -} and the measurement of the direct Cp asymmetry in the ({bar B}){sub d} {yields} K{sup {+-}}{pi}{sup {-+}} decay; the first evidence of the decay mode B{sub s} {yields} {phi}{phi} and the branching ratio and Cp asymmetry for the B{sup {+-}} {yields} {phi}K{sup {+-}} decay.
Traffic planning for non-homogeneous traffic
Indian Academy of Sciences (India)
Trafﬁc on Indian roads (both urban and inter-urban) consists of a variety of vehicles. These vehicles have widely different static and dynamic characteristics. The trafﬁc is also very different from homogeneous trafﬁc which primarily consists of motorized vehicles. Homogeneous trafﬁc follows strict lane discipline as compared ...
Homogeneous and heterogeneous catalysis production and ...
African Journals Online (AJOL)
While the homogeneous catalysis route produced higher biodiesel yields, the heterogeneous catalyst method produced biodiesel of lower ester content. The fuel properties of biodiesels and blends were analysed quantitati-vely, and the biodiesel produced by homogeneous catalysis compared favourably with conventional ...
The homogeneous geometries of real hyperbolic space
DEFF Research Database (Denmark)
Castrillón López, Marco; Gadea, Pedro Martínez; Swann, Andrew Francis
We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use ...
Multilevel Monte Carlo Approaches for Numerical Homogenization
Efendiev, Yalchin R.
2015-10-01
In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.
Homogeneity of Prototypical Attributes in Soccer Teams
Directory of Open Access Journals (Sweden)
Christian Zepp
2015-09-01
Full Text Available Research indicates that the homogeneous perception of prototypical attributes influences several intragroup processes. The aim of the present study was to describe the homogeneous perception of the prototype and to identify specific prototypical subcategories, which are perceived as homogeneous within sport teams. The sample consists of N = 20 soccer teams with a total of N = 278 athletes (age M = 23.5 years, SD = 5.0 years. The results reveal that subcategories describing the cohesiveness of the team and motivational attributes are mentioned homogeneously within sport teams. In addition, gender, identification, team size, and the championship ranking significantly correlate with the homogeneous perception of prototypical attributes. The results are discussed on the basis of theoretical and practical implications.
Statistical methods for assessment of blend homogeneity
DEFF Research Database (Denmark)
Madsen, Camilla
2002-01-01
In this thesis the use of various statistical methods to address some of the problems related to assessment of the homogeneity of powder blends in tablet production is discussed. It is not straight forward to assess the homogeneity of a powder blend. The reason is partly that in bulk materials...... as powder blends there is no natural unit or amount to define a sample from the blend, and partly that current technology does not provide a method of universally collecting small representative samples from large static powder beds. In the thesis a number of methods to assess (in)homogeneity are presented....... Some methods have a focus on exploratory analysis where the aim is to investigate the spatial distribution of drug content in the batch. Other methods presented focus on describing the overall (total) (in)homogeneity of the blend. The overall (in)homogeneity of the blend is relevant as it is closely...
Column: Factors Affecting Data Decay
Directory of Open Access Journals (Sweden)
Kevin Fairbanks
2012-06-01
Full Text Available In nuclear physics, the phrase decay rate is used to denote the rate that atoms and other particles spontaneously decompose. Uranium-235 famously decays into a variety of daughter isotopes including Thorium and Neptunium, which themselves decay to others. Decay rates are widely observed and wildly different depending on many factors, both internal and external. U-235 has a half-life of 703,800,000 years, for example, while free neutrons have a half-life of 611 seconds and neutrons in an atomic nucleus are stable.We posit that data in computer systems also experiences some kind of statistical decay process and thus also has a discernible decay rate. Like atomic decay, data decay fluctuates wildly. But unlike atomic decay, data decay rates are the result of so many different interplaying processes that we currently do not understand them well enough to come up with quantifiable numbers. Nevertheless, we believe that it is useful to discuss some of the factors that impact the data decay rate, for these factors frequently determine whether useful data about a subject can be recovered by forensic investigation.(see PDF for full column
Puig Navarro, Albert
2017-01-01
Rare decays are flavour changing neutral current processes that allow sensitive searches for phenomena beyond the Standard Model (SM). In the SM, rare decays are loop-suppressed and new particles in SM extensions can give significant contributions. The very rare decay $B^0_s\\to\\mu^+\\mu^-$ in addition helicity suppressed and constitutes a powerful probe for new (pseudo) scalar particles. Of particular interest are furthermore tests of lepton universality in rare $b\\to s\\ell^+\\ell^-$ decays. The LHCb experiment is designed for the study of b-hadron decays and ideally suited for the analysis of rare decays due to its high trigger efficiency, as well as excellent tracking and particle identification performance. Recent results from the LHCb experiment in the area of rare decays are presented, including tests of lepton universality and searches for lepton flavour violation.
Directory of Open Access Journals (Sweden)
A Avazpour
2014-12-01
Full Text Available Density functional approach was used to study the isotropic- nematic (I-N transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition densities for elongation at various reduced temperatures. It was observed that the isotropic- nematic transition densities increase as the temperature increases. It was found that the new direct correlation function is suitable to study the isotropic- nematic transition of Gay- Berne liquids. Comparison to other works showed qualitative agreement
Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Torres del Castillo, G.F. [Departamento de Fisica Matematica, Instituto de Ciencias, Universidad Autonoma de Puebla, 72570 Puebla (Mexico); Tepper G, T. [Escuela de Ciencias, Departamento de Fisica y Matematicas, Universidad de Las Americas-Puebla, Santa Catarina Martir, 72820 Cholula, Puebla (Mexico)
2002-07-01
It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics. (Author)
Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator
International Nuclear Information System (INIS)
Torres del Castillo, G.F.; Tepper G, T.
2002-01-01
It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics. (Author)
Determination of the Stress State From Transverse Wave Speeds in Isotropic Inelastic Solids
National Research Council Canada - National Science Library
Scheidler, Mike
1997-01-01
For a transverse acceleration wave propagating along a principal axis of strain in a nonlinear isotropic elastic solid, a simple formula due to Ericksen relates the wave speed to the stress and strain...
International Nuclear Information System (INIS)
Pessine, E.J.
1978-01-01
Typical half-space problems in two-group neutron transport theory are solved numerically using the singular-eigenfunction-expansion technique, considering isotropic-and linearly anisotropic scattering. Numerical results are reported for the Albedo, Milne and Constant-Source problems in a half-space pure light-water medium using isotropic scattering data set of Metacalf and Zweifel and considering various degrees of anisotropy [pt
Miller, Renee; Kolipaka, Arunark; Nash, Martyn P; Young, Alistair A
2018-03-12
Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either three or five material properties. The three-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
String pair production in non homogeneous backgrounds
International Nuclear Information System (INIS)
Bolognesi, S.; Rabinovici, E.; Tallarita, G.
2016-01-01
We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.
String pair production in non homogeneous backgrounds
Energy Technology Data Exchange (ETDEWEB)
Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)
2016-04-28
We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.
Kolkoori, Sanjeevareddy; Hoehne, Christian; Prager, Jens; Rethmeier, Michael; Kreutzbruck, Marc
2014-02-01
Quantitative evaluation of ultrasonic C-scan images in homogeneous and layered anisotropic austenitic materials is of general importance for understanding the influence of anisotropy on wave fields during ultrasonic non-destructive testing and evaluation of these materials. In this contribution, a three dimensional ray tracing method is presented for evaluating ultrasonic C-scan images quantitatively in general homogeneous and layered anisotropic austenitic materials. The directivity of the ultrasonic ray source in general homogeneous columnar grained anisotropic austenitic steel material (including layback orientation) is obtained in three dimensions based on Lamb's reciprocity theorem. As a prerequisite for ray tracing model, the problem of ultrasonic ray energy reflection and transmission coefficients at an interface between (a) isotropic base material and anisotropic austenitic weld material (including layback orientation), (b) two adjacent anisotropic weld metals and (c) anisotropic weld metal and isotropic base material is solved in three dimensions. The influence of columnar grain orientation and layback orientation on ultrasonic C-scan image is quantitatively analyzed in the context of ultrasonic testing of homogeneous and layered austenitic steel materials. The presented quantitative results provide valuable information during ultrasonic characterization of homogeneous and layered anisotropic austenitic steel materials. Copyright © 2013 Elsevier B.V. All rights reserved.
The time ending the shallow decay of the X-ray light curves of long GRBs
Dado, S; De Rújula, Alvaro; Dado, Shlomo; Dar, Arnon
2007-01-01
We show that the mean values and distributions of the time ending the shallow decay of the light curve of the X-ray afterglow of long gamma ray bursts (GRBs), the equivalent isotropic energy in the X-ray afterglow up to that time and the equivalent isotropic GRB energy, as well as the correlations between them, are precisely those predicted by the cannonball (CB) model of GRBs. Correlations between prompt and afterglow observables are important in that they test the overall consistency of a GRB model. In the CB model, the prompt and afterglow spectra, the endtime, the complex canonical shape of the X-ray afterglows and the correlations between GRB observables are not surprises, but predictions.
Energy Technology Data Exchange (ETDEWEB)
Kasper, Jared M.; Wadhwa, Vibhor; Xi, Yin [University of Texas Southwestern Medical Center, Musculoskeletal Radiology, Dallas, TX (United States); Scott, Kelly M. [University of Texas Southwestern Medical Center, Physical Medicine and Rehabilitation, Dallas, TX (United States); Rozen, Shai [University of Texas Southwestern Medical Center, Plastic Surgery, Dallas, TX (United States); Chhabra, Avneesh [University of Texas Southwestern Medical Center, Musculoskeletal Radiology, Dallas, TX (United States); Johns Hopkins University, Baltimore, MD (United States)
2015-06-01
Technical assessment of SHINKEI pulse sequence and conventional 3DIRTSE for LS plexus MR neurography. Twenty-one MR neurography examinations of the LS plexus were performed at 3 T, using 1.5-mm isotropic 3DIRTSE and SHINKEI sequences. Images were evaluated for motion and pulsation artefacts, nerve signal-to-noise ratio, contrast-to-noise ratio, nerve-to-fat ratio, muscle-to-fat ratio, fat suppression homogeneity and depiction of LS plexus branches. Paired Student t test was used to assess differences in nerve conspicuity (p < 0.05 was considered statistically significant). ICC correlation was obtained for intraobserver performance. Four examinations were excluded due to prior spine surgery. Bowel motion artefacts, pulsation artefacts, heterogeneous fat saturation and patient motion were seen in 16/17, 0/17, 17/17, 2/17 on 3DIRTSE and 0/17, 0/17, 0/17, 1/17 on SHINKEI. SHINKEI performed better (p < 0.01) for nerve signal-to-noise, contrast-to-noise, nerve-to-fat and muscle-to-fat ratios. 3DIRTSE and SHINKEI showed all LS plexus nerve roots, sciatic and femoral nerves. Smaller branches including obturator, lateral femoral cutaneous and iliohypogastric nerves were seen in 10/17, 5/17, 1/17 on 3DIRTSE and 17/17, 16/17, 7/17 on SHINKEI. Intraobserver reliability was excellent. SHINKEI MRN demonstrates homogeneous and superior fat suppression with increased nerve signal- and contrast-to-noise ratios resulting in better conspicuity of smaller LS plexus branches. (orig.)
International Nuclear Information System (INIS)
Kasper, Jared M.; Wadhwa, Vibhor; Xi, Yin; Scott, Kelly M.; Rozen, Shai; Chhabra, Avneesh
2015-01-01
Technical assessment of SHINKEI pulse sequence and conventional 3DIRTSE for LS plexus MR neurography. Twenty-one MR neurography examinations of the LS plexus were performed at 3 T, using 1.5-mm isotropic 3DIRTSE and SHINKEI sequences. Images were evaluated for motion and pulsation artefacts, nerve signal-to-noise ratio, contrast-to-noise ratio, nerve-to-fat ratio, muscle-to-fat ratio, fat suppression homogeneity and depiction of LS plexus branches. Paired Student t test was used to assess differences in nerve conspicuity (p < 0.05 was considered statistically significant). ICC correlation was obtained for intraobserver performance. Four examinations were excluded due to prior spine surgery. Bowel motion artefacts, pulsation artefacts, heterogeneous fat saturation and patient motion were seen in 16/17, 0/17, 17/17, 2/17 on 3DIRTSE and 0/17, 0/17, 0/17, 1/17 on SHINKEI. SHINKEI performed better (p < 0.01) for nerve signal-to-noise, contrast-to-noise, nerve-to-fat and muscle-to-fat ratios. 3DIRTSE and SHINKEI showed all LS plexus nerve roots, sciatic and femoral nerves. Smaller branches including obturator, lateral femoral cutaneous and iliohypogastric nerves were seen in 10/17, 5/17, 1/17 on 3DIRTSE and 17/17, 16/17, 7/17 on SHINKEI. Intraobserver reliability was excellent. SHINKEI MRN demonstrates homogeneous and superior fat suppression with increased nerve signal- and contrast-to-noise ratios resulting in better conspicuity of smaller LS plexus branches. (orig.)
Homogeneous operators and projective representations of the ...
Indian Academy of Sciences (India)
Abstract. This paper surveys the existing literature on homogeneous operators and their relationships with projective representations of P S L ( 2 , R ) and other Lie groups. It also includes a list of open problems in this area.
Poisson-Jacobi reduction of homogeneous tensors
International Nuclear Information System (INIS)
Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P
2004-01-01
The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N
STATISTICAL STUDY ON THE DECAY PHASE OF SOLAR NEAR-RELATIVISTIC ELECTRON EVENTS
International Nuclear Information System (INIS)
Lario, D.
2010-01-01
We study the decay phase of solar near-relativistic (53-315 keV) electron events as observed by the Advanced Composition Explorer (ACE) and the Ulysses spacecraft during solar cycle 23. By fitting an exponential function (exp - t/τ) to the time-intensity profile in the late phase of selected solar near-relativistic electron events, we examine the dependence of τ on electron energy, electron intensity spectra, event peak intensity, event fluence, and solar wind velocity, as well as heliocentric radial distance, heliolatitude, and heliolongitude of the spacecraft with respect to the parent solar event. The decay rates are found to be either independent or slightly decrease with the electron energy. No clear dependence is found between τ and the heliolongitude of the parent solar event, with the exception of well-connected events for which low values of τ are more commonly observed than for poorly-connected events. For those events concurrently observed by ACE and Ulysses, decay rates increase at distances >3 AU. Events with similar decay rates at ACE and Ulysses were observed mainly when Ulysses was at high heliographic latitudes. We discuss the basic physical mechanisms that control the decay phase of the electron events and conclude that both solar wind convection and adiabatic deceleration effects influence the final shape of the decay phase of solar energetic particle events, but not as expressed by the models based on diffusive transport acting on an isotropic particle population.
Blake, T.; LHCb Collaboration
2017-07-01
Rare beauty and charm decays can provide powerful probes of physics beyond the Standard Model. These proceedings summarise the latest measurements of rare beauty and charm decays from the LHCb experiment at the end of Run 1 of the LHC. Whilst the majority of the measurements are consistent with SM predictions, small differences are seen in the rate and angular distribution of ℓ- decay processes.
Wall-induced self-diffusiophoresis of active isotropic colloids
Yariv, Ehud
2016-11-01
While chemically-active homogeneous spherical particles do not undergo self-diffusiophoresis in free solution, they may do so when suspended in the vicinity of a solid boundary. We explore this possibility using a first-order kinetic model of solute absorption, where the relative magnitude of reaction to diffusion is characterized by the Damkohler number Da. When the particle is remote from the wall, it is repelled from it with a velocity that scales inversely with the square of distance. The opposite extreme, when the ratio δ of separation distance to particle size is small, results in the anomalous scaling δ √{/1 + 2 Da } - 1 2 of the solute concentration in the narrow gap separating the particle and wall. This irrational power may only be obtained by asymptotic matching with solute transport outside the gap. For Da 4 the particle velocity is O (δ) , set by the flow in the region outside outside the gap. Solute advection is subdominant to diffusion in both the remote and near-contact limits, and accordingly affects neither the above scaling nor the resulting approximations.
An examination of recharge mound decay and fossil gradients in arid regional sedimentary basins
International Nuclear Information System (INIS)
Lloyd, J.W.
1980-01-01
In many of the vast arid sedimentary basins of the world, groundwater gradients exist that appear to be anomalous in the context of the probable modern recharge potential. The possibility that such gradients are in fact remnant fossil conditions representing the decay of ancient recharge mounds is examined. An example of decay condition is represented using a resistor-network analogue model in which the time control is based on 14 C ages. The decay hypothesis is found to be plausible with realistic aquifer characteristics but a non-homogeneous flow is indicated from the 14 C data. (author)
Layout optimization using the homogenization method
Suzuki, Katsuyuki; Kikuchi, Noboru
1993-01-01
A generalized layout problem involving sizing, shape, and topology optimization is solved by using the homogenization method for three-dimensional linearly elastic shell structures in order to seek a possibility of establishment of an integrated design system of automotive car bodies, as an extension of the previous work by Bendsoe and Kikuchi. A formulation of a three-dimensional homogenized shell, a solution algorithm, and several examples of computing the optimum layout are presented in this first part of the two articles.
Homogenized thermal conduction model for particulate foods
Chinesta , Francisco; Torres , Rafael; Ramón , Antonio; Rodrigo , Mari Carmen; Rodrigo , Miguel
2002-01-01
International audience; This paper deals with the definition of an equivalent thermal conductivity for particulate foods. An homogenized thermal model is used to asses the effect of particulate spatial distribution and differences in thermal conductivities. We prove that the spatial average of the conductivity can be used in an homogenized heat transfer model if the conductivity differences among the food components are not very large, usually the highest conductivity ratio between the foods ...
Tannakian duality for affine homogeneous spaces
Banica, Teodor
2017-01-01
Associated to any closed quantum subgroup $G\\subset U_N^+$ and any index set $I\\subset\\{1,\\ldots,N\\}$ is a certain homogeneous space $X_{G,I}\\subset S^{N-1}_{\\mathbb C,+}$, called affine homogeneous space. We discuss here the abstract axiomatization of the algebraic manifolds $X\\subset S^{N-1}_{\\mathbb C,+}$ which can appear in this way, by using Tannakian duality methods.
International Nuclear Information System (INIS)
Gaillard, M.K.
1978-08-01
The properties that may help to identify the two additional quark flavors that are expected to be discovered. These properties are lifetime, branching ratios, selection rules, and lepton decay spectra. It is also noted that CP violation may manifest itself more strongly in heavy particle decays than elsewhere providing a new probe of its origin. The theoretical progress in the understanding of nonleptonic transitions among lighter quarks, nonleptonic K and hyperon decay amplitudes, omega minus and charmed particle decay predictions, and lastly the Kobayashi--Maskawa model for the weak coupling of heavy quarks together with the details of its implications for topology and bottomology are treated. 48 references
International Nuclear Information System (INIS)
Yamamoto, H.
1994-01-01
The author discusses a number of different topics. First is the question of where CESR will be in the year 2000, in terms of luminosity and its detector, and the impact of this on charm physics. Also what has been learned of semileptonic decays of D 0 , D + , D s , and Cabbibo-favored/suppressed decays. Studies of hadronic decays, Cabbibo-favored/suppressed, rare decays, mixing, and CP invariance. What role can a Tau Charm Factory play in this type of physics, and what can it tell us beyond what we can reach at present
Searching regional rainfall homogeneity using atmospheric fields
Gabriele, Salvatore; Chiaravalloti, Francesco
2013-03-01
The correct identification of homogeneous areas in regional rainfall frequency analysis is fundamental to ensure the best selection of the probability distribution and the regional model which produce low bias and low root mean square error of quantiles estimation. In an attempt at rainfall spatial homogeneity, the paper explores a new approach that is based on meteo-climatic information. The results are verified ex-post using standard homogeneity tests applied to the annual maximum daily rainfall series. The first step of the proposed procedure selects two different types of homogeneous large regions: convective macro-regions, which contain high values of the Convective Available Potential Energy index, normally associated with convective rainfall events, and stratiform macro-regions, which are characterized by low values of the Q vector Divergence index, associated with dynamic instability and stratiform precipitation. These macro-regions are identified using Hot Spot Analysis to emphasize clusters of extreme values of the indexes. In the second step, inside each identified macro-region, homogeneous sub-regions are found using kriging interpolation on the mean direction of the Vertically Integrated Moisture Flux. To check the proposed procedure, two detailed examples of homogeneous sub-regions are examined.
Collapse and dispersal of a homogeneous spin fluid in Einstein-Cartan theory
Hashemi, M.; Jalalzadeh, S.; Ziaie, A. H.
2015-02-01
In the present work, we revisit the process of gravitational collapse of a spherically symmetric homogeneous dust fluid which is described by the Oppenheimer-Snyder (OS) model (Oppenheimer and Snyder in Phys Rev D 56:455, 1939). We show that such a scenario would not end in a spacetime singularity when the spin degrees of freedom of fermionic particles within the collapsing cloud are taken into account. To this purpose, we take the matter content of the stellar object as a homogeneous Weyssenhoff fluid. Employing the homogeneous and isotropic FLRW metric for the interior spacetime setup, it is shown that the spin of matter, in the context of a negative pressure, acts against the pull of gravity and decelerates the dynamical evolution of the collapse in its later stages. Our results show a picture of gravitational collapse in which the collapse process halts at a finite radius, whose value depends on the initial configuration. We thus show that the spacetime singularity that occurs in the OS model is replaced by a non-singular bounce beyond which the collapsing cloud re-expands to infinity. Depending on the model parameters, one can find a minimum value for the boundary of the collapsing cloud or correspondingly a threshold value for the mass content below which the horizon formation can be avoided. Our results are supported by a thorough numerical analysis.
Collapse and dispersal of a homogeneous spin fluid in Einstein-Cartan theory
International Nuclear Information System (INIS)
Hashemi, M.; Jalalzadeh, S.; Ziaie, A.H.
2015-01-01
In the present work, we revisit the process of gravitational collapse of a spherically symmetric homogeneous dust fluid which is described by the Oppenheimer-Snyder (OS) model (Oppenheimer and Snyder in Phys Rev D 56:455, 1939). We show that such a scenario would not end in a spacetime singularity when the spin degrees of freedom of fermionic particles within the collapsing cloud are taken into account. To this purpose, we take the matter content of the stellar object as a homogeneous Weyssenhoff fluid. Employing the homogeneous and isotropic FLRW metric for the interior spacetime setup, it is shown that the spin of matter, in the context of a negative pressure, acts against the pull of gravity and decelerates the dynamical evolution of the collapse in its later stages. Our results show a picture of gravitational collapse in which the collapse process halts at a finite radius, whose value depends on the initial configuration. We thus show that the spacetime singularity that occurs in the OS model is replaced by a non-singular bounce beyond which the collapsing cloud re-expands to infinity. Depending on the model parameters, one can find a minimum value for the boundary of the collapsing cloud or correspondingly a threshold value for the mass content below which the horizon formation can be avoided. Our results are supported by a thorough numerical analysis. (orig.)
Two-dimensional arbitrarily shaped acoustic cloaks composed of homogeneous parts
Li, Qi; Vipperman, Jeffrey S.
2017-10-01
Acoustic cloaking is an important application of acoustic metamaterials. Although the topic has received much attention, there are a number of areas where contributions are needed. In this paper, a design method for producing acoustic cloaks with arbitrary shapes that are composed of homogeneous parts is presented. The cloak is divided into sections, each of which, in turn, is further divided into two parts, followed by the application of transformation acoustics to derive the required properties for cloaking. With the proposed mapping relations, the properties of each part of the cloak are anisotropic but homogeneous, which can be realized using two alternating layers of homogeneous and isotropic materials. A hexagonal and an irregular cloak are presented as design examples. The full wave simulations using COMSOL Multiphysics finite element software show that the cloaks function well at reducing reflections and shadows. The variation of the cloak properties is investigated as a function of three important geometric parameters used in the transformations. A balance can be found between cloaking performance and materials properties that are physically realizable.
Fuel micro-mechanics: homogenization, cracking, granular media
International Nuclear Information System (INIS)
Monerie, Yann
2010-01-01
This work summarizes about fifteen years of research in the field of micro-mechanics of materials. Emphasis is placed on the most recent work carried out in the context of nuclear safety. Micro-mechanics finds a natural place there, aiming to predict the behavior of heterogeneous materials with an evolving microstructure. The applications concerned mainly involve the nuclear fuel and its tubular cladding. The uranium dioxide fuel is modeled, according to the scales under consideration, as a porous ceramic or a granular medium. The strongly irradiated Zircaloy claddings are identified with a composite medium with a metal matrix and a gradient of properties. The analysis of these classes of material is rich in problems of a more fundamental nature. Three main themes are discussed: 1/ Homogenization, 2/ cracking, rupture and fragmentation, 3/ discrete media and fluid-grain couplings. Homogenization: The analytical scale change methods proposed aim to estimate or limit the linear and equivalent nonlinear behaviors of isotropic porous media and anisotropic composites with a metal matrix. The porous media under consideration are saturated or drained, with a compressible or incompressible matrix, and have one or two scales of spherical or ellipsoid pores, or cracks. The composites studied have a macroscopic anisotropy related to that of the matrix, and to the shape and spatial distribution of the inclusions. Thermoelastic, elastoplastic, and viscoplastic behaviors and ductile damage of these media are examined using different techniques: extensions of classic approaches, linear in particular, variational approaches and approaches using elliptical potentials with thermally activated elementary mechanisms. The models developed are validated on numerical finite element simulations, and their functional relevance is illustrated in comparison to experimental data obtained from the literature. The significant results obtained include a plasticity criterion for Gurson matrix
Validity of the isotropic thermal conductivity assumption in supercell lattice dynamics
Ma, Ruiyuan; Lukes, Jennifer R.
2018-02-01
Superlattices and nano phononic crystals have attracted significant attention due to their low thermal conductivities and their potential application as thermoelectric materials. A widely used expression to calculate thermal conductivity, presented by Klemens and expressed in terms of the relaxation time by Callaway and Holland, originates from the Boltzmann transport equation. In its most general form, this expression involves a direct summation of the heat current contributions from individual phonons of all wavevectors and polarizations in the first Brillouin zone. In common practice, the expression is simplified by making an isotropic assumption that converts the summation over wavevector to an integral over wavevector magnitude. The isotropic expression has been applied to superlattices and phononic crystals, but its validity for different supercell sizes has not been studied. In this work, the isotropic and direct summation methods are used to calculate the thermal conductivities of bulk Si, and Si/Ge quantum dot superlattices. The results show that the differences between the two methods increase substantially with the supercell size. These differences arise because the vibrational modes neglected in the isotropic assumption provide an increasingly important contribution to the thermal conductivity for larger supercells. To avoid the significant errors that can result from the isotropic assumption, direct summation is recommended for thermal conductivity calculations in superstructures.
International Nuclear Information System (INIS)
Wolfenstein, L.
1998-01-01
An estimate of the possible magnitude of the lepton asymmetry in B d decay is given in terms of observables. The asymmetry in B s decays is also discussed. It is concluded that the lepton asymmetry is not useful for detecting new physics in B-bar B mixing. copyright 1998 The American Physical Society
Tau decays: A theoretical perspective
International Nuclear Information System (INIS)
Marciano, W.J.
1992-11-01
Theoretical predictions for various tau decay rates are reviewed. Effects of electroweak radiative corrections are described. Implications for precision tests of the standard model and ''new physics'' searches are discussed. A perspective on the tau decay puzzle and 1-prong problem is given
Poluektov, Anton
2016-01-01
In these proceedings, I will report the recent results on properties, production and decays of beauty baryons, as well as measurements of B + c meson decays, based on data collected by the LHCb collaboration at the LHC collider in 2011–2012.
Status of rare decay experiments
Energy Technology Data Exchange (ETDEWEB)
Littenberg, L.S.
1984-01-01
Some results are given for rare muon decay experiments currently running. Also, plans are discussed for rare kaon decay experiments. Some of the events sought come from processes which violate lepton flavor conservation. Several apparatuses used in the search are described. 35 references. (LEW)
Maximilien Brice
2004-01-01
3.6 km of welds were required for the 1 km long CERN Neutrinos to Gran Sasso (CNGS) decay tube, in which particles produced in the collision with a proton and a graphite target will decay into muons and muon neutrinos. Four highly skilled welders performed this delicate task.
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Mahiko [Department of Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)
2005-07-01
The unexpectedly large transverse polarization measured in the decay B {yields} {phi}K* poses the question whether it is accounted for as a strong interaction effect or possibly points to a hidden nonstandard weak interaction. We extend here the perturbative argument to the helicity structure of the two-body baryonic decay and discuss qualitatively on how the baryonic B decay modes might help us in understanding the issue raised by B {yields} {phi}K*. We find among others that the helicity +1/2 amplitude dominates the leading order in the B(b-barq) decay and that unlike the B {yields} VV decay the dominant amplitude is sensitive to the right-handed b {yields} s current, if any, in the penguin interaction.
International Nuclear Information System (INIS)
Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.
2009-01-01
Top quark decays are interesting as a mean to test the Standard Model (SM) predictions. The Cabbibo-Kobayashi-Maskawa (CKM)-suppressed process t→cWW, and the rare decays t→cZ, t→H 0 +c, and t→cγ an excellent window to probe the predictions of theories beyond the SM. We evaluate the flavor changing neutral currents (FCNC) decay t→H 0 +c in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; the FCNC decays may place at tree level and are only supressed by the mixing between ordinary top and charm quarks. We also comment on the decay process t→c+γ, which involves radiative corrections.
Hughes, T.J.R.; Wells, G.N.; Wray, A.A.
2004-01-01
Energy transfers within large-eddy simulation (LES) and direct numerical simulation (DNS) grids are studied. The spectral eddy viscosity for conventional dynamic Smagorinsky and variational multiscale LES methods are compared with DNS results. Both models underestimate the DNS results for a very
CSIR Research Space (South Africa)
Every, AG
2010-01-01
Full Text Available at www.sciencedirect.com Physics Procedia 00 (2009) 000?000 www.elsevier.com/locate/procedia International Congress on Ultrasonics, Universidad de Santiago de Chile, January 2009 Progress in the analysis of non-axisymmetric wave propagation in a...
Seepage and seepage gradients are important parameters in soil erosion processes and water quality problems on agricultural land. Traditionally, surface overland flow is viewed as one of the major soil erosive agents on those areas. In recent years, the role of the subsurface flow regime is increasi...
Directory of Open Access Journals (Sweden)
Hiroshi Tsukahara
2017-05-01
Full Text Available We performed a large-scale micromagnetics simulation on a supercomputing system to investigate the properties of isotropic nanocrystalline permanent magnets consisting of cubic grains. In the simulation, we solved the Landau–Lifshitz–Gilbert equation under a periodic boundary condition for accurate calculation of the magnetization dynamics inside the nanocrystalline isotropic magnet. We reduced the inter-grain exchange interaction perpendicular and parallel to the external field independently. Propagation of the magnetization reversal process is inhibited by reducing the inter-grain exchange interaction perpendicular to the external field, and the coercivity is enhanced by this restraint. In contrast, when we reduce the inter-grain exchange interaction parallel to the external field, the coercivity decreases because the magnetization reversal process propagates owing to dipole interaction. These behaviors show that the coercivity of an isotropic permanent magnet depends on the direction of the inter-grain exchange interaction.
Buckling analysis of thick isotropic plates by using exponential shear deformation theory
Directory of Open Access Journals (Sweden)
Sayyad A. S.
2012-12-01
Full Text Available In this paper, an exponential shear deformation theory is presented for the buckling analysis of thick isotropic plates subjected to uniaxial and biaxial in-plane forces. The theory accounts for a parabolic distribution of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Governing equations and associated boundary conditions of the theory are obtained using the principle of virtual work. The simply supported thick isotropic square plates are considered for the detailed numerical studies. A closed form solutions for buckling analysis of square plates are obtained. Comparison studies are performed to verify the validity of the present results. The effects of aspect ratio on the critical buckling load of isotropic plates is investigated and discussed.
A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials
Li, Chen; Liao, Yufei
2018-03-01
Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.
A 3D printed dual GSM band near isotropic on-package antenna
Zhen, Su
2017-10-25
In this paper, we propose an on-package dual band monopole antenna with near-isotropic radiation pattern for GSM mobile applications. The proposed antenna is well matched for both GSM 900 and 1800 bands and provides decent gain for both the bands (1.67 and 3.27 dBi at 900 MHz and 1800 MHz respectively). The antenna is printed with silver ink on a 3D printed polymer based package. The package houses the GSM electronics and the battery. By optimizing the antenna arms width and length, a near-isotropic radiation pattern is achieved. Unlike the published isotropic antennas which are either single band or large in size, the proposed antenna covers both GSM bands with required bandwidth and is only half wavelength long. The design is low cost and highly suitable for various GSM applications such as localization, in additional to conventional communication applications.
Homogenity of Die Casting and Returning Material
Directory of Open Access Journals (Sweden)
J. Malik
2012-04-01
Full Text Available Homogeneity of die castings is influenced by wide range of technological parameters as piston velocity in filling chamber of die casting machine, filling time of mould cavity, temperature of cast alloy, temperature of the mould, temperature of filling chamber, surface pressure on alloy during mould filling, final pressure and others. Based on stated parameters it is clear, that main parameters of die casting are filling time of die mould cavity and velocity of the melt in the ingates. Filling time must ensure the complete filling of the mould cavity before solidification process can negatively influence it. Among technological parameters also belong the returning material, which ratio in charge must be constrained according to requirement on final homogeneity of die castings. With the ratio of returning material influenced are the mechanical properties of castings, inner homogeneity and chemical composition.
Homogenization of High-Contrast Brinkman Flows
Brown, Donald L.
2015-04-16
Modeling porous flow in complex media is a challenging problem. Not only is the problem inherently multiscale but, due to high contrast in permeability values, flow velocities may differ greatly throughout the medium. To avoid complicated interface conditions, the Brinkman model is often used for such flows [O. Iliev, R. Lazarov, and J. Willems, Multiscale Model. Simul., 9 (2011), pp. 1350--1372]. Instead of permeability variations and contrast being contained in the geometric media structure, this information is contained in a highly varying and high-contrast coefficient. In this work, we present two main contributions. First, we develop a novel homogenization procedure for the high-contrast Brinkman equations by constructing correctors and carefully estimating the residuals. Understanding the relationship between scales and contrast values is critical to obtaining useful estimates. Therefore, standard convergence-based homogenization techniques [G. A. Chechkin, A. L. Piatniski, and A. S. Shamev, Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point is that the Brinkman equations, in certain scaling regimes, are invariant under homogenization. Unlike in the case of Stokes-to-Darcy homogenization [D. Brown, P. Popov, and Y. Efendiev, GEM Int. J. Geomath., 2 (2011), pp. 281--305, E. Marusic-Paloka and A. Mikelic, Boll. Un. Mat. Ital. A (7), 10 (1996), pp. 661--671], the results presented here under certain velocity regimes yield a Brinkman-to-Brinkman upscaling that allows using a single software platform to compute on both microscales and macroscales. In this paper, we discuss the homogenized Brinkman equations. We derive auxiliary cell problems to build correctors and calculate effective coefficients for certain velocity regimes. Due to the boundary effects, we construct
Harmonic analysis on spaces of homogeneous type
Deng, Donggao
2009-01-01
The dramatic changes that came about in analysis during the twentieth century are truly amazing. In the thirties, complex methods and Fourier series played a seminal role. After many improvements, mostly achieved by the Calderón-Zygmund school, the action today is taking place in spaces of homogeneous type. No group structure is available and the Fourier transform is missing, but a version of harmonic analysis is still available. Indeed the geometry is conducting the analysis. The authors succeed in generalizing the construction of wavelet bases to spaces of homogeneous type. However wavelet bases are replaced by frames, which in many applications serve the same purpose.
A semilinear control problem involving homogenization
Directory of Open Access Journals (Sweden)
Carlos Conca
2001-01-01
Full Text Available We consider a control problem involving a semilinear elliptic equation with a uniformly Lipschitz non-linearity and rapidly oscillating coefficients in a bounded domain of $mathbb{R}^N$. The control is distributed on a compact subset interior to the domain. Given an $N-1$ dimensional hypersurface at the interior of the domain not intersecting the control zone, the trace of the solution on the curve has to be controlled. We prove that there exists a limit control as the homogenization parameter converges to zero, which results as the limit of fixed points for controllability problems. We link this limit control with the corresponding homogenized problem.
Flows and chemical reactions in homogeneous mixtures
Prud'homme, Roger
2013-01-01
Flows with chemical reactions can occur in various fields such as combustion, process engineering, aeronautics, the atmospheric environment and aquatics. The examples of application chosen in this book mainly concern homogeneous reactive mixtures that can occur in propellers within the fields of process engineering and combustion: - propagation of sound and monodimensional flows in nozzles, which may include disequilibria of the internal modes of the energy of molecules; - ideal chemical reactors, stabilization of their steady operation points in the homogeneous case of a perfect mixture and c
Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
2001-01-01
A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.
Effective elastic properties of matrix composites with transversely-isotropic phases
Energy Technology Data Exchange (ETDEWEB)
Sevostianov, Igor; Yilmaz, Nadir [New Mexico State Univ., Dept. of Mechanical Engineering, Las Cruces, NM (United States); Kushch, Vladimir [Ukraine National Academy of Science, Inst. for Superhard Materials, Kiev (Ukraine); Levin, Valery [Institute Mexicano Del Petroleo, Mexico D.F. (Mexico)
2005-01-01
The present work addresses the problem of calculation of the macroscopic effective elastic properties of composites containing transversely isotropic phases. As a first step, the contribution of a single inhomogeneity to the effective elastic properties is quantified. Relevant stiffness and compliance contribution tensors are derived for spheroidal inhomogeneities. The limiting cases of spherical, penny-shaped and cylindrical shapes are discussed in detail. The property contribution tensors are used to derive the effective elastic moduli of composite materials formed by transversely isotropic phases in two approximations: non-interaction approximation and effective field method. The results are compared with elastic moduli of quasi-random composites. (Author)
International Nuclear Information System (INIS)
Wang Qing; Hou Yu-Long; Jing Jian; Long Zheng-Wen
2014-01-01
In this paper, we study symmetrical properties of two-dimensional (2D) screened Dirac Hydrogen atom and isotropic harmonic oscillator with scalar and vector potentials of equal magnitude (SVPEM). We find that it is possible for both cases to preserve so(3) and su(2) dynamical symmetries provided certain conditions are satisfied. Interestingly, the conditions for preserving these dynamical symmetries are exactly the same as non-relativistic screened Hydrogen atom and screened isotropic oscillator preserving their dynamical symmetries. Some intuitive explanations are proposed. (general)
About zone structure of a stack of a cholesteric liquid crystal and isotropic medium layers
International Nuclear Information System (INIS)
Gevorgyan, A H; Harutyunyan, E M; Matinyan, G K; Harutyunyan, M Z
2014-01-01
The optical properties of a stack of metamaterial-based cholesteric liquid crystal (CLC) layers and isotropic medium layers are investigated. CLCs with two types of chiral nihility are defined. The peculiarities of the reflection spectra of this system are investigated and it is shown that the reflection spectra of the stacks of CLC layers of these two types differ from each other. The influence of: the CLC sublayer thicknesses; incidence angle; local dielectric (magnetic) anisotropy of the CLC layers; refraction indices and thicknesses of the isotropic media layers on the reflection spectra and other optical characteristics of the system is investigated.
Effect of ferroelectric nanoparticles on the isotropic-smectic-A phase transition
Mukherjee, Prabir K.
2016-06-01
Recent experimental studies have shown that ferroelectric nanoparticles play an important role on smectic liquid crystals. These include the weakly discontinuous nature of the isotropic-smectic-A transition, the decrease of the temperature metric discontinuity, the decrease of the dielectric constant and a slight increase of the transition temperature. We described all these experimental observations within phenomenological theory. The impact of ferroelectric nanoparticles on the isotropic-smectic-A transition temperature, Kerr constant and non-linear dielectric effect is discussed. The theoretical predictions were found to be in good qualitative agreement with the experimental results.
Modal dynamics of structures with bladed isotropic rotors and its complexity for 2-bladed rotors
DEFF Research Database (Denmark)
Hansen, Morten Hartvig
2016-01-01
The modal dynamics of structures with bladed isotropic rotors is analyzed using Hill’s method. First, analytical derivation of the periodic system matrix shows that isotropic rotors with more than two blades can be represented by an exact Fourier series with 3/rev as the highest order. For 2-bladed...... problem is introduced. The corresponding periodic eigenvectors can be used to compute symmetric and anti-symmetric components of the 2-bladed rotor motion, and the additional forward and backward whirling components for rotors with more than two blades. Finally, the generic methods are used on a simple...
Frenod, Emmanuel
2013-01-01
In this note, a classification of Homogenization-Based Numerical Methods and (in particular) of Numerical Methods that are based on the Two-Scale Convergence is done. In this classification stand: Direct Homogenization-Based Numerical Methods; H-Measure-Based Numerical Methods; Two-Scale Numerical Methods and TSAPS: Two-Scale Asymptotic Preserving Schemes.
β-decay properties in the Cs decay chain
Benzoni, G.; Lică, R.; Borge, M. J. G.; Fraile, L. M.; IDS collaboration
2018-02-01
The study of the decay of neutron-rich Cs isotopes has two main objectives: on one side β decay is a perfect tool to access the low-spin structures in the daughter Ba nuclei, where the evolution of octupole deformed shapes can be followed, while, on the other hand, the study of the gross properties of these decays, in terms of decay rates and branching to delayed-neutron emission, are fundamental inputs for the modelling of the r-process in the Rare-Earth Elements peak. Results obtained at CERN-ISOLDE are discussed within this framework and compared to existing data and predictions from state-of-the-art nuclear models.
MIRD radionuclide data and decay schemes
Eckerman, Keith F
2007-01-01
For all physicians, scientists, and physicists working in the nuclear medicine field, the MIRD: Radionuclide Data and Decay Schemes updated edition is an essential sourcebook for radiation dosimetry and understanding the properties of radionuclides. Includes CD Table of Contents Decay schemes listed by atomic number Radioactive decay processes Serial decay schemes Decay schemes and decay tables This essential reference for nuclear medicine physicians, scientists and physicists also includes a CD with tabulations of the radionuclide data necessary for dosimetry calculations.
Homogenization versus homogenization-free method to measure muscle glycogen fractions.
Mojibi, N; Rasouli, M
2016-12-01
The glycogen is extracted from animal tissues with or without homogenization using cold perchloric acid. Three methods were compared for determination of glycogen in rat muscle at different physiological states. Two groups of five rats were kept at rest or 45 minutes muscular activity. The glycogen fractions were extracted and measured by using three methods. The data of homogenization method shows that total glycogen decreased following 45 min physical activity and the change occurred entirely in acid soluble glycogen (ASG), while AIG did not change significantly. Similar results were obtained by using "total-glycogen-fractionation methods". The findings of "homogenization-free method" indicate that the acid insoluble fraction (AIG) was the main portion of muscle glycogen and the majority of changes occurred in AIG fraction. The results of "homogenization method" are identical with "total glycogen fractionation", but differ with "homogenization-free" protocol. The ASG fraction is the major portion of muscle glycogen and is more metabolically active form.
Energy Technology Data Exchange (ETDEWEB)
Rami, El-Nabulsi Ahmad [Cheju National University (Korea, Republic of). Dept. of Nuclear and Energy Engineering
2009-09-15
Higher dimensional cosmological implications of a decay law for the cosmological constant term are analyzed. Three independent cosmological models are explored mainly: 1) In the first model, the effective cosmological constant was chosen to decay with times like {delta}{sub effective} = Ca{sup -2} + D(b/a{sub I}){sup 2} where a{sub I} is an arbitrary scale factor characterizing the isotropic epoch which proceeds the graceful exit period. Further, the extra-dimensional scale factor decays classically like b(t) approx. a{sup x}(t), x is a real negative number. 2) In the second model, we adopt in addition to {delta}{sub effective} = Ca{sup -2} + D(b/a{sub I}){sup 2} the phenomenological law b(t) = a(t)exp( -Qt) as we expect that at the origin of time, there is no distinction between the visible and extra dimensions; Q is a real number. 3) In the third model, we study a {delta} - decaying extra-dimensional cosmology with a static traversable wormhole in which the four-dimensional Friedmann-Robertson-Walker spacetime is subject to the conventional perfect fluid while the extra-dimensional part is endowed by an exotic fluid violating strong energy condition and where the cosmological constant in (3+n+1) is assumed to decays like {delta}(a) = 3Ca{sup -2}. The three models are discussed and explored in some details where many interesting points are revealed. (author)
Inflaton decay through supergravity effects
International Nuclear Information System (INIS)
Endo, Motoi; Kawasaki, Masahiro; Takahashi, Fuminobu; Yanagida, T.T.
2006-01-01
We point out that supergravity effects enable the inflaton to decay into all matter fields, including the visible and the supersymmetry breaking sectors, once the inflaton acquires a non-vanishing vacuum expectation value. The new decay processes have great impacts on cosmology; the reheating temperature is bounded below; the gravitinos are produced by the inflaton decay in a broad class of the dynamical supersymmetry breaking models. We derive the bounds on the inflaton mass and the vacuum expectation value, which severely constrain high-scale inflations such as the hybrid and chaotic inflation models
Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Carrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Bauer, C; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Walsh, J; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
The inclusive production of charmed particles in Z -> bb decays has been measured from the yield of D^0, D^+, D^+_s and Lambda_{c}^+ decays in a sample of qq events with high b purity collected with the ALEPH detector from 1992 to 1995. From these measurements, adding the charmonia production rate and an estimate of the charmed strange baryon contribution, the average number of charm quarks per b decay is determined to be n_c = 1.230 \\pm 0.036 \\pm 0.038 \\pm 0.053 where the uncertainties are due to statistics, systematic effects and branching ratios, respectively.
Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Bauer, C.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1996-02-01
The inclusive production of charmed particles in Z → b overlineb decays has been measured from the yield of D0, D+, Ds+ and Λc+ decays in a sample of q overlineq events with high b purity collected with the ALEPH detector from 1992 to 1995. From these measurements, adding the charmonia production rate and an estimate of the charmed strange baryon contribution, the average number of charm quarks per b decay is determined to be nc = 1.230 ± 0.036 ± 0.038 ± 0.053, where the uncertainties are due to statistics, systematic effects and branching ratios, respectively.
Three-body decays: structure, decay mechanism and fragment properties
International Nuclear Information System (INIS)
Alvarez-Rodriguez, R.; Jensen, A.S.; Fedorov, D.V.; Fynbo, H.O.U.; Kirsebom, O.S.; Garrido, E.
2009-01-01
We discuss the three-body decay mechanisms of many-body resonances. R-matrix sequential description is compared with full Faddeev computation. The role of the angular momentum and boson symmetries is also studied. As an illustration we show the computed ?-particle energy distribution after the decay of 12 C(1 + ) resonance at 12.7 MeV. This article is based on the presentation by R. Alvarez-Rodriguez at the Fifth Workshop on Critical Stability, Erice, Sicily. (author)
Hypersurface-homogeneous cosmological models with anisotropic ...
Indian Academy of Sciences (India)
2016-12-05
Dec 5, 2016 ... DOI 10.1007/s12043-016-1317-4. Hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez–Ballester theory of gravitation. M K VERMA1, S CHANDEL2 and SHRI RAM2,∗. 1Department of Mathematics, Baba Banarasi Das National Institute of Technology & Management,.
Gravitational Metric Tensor Exterior to Rotating Homogeneous ...
African Journals Online (AJOL)
The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...
Traffic planning for non-homogeneous traffic
Indian Academy of Sciences (India)
Western trafﬁc planning methodologies mostly address the concerns of homogeneous trafﬁc and therefore often prove inadequate in solving problems involving ... Transportation Research and Injury Prevention Programme, Indian Institute of Technology, Hauz Khas, New Delhi 110 016; Civil and Architectural Engineering ...
Higher dimensional homogeneous cosmology in Lyra geometry
Indian Academy of Sciences (India)
Assuming a homogeneous perfect ﬂuid with ρ = ρ() and = (), we have obtained exact solutions for cosmological models in higher-dimension based on Lyra geometry. Depending on the form of metric chosen, the model is similar to FRW type. The explicit solutions of the scale factor are found via the assumption of an ...
Predictive modeling in homogeneous catalysis: a tutorial
Maldonado, A.G.; Rothenberg, G.
2010-01-01
Predictive modeling has become a practical research tool in homogeneous catalysis. It can help to pinpoint ‘good regions’ in the catalyst space, narrowing the search for the optimal catalyst for a given reaction. Just like any other new idea, in silico catalyst optimization is accepted by some
Homogeneous Catalysis by Transition Metal Compounds.
Mawby, Roger
1988-01-01
Examines four processes involving homogeneous catalysis which highlight the contrast between the simplicity of the overall reaction and the complexity of the catalytic cycle. Describes how catalysts provide circuitous routes in which all energy barriers are relatively low rather than lowering the activation energy for a single step reaction.…
Hypersurface-homogeneous cosmological models with anisotropic ...
Indian Academy of Sciences (India)
The present study deals with hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez–Ballester theory of gravitation. Exact solutions of field equations are obtained by applying a special law of variation of Hubble's parameter that yields a constant negative value of the deceleration parameter.
Traffic planning for non-homogeneous traffic
Indian Academy of Sciences (India)
2.3c Data summary The summarization of the density data based on videotape obser- vations is in table 1 which shows average, 30-second, sampled densities. Using the non- homogeneous traffic continuity equation of (2), the resultant traffic concentrations appear in table 2. Comparing the traffic concentrations in table 1 to ...
Invariant Matsumoto metrics on homogeneous spaces
Salimi Moghaddam, H.R.
2014-01-01
In this paper we consider invariant Matsumoto metrics which are induced by invariant Riemannian metrics and invariant vector fields on homogeneous spaces, and then we give the flag curvature formula of them. Also we study the special cases of naturally reductive spaces and bi-invariant metrics. We end the article by giving some examples of geodesically complete Matsumoto spaces.
Inverse acoustic problem of N homogeneous scatterers
DEFF Research Database (Denmark)
Berntsen, Svend
2002-01-01
The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...
Genetic homogeneity among Ugandan isolates of Xanthomonas ...
African Journals Online (AJOL)
Genetic homogeneity among Ugandan isolates of Xanthomonas campestris pv. musacearum revealed by randomly amplified polymorphic DNA analysis. ... to incubation period for appearance of symptoms and the severity of symptoms in pathogenicity test. Thus, our data indicates that the population of Xcm in Uganda is ...
A generalized model for homogenized reflectors
International Nuclear Information System (INIS)
Pogosbekyan, Leonid; Kim, Yeong Il; Kim, Young Jin; Joo, Hyung Kook
1996-01-01
A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the cell interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K. Koebke and K. Smith. The method of K. Smith can be simulated within framework of new method, while the new method approximates hetero-geneous cell better in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are:improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K. Smith's approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b)control blades simulation; (c) mixed UO 2 /MOX core simulation. The offered model has been incorporated in the finite difference code and in the nodal code PANBOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in-core conditions
Mach's principle in spatially homogeneous spacetimes
International Nuclear Information System (INIS)
Tipler, F.J.
1978-01-01
On the basis of Mach's Principle it is concluded that the only singularity-free solution to the empty space Einstein equations is flat space. It is shown that the only singularity-free solution to the empty space Einstein equations which is spatially homogeneous and globally hyperbolic is in fact suitably identified Minkowski space. (Auth.)
Benchmarking homogenization algorithms for monthly data
Czech Academy of Sciences Publication Activity Database
Venema, V. K. C.; Mestre, O.; Aquilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertačník, G.; Szentimrey, T.; Štěpánek, Petr; Zahradníček, Pavel; Viarre, J.; Mueller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Duran, M. P.; Likso, T.; Esteban, P.; Brandsma, T.
2012-01-01
Roč. 8, č. 1 (2012), s. 89-115 ISSN 1814-9324 Institutional support: RVO:67179843 Keywords : climate data * instrumental time-series * greater alpine region * homogeneity test * variability * inhomogeneities Subject RIV: EH - Ecology, Behaviour Impact factor: 3.556, year: 2012
Energy Technology Data Exchange (ETDEWEB)
Chen, Edward Tann [California Inst. of Technology (CalTech), Pasadena, CA (United States)
2007-01-01
We present the results of a search for B^{+} meson decays into γℓ^{+}v_{ℓ}, where ℓ = e,μ. We use a sample of 232 million B$\\bar{B}$ meson pairs recorded at the Υ(4S) resonance with the BABAR detector at the PEP-II B factory. We measure a partial branching fraction Δβ in a restricted region of phase space that reduces the effect of theoretical uncertainties, requiring the lepton energy to be in the range 1.875 and 2.850 GeV, the photon energy to be in the range 0.45 and 2.35 GeV, and the cosine of the angle between the lepton and photon momenta to be less than -0.36, with all quantities computed in the Υ(4S) center-of-mass frame. We find Δβ(B^{+} → γℓ^{+}v_{ℓ}) = (-0.3_{1.5}^{+1.3}(statistical) _{-0.6}^{+0.6}(systematic) ± 0.1(theoretical)) x 10^{-6}, under the assumption of lepton universality. Interpreted as a 90% confidence-level Bayesian upper limit, the result corresponds to 1.7 x 10^{-6} for a prior at in amplitude, and 2.3 x 10^{-6} for a prior at in branching fraction.
International Nuclear Information System (INIS)
Schnetzer, St.
1997-01-01
Recent results and the future prospects for rare K L decay at Fermilab are described. A summary of all rare decay results from E799 Phase I (the 1991 run) are presented. Three new results: K L → e + e - μ + μ - , K L → π 0 μe, and π 0 → e + e - e + e - are discussed in detail. Improvements for KTeV (the 1996-1997 run) are discussed and the expected sensitivities listed. Finally, the KAMI program for rare decays with the Main Injector (2000 and beyond) is presented with emphasis on a search for the decay K L → π 0 νν-bar at O(10 -12 ) single-event-sensitivity. (author)
International Nuclear Information System (INIS)
Gilman, F.J.
1989-05-01
Recent theoretical and experimental progress on the manifestation of CP violation in K decays, and toward understanding whether CP violation originates in a phase, or phases, in the weak mixing matrix of quarks is reviewed. 23 refs., 10 figs
Data for decay Heat Predictions
International Nuclear Information System (INIS)
1987-01-01
These proceedings of a specialists' meeting on data for decay heat predictions are based on fission products yields, on delayed neutrons and on comparative evaluations on evaluated and experimental data for thermal and fast fission. Fourteen conferences were analysed
International Nuclear Information System (INIS)
Kayser, B.
1990-01-01
The study of CP-violating effects in B decays will be a good test of whether CP violation is caused by the known weak interaction. If this is its origin, then large, cleanly-predicted CP-violating effects are expected in certain neutral B decays to hadronic CP eigenstates. The phenomenology of CP violation in the B system is reviewed, and the genesis of these large effects is explained. In this it is shown that large, cleanly-predicted effects are also expected in some decays to states which are not CP eigenstates. The combined study of the latter decays and those to CP eigenstates may make it possible to obtain a statistically-significant CP-violating signal with fewer B mesons that would otherwise be required
Weak Decays of Charmed Particles
Energy Technology Data Exchange (ETDEWEB)
Turcotte, Marc Gilles [McGill Univ., Montreal, QC (Canada)
1986-05-01
The lifetimes of charmed particles produced in interactions of high energy neutrinos with nucleons have been measured using a combination of a very high resolution emulsion-based vertex detector and a spectrometer allowing full kinematical reconstruction of the decays.
Parametric decay of the curvaton
International Nuclear Information System (INIS)
Enqvist, K; Nurmi, S; Rigopoulos, G I
2008-01-01
We argue that the curvaton decay takes place most naturally by way of a broad parametric resonance. The mechanism is analogous to resonant inflaton decay but does not require any tuning of the curvaton coupling strength to other scalar fields. For low scale inflation and a correspondingly low mass scale for the curvaton, we speculate on observable consequences including the possibility of stochastic gravitational waves
Strange decays from strange resonances
Energy Technology Data Exchange (ETDEWEB)
Bijker, R. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A.P. 70-543, 04510 Mexico D.F. (Mexico); Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
2001-07-01
We discuss the mass spectrum and strong decays of baryon resonances belonging to the N, {delta}, {sigma}, {lambda}, {xi} and {omega} families in a collective string- like model for the nucleon. We find good overall agreement with the available data. Systematic discrepancies are found for low-lying S-wave states, in particular in the strong decays of N(1535), N(1650), {sigma}(1750), {lambda}{sup *}(1405), {lambda}(1670) and {lambda}(1800). (Author)
Strange decays from strange resonances
International Nuclear Information System (INIS)
Bijker, R.; Leviatan, A.
2001-01-01
We discuss the mass spectrum and strong decays of baryon resonances belonging to the N, Δ, Σ, Λ, Ξ and Ω families in a collective string- like model for the nucleon. We find good overall agreement with the available data. Systematic discrepancies are found for low-lying S-wave states, in particular in the strong decays of N(1535), N(1650), Σ(1750), Λ * (1405), Λ(1670) and Λ(1800). (Author)
Polarization bremsstrahlung in α decay
International Nuclear Information System (INIS)
Amusia, M. Ya.; Zon, B. A.; Kretinin, I. Yu.
2007-01-01
A mechanism of formation of electromagnetic radiation that accompanies α decay and is associated with the emission of photons by electrons of atomic shells due to the scattering of α particles by these atoms (polarization bremsstrahlung) is proposed. It is shown that, when the photon energy is no higher than the energy of K electrons of an atom, polarization bremsstrahlung makes a significant contribution to the bremsstrahlung in α decay
Nematic–isotropic transition in polydisperse systems of infinitely thin hard platelets
Bates, M.A.; Frenkel, D.
1999-01-01
We study the phase behavior of model colloidal systems composed of infinitely thin hard platelets, with polydispersity in the size of the particles. Semi-grand Gibbs ensemble simulations are used to study the coexisting nematic and isotropic phases for a range of systems with varying polydispersity.
Non-collinear wave mixing for a bulk wave phase velocity measurement in an isotropic solid
Demcenko, A.
2013-01-01
A measurement method is presented to estimate the bulk wave phase velocity in an isotropic solid when longitudinal or shear wave velocity is known. This method is based on the non-collinear plane wave interaction theory and it does not need to estimate the phase time-of-flight and wave propagation
Approximation of the derivatives of finitely smooth functions belonging to non-isotropic classes
Kudryavtsev, S. N.
2004-02-01
We find weak asymptotics of approximation characteristics related to the problem of recovering (reconstructing) the derivative from the function values at a given number of points, Stechkin's problem for the derivation operator, and the problem of describing asymptotics of diameters for non-isotropic Nikol'skii and Besov classes.
Isotropic etching of silicon in fluoride containing solutions as a tool for micromachining
Tjerkstra, R.W.
1999-01-01
μTAS is hot in micromechanics today. All μTAS devices contain channels to connect the different components together. Channels can also be used as chromatography columns. Isotropic wet chemical etching of silicon can be a suitable process to construct (hemi)circular channels with very smooth
Gerritsen, W.J.; Kruijff, B. de; Verkleij, A.J.; Gier, J. de; Deenen, L.L.M. van
1980-01-01
Ca2+ induces a structural change in phosphatidylcholine-cardiolipin bilayers, which is visualised by freeze-fracturing as lipidic particles associated with the bilayer and is detected by 31P-NMR as isotropic motion of the phospholipids. In this structure a rapid transbilayer movement of
Maximum likelihood based multi-channel isotropic reverberation reduction for hearing aids
DEFF Research Database (Denmark)
Kuklasiński, Adam; Doclo, Simon; Jensen, Søren Holdt
2014-01-01
We propose a multi-channel Wiener filter for speech dereverberation in hearing aids. The proposed algorithm uses joint maximum likelihood estimation of the speech and late reverberation spectral variances, under the assumption that the late reverberant sound field is cylindrically isotropic...
Development of a 10 m quasi-isotropic strand assembled from 2G wires
Kan, Changtao; Wang, Yinshun; Hou, Yanbing; Li, Yan; Zhang, Han; Fu, Yu; Jiang, Zhe
2018-03-01
Quasi-isotropic strands made of second generation (2G) high temperature superconducting (HTS) wires are attractive to applications of high-field magnets at low temperatures and power transmission cables at liquid nitrogen temperature in virtue of their high current carrying capability and well mechanical property. In this contribution, a 10 m length quasi-isotropic strand is manufactured and successfully tested in liquid nitrogen to verify the feasibility of an industrial scale production of the strand by the existing cabling technologies. The strand with copper sheath consists of 72 symmetrically assembled 2G wires. The uniformity of critical properties of long quasi-isotropic strands, including critical current and n-value, is very important for their using. Critical currents as well as n-values of the strand are measured every 1 m respectively and compared with the simulation results. Critical current and n-value of the strand are calculated basing on the self-consistent model solved by the finite element method (FEM). Effects of self-field on the critical current and n-value distributions in wires of the strand are analyzed in detail. The simulation results show good agreement with the experimental data and the 10 m quasi-isotropic strand has good critical properties uniformity.
Conoscopic Patterns for Optically Uniaxial Gyrotropic Crystals in the Vicinity of Isotropic Point
Vasylkiv, Yu.; Nastishin, Yu.; Vlokh, R.
2007-01-01
We have presented computer simulations of conoscopic patterns occurring in optically uniaxial gyrotropic crystals in the vicinity of isotropic point for a number of sets of crystal parameters and orientations. The appearance of special directions characterized by equalization of linear and circular birefringences has been revealed.
A new approach to design of quasi-isotropic antenna systems for satellite applications
DEFF Research Database (Denmark)
Schjær-Jacobsen, Hans; Hansen, J.E.
1976-01-01
The new approach considered takes into account the maximum error of the quasi-isotropic radiation pattern relative to the ideal pattern. A design example involving a spherical satellite with quarter wave monopoles is used to demonstrate the effectiveness of the new approach. An investigation...
Laminated beams of isotropic or orthotropic materials subjected to temperature change
Shun Cheng; T. Gerhardt
1980-01-01
This paper considers laminated beams with layers of different isotropic or orthotropic materials fastened together by thin adhesives. The stresses that result from subjecting each component layer of the beam to different temperature or moisture stimuli which may also vary along the length of the beam, are calculated. Two-dimensional elasticity theory is used so that a...
Tsinober, A.; Vedula, P.; Yeung, P.K.
2001-01-01
The properties of acceleration fluctuations in isotropic turbulence are studied in direct numerical simulations (DNS) by decomposing the acceleration as the sum of local and convective contributions (aL = ?u/?t and aC = u??u), or alternatively as the sum of irrotational and solenoidal contributions
A Dual Band Additively Manufactured 3D Antenna on Package with Near-Isotropic Radiation Pattern
Su, Zhen
2018-04-06
Internet of things (IoT) applications need wireless connectivity on devices with very small footprints, and in RF obscure environments. The antenna for such applications must work on multiple GSM bands (preferred choice for network connectivity), provide near isotropic radiation pattern to maintain orientation insensitive communication, be small in size so that it can be integrated with futuristic miniaturized IoT devices, and be low in cost to be implemented on billions of devices. This paper presents a novel 3D dual band near-isotropic wideband GSM antenna to fulfill these requirements. The antenna has been realized on the package of electronics through additive manufacturing to ensure efficient utilization of available space and lower cost. The proposed antenna consists of a meander line antenna that is folded on the faces of a 3D package with two variations, 0.375λ length for narrowband version and 0.67λ length for the wideband version. Theoretical conditions to achieve near isotropic radiation pattern with bent wire antennas on a 3D surface have been derived. The antenna has been optimized to operate with embedded electronics and a large metallic battery. The antenna provides 8.9% and 34.4% bandwidths, at 900 and 1800 MHz respectively with decent near isotropic radiation behavior.
Peculiarities of stress field formation during cutting isotropic material by mining machine cutters
Gabov, V. V.; Zadkov, D. A.
2017-10-01
Peculiarities of the cutting process of isotropic material by mining machine cutters are considered. The objective of the studies is revealing regularities of the process of stress field formation in the pre-cutter zone of the breakable massif and assessment of the possibility of purposeful control of cutting process parameters. Taking into account the multifactorial nature and randomness of the process of elementary chippage formation, an experimental method of studies with the use of full-sized cutters was accepted as a determining principle. A stand for cutting an isotropic transparent material with an optical method of observing stress fields in the under-cutter zone, the procedure of conducting studies and results were presented in the paper. The use of quasi-isotropic acryl glass as an object for destruction allowed reducing the influence of multifactorial nature and randomness on the process of formation of the stress field and elementary chippage. The modes, excluding continuous chip formation, determined by, on the one hand, the phenomenon of material creep – at low cutting speeds, and, on the other hand – cutting speed modes by the terms of thermal conditions, were determined. Continuation of experimental studies of the cutting process of quasi-isotropic materials is aimed at revealing the most significant factors and determination of their influence on the change of phase parameters of elementary chippage and at revealing the very opportunity of formation of elementary chippage characteristics.
Parametric decay instabilities in ECR heated plasmas
International Nuclear Information System (INIS)
Porkolab, M.
1982-01-01
The possibility of parametric excitation of electron Bernstein waves and low frequency ion oscillations during ECR heating at omega/sub o/ approx. = l omega/sub ce/, l = 1,2 is examined. In particular, the thresholds for such instabilities are calculated. It is found that Bernstein waves and lower hybrid quasi-modes have relatively low homogeneous where T/sub e/ approx. = T/sub i/. Thus, these processes may lead to nonlinear absorption and/or scattering of the incident pump wave. The resulting Bernstein waves may lead to either more effective heating (especially during the start-up phase) or to loss of microwave energy if the decay waves propagate out of the system before their energy is absorbed by particles. While at omega/sub o/ = omega/sub UH/ the threshold is reduced due to the WKB enhancement of the pump wave, (and this instability may be important in tokamaks) in EBT's and tandem mirrors the instability at omega /sub o/ greater than or equal to 2 omega/sub ce/ may be important. The instability may persist even if omega > 2 omega/sub ce/ and this may be the case during finite beta depression of the magnetic field in which case the decay waves may be trapped in the local magnetic well so that convective losses are minimized. The excited fluctuations may lead to additional scattering of the ring electrons and the incident microwave fields. Application of these calculations to ECR heating of tokamaks, tandem mirrors, and EBT's will be examined
Lu, San; Artemyev, A. V.; Angelopoulos, V.
2017-11-01
Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.
International Nuclear Information System (INIS)
Lee, Jin Seung; Lee, Seung S
2008-01-01
In this paper, a novel approach is developed to design an isotropic suspension system using thick metal freestanding micro-structures combining bulk micro-machining with electroplating based on a HAR SU-8 mold. An omega-shape isotropic suspension system composed of circular curved beams that have free switching of imaginary boundary conditions is proposed. This novel isotropic suspension design is not affected by geometric dimensional parameters and always achieves matching stiffness along the principle axes of elasticity. Using the finite element method, the isotropic suspension system was compared with an S-shaped meandering suspension system. In order to realize the suggested isotropic suspension system, a cost-effective fabrication process using electroplating with the SU-8 mold was developed to avoid expensive equipment and materials such as deep reactive-ion etching (DRIE) or a silicon-on-insulator (SOI) wafer. The fabricated isotropic suspension system was verified by electromagnetic actuation experiments. Finally, a biaxial accelerometer with isotropic suspension system was realized and tested using a vibration generator system. The proposed isotropic suspension system and the modified surface micro-machining technique based on electroplating with an SU-8 mold can contribute towards minimizing the system size, simplifying the system configuration, reducing the system price of and facilitating mass production of various types of low-cost sensors and actuators
International Nuclear Information System (INIS)
Silva, Daniel P.; Moreira, Edson G.
2015-01-01
Instrumental Neutron activation Analysis (INAA) is a mature nuclear analytical technique able to accurately determine chemical elements without the need of sample digestion and, hence, without the associated problems of analyte loss or contamination. This feature, along with its potentiality use as a primary method of analysis, makes it an important tool for the characterization of new references materials and in the assessment of their homogeneity status. In this study, the ability of the comparative method of INAA for the within-bottle homogeneity of K, Mg, Mn and V in a mussel reference material was investigated. Method parameters, such as irradiation time, sample decay time and distance from sample to the detector were varied in order to allow element determination in subsamples of different sample masses in duplicate. Sample masses were in the range of 1 to 250 mg and the limitations of the detection limit for small sample masses and dead time distortions for large sample masses were investigated. (author)
Directory of Open Access Journals (Sweden)
Tasawar Hayat
2018-03-01
Full Text Available Mixed convection stagnation point flow of nanofluid by a vertical permeable circular cylinder has been addressed. Water is treated as ordinary liquid while nanoparticles include aluminium oxide, copper and titanium dioxide. Homogeneous-heterogeneous reactions are considered. The nonlinear higher order expressions are changed into first ordinary differential equations and then solved by built-in-Shooting method in mathematica. The results of velocity, temperature, concentration, skin friction and local Nusselt number are discussed. Our results demonstrate that surface drag force and heat transfer rate are enhanced linearly for higher estimation of curvature parameter. Further surface drag force decays for aluminium oxide and it enhances for copper nanoparticle. Heat transfer rate enhances with increasing all three types of nanoparticles. In addition, the lowest heat transfer rate is obtained in case of titanium dioxide when compared with copper and aluminium oxide. Keywords: Mixed convection, Stagnation point flow, Homogeneous-heterogeneous reactions, Nanofluids
Energy Technology Data Exchange (ETDEWEB)
Silva, Daniel P.; Moreira, Edson G., E-mail: dsilva.pereira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
Instrumental Neutron activation Analysis (INAA) is a mature nuclear analytical technique able to accurately determine chemical elements without the need of sample digestion and, hence, without the associated problems of analyte loss or contamination. This feature, along with its potentiality use as a primary method of analysis, makes it an important tool for the characterization of new references materials and in the assessment of their homogeneity status. In this study, the ability of the comparative method of INAA for the within-bottle homogeneity of K, Mg, Mn and V in a mussel reference material was investigated. Method parameters, such as irradiation time, sample decay time and distance from sample to the detector were varied in order to allow element determination in subsamples of different sample masses in duplicate. Sample masses were in the range of 1 to 250 mg and the limitations of the detection limit for small sample masses and dead time distortions for large sample masses were investigated. (author)
Classical calculation of radiative lifetimes of atomic hydrogen in a homogeneous magnetic field
International Nuclear Information System (INIS)
Horbatsch, M.W.; Hessels, E.A.; Horbatsch, M.
2005-01-01
Radiative lifetimes of hydrogenic atoms in a homogeneous magnetic field of moderate strength are calculated on the basis of classical radiation. The modifications of the Keplerian orbits due to the magnetic field are incorporated by classical perturbation theory. The model is complemented by a classical radiative decay calculation using the radiated Larmor power. A recently derived highly accurate formula for the transition rate of a field-free hydrogenic state is averaged over the angular momentum oscillations caused by the magnetic field. The resulting radiative lifetimes for diamagnetic eigenstates classified by n,m and the diamagnetic energy shift C compare well with quantum results
Mass fabrication of homogeneously Yb-doped silica nanoparticles and their spectroscopic properties
International Nuclear Information System (INIS)
Xiong Liangming; Sekiya, Edson H; Saito, Kazuya
2009-01-01
A large number of homogeneously Yb-doped silica nanoparticles were continually fabricated in a vapor synthesis route, in which the Yb doping level can be well controlled by varying either the heating temperature or the carrier gas flow rate of the Yb precursor. The sizes, shapes, and morphologies of the nanoparticles were examined, and no crystallites and no Yb 2 O 3 clusters were observed in the nanoparticles. These nanoparticles exhibit a clear Yb 3+ -derived absorption at around 973-975 nm and a dependence of the emission intensity and decay time on the doping level, much different from that of sintered pellets.
Analytical expression for variance of homogeneous-position quantum walk with decoherent position
Annabestani, Mostafa
2018-02-01
We have derived an analytical expression for variance of homogeneous-position decoherent quantum walk with general form of noise on its position, and have shown that, while the quadratic (t^2) term of variance never changes by position decoherency, the linear term ( t) does and always increases the variance. We study the walker with ability to tunnel out to d nearest neighbors as an example and compare our result with former studies. We also show that, although our expression has been derived for asymptotic case, the rapid decay of time-dependent terms causes the expressions to be correct with a good accuracy even after dozens of steps.
Directory of Open Access Journals (Sweden)
Fang Wang
2017-06-01
Full Text Available In this paper, a flat and incident angle independence absorbing material is proposed and numerically verified in the optical spectrum. A homogeneous and anisotropic dielectric slab as a non-reflecting layer is first reviewed, and a feasible realization strategy of the slab is then given by using layered isotropic materials. When the loss components of the constitutive materials are not zero, the slab will work as an angle insensitive absorbing layer, and the absorption rate augments with increase of the losses. As the numerical verifications, the field distributions of a metallic cylinder and a triangular metallic object individually covered by the designed absorbing layer are demonstrated. The simulation results show that the designed absorbing layer can efficiently absorb the incident waves with the property of incident angle independence at the operation frequency. This homogeneous slab can be used in one and two dimensional situations for the realization of an invisibility cloak, a carpet cloak and even a skin cloak, if it is used to conformally cover target objects.
Energy Technology Data Exchange (ETDEWEB)
Nakagawa, S.
2011-04-01
Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.
Ravi Kumar, B.; Kaul, S. N.
2018-02-01
'Zero-field' linear ac magnetic susceptibility, χ1 (T), of the Cr75-xFe25+x (x = 0, 5) thin films with thickness, t, ranging from 980 to 10 nm has been measured at temperatures close to Tc , the temperature at which the ferromagnetic-paramagnetic phase transition occurs. An elaborate analysis of χ1 (T ⩾Tc) for the films with t ⩾ 40nm yields the temperature dependence of the effective critical exponent for susceptibility, γeff (T) , that is characteristic of the three-dimensional (3D) isotropic Heisenberg-to-3D isotropic dipolar crossover. In the asymptotic critical region (ACR), these thin-film samples behave as a 3D isotropic dipolar (ID) ferromagnet. As the film thickness reduces from t ≃ 980 nm to 40 nm, ACR narrows down while the temperature, Tdip , at which a dip in γeff (T) occurs and the temperature, TIH∗, that marks the onset of the 3D isotropic Heisenberg (IH) behavior, shift to lower temperatures. For a given t, the width of ACR as well as the characteristic temperatures Tdip and TIH∗ increase with decreasing (increasing) Fe (Cr) concentration. Consistent with these observations, the ratios involving nonlinear ac magnetic susceptibilities obey the generalized magnetic equation of state with 3D ID critical exponents and the value of Tc same as that determined from χ1 (T). A quantitative comparison between theory and experiment highlights certain limitations of the existing theories. The films with t ≲ 20 nm do not exhibit 3D IH-to-3D ID crossover. Instead, the critical behavior of Cr70Fe30 thin films with t = 21 nm and t = 11 nm is that of a 3D IH and 3D Ising ferromagnet, respectively. By contrast, a 3D Ising (spin glass) critical behavior is observed in the Cr75Fe25 thin film with t = 19 nm (t = 12 nm). Curie temperature, Tc , decreases with film thickness in accordance with the finite-size scaling.
Investigations into homogenization of electromagnetic metamaterials
DEFF Research Database (Denmark)
Clausen, Niels Christian Jerichau
This dissertation encompasses homogenization methods, with a special interest into their applications to metamaterial homogenization. The first method studied is the Floquet-Bloch method, that is based on the assumption of a material being infinite periodic. Its field can then be expanded in terms...... stack.The second method is analogous to the Floquet-Bloch method, with that difference, that it treats finite structures. A finite structure cannot strictly be expanded in spatial harmonics, but the field can be Fourier transformed, and expanded with a set of sinc basis functions, constituting a set...... of pseudo spatial harmonics. From expressions of the exact field in the 1D Bragg stack, the Fourier transform is computed, and a numerical inversion is performed to determine the relative weight of the sinc bassis functions.The third method, the so-called Nicolson-Ross-Weir (NRW) method, is based...
Shape optimization in biomimetics by homogenization modelling
International Nuclear Information System (INIS)
Hoppe, Ronald H.W.; Petrova, Svetozara I.
2003-08-01
Optimal shape design of microstructured materials has recently attracted a great deal of attention in material science. The shape and the topology of the microstructure have a significant impact on the macroscopic properties. The present work is devoted to the shape optimization of new biomorphic microcellular ceramics produced from natural wood by biotemplating. We are interested in finding the best material-and-shape combination in order to achieve the optimal prespecified performance of the composite material. The computation of the effective material properties is carried out using the homogenization method. Adaptive mesh-refinement technique based on the computation of recovered stresses is applied in the microstructure to find the homogenized elasticity coefficients. Numerical results show the reliability of the implemented a posteriori error estimator. (author)
Genetic homogeneity of Fascioloides magna in Austria.
Husch, Christian; Sattmann, Helmut; Hörweg, Christoph; Ursprung, Josef; Walochnik, Julia
2017-08-30
The large American liver fluke, Fascioloides magna, is an economically relevant parasite of both domestic and wild ungulates. F. magna was repeatedly introduced into Europe, for the first time already in the 19th century. In Austria, a stable population of F. magna has established in the Danube floodplain forests southeast of Vienna. The aim of this study was to determine the genetic diversity of F. magna in Austria. A total of 26 individuals from various regions within the known area of distribution were investigated for their cytochrome oxidase subunit 1 (cox1) and nicotinamide dehydrogenase subunit 1 (nad1) gene haplotypes. Interestingly, all 26 individuals revealed one and the same haplotype, namely concatenated haplotype Ha5. This indicates a homogenous population of F. magna in Austria and may argue for a single introduction. Alternatively, genetic homogeneity might also be explained by a bottleneck effect and/or genetic drift. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Saeid Ahmadjo
2013-05-01
Full Text Available The substituted (bis-2-PhIndZrCl2 and non-substituted (bis-IndZrCl2 indenylbased metallocene catalysts were synthesized and used in homogenous and heterogeneous forms for copolymerization of ethylene and 1-hexene. The MCM-41 nano silica was used as support in heterogenization of the catalysts. The substituted (bis-2-PhIndZrCl2 metallocene catalyst in homogenous and heterogeneous forms showed lower activities in comparison to non-substituted (bis-IndZrCl2 metallocene catalyst. The microstructures of the obtained copolymers were investigated by techniques such as DSC, CNMR and TRRF. The kinetic study showed that the decay index (DI was decreased for both homogeneous catalysts due to unstable kinetic behaviors. However, the decay index contents approached one, using heterogeneous forms of catalyst which was an indication of stable kinetic behaviors. The kinetic results also displayed negative effect on the catalysts activities both in the homogeneous and heterogeneous forms by addition of comonomer on the polymerization. The triad distributions of obtained polymer by NMR technique exhibited the higher ratio of EEH, EHE, EEE triads than the other triads. The comonomer incorporationacceptability of substituted metallocene catalyst (bis-2-PhIndZrCl2 was higher than non-substituted catalyst (bis-IndZrCl2 as its comonomer acceptability increased from 1.3% to 5.4% by substitution mechanism. Microstructures of copolymers obtained by supported metallocene catalyst showed more non-uniform comonomer distribution in comparison with unsupported catalyst. The lamella thickness distributions for polymer obtained by supported substituted metallocene catalyst (bis-2-PhIndZrCl2 were in the ranges (3-8 . However, for supported metallocene non-substituted catalysts (bis-IndZrCl2 the lamella thickness were in the ranges (3-16 .
Homogenization of variational inequalities for obstacle problems
International Nuclear Information System (INIS)
Sandrakov, G V
2005-01-01
Results on the convergence of solutions of variational inequalities for obstacle problems are proved. The variational inequalities are defined by a non-linear monotone operator of the second order with periodic rapidly oscillating coefficients and a sequence of functions characterizing the obstacles. Two-scale and macroscale (homogenized) limiting variational inequalities are obtained. Derivation methods for such inequalities are presented. Connections between the limiting variational inequalities and two-scale and macroscale minimization problems are established in the case of potential operators.
Recent advances in homogeneous nickel catalysis.
Tasker, Sarah Z; Standley, Eric A; Jamison, Timothy F
2014-05-15
Tremendous advances have been made in nickel catalysis over the past decade. Several key properties of nickel, such as facile oxidative addition and ready access to multiple oxidation states, have allowed the development of a broad range of innovative reactions. In recent years, these properties have been increasingly understood and used to perform transformations long considered exceptionally challenging. Here we discuss some of the most recent and significant developments in homogeneous nickel catalysis, with an emphasis on both synthetic outcome and mechanism.
Correlated equilibria in homogenous good Bertrand competition
DEFF Research Database (Denmark)
Jann, Ole; Schottmüller, Christoph
2015-01-01
We show that there is a unique correlated equilibrium, identical to the unique Nash equilibrium, in the classic Bertrand oligopoly model with homogenous goods and identical marginal costs. This provides a theoretical underpinning for the so-called "Bertrand paradox'' as well as its most general f...... formulation to date. Our proof generalizes to asymmetric marginal costs and arbitrarily many players in the following way: The market price cannot be higher than the second lowest marginal cost in any correlated equilibrium....
Homogeneous operators and projective representations of the ...
Indian Academy of Sciences (India)
Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45
DEFINITION 1.1. An operator T is called homogeneous if ϕ(T ) is unitarily equivalent to T for all ϕ in Möb which are analytic on the spectrum of T . It was shown in ... In general, the model for the operator associated with a given function θ is ... boundary of ), the description of the Sz-Nagy and Foias model simplifies as follows:.
Homogeneous Biosensing Based on Magnetic Particle Labels.
Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg
2016-06-06
The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.
Commensurability effects in holographic homogeneous lattices
International Nuclear Information System (INIS)
Andrade, Tomas; Krikun, Alexander
2016-01-01
An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as “homogeneous holographic lattices." Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities. However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous holographic lattices. Our results indicate that the onset of the instability is controlled by the near horizon geometry, which for insulating solutions does carry information about the lattice. However, we observe no sharp connection between the characteristic momentum of the broken phase and the lattice pitch, which calls into question the applicability of these models to the physics of commensurability.
Testing Homogeneity with the Galaxy Fossil Record
Hoyle, Ben; Jimenez, Raul; Heavens, Alan; Clarkson, Chris; Maartens, Roy
2013-01-01
Observationally confirming spatial homogeneity on sufficiently large cosmological scales is of importance to test one of the underpinning assumptions of cosmology, and is also imperative for correctly interpreting dark energy. A challenging aspect of this is that homogeneity must be probed inside our past lightcone, while observations take place on the lightcone. The history of star formation rates (SFH) in the galaxy fossil record provides a novel way to do this. We calculate the SFH of stacked Luminous Red Galaxy (LRG) spectra obtained from the Sloan Digital Sky Survey. We divide the LRG sample into 12 equal area contiguous sky patches and 10 redshift slices (0.2
Homogeneous Biosensing Based on Magnetic Particle Labels
Schrittwieser, Stefan
2016-06-06
The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.
Some properties of spatially homogeneous spacetimes
International Nuclear Information System (INIS)
Coomer, G.C.
1979-01-01
This paper discusses two features of the universe which are influenced in a fundamental way by the spacetime geometry of the universe. The first is the growth of density fluctuations in the early stages of the evolution of the universe. The second is the propagation of electromagnetic radiation in the universe. A spatially homogeneous universe is assumed in both discussions. The gravitational instability theory of galaxy formation is investigated for a viscous fluid and for a charged, conducting fluid with a magnetic field added as a perturbation. It is found that the growth rate of density perturbations in both cases is lower than in the perfect fluid case. Spatially homogeneous but nonisotropic spacetimes are investigated next. Two perfect fluid solutions of Einstein's field equations are found which have spacelike hypersurfaces with Bianchi type II geometry. An expression for the spectrum of the cosmic microwave background radiation in a spatially homogeneous but nonisotropic universe is found. The expression is then used to determine the angular distribution of the intensity of the radiation in the simpler of the two solutions. When accepted values of the matter density and decoupling temperature are inserted into this solution, values for the age of the universe and the time of decoupling are obtained which agree reasonably well with the values of the standard model of the universe
Scalar properties of transversely isotropic tuff from images of orthogonal cross sections
International Nuclear Information System (INIS)
Berge, P.A.; Berryman, J.G.; Blair, S.C.; Pena, C.
1997-01-01
Image processing methods have been used very effectively to estimate physical properties of isotropic porous earth materials such as sandstones. Anisotropic materials can also be analyzed in order to estimate their physical properties, but additional care and a larger number of well-chosen images of cross sections are required to obtain correct results. Although low-symmetry anisotropic media present difficulties for two-dimensional image processing methods, geologic materials are often transversely isotropic. Scalar properties of porous materials such as porosity and specific surface area can be determined with only minor changes in the analysis when the medium is transversely isotropic rather than isotropic. For example, in a rock that is transitively isotropic due to thin layers or beds, the overall porosity may be obtained by analyzing images of cross sections taken orthogonal to the bedding planes, whereas cross sections lying within the bedding planes will determine only the local porosity of the bed itself. It is known for translationally invariant anisotropic media that the overall specific surface area can be obtained from radial averages of the two-point correlation function in the full three-dimensional volume. Layered materials are not translationally invariant in the direction of the layering, but we show nevertheless how averages of cross sections may be used to obtain the specific surface area for a transversely isotropic rock. We report values of specific surface area obtained for thin sections of Topopah Spring Tuff from Yucca Mountain, Nevada. This formation is being evaluated as a potential host rock for geologic disposal of nuclear waste. Although the present work has made use of thin sections of tuff for the images, the same methods of analysis could also be used to simplify quantitative analysis of three-dimensional volumes of pore structure data obtained by means of x-ray microtomography or other methods, using only a few representative cross
Scalar properties of transversely isotropic tuff from images of orthogonal cross sections
Energy Technology Data Exchange (ETDEWEB)
Berge, P.A.; Berryman, J.G.; Blair, S.C.; Pena, C.
1997-01-01
Image processing methods have been used very effectively to estimate physical properties of isotropic porous earth materials such as sandstones. Anisotropic materials can also be analyzed in order to estimate their physical properties, but additional care and a larger number of well-chosen images of cross sections are required to obtain correct results. Although low-symmetry anisotropic media present difficulties for two-dimensional image processing methods, geologic materials are often transversely isotropic. Scalar properties of porous materials such as porosity and specific surface area can be determined with only minor changes in the analysis when the medium is transversely isotropic rather than isotropic. For example, in a rock that is transitively isotropic due to thin layers or beds, the overall porosity may be obtained by analyzing images of cross sections taken orthogonal to the bedding planes, whereas cross sections lying within the bedding planes will determine only the local porosity of the bed itself. It is known for translationally invariant anisotropic media that the overall specific surface area can be obtained from radial averages of the two-point correlation function in the full three-dimensional volume. Layered materials are not translationally invariant in the direction of the layering, but we show nevertheless how averages of cross sections may be used to obtain the specific surface area for a transversely isotropic rock. We report values of specific surface area obtained for thin sections of Topopah Spring Tuff from Yucca Mountain, Nevada. This formation is being evaluated as a potential host rock for geologic disposal of nuclear waste. Although the present work has made use of thin sections of tuff for the images, the same methods of analysis could also be used to simplify quantitative analysis of three-dimensional volumes of pore structure data obtained by means of x-ray microtomography or other methods, using only a few representative cross
International Nuclear Information System (INIS)
Park, S.Y.; Lee, I.S.; Park, S.K.; Cheon, S.J.; Ahn, J.M.; Song, J.W.
2014-01-01
Aim: To compare the diagnostic accuracies of three-dimensional (3D) isotropic magnetic resonance arthrography (MRA) using fat-suppressed proton density (PD) or volume interpolated breath-hold examination (VIBE) sequences with that of conventional MRA for the diagnosis of rotator cuff and labral lesions. Materials and methods: Eighty-six patients who underwent arthroscopic surgery were included. 3D isotropic sequences were performed in the axial plane using fat-suppressed PD (group A) in 53 patients and using VIBE (group B) in 33 patients. Reformatted images were obtained corresponding to conventional images, and evaluated for the presence of labral and rotator cuff lesions using conventional and 3D isotropic sequences. The diagnostic performances of each sequence were determined using arthroscopic findings as the standard. Results: Good to excellent interobserver agreements were obtained for both 3D isotropic sequences for the evaluation of rotator cuff and labral lesions. Excellent agreement was found between two-dimensional (2D) and 3D isotropic MRA, except for supraspinatus tendon (SST) tears by both readers and for subscapularis tendon (SCT) tears by reader 2 in group B. 2D MRA and 3D isotropic sequences had high diagnostic performances for rotator and labral tears, and the difference between the two imaging methods was insignificant. Conclusions: The diagnostic performances of 3D isotropic VIBE and PD sequences were similar to those of 2D MRA
Decay spectroscopy of $^{178}$Au
Whitmore, B
In this thesis, the neutron-deficient nucleus $^{178}$Au is investigated through decay spectroscopy. Si and HPGe detectors were used to analyse the decay radiation of $^{178}$Au and its daughter nuclei. Previous studies have been unable to distinguish decay radiation from different isomeric states of this nucleus. This thesis represents the first time such isomeric discrimination has been achieved, and presents tentative spin assignments of both the ground state and an isomer. The neutron-deficient gold isotopes are an area of interest for the study of shape coexistence. This is the phenomenon exhibited by nuclei able to exist at a number of close lying energy minima, each reflecting a distinct type of deformation. It is hoped that studies such as this can help identify the evolution of nuclear deformation in this region of the nuclear chart.
Energy Technology Data Exchange (ETDEWEB)
Maestro, Paolo [Siena U.
2012-07-01
In the last decade the CDF experiment at the Tevatron clearly demonstrated that it is possible to study extensively heavy flavour physics in hadron collisions and achieve remarkable results, competitive and complementary to $B$-factories. In this paper we report on the indirect searches for physics beyond the standard model via measurements of rare $b$-hadron decays. The final limits, based on the analysis of the full CDF data set, on the branching fraction of the $B^0_{(s)}$ decay into a pair of muons are presented and discussed. Moreover we review the latest measurements, with 6.8 fb$^{-1}$ of collected data, of the total and differential branching fractions and angular observables of rare $b$-hadron decays proceeding via the flavour-changing neutral-current process $b \\rightarrow s \\mu^+ \\mu^-$. PACS numbers: 13.20.He, 13.30.-a, 12.15.Mn
Heavy quark spectroscopy and decay
Energy Technology Data Exchange (ETDEWEB)
Schindler, R.H.
1987-01-01
The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs.
Observable signatures of inflaton decays
Energy Technology Data Exchange (ETDEWEB)
Battefeld, Diana; Battefeld, Thorsten [Institute for Astrophysics, University of Goettingen, Friedrich Hund Platz 1, D-37077 Gottingen (Germany); Giblin, John T. Jr.; Pease, Evan K., E-mail: dbattefe@astro.physik.uni-goettingen.de, E-mail: tbattefe@astro.physik.uni-goettingen.de, E-mail: giblinj@kenyon.edu, E-mail: peasee@kenyon.edu [Department of Physics, Kenyon College, Gambier, OH 43022, U.S.A (United States)
2011-02-01
We numerically compute features in the power-spectrum that originate from the decay of fields during inflation. Using a simple, phenomenological, multi-field setup, we increase the number of fields from a few to thousands. Whenever a field decays, its associated potential energy is transferred into radiation, causing a jump in the equation of state parameter and mode mixing at the perturbed level. We observe discrete steps in the power-spectrum if the number of fields is low, in agreement with analytic arguments in the literature. These features become increasingly smeared out once many fields decay within a given Hubble time. In this regime we confirm the validity of the analytic approach to staggered inflation, which is based on a coarse-graining procedure. Our numerical approach bridges the aforementioned analytic treatments, and can be used in more complicated scenarios.
International Nuclear Information System (INIS)
Haines, T.; Kaneyuki, K.; McGrew, C.; Mohapatra, R.; Peterson, E.; Cline, D.B.
1994-01-01
The conservation of the quantum number called baryon number, like lepton (or family) number, is an empirical fact even though there are very good reasons to expect otherwise. Experimentalists have been searching for baryon number violating decays of the proton and neutron for decades now without success. Theorists have evolved deep understanding of the relationship between the natural forces in the development of various Grand Unified Theories (GUTs) that nearly universally predict baryon number violating proton decay, or related phenomena like n-bar n oscillations. With this in mind, the Proton Decay Working Group reviewed the current experimental and theoretical status of the search for baryon number violation with an eye to the advancement in the next decade
Giacosa, Francesco; Sammet, Julia; Janowski, Stanislaus
2017-06-01
We calculate two- and three-body decays of the (lightest) vector glueball into (pseudo)scalar, (axial-)vector, as well as pseudovector and excited vector mesons in the framework of a model of QCD. While absolute values of widths cannot be predicted because the corresponding coupling constants are unknown, some interesting branching ratios can be evaluated by setting the mass of the yet hypothetical vector glueball to 3.8 GeV as predicted by quenched lattice QCD. We find that the decay mode ω π π should be one of the largest (both through the decay chain O →b1π →ω π π and through the direct coupling O →ω π π ). Similarly, the (direct and indirect) decay into π K K*(892 ) is sizable. Moreover, the decays into ρ π and K*(892 )K are, although subleading, possible and could play a role in explaining the ρ π puzzle of the charmonium state ψ (2 S ) thanks to a (small) mixing with the vector glueball. The vector glueball can be directly formed at the ongoing BESIII experiment as well as at the future PANDA experiment at the FAIR facility. If the width is sufficiently small (≲100 MeV ) it should not escape future detection. It should be stressed that the employed model is based on some inputs and simplifying assumptions: the value of glueball mass (at present, the quenched lattice value is used), the lack of mixing of the glueball with other quarkonium states, and the use of few interaction terms. It then represents a first step toward the identification of the main decay channels of the vector glueball, but shall be improved when corresponding experimental candidates and/or new lattice results will be available.
Measurement of the proton asymmetry (C) in free neutron β-decay with Perkeo III
Energy Technology Data Exchange (ETDEWEB)
Raffelt, Lukas Michael
2016-10-19
The decay of polarized neutrons can be used to search for Physics Beyond the Standard Model. The non-isotropic angular distributions of the decay particles are parity violating and reveal the true nature of the weak interaction. Many observables are available in the decay of polarized neutrons, but the decay itself is only described by three parameters, which allows searches for new physics in a combined analysis. Measurements of the electron angular correlation coefficient (A) can be used to precisely determine the ratio of the axial to the vector coupling constant. The proton angular correlation coefficient (C) has only been measured once by a predecessor of this experiment. We measured the proton asymmetry with a similar proton detector, but employed a new measuring scheme allowing the collection of the worlds first data on the proton energy dependence of the proton asymmetry. At the current state of the analysis, a statistical uncertainty on the value of C of 0.8 % in each of the two detectors can be reached. For a final value, studies of systematic effects based on field simulations and tracking are still missing. For this measurement I designed and constructed a new detector. For the first time the scintillator was coated with a transparent conductive coating and together with the new CAD milled light-guides in a four-side readout configuration the low energy performance of the detector could be increased. Several systematic effects have been studied, especially the Point Spread Function of the magnetic transport system.
Energy Technology Data Exchange (ETDEWEB)
Hicheur, A
2004-08-25
Measurements and searches for rare B decays have been performed with the BaBar detector at the PEP-II e{sup +}e{sup -} asymmetric B Factory, operating at the {Upsilon}(4S) resonance. The authors report some recent branching fraction measurements on hadronic and radiative B decays, occurring from b --> s/d and b --> u transitions. Most of the results presented here are based on a data sample corresponding to a luminosity of 81.9 fb{sup -1}.
Multihadron decays of new mesons
International Nuclear Information System (INIS)
Koller, K.; Walsh, T.F.
1975-12-01
We discuss the hadronic decays of the new I = 0 mesons seen in e + e - , PSI-3,105 or PSI-3,695 with G = - and CHI or X with G = +. We present some isospin inequalities for I = 0 pure pionic final states, and a discussion of anti-K K and ETA-549, ETA-958 fractions. We also present a statistical model analysis of pion final states, and conclude that a large fraction of hadronic PSI-3,105 decays contain something besides pions and anti-K K probably ETA-549 and ETA-958, possibly radiative modes. (orig.) [de
Chiral quarks and proton decay
International Nuclear Information System (INIS)
Chadha, S.; Daniel, M.; Gounaris, G.J.; Murphy, A.J.
1984-04-01
The authors calculate the hadronic matrix elements of baryon decay operators using a chiral effective Lagrangian with quarks, gluons and Goldstone boson fields. The cases where the ΔB=1 operators arise from supersymmetric SU(5) GUT as well as the minimal SU(5) GUT model are studied. In each model the results depend on two parameters. In particular there is a range of values for the two parameters, where the dominant decay modes in the minimal SU(5) GUT are: p→etae + and n→π - e + . (author)
Krich, Jacob J; Romanowsky, Mark B; Collings, Peter J
2005-05-01
Light-scattering measurements of the correlation length in the isotropic phase of a nematic liquid crystal reveal a temperature dependence following Landau-de Gennes theory for the isotropic phase with a bare correlation length smaller than has been measured in other liquid crystals. Similar measurements in a cholesteric liquid crystal demonstrate that the correlation length in the isotropic phase is larger than typically found in nematics and that the chirality of the fluctuations in the isotropic phase is slightly higher than the chirality of the cholesteric phase. Landau-de Gennes theory of the cholesteric phase describes the chirality in the cholesteric phase well but predicts that the chirality in the isotropic phase is temperature independent, which is not consistent with the data. There is a discontinuity in the chirality at the cholesteric-isotropic transition of about 15%, which is less than the predictions of Landau-de Gennes theory but more than the typical specific volume discontinuity at transitions to the isotropic phase. Except for a mismatch in the discontinuities at the transition, the chirality data resemble the temperature behavior of variables just below a critical point, in spite of the fact that this system is far from a critical point.
On the footprint of anisotropy on isotropic full waveform inversion: the Valhall case study
Prieux, Vincent; Brossier, Romain; Gholami, Yaser; Operto, Stéphane; Virieux, Jean; Barkved, O. I.; Kommedal, J. H.
2011-12-01
The validity of isotropic approximation to perform acoustic full waveform inversion (FWI) of real wide-aperture anisotropic data can be questioned due to the intrinsic kinematic inconsistency between short- and large-aperture components of the data. This inconsistency is mainly related to the differences between the vertical and horizontal velocities in vertical-transverse isotropic (VTI) media. The footprint of VTI anisotropy on 2-D acoustic isotropic FWI is illustrated on a hydrophone data set of an ocean-bottom cable that was collected over the Valhall field in the North Sea. Multiscale FWI is implemented in the frequency domain by hierarchical inversions of increasing frequencies and decreasing aperture angles. The FWI models are appraised by local comparison with well information, seismic modelling, reverse-time migration (RTM) and source-wavelet estimation. A smooth initial VTI model parameterized by the vertical velocity V0 and the Thomsen parameters δ and ɛ were previously developed by anisotropic reflection traveltime tomography. The normal moveout (?) and horizontal (?) velocity models were inferred from the anisotropic models to perform isotropic FWI. The VNMO models allows for an accurate match of short-spread reflection traveltimes, whereas the Vh model, after updating by first-arrival traveltime tomography (FATT), allows for an accurate match of first-arrival traveltimes. Ray tracing in the velocity models shows that the first 1.5 km of the medium are sampled by both diving waves and reflections, whereas the deeper structure at the reservoir level is mainly controlled by short-spread reflections. Starting from the initial anisotropic model and keeping fixed δ and ɛ models, anisotropic FWI allows us to build a vertical velocity model that matches reasonably well the well-log velocities. Isotropic FWI is performed using either the NMO model or the FATT model as initial model. In both cases, horizontal velocities are mainly reconstructed in the first
Chen, Xing; Rinkevicius, Zilvinas; Cao, Zexing; Ruud, Kenneth; Agren, Hans
2011-01-14
The present work addresses isotropic hyperfine coupling constants in polyatomic systems with a particular emphasis on a largely neglected, but a posteriori significant, effect, namely zero-point vibrational corrections. Using the density functional restricted-unrestricted approach, the zero-point vibrational corrections are evaluated for the allyl radical and four of its derivatives. In addition for establishing the numerical size of the zero-point vibrational corrections to the isotropic hyperfine coupling constants, we present simple guidelines useful for identifying hydrogens for which such corrections are significant. Based on our findings, we critically re-examine the computational procedures used for the determination of hyperfine coupling constants in general as well as the practice of using experimental hyperfine coupling constants as reference data when benchmarking and optimizing exchange-correlation functionals and basis sets for such calculations.
International Nuclear Information System (INIS)
Bouziane, T.
2004-04-01
The purpose of this work was to construct a Brownian motion with values in simplicial complexes with piecewise differential structure. After a martingale theory attempt, we constructed a family of continuous Markov processes with values in an admissible complex; we named every process of this family, isotropic transport process. We showed that the family of the isotropic processes contains a subsequence, which converged weakly to a measure; we named it the Wiener measure. Then, we constructed, thanks to the finite dimensional distributions of the Wiener measure a new continuous Markov process with values in an admissible complex: the Brownian motion. We finished with a geometric analysis of this Brownian motion, to determinate, under hypothesis on the complex, the recurrent or transient behavior of such process. (author)
CONTACT STRESSES IN A TRANSVERSELY ISOTROPIC SOLID CYLINDER LATERALLY COMPRESSED BY AN INDENTER
Directory of Open Access Journals (Sweden)
Ahmet YAPICI
2004-03-01
Full Text Available In this study, an elastostatic contact problem for a laterally compressed transversely isotropic cylinder subjected to radial compression through a circumferential rigid indenter is considered. The extent of the contact region and the stress distribution are sought. It is assumed that the contact between the cylinder and the rigid indenter is frictionless and only compressive normal tractions can be transmitted through the interface. Due to the geometry of the configuration, Fourier transform techniques are chosen. The problem is reduced to a singular integral equation. It is reduced to linear algebraic equation system by using Gauss Chebyshev Integration Formulae and is solved by using Gauss Elimination method. E glass and barium titanate are used as a transversely isotropic materials. The stress analysis is performed for different contact area, punch radiuses and cylinder radiuses. The obtained results are shown in figures.
Homogenisation on homogeneous spaces\\ud
Li, X. -M.
2017-01-01
Motivated by collapsing of Riemannian manifolds and inhomogeneous scaling of left invariant Riemannian metrics on a real Lie group G with a sub-group H, we consider a family of stochastic differential equations (SDEs) on G with parameter ϵ>0 and Markov generator Lϵ=1ϵ∑k(Ak)2+1ϵA0+Y0 where Y0,Ak are left invariant vector fields and {Ak} generate the Lie-algebra of H. Assuming that G/H is a reductive homogeneous space, in the sense of Nomizu, we study the solutions of the SDE as ϵ approaches ze...
Homogeneous asymmetric catalysis in fragrance chemistry.
Ciappa, Alessandra; Bovo, Sara; Bertoldini, Matteo; Scrivanti, Alberto; Matteoli, Ugo
2008-06-01
Opposite enantiomers of a chiral fragrance may exhibit different olfactory activities making a synthesis in high enantiomeric purity commercially and scientifically interesting. Accordingly, the asymmetric synthesis of four chiral odorants, Fixolide, Phenoxanol, Citralis, and Citralis Nitrile, has been investigated with the aim to develop practically feasible processes. In the devised synthetic schemes, the key step that leads to the formation of the stereogenic center is the homogeneous asymmetric hydrogenation of a prochiral olefin. By an appropriate choice of the catalyst and the reaction conditions, Phenoxanol, Citralis, and Citralis Nitrile were obtained in high enantiomeric purity, and odor profiles of the single enantiomers were determined.
Derivation of Darcy's Law using Homogenization Method
Kannanut Chamsri
2013-01-01
Darcy’s Law is a well-known constitutive equation describing the flow of a fluid through a porous medium. The equation shows a relationship between the superficial or Darcy velocity and the pressure gradient which was first experimentally observed by Henry Darcy in 1855-1856. In this study, we apply homogenization method to Stokes equation in order to derive Darcy’s Law. The process of deriving the equation is complicated, especially in multidimensional domain. Thus, for the sake of simplicit...
Mirror symmetry breaking in cubic phases and isotropic liquids driven by hydrogen bonding.
Alaasar, Mohamed; Poppe, Silvio; Dong, Qingshu; Liu, Feng; Tschierske, Carsten
2016-11-24
Achiral supramolecular hydrogen bonded complexes between rod-like 4-(4-alkoxyphenylazo)pyridines and a taper shaped 4-substituted benzoic acid form achiral (Ia3[combining macron]d) and chiral "Im3[combining macron]m-type" bicontinuous cubic (I432) phases and a chiral isotropic liquid mesophase (Iso 1 [ * ] ). The chiral phases, resulting from spontaneous mirror symmetry breaking, represent conglomerates of macroscopic chiral domains eventually leading to uniform chirality.
Waves with negative group velocity. Conditions of their existence in a isotropic medium
International Nuclear Information System (INIS)
Makarov, V.P.; Rukhadze, A.A.; Samokhin, A.A.
2005-01-01
The analysis of the frequency and spatial dispersions of the dielectric permittivity and magnetic permeability of an isotropic medium are carried out in the (E-vector, B-vector, D-vector) and (E-vector, B-vector, D-vector, H-vector) approaches of electrodynamics. The conditions under which the phase and group velocities of transverse electromagnetic waves have opposite directions are clarified, and the consequences arised are discussed
Isotropic etching of silicon in fluoride containing solutions as a tool for micromachining
Tjerkstra, R.W.
1999-01-01
μTAS is hot in micromechanics today. All μTAS devices contain channels to connect the different components together. Channels can also be used as chromatography columns. Isotropic wet chemical etching of silicon can be a suitable process to construct (hemi)circular channels with very smooth surfaces. Wet etching of silicon can be done chemically, using aqueous solutions of HF and HNO , or electrochemically, using aqueous HF solutions. Both processes suffer from the loading-effect: due to extr...
I. Agnolin; J.-N. Roux;
2007-01-01
29 pages. Published in Physical Review E; International audience; This is the ﬁrst paper of a series of three, reporting on numerical simulation studies of geometric and mechanical properties of static assemblies of spherical beads under an isotropic pressure. Frictionless systems assemble in the unique random close packing (RCP) state in the low pressure limit if the compression process is fast enough, slower processes inducing traces of crystallization, and exhibit speciﬁc properties direct...
International Nuclear Information System (INIS)
Son, In Ho; An, Deuk Man
2012-01-01
In fracture mechanics, the weight function can be used for calculating stress intensity factors. In this paper, a two dimensional electroelastic analysis is performed on a transversely isotropic piezoelectric material with an open crack. A plane strain formulation of the piezoelectric problem is solved within the Leknitskii formalism. Weight function theory is extended to piezoelectric materials. The stress intensity factors and electric displacement intensity factor are calculated by the weight function theory
Amalia, A.; Rachmawati, D.; Lestari, I. A.; Mourisa, C.
2018-03-01
Colposcopy has been used primarily to diagnose pre-cancer and cancerous lesions because this procedure gives an exaggerated view of the tissues of the vagina and the cervix. But, the poor quality of colposcopy image sometimes makes physician challenging to recognize and analyze it. Generally, Implementation of image processing to identify cervical cancer have to implement a complex classification or clustering method. In this study, we wanted to prove that by only applying the identification of edge detection in the colposcopy image, identification of cervical cancer can be determined. In this study, we implement and comparing two edge detection operator which are isotropic and canny operator. Research methodology in this paper composed by image processing, training, and testing stages. In the image processing step, colposcopy image transformed by nth root power transformation to get better detection result and continued with edge detection process. Training is a process of labelling all dataset image with cervical cancer stage. This process involved pathology doctor as an expert in diagnosing the colposcopy image as a reference. Testing is a process of deciding cancer stage classification by comparing the similarity image of colposcopy results in the testing stage with the image of the results of the training process. We used 30 images as a dataset. The result gets same accuracy which is 80% for both Canny or Isotropic operator. Average running time for Canny operator implementation is 0.3619206 ms while Isotropic get 1.49136262 ms. The result showed that Canny operator is better than isotropic operator because Canny operator generates a more precise edge with a fast time instead.
Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.
Tuan, H.-S.; Chang, C.-P.
1972-01-01
A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.
International Nuclear Information System (INIS)
Wu Shuangqing; Peng Junjin; Zhao Zhanyue
2008-01-01
Motivated by the universality of Hawking radiation and that of the anomaly cancellation technique as well as the effective action method, we investigate the Hawking radiation of a Schwarzschild black hole in the isotropic coordinates via the cancellation of gravitational anomaly. After performing a dimensional reduction from the four-dimensional isotropic Schwarzschild metric, we show that this reduction procedure will, in general, result in two classes of two-dimensional effective metrics: the conformal equivalent and the inequivalent ones. For the physically equivalent class, the two-dimensional effective metric displays such a distinct feature that the determinant is not equal to the unity √(-g)≠1, but also vanishes at the horizon, the latter of which possibly invalidates the anomaly analysis there. Nevertheless, in this paper we adopt the effective action method to prove that the consistent energy-momentum tensor T r t is divergent on the horizon but √(-g)T t r remains finite there. Meanwhile, through an explicit calculation we show that the covariant energy-momentum tensor T-tilde t r equals zero at the horizon. Therefore the validity of the covariant regularity condition that demands that T-tilde t r = 0 at the horizon has been justified, indicating that the gravitational anomaly analysis can be safely extrapolated to the case where the metric determinant vanishes at the horizon. It is then demonstrated that for the physically equivalent reduced metric, both methods can give the correct Hawking temperature of the isotropic Schwarzschild black hole, while for the inequivalent one with the determinant √(-g) = 1 it can only give half of the correct temperature. We further exclude the latter undesired result by taking into account the general covariance of the energy-momentum tensor under the isotropic coordinate transformation
International Nuclear Information System (INIS)
Sridevi, S; Krishna Prasad, S; Shankar Rao, D S; Yelamaggad, C V
2008-01-01
The isotropic-nematic transition, being weakly first order, exhibits pretransitional effects signifying the appearance of the nematic-like regions in the isotropic phase. In the isotropic phase, strongly polar liquid crystals, such as the popular alkyl and alkoxy cyano biphenyl behave in a non-standard fashion: whereas far away from the transition the dielectric constant ε iso has a 1/T dependence (a feature also commonly seen in polar liquids), on approaching the nematic phase the trend reverses resulting in a maximum in ε iso , at a temperature slightly above the transition, an effect explained on the basis of short-range correlations with an antiparallel association of the neighbouring molecules. Recently, there has been a revival in studies on this behaviour to possibly associate it with the order of transition. Here we report dielectric measurements carried in the vicinity of this transition for a number of compounds having different molecular structures including a bent core system, but with a common feature that the molecules possess a strong terminal polar group, nitro in one case and cyano in the rest. Surprisingly, the convex shape of the thermal variation of ε iso was more an exception than the rule. In materials that exhibit such an anomaly we find a linear correlation between δε = (ε peak -ε IN )/ε IN and δT = T peak -T IN , where ε peak is the maximum value of the dielectric constant in the isotropic phase, ε IN the value at the transition, and T peak and T IN the corresponding temperatures.
Characteristics of dissimilar laser-brazed joints of isotropic graphite to WC-Co alloy
Energy Technology Data Exchange (ETDEWEB)
Nagatsuka, Kimiaki, E-mail: nagatuka@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, Joining and Welding Research Institute, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Sechi, Yoshihisa, E-mail: sechi@kagoshima-it.go.jp [Kagoshima Prefectural Institute of Industrial Technology, 1445-1 Oda, Hayato-cho, Kirishima, Kagoshima 899-5105 (Japan); Miyamoto, Yoshinari, E-mail: y_miyamoto@toyotanso.co.jp [Toyo Tanso Co., Ltd., 5-7-12 Takeshima, Nishiyodgawa-ku, Osaka 555-0011 (Japan); Nakata, Kazuhiro, E-mail: nakata@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)
2012-04-25
Highlights: Black-Right-Pointing-Pointer Ti was required in the filler metal for brazing graphite to WC-Co alloy. Black-Right-Pointing-Pointer The shear strength of the joint increased with Ti content up to 1.7 mass%. Black-Right-Pointing-Pointer Ti concentrated at the interface of graphite/filler metal. Black-Right-Pointing-Pointer TiC was formed at the interface of graphite/filler metal. - Abstract: The effect of Ti serving as an activator in a eutectic Ag-Cu alloy filler metal in dissimilar laser-brazed joints of isotropic graphite and a WC-Co alloy on the joint strength and the interface structure of the joint is investigated in this study. To evaluate the joint characteristics, the Ti content in the filler metal was increased from 0 to 2.8 mass%. The laser brazing was carried out by irradiating a laser beam selectively on the WC-Co alloy plate in Ar atmosphere. The threshold content of Ti required to join isotropic graphite to WC-Co alloy was 0.4 mass%. The shear strength at the brazed joint increased rapidly with increasing Ti content up to 1.7 mass%, and a higher Ti content was found to be likely to saturate the shear strength to a constant value of about 14 MPa. The isotropic graphite blocks also fractured at this content. The concentration of Ti observed at the interface between isotropic graphite and the filler metal indicates the formation of an intermetallic layer of TiC.
Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.
Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto
2017-08-23
The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.
Green's function based finite element formulations for isotropic seepage analysis with free surface
Directory of Open Access Journals (Sweden)
Hui Wang
Full Text Available Abstract A solution procedure using the Green's function based finite element method (FEM is presented for two-dimensional nonlinear steady-state seepage analysis with the presence of free surface in isotropic dams. In the present algorithm, an iteration strategy is designed to convert the over-specified free surface problem to a regular partial differential equation problem. Then, at each iteration step, the Green's function for isotropic linear seepage partial differential equation is employed to construct the element interior water head field, while the conventional shape functions are used for the independent element frame water head field. Then these two independent fields are connected by a double-variable hybrid functional to produce the final solving equation system. By means of the physical definition of Green's function, all two-dimensional element domain integrals in the present algorithm can reduce to one-dimensional element boundary integrals, so that versatile multi-node element is constructed to simplify mesh reconstruction during iteration. Finally, numerical results from the present Green's function based FEM with isotropic Green's function kernels are compared with other numerical results to verify and demonstrate the performance of the present method.
Effect of compressive prestress on the Young's modulus and strength of isotropic graphite
International Nuclear Information System (INIS)
Oku, T.; Ota, S.; Eto, M.; Gotoh, Y.
1996-01-01
It is well known that properties, such as Young's modulus, strength and so on, change when compressive or tensile prestresses are applied to graphite materials at room temperature. It is important from the designer's standpoint in the sense that it should be taken into consideration for the structural design of the graphite components if there is an effect of prestresses at high temperature on the mechanical properties. In this study compressive prestresses were applied to an isotropic fine-grained graphite at room temperature (RT) and high temperature (2010 deg. C). As a result decrease in Young's modulus due to high temperature prestressing was 56% which was much larger than the 6.4% that was due to RT prestressing. This finding was considered to be due primarily to difference in degree of preferred orientation of crystallites in the graphite on the basis of Bacon anisotropy factor (BAF) from X-ray diffraction measurement of the prestressed specimens. Furthermore, high temperature compressive prestressing produced an increase in the strength of the isotropic graphite, although room temperature prestressing produced no such effect. The results obtained here suggest that isotropic graphite which is subjected to high-temperature compressive stress becomes anisotropic. It is concluded that it should be considered in the design stage of the reactors that the anisotropy may change after long term operation of high temperature gas-cooled reactors. (author). 6 refs, 8 figs, 3 tabs
Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei
2015-09-01
The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)). Copyright © 2015 Elsevier Inc. All rights reserved.
Bending Analysis of Thick Isotropic Plates by Using 5th Order Shear Deformation Theory
Directory of Open Access Journals (Sweden)
Yuwaraj M. Ghugal
2016-12-01
Full Text Available A 5th order shear deformation theory considering transverse shear deformation effect as well as transverse normal strain deformation effect is presented for static flexure analysis of simply supported isotropic plate. The assumed displacement field accounts for non-linear variation of in-plane displacements as well as transverse displacement through the plate thickness. The condition of zero transverse shear stresses on the upper and lower surface of plate is satisfied. Hence the present formulation does not require the shear correction factor generally associated with the first order shear deformable theory. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Closed-form analytical solutions for simply supported square isotropic thick plates subjected to single sinusoidal distributed loads are obtained. Numerical results for static flexure analysis include the effects of side to thickness ratio and plate aspect ratio for simply supported isotropic plates. Numerical results are obtained using MATLAB programming. The results of present theory are in close agreement with those of higher order shear deformation theories and exact 3D elasticity solutions.
Design methodology of single-feed compact near-isotropic antenna design
Su, Zhen
2017-06-07
The abundance of mobile wireless devices is giving rise to a new paradigm known as Internet of Things. In this paradigm, wireless devices will be everywhere and communicating with each other. Since they will be oriented randomly in the environment, they should be able to communicate equally in all directions in order to have stable communication link. Hence, compact near isotropic antennas are required, which can enable orientation insensitive communication. In this paper, we propose a simple design methodology to design a compact near-isotropic wire antenna based on equal vector potentials. As a proof of concept, a quarter wavelength monopole antennas has been designed that is wrapped on a 3D-printed box keeping the vector potentials in three orthogonal different directions equal. By optimizing the dimension of the antenna arms, a nearly isotropic radiation pattern is thus achieved. The results show that the antenna has a maximum gain of 2.2dBi at 900 MHz with gain derivation of 9.4dB.
Liu, Ke; Greitemann, Jonas; Pollet, Lode
2018-01-01
Polyhedral nematics are examples of exotic orientational phases that possess a complex internal symmetry, representing highly nontrivial ways of rotational symmetry breaking, and are subject to current experimental pursuits in colloidal and molecular systems. The classification of these phases has been known for a long time; however, their transitions to the disordered isotropic liquid phase remain largely unexplored, except for a few symmetries. In this work, we utilize a recently introduced non-Abelian gauge theory to explore the nature of the underlying nematic-isotropic transition for all three-dimensional polyhedral nematics. The gauge theory can readily be applied to nematic phases with an arbitrary point-group symmetry, including those where traditional Landau methods and the associated lattice models may become too involved to implement owing to a prohibitive order-parameter tensor of high rank or (the absence of) mirror symmetries. By means of exhaustive Monte Carlo simulations, we find that the nematic-isotropic transition is generically first-order for all polyhedral symmetries. Moreover, we show that this universal result is fully consistent with our expectation from a renormalization group approach, as well as with other lattice models for symmetries already studied in the literature. We argue that extreme fine tuning is required to promote those transitions to second-order ones. We also comment on the nature of phase transitions breaking the O(3 ) symmetry in general cases.
Stress-induced birefringence in the isotropic phases of lyotropic mixtures
Fernandes, P. R. G.; Maki, J. N.; Gonçalves, L. B.; de Oliveira, B. F.; Mukai, H.
2018-02-01
In this work, the frequency dependence of the known mechano-optical effect which occurs in the micellar isotropic phases (I ) of mixtures of potassium laurate (KL), decanol (DeOH), and water is investigated in the range from 200 mHz to 200 Hz . In order to fit the experimental data, a model of superimposed damped harmonic oscillators is proposed. In this phenomenological approach, the micelles (microscopic oscillators) interact very weakly with their neighbors. Due to shape anisotropy of the basic structures, each oscillator i (i =1 ,2 ,3 ,...,N ) remains in its natural oscillatory rotational movement around its axes of symmetry with a frequency ω0 i. The system will be in the resonance state when the frequency of the driving force ω reaches a value near ω0 i. This phenomenological approach shows excellent agreement with the experimental data. One can find f ˜2.5 , 9.0, and 4.0 Hz as fundamental frequencies of the micellar isotropic phases I , I1, and I2, respectively. The different micellar isotropic phases I , I1, and I2 that we find in the phase diagram of the KL-DeOH-water mixture are a consequence of possible differences in the intermicellar correlation lengths. This work reinforces the possibilities of technological applications of these phases in devices such as mechanical vibration sensors.
Newton, Arthur C.; Kools, Ramses; Swenson, David W. H.; Bolhuis, Peter G.
2017-10-01
The association and dissociation of particles via specific anisotropic interactions is a fundamental process, both in biology (proteins) and in soft matter (colloidal patchy particles). The presence of alternative binding sites can lead to multiple productive states and also to non-productive "decoy" or intermediate states. Besides anisotropic interactions, particles can experience non-specific isotropic interactions. We employ single replica transition interface sampling to investigate how adding a non-productive binding site or a nonspecific isotropic interaction alters the dimerization kinetics of a generic patchy particle model. The addition of a decoy binding site reduces the association rate constant, independent of the site's position, while adding an isotropic interaction increases it due to an increased rebinding probability. Surprisingly, the association kinetics becomes non-monotonic for a tetramer complex formed by multivalent patchy particles. While seemingly identical to two-particle binding with a decoy state, the cooperativity of binding multiple particles leads to a kinetic optimum. Our results are relevant for the understanding and modeling of biochemical networks and self-assembly processes.
Cosmic Ray Hit Detection with Homogenous Structures
Smirnov, O. M.
Cosmic ray (CR) hits can affect a significant number of pixels both on long-exposure ground-based CCD observations and on the Space Telescope frames. Thus, methods of identifying the damaged pixels are an important part of the data preprocessing for practically any application. The paper presents an implementation of a CR hit detection algorithm based on a homogenous structure (also called cellular automata ), a concept originating in artificial intelligence and dicrete mathematics. Each pixel of the image is represented by a small automaton, which interacts with its neighbors and assumes a distinct state if it ``decides'' that a CR hit is present. On test data, the algorithm has shown a high detection rate (~0.7 ) and a low false alarm rate (frame. A homogenous structure is extremely trainable, which can be very important for processing large batches of data obtained under similar conditions. Training and optimizing issues are discussed, as well as possible other applications of this concept to image processing.
Topology of actions and homogeneous spaces
International Nuclear Information System (INIS)
Kozlov, Konstantin L
2013-01-01
Topologization of a group of homeomorphisms and its action provide additional possibilities for studying the topological space, the group of homeomorphisms, and their interconnections. The subject of the paper is the use of the property of d-openness of an action (introduced by Ancel under the name of weak micro-transitivity) in the study of spaces with various forms of homogeneity. It is proved that a d-open action of a Čech-complete group is open. A characterization of Polish SLH spaces using d-openness is given, and it is established that any separable metrizable SLH space has an SLH completion that is a Polish space. Furthermore, the completion is realized in coordination with the completion of the acting group with respect to the two-sided uniformity. A sufficient condition is given for extension of a d-open action to the completion of the space with respect to the maximal equiuniformity with preservation of d-openness. A result of van Mill is generalized, namely, it is proved that any homogeneous CDH metrizable compactum is the only G-compactification of the space of rational numbers for the action of some Polish group. Bibliography: 39 titles.
Computational approaches to homogeneous gold catalysis.
Faza, Olalla Nieto; López, Carlos Silva
2015-01-01
Homogenous gold catalysis has been exploding for the last decade at an outstanding pace. The best described reactivity of Au(I) and Au(III) species is based on gold's properties as a soft Lewis acid, but new reactivity patterns have recently emerged which further expand the range of transformations achievable using gold catalysis, with examples of dual gold activation, hydrogenation reactions, or Au(I)/Au(III) catalytic cycles.In this scenario, to develop fully all these new possibilities, the use of computational tools to understand at an atomistic level of detail the complete role of gold as a catalyst is unavoidable. In this work we aim to provide a comprehensive review of the available benchmark works on methodological options to study homogenous gold catalysis in the hope that this effort can help guide the choice of method in future mechanistic studies involving gold complexes. This is relevant because a representative number of current mechanistic studies still use methods which have been reported as inappropriate and dangerously inaccurate for this chemistry.Together with this, we describe a number of recent mechanistic studies where computational chemistry has provided relevant insights into non-conventional reaction paths, unexpected selectivities or novel reactivity, which illustrate the complexity behind gold-mediated organic chemistry.
Photo-electret effects in homogenous semiconductors
International Nuclear Information System (INIS)
Nabiev, G.A.
2004-01-01
In the given work is shown the opportunity and created the theory of photo-electret condition in semiconductors with Dember mechanism of photo-voltage generation. Photo-electret of such type can be created, instead of traditional and without an external field as a result of only one illumination. Polar factor, in this case, is the distinction of electrons and holes mobility. Considered the multilayered structure with homogeneous photoactive micro areas shared by the layers, which are interfering to alignment of carriers concentration. We consider, that the homogeneous photoactive areas contain deep levels of stick. Because of addition of elementary photo voltage in separate micro photo cells it is formed the abnormal-large photo voltage (APV-effect). Let's notice, that Dember photo-voltage in a separate micro photo-cell ≤kT/q. From the received expressions, in practically important, special case, when quasi- balance between valent zone and stick levels established in much more smaller time, than free hole lifetime, and we received, that photo-voltage is relaxing. Comparing of the received expressions with the laws of photo voltage attenuation in p-n- junction structures shows their identity; the difference is only in absolute meanings of photo voltage. During the illumination in the semiconductor are created the superfluous concentration of charge carriers and part from them stays at deep levels. At de-energizing light there is a gradual generation of carriers located at these levels
Si isotope homogeneity of the solar nebula
Energy Technology Data Exchange (ETDEWEB)
Pringle, Emily A.; Savage, Paul S.; Moynier, Frédéric [Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 (United States); Jackson, Matthew G. [Department of Earth Science, University of California, Santa Barbara, CA 93109 (United States); Barrat, Jean-Alix, E-mail: eapringle@wustl.edu, E-mail: savage@levee.wustl.edu, E-mail: pringle@ipgp.fr, E-mail: moynier@ipgp.fr, E-mail: jackson@geol.ucsb.edu, E-mail: Jean-Alix.Barrat@univ-brest.fr [Université Européenne de Bretagne, Université de Brest, CNRS UMR 6538 (Domaines Océaniques), I.U.E.M., Place Nicolas Copernic, F-29280 Plouzané Cedex (France)
2013-12-20
The presence or absence of variations in the mass-independent abundances of Si isotopes in bulk meteorites provides important clues concerning the evolution of the early solar system. No Si isotopic anomalies have been found within the level of analytical precision of 15 ppm in {sup 29}Si/{sup 28}Si across a wide range of inner solar system materials, including terrestrial basalts, chondrites, and achondrites. A possible exception is the angrites, which may exhibit small excesses of {sup 29}Si. However, the general absence of anomalies suggests that primitive meteorites and differentiated planetesimals formed in a reservoir that was isotopically homogenous with respect to Si. Furthermore, the lack of resolvable anomalies in the calcium-aluminum-rich inclusion measured here suggests that any nucleosynthetic anomalies in Si isotopes were erased through mixing in the solar nebula prior to the formation of refractory solids. The homogeneity exhibited by Si isotopes may have implications for the distribution of Mg isotopes in the solar nebula. Based on supernova nucleosynthetic yield calculations, the expected magnitude of heavy-isotope overabundance is larger for Si than for Mg, suggesting that any potential Mg heterogeneity, if present, exists below the 15 ppm level.
Irregular Homogeneity Domains in Ternary Intermetallic Systems
Directory of Open Access Journals (Sweden)
Jean-Marc Joubert
2015-12-01
Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.
Broad resonances and beta-decay
DEFF Research Database (Denmark)
Riisager, K.; Fynbo, H. O. U.; Hyldegaard, S.
2015-01-01
Beta-decay into broad resonances gives a distorted lineshape in the observed energy spectrum. Part of the distortion arises from the phase space factor, but we show that the beta-decay matrix element may also contribute. Based on a schematic model for p-wave continuum neutron states it is argued...... that beta-decay directly to the continuum should be considered as a possible contributing mechanism in many decays close to the driplines. The signatures in R-matrix fits for such decays directly to continuum states are discussed and illustrated through an analysis of the beta-decay of $^8$B into $2...
Superheavy elements and decay properties
Indian Academy of Sciences (India)
2015-08-04
Aug 4, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 85; Issue 3. Superheavy elements and decay properties. K P Santhosh. Volume 85 Issue 3 ... Author Affiliations. K P Santhosh1. School of Pure and Applied Physics, Kannur University, Swami Anandatheertha Campus, Payyanur 670 327, India ...
International Nuclear Information System (INIS)
Bryman, D.
1983-09-01
Some rare pion and kaon decays, which provide clues to the generation puzzle, are discussed. The π→ eν/π→μ/ν branching ratio test of universality and the status of searches for K + → π + rho anti rho are reviewed
International Nuclear Information System (INIS)
Chizhov, M.V.
1995-07-01
An extended electroweak model with second rank antisymmetric tensor field is proposed. The effective interactions resulting from the exchange of these fields have specific dependence on the transfer momentum. This leads to the introduction of new model-independent muon decay parameters (Mod. Phys. Lett. A9 (1994) 2979), which can be measured experimentally in SLAC and TRIUMF. The new tensor interactions can effect the three-particles semileptonic meson decays (Mod. Phys. Lett. A8 (1993) 2753). In this connection it will be interesting to propose new experiments on K + → l + νγ, K + → π 0 l + ν decays in DAΦNE. The K L -K s mass difference sets constraints on the tensor particles masses. The mass of the lightest tensor particle could be less than the t-quark mass. Therefore the lightest tensor particle may give an additional to the W-boson contribution into the t- quark decay with the same signature. (author). 10 refs, 2 figs
Constraining neutrinoless double beta decay
International Nuclear Information System (INIS)
Dorame, L.; Meloni, D.; Morisi, S.; Peinado, E.; Valle, J.W.F.
2012-01-01
A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.
Superheavy elements and decay properties
Indian Academy of Sciences (India)
2015-08-04
Aug 4, 2015 ... The decay properties of the isotopes of = 115, 117, 118 and 119 have been extensively investigated, focussing on the newly synthesized isotopes within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The half-lives have also been evaluated using the Viola–Seaborg ...
Borcea, R; Aysto, J; Caurier, E; Dendooven, P; Doring, J; Gierlik, M; Gorska, M; Grawe, H; Hellstrom, M; Janas, Z; Jokinen, A; Karny, M; Kirchner, R; La Commara, M; Langanke, K; Martinez-Pinedo, G; Mayet, P; Nieminen, A; Nowacki, F; Penttila, H; Plochocki, A; Rejmund, M; Roeckl, E; Schlegel, C; Schmidt, K; Schwengner, R; Sawicka, M
2001-01-01
The proton-rich isotope Cu-56 was produced at the GSI On-Line Mass Separator by means of the Si-28(S-32, p3n) fusion-evaporation reaction. Its beta -decay properties were studied by detecting beta -delayed gamma rays and protons. A half-Life of 93 +/- 3 ms was determined for Cu-56. Compared to the
Magnetic monopoles and baryon decay
International Nuclear Information System (INIS)
Pak, N.; Panagiotakopoulos, C.; Shafi, Q.
1982-08-01
The scattering of a non-relativistic quark from a GUT monopole is affected by the anomalous magnetic moment of the quark. In order that monopole catalysis of baryon decay can occur, it must be assumed that the anomalous magnetic moment decreases sufficiently rapidly below the QCD scale. (author)
Why measure radon decay products?
International Nuclear Information System (INIS)
Rolle, R.; Lettner, H.
1997-01-01
Combined development in spectrometry, instrumentation and ventilation modelling with its dependence on short- and long-term weather fluctuations renders possible a new, economical metrology for radon decay products. Short-term measurements can, with few restrictions, be converted to annual exposures of an accuracy superior to that from conventional medium-term Rn gas measurements. (orig.) [de