WorldWideScience

Sample records for debye potentials electromagnetic

  1. Debye screening and a Thomas - Fermi model of a dyonic atom in a two potential theory of electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, C. [North Adams State College, MA (United States)

    1993-02-01

    We study the screening of a central Abelian dyon by a surrounding dyon cloud in a two potential theory of electromagnetism. A generalized formula for the Debye screening length is obtained and a Thomas - Fermi Model for a charged cloud surrounding a central Dyonic Core is studied. 20 refs.

  2. Debye potentials, electromagnetic reciprocity and impedance boundary conditions for efficient analytic approximation of coupling impedances in complex heterogeneous accelerator pipes

    Energy Technology Data Exchange (ETDEWEB)

    Petracca, S. [Salerno Univ. (Italy)

    1996-08-01

    Debye potentials, the Lorentz reciprocity theorem, and (extended) Leontovich boundary conditions can be used to obtain simple and accurate analytic estimates of the longitudinal and transverse coupling impedances of (piecewise longitudinally uniform) multi-layered pipes with non simple transverse geometry and/or (spatially inhomogeneous) boundary conditions. (author)

  3. A gauge invariant Debye mass for the complex heavy-quark potential

    CERN Document Server

    Burnier, Yannis

    2016-01-01

    The concept of a screening mass is a powerful tool to simplify the intricate physics of in-medium test charges surrounded by light charge carriers. While it has been successfully used to describe electromagnetic properties, its definition and computation in QCD is plagued by questions of gauge invariance and the presence of non-perturbative contributions from the magnetic sector. Here we present a recent alternative definition of a gauge invariant Debye mass parameter following closely the original idea of Debye and Hueckel. Our test charges are a static heavy quark-antiquark pair whose complex potential and its in-medium modification can be extracted using lattice QCD. By combining in a generalized Gauss-Law the non-perturbative aspects of quark binding with a perturbative ansatz for the medium effects, we succeed to describe the lattice values of the potential with a single temperature dependent parameter, in turn identified with a Debye mass. We find that its behavior, as evaluated in a recent quenched lat...

  4. A generalized Debye source approach to electromagnetic scattering in layered media

    Energy Technology Data Exchange (ETDEWEB)

    O’Neil, Michael, E-mail: oneil@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012 (United States)

    2014-01-15

    The standard solution to time-harmonic electromagnetic scattering problems in homogeneous layered media relies on the use of the electric field dyadic Green's function. However, for small values of the governing angular frequency ω, evaluation of the electric field using this Green's function exhibits numerical instability. In this short note, we provide an alternative approach which is immune from this low-frequency breakdown as ω → 0. Our approach is based on the generalized Debye source representation of Maxwell fields. Using this formulation, the electric and magnetic fields gracefully decouple in the static limit, a behavior similar to that of the classical Lorenz-Debye-Mie representation of Maxwell fields in spherical geometries. We derive extensions of both the generalized Deybe source and Lorenz-Debye-Mie representations to planar geometries, as well as provide equations for the solution of scattering from a perfectly conducting half-space and in layered media using a Sommerfeld-like approach. These formulas are stable as ω tends to zero, and offer alternatives to the electric field dyadic Green's function.

  5. Electromagnetic spectral properties and Debye screening of a strongly magnetized hot medium

    CERN Document Server

    Bandyopadhyay, Aritra; Mustafa, Munshi G

    2016-01-01

    We have evaluated the electromagnetic spectral function and its spectral properties by computing the one-loop photon polarization tensor in presence of magnetic field, particularly in a strong field approximation compared to the thermal scale. When the magnetic scale is higher than the thermal scale the lowest Landau level (LLL) becomes effectively (1+1) dimensional strongly correlated system that provides a kinematical threshold based on the mass scale. Beyond this threshold the photon strikes the LLL and the spectral strength starts with a high value due to the dimensional reduction and then falls off with increase of the photon energy due to LLL dynamics in a strong field approximation. This strongly enhances the dilepton rate over the thermal perturbative leading order (Born) rate at very low invariant mass. We have also investigated the electromagnetic screening by computing the Debye screening mass and it depends distinctively on three different scales (mass of the quasiquark, temperature and the magnet...

  6. Solution of the Energy Level of Hydrogen-Like Atom for the Debye Shidlding Potential

    Institute of Scientific and Technical Information of China (English)

    HUXian-Quan; HUWen-Jiang; 等

    2002-01-01

    The first-order revision and the approximation analytical formula of the energy levels for hydrogen-like atoms under the condition of Debye shielding potential are achieved by means of the Rayleigh-Schroedinger perturbation theory.meanwhile,the corresponding recurrence relations are obtained from the use of the solution of power series,Based on the above solutions and with the use of energy consistent method the equivalent value of second-order reversion under the condition of Debye shielding potential is produced as well and the esult is compared with the data obtained by the numerical method.Besides,the critical bond-state and corresponding cut-off conditions are discussed.

  7. Complex heavy-quark potential and Debye mass in a gluonic medium from lattice QCD

    CERN Document Server

    Burnier, Yannis

    2016-01-01

    We improve and extend our study of the complex in-medium heavy quark potential and its Debye mass $m_D$ in a gluonic medium with a finer scan around the deconfinement transition and newly generated ensembles closer to the thermodynamic limit. On the lattices with larger physical volume, Re[V] shows signs of screening, i.e. a finite $m_D$, only in the deconfined phase, reminiscent of a genuine phase transition. Consistently Im[V] exhibits nonzero values also only above $T_C$. We compare the behavior of Re[V] with the color singlet free-energies that have been used historically to extract the Debye mass. An effective coupling constant is computed to assess the residual influence of the confining part of the potential at $T>0$. Our previous finding of a gradual screening of Re[V] around $T_C$ on finer lattices is critically reassessed and interpreted to originate from finite volume artifacts that affect the deployed $\\beta=7$, $\\xi_b=3.5$ parameter set at $N_s=32$.

  8. Debye screening

    Science.gov (United States)

    Brydges, David C.; Federbush, Paul

    1980-10-01

    The existence and exponential clustering of correlation functions for a classical coulomb system at low density or high temperature are proven using methods from constructive quantum field theory, the sine gordon transformation and the Glimm, Jaffe, Spencer expansion about mean field theory. This is a vindication of a belief of long standing among physicists, known as Debye screening. That is, because of special properties of the coulomb potential, the configurations of significant probability are those in which the long range parts of r -1 are mostly cancelled, leaving an effective exponentially decaying potential acting between charge clouds. This paper generalizes a previous paper of one of the authors in which these results were obtained for a special lattice system. The present treatment covers the continuous mechanics situation, with essentially arbitrary short range forces and charge species. Charge symmetry is not assumed.

  9. Streaming potential and electroviscous effects in soft nanochannels beyond Debye-Hückel linearization.

    Science.gov (United States)

    Chen, Guang; Das, Siddhartha

    2015-05-01

    In this paper we model the streaming potential (SP) and the electroviscous effects (EVE) in a soft nanochannel for system parameters that forbid the use of linearized Debye-Hückel (DH) treatment. This linear treatment, which is an essential ingredient in electrokinetics modeling, necessitates that the system parameters must be such that the electrostatic potential in the entire system must be much smaller than k(B)T/ez (where k(B)T is the thermal energy, z is the ion valence and e is the electronic charge). In our previous paper we provided analytical results for the SP and the EVE in a soft nanochannel considering the DH treatment. Therefore, in this paper we extend this previous calculation; our numerical approach allows studying much wider ranges of parameters. This numerical treatment is based on solution of an integro-differential equation governing the flow velocity; to the best of our knowledge such an approach has never been previously used for SP modeling. In our previous study, we have witnessed an enhanced SP and an enhanced EVE for the soft nanochannel for the case of small electrostatic potential. Here our numerical results help us predict a breakdown of these trends for the case of larger potentials. These findings are important to probe the problem of SP and EVE in soft nanochannels across a sufficiently large range of electrostatic potentials, with implications in issues such as electrochemomechanical energy conversion.

  10. Free-Free Transitions in the Presence of Laser Fields and Debye Potential at Very Low Incident Electron Energies

    Science.gov (United States)

    Bhatia, Anand

    2012-01-01

    We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.

  11. Free-free transitions in the presence of laser fields and Debye potential at very low incident electron energies

    Science.gov (United States)

    Bhatia, Anand

    2013-05-01

    We study the free-free transition in e-He+ system in the ground state and embedded in a Debye potential in the presence of an external laser field which is monochromatic, linearly polarized and homogeneous, at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function. The scattering function for the incident electron on the target is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transitions for absorption/emission of a single photon or no photon exchange. The cross sections for e-He+ system are much larger than e-H system. The results will be presented at the conference.

  12. The electromagnetic potentials without the gauge transformations

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, Augusto; Chubykalo, Andrey; Rodriguez, Alejandro Gutierrez; Hernandez, Maria de los Angeles [Universidad Autonoma de Zacatecas (Mexico). Unidad Academica de Fisica

    2011-07-01

    In this note we show that the use of the Helmholtz theorem lead to derivation of uniquely determined electromagnetic potentials without making use of the gauge transformation. These potentials correspond to the potentials obtained by imposing so-called Coulomb condition (gauge) in the traditional approach. We show that the electromagnetic field comprises two components, one of which is characterized by its instantaneous action at a distance, whereas another one propagates in the retarded form with the velocity of light. One of the theoretical consequences of this new definition is that the electromagnetic potentials are real physical quantities as well as the electric and magnetic fields. We show that the reality of the electromagnetic potentials in quantum-mechanics is also a property of these potentials in the classical electrodynamics. Equations for potentials obtained in our approach are already separated with respect to vector and scalar potentials, so there is no necessity in using the gauge transformations and, accordingly, in making use of either Lorentz or Coulomb condition. The vector potential and scalar potential introduced thus are uniquely defined. The scalar potential is a generator of the so called instantaneous action at a distance, whereas the solenoidal vector potential can propagate with the velocity of light and it is responsible for the retarded action of the electromagnetic field. (author)

  13. On the Problem of Ambiguity of Electromagnetic Potential

    CERN Document Server

    Gritsunov, A V

    2013-01-01

    In the self-sufficient potential formalism, treating all electromagnetic phenomena as natural or forced oscillations of some distributed electromagnetic oscillating system (Minkowski space-time), the electromagnetic potential must be considered as some relative measure describing deviation of the system from its "undisturbed" state (when both natural and forced oscillations are absent). Therefore, there is no ambiguity in the gauge of one: all components of the potential four-vector are asymptotically verging towards zero while the distance from all free charges and currents enlarges. Such interpretation turns the electromagnetic potential into a physically real value.

  14. The Potential-Vortex Theory of the Electromagnetic Field

    CERN Document Server

    Tomilin, A K

    2010-01-01

    Maxwell-Lorenz theory describes only vortex electromagnetic processes. Potential component of the magnetic field is usually excluded by the introduction of mathematical terms: Coulomb and Lorenz gauges. Proposed approach to the construction of the four-dimensional electrodynamics based on the total (four-dimensional) field theory takes into account both vortex and potential components of its characteristics. It is shown that potential components of the electromagnetic field have physical content. System of modified (generalized) Maxwell equations is written. With their help contradictions usually appearing while describing the distribution of electromagnetic waves, are eliminated. Works of other authors obtained similar results are presented and analyzed.

  15. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    1972-01-01

    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  16. On the accuracy of the Debye shielding

    CERN Document Server

    Martínez-Fuentes, M A

    2012-01-01

    The expression for the Debye shielding in plasma physics is usually derived under the assumptions that the plasma particles are weakly coupled, so their kinetic energy is much larger than the potential energy between them, and that the velocity distributions of the plasma species are Maxwellian. The first assumption also establishes that the plasma parameter ND, the number of particles within a sphere with a Debye radius should be greater than 1, and determines the difference between weakly and strongly coupled plasmas. Under such assumptions, Poisson's equation can be linearised, and a simple analytic expression obtained for the electrostatic potential. However, textbooks rarely discuss the accuracy of this approximation. In this work we compare the linearised solution with the exact one, obtained numerically, and show that the linearisation, which underestimates the exact solution, is reasonably good even for ND ~ 40. We give quantitative criteria to set the limit of the approximation when the number of par...

  17. Electromagnetic fields and potentials generated by massless charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Azzurli, Francesco, E-mail: francesco.azzurli@gmail.com [Scuola Galileiana di Studi Superiori, Università degli Studi di Padova (Italy); Lechner, Kurt, E-mail: lechner@pd.infn.it [Dipartimento di Fisica e Astronomia, Università degli Studi di Padova (Italy); INFN, Sezione di Padova, Via F. Marzolo, 8, 35131 Padova (Italy)

    2014-10-15

    We provide for the first time the exact solution of Maxwell’s equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Liénard–Wiechert field the electromagnetic field acquires singular δ-like contributions whose support and dimensionality depend crucially on whether the motion is (a) linear, (b) accelerated unbounded, (c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a δ-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a regular principal-part type distribution diverging on the same singularity-string. - Highlights: • First exact solution of Maxwell’s equations for massless charges in arbitrary motion. • Explicit expressions of electromagnetic fields and potentials. • Derivations are rigorous and based on distribution theory. • The form of the field depends heavily on whether the motion is bounded or unbounded. • The electromagnetic field contains unexpected Dirac-delta-function contributions.

  18. Vector Potential, Electromagnetic Induction and "Physical Meaning"

    Science.gov (United States)

    Giuliani, G.

    2010-01-01

    A forgotten experiment by Andre Blondel (1914) proves, as held on the basis of theoretical arguments in a previous paper, that the time variation of the magnetic flux is not the cause of the induced emf; the physical agent is instead the vector potential through the term [equation omitted] (when the induced circuit is at rest). The "good…

  19. Electromagnetic fields and potentials generated by massless charged particles

    CERN Document Server

    Azzurli, Francesco

    2014-01-01

    We provide for the first time the exact solution of Maxwell's equations for a massless charged particle moving on a generic trajectory at the speed of light. In particular we furnish explicit expressions for the vector potential and the electromagnetic field, which were both previously unknown, finding that they entail different physical features for bounded and unbounded trajectories. With respect to the standard Lienard-Wiechert field the electromagnetic field acquires singular delta-like contributions whose support and dimensionality depend crucially on whether the motion is a) linear, b) accelerated unbounded, c) accelerated bounded. In the first two cases the particle generates a planar shock-wave-like electromagnetic field traveling along a straight line. In the second and third cases the field acquires, in addition, a delta-like contribution supported on a physical singularity-string attached to the particle. For generic accelerated motions a genuine radiation field is also present, represented by a re...

  20. 德拜色散媒质的三维时域电磁逆散射技术%Three-Dimensional Time-Domain Electromagnetic Inverse Scattering Technique for Debye Dispersive Media

    Institute of Scientific and Technical Information of China (English)

    刘广东; 余广群; 范士民

    2015-01-01

    生物组织、土壤、水等媒质的电特性是频率相关的(称为色散媒质),常利用单极德拜( Debye)模型描述。为重建这一类媒质的色散特性,基于泛函分析和变分法,提出一种三维(3⁃D)时域电磁(EM)逆散射技术,主要流程为:①根据最小二乘准则,转化逆散射问题为约束最小化问题;②应用罚函数法,转化约束最小化问题为无约束最小化问题;③通过变分计算,解析导出梯度( Fréchet导数)表达式;④利用梯度法求解。此外,引入一阶吉洪诺夫( Tikhonov)正则化以应对逆问题的病态特性和噪声影响。数值应用中,将提出的方法应用到一个简单的三维癌变乳房模型,借助PRP共轭梯度( CG)算法和时域有限差分( FDTD)法,仿真结果初步证实本文方法的可行性、有效性和鲁棒性。%Dielectric properties of a variety of media, such as biological tissues, soil, and water, are frequency⁃dependent, which are depicted frequently by a single⁃pole Debye model. A three⁃dimensional ( 3⁃D ) time⁃domain electromagnetic inverse scattering technique, based on functional analysis and variation method, is developed to reconstruct dispersive properties of media. Main procedures of the technique are:①Inverse scattering problem is turned into a constrained minimization problem, according to the least squares criterion; ② Resulting problem is translated into an unconstrained minimization one, using a penalty function method;③ Closed Fréchet derivatives of Lagrange function with respect to properties are derived, based on calculus of variations;④ Resulting problem is solved with any gradient⁃based algorithm. Furthermore, a first⁃order Tikhonov�s regularization is adopted to cope with noise and ill⁃posedness of the problem. In numerical experiment, the technique is applied to a simple 3⁃D cancerous breast model, with Polak

  1. A review of quantum collision dynamics in Debye plasmas

    CERN Document Server

    Janev, R K; Wang, Jian Guo

    2016-01-01

    Hot, dense plasmas exhibit screened Coulomb interactions, resulting from the collective effects of correlated many-particle interactions. In the lowest particle correlation order (pair-wise correlations), the interaction between charged plasma particles reduces to the Debye-H\\"uckel (Yukawa-type) potential, characterized by the Debye screening length D. Due to the importance of Coulomb interaction screening in dense laboratory and astrophysical plasmas, hundreds of theoretical investigations have been carried out in the past few decades on the plasma screening effects on the electronic structure of atoms and their collision processes employing the Debye-H\\"uckel screening model. The present article aims at providing a comprehensive review of the recent studies in atomic physics in Debye plasmas. Specifically, the work on atomic electronic structure, photon excitation and ionization, electron/positron impact excitation and ionization, and excitation, ionization and charge transfer of ion-atom/ion collisions wi...

  2. Opinion on potential health effects of exposure to electromagnetic fields.

    Science.gov (United States)

    2015-09-01

    In January 2015, the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) published its final opinion on "Potential health effects of exposure to electromagnetic fields." The purpose of this document was to update previous SCENIHR opinions in the light of recently available information since then, and to give special consideration to areas that had not been dealt with in the previous opinions or in which important knowledge gaps had been identified.

  3. Energy harvesting potential of tuned inertial mass electromagnetic transducers

    Science.gov (United States)

    Asai, Takehiko; Araki, Yoshikazu; Ikago, Kohju

    2017-02-01

    The demand for developing renewable energy technologies has been growing in today's society. As one of promising renewable energy sources, large-scale energy harvesting from structural vibrations employing electromagnetic transducers has recently been proposed and considerable effort has been devoted to increase the power generation capability. In this paper, we introduce the mechanism of a tuned inertial mass electromagnetic transducer (TIMET), which can absorb vibratory energy more efficiently by tuning the parameters to adjust the system. Then we propose a new vibratory energy harvester with the TIMET and determine the parameter values for the device with a simple static admittance (SA) control law to maximize the energy harvested from a stationary stochastic disturbance. To investigate the energy harvesting potential of the TIMET further, the performance-guaranteed (PG) control and the LQG control proposed in the literature are applied as well. Then the numerical simulation studies are carried out and the effectiveness of the proposed energy harvester is examined by comparing the traditional electromagnetic transducers.

  4. Topics in electromagnetic, acoustic, and potential scattering theory

    Science.gov (United States)

    Nuntaplook, Umaporn

    With recent renewed interest in the classical topics of both acoustic and electromagnetic aspects for nano-technology, transformation optics, fiber optics, metamaterials with negative refractive indices, cloaking and invisibility, the topic of time-independent scattering theory in quantum mechanics is becoming a useful field to re-examine in the above contexts. One of the key areas of electromagnetic theory scattering of plane electromagnetic waves --- is based on the properties of the refractive indices in the various media. It transpires that the refractive index of a medium and the potential in quantum scattering theory are intimately related. In many cases, understanding such scattering in radially symmetric media is sufficient to gain insight into scattering in more complex media. Meeting the challenge of variable refractive indices and possibly complicated boundary conditions therefore requires accurate and efficient numerical methods, and where possible, analytic solutions to the radial equations from the governing scalar and vector wave equations (in acoustics and electromagnetic theory, respectively). Until relatively recently, researchers assumed a constant refractive index throughout the medium of interest. However, the most interesting and increasingly useful cases are those with non-constant refractive index profiles. In the majority of this dissertation the focus is on media with piecewise constant refractive indices in radially symmetric media. The method discussed is based on the solution of Maxwell's equations for scattering of plane electromagnetic waves from a dielectric (or "transparent") sphere in terms of the related Helmholtz equation. The main body of the dissertation (Chapters 2 and 3) is concerned with scattering from (i) a uniform spherical inhomogeneity embedded in an external medium with different properties, and (ii) a piecewise-uniform central inhomogeneity in the external medium. The latter results contain a natural generalization of

  5. Electromagnetic potentials basis for energy density and power flux

    Science.gov (United States)

    Puthoff, H. E.

    2016-09-01

    In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress-energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.

  6. Electromagnetism

    CERN Multimedia

    Without the electromagnetic force, you would not be solid. The atoms of your body are held together by electromagnetism: negatively charged electrons are held around the positively charged nucleus. Atoms share electrons to form molecules, so building up the structure of matter. As its name suggests, electromagnetism has a double nature: a moving electric charge creates a magnetic field. This intimate connection between electricity and magnetism was described by James Maxwell in 1864. The electromagnetic force can be both positive and negative : opposite charges attract, whereas like charges repel. Electromagnetic radiation, such as radio, microwaves, light and X-rays, is emitted by charges when they are made to move. For example, an oscillating current in a wire emits radio waves. Text for the interactive: Why do the needles move when you switch on the current ?

  7. 多极德拜色散媒质的时域电磁逆散射改进技术%An Improved Time-Domain Electromagnetic Inverse Scattering Technique for Multi-Pole Debye Dispersive Media

    Institute of Scientific and Technical Information of China (English)

    刘广东; 葛新同

    2015-01-01

    在已有的经验模型中,多极德拜(Debye)模型最适合高精地描述生物组织、土壤、水等媒质的色散特性.为了同时反演这类媒质的电磁参数,本文提出了一种时域逆散射改进技术:分别应用迭代法和吉洪诺夫(Tikhonov)正则化技术克服逆问题的非线性和病态性困难;解析导出了目标泛函关于目标参数的梯度;迭代重建过程中,产生的正演、反演子问题分别选用时域有限差分(FDTD)法、共轭梯度(CG)法求解.噪声环境下,通过两个一维(1-D)的数值算例,初步证实了该技术的可行性和鲁棒性.

  8. Brillouin precursors in Debye media

    CERN Document Server

    Macke, Bruno

    2015-01-01

    We theoretically study the formation of Brillouin precursors in Debye media. We point out that the precursors are only visible at propagation distances such that the impulse response of the medium is essentially determined by the frequency-dependence of its absorption and is practically Gaussian. By simple convolution, we then obtain explicit analytical expressions of the transmitted waves generated by reference incident waves, distinguishing precursor and main signal by physical arguments. These expressions are in good agreement with the signals obtained in numerical or real experiments performed on water and explain some features of these signals that remained mysterious or unnoticed. In addition, we show quite generally that the shape of the Brillouin precursor appearing alone at large enough propagation distance and the law giving its amplitude as a function of this distance do not depend on the precise form of the incident wave but only on its integral properties. The incidence of a static conductivity o...

  9. Nonlinear Debye screening in strongly-coupled plasmas

    CERN Document Server

    Sarmah, D; Tessarotto, M

    2006-01-01

    An ubiquitous property of plasmas is the so-called Debye shielding of the electrostatic potential. Important aspects of Debye screening concern, in particular, the investigation of non-linear charge screening effects taking place in strongly-coupled plasmas, that imply a reduction of the effective charge characterizing the Debye-H\\"{u}ckel potential. These effects are particularly relevant in dusty plasmas which are characterized by high-Z particles. The investigation of the effective interactions of these particles has attracted interest in recent years especially for numerical simulations. In this work we intend to analyze the consistency of the traditional mathematical model for the Debye screening. In particular, we intend to prove that the 3D Poisson equation involved in the DH model does not admit strong solutions. For this purpose a modified model is proposed which takes into account the effect of local plasma sheath (i.e., the local domain near test particles where the plasma must be considered discre...

  10. Polarization-mediated Debye-screening of surface potential fluctuations in dual-channel AlN/GaN high electron mobility transistors

    Science.gov (United States)

    Deen, David A.; Miller, Ross A.; Osinsky, Andrei V.; Downey, Brian P.; Storm, David F.; Meyer, David J.; Scott Katzer, D.; Nepal, Neeraj

    2016-12-01

    A dual-channel AlN/GaN/AlN/GaN high electron mobility transistor (HEMT) architecture is proposed, simulated, and demonstrated that suppresses gate lag due to surface-originated trapped charge. Dual two-dimensional electron gas (2DEG) channels are utilized such that the top 2DEG serves as an equipotential that screens potential fluctuations resulting from surface trapped charge. The bottom channel serves as the transistor's modulated channel. Two device modeling approaches have been performed as a means to guide the device design and to elucidate the relationship between the design and performance metrics. The modeling efforts include a self-consistent Poisson-Schrodinger solution for electrostatic simulation as well as hydrodynamic three-dimensional device modeling for three-dimensional electrostatics, steady-state, and transient simulations. Experimental results validated the HEMT design whereby homo-epitaxial growth on free-standing GaN substrates and fabrication of the same-wafer dual-channel and recessed-gate AlN/GaN HEMTs have been demonstrated. Notable pulsed-gate performance has been achieved by the fabricated HEMTs through a gate lag ratio of 0.86 with minimal drain current collapse while maintaining high levels of dc and rf performance.

  11. Electromagnetic Lead Screw for Potential Wave Energy Application

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2014-01-01

    This paper presents a new type electromagnetic lead screw (EMLS) intended for wave energy application. Similar to the mechanical lead screw, this electromagnetic version can transfer slow linear motion to high-rotational motion, offering gearing effects. Compared with the existing pure magnetic...... lead screw (MLS) employing permanent magnets only, the new EMLS proposed uses dc current to provide the required helical-shape magnetic field, offering a much simpler, robust structure compared with the MLS. The working principle and the performances of this EMLS are analyzed in this paper. Comparison...

  12. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  13. Review of quantum collision dynamics in Debye plasmas

    Directory of Open Access Journals (Sweden)

    R.K. Janev

    2016-09-01

    Full Text Available Hot, dense plasmas exhibit screened Coulomb interactions, resulting from the collective effects of correlated many-particle interactions. In the lowest particle correlation order (pair-wise correlations, the interaction between charged plasma particles reduces to the Debye–Hückel (Yukawa-type potential, characterized by the Debye screening length. Due to the importance of Coulomb interaction screening in dense laboratory and astrophysical plasmas, hundreds of theoretical investigations have been carried out in the past few decades on the plasma screening effects on the electronic structure of atoms and their collision processes employing the Debye–Hückel screening model. The present article aims at providing a comprehensive review of the recent studies in atomic physics in Debye plasmas. Specifically, the work on atomic electronic structure, photon excitation and ionization, electron/positron impact excitation and ionization, and excitation, ionization and charge transfer of ion-atom/ion collisions will be reviewed.

  14. Debye Entropic Force and Modified Newtonian Dynamics*

    Institute of Scientific and Technical Information of China (English)

    LI Xin; CHANG Zhe

    2011-01-01

    Verlinde has suggested that the gravity has an entropic origin, and a gravitational system could be regarded as a thermodynamical system.It is well-known that the equipartition law of energy is invalid at very low temperature.Therefore, entropic force should be modified while the temperature of the holographic screen is very low.It is shown that the modified entropic force is proportional to the square of the acceleration, while the temperature of the holographic screen is much lower than the Debye temperature TD.The modified entropic force returns to the Newton's law of gravitation while the temperature of the holographic screen is much higher than the Debye temperature.The modified entropic force is connected with modified Newtonian dynamics (MOND).The constant ao involved in MOND is linear in the Debye frequency ωD, which can be regarded as the largest frequency of the bits in screen.We find that there do have a strong connection between MOND and cosmology in the framework of Verlinde's entropic force, if the holographic screen is taken to be bound of the Universe.The Debye frequency is linear in the Hubble constant Ho.

  15. Interparticle potential energy for D-dimensional electromagnetic models from the corresponding scalar ones

    CERN Document Server

    Accioly, Antonio; Correia, Gilson; Brito, Gustavo; de Almeida, José; Herdy, Wallace

    2016-01-01

    Using a method based on the generating functional plus a kind of "correspondence principle" --- which acts as a bridge between the electromagnetic and scalar fields --- it is shown that the interparticle potential energy concerning a given $D$-dimensional electromagnetic model can be obtained in a simple way from that related to the corresponding scalar system. The $D$-dimensional electromagnetic potential for a general model containing higher derivatives is then found from the corresponding scalar one and the behavior of the former is analyzed at large as well as small distances. In addition, we investigate the presence of ghosts in the four-dimensional version of the potential associated with the model above and analyze the reason why the Coulomb singularity is absent from this system. The no-go theorem by Ostrogradski is demystified as well.

  16. Electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hwan; Lee, Don Bae

    1999-02-15

    This book gives descriptions of vector analysis on vector algebra and vector double, coulomb's law, electric intensity, Gauss theory and Gauss divergence theorem, the avant-garde and a potential difference, conductor in vacuum, a dielectric and capacitance like dielectric and polarization, equation of poisson and Laplace, coulomb's law, property of a magnetic substance, magnetic attraction of current, magnetic circuit, inductance and application of a magnetic field, Faraday's law and Maxwell equation, plane wave and transmission cable.

  17. H2+ embedded in a Debye plasma: Electronic and vibrational properties

    CERN Document Server

    Angel, M L

    2010-01-01

    The effect of plasma screening on the electronic and vibrational properties of the H2+ molecular ion was analyzed within the Born-Oppenheimer approximation. When a molecule is embedded in a plasma, the plasma screens the electrostatic interactions. This screening is accounted for in the Schr\\"odinger equation by replacing the Coulomb potentials with Yukawa potentials that incorporate the Debye length as a screening parameter. Variational expansions in confocal elliptical coordinates were used to calculate energies of the 1ssg and the 2psu states over a range of Debye lengths and bond distances. When the Debye length is comparable to the equilibrium bond distance, the plasma screening reshapes the potential energy curve. Expectation values, dipole polarizabilities and spectroscopic constants were calculated for the 1ssg state.

  18. An Investigation on the He−(1s2s2 2S Resonance in Debye Plasmas

    Directory of Open Access Journals (Sweden)

    Arijit Ghoshal

    2017-01-01

    Full Text Available The effect of Debye plasma on the 1 s 2 s 2 2 S resonance states in the scattering of electron from helium atom has been investigated within the framework of the stabilization method. The interactions among the charged particles in Debye plasma have been modelled by Debye–Huckel potential. The 1 s 2 s excited state of the helium atom has been treated as consisting of a H e + ionic core plus an electron moving around. The interaction between the core and the electron has then been modelled by a model potential. It has been found that the background plasma environment significantly affects the resonance states. To the best of our knowledge, such an investigation of 1 s 2 s 2 2 S resonance states of the electron–helium system embedded in Debye plasma environment is the first reported in the literature.

  19. Slowdown of microparticles by an electromagnetic potential well deepening over time

    CERN Document Server

    Izmailov, Azad Ch

    2016-01-01

    We analyze possible motion control of microparticles by means of external electromagnetic fields which induce potential wells having fixed spatial distribution but deepening over time up to some limit. It is assumed that given particles are under conditions of the high vacuum and forces acting on these particles are not dissipative. We have established slowdown of comparatively fast particles as a result of their transit through considered potential wells. This process is demonstrated on example of the nonresonance laser beam with the intensity amplifying over time. More detailed research of particle slowdown in such electromagnetic fields is carried out on the basis of simple analytical relationships obtained from basic equations of classical mechanics for the model of the one-dimensional rectangular potential well deepening over time. Method for cooling of particles, demonstrated in the present work, may be applied for essential increase of spectroscopy resolution of various microparticles, including in def...

  20. Using Helicopter Electromagnetic Surveys to Identify Potential Hazards at Mine Waste Impoundments

    Energy Technology Data Exchange (ETDEWEB)

    Hammack, R.W.

    2008-01-01

    In July 2003, helicopter electromagnetic surveys were conducted at 14 coal waste impoundments in southern West Virginia. The purpose of the surveys was to detect conditions that could lead to impoundment failure either by structural failure of the embankment or by the flooding of adjacent or underlying mine works. Specifically, the surveys attempted to: 1) identify saturated zones within the mine waste, 2) delineate filtrate flow paths through the embankment or into adjacent strata and receiving streams, and 3) identify flooded mine workings underlying or adjacent to the waste impoundment. Data from the helicopter surveys were processed to generate conductivity/depth images. Conductivity/depth images were then spatially linked to georeferenced air photos or topographic maps for interpretation. Conductivity/depth images were found to provide a snapshot of the hydrologic conditions that exist within the impoundment. This information can be used to predict potential areas of failure within the embankment because of its ability to image the phreatic zone. Also, the electromagnetic survey can identify areas of unconsolidated slurry in the decant basin and beneath the embankment. Although shallow, flooded mineworks beneath the impoundment were identified by this survey, it cannot be assumed that electromagnetic surveys can detect all underlying mines. A preliminary evaluation of the data implies that helicopter electromagnetic surveys can provide a better understanding of the phreatic zone than the piezometer arrays that are typically used.

  1. Nonlinear Model of non-Debye Relaxation

    CERN Document Server

    Zon, Boris A

    2010-01-01

    We present a simple nonlinear relaxation equation which contains the Debye equation as a particular case. The suggested relaxation equation results in power-law decay of fluctuations. This equation contains a parameter defining the frequency dependence of the dielectric permittivity similarly to the well-known one-parameter phenomenological equations of Cole-Cole, Davidson-Cole and Kohlrausch-Williams-Watts. Unlike these models, the obtained dielectric permittivity (i) obeys to the Kramers-Kronig relation; (ii) has proper behaviour at large frequency; (iii) its imaginary part, conductivity, shows a power-law frequency dependence \\sigma ~ \\omega^n where n1 is also observed in several experiments. The nonlinear equation proposed may be useful in various fields of relaxation theory.

  2. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    CERN Document Server

    Galilo, Bogdan V

    2011-01-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalysing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions ...

  3. The plasma-solid equilibrium an in Debye plasma

    CERN Document Server

    Celebonovic, V

    2002-01-01

    Using the Salpeter criterion and known results from solid state physics,the Debye temperature of a solid in equilibrium with a Debye-Huckel plasma was calculated.This result could have interesting applications in studies of various kinds of interstellar clouds.

  4. The Study of Electromagnetic Scattering by a Non-perfectly Conductor in Chiral Media by Potential Theory

    Institute of Scientific and Technical Information of China (English)

    GAO TIAN-LING; LIU QIANG; Ma Fu-ming

    2012-01-01

    This paper is concerned with the electromagnetic scattering by a nonperfectly conductor obstacle in chiral environment.A two-dimensional mathematical model is established.The existence and uniqueness of the problem are discussed by potential theory.

  5. A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties

    Science.gov (United States)

    Clegg, J.; Robinson, M. P.

    2012-10-01

    Models of tissue dielectric properties (permittivity and conductivity) enable the interactions of tissues and electromagnetic fields to be simulated, which has many useful applications in microwave imaging, radio propagation, and non-ionizing radiation dosimetry. Parametric formulae are available, based on a multi-pole model of tissue dispersions, but although they give the dielectric properties over a wide frequency range, they do not convert easily to the time domain. An alternative is the multi-pole Debye model which works well in both time and frequency domains. Genetic algorithms are an evolutionary approach to optimization, and we found that this technique was effective at finding the best values of the multi-Debye parameters. Our genetic algorithm optimized these parameters to fit to either a Cole-Cole model or to measured data, and worked well over wide or narrow frequency ranges. Over 10 Hz-10 GHz the best fits for muscle, fat or bone were each found for ten dispersions or poles in the multi-Debye model. The genetic algorithm is a fast and effective method of developing tissue models that compares favourably with alternatives such as the rational polynomial fit.

  6. A genetic algorithm for optimizing multi-pole Debye models of tissue dielectric properties.

    Science.gov (United States)

    Clegg, J; Robinson, M P

    2012-10-01

    Models of tissue dielectric properties (permittivity and conductivity) enable the interactions of tissues and electromagnetic fields to be simulated, which has many useful applications in microwave imaging, radio propagation, and non-ionizing radiation dosimetry. Parametric formulae are available, based on a multi-pole model of tissue dispersions, but although they give the dielectric properties over a wide frequency range, they do not convert easily to the time domain. An alternative is the multi-pole Debye model which works well in both time and frequency domains. Genetic algorithms are an evolutionary approach to optimization, and we found that this technique was effective at finding the best values of the multi-Debye parameters. Our genetic algorithm optimized these parameters to fit to either a Cole-Cole model or to measured data, and worked well over wide or narrow frequency ranges. Over 10 Hz-10 GHz the best fits for muscle, fat or bone were each found for ten dispersions or poles in the multi-Debye model. The genetic algorithm is a fast and effective method of developing tissue models that compares favourably with alternatives such as the rational polynomial fit.

  7. Debye screening length effects of nanostructured materials

    CERN Document Server

    Ghatak, Kamakhya Prasad

    2014-01-01

    This monograph solely investigates the Debye Screening Length (DSL) in semiconductors and their nano-structures. The materials considered are quantized structures of non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V and Bismuth Telluride respectively. The DSL in opto-electronic materials and their quantum confined counterparts is studied in the presence of strong light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The suggestions for the experimental determination of 2D and 3D DSL and the importance of measurement of band gap in optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring photon induced physical properties) have also been discussed in this context. The influence of crossed electric and quantizing magnetic fields on the DSL and the DSL in heavily doped ...

  8. The potential effects of electromagnetic fields generated by cabling between offshore wind turbines upon elasmobranch fishes

    Energy Technology Data Exchange (ETDEWEB)

    Gill, A.B.; Taylor, H

    2001-09-01

    This report details research supervised by Dr Andrew Gill, at the University of Liverpool, on behalf of the Countryside Council for Wales to assess the potential effects of electromagnetic fields generated by cabling between offshore wind turbines upon Elasmobranch Fishes. The report contains four main sections: 1. A review of the literature relating to electroreception in elasmobranchs and relevant literature on offshore wind farm developments. 2. A review of the current situation regarding offshore wind developments focussing on their environmental impacts with particular implications for British elasmobranches. 3. A summary of the current status and extent of relevant biological knowledge of British elasmobranchs. 4. A pilot study which experimentally demonstrates the response of the benthic elasmobranch, the dogfish Scyliorhinus canicula, to two electric fields, one simulating prey and the other the maximum potential output from unburied undersea cables. Finally, the report provides recommendations for future research considerations.

  9. Static electric dipole polarizability of lithium atoms in Debye plasmas

    Institute of Scientific and Technical Information of China (English)

    Ning Li-Na; Qi Yue-Ying

    2012-01-01

    The static electric dipole polarizabilities of the ground state and n ≤ 3 excited states of a lithium atom embedded in a weekly coupled plasma environment are investigated as a function of the plasma screening radium.The plasma screening of the Coulomb interaction is described by the Debye-Hückel potential and the interaction between the valence electron and the atomic core is described by a model potential.The electron energies and wave functions for both the bound and continuum states are calculated by solving the Schr(o)dinger equation numerically using the symplectic integrator.The oscillator strengths,partial-wave,and total static dipole polarizabilities of the ground state and n ≤ 3 excited states of the lithium atom are calculated.Comparison of present results with thosc of other authors,when available,is made.The results for the 2s ground state demonstrated that the oscillator strengths and the static dipole polarizabilities from np orbitals do not always increase or decrease with the plasma screening effect increasing,unlike that for hydrogen-like ions,especially for 2s→3p transition there is a zero value for both the oscillator strength and the static dipole polarizability for screening length D =10.3106a0,which is associated with the Cooper minima.

  10. Physical reality of electromagnetic potentials and the classical limit of the Aharonov-Bohm effect

    CERN Document Server

    Tiwari, S C

    2016-01-01

    Recent literature on the Aharonov-Bohm effect has raised fundamental questions on the classical correspondence of this effect and the physical reality of the electromagnetic potentials in quantum mechanics. Reappraisal on Feynman's approach to the classical limit of AB effect is presented. The critique throws light on the significance of quantum interference and quantum phase shifts in any such classical correspondence. Detailed analysis shows that Feynman arguments are untenable on physical grounds and the claim made in the original AB paper that this effect had no classical analog seems valid. The importance of nonintegrable phase factor distinct from the AB phase factor, here termed as Fock-London-Weyl phase factor for the historical reasons, is underlined in connection with the classical aspects/limits. A topological approach incorporating the physical significance of the interaction field momentum is proposed. A new idea emerges from this approach that attributes the origin of the AB effect to the exchan...

  11. Debye screening under non-equilibrium plasma conditions

    Science.gov (United States)

    Fahr, Hans J.; Heyl, M.

    2016-05-01

    As has been revealed in a number of more recent astrophysical papers, in most of the tenuous space plasmas Maxwellian distribution functions cannot be expected for ions or electrons because of the lack of efficient relaxation processes. Many of the classical characteristics of plasmas, such as plasma frequency or Debye length, are calculated on the basis of the assumption, however, that Maxwellians prevail, which under most of the relevant astrophysical plasma conditions is not the case. We here therefore consider this specific problem of Debye shieldings of single charges in a plasma for the case of prevailing non-equilibrium distribution functions for ions and electrons. As typical non-equilibrium functions, so-called Kappa functions were considered with clear preference, and we therefore study here the Debye shielding in a plasma with Kappa-distributed electrons and ions. We show that the so-called Debye shielding increases with increasing extent of the high-velocity tail of the electron distribution function, or in other words, with lower Kappa index of the underlying Kappa function. In our calculations we demonstrate that the Debye lengths become enlarged by about a factor of 10 with respect to its classically expexted value if highly suprathermal electron distributions prevail with Kappa indices close to 1.5.

  12. High correlation of double Debye model parameters in skin cancer detection.

    Science.gov (United States)

    Truong, Bao C Q; Tuan, H D; Fitzgerald, Anthony J; Wallace, Vincent P; Nguyen, H T

    2014-01-01

    The double Debye model can be used to capture the dielectric response of human skin in terahertz regime due to high water content in the tissue. The increased water proportion is widely considered as a biomarker of carcinogenesis, which gives rise of using this model in skin cancer detection. Therefore, the goal of this paper is to provide a specific analysis of the double Debye parameters in terms of non-melanoma skin cancer classification. Pearson correlation is applied to investigate the sensitivity of these parameters and their combinations to the variation in tumor percentage of skin samples. The most sensitive parameters are then assessed by using the receiver operating characteristic (ROC) plot to confirm their potential of classifying tumor from normal skin. Our positive outcomes support further steps to clinical application of terahertz imaging in skin cancer delineation.

  13. Electromagnetic Acoustic Transducers Applied to High Temperature Plates for Potential Use in the Solar Thermal Industry

    Directory of Open Access Journals (Sweden)

    Maria Kogia

    2015-12-01

    Full Text Available Concentrated Solar Plants (CSPs are used in solar thermal industry for collecting and converting sunlight into electricity. Parabolic trough CSPs are the most widely used type of CSP and an absorber tube is an essential part of them. The hostile operating environment of the absorber tubes, such as high temperatures (400–550 °C, contraction/expansion, and vibrations, may lead them to suffer from creep, thermo-mechanical fatigue, and hot corrosion. Hence, their condition monitoring is of crucial importance and a very challenging task as well. Electromagnetic Acoustic Transducers (EMATs are a promising, non-contact technology of transducers that has the potential to be used for the inspection of large structures at high temperatures by exciting Guided Waves. In this paper, a study regarding the potential use of EMATs in this application and their performance at high temperature is presented. A Periodic Permanent Magnet (PPM EMAT with a racetrack coil, designed to excite Shear Horizontal waves (SH0, has been theoretically and experimentally evaluated at both room and high temperatures.

  14. Assessment of potential nutrient build-up around beef cattle production areas using electromagnetic induction.

    Science.gov (United States)

    Cordeiro, Marcos R C; Ranjan, Ramanathan Sri; Cicek, Nazim

    2011-12-01

    Electromagnetic induction (EMI) has been used to map soil properties such as salinity and water content. The objective of this research is to use EMI to map the potential distribution of nutrients around beef cattle pens and to relate this distribution to major physiographic field features. Beef cattle farms in different physiographic locations were surveyed in Manitoba, Canada, using an EM-38 conductivity meter georeferenced with a GPS receiver. Samples were collected using a response surface design and analysed for electrical conductivity (ECe), which was used as a proxy for determining potential build-up of nutrients. Multiple linear regression models (MLR) were used for calibration of the EM readings. The results showed that areas 1 through 4 had ECe soil layer to accumulate the nutrients. Micro-depressions played a major role in salt accumulation, with the depressions corresponding to higher values of ECe. The presence of features such as drainage ditches and compacted soils beneath roads strongly affected the direction of the plumes. Based on these results, the location of the pens on high elevations and the provision to collect the run-off from the pens were identified as good design criteria. Highly permeable soils may require a low permeability liner to capture the deep percolation and redirect it towards a collection area.

  15. Debye Temperature of the MgCNi3 Superconductor

    Institute of Scientific and Technical Information of China (English)

    魏志锋; 陈小龙; 王福明; 李文超; 贺蒙

    2002-01-01

    We have determined the Debye temperature of the MgCNi3 superconductor by using the Rietveld refinementmethod based on the powder x-ray diffraction data. MgCNi3 crystallizes in the cubic perovskite structure with space group Pm-3m and lattice constant a = 3.8089 . The temperature factors of the atoms Mg, C and Ni are 0.52, 0.45 and 0.44, respectively. The Debye temperature of MgCNi3 is calculated to be θD = 440K.

  16. 240-kA switch with potential application in electromagnetic-launch systems

    Energy Technology Data Exchange (ETDEWEB)

    Honig, E.M.

    1983-01-01

    Electromagnetic (EM) launchers have severe switching requirements. Switching demands for railgun systems, for instance, inlcude current conduction from hundreds of kA to a few MA, conduction times of a ms to a few s, standoff voltages as high as a few tens of kV, to rcovery voltages of 1 to 10 kV after conduction, opening and closing duty, and repetitive operation up to about 50 Hz. These demands, particularly for repetitive opening duty, are far beyond the capability of most current switches and switching concepts. This paper will review the performance of rod array triggered vacuum gap (RATVG) switches and discuss their potential for solving switching problems in EM launcher systems. A new mode of operation for the RATVG switch is proposed. Fundamental considerations for the operation of opening switches and their associated transfer circuits are presented. Methods of recovering the railgun's inductive energy to enable efficient repetitive operation are discussed and new circuits with such capability are proposed.

  17. Electromagnetic polarisabilities of the proton in an independent particle potential model

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N. [Utkal Univ., Bhubaneswer (India). P.G. Dept. of Phys.; Dash, B.K. [Utkal Univ., Bhubaneswer (India). P.G. Dept. of Phys.; Das, P. [Department of Physics, Kendrapara College, Kendrapara-754211 (India); Panda, A.R. [Department of Physics, Kendrapara College, Kendrapara-754211 (India)

    1996-08-19

    We consider the electric and magnetic polarisabilities of the proton including the valence quark as well as pion dressing effects in an independent quark model with an effective scalar-vector harmonic potential which renders the solvability of relativistic Dirac equations for confined quarks, and has in fact acted as an alternative to the cloudy bag model (CBM). This model which has been applied successfully to a variety of hadronic problems is also observed here to yield the electromagnetic polarisabilities of the proton satisfactorily without any free parameters. The electric and magnetic polarisabilities, including valence quark core and pion cloud effects, obtained here as anti {alpha}{sub P}=14.074.10{sup -4} fm{sup 3} and anti {beta}{sub P}=3.155.10{sup -4} fm{sup 3}, are well within the uncertainties of their experimental measurements of (10.9{+-}2.2{+-}1.4).10{sup -4} fm{sup 3} and (3.3{+-}2.2{+-}1.4).10{sup -4} fm{sup 3}, respectively and are also in agreement with other model estimations. (orig.).

  18. Electromagnetic potential in pre-metric electrodynamics: Causal structure, propagators and quantization

    Science.gov (United States)

    Pfeifer, Christian; Siemssen, Daniel

    2016-05-01

    An axiomatic approach to electrodynamics reveals that Maxwell electrodynamics is just one instance of a variety of theories for which the name electrodynamics is justified. They all have in common that their fundamental input are Maxwell's equations d F =0 (or F =d A ) and d H =J and a constitutive law H =#F which relates the field strength two-form F and the excitation two-form H . A local and linear constitutive law defines what is called local and linear pre-metric electrodynamics whose best known application is the effective description of electrodynamics inside media including, e.g., birefringence. We analyze the classical theory of the electromagnetic potential A before we use methods familiar from mathematical quantum field theory in curved spacetimes to quantize it in a locally covariant way. Our analysis of the classical theory contains the derivation of retarded and advanced propagators, the analysis of the causal structure on the basis of the constitutive law (instead of a metric) and a discussion of the classical phase space. This classical analysis sets the stage for the construction of the quantum field algebra and quantum states. Here one sees, among other things, that a microlocal spectrum condition can be formulated in this more general setting.

  19. Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment

    NARCIS (Netherlands)

    Togt, R. van der; Lieshout, E.J. van; Hensbroek, R.; Beinat, E.; Binnekade, J.M.; Bakker, P.J.M.

    2008-01-01

    Context: Health care applications of autoidentification technologies, such as radio frequency identification (RFID), have been proposed to improve patient safety and also the tracking and tracing of medical equipment. However, electromagnetic interference (EMI) by RFID on medical devices has never

  20. Some Debye temperatures from single-crystal elastic constant data

    Science.gov (United States)

    Robie, R.A.; Edwards, J.L.

    1966-01-01

    The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.

  1. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  2. Assessment of potential effects of the electromagnetic fields of mobile phones on hearing

    Directory of Open Access Journals (Sweden)

    Gradauskiene Egle

    2005-04-01

    Full Text Available Abstract Background Mobile phones have become indispensable as communication tools; however, to date there is only a limited knowledge about interaction between electromagnetic fields (EMF emitted by mobile phones and auditory function. The aim of the study was to assess potential changes in hearing function as a consequence of exposure to low-intensity EMF's produced by mobile phones at frequencies of 900 and 1800 MHz. Methods The within-subject study was performed on thirty volunteers (age 18–30 years with normal hearing to assess possible acute effect of EMF. Participants attended two sessions: genuine and sham exposure of EMF. Hearing threshold levels (HTL on pure tone audiometry (PTA and transient evoked otoacoustic emissions (TEOAE's were recorded before and immediately after 10 min of genuine and/or sham exposure of mobile phone EMF. The administration of genuine or sham exposure was double blind and counterbalanced in order. Results Statistical analysis revealed no significant differences in the mean HTLs of PTA and mean shifts of TEOAE's before and after genuine and/or sham mobile phone EMF 10 min exposure. The data collected showed that average TEOAE levels (averaged across a frequency range changed less than 2.5 dB between pre- and post-, genuine and sham exposure. The greatest individual change was 10 dB, with a decrease in level from pre- to post- real exposure. Conclusion It could be concluded that a 10-min close exposure of EMFs emitted from a mobile phone had no immediate after-effect on measurements of HTL of PTA and TEOAEs in young human subjects and no measurable hearing deterioration was detected in our study.

  3. A Closed Algebra of Clebsch Forms Derived from Whittaker Super-potentials and applications in electromagnetic research

    CERN Document Server

    Raptis, T E

    2013-01-01

    A type of closed exterior algebra in R3 under the cross product is revealed to hold between differential forms from the three Whittaker scalar potentials, associated with the fields of a moving electron. A special algebraic structure is revealed in the context of Clebsch reparametrization of these scalars, and a special prescription for the construction of permutation invariant electromagnetic fields is given as well as a superposition with parallel electric and magnetic components.

  4. Electron impact excitation of helium in Debye plasma

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, S.; Gomis, L.; Faye, I. G.; Tall, M. S.; Diédhiou, I. [Département de Physique, Faculté des Sciences and Techniques, Université Cheikh Anta Diop, Dakar-Fann (Senegal); Diatta, C. S. [Institut International des Sciences et de Technologie, 28 Avenue des Ambassadeurs Dakar-Fann (Senegal); Zammit, M. [ARC Centre for Antimatter-Matter Studies, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia)

    2015-03-15

    The probability, differential, and integral scattering cross sections of the 1{sup 1}S→2{sup 1}S and 1{sup 1}S→2{sup 1}P transitions of helium have been calculated in the first Born approximation. The projectile-target interactions depending on the temperature and the density of plasma are described by the Debye-Hückel model. Wave functions of the target before and after collision were modeled by non orthogonal Hartree-Fock orbitals. The wave functions parameters are calculated with the Ritz variational method. We improve our unscreened first Born approximation integral cross sections by using the BE-scaled (B stands for binding energy and E excitation energy) method. The second Born approximation has also been used to calculate the excitation cross sections in Debye plasma. Our calculations are compared to other theoretical and experimental results where applicable.

  5. Debye temperatures of uranium chalcogenides from their lattice dynamics

    Indian Academy of Sciences (India)

    S Durai; P Babu

    2005-12-01

    Phonon dispersion relations in uranium chalcogenides have been investigated using a modified three-body force shell model. From the phonon frequencies, their Debye temperatures are evaluated. Further, on the basis of the spin fluctuation in the heavy fermion uranium compounds, UPt3 and UBe13, the possible superconducting transition temperatures of chalcogenides are theoretically predicted. The c values are in the same range as of those in UPt3 and UBe13.

  6. Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment

    NARCIS (Netherlands)

    Togt, R. van der; Lieshout, E.J. van; Hensbroek, R.; Beinat, E.; Binnekade, J.M.; Bakker, P.J.M.

    2008-01-01

    Context: Health care applications of autoidentification technologies, such as radio frequency identification (RFID), have been proposed to improve patient safety and also the tracking and tracing of medical equipment. However, electromagnetic interference (EMI) by RFID on medical devices has never b

  7. The Use Of Electromagnetic And Electrical Resistivity Methods In Assessing Groundwater Resource Potentials In Adoe Sunyani Ghana.

    Directory of Open Access Journals (Sweden)

    Alfred K. Bienibuor

    2015-08-01

    Full Text Available Electromagnetic and electrical resistivity geophysical methods were used to map out potential groundwater sites for boreholes drilling in the Adoe community in the Sunyani west district of Ghana. The electromagnetic data was taken with the Geonics EM-34 conductivity meter while the electrical resistivity data was taken with the ABEM SAS 1000 C Terrameter using the Schlumberger electrode configuration. Results from the measurements revealed four subsurface geological layers of the following resistivity and thickness ranges quartzitic sandstone with clay 42-118 amp937m 1-2.2 m sandy clay with silt 27-487 amp937m 9-12 m lateritic sandstone 13-728 amp937m 6-14 m and clayey shale 20-29 amp937m 6-14 m The overburden ranged in thickness from 14 m to 24 m. Sites selected for borehole drilling had a groundwater yield range of 0.94 -12 m3h.

  8. Berry phase, Berry Potential, and Chern Number for a Continuum Bianisotropic Material from a Classical Electromagnetics Perspective

    CERN Document Server

    Gangaraj, S Ali Hassani; Hanson, George W

    2016-01-01

    The properties that quantify photonic topological insulators (PTIs), Berry phase, Berry potential, and Chern number, are typically obtained by making analogies between classical Maxwell's equations and the quantum mechanical Schr\\"{o}dinger equation, writing both in Hamiltonian form. However, the aforementioned quantities are not necessarily quantum in nature, and for photonic systems they can be explained using only classical concepts. Here we provide a derivation and description of PTI quantities using classical Maxwell's equations, we demonstrate how an electromagnetic mode can acquire Berry phase, and we discuss the ramifications of this effect. We consider several examples, including wave propagation in a biased plasma, and radiation by a rotating isotropic emitter. These concepts are discussed without invoking quantum mechanics, and can be easily understood from an engineering electromagnetics perspective.

  9. Modification of Debye-Hückel Theory%Debye-Hückel离子互吸理论的改进

    Institute of Scientific and Technical Information of China (English)

    刘国杰; 黑恩成

    2015-01-01

    Based on the thermodynamic properties of ions in solution, we modified the Debye-Hückel expression. The modified expression could be well correlated with the mean activity coefficients of different strong electrolyte aqueous solutions with various ionic charges, and the applicable concentration range is extended to 6 mol·kg-1 .%根据强电解质水溶液形成的热力学设想,修正了Debye-Hückel离子互吸理论,检验结果表明,它能满意地关联各种价型的强电解质水溶液的离子平均活度因子,使适用的浓度范围扩大到了6mol·kg-1。

  10. Plasma-screening effects on the electronic structure of multiply charged Al ions using Debye and ionsphere models

    CERN Document Server

    Das, Madhulita; Pal, S

    2016-01-01

    We analyze atomic structures of plasma embedded aluminum (Al) atom and its ions in the weakly and strongly coupling regimes. The plasma screening effects in these atomic systems are accounted for using the Debye and ion sphere (IS) potentials for the weakly coupling and strongly coupling plasmas, respectively. Within the Debye model, special attention is given to investigate the spherical and non-spherical plasma-screening effects considering in the electron-electron interaction potential. The relativistic coupled-cluster (RCC) method has been employed to describe the relativistic and electronic correlation effects in the above atomic systems. The variation in the ionization potentials (IPs) and excitation energies (EEs) of the plasma embedded Al ions are presented. It is found that the atomic systems exhibit more stability when the exact screening effects are taken into account. It is also showed that in the presence of strongly coupled plasma environment, the highly ionized Al ions show blue and red shifts ...

  11. Effect Of Electromagnetic Waves Emitted From Mobile Phone On Brain Stem Auditory Evoked Potential In Adult Males.

    Science.gov (United States)

    Singh, K

    2015-01-01

    Mobile phone (MP) is commonly used communication tool. Electromagnetic waves (EMWs) emitted from MP may have potential health hazards. So, it was planned to study the effect of electromagnetic waves (EMWs) emitted from the mobile phone on brainstem auditory evoked potential (BAEP) in male subjects in the age group of 20-40 years. BAEPs were recorded using standard method of 10-20 system of electrode placement and sound click stimuli of specified intensity, duration and frequency.Right ear was exposed to EMW emitted from MP for about 10 min. On comparison of before and after exposure to MP in right ear (found to be dominating ear), there was significant increase in latency of II, III (p wave, amplitude of I-Ia wave (p wave (P waves of BAEP in left ear before vs after MP. On comparison of right (having exposure routinely as found to be dominating ear) and left ears (not exposed to MP), before exposure to MP, IPL of IIl-V wave and amplitude of V-Va is more (wave (< 0.001) in left ear. After exposure to MP, the amplitude of V-Va was (p < 0.05) more in right ear compared to left ear. In conclusion, EMWs emitted from MP affects the auditory potential.

  12. Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors

    Energy Technology Data Exchange (ETDEWEB)

    Damour, T.; Iyer, B.R. (Institut des Hautes Etudes Scientifiques 91440 Bures sur Yvette, France Departement d' Astrophysique Relativiste et de Cosmologie, Centre National de la Recherche Scientifique-Observatoire de Paris, 92195 Meudon CEDEX, France (FR))

    1991-05-15

    The relativistic time-dependent multipole expansion for electromagnetism and linearized gravity in the region outside a spatially compact source has been obtained directly using the formalism of irreducible Cartesian (i.e., symmetric trace-free) tensors. In the electromagnetic case, our results confirm the validity of the results obtained earlier by Campbell, Macek, and Morgan using the Debye potential formalism. However, in the more complicated linearized gravity case, the greater algebraic transparence of the Cartesian multipole approach has allowed us to obtain, for the first time, fully correct closed-form expressions for the time-dependent mass and spin multipole moments (the results of Campbell {ital et} {ital al}. for the mass moments turning out to be incorrect). The first two terms in the slow-motion expansion of the gravitational moments are explicitly calculated and shown to be equivalent to earlier results by Thorne and by Blanchet and Damour.

  13. Debye-scale solitary structures measured in a beam-plasma laboratory experiment

    Directory of Open Access Journals (Sweden)

    B. Lefebvre

    2011-01-01

    Full Text Available Solitary electrostatic pulses have been observed in numerous places of the magnetosphere such as the vicinity of reconnection current sheets, shocks or auroral current systems, and are often thought to be generated by energetic electron beams. We present results of a series of experiments conducted at the UCLA large plasma device (LAPD where a suprathermal electron beam was injected parallel to a static magnetic field. Micro-probes with tips smaller than a Debye length enabled the detection of solitary pulses with positive electric potential and half-widths 4–25 Debye lengths (λDe, over a set of experiments with various beam energies, plasma densities and magnetic field strengths. The shape, scales and amplitudes of the structures are similar to those observed in space, and consistent with electron holes. The dependance of these properties on the experimental parameters is shown. The velocities of the solitary structures (1–3 background electron thermal velocities are found to be much lower than the beam velocities, suggesting an excitation mechanism driven by parallel currents associated to the electron beam.

  14. Elastic properties of amorphous Si and derived Debye temperatures and Grueneisen parameters: Model calculation

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, J.L.; Broughton, J.Q. (Complex Systems Theory Branch, Naval Research Laboratory, Washington, D.C. 20375-5000 (US)); Wooten, F. (Department of Applied Science, University of California at Davis/Livermore, Livermore, California 94550 (US))

    1991-01-15

    Calculations, based on the Stillinger-Weber (SW) interatomic-potential model and the method of long waves, are presented for the elastic properties of amorphous Si ({ital a}-Si) and for pressure derivatives of the elastic constants of crystalline Si. Several models of {ital a}-Si, relaxed on the basis of the SW potential, are considered, and the external stresses that are associated with these models are evaluated using the Born-Huang relations. The elastic constants appear to obey the isotropy conditions to within a reasonable accuracy and are also consistent with other predictions based on the SW potential at finite temperature obtained by Kluge and Ray. Estimates of the pressure dependence of the elastic constants, Debye temperature, and Grueeisen parameter for {ital a}-Si are also provided on the basis of these calculations.

  15. Effects of exposure to an extremely low frequency electromagnetic field on hippocampal long-term potentiation in rat.

    Science.gov (United States)

    Komaki, Alireza; Khalili, Afshin; Salehi, Iraj; Shahidi, Siamak; Sarihi, Abdolrahman

    2014-05-20

    Modern lifestyle exposes nearly all humans to electromagnetic fields, particularly to extremely low frequency electromagnetic fields (ELF-EMFs). Prolonged exposure to ELF-EMFs induces persistent changes in neuronal activity. However, the modulation of synaptic efficiency by ELF-EMFs in vivo is still unclear. In the present study, we investigated whether ELF-EMFs can change induction of long-term potentiation (LTP) and paired-pulse ratio (PPR) in the rat hippocampal area. Twenty-nine adult male Wistar rats were divided into 3 groups (ELF-EMF exposed, sham and control groups). The ELF-EMF group was exposed to a magnetic field for 90 consecutive days (2h/day). ELF-EMFs were produced by a circular coil (50Hz, 100 micro Tesla). The sham-exposed controls were placed in an identical chamber with no electromagnetic field. After this period, rats were deeply anesthetized with urethane (2.0mg/kg) and then a bipolar stimulating and recording electrode was implanted into the perforant pathway (PP) and dentate gyrus (DG), respectively. LTP in hippocampal area was induced by high-frequency stimulation (HFS). Prolonged exposure to ELF-EMFs increased LTP induction. There was a significant difference in the slope of EPSP and amplitude of PS between the ELF-EMF group and other groups. In conclusion, our data suggest that exposure to ELF-EMFs produces a marked change in the synaptic plasticity generated in synapses of the PP-DG. No significant difference in PPR of ELF-EMF group before and after HFS suggests a postsynaptic expression site of LTP.

  16. Debye-H¨uckel solution for steady electro-osmotic flow of micropolar fluid in cylindrical microcapillary

    Institute of Scientific and Technical Information of China (English)

    A. A. SIDDIQUI; A. LAKHTAKIA

    2013-01-01

    Analytic expressions for speed, flux, microrotation, stress, and couple stress in a micropolar fluid exhibiting a steady, symmetric, and one-dimensional electro-osmotic flow in a uniform cylindrical microcapillary were derived under the constraint of the Debye-H¨uckel approximation, which is applicable when the cross-sectional radius of the microcapillary exceeds the Debye length, provided that the zeta potential is sufficiently small in magnitude. Since the aciculate particles in a micropolar fluid can rotate without translation, micropolarity affects the fluid speed, fluid flux, and one of the two non-zero components of the stress tensor. The axial speed in a micropolar fluid intensifies when the radius increases. The stress tensor is confined to the region near the wall of the mi-crocapillary, while the couple stress tensor is uniform across the cross-section.

  17. An investigation of resonances in e{sup +}-H scattering embedded in Debye plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Ye; Yan, Zong-Chao [Department of Physics, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada); Ho, Yew Kam [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (China)

    2015-01-15

    We carry out calculations for S-wave and P-wave resonances in e{sup +}-H scattering in weakly coupled Debye plasma in which the interaction between two charged particles is represented by a screened Coulomb potential. We employ the complex-scaling method with Hylleraas-type basis set to take correlation effects into account. In the complex-scaling treatment of the screened Coulomb potential, we first perform a Taylor series expansion for the exponential function that contains the distance r between two particles into a polynomial with various powers r{sup n}. We then make the complex scaling transformation of r→r e{sup iθ} in the expansion. The complex resonant eigenvalues are obtained by searching for stabilized points in the complex energy plane with respect to the changes of rotational angle θ and other parameters in the basis set.

  18. Electrostatic Debye layer formed at a plasma-liquid interface

    Science.gov (United States)

    Rumbach, Paul; Clarke, Jean Pierre; Go, David B.

    2017-05-01

    We construct an analytic model for the electrostatic Debye layer formed at a plasma-liquid interface by combining the Gouy-Chapman theory for the liquid with a simple parabolic band model for the plasma sheath. The model predicts a nonlinear scaling between the plasma current density and the solution ionic strength, and we confirmed this behavior with measurements using a liquid-anode plasma. Plots of the measured current density as a function of ionic strength collapse the data and curve fits yield a plasma electron density of ˜1019m-3 and an electric field of ˜104V /m on the liquid side of the interface. Because our theory is based firmly on fundamental physics, we believe it can be widely applied to many emerging technologies involving the interaction of low-temperature, nonequilibrium plasma with aqueous media, including plasma medicine and various plasma chemical synthesis techniques.

  19. XAFS Debye-Waller factors for Zn metalloproteins

    Science.gov (United States)

    Dimakis, Nicholas; Bunker, Grant

    2004-11-01

    An accurate and practical method for the calculation and use of thermal x-ray absorption fine structure (XAFS) Debye-Waller factors (DWFs) in active sites of metalloproteins is presented. These factors are calculated on model clusters within the local density functional approximation with nonlocal corrections. The DWFs are mapped out and parametrized as a function of the first shell distance and an angle (where applicable), for all significant single and multiple scattering paths, as well as the sample temperature. This approach is applied to the biologically essential but spectroscopically silent Zn+2 active sites composed of histidines, cysteines, and carboxylate ligands in homogeneous and heterogeneous environments. Detailed analysis of the relative scattering paths for Zn metalloproteins using projected vibrational density of states further explain why these paths are not detectable by XAFS for first shell metal-ligand distances above a “cutoff” value.

  20. Effects of weak mobile phone - electromagnetic fields (GSM, UMTS) on event related potentials and cognitive functions.

    Science.gov (United States)

    Kleinlogel, H; Dierks, T; Koenig, T; Lehmann, H; Minder, A; Berz, R

    2008-09-01

    Modern mobile phones emit electromagnetic fields (EMF) ranging from 900 to 2000 MHz which are suggested to have an influence on well-being, attention and neurological parameters in mobile phone users. Until now most studies have investigated Global System for Mobile Communications (GSM)-EMF and only very few studies have focused on Universal Mobile Telecommunications System (UMTS)-EMF. Therefore, we tested the effects of both types of unilaterally presented EMF, 1950 UMTS (0.1 and 1 W/kg) and pulsed 900 MHz GSM (1 W/kg), on visually evoked occipital P100, the P300 of a continuous performance test, auditory evoked central N100 and the P300 during an oddball task as well as on the respective behavioral parameters, reaction time and false reactions, in 15 healthy, right handed subjects. A double-blind, randomized, crossover application of the test procedure was used. Neither the UMTS- nor the GSM-EMF produced any significant changes in the measured parameters compared to sham exposure. The results do not give any evidence for a deleterious effect of the EMF on normal healthy mobile phone users.

  1. Theory of electromagnetic fields

    CERN Document Server

    Wolski, Andrzej

    2011-01-01

    We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

  2. Time Harmonic Electromagnetic Field Analysis in Multi-spheres Model by Gumerov's Method of Two Scalar Potentials

    Science.gov (United States)

    Hamada, Shoji; Masutani, Keigo; Kobayashi, Tetsuo

    Time harmonic electromagnetic fields in multi-spheres models were calculated by the method of two scalar potentials proposed by Gumerov. The analyzed models were an eccentric two-spheres model and a ten-spheres model including brain core and a pair of eyeballs. The applied fields were a plane wave and a dipole magnetic field, and the frequency was 1.8 or 2.0GHz. The truncation degree p of multipole and local expansion was set to up to 170∼200. The peak power density on the x-y plane and the absorbed power in each tissue almost monotonously converged as p increased. It demonstrated the usefulness of the Gumerov's method.

  3. Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis

    DEFF Research Database (Denmark)

    Gregersen, Misha Marie; Andersen, Mathias Bækbo; Soni, G.;

    2009-01-01

    to the electrode size, i.e., for nanofluidic systems. However, even for electrode dimensions in the micrometer range, the discrepancies in velocity due to the finite Debye length can be more than 10% for an electrode of zero height and more than 100% for electrode heights comparable to the Debye length....

  4. Effect of size on specific heat and Debye temperature of nanomaterials

    Science.gov (United States)

    Patel, Ghanshyam R.; Thakar, Nilesh A.; Pandya, Tushar C.

    2016-05-01

    Liquid drop model is used to predict the size dependent melting temperature of low dimensional systems. In the present work we have extended liquid drop model for predicting size dependent Debye temperature of nanoparticles of Au and Se. It is found that the Debye temperature drop when the particle size is decreased. The results obtained for the size dependence of the Debye temperature are found to be in good agreement with the experimental data. This supports the validity of the method presented in this paper. In the present study relationship for size dependent of specific heat is also deduced for nanoparticles using liquid drop model. Our theoretical predictions of size dependent of specific heat of Cu nanoparticles agree fairly well with available computer simulation results. The present relationship for Debye temperature and specific heat may be used to predict the Debye temperature and specific heat for nanomaterials.

  5. Do field-free electromagnetic potentials play a role in biology?

    Science.gov (United States)

    Szasz, A; Vincze, G; Andocs, G; Szasz, O

    2009-01-01

    All bio-systems are imperfect dielectrics. Their general properties however cannot be described by conventional simple electrodynamics; the system is more complex. A central question in our present paper is centered on a controversial debate of the possible effect of the zero fields (only potentials exist). We show that the identical use of the "field-free," "curl-free," and "force-free" terminologies is incorrect, there have definitely different meanings. It is shown that the effective electro-dynamical parameters that describe and modify living systems are the potentials and not the fields. We discuss how the potentials have a role in biological processes even in field-free cases.

  6. Relating renormalizability of D-dimensional higher-order electromagnetic and gravitational models to the classical potential at the origin

    Science.gov (United States)

    Accioly, Antonio; Correia, Gilson; de Brito, Gustavo P.; de Almeida, José; Herdy, Wallace

    2017-03-01

    Simple prescriptions for computing the D-dimensional classical potential related to electromagnetic and gravitational models, based on the functional generator, are built out. These recipes are employed afterward as a support for probing the premise that renormalizable higher-order systems have a finite classical potential at the origin. It is also shown that the opposite of the conjecture above is not true. In other words, if a higher-order model is renormalizable, it is necessarily endowed with a finite classical potential at the origin, but the reverse of this statement is untrue. The systems used to check the conjecture were D-dimensional fourth-order Lee-Wick electrodynamics, and the D-dimensional fourth- and sixth-order gravity models. A special attention is devoted to New Massive Gravity (NMG) since it was the analysis of this model that inspired our surmise. In particular, we made use of our premise to resolve trivially the issue of the renormalizability of NMG, which was initially considered to be renormalizable, but it was shown some years later to be non-renormalizable. We remark that our analysis is restricted to local models in which the propagator has simple and real poles.

  7. A new theoretical model for transmembrane potential and ion currents induced in a spherical cell under low frequency electromagnetic field.

    Science.gov (United States)

    Zheng, Yu; Gao, Yang; Chen, Ruijuan; Wang, Huiquan; Dong, Lei; Dou, Junrong

    2016-10-01

    Time-varying electromagnetic fields (EMF) can induce some physiological effects in neuronal tissues, which have been explored in many applications such as transcranial magnetic stimulation. Although transmembrane potentials and induced currents have already been the subjects of many theoretical studies, most previous works about this topic are mainly completed by utilizing Maxwell's equations, often by solving a Laplace equation. In previous studies, cells were often considered to be three-compartment models with different electroconductivities in different regions (three compartments are often intracellular regions, membrane, and extracellular regions). However, models like that did not take dynamic ion channels into consideration. Therefore, one cannot obtain concrete ionic current changes such as potassium current change or sodium current change by these models. The aim of the present work is to present a new and more detailed model for calculating transmembrane potentials and ionic currents induced by time-varying EMF. Equations used in the present paper originate from Nernst-Plank equations, which are ionic current-related equations. The main work is to calculate ionic current changes induced by EMF exposure, and then transmembrane potential changes are calculated with Hodgkin-Huxley model. Bioelectromagnetics. 37:481-492, 2016. © 2016 Wiley Periodicals, Inc.

  8. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...

  9. Exact mean-field theory of ionic solutions: non-Debye screening

    Science.gov (United States)

    Varela, Luis M.; García, Manuel; Mosquera, Víctor

    2003-07-01

    The main aim of this report is to analyze the equilibrium properties of primitive model (PM) ionic solutions in the formally exact mean-field formalism. Previously, we review the main theoretical and numerical results reported throughout the last century for homogeneous (electrolytes) and inhomogeneous (electric double layer, edl) ionic systems, starting with the classical mean-field theory of electrolytes due to Debye and Hückel (DH). In this formalism, the effective potential is derived from the Poisson-Boltzmann (PB) equation and its asymptotic behavior analyzed in the classical Debye theory of screening. The thermodynamic properties of electrolyte solutions are briefly reviewed in the DH formalism. The main analytical and numerical extensions of DH formalism are revised, ranging from the earliest extensions that overcome the linearization of the PB equation to the more sophisticated integral equation techniques introduced after the late 1960s. Some Monte Carlo and molecular dynamic simulations are also reviewed. The potential distributions in an inhomogeneous ionic system are studied in the classical PB framework, presenting the classical Gouy-Chapman (GC) theory of the electric double layer (edl) in a brief manner. The mean-field theory is adequately contextualized using field theoretic (FT) results and it is proven that the classical PB theory is recovered at the Gaussian or one-loop level of the exact FT, and a systematic way to obtain the corrections to the DH theory is derived. Particularly, it is proven following Kholodenko and Beyerlein that corrections to DH theory effectively lead to a renormalization of charges and Debye screening length. The main analytical and numerical results for this non-Debye screening length are reviewed, ranging from asymptotic expansions, self-consistent theory, nonlinear DH results and hypernetted chain (HNC) calculations. Finally, we study the exact mean-field theory of ionic solutions, the so-called dressed-ion theory

  10. Exact mean-field theory of ionic solutions: non-Debye screening

    Energy Technology Data Exchange (ETDEWEB)

    Varela, L.M.; Garcia, Manuel; Mosquera, Victor

    2003-07-01

    The main aim of this report is to analyze the equilibrium properties of primitive model (PM) ionic solutions in the formally exact mean-field formalism. Previously, we review the main theoretical and numerical results reported throughout the last century for homogeneous (electrolytes) and inhomogeneous (electric double layer, edl) ionic systems, starting with the classical mean-field theory of electrolytes due to Debye and Hueckel (DH). In this formalism, the effective potential is derived from the Poisson-Boltzmann (PB) equation and its asymptotic behavior analyzed in the classical Debye theory of screening. The thermodynamic properties of electrolyte solutions are briefly reviewed in the DH formalism. The main analytical and numerical extensions of DH formalism are revised, ranging from the earliest extensions that overcome the linearization of the PB equation to the more sophisticated integral equation techniques introduced after the late 1960s. Some Monte Carlo and molecular dynamic simulations are also reviewed. The potential distributions in an inhomogeneous ionic system are studied in the classical PB framework, presenting the classical Gouy-Chapman (GC) theory of the electric double layer (edl) in a brief manner. The mean-field theory is adequately contextualized using field theoretic (FT) results and it is proven that the classical PB theory is recovered at the Gaussian or one-loop level of the exact FT, and a systematic way to obtain the corrections to the DH theory is derived. Particularly, it is proven following Kholodenko and Beyerlein that corrections to DH theory effectively lead to a renormalization of charges and Debye screening length. The main analytical and numerical results for this non-Debye screening length are reviewed, ranging from asymptotic expansions, self-consistent theory, nonlinear DH results and hypernetted chain (HNC) calculations. Finally, we study the exact mean-field theory of ionic solutions, the so-called dressed-ion theory

  11. Fundamentals of engineering electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam; Yoon, Youngro; Jun, Sukhee; Jun, Hoin

    2004-08-15

    It indicates fundamentals of engineering electromagnetism. It mentions electromagnetic field model of introduction and International system of units and universal constant, Vector analysis with summary and orthogonal coordinate systems, electrostatic field on Coulomb's law and Gauss's law, electrostatic energy and strength, steady state current with Ohm's law and Joule's law and calculation of resistance, crystallite field with Vector's electrostatic potential, Biot-Savart law and application and Magnetic Dipole, time-Savart and Maxwell equation with potential function and Faraday law of electromagnetic induction, plane electromagnetic wave, transmission line, a wave guide and cavity resonator and antenna arrangement.

  12. Implementation of fractional-order electromagnetic potential through a genetic algorithm

    Science.gov (United States)

    Jesus, Isabel S.; Machado, J. A. Tenreiro

    2009-05-01

    Several phenomena present in electrical systems motivated the development of comprehensive models based on the theory of fractional calculus (FC). Bearing these ideas in mind, in this work are applied the FC concepts to define, and to evaluate, the electrical potential of fractional order, based in a genetic algorithm optimization scheme. The feasibility and the convergence of the proposed method are evaluated.

  13. Treating Cancer with Amplitude-Modulated Electromagnetic Fields: A Potential Paradigm Shift, Again?

    Science.gov (United States)

    The Zimmerman et al. (2011) study published here, coupled with the group's two preceding papers (Barbault et al. (2009), Costa et al. (2011)), identify a potential modality for treating tumors at a dramatic reduction in trauma and cost. This set of clinical and explanatory labora...

  14. A gauged finite-element potential formulation for accurate inductive and galvanic modelling of 3-D electromagnetic problems

    Science.gov (United States)

    Ansari, S. M.; Farquharson, C. G.; MacLachlan, S. P.

    2017-07-01

    In this paper, a new finite-element solution to the potential formulation of the geophysical electromagnetic (EM) problem that explicitly implements the Coulomb gauge, and that accurately computes the potentials and hence inductive and galvanic components, is proposed. The modelling scheme is based on using unstructured tetrahedral meshes for domain subdivision, which enables both realistic Earth models of complex geometries to be considered and efficient spatially variable refinement of the mesh to be done. For the finite-element discretization edge and nodal elements are used for approximating the vector and scalar potentials respectively. The issue of non-unique, incorrect potentials from the numerical solution of the usual incomplete-gauged potential system is demonstrated for a benchmark model from the literature that uses an electric-type EM source, through investigating the interface continuity conditions for both the normal and tangential components of the potential vectors, and by showing inconsistent results obtained from iterative and direct linear equation solvers. By explicitly introducing the Coulomb gauge condition as an extra equation, and by augmenting the Helmholtz equation with the gradient of a Lagrange multiplier, an explicitly gauged system for the potential formulation is formed. The solution to the discretized form of this system is validated for the above-mentioned example and for another classic example that uses a magnetic EM source. In order to stabilize the iterative solution of the gauged system, a block diagonal pre-conditioning scheme that is based upon the Schur complement of the potential system is used. For all examples, both the iterative and direct solvers produce the same responses for the potentials, demonstrating the uniqueness of the numerical solution for the potentials and fixing the problems with the interface conditions between cells observed for the incomplete-gauged system. These solutions of the gauged system also

  15. Pressure effects in Debye-Waller factors and in EXAFS

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Van Hung, E-mail: hungnv@vnu.edu.v [University of Science, VNU Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Vu Van Hung [Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Ho Khac Hieu [University of Science, VNU Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); National University of Civil Engineering, 55 Giai Phong, Hai Ba Trung, Hanoi (Viet Nam); Frahm, Ronald R. [Bergische Universitaet-Gesamthochschule Wuppertal, FB: 8-Physik, Gauss Strasse 20, 42097 Wuppertal (Germany)

    2011-02-01

    Anharmonic correlated Einstein model (ACEM) and statistical moment method (SMM) have been developed to derive analytical expressions for pressure dependence of the lattice bond length, effective spring constant, correlated Einstein frequency and temperature, Debye-Waller factors (DWF) or second cumulant, first and third cumulants in Extended X-ray Absorption Fine Structure (EXAFS) at a given temperature. Numerical results for pressure-dependent DWF of Kr and Cu agree well with experiment and other theoretical values. Simulated EXAFS of Cu and its Fourier transform magnitude using our calculated pressure-induced change in the 1st shell are found to be in a reasonable agreement with those using X-ray diffraction (XRD) experimental results. -- Research Highlights: {yields} We have developed anharmonic correlated Einstein model and statistical moment method. {yields} The pressure effects in cumulants including DWF and in EXAFS has been investigated. {yields} Calculated pressure-dependent DWF for Kr, Cu agree with experiment and other results. {yields} Simulated EXAFS and Fourier transform magnitude of Cu agree with those using XRD data.

  16. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  17. New perspectives on classical electromagnetism

    OpenAIRE

    Cote, Paul J.

    2009-01-01

    The fallacies associated with the gauge concept in electromagnetism are illustrated. A clearer and more valid formulation of the basics of classical electromagnetism is provided by recognizing existing physical constraints as well as the physical reality of the vector potential.

  18. Free-energy functional of the Debye-H\\"uckel model of simple fluids

    CERN Document Server

    Piron, R

    2016-01-01

    The Debye-H\\"uckel approximation to the free-energy of a simple fluid is written as a functional of the pair correlation function. This functional can be seen as the Debye-H\\"uckel equivalent to the functional derived in the hyper-netted chain framework by Morita and Hiroike, as well as by Lado. It allows one to obtain the Debye-H\\"uckel integral equation through a minimization with respect to the pair correlation function, leads to the correct form of the internal energy, and fulfills the virial theorem.

  19. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  20. Simulation of material properties below the Debye temperature: A path-integral molecular dynamics case study of quartz

    Science.gov (United States)

    Müser, Martin H.

    2001-04-01

    Classical and path integral molecular dynamics (PIMD) simulations are used to study α and β quartz in a large range of temperatures at zero external stress. PIMD account for quantum fluctuations of atomic vibrations, which can modify material properties at temperatures below the Debye temperature. The difference between classical and quantum mechanical results for bond lengths, bond angles, elastic moduli, and some dynamical properties is calculated and comparison to experimental data is done. Only quantum mechanical simulations are able to reproduce the correct thermomechanical properties below room temperature. It is discussed in how far classical and PIMD simulations can be helpful in constructing improved potential energy surfaces for silica.

  1. Transcranial electromagnetic treatment against Alzheimer's disease: why it has the potential to trump Alzheimer's disease drug development.

    Science.gov (United States)

    Arendash, Gary W

    2012-01-01

    The universal failure of pharmacologic interventions against Alzheimer's disease (AD) appears largely due to their inability to get into neurons and the fact that most have a single mechanism-of-action. A non-invasive, neuromodulatory approach against AD has consequently emerged: transcranial electromagnetic treatment (TEMT). In AD transgenic mice, long-term TEMT prevents and reverses both cognitive impairment and brain amyloid-β (Aβ) deposition, while TEMT even improves cognitive performance in normal mice. Three disease-modifying and inter-related mechanisms of TEMT action have been identified in the brain: 1) anti-Aβ aggregation, both intraneuronally and extracellularly; 2) mitochondrial enhancement; and 3) increased neuronal activity. Long-term TEMT appears safe in that it does not impact brain temperature or oxidative stress levels, nor does it induce any abnormal histologic/anatomic changes in the brain or peripheral tissues. Future TEMT development in both AD mice and normal mice should involve head-only treatment to discover the most efficacious set of parameters for achieving faster and even greater cognitive benefit. Given the already extensive animal work completed, translational development of TEMT could occur relatively quickly to "proof of concept" AD clinical trials. TEMT's mechanisms of action provide extraordinary therapeutic potential against other neurologic disorders/injuries, such as Parkinson's disease, traumatic brain injury, and stroke.

  2. FDTD modelling of induced polarization phenomena in transient electromagnetics

    Science.gov (United States)

    Commer, Michael; Petrov, Peter V.; Newman, Gregory A.

    2017-04-01

    The finite-difference time-domain scheme is augmented in order to treat the modelling of transient electromagnetic signals containing induced polarization effects from 3-D distributions of polarizable media. Compared to the non-dispersive problem, the discrete dispersive Maxwell system contains costly convolution operators. Key components to our solution for highly digitized model meshes are Debye decomposition and composite memory variables. We revert to the popular Cole-Cole model of dispersion to describe the frequency-dependent behaviour of electrical conductivity. Its inversely Laplace-transformed Debye decomposition results in a series of time convolutions between electric field and exponential decay functions, with the latter reflecting each Debye constituents' individual relaxation time. These function types in the discrete-time convolution allow for their substitution by memory variables, annihilating the otherwise prohibitive computing demands. Numerical examples demonstrate the efficiency and practicality of our algorithm.

  3. FDTD modeling of induced polarization phenomena in transient electromagnetics

    Science.gov (United States)

    Commer, Michael; Petrov, Petr V.; Newman, Gregory A.

    2017-01-01

    The finite-difference time-domain scheme is augmented in order to treat the modeling of transient electromagnetic signals containing induced polarization effects from three-dimensional distributions of polarizable media. Compared to the non-dispersive problem, the discrete dispersive Maxwell system contains costly convolution operators. Key components to our solution for highly digitized model meshes are Debye decomposition and composite memory variables. We revert to the popular Cole-Cole model of dispersion to describe the frequency-dependent behaviour of electrical conductivity. Its inversely Laplace-transformed Debye decomposition results in a series of time convolutions between electric field and exponential decay functions, with the latter reflecting each Debye constituents' individual relaxation time. These function types in the discrete-time convolution allow for their substitution by memory variables, annihilating the otherwise prohibitive computing demands. Numerical examples demonstrate the efficiency and practicality of our algorithm.

  4. Debye temperature, thermal expansion, and heat capacity of TcC up to 100 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Song, T., E-mail: songting@mail.lzjtu.cn [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Ma, Q. [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Tian, J.H. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Liu, X.B. [School of Physics and Information Science, Tianshui Normal University, Tianshui 741000 (China); Ouyang, Y.H.; Zhang, C.L.; Su, W.F. [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China)

    2015-01-15

    Highlights: • A number of thermodynamic properties of rocksalt TcC are investigated for the first time. • The quasi-harmonic Debye model is applied to take into account the thermal effect. • The pressure and temperature up to about 100 GPa and 3000 K, respectively. - Abstract: Debye temperature, thermal expansion coefficient, and heat capacity of ideal stoichiometric TcC in the rocksalt structure have been studied systematically by using ab initio plane-wave pseudopotential density functional theory method within the generalized gradient approximation. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of Debye temperature, thermal expansion coefficient, constant-volume heat capacity, and constant-pressure heat capacity on pressure and temperature are successfully predicted. All the thermodynamic properties of TcC with rocksalt phase have been predicted in the entire temperature range from 300 to 3000 K and pressure up to 100 GPa.

  5. Evidence of slow Debye-like relaxation in the anti-inflammatory agent etoricoxib.

    Science.gov (United States)

    Rams-Baron, M; Wojnarowska, Z; Dulski, M; Ratuszna, A; Paluch, M

    2015-08-01

    The origin of Debye-like relaxation in some hydrogen-bonded liquids is a matter of hot debate over the past decade. While a relatively clear picture of the issue has been established for monohydroxy alcohols, the Debye-type dynamics in other glass-forming systems still remains a not fully understood phenomenon. In this paper we present the results of dielectric measurements performed in the frequency interval 10(-1) to 10(9)Hz, both in the supercooled and normal liquid state of etoricoxib anti-inflammatory agent. Our investigations reveal the presence of slow Debye-like relaxation with features similar to that found for another active pharmaceutical ingredient, ibuprofen. Our results provide a fresh insight into the molecular nature of Debye-type relaxation in H-bonded pharmaceutically relevant materials and thus may stimulate the academic community for further discussion concerning the molecular dynamics of hydrogen-bonded fluids in general.

  6. The Dirac field in the electromagnetic potential of a charged string; Das Dirac-Feld im elektromagnetischen Potential eines geladenen Strings

    Energy Technology Data Exchange (ETDEWEB)

    Anaguano, L.

    2005-07-01

    According to the theory of Quantum Electrodynamics (QED) the vacuum state will change in the presence of very strong electromagnetic fields. If the external field (in the simplest case purely electrostatic) exceeds a certain critical value the creation of electron-positron pairs will ensue, resulting the the formation of a charged vacuum. This process is characterized by the emergence of electron states with a binding energy larger than twice the electron rest mass. The effect up to now usually was studied for spherically symmetric systems, in particular for the Coulomb potential of a heavy nucleus. In the present thesis we investigate, how this phenomenon changes when passing from spherical to cylindrical geometry. For this, we derive the solutions of the Dirac equation for electrons in the electrostatic potential of a long, thin charged cylinder (a ''charged string'') and study the ensuing supercritical effects. Since the logarithmic potential of an infinitely long string rises indefinitely with growing distance, all electron states should be supercritical (i.e., electrons should be able to tunnel through the particle-antiparticle gap of the Dirac equation). Therefore on may expect that the central charge will surround itself with an oppositely charged sheath of vacuum electrons, leading to neutralization of the string. To develop a quantitative description of this process, we investigate the solutions of the Poisson equation and the Dirac equation in cylindrical symmetry. In the first step a series expansion of the electrostatic potential in the central plane of a homogeneously charge cylinder of finite length and finite radius is derived. Subsequently, we employ the tetrad (vierbein) formalism to separate the Dirac equation in cylindrical coordinates. The resulting radial Dirac equation is transformed to Schroedinger type. The bound states are evaluated using the method of uniform approximation (a version of the WKB approximation). We study

  7. X-RAY DEBYE TEMPERATURE STUDY OF Fe2O3 NANOPARTICLES

    OpenAIRE

    2012-01-01

    Fe2O3 nanoparticle powders have been prepared by a chemical route synthesis. The resulting nanoparticle powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The Debye temperature, mean-square amplitudes of vibration, Debye-Waller factor, particle size, lattice strain, and vacancy formation of energies of Fe2O3 nanoparticles prepared by chemical route synthesis have been obtained from Xray integrated intensities. The integrated intensities have been mea...

  8. 2100-MHz electromagnetic fields have different effects on visual evoked potentials and oxidant/antioxidant status depending on exposure duration.

    Science.gov (United States)

    Hidisoglu, Enis; Kantar Gok, Deniz; Er, Hakan; Akpinar, Deniz; Uysal, Fatma; Akkoyunlu, Gokhan; Ozen, Sukru; Agar, Aysel; Yargicoglu, Piraye

    2016-03-15

    The purpose of the present study was to investigate the duration effects of 2100-MHz electromagnetic field (EMF) on visual evoked potentials (VEPs) and to assess lipid peroxidation (LPO), nitric oxide (NO) production and antioxidant status of EMF exposed rats. Rats were randomized to following groups: Sham rats (S1 and S10) and rats exposed to 2100-MHz EMF (E1 and E10) for 2h/day for 1 or 10 weeks, respectively. At the end of experimental periods, VEPs were recorded under anesthesia. Brain thiobarbituric acid reactive substances (TBARS) and 4-hydroxy-2-nonenal (4-HNE) levels were significantly decreased in the E1 whereas increased in the E10 compared with their control groups. While brain catalase (CAT), glutathione peroxidase (GSH-Px) activities and NO and glutathione (GSH) levels were significantly increased in the E1, reduction of superoxide dismutase (SOD) activity was detected in the same group compared with the S1. Conversely, decreased CAT, GSH-Px activities and NO levels were observed in the E10 compared with the S10. Latencies of all VEP components were shortened in the E1 compared with the S1, whereas latencies of all VEP components, except P1, were prolonged in the E10 compared with the S10. There was a positive correlation between all VEP latencies and brain TBARS and 4-HNE values. Consequently, it could be concluded that different effects of EMFs on VEPs depend on exposure duration. In addition, our results indicated that short-term EMF could provide protective effects, while long-term EMF could have an adverse effect on VEPs and oxidant/antioxidant status.

  9. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations

    Science.gov (United States)

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m :-n electrolyte. A perturbation series is developed in terms of g =4 π κ b , where b a n d 1 /κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m ≠n ), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  10. Task 4 - EMI/RFI Issues Potentially Impacting Electromagnetic Compatibility of I&C Systems (NRCHQ6014D0015)

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ewing, Paul D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    (remote I&C) purposes. Also, specific concerns and issues with testing methods and methodologies have been identified that must be addressed. Further, most of the standards that serve as the basis for the RG have been revised. Therefore, the NRC’s Office of Regulatory Research has contracted with Oak Ridge National Laboratory (ORNL) to incorporate new information and resolve the identified issues under NRC-HQ-60-14-D-0015, “Update to RG 1.180, Revision 2, Guidelines for Evaluating Electromagnetic and Radio-Frequency Interference in Safety-Related Instrumentation and Control Systems.” The ultimate goal of this project is to provide NRC the technical basis for developing and publishing a new revision of the RG. The focus of Task 4 was for ORNL to identify and address any new or additional EMI/RFI issues that could potentially impact the EMC of I&C systems. More specifically, ORNL was to evaluate the impact of any new issue on safety equipment in their local environments and then determine whether the issues should be included and discussed in the revision to RG 1.180 that is currently under way.

  11. Absorption of electromagnetic waves by the dust particles in a plasma

    Institute of Scientific and Technical Information of China (English)

    LI; Fang; LI; Lianlin; SUI; Qiang

    2004-01-01

    Absorption of electromagnetic waves by the dust particles in a plasma has been studied based on a Mie-Debye scattering mode. The longitudinal field of the Debye scattering has been derived and the wave energy loss from it has been calculated. It is shown that the lower the temperature of the plasma is and the higher the density of the plasma is, the larger the absorption cross section will be due to the longitudinal scattering.For the low frequency waves the electromagnetic waves scattered in a dusty plasma are mainly in the form of Debye scattering. In this case the energy loss due to the longitudinal scattering will affect the wave propagation seriously.

  12. Electromagnetic Force on a Brane

    CERN Document Server

    Li, Li-Xin

    2016-01-01

    A fundamental assumption in the theory of brane world is that all matter and radiation are confined on the four-dimensional brane and only gravitons can propagate in the five-dimensional bulk spacetime. The brane world theory did not provide an explanation for the existence of electromagnetic fields and the origin of the electromagnetic field equation. In this paper, we propose a model for explaining the existence of electromagnetic fields on a brane and deriving the electromagnetic field equation. Similar to the case in Kaluza-Klein theory, we find that electromagnetic fields and the electromagnetic field equation can be derived from the five-dimensional Einstein field equation. However, the derived electromagnetic field equation differs from the Maxwell equation by containing a term with the electromagnetic potential vector coupled to the spacetime curvature tensor. So it can be considered as generalization of the Maxwell equation in a curved spacetime. The gravitational field equation on the brane is also ...

  13. Elastic properties of amorphous Si and derived Debye temperatures and Grüneisen parameters: Model calculation

    Science.gov (United States)

    Feldman, J. L.; Broughton, J. Q.; Wooten, F.

    1991-01-01

    Calculations, based on the Stillinger-Weber (SW) interatomic-potential model and the method of long waves, are presented for the elastic properties of amorphous Si (a-Si) and for pressure derivatives of the elastic constants of crystalline Si. Several models of a-Si, relaxed on the basis of the SW potential, are considered, and the external stresses that are associated with these models are evaluated using the Born-Huang relations. The elastic constants appear to obey the isotropy conditions to within a reasonable accuracy and are also consistent with other predictions based on the SW potential at finite temperature obtained by Kluge and Ray. Estimates of the pressure dependence of the elastic constants, Debye temperature, and Grüeisen parameter for a-Si are also provided on the basis of these calculations.

  14. Gallilei covariant quantum mechanics in electromagnetic fields

    Directory of Open Access Journals (Sweden)

    H. E. Wilhelm

    1985-01-01

    Full Text Available A formulation of the quantum mechanics of charged particles in time-dependent electromagnetic fields is presented, in which both the Schroedinger equation and wave equations for the electromagnetic potentials are Galilei covariant, it is shown that the Galilean relativity principle leads to the introduction of the electromagnetic substratum in which the matter and electromagnetic waves propagate. The electromagnetic substratum effects are quantitatively significant for quantum mechanics in reference frames, in which the substratum velocity w is in magnitude comparable with the velocity of light c. The electromagnetic substratum velocity w occurs explicitly in the wave equations for the electromagnetic potentials but not in the Schroedinger equation.

  15. XAFS Debye-Waller factors for deformed hemes and metal substituted hemes

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, N; Mion, T; Ramirez, C [Department of Physics and Geology, University of Texas-Pan American, Edinburg, TX 78539 (United States); Bunker, G, E-mail: dimakis@utpa.ed [Department of Biological Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2009-11-15

    We present an efficient and accurate method for calculating XAFS Debye-Waller factors for deformed active sites of hemoproteins and metal substituted hemes. Based on the Normal Coordinate Structural Decomposition scheme, the deformation of the porphyrin macrocycle is expressed as a linear combination of the normal modes of the planar species. In our approach, we identify the modes that contribute most to the deformation. Small metal-porphyrin structures which match the macrocycle structural deformation of the deformed hemoprotein site are used to calculate the Debye-Waller parameters at sample's temperature. The Debye-Waller factors are directly obtained by calculating the normal mode spectrum of the corresponding metal-porphyrin structure using Density Functional Theory. Our method is tested on Ni-tetraadamantyl porphyrin and cytochrome c structures with more than 500 available scattering paths.

  16. Direct path from microscopic mechanics to Debye shielding, Landau damping, and wave-particle interaction

    CERN Document Server

    Escande, Dominique F; Doveil, Fabrice

    2014-01-01

    The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas is performed directly by using Newton's second law for the $N$-body system. This is done in a few steps with elementary calculations using standard tools of calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. Shielding and collisional transport are found to be two related aspects of the repulsive deflections of electrons, in such a way that each particle is shielded by all other ones while keeping in uninterrupted motion.

  17. Direct path from microscopic mechanics to Debye shielding, Landau damping and wave-particle interaction

    Science.gov (United States)

    Escande, D. F.; Elskens, Yves; Doveil, F.

    2015-02-01

    The derivation of Debye shielding and Landau damping from the N-body description of plasmas is performed directly by using Newton’s second law for the N-body system. This is done in a few steps with elementary calculations using standard tools of calculus and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. On top of their well-known production of collisional transport, the repulsive deflections of electrons are shown to produce shielding, in such a way that each particle is shielded by all other ones, while keeping in uninterrupted motion.

  18. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  19. The Temperature Dependence of the Debye-Waller Factor of Magnesium

    DEFF Research Database (Denmark)

    Sledziewska-Blocka, D.; Lebech, Bente

    1976-01-01

    The temperature dependence of the average Debye-Waller factor for magnesium was measured by means of neutron diffraction spectrometry. The experimental results obtained in the temperature range from 5 to 256 K are compared with theoretical calculations, using the harmonic and quasi-harmonic appro......The temperature dependence of the average Debye-Waller factor for magnesium was measured by means of neutron diffraction spectrometry. The experimental results obtained in the temperature range from 5 to 256 K are compared with theoretical calculations, using the harmonic and quasi...

  20. Debye series expansion of shaped beam scattering by GI-POF

    Science.gov (United States)

    Renxian, Li; Xiang'e, Han; Fang, Ren Kuan

    2009-11-01

    We derive Debye series expansion (DSE) for infinitely long multilayered cylinders normally incident by shaped beam. Typically the interaction between multilayered cylinders and Gaussian beam is derived in detail, and localized approximation is introduced to calculate the beam shaped coefficients. Finally DSE is employed to the study of rainbow scattering by graded-index polymer optical fiber (GI-POF).

  1. Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations

    Science.gov (United States)

    Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Lee, Dong-Hun; Seon, Jongho; Jin, Ho

    2015-12-01

    In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth rate on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer.

  2. Modelling the X-ray powder diffraction of nitrogen-expanded austenite using the Debye formula

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2008-01-01

    Stress-free and homogeneous samples of nitrogen-expanded austenite, a defect-rich f.c.c. structure with a high interstitial nitrogen occupancy (between 0.36 and 0.61), have been studied using X-ray powder diffraction and Debye simulations. The simulations confirm the presence of deformation stack...

  3. Electromagnetic Attraction.

    Science.gov (United States)

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  4. Potential protection of green tea polyphenols against 1800 MHz electromagnetic radiation-induced injury on rat cortical neurons.

    Science.gov (United States)

    Liu, Mei-Li; Wen, Jian-Qiang; Fan, Yu-Bo

    2011-10-01

    Radiofrequency electromagnetic fields (EMF) are harmful to public health, but the certain anti-irradiation mechanism is not clear yet. The present study was performed to investigate the possible protective effects of green tea polyphenols against electromagnetic radiation-induced injury in the cultured rat cortical neurons. In this study, green tea polyphenols were used in the cultured cortical neurons exposed to 1800 MHz EMFs by the mobile phone. We found that the mobile phone irradiation for 24 h induced marked neuronal cell death in the MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium bromide) and TUNEL (TdT mediated biotin-dUTP nicked-end labeling) assay, and protective effects of green tea polyphenols on the injured cortical neurons were demonstrated by testing the content of Bcl-2 Assaciated X protein (Bax) in the immunoprecipitation assay and Western blot assay. In our study results, the mobile phone irradiation-induced increases in the content of active Bax were inhibited significantly by green tea polyphenols, while the contents of total Bax had no marked changes after the treatment of green tea polyphenols. Our results suggested a neuroprotective effect of green tea polyphenols against the mobile phone irradiation-induced injury on the cultured rat cortical neurons.

  5. Electromagnetic interactions

    CERN Document Server

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  6. Electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bosanac, Slobodan Danko [Ruder Boskovic Institute, Zagreb (Croatia). Physical Chemistry

    2016-07-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  7. Electromagnetic fasteners

    Science.gov (United States)

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  8. Electromagnetic force on a brane

    Science.gov (United States)

    Li, Li-Xin

    2016-11-01

    A fundamental assumption in the theory of brane world is that all matter and radiation are confined on the four-dimensional brane and only gravitons can propagate in the five-dimensional bulk spacetime. The brane world theory did not provide an explanation for the existence of electromagnetic fields and the origin of the electromagnetic field equation. In this paper, we propose a model for explaining the existence of electromagnetic fields on a brane and deriving the electromagnetic field equation. Similar to the case in Kaluza–Klein theory, we find that electromagnetic fields and the electromagnetic field equation can be derived from the five-dimensional Einstein field equation. However, the derived electromagnetic field equation differs from the Maxwell equation by containing a term with the electromagnetic potential vector coupled to the spacetime curvature tensor. So it can be considered as generalization of the Maxwell equation in a curved spacetime. The gravitational field equation on the brane is also derived with the stress–energy tensor for electromagnetic fields explicitly included and the Weyl tensor term explicitly expressed with matter fields and their derivatives in the direction of the extra-dimension. The model proposed in the paper can be regarded as unification of electromagnetic and gravitational interactions in the framework of brane world theory.

  9. Alleviation of adverse effects of drought stress on growth and some potential physiological attributes in maize (Zea mays L.) by seed electromagnetic treatment.

    Science.gov (United States)

    Javed, Namra; Ashraf, Muhammad; Akram, Nudrat Aisha; Al-Qurainy, Fahad

    2011-01-01

    Effects of varying preseed magnetic treatments on growth, chlorophyll pigments, photosynthesis, water relation attributes, fluorescence and levels of osmoprotectants in maize plants were tested under normal and drought stress conditions. Seeds of two maize cultivars were treated with different (T0 [0 mT], T1 [100 mT for 5 min], T2 [100 mT for 10 min], T3 [150 mT for 5 min] and T4 [150 mT for 10 min]) electromagnetic treatments. Drought stress considerably suppressed growth, chlorophyll a and b pigments, leaf water potential, photosynthetic rate (A), stomatal conductance (g(s)) and substomatal CO(2) concentration (C(i)), while it increased leaf glycinebetaine and proline accumulation in both maize cultivars. However, pretreated seeds with different magnetic treatments significantly alleviated the drought-induced adverse effects on growth by improving chlorophyll a, A, E, g(s), C(i) and photochemical quenching and nonphotochemical quenching, while it had no significant effect on other attributes. However, different magnetic treatments negatively affected the g(s) and C(i) particularly in cv. Agaiti-2002 under drought stress conditions. Of all magnetic treatments, 100 and 150 mT for 10 min were most effective in alleviating the drought-induced adverse effects. Overall, preseed electromagnetic treatments could be used to minimize the drought-induced adverse effects on different crop plants.

  10. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  11. Electromagnetic Fields

    Science.gov (United States)

    ... causes cancer. Some people worry that wireless and cellular phones cause cancer or other health problems. The phones do give off radio-frequency energy (RF), a form of electromagnetic radiation. So far, scientific evidence has not found a ...

  12. Electromagnetic Railgun

    Science.gov (United States)

    2012-03-01

    DISTRIBUTION STATEMENT A: Approved for Public Release Electromagnetic Railgun ASNE Combat System Symposium 26-29 March 2012 CAPT Mike...4. TITLE AND SUBTITLE Electromagnetic Railgun 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...Defense 3/29/2012 Slide 5 Distribution A Naval Railgun – Key Elements Capacitors or Rotating Machines Ship Integration Launcher Projectile

  13. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  14. Electromagnetic compatibility in power electronics

    CERN Document Server

    Costa , François; Revol , Bertrand

    2014-01-01

    Scientists largely attribute the recent deterioration of the electromagnetic environment to power electronics. This realization has spurred the study of methodical approaches to electromagnetic compatibility designs as explored in this text. The book addresses major challenges, such as handling numerous parameters vital to predicting electro magnetic effects and achieving compliance with line-harmonics norms, while proposing potential solutions.

  15. Effects of GSM-modulated 900 MHz radiofrequency electromagnetic fields on the hematopoietic potential of mouse bone marrow cells.

    Science.gov (United States)

    Rosado, Maria Manuela; Nasta, Francesca; Prisco, Maria Grazia; Lovisolo, Giorgio Alfonso; Marino, Carmela; Pioli, Claudio

    2014-12-01

    Studies describing the influence of radiofrequency electromagnetic fields on bone marrow cells (BMC) often lack functional data. We examined the effects of in vivo exposure to a Global System for Mobile Communications (GSM) modulated 900 MHz RF fields on BMC using two transplantation models. X-irradiated syngeneic mice were injected with BMC from either RF-field-exposed, sham-exposed or cage control mice. Twelve weeks after transplantation, no differences in thymocyte number, frequency of subpopulations and cell proliferation were found in mice receiving BMC from either group. Also, in the spleen cell number, percentages of B/T cells, B/T-cell proliferation, and interferon γ (IFN-γ) production were similar in all groups. In parallel, a mixture of BMC from congenic sham- and RF-exposed mice were co-transplanted into lymphopenic Rag2 deficient mice. BMC from RF-exposed and sham-exposed mice displayed no advantage or disadvantage when competing for the replenishment of lymphatic organs with mature lymphocytes in Rag2 deficient mice. This model revealed that BMC from sham-exposed and RF-exposed mice were less efficient than BMC from cage control mice in repopulating the thymus, an effect likely due to restraint stress. In conclusion, our results showed no effects of in vivo exposure to GSM-modulated RF-fields on the ability of bone marrow (BM) precursors to long-term reconstitute peripheral T and B cell compartments.

  16. Effect of sheath potential on electromagnetic radiation emitted from the rear surface of a metallic foil target

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In ultra-intense laser-matter interactions, intense electric fields formed at the rear surface of a foil target may have strong influences on the motion of energetic electrons, and thereby affect the electromagnetic emissions from the rear surface, usually ascribed to transition radiation. Due to the electric fields, transition radiation occurs twice and bremsstrahlung radiation also happens because the electrons will cross the rear surface twice and have large accelerations.In the optic region, transition radiation is dominant. The radiation spectrum depends on the electric field only when the electrons are monochromatic, and becomes independent of the electric field when the electrons have a broadband momentum distribution. Therefore, in an actual experiment, the electric field at the rear surface of a foil could not be studied just with the measurement of optic emissions. In the terahertz region, both bremsstrahlung and transition radiations should be taken into account, and the radiation power could be enhanced in comparison with that without the inclusion of bremsstrahlung radiation. The frequency at which the maximum terahertz radiation appears depends on the electric field.

  17. Potential of Glassy Carbon and Silicon Carbide Photonic Structures as Electromagnetic Radiation Shields for Atmospheric Re-entry

    Science.gov (United States)

    Komarevskiy,Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Lawson, John W.

    2012-01-01

    During high-velocity atmospheric entries, space vehicles can be exposed to strong electromagnetic radiation from ionized gas in the shock layer. Glassy carbon (GC) and silicon carbide (SiC) are candidate thermal protection materials due to their high melting point and also their good thermal and mechanical properties. Based on data from shock tube experiments, a significant fraction of radiation at hypersonic entry conditions is in the frequency range from 215 to 415 THz. We propose and analyze SiC and GC photonic structures to increase the reflection of radiation in that range. For this purpose, we performed numerical optimizations of various structures using an evolutionary strategy. Among the considered structures are layered, porous, woodpile, inverse opal and guided-mode resonance structures. In order to estimate the impact of fabrication inaccuracies, the sensitivity of the reflectivity to structural imperfections is analyzed. We estimate that the reflectivity of GC photonic structures is limited to 38% in the aforementioned range, due to material absorption. However, GC material can be effective for photonic reflection of individual, strong spectral line. SiC on the other hand can be used to design a good reflector for the entire frequency range.

  18. Nonabelian Debye screening and the {open_quotes}tsunami{close_quotes} problem

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, R.D. [Brookhaven National Lab., Upton, NY (United States)

    1997-09-22

    The phenomenon of Debye screening is familiar from electrolytes and many other systems. Recently, it has been recognized that in nonabelian gauge theories at high temperature, even perturbatively Debye screening is much more complicated than in nonrelativistic systems. This was originally derived as {open_quotes}hard thermal loops{close_quotes}. Hard thermal loops have been derived perturbatively, by a semiclassical truncation of the Schwinger-Dyson equations, and by classical kinetic theory. In this talk I give a pedagogical derivation, following that of Kelly, Liu, Lucchesi, and Manuel. The derivation is valid not just for a thermal distribution, but (modulo certain obvious restrictions) for an arbitrary initial distribution of particles. Consider, for example, the {open_quotes}tsunami{close_quotes} problem: suppose that one starts, at time t = 0, with a spatially homogenous, infinite wall of particles, all moving with the same velocity at the speed of light.

  19. Slow dielectric response of Debye-type in water and other hydrogen bonded liquids

    Science.gov (United States)

    Jansson, Helén; Bergman, Rikard; Swenson, Jan

    2010-05-01

    The slow dynamics of some hydrogen bonded glass-forming liquids has been investigated by broadband dielectric spectroscopy. We show that the polyalcohols glycerol, xylitol, and sorbitol, and mixtures of glycerol and water, and in fact, even pure water exhibit a process of Debye character at longer time-scales than the glass transition and viscosity related α-relaxation. Even if it is less pronounced, this process displays many similarities to the well-studied Debye-like process in monoalcohols. It can be observed in both the negative derivative of the real part of the permittivity or in the imaginary part of the permittivity, if the conductivity contribution is reduced. In the present study the conductivity contribution has been suppressed by use of a thin Teflon film placed between the sample and one of the electrodes. The new findings might have important implications for the structure and dynamics of hydrogen bonded liquids in general, and for water in particular.

  20. Debye scale turbulence within the electron diffusion layer during magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Jara-Almonte, J.; Ji, H. [Center for Magnetic Self-Organization, Max-Planck/Princeton Center for Plasma Physics, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-03-15

    During collisionless, anti-parallel magnetic reconnection, the electron diffusion layer is the region of both fieldline breaking and plasma mixing. Due to the in-plane electrostatic fields associated with collisionless reconnection, the inflowing plasmas are accelerated towards the X-line and form counter-streaming beams within the unmagnetized diffusion layer. This configuration is inherently unstable to in-plane electrostatic streaming instabilities provided that there is sufficient scale separation between the Debye length λ{sub D} and the electron skin depth c/ω{sub pe}. This scale separation has hitherto not been well resolved in kinetic simulations. Using both 2D fully kinetic simulations and a simple linear model, we demonstrate that these in-plane streaming instabilities generate Debye scale turbulence within the electron diffusion layer at electron temperatures relevant to magnetic reconnection both in the magnetosphere and in laboratory experiments.

  1. Electromagnetic fields inside a lossy, multilayered spherical head phantom excited by MRI coils: models and methods.

    Science.gov (United States)

    Liu, Feng; Crozier, Stuart

    2004-05-21

    The precise evaluation of electromagnetic field (EMF) distributions inside biological samples is becoming an increasingly important design requirement for high field MRI systems. In evaluating the induced fields caused by magnetic field gradients and RF transmitter coils, a multilayered dielectric spherical head model is proposed to provide a better understanding of electromagnetic interactions when compared to a traditional homogeneous head phantom. This paper presents Debye potential (DP) and Dyadic Green's function (DGF)-based solutions of the EMFs inside a head-sized, stratified sphere with similar radial conductivity and permittivity profiles as a human head. The DP approach is formulated for the symmetric case in which the source is a circular loop carrying a harmonic-formed current over a wide frequency range. The DGF method is developed for generic cases in which the source may be any kind of RF coil whose current distribution can be evaluated using the method of moments. The calculated EMFs can then be used to deduce MRI imaging parameters. The proposed methods, while not representing the full complexity of a head model, offer advantages in rapid prototyping as the computation times are much lower than a full finite difference time domain calculation using a complex head model. Test examples demonstrate the capability of the proposed models/methods. It is anticipated that this model will be of particular value for high field MRI applications, especially the rapid evaluation of RF resonator (surface and volume coils) and high performance gradient set designs.

  2. Debye mass of massless \\phi^4-theory to order g^6 at weak coupling

    CERN Document Server

    Khan, Rashid

    2015-01-01

    We calculate the Debye mass of massless \\phi^4-theory to order g^6 at weak coupling. The contributions to the Debye mass arise from the hard momentum scale of order T and the soft momentum scale of order gT. Effective field theory methods and dimensional reduction are used to separate the contributions from the two momentum scales. The hard contribution can be calculated as a power series in g^2 using naive perturbation theory with bare propagators. The soft contribution is calculated using an effective theory in three dimensions, whose coefficients are power series in g^2. This contribution is a power series in g starting at order g^3. The calculation of the hard part to order g^6. The calculation of the soft part requires calculating the mass parameter in the effective theory to order g^6 and the evaluation of four-loop self-energy diagrams in three dimensions. This gives the Debye mass correct up to order g^6. We discuss the convergence of the perturbative series as well as the loop expansion in three dime...

  3. Debye temperature of nanocrystalline Fe–Cr alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Dubiel, S.M., E-mail: Stanislaw.Dubiel@fis.agh.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, PL-30-059 Krakow (Poland); Costa, B.F.O. [CFisUC, Physics Department, University of Coimbra, P-3004-516 Coimbra (Portugal); Cieslak, J. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, PL-30-059 Krakow (Poland); Batista, A.C. [CFisUC, Physics Department, University of Coimbra, P-3004-516 Coimbra (Portugal)

    2015-11-15

    A series on nanocrystalline Fe{sub 100−x}Cr{sub x} alloys prepared by mechanical alloying was investigated with X-ray diffraction (XRD), scanning electron microscopy (SEM) and Mössbauer spectroscopy (MS) techniques. XRD was used to structurally characterize the samples whereas MS permitted phase analysis as well as determination of the Debye temperature, θ{sub D}. Concerning the latter, an enhancement relative to bulk θ{sub D}-values was revealed in the range of ∼40 ≤ x ≤∼50. In a sample of Fe{sub 55.5}Cr{sub 44.5} two phases were detected viz. (1) crystalline and magnetic with θ{sub D} = 572 (56) K and (2) amorphous and paramagnetic with θ{sub D} = 405 (26) K. - Highlights: • Nanocrystalline Fe–Cr alloys obtained by mechanical alloying. • Determination of the Debye temperature by Mössbauer spectroscopy. • Observation of enhancement of the Debye temperature for quasi equiatomic alloys.

  4. Non-equilibrium quantum plasmas in scalar QED photon production, magnetic and Debye masses and conductivity

    CERN Document Server

    Boyanovsky, D; Simionato, M

    2000-01-01

    We study the generation of a non-equilibrium plasma in scalar QED with N charged scalar fields through spinodal instabilities in the case of a super cooled second order phase transition and parametric amplification when the order parameter oscillates with large amplitude around the minimum of the potential.The focus is to study the non-equilibrium electromagnetic properties of the plasma, such as photon production, electric and magnetic screening and conductivity. A novel kinetic equation is introduced to compute photon production far away from equilibrium in the large N limit and lowest order in the electromagnetic coupling.During the early stages of the dynamics the photon density grows exponentially and asymptotically the amplitude and frequency distribution becomes \\sim alpha m^2/[lambda^2 ømega^3] with lambda the scalar self-coupling and m the scalar mass.In the case of a phase transition,electric and magnetic fields are correlated on distances xi(t) \\sim sqrt{t} during the early stages and the power sp...

  5. Manifestly covariant electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Hillion, P. [Institut Henri Poincare' , Le Vesinet (France)

    1999-03-01

    The conventional relativistic formulation of electromagnetism is covariant under the full Lorentz group. But relativity requires covariance only under the proper Lorentz group and the authors present here the formalism covariant under the complex rotation group isomorphic to the proper Lorentz group. The authors discuss successively Maxwell's equations, constitutive relations and potential functions. A comparison is made with the usual formulation.

  6. Electromagnetic Energy Sink

    CERN Document Server

    Valagiannopoulos, Constantinos A; Simovski, Constantin R; Tretyakov, Sergei A; Maslovski, Stanislav I

    2015-01-01

    The ideal black body fully absorbs all incident rays, that is, all propagating waves created by arbitrary sources. The known idealized realization of a black body is the perfectly matched layer (PML), widely used in numerical electromagnetics. However, ideal black bodies and PMLs do not interact with evanescent fields existing near any finite-size source, and the energy stored in these fields cannot be harvested. Here we introduce the concept of the ideal conjugate matched layer (CML), which fully absorbs energy of both propagating and evanescent fields of sources acting as an ideal sink for electromagnetic energy. Conjugate matched absorbers have exciting application potentials, as resonant attractors of electromagnetic energy into the absorber volume. We derive the conditions on the constitutive parameters of media which can serve as CML materials, numerically study the performance of planar and cylindrical CML and discuss possible realizations of such materials as metal-dielectric composites.

  7. Pressure-Dependent Anharmonic Correlated Einstein Model Extended X-ray Absorption Fine Structure Debye-Waller Factors

    Science.gov (United States)

    Van Hung, Nguyen

    2014-02-01

    A pressure-dependent anharmonic correlated Einstein model is derived for extended X-ray absorption fine structure (EXAFS) Debye-Waller factors (DWFs), which are presented in terms of cumulant expansion up to the third order. The model is based on quantum thermodynamic perturbation theory and includes anharmonic effects based on empirical potentials. Explicit analytical expressions of the pressure-dependent changes in the interatomic distance, anharmonic effective potential, thermodynamic parameters, first, second, and third EXAFS cumulants, and thermal expansion coefficient have been derived. This model avoids the use of extensive full lattice dynamical calculations, yet provides good and reasonable agreement of numerical results for Cu with experimental results of X-ray diffraction (XRD) analysis and pressure-dependent EXAFS. Significant pressure effects are shown by the decrease in the pressure-induced changes in the interatomic distance, EXAFS cumulants and thermal expansion coefficient, as well as by the increase in the pressure-induced changes in the interatomic effective potential, effective spring constant, correlated Einstein frequency, and temperature.

  8. Quadrupole terms in the Maxwell equations: Debye-Hückel theory in quadrupolarizable solvent and self-salting-out of electrolytes.

    Science.gov (United States)

    Slavchov, Radomir I

    2014-04-28

    If the molecules of a given solvent possess significant quadrupolar moment, the macroscopic Maxwell equations must involve the contribution of the density of the quadrupolar moment to the electric displacement field. This modifies the Poisson-Boltzmann equation and all consequences from it. In this work, the structure of the diffuse atmosphere around an ion dissolved in quadrupolarizable medium is analyzed by solving the quadrupolar variant of the Coulomb-Ampere's law of electrostatics. The results are compared to the classical Debye-Hückel theory. The quadrupolar version of the Debye-Hückel potential of a point charge is finite even in r = 0. The ion-quadrupole interaction yields a significant expansion of the diffuse atmosphere of the ion and, thus, it decreases the Debye-Hückel energy. In addition, since the dielectric permittivity of the electrolyte solutions depends strongly on concentration, the Born energy of the dissolved ions alters with concentration, which has a considerable contribution to the activity coefficient γ± known as the self-salting-out effect. The quadrupolarizability of the medium damps strongly the self-salting-out of the electrolyte, and thus it affects additionally γ±. Comparison with experimental data for γ± for various electrolytes allows for the estimation of the quadrupolar length of water: LQ ≈ 2 Å, in good agreement with previous assessments. The effect of quadrupolarizability is especially important in non-aqueous solutions. Data for the activity of NaBr in methanol is used to determine the quadrupolarizability of methanol with good accuracy.

  9. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Hasse, Stina

    2015-01-01

    Electromagnetic Landscape demonstrates in direct, tangible and immediate ways effects of the disruption of the familiar. An ubiquitous technological medium, FM radio, is turned into an alien and unfamiliar one. Audience participation, the environment, radio signals and noise create a site...

  10. Assessment of the neurotoxic potential of exposure to 50Hz extremely low frequency electromagnetic fields (ELF-EMF) in naïve and chemically stressed PC12 cells

    NARCIS (Netherlands)

    de Groot, Martje W G D M; Kock, Marjolijn D M; Westerink, Remco H S

    2014-01-01

    Increasing exposure to extremely low frequency electromagnetic fields (ELF-EMF), generated by power lines and electric appliances, raises concern about potential adverse health effects of ELF-EMF. The central nervous system is expected to be particularly vulnerable to ELF-EMF as its function strongl

  11. Particles of Spin Zero and 1/2 in Electromagnetic Field with Confining Scalar Potential in Modified Heisenberg Algebra

    Science.gov (United States)

    Tilbi, A.; Merad, M.; Boudjedaa, T.

    2015-03-01

    In this paper, we propose to solve the relativistic Klein Gordon and Dirac equations subjected to the action of a uniform electomagnetic field confining scalar potential yin the presence of a minimal length in the momentum space. In both cases, the energy eigenvalues and their corresponding eigenfunctions are obtained. The limiting cases is then deduced for a small parameter of deformation.

  12. Multiphonon resonances in the Debye-Waller factor of atom surface scattering.

    Science.gov (United States)

    Brenig, W

    2004-02-06

    He atom surface scattering by dispersionless phonons is treated employing coupled channel (CC) calculations. At low energies, they predict a behavior opposite to perturbative Born or "exponentiated" Born approximation: strong resonant phonon stimulated elastic and inhibited inelastic scattering. The corresponding resonances have not been observed in earlier CC results since these have considered only the temperature dependence of the Debye-Waller factor at higher energy or omitted the attractive well. The resonances can be interpreted in terms of bound states in the attractive well with several excited vibrational quanta. They may be observable for, e.g., He scattering by a cold Xe/Cu surface.

  13. X-ray absorption Debye-Waller factors from ab initio molecular dynamics

    Science.gov (United States)

    Vila, F. D.; Lindahl, V. E.; Rehr, J. J.

    2012-01-01

    An ab initio equation of motion method is introduced to calculate the temperature-dependent mean-square vibrational amplitudes σ2 which appear in the Debye-Waller factors in x-ray absorption, x-ray scattering, and related spectra. The approach avoids explicit calculations of phonon modes, and is based instead on calculations of the displacement-displacement time correlation function from ab initio density functional theory molecular dynamics simulations. The method also yields the vibrational density of states and thermal quantities such as the lattice free energy. Illustrations of the method are presented for a number of systems and compared with other methods and experiment.

  14. Direct measurement of sub-Debye-length attraction between oppositely charged surfaces.

    Science.gov (United States)

    Kampf, Nir; Ben-Yaakov, Dan; Andelman, David; Safran, S A; Klein, Jacob

    2009-09-11

    Using a surface force balance with fast video analysis, we have measured directly the attractive forces between oppositely charged solid surfaces (charge densities sigma(+), sigma(-)) across water over the entire range of interaction, in particular, at surface separations D below the Debye screening length lambda(S). At very low salt concentration we find a long-ranged attraction between the surfaces (onset ca. 100 nm), whose variation at D

  15. Direct Measurement of Sub-Debye-Length Attraction between Oppositely Charged Surfaces

    Science.gov (United States)

    Kampf, Nir; Ben-Yaakov, Dan; Andelman, David; Safran, S. A.; Klein, Jacob

    2009-09-01

    Using a surface force balance with fast video analysis, we have measured directly the attractive forces between oppositely charged solid surfaces (charge densities σ+, σ-) across water over the entire range of interaction, in particular, at surface separations D below the Debye screening length λS. At very low salt concentration we find a long-ranged attraction between the surfaces (onset ca. 100 nm), whose variation at D<λS agrees well with predictions based on solving the Poisson-Boltzmann theory, when due account is taken of the independently-determined surface charge asymmetry (σ+≠|σ-|).

  16. Stokes-Einstein-Debye failure in molecular orientational diffusion: exception or rule?

    Science.gov (United States)

    Turton, David A; Wynne, Klaas

    2014-05-01

    The Stokes-Einstein-Debye (SED) expression is used routinely to relate orientational molecular diffusivity quantitatively to viscosity. However, it is well-known that Einstein's equations are derived from hydrodynamic theory for the diffusion of a Brownian particle in a homogeneous fluid and examples of SED breakdown and failure for molecular diffusion are not unusual. Here, using optical Kerr-effect spectroscopy to measure orientational diffusion for solutions of guanidine hydrochloride in water and mixtures of carbon disulfide with hexadecane, we show that these two contrasting systems each show pronounced exception to the SED relation and ask if it is reasonable to expect molecular diffusion to be a simple function of viscosity.

  17. Computational Electromagnetics

    CERN Document Server

    Rylander, Thomas; Bondeson, Anders

    2013-01-01

    Computational Electromagnetics is a young and growing discipline, expanding as a result of the steadily increasing demand for software for the design and analysis of electrical devices. This book introduces three of the most popular numerical methods for simulating electromagnetic fields: the finite difference method, the finite element method and the method of moments. In particular it focuses on how these methods are used to obtain valid approximations to the solutions of Maxwell's equations, using, for example, "staggered grids" and "edge elements." The main goal of the book is to make the reader aware of different sources of errors in numerical computations, and also to provide the tools for assessing the accuracy of numerical methods and their solutions. To reach this goal, convergence analysis, extrapolation, von Neumann stability analysis, and dispersion analysis are introduced and used frequently throughout the book. Another major goal of the book is to provide students with enough practical understan...

  18. Electromagnetic Reciprocity.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories

  19. Electromagnetic form factors and static properties of the nucleon in a relativistic potential model of independent quarks with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Dash, B.K.

    1986-10-01

    Nucleon charge and magnetic form factors G/sub E//sub ,//sub M//sup p//sup ,//sup n/(q/sup 2/) have been presented in a quark model with an equally mixed scalar and vector potential in harmonic form taking the pionic contributions into account. The static properties such as the magnetic moment, charge radius, and axial-vector coupling constant in the neutron-..beta..-decay process are shown to be in excellent agreement with the corresponding experimental values. The role of the finite extension of the quark-pion vertex in determining the charge radius and magnetic moment due to the pion cloud surrounding the nucleons has been studied.

  20. Engineering electromagnetics

    CERN Document Server

    Ida, Nathan

    2015-01-01

    This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems  and summaries.   The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...

  1. Electromagnetic theory for electromagnetic compatibility engineers

    CERN Document Server

    Toh, Tze-Chuen

    2013-01-01

    Engineers and scientists who develop and install electronic devices and circuits need to have a solid understanding of electromagnetic theory and the electromagnetic behavior of devices and circuits. In particular, they must be well-versed in electromagnetic compatibility, which minimizes and controls the side effects of interconnected electric devices. Designed to entice the practical engineer to explore some worthwhile mathematical methods, and to reorient the theoretical scientist to industrial applications, Electromagnetic Theory for Electromagnetic Compatibility Engineers is based on the

  2. Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-diffracting (vortex) beams with arbitrary incidence and selective polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, 5 Bisbee Ct., Santa Fe, NM 87508 (United States); Li, R.X., E-mail: rxli@mail.xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Guo, L.X. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi’an 710071 (China); Ding, C.Y. [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China)

    2015-10-15

    A complete description of vector Bessel (vortex) beams in the context of the generalized Lorenz–Mie theory (GLMT) for the electromagnetic (EM) resonance scattering by a dielectric sphere is presented, using the method of separation of variables and the subtraction of a non-resonant background (corresponding to a perfectly conducting sphere of the same size) from the standard Mie scattering coefficients. Unlike the conventional results of standard optical radiation, the resonance scattering of a dielectric sphere in air in the field of EM Bessel beams is examined and demonstrated with particular emphasis on the EM field’s polarization and beam order (or topological charge). Linear, circular, radial, azimuthal polarizations as well as unpolarized Bessel vortex beams are considered. The conditions required for the resonance scattering are analyzed, stemming from the vectorial description of the EM field using the angular spectrum decomposition, the derivation of the beam-shape coefficients (BSCs) using the integral localized approximation (ILA) and Neumann–Graf’s addition theorem, and the determination of the scattering coefficients of the sphere using Debye series. In contrast with the standard scattering theory, the resonance method presented here allows the quantitative description of the scattering using Debye series by separating diffraction effects from the external and internal reflections from the sphere. Furthermore, the analysis is extended to include rainbow formation in Bessel beams and the derivation of a generalized formula for the deviation angle of high-order rainbows. Potential applications for this analysis include Bessel beam-based laser imaging spectroscopy, atom cooling and quantum optics, electromagnetic instrumentation and profilometry, optical tweezers and tractor beams, to name a few emerging areas of research.

  3. Electromagnetic field stimulation potentiates endogenous myelin repair by recruiting subventricular neural stem cells in an experimental model of white matter demyelination.

    Science.gov (United States)

    Sherafat, Mohammad Amin; Heibatollahi, Motahareh; Mongabadi, Somayeh; Moradi, Fatemeh; Javan, Mohammad; Ahmadiani, Abolhassan

    2012-09-01

    Electromagnetic fields (EMFs) may affect the endogenous neural stem cells within the brain. The aim of this study was to assess the effects of EMFs on the process of toxin-induced demyelination and subsequent remyelination. Demyelination was induced using local injection of lysophosphatidylcholine within the corpus callosum of adult female Sprague-Dawley rats. EMFs (60 Hz; 0.7 mT) were applied for 2 h twice a day for 7, 14, or 28 days postlesion. BrdU labeling and immunostaining against nestin, myelin basic protein (MBP), and BrdU were used for assessing the amount of neural stem cells within the tissue, remyelination patterns, and tracing of proliferating cells, respectively. EMFs significantly reduced the extent of demyelinated area and increased the level of MBP staining within the lesion area on days 14 and 28 postlesion. EMFs also increased the number of BrdU- and nestin-positive cells within the area between SVZ and lesion as observed on days 7 and 14 postlesion. It seems that EMF potentiates proliferation and migration of neural stem cells and enhances the repair of myelin in the context of demyelinating conditions.

  4. Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates

    Science.gov (United States)

    Lakhani, V. K.; Pathak, T. K.; Vasoya, N. H.; Modi, K. B.

    2011-03-01

    The compositional dependence of structural parameters and X-ray Debye temperature for CuAl xFe 2- xO 4 ( x = 0.0, 0.2, 0.4 and 0.6) spinel ferrite system has been studied by means of X-ray powder diffraction (XRD) patterns analysis at 300 K. The XRD data have been used to determine the lattice constant, X-ray density, distribution of cations among the tetrahedral and octahedral sites of spinel lattice, oxygen positional parameter, site radii, bond angle, bond length and interionic distances. The X-ray Debye temperatures have been determined from integrated intensities of selected Bragg reflections. It is found that Al 3+-substitution has marked influence on various parameters. A deficit of Cu 2+-cations at the octahedral sites of the spinel lattice leads to the absence of co-operative active Jahn-Teller distortion and the crystal structure retains into cubic. The increasing disagreement between observed and calculated intensities and reduction in intensity of diffracted beam with increasing Al-concentration have been explained based on preferred orientation and extinction effects. The effect of oxygen deficiency on intensity ratios of planes has been discussed in brief.

  5. Modelled Group Fitted XAFS Debye-Waller factors for Zn metalloproteins

    Science.gov (United States)

    Dimakis, Nicholas; Bunker, Grant

    2003-03-01

    X-ray Absorption Fine Structure spectroscopy is one of the few direct methods for determining the structure of metalloprotein active sites that are applicable to noncrystalline proteins in solutions and membranes. Considerable progress has been made in the calculation of photoelectron scattering aspects of XAFS,but calculation of the vibrational aspects has lagged because of the difficulty of the accurate calculations. Recently we have presented initial results that enabled practical numerical evaluation of XAFS multiple scattering Debye Waller Factors (MSDWFs) of Zn ions bound to histidines in metalloproteins. Recently we have refined our Zn-histidine model to provide more accurate first shell single scattering Debye-Waller parameters, and we have developed a model for Zn-cysteine model that described the MSDWFs enabling for the first time quantitative full single- and multiple-scattering XAFS data analysis of Zn/His/Cys sites at arbitrary temperatures, without the use of ad hoc assumptions. This opens up a wide class of important Zn proteins for study by these methods. Illustrative examples will be presented.

  6. Raman electron spin-lattice relaxation with the Debye-type and with real phonon spectra in crystals.

    Science.gov (United States)

    Hoffmann, Stanislaw K; Lijewski, Stefan

    2013-02-01

    Electron spin-lattice relaxation temperature dependence was measured for Ti(2+) (S=1) and for Cu(2+) (S=1/2) ions in SrF(2) single crystal by electron spin echo method in temperature range 4-109K. The spin relaxation was governed by the two-phonon Raman processes. The relaxation theory is outlined and presented in a form suitable for applying with real phonon spectra. The experimental relaxation results were described using Debye-type phonon spectrum and the real phonon spectrum of SrF(2) crystal. The Debye approximation does not fit well the results for SrF(2) both at low and at high temperature. The relaxation rate is faster than that predicted by Debye-type phonon spectrum at low temperatures where excess of lattice vibrations over the Debye model exists but is slower at higher temperatures (above 50K) where density of phonon states continuously decreases when approaching to the maximal acoustic phonon frequency. The expected deviation from Debye approximation was analyzed also for Cu(2+) in NaCl and MgSiO(3) crystals for which phonon spectra are available. The fitting with the real phonon spectrum allowed us to calculate spin-phonon coupling parameter as 267 cm(-1) for Ti(2+) and 1285 cm(-1) for Cu(2+) in SrF(2).

  7. New Perspective on Classical Electromagnetism

    Science.gov (United States)

    2013-04-01

    R. Feynman , R. Leighton, and M. Sands, The Feynman Lectures in Physics vol II (Addison-Wesley, Reading, MA, 1964). 6. W.K.H. Panofsky and M...of the basics of classical electromagnetism is provided by recognizing a previously overlooked law of induction as well as the physical reality of the...classical electromagnetism is provided by recognizing a previously overlooked law of induction as well as the physical reality of the vector potential

  8. Effect of initiation-inhibition and handedness on the patterns of the P50 event-related potential component: a low resolution electromagnetic tomography study

    Directory of Open Access Journals (Sweden)

    Capsalis Christos N

    2009-12-01

    Full Text Available Abstract Background Recent research recognizes the association between handedness, linguistic processes and cerebral networks subserving executive functioning, but the nature of this association remains unclear. Since the P50 event related potential (ERP is considered to reflect thalamocortical processes in association with working memory (WM operation the present study focuses on P50 patterns elicited during the performance of a linguistic related executive functioning test in right- and left-handers. Methods In 64 young adults with a high educational level (33 left-handed the P50 event-related potential was recorded while performing the initiation and inhibition condition of a modified version of the Hayling Sentence Completion test adjusted to induce WM. The manual preference of the participants was evaluated with the use of the Edinburgh Handedness Inventory (EHI. Results P50 showed greater amplitudes in left- than in right-handers, mainly in frontal leads, in the initiation condition. Reduced amplitudes in inhibition compared to initiation condition were observed in left-handers. Low Resolution Electromagnetic Tomography (LORETA analysis showed lower frontal lobe activation in the inhibition than in the initiation condition in both right- and left-handers. Also, LORETA yielded that right-handers exhibited greater activation in the inhibition condition than left-handers. Additionally, LORETA showed assymetrical hemispheric activation patterns in right-handers, in contrast to symmetrical patterns observed in left-handers. Higher P50 amplitudes were recorded in right-hemisphere of right-handers in the initiation condition. Conclusion Brain activation, especially the one closely related to thalamocortical function, elicited during WM operation involving initiation and inhibition processes appears to be related to handedness.

  9. Minimalist's Electromagnetism

    CERN Document Server

    Sobouti, Yousef

    2013-01-01

    That the universal constancy of the speed of light is a logical consequence of Maxwell's equations is common knowledge. Here we show that the converse is also true. That is, electromagnetism (EM) and electrodynamics (ED) in all their details can be derived from the simple assumption that the speed of light is a universal constant. The consequences reach far. Conventional EM and ED are observation based. The alternative we propose spares all observational foundations of EM, only to reintroduce them as theoretically derived and empiricism-free laws of Nature. Simplicity is beauty and there are merits to it. For instance, if $\

  10. Unprecedented Integral-Free Debye Temperature Formulas: Sample Applications to Heat Capacities of ZnSe and ZnTe

    Directory of Open Access Journals (Sweden)

    R. Pässler

    2017-01-01

    Full Text Available Detailed analytical and numerical analyses are performed for combinations of several complementary sets of measured heat capacities, for ZnSe and ZnTe, from the liquid-helium region up to 600 K. The isochoric (harmonic parts of heat capacities, CVh(T, are described within the frame of a properly devised four-oscillator hybrid model. Additional anharmonicity-related terms are included for comprehensive numerical fittings of the isobaric heat capacities, Cp(T. The contributions of Debye and non-Debye type due to the low-energy acoustical phonon sections are represented here for the first time by unprecedented, integral-free formulas. Indications for weak electronic contributions to the cryogenic heat capacities are found for both materials. A novel analytical framework has been constructed for high-accuracy evaluations of Debye function integrals via a couple of integral-free formulas, consisting of Debye’s conventional low-temperature series expansion in combination with an unprecedented high-temperature series representation for reciprocal values of the Debye function. The zero-temperature limits of Debye temperatures have been detected from published low-temperature Cp(T data sets to be significantly lower than previously estimated, namely, 270 (±3 K for ZnSe and 220 (±2 K for ZnTe. The high-temperature limits of the “true” (harmonic lattice Debye temperatures are found to be 317 K for ZnSe and 262 K for ZnTe.

  11. What Are Electromagnetic Fields?

    Science.gov (United States)

    ... sources of electromagnetic fields Besides natural sources the electromagnetic spectrum also includes fields generated by human-made sources: ... ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic ...

  12. A molecular Debye-Hückel approach to the reorganization energy of electron transfer reactions in an electric cell.

    Science.gov (United States)

    Xiao, Tiejun; Song, Xueyu

    2014-10-07

    Electron transfer near an electrode immersed in ionic fluids is studied using the linear response approximation, namely, mean value of the vertical energy gap can be used to evaluate the reorganization energy, and hence any linear response model that can treat Coulomb interactions successfully can be used for the reorganization energy calculation. Specifically, a molecular Debye-Hückel theory is used to calculate the reorganization energy of electron transfer reactions in an electric cell. Applications to electron transfer near an electrode in molten salts show that the reorganization energies from our molecular Debye-Hückel theory agree well with the results from MD simulations.

  13. Gravito-electromagnetism versus electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglia, A; Ruggiero, M L [Dipartimento di Fisica, Politecnico and INFN, 10129 Torino (Italy)

    2004-03-01

    The properties of the gravito-magnetic interaction in non-stationary conditions are discussed. A direct deduction of the equivalent Faraday-Henry law is given. A comparison is made between gravito-magnetic and electromagnetic induction, and it is shown that there is no Meissner-like effect for superfluids in the field of massive spinning bodies. The impossibility of stationary motions in directions not along the lines of the gravito-magnetic field is found. Finally the results are discussed in relation to the behaviour of superconductors.

  14. Large magnetocapacitance effect in magnetic tunnel junctions based on Debye-Fröhlich model

    Energy Technology Data Exchange (ETDEWEB)

    Kaiju, Hideo, E-mail: kaiju@es.hokudai.ac.jp; Takei, Masashi; Misawa, Takahiro; Nishii, Junji [Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan); Nagahama, Taro [School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Xiao, Gang [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States)

    2015-09-28

    The frequency dependence of tunneling magnetocapacitance (TMC) in magnetic tunnel junctions (MTJs) is investigated theoretically and experimentally. According to the calculation based on Debye-Fröhlich model combined with Julliere formula, the TMC ratio strongly depends on the frequency and it has the maximum peak at a specific frequency. The calculated frequency dependence of TMC is in good agreement with the experimental results obtained in MgO-based MTJs with a tunneling magnetoresistance (TMR) ratio of 108%, which exhibit a large TMC ratio of 155% at room temperature. This calculation also predicts that the TMC ratio can be as large as about 1000% for a spin polarization of 87%, while the TMR ratio is 623% for the same spin polarization. These theoretical and experimental findings provide a deeper understanding on AC spin-dependent transport in the MTJs and will open up wider opportunities for device applications, such as highly sensitive magnetic sensors and impedance-tunable devices.

  15. A numerical analysis of finite Debye-length effects in induced-charge electro-osmosis

    CERN Document Server

    Gregersen, Misha Marie; Soni, Gaurav; Meinhart, Carl; Bruus, Henrik

    2009-01-01

    For a microchamber filled with a binary electrolyte and containing a flat un-biased center electrode at one wall, we employ three numerical models to study the strength of the resulting induced-charge electro-osmotic (ICEO) flow rolls: (i) a full nonlinear continuum model resolving the double layer, (ii) a linear slip-velocity model not resolving the double layer and without tangential charge transport inside this layer, and (iii) a nonlinear slip-velocity model extending the linear model by including the tangential charge transport inside the double layer. We show that compared to the full model, the slip-velocity models significantly overestimate the ICEO flow. This provides a partial explanation of the quantitative discrepancy between observed and calculated ICEO velocities reported in the literature. The discrepancy increases significantly for increasing Debye length relative to the electrode size, i.e. for nanofluidic systems. However, even for electrode dimensions in the micrometer range, the discrepanc...

  16. On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics

    CERN Document Server

    Mainardi, Francesco

    2016-01-01

    The three parameters Mittag--Leffler function (often referred as the Prabhakar function) has important applications, mainly in physics of dielectrics, in describing anomalous relaxation of non--Debye type. This paper concerns with the investigation of the conditions, on the characteristic parameters, under which the function is locally integrable and completely monotonic; these properties are essential for the physical feasibility of the corresponding models. In particular the classical Havriliak--Negami model is extended to a wider range of the parameters. The problem of the numerical evaluation of the three parameters Mittag--Leffler function is also addressed and three different approaches are discussed and compared. Numerical simulations are hence used to validate the theoretical findings and present some graphs of the function under investigation.

  17. Local and Global Well-Posedness for the Critical Schrodinger-Debye System

    CERN Document Server

    Corcho, Adan J; Silva, Jorge Drumond

    2011-01-01

    We establish local well-posedness results for the Initial Value Problem associated to the Schr\\"odinger-Debye system in dimensions $N=2, 3$ for data in $H^s\\times H^{\\ell}$, with $s$ and $\\ell$ satisfying $\\max \\{0, s-1\\} \\le \\ell \\le \\min\\{2s, s+1\\}$. In particular, these include the energy space $H^1\\times L^2$. Our results improve the previous ones obtained in \\cite{Bidegaray1}, \\cite{Bidegaray2} and \\cite{Corcho-Linares}. Moreover, in the critical case ($N=2$) and for initial data in $H^1\\times L^2$, we prove that solutions exist for all times, thus providing a negative answer to the open problem mentioned in \\cite{Fibich-Papanicolau} concerning the formation of singularities for these solutions.

  18. Debye relaxation and 250 K anomaly in glass forming monohydroxy alcohols

    CERN Document Server

    Bauer, S; Gainaru, C; Lunkenheimer, P; Hiller, W; Loidl, A; Böhmer, R

    2013-01-01

    A previous dielectric, near-infrared (NIR), and nuclear magnetic resonance study on the hydrogen-bonded liquid 2-ethyl-1-hexanol [C. Gainaru et al., Phys. Rev. Lett. 107, 118304 (2011)] revealed anomalous behavior in various static quantities near 250 K. To check whether corresponding observations can be made for other monohydroxy alcohols as well, these experimental methods were applied to such substances with 5, 6, 7, 8, and 10 carbon atoms in their molecular backbone. All studied liquids exhibit a change of behavior near 250 K which is tentatively ascribed to effects of hydrogen bond cooperativity. By analyzing the NIR band intensities, a linear cluster size is derived that agrees with estimates from dielectric spectroscopy. All studied alcohols, except 4-methyl-3-heptanol, display a dominant Debye-like peak. Furthermore, neat 2-ethyl-1-butanol exhibits a well resolved structural relaxation in its dielectric loss spectrum which so far has only been observed for diluted monohydroxy alcohols.

  19. Group-fitted ab initiosingle- and multiple-scattering EXAFS Debye-Waller factors

    Science.gov (United States)

    Dimakis, Nicholas; Bunker, Grant

    2002-05-01

    X-ray absorption fine structure (XAFS) spectroscopy is one of the few direct probes of the structure of metalloprotein binding that is equally applicable to proteins in crystals, solutions, and membranes. Despite considerable progress in the calculation of the photoelectron scattering aspects of XAFS, calculation of the vibrational aspects has lagged because of the difficulty of the calculations. We report here initial results that express single- and multiple-scattering Debye-Waller factors as polynomial functions of first shell radial distance for metal-peptide complexes, enabling quantitatively accurate full multiple-scattering XAFS data analysis of active sites of unknown structure at arbitrary temperatures without the use of ad hoc assumptions.

  20. Electromagnetic acoustic imaging.

    Science.gov (United States)

    Emerson, Jane F; Chang, David B; McNaughton, Stuart; Jeong, Jong Seob; Shung, K K; Cerwin, Stephen A

    2013-02-01

    Electromagnetic acoustic imaging (EMAI) is a new imaging technique that uses long-wavelength RF electromagnetic (EM) waves to induce ultrasound emission. Signal intensity and image contrast have been found to depend on spatially varying electrical conductivity of the medium in addition to conventional acoustic properties. The resultant conductivity- weighted ultrasound data may enhance the diagnostic performance of medical ultrasound in cancer and cardiovascular applications because of the known changes in conductivity of malignancy and blood-filled spaces. EMAI has a potential advantage over other related imaging techniques because it combines the high resolution associated with ultrasound detection with the generation of the ultrasound signals directly related to physiologically important electrical properties of the tissues. Here, we report the theoretical development of EMAI, implementation of a dual-mode EMAI/ultrasound apparatus, and successful demonstrations of EMAI in various phantoms designed to establish feasibility of the approach for eventual medical applications.

  1. Effect of radio frequency waves of electromagnetic field on the tubulin.

    Science.gov (United States)

    Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi

    2013-09-01

    Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.

  2. FDTD Simulation of Exposure of Biological Material to Electromagnetic Nanopulses

    CERN Document Server

    Simicevic, N; Simicevic, Neven; Haynie, Donald T

    2004-01-01

    Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, are of considerable interest to the communications industry and are being explored for various applications in biotechnology and medicine. The propagation of a nanopulse through biological matter has been computed in the time domain using the finite difference-time domain method (FDTD). The approach required existing Cole-Cole model-based descriptions of dielectric properties of biological matter to be re-parametrized using the Debye model, but without loss of accuracy. The approach has been applied to several tissue types. Results show that the electromagnetic field inside a biological tissue depends on incident pulse rise time and width. Rise time dominates pulse behavior inside a tissue as conductivity increases. It has also been found that the amount of energy deposited by 20 $kV/m$ nanopulses is insufficient to change the temperature of the exposed material for the pulse repetition rates of 1 $MHz$ or less.

  3. Increased mercury release from dental amalgam restorations after exposure to electromagnetic fields as a potential hazard for hypersensitive people and pregnant women.

    Science.gov (United States)

    Mortazavi, Ghazal; Mortazavi, S M J

    2015-01-01

    Over the past decades, the use of common sources of electromagnetic fields such as Wi-Fi routers and mobile phones has been increased enormously all over the world. There is ongoing concern that exposure to electromagnetic fields can lead to adverse health effects. It has recently been shown that even low doses of mercury are capable of causing toxicity. Therefore, efforts are initiated to phase down or eliminate the use of mercury amalgam in dental restorations. Increased release of mercury from dental amalgam restorations after exposure to electromagnetic fields such as those generated by MRI and mobile phones has been reported by our team and other researchers. We have recently shown that some of the papers which reported no increased release of mercury after MRI, may have some methodological errors. Although it was previously believed that the amount of mercury released from dental amalgam cannot be hazardous, new findings indicate that mercury, even at low doses, may cause toxicity. Based on recent epidemiological findings, it can be claimed that the safety of mercury released from dental amalgam fillings is questionable. Therefore, as some individuals tend to be hypersensitive to the toxic effects of mercury, regulatory authorities should re-assess the safety of exposure to electromagnetic fields in individuals with amalgam restorations. On the other hand, we have reported that increased mercury release after exposure to electromagnetic fields may be risky for the pregnant women. It is worth mentioning that as a strong positive correlation between maternal and cord blood mercury levels has been found in some studies, our findings regarding the effect of exposure to electromagnetic fields on the release of mercury from dental amalgam fillings lead us to this conclusion that pregnant women with dental amalgam fillings should limit their exposure to electromagnetic fields to prevent toxic effects of mercury in their fetuses. Based on these findings, as infants

  4. Dynamics of supercooled liquid and plastic crystalline ethanol: Dielectric relaxation and AC nanocalorimetry distinguish structural α- and Debye relaxation processes

    Science.gov (United States)

    Chua, Y. Z.; Young-Gonzales, A. R.; Richert, R.; Ediger, M. D.; Schick, C.

    2017-07-01

    Physical vapor deposition has been used to prepare glasses of ethanol. Upon heating, the glasses transformed into the supercooled liquid phase and then crystallized into the plastic crystal phase. The dynamic glass transition of the supercooled liquid is successfully measured by AC nanocalorimetry, and preliminary results for the plastic crystal are obtained. The frequency dependences of these dynamic glass transitions observed by AC nanocalorimetry are in disagreement with conclusions from previously published dielectric spectra of ethanol. Existing dielectric loss spectra have been carefully re-evaluated considering a Debye peak, which is a typical feature in the dielectric loss spectra of monohydroxy alcohols. The re-evaluated dielectric fits reveal a prominent dielectric Debye peak, a smaller and asymmetrically broadened peak, which is identified as the signature of the structural α-relaxation and a Johari-Goldstein secondary relaxation process. This new assignment of the dielectric processes is supported by the observation that the AC nanocalorimetry dynamic glass transition temperature, Tα, coincides with the dielectric structural α-relaxation process rather than the Debye process. The combined results from dielectric spectroscopy and AC nanocalorimetry on the plastic crystal of ethanol suggest the occurrence of a Debye process also in the plastic crystal phase.

  5. Calculations of the dynamical Debye-Scherrer electron diffraction pattern from small particles of gold and silver

    Energy Technology Data Exchange (ETDEWEB)

    Hall, B.D. (Inst. de Micro- et Optoelectronique, EPFL, Lausanne (Switzerland)); Reinhard, D. (Inst. de Physique Experimentale, EPFL, Lausanne (Switzerland)); Ugarte, D. (Inst. de Physique Experimentale, EPFL, Lausanne (Switzerland))

    1993-05-01

    Calculations of the dynamical Debye-Scherrer electron diffraction pattern for ultrafine gold and silver particles have been performed using the multislice method. Two cluster sizes, 31 and 55 A in diameter (923 and 5083 atoms, respectively), of both f.c.c. and icosahedral structures were used, at incident voltages of 40 kV and 100 kV. (orig.)

  6. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  7. Debye-like shielding effect on low-cloud electricity by the radioactive aerosol after the Fukushima nuclear accident

    Science.gov (United States)

    Yamauchi, Masatoshi; Takeda, Masahiko; Makino, Masahiko; Owada, Takeshi

    2014-05-01

    The vertical (downward) component of the DC atmospheric electric field, or potential gradient (PG) at Kakioka, 150 km southwest of the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) was analyzed before and after the FNPP1 accident to examine whether the influence of floating radioactive is visible in the PG data under the rain cloud. We used one-minute PG data since 2006 (digital data is available), and obtained the following statistical tendencies. (1) Ten-minute averaged PG during or just before the rain during 13-31 March shows less excursion toward the negative (upward field) side after the accident in 2011 than the average from 2006 to 2013, (2) occurrence frequency of negative PG peaks of about -200 to -700 V/m (corresponding to light rain) is consistently low during March-April period after the accident than the average of the same months of the other years, and (3) time constant around the negative PG peaks during March-April period is shorter after the accident than before the accident beyond annual differences for peak PGs of -200 to -800 V/m (corresponding to light rain), while no difference is seen in May between 2011 and the other years. The end of April 2011 corresponds to the time when the floating radioactive materials significantly decreased. The results suggest that the radioactive aerosol that was originated from the FNPP1 accident might have affected the PG under electrified clouds during light rain. Since the effect is not seen during heavy rain or positive PG reflecting high clouds, it is quite possible that the increased ion density in the atmosphere, that is still very low compared to ordinary plasma, enhanced the Debye shielding effect over the negative charges at the lower part of the cloud.

  8. Isogeometric analysis and shape optimization in electromagnetism

    DEFF Research Database (Denmark)

    Nguyen, Dang Manh

    In this thesis a recently proposed numerical method for solving partial differential equations, isogeometric analysis (IGA), is utilized for the purpose of shape optimization, with a particular emphasis on applications to two-dimensional design problems arising in electromagnetic applications...... parametrization are combined into an iterative algorithm for shape optimization of two dimensional electromagnetic problems. The algorithm may also be relevant for problems in other engineering disciplines. Using the methods developed in this thesis, remarkably we have obtained antennas that perform one million...... times better than an earlier topology optimization result. This shows a great potential of shape optimization using IGA in the area of electromagnetic antenna design in particular, and for electromagnetic...

  9. Hypothesis on how to measure electromagnetic hypersensitivity.

    Science.gov (United States)

    Tuengler, Andreas; von Klitzing, Lebrecht

    2013-09-01

    Electromagnetic hypersensitivity (EHS) is an ill-defined term to describe the fact that people who experience health symptoms in the vicinity of electromagnetic fields (EMFs) regard them as causal for their complaints. Up to now most scientists assume a psychological cause for the suffering of electromagnetic hypersensitive individuals. This paper addresses reasons why most provocation studies could not find any association between EMF exposure and EHS and presents a hypothesis on diagnosis and differentiation of this condition. Simultaneous recordings of heart rate variability, microcirculation and electric skin potentials are used for classification of EHS. Thus, it could be possible to distinguish "genuine" electromagnetic hypersensitive individuals from those who suffer from other conditions.

  10. Electromagnetic launchers

    Science.gov (United States)

    Kolm, H.; Mongeau, P.; Williams, F.

    1980-09-01

    Recent advances in energy storage, switching and magnet technology make electromagnetic acceleration a viable alternative to chemical propulsion for certain tasks, and a means to perform other tasks not previously feasible. Applications include the acceleration of gram-size particles for hypervelocity research and the initiation of fusion by impact, a replacement for chemically propelled artillery, the transportation of cargo and personnel over inaccessible terrain, and the launching of space vehicles to supply massive space operations, and for the disposal of nuclear waste. The simplest launcher of interest is the railgun, in which a short-circuit slide or an arc is driven along two rails by direct current. The most sophisticated studied thus far is the mass driver, in which a superconducting shuttle bucket is accelerated by a line of pulse coils energized by capacitors at energy conversion efficiencies better than 90%. Other accelerators of interest include helical, brush-commutated motors, discrete coil arc commutated drivers, flux compression momentum transformers, and various hybrid electrochemical devices.

  11. Potential interactions between diadromous fishes of U.K. conservation importance and the electromagnetic fields and subsea noise from marine renewable energy developments.

    Science.gov (United States)

    Gill, A B; Bartlett, M; Thomsen, F

    2012-07-01

    The considerable extent of construction and operation of marine renewable energy developments (MRED) within U.K. and adjacent waters will lead, among other things, to the emission of electromagnetic fields (EMF) and subsea sounds into the marine environment. Migratory fishes that respond to natural environmental cues, such as the Earth's geomagnetic field or underwater sounds, move through the same waters that the MRED occupy, thereby raising the question of whether there are any effects of MRED on migratory fishes. Diadromous species, such as the Salmonidae and Anguillidae, which undertake large-scale migrations through coastal and offshore waters, are already significantly affected by other human activities leading to national and international conservation efforts to manage any existing threats and to minimize future concerns, including the potential effect of MRED. Here, the current state of knowledge with regard to the potential for diadromous fishes of U.K. conservation importance to be affected by MRED is reviewed. The information on which to base the review was found to be limited with respect to all aspects of these fishes' migratory behaviour and activity, especially with regards to MRED deployment, making it difficult to establish cause and effect relationships. The main findings, however, were that diadromous species can use the Earth's magnetic field for orientation and direction finding during migrations. Juveniles of anadromous brown trout (sea trout) Salmo trutta and close relatives of S. trutta respond to both the Earth's magnetic field and artificial magnetic fields. Current knowledge suggests that EMFs from subsea cables may interact with migrating Anguilla sp. (and possibly other diadromous fishes) if their movement routes take them over the cables, particularly in shallow water (fishes are likely to encounter EMFs from subsea cables either during the adult movement phases of life or their early life stages during migration within shallow

  12. Project Physics Tests 4, Light and Electromagnetism.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 4 are presented in this booklet. Included are 70 multiple-choice and 22 problem-and-essay questions. Concepts of light and electromagnetism are examined on charges, reflection, electrostatic forces, electric potential, speed of light, electromagnetic waves and radiations, Oersted's and Faraday's work,…

  13. Solitary Waves in Relativistic Electromagnetic Plasma

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-Song; HUA Cun-Cai

    2005-01-01

    Solitary waves in relativistic electromagnetic plasmas are obtained numerically. The longitudinal momentum of electrons has been taken into account in the problem. It is found that in the moving frame with electromagnetic field propagating the solitary waves can exist in both cases, where the vector potential frequency is larger or smaller than the plasma characteristic frequency.

  14. Moving Manifolds in Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2017-08-01

    Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.

  15. Axion-Electromagnetic Waves

    CERN Document Server

    Visinelli, Luca

    2014-01-01

    We extend the duality symmetry between the electric and the magnetic fields to the case in which an additional axion-like term is present, and we derive the set of Maxwell's equations that preserves this symmetry. This new set of equations allows for a gauge symmetry extending the ordinary symmetry in the classical electrodynamics. We obtain explicit solutions for the new set of equations in the absence of external sources, and we discuss the implications of a new internal symmetry between the axion field and the electromagnetic gauge potential.

  16. Handbook of electromagnetic compatibility

    CERN Document Server

    1995-01-01

    This""know-how""book gives readers a concise understanding of the fundamentals of EMC, from basic mathematical and physical concepts through present, computer-age methods used in analysis, design, and tests. With contributions from leading experts in their fields, the text provides a comprehensive overview. Fortified with information on how to solve potential electromagnetic interference (EMI) problems that may arise in electronic design, practitioners will be betterable to grasp the latest techniques, trends, and applications of this increasingly important engineering discipline.Handbook of E

  17. Chodura and Debye sheaths for magnetic fields with grazing incidence -- kinetic simulations

    CERN Document Server

    Coulette, David

    2016-01-01

    When an unmagnetized plasma comes in contact with a material surface, the difference in mobility between the electrons and the ions creates a nonneutral layer known as the Debye sheath (DS). However, in magnetic fusion devices, the open magnetic field lines intersect the structural elements of the device with near grazing incidence angles. The magnetic field tends to align the particle flow along its own field lines, thus counteracting the mechanism that leads to the formation of the DS. Recent work using a fluid model [P. Stangeby, Nucl. Fusion {\\bf 52}, 083012 (2012)] showed that the DS disappears when the incidence angle is smaller than a critical value (around $5^\\circ$ for ITER-like parameters). Here, we study this transition by means of numerical simulations of a kinetic model both in the collisionless and weakly collisional regimes. We show that the main features observed in the fluid model are preserved: for grazing incidence, the space charge density near the wall is reduced, the ion flow is subsonic...

  18. Interactions of two food colourants with BSA: Analysis by Debye-Hückel theory.

    Science.gov (United States)

    Li, Tian; Cheng, Zhengjun; Cao, Lijun; Jiang, Xiaohui; Fan, Lei

    2016-11-15

    We have focused on exploring pH- and ionic strength-modulated binding of acid red 1 (AR1) and acid green 50 (AG50) with bovine serum albumin (BSA) by fluorescence, UV-vis absorption and FTIR spectra. The results implied that the quenching mechanism of BSA-AR1/AG50 system was a static quenching, electrostatic force dominated the formation of BSA-AR1/AG50 complex, and the binding affinity of AR1 was greater than that of AG50 on the subdomain IIA of BSA. Moreover, their true thermodynamic binding constant (Keq), true free energy change (ΔG(0)I→0), and effective charge (ZP) in the anion receptor pocket of BSA were calculated using Debye-Hückel limiting law. The local charge bound by AR1/AG50 rather than the overall or surface charge of BSA played a key role in determining their interaction strength. Besides, the thermal and structural stabilization of BSA was discussed by analyzing the changes of Tm and Hurea without/with the addition of AR1/AG50, respectively.

  19. A Fourier transform method for powder diffraction based on the Debye scattering equation.

    Science.gov (United States)

    Thomas, Noel William

    2011-11-01

    A fast Fourier transform algorithm is introduced into the method recently defined for calculating powder diffraction patterns by means of the Debye scattering equation (DSE) [Thomas (2010). Acta Cryst. A66, 64-77]. For this purpose, conventionally used histograms of interatomic distances are replaced by compound transmittance functions. These may be Fourier transformed to partial diffraction patterns, which sum to give the complete diffraction pattern. They also lead to an alternative analytical expression for the DSE sum, which reveals its convergence behaviour. A means of embedding the DSE approach within the reciprocal-lattice-structure-factor method is indicated, with interpolation methods for deriving the peak profiles of nanocrystalline materials outlined. Efficient calculation of transmittance functions for larger crystallites requires the Patterson group symmetry of the crystals to be taken into account, as shown for α- and β-quartz. The capability of the transmittance functions to accommodate stacking disorder is demonstrated by reference to kaolinite, with a fully analytical treatment of disorder described. Areas of future work brought about by these developments are discussed, specifically the handling of anisotropic atomic displacement parameters, inverse Fourier transformation and the incorporation of instrumental (diffractometer) parameters.

  20. A new approach to electromagnetism in anisotropic spaces

    CERN Document Server

    Voicu-Brinzei, Nicoleta

    2009-01-01

    Anisotropy of a space naturally leads to direction dependent electromagnetic tensors and electromagnetic potentials. Starting from this idea and using variational approaches and exterior derivative formalism, we extend some of the classical equations of electromagnetism to anisotropic (Finslerian) spaces. The results differ from the ones obtained by means of the known approach in [3], [4].

  1. Electromagnetic-Magnetoelectric Duality for Waveguides

    CERN Document Server

    Sang-Nourpour, Nafiseh; Kheradmand, R; Rezaei, M; Sanders, Barry C

    2015-01-01

    We develop a theory for waveguides that respects the duality of electromagnetism, namely the symmetry of the equations arising through inclusion of magnetic monopoles in addition to including electrons (electric monopoles). The term magnetoelectric potential is sometimes used to signify the magnetic-monopole induced dual to the usual electromagnetic potential. To this end, we introduce a general theory for describing modes and characteristics of waveguides based on mixed-monopole materials, with both electric and magnetic responses. Our theory accommodates exotic media such as double-negative, near-zero and zero-index materials, and we demonstrate that our general theory exhibits the electromagnetic duality that would arise if we were to incorporate magnetic monopoles into the media. We consider linear, homogeneous, isotropic waveguide materials with slab and cylindrical geometries. To ensure manifest electromagnetic duality, we construct generic electromagnetic susceptibilities that are dual in both electric...

  2. Proposed electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  3. X-ray characterization of tripyridinium bis[tetrabromidoferrate(III)] bromide asymmetric unit in solution by Debye function analysis

    Science.gov (United States)

    Baniasadi, F.; Sahraei, N.; Fathi, M. B.; Tehranchi, M. M.; Safari, N.; Amani, V.

    2016-09-01

    Abundant asymmetric unit of the [FeBr4]2[py.H]3Br magnetic molecule in the acetonitrile solvent was characterized via Debye function analysis (DFA) of the X-ray powder diffraction pattern from dilute solution. A diluted solution of the material in acetonitrile solvent has been prepared to reduce, as far as possible, the interaction between the molecular units. The X-ray diffraction from the sample was measured and Debye function simulations of three out of ten chemically plausible molecular units were observed to suitably comply with the experimental results. These three configurations were further optimized with first-principles method in the framework of density functional theory (DFT) and the most stable structure according to the calculated total energy is presented.

  4. Advanced electromagnetics and scattering theory

    CERN Document Server

    2015-01-01

    This book present the lecture notes used in two courses that the late Professor Kasra Barkeshli had offered at Sharif University of Technology, namely, Advanced Electromagnetics and Scattering Theory. The prerequisite for the sequence is vector calculus and electromagnetic fields and waves. Some familiarity with Green's functions and integral equations is desirable but not necessary. The book  provides a brief but concise introduction to classical topics in the field. It is divided into three parts including annexes. Part I covers principle of electromagnetic theory. The discussion starts with a review of the Maxwell's equations in differential and integral forms and basic boundary conditions. The solution of inhomogeneous wave equation and various field representations including Lorentz's potential functions and the Green's function method are discussed next. The solution of Helmholtz equation and wave harmonics follow. Next, the book presents plane wave propagation in dielectric and lossy media and various...

  5. Effect of Particle Size and Lattice Strain on the Debye-Waller Factors of Silicon Carbide Nanoparticles.

    Science.gov (United States)

    Purushotham, E

    2016-03-01

    Nano Silicon Carbide (SiC) particles have been produced by ball milling process. The sample was taken 0, 10, 20, 30, 40 and 50 hours of milling. The resulting nanoparticle powders were characterized by X-ray diffraction measurements. The high-energy ball milling of SiC after 50 hours resulted in particle size of about 24 nm. The Debye temperature, mean-square amplitudes of vibration, Debye-Waller factor, particle size, and lattice strain and vacancy formation of energies of SiC nanoparticles prepared by ball mill have been obtained from X-ray integrated intensities. The integrated intensities have been measured with a Philips CWU 3710 X-ray powder diffractometer fitted with a scintillation counter using filtered CuKα radiation at room temperature and have been corrected for thermal diffuse scattering. The X-ray Debye temperatures obtained in the present investigation has been used to estimate the vacancy formation energies for SiC nanoparticles.

  6. Tabletop Models for Electrical and Electromagnetic Geophysics.

    Science.gov (United States)

    Young, Charles T.

    2002-01-01

    Details the use of tabletop models that demonstrate concepts in direct current electrical resistivity, self-potential, and electromagnetic geophysical models. Explains how data profiles of the models are obtained. (DDR)

  7. Electromagnetic Education in India

    Science.gov (United States)

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  8. Electromagnetically Induced Entanglement.

    Science.gov (United States)

    Yang, Xihua; Xiao, Min

    2015-08-28

    Quantum entanglement provides an essential resource for quantum computation, quantum communication, and quantum network. How to conveniently and efficiently produce entanglement between bright light beams presents a challenging task to build realistic quantum information processing networks. Here, we present an efficient and convenient way to realize a novel quantum phenomenon, named electromagnetically induced entanglement, in the conventional Λ-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the two fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing.

  9. Applied Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Applied Electromagnetism and Materials picks up where the author's Basic Electromagnetism and Materials left off by presenting practical and relevant technological information about electromagnetic material properties and their applications. This book is aimed at senior undergraduate and graduate students as well as researchers in materials science and is the product of many years of teaching basic and applied electromagnetism. Topics range from the spectroscopy and characterization of dielectrics and semiconductors, to non-linear effects and electromagnetic cavities, to ion-beam applications in materials science.

  10. Knots in electromagnetism

    Science.gov (United States)

    Arrayás, M.; Bouwmeester, D.; Trueba, J. L.

    2017-01-01

    Maxwell equations in vacuum allow for solutions with a non-trivial topology in the electric and magnetic field line configurations at any given moment in time. One example is a space filling congruence of electric and magnetic field lines forming circles lying on the surfaces of nested tori. In this example the electric, magnetic and Poynting vector fields are orthogonal everywhere. As time evolves the electric and magnetic fields expand and deform without changing the topology and energy, while the Poynting vector structure remains unchanged while propagating with the speed of light. The topology is characterized by the concept of helicity of the field configuration. Helicity is an important fundamental concept and for massless fields it is a conserved quantity under conformal transformations. We will review several methods by which linked and knotted electromagnetic (spin-1) fields can be derived. A first method, introduced by A. Rañada, uses the formulation of the Maxwell equations in terms of differential forms combined with the Hopf map from the three-sphere S3 to the two-sphere S2. A second method is based on spinor and twistor theory developed by R. Penrose in which elementary twistor functions correspond to the family of electromagnetic torus knots. A third method uses the Bateman construction of generating null solutions from complex Euler potentials. And a fourth method uses special conformal transformations, in particular conformal inversion, to generate new linked and knotted field configurations from existing ones. This fourth method is often accompanied by shifting singularities in the field to complex space-time points. Of course the various methods must be closely related to one another although they have been developed largely independently and they suggest different directions in which to expand the study of topologically non-trivial field configurations. It will be shown how the twistor formulation allows for a direct extension to massless

  11. Different aspects of the Debye-Waller factor in various atom-surface scattering theories

    Science.gov (United States)

    Gumhalter, Branko

    1996-02-01

    We discuss differences in the formal appearance, structure and physical origin of the Debye-Waller factor (DWF) obtained in various theoretical treatments of inelastic atom-surface collisions. These differences are illustrated on the example of two most commonly used formalisms for description of inelastic atom scattering by multiple excitation of surface phonons. In the first of these approaches, one starts from the expression for transition rates for the projectile atom which is coupled to the phonon field to all orders in lattice displacements. In first-order Born approximation, which is usually employed to express the corresponding T-matrix in a tractable form, the problem reduces to calculation of the exponentiated lattice displacement correlation function. By using a diagrammatic expansion to represent such correlation function we demonstrate that in this description the DWF occurs as a consequence of atom scattering by zero point motion of the lattice and is therefore expressed through dynamical variables which are not constrained to the energy shell. In the second approach one starts from the expression for the scattering spectrum of the projectile and linear atom-phonon field coupling, which is then treated in a nonperturbative fashion to all orders in the coupling constant. Here the dominant quantum contribution to the DWF arises from the projectile scattering through real uncorrelated multiphonon emission processes, which reduce the scattered beam intensity in the elastic channel. Using analogous diagrammatic expansion we show that the corresponding DWF is expressed in terms of the on-the-energy-shell quantities, which then leads to a normalization of the total scattering spectrum so as to comply with the optical theorem. Only in the limit of fast collision and trajectory approximation for the scattered particle motion the two approaches lead to the same result for the DWF because in this case the on-the-energy-shell features are washed out. We conclude

  12. Alternative expression for the electromagnetic Lagrangian

    CERN Document Server

    Saldanha, Pablo L

    2015-01-01

    We propose an alternative expression for the Lagrangian density that governs the interaction of a charged particle with external electromagnetic fields. The proposed Lagrangian is written in terms of the local superposition of the particle fields with the applied electromagnetic fields, not in terms of the particle charge and of the electromagnetic potentials as is usual. The total Lagrangian for a set of charged particles assumes a simple elegant form with the alternative formulation, giving an aesthetic support for it. The proposed Lagrangian is equivalent to the traditional one in their domain of validity and provides an interesting description of the Aharonov-Bohm effect.

  13. Plasma effects in electromagnetic field interaction with biological tissue

    Science.gov (United States)

    Sharma, R. P.; Batra, Karuna; Excell, Peter S.

    2011-02-01

    Theoretical analysis is presented of the nonlinear behavior of charge carriers in biological tissue under the influence of varying low-intensity electromagnetic (EM) field. The interaction occurs because of the nonlinear force arising due to the gradient of the EM field intensity acting on free electrons in the conduction band of proteins in metabolically active biological cell membrane receptors leading to a redistribution of charge carriers. Field dependence of the resulting dielectric constant is investigated by a suitable modification to include an additional electronic contribution term to the three-term Debye model. The exogenous EM field propagating in this nonlinear cellular medium satisfies the nonlinear Schrödinger equation and can be affected significantly. Resulting field effect can be substantially augmented and effective rectification/demodulation can occur. Possible implications of this modification on biological processes in white and grey matter are discussed.

  14. Debye temperatures and Grueneisen parameters of chain TlSe and TlInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mamedov, Nazim; Orudzhev, Guseyn; Hamidov, Sadig; Jafarova, Vusala [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan); Wakita, Kazuki [Chiba Institute of Technology, Department of Electrical, Electronics and Computer Engineering, Narashino (Japan); Shim, YongGu; Kishigui, Koiru; Yamamoto, Nobuyuki [Osaka Prefecture University, Department of Physics and Electronics, Graduate School of Engineering, Sakai (Japan); Mimura, Kojiro [Osaka Prefecture University, Department of Mathematical Sciences, Graduate School of Engineering, Sakai (Japan); Schorr, Susan [Free University, Department of GeoSciences, Berlin (Germany)

    2009-05-15

    Debye temperatures and Grueneisen parameters of chain TlSe and TlInSe{sub 2} were calculated using our earlier obtained ab-initio results on phonon band structure and existed experimental data on thermal expansion coefficient. For both compounds, the values of heat capacity at constant volume (C{sub v}) were found to obey cubic law at temperatures less than 2 K. The Debye temperatures were determined to be 95 K and 96 K for TlSe and TInSe{sub 2}, respectively. The unit cells of TlSe and TInSe{sub 2} were relaxed by minimizing Hellman-Feynman forces and the total energy dependence on the unit cell volume was obtained. The bulk modulus (B{sub 0}) values in Murnaghan and Birch-Murnaghan equations of state were shown to be very close to each other. By using above B{sub 0} and C{sub v}, as well as available experimental data on linear expansion, the heat capacity at constant pressure (C{sub P}) was evaluated. Comparison with experimental C{sub P} in a wide temperature range showed a good agreement for TlInSe{sub 2} and a noticeable discrepancy for TlSe at temperatures above 170 K. The calculated Grueneisen parameter of TlInSe{sub 2} showed a tendency to saturation in a region above Debye temperature. The situation with TlSe is not clear because of the ambiguous character of the available experimental data on thermal expansion. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Elastic and piezoelectric properties, sound velocity and Debye temperature of (B3) boron–bismuth compound under pressure

    Indian Academy of Sciences (India)

    S Daoud; N Bioud; N Lebgaa

    2013-11-01

    Pseudopotential plane-wave method (PP–PW) based on density functional theory (DFT) and density functional perturbation theory (DFPT) within the Teter and Pade exchangecorrelation functional form of the local spin density approximation (LSDA) is applied to study the effect of pressure on the elastic and piezoelectric properties of the (B3) boron–bismuth compound. The phase transition, the independent elastic stiffness constants, the bulk modulus, the direct and converse piezoelectric coefficients, the longitudinal, transverse, and average sound velocities, and finally the Debye temperature under pressure are studied. The results obtained are generally lower than the available theoretical data (experimental data are not available) reported in the literature.

  16. Kinetics and thermodynamics of electron transfer in Debye solvents: an analytical and nonperturbative reduced density matrix theory.

    Science.gov (United States)

    Han, Ping; Xu, Rui-Xue; Li, Baiqing; Xu, Jian; Cui, Ping; Mo, Yan; Yan, Yijing

    2006-06-15

    A nonperturbative electron transfer rate theory is developed on the basis of reduced density matrix dynamics, which can be evaluated readily for the Debye solvent model without further approximation. Not only does it recover for reaction rates the celebrated Marcus' inversion and Kramers' turnover behaviors, but the present theory also predicts reaction thermodynamics, such as equilibrium Gibbs free energy and entropy, some interesting solvent-dependent features that are calling for experimental verification. Moreover, a continued fraction Green's function formalism is also constructed, which can be used together with the Dyson equation technique for efficient evaluation of nonperturbative reduced density matrix dynamics.

  17. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  18. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  19. Model for Electromagnetic Information Leakage

    OpenAIRE

    Mao Jian; Li Yongmei; Zhang Jiemin; Liu Jinming

    2013-01-01

    Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and ana...

  20. Electromagnetic Interface Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...

  1. Slewing crane with electromagnet

    OpenAIRE

    2006-01-01

    This paper describes a slewing crane with electromagnet, operated by three three-phase induction motors. A switchboard described in a separate paper, which also depicts the electromagnet construction details, drives the motors and the electromagnet. From its seat – mounted on the crane - an operator can make the crane arm slew left or right. The electromagnet can be moved back, forward, up or down. The crane is made of iron, has a height of 3m and a length of 2,5m. Such proportions make it ve...

  2. Large electromagnetic pumps. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kilman, G.B.

    1976-01-01

    The development of large electromagnetic pumps for the liquid metal heat transfer systems of fission reactors has progressed for a number of years. Such pumps are now planned for fusion reactors and solar plants as well. The Einstein-Szilard (annular) pump has been selected as the preferred configuration. Some of the reasons that electromagnetic pumps may be preferred over mechanical pumps and why the annular configuration was selected are discussed. A detailed electromagnetic analysis of the annular pump, based on slug flow, is presented. The analysis is then used to explore the implications of large size and power on considerations of electromagnetic skin effect, geometric skin effect and the cylindrical geometry.

  3. Electromagnetically Clean Solar Arrays

    Science.gov (United States)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  4. Free energy of static quarks and Debye screening mass in 2+1-flavor lattice QCD with Wilson quark action based on fixed-scale approach

    CERN Document Server

    Maezawa, Y; Aoki, S; Ejiri, S; Hatsuda, T; Kanaya, K; Ohno, H

    2011-01-01

    Free energies between static quarks and Debye screening masses in the quark-gluon plasma are studied on the basis of Polyakov-line correlations in lattice simulations of 2+1 flavors QCD with the renormalization-group improved gluon action and the $O(a)$-improved Wilson quark action. We perform simulations at $m_{\\rm PS}/m_{\\rm V} = 0.63$ (0.74) for light (strange) flavors with lattice sizes of $32^3 \\times N_t$ with $N_t=4$--12. We adopt the fixed-scale approach, where temperature can be varied without changing the spatial volume and renormalization factor. We find that, at short distance, the free energies of static quarks in color-singlet channel converge to the static-quark potential evaluated from the Wilson-loop at zero-temperature, in accordance with the expected insensitivity of short distance physics to the temperature. At long distance, the free energies of static quarks approach to twice the single-quark free energies, implying that the interaction between static quarks is fully screened. The screen...

  5. Study of potential health effects of electromagnetic fields of telephony and Wi-Fi, using chicken embryo development as animal model.

    Science.gov (United States)

    Woelders, Henri; de Wit, Agnes; Lourens, Alexander; Stockhofe, Norbert; Engel, Bas; Hulsegge, Ina; Schokker, Dirkjan; van Heijningen, Paula; Vossen, Stefan; Bekers, Dave; Zwamborn, Peter

    2017-04-01

    The objective of this study is to investigate possible biological effects of radiofrequency electromagnetic fields (RF-EMF) as used in modern wireless telecommunication in a well-controlled experimental environment using chicken embryo development as animal model. Chicken eggs were incubated under continuous experimental exposure to GSM (1.8 GHz), DECT (1.88 GHz), UMTS (2.1 GHz), and WLAN (5.6 GHz) radiation, with the appropriate modulation protocol, using a homogeneous field distribution at a field strength of approximately 3 V/m, representing the maximum field level in a normal living environment. Radiation-shielded exposure units/egg incubators were operating in parallel for exposed and control eggs in a climatized homogeneous environment, using 450 eggs per treatment in three successive rounds per treatment. Dosimetry of the exposure (field characteristics and specific absorption rate) were studied. Biological parameters studied included embryo death during incubation, hatching percentage, and various morphological and histological parameters of embryos and chicks and their organs, and gene expression profiles of embryos on day 7 and day 18 of incubation by microarray and qPCR. No conclusive evidence was found for induced embryonic mortality or malformations by exposure to the used EMFs, or for effects on the other measured parameters. Estimated differences between treatment groups were always small and the effect of treatment was not significant. In a statistical model that ignored possible interaction between rounds and exposure units, some of the many pairwise comparisons of exposed versus control had P-values lower than 0.05, but were not significant after correction for multiple testing. Bioelectromagnetics. 38:186-203, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. The Role of Concentration Dependent Static Permittivity of Electrolyte Solutions in the Debye-Hückel Theory.

    Science.gov (United States)

    Shilov, Ignat Yu; Lyashchenko, Andrey K

    2015-08-01

    The Debye-Hückel theory has been extended to allow for arbitrary concentration dependence of the electrolyte solution static permittivity. The theory follows the lines advanced by Erich Hückel ( Hückel, E. Phys. Z. 1925, 26, 93) but gives rise to more general and lucid results. New theoretical expressions have been obtained for the excess free energy of solution, activity coefficient of water and mean ionic activity coefficient. The thermodynamic functions contain two terms representing interionic interactions and ion-water (solvation) interactions. The theory has been applied to calculate the activity coefficients of components in the aqueous solutions of alkali metal chlorides from LiCl to CsCl at ambient conditions making use of permittivities taken from experimental dielectric relaxation studies. Calculations without parameter adjustment have demonstrated a semiquantitative agreement with experimental data, reproducing both the nonmonotonic concentration dependence of the activity coefficients and the ordering of activity coefficients for the salts with different cations. A good agreement with experimental data is obtained for the aqueous solutions of LiCl in the concentration range up to 10 mol/kg. The nonmonotonic concentration dependence of activity coefficients is explained as a result of a balance between the effect of interionic interactions and the solvation contribution which appears quite naturally in the framework of the Debye-Hückel approach after incorporation of variable permittivity of solution.

  7. Single and multiple scattering XAFS Debye-Waller factors for crystalline materials using periodic Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, N; Mion, T [Department of Physics and Geology, University of Texas-Pan American, Edinburg, TX 78539 (United States); Bunker, G, E-mail: dimakis@utpa.ed [Department of Biological Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2009-11-15

    We present an accurate and efficient technique for calculating thermal X-ray absorption fine structure (XAFS) Debye-Waller factors (DWFs) applicable to crystalline materials. Using Density Functional Theory on a 3x3x3 supercell pattern of MnO structure, under the nonlocal hybrid B3LYP functional paired with Gaussian local basis sets, we obtain the normal mode eigenfrequencies and eigenvectors; these parameters are in turn used to calculate single and multiple scattering XAFS DWFs. The DWFs obtained via this technique are temperature dependent expressions and can be used to substantially reduce the number of fitting parameters, when experimental spectra are fitted with a hypothetical structure. The size of the supercell size limits the R-space range that these parameters could be used. Therefore corresponding DWFs for paths outside of this range are calculated using the correlated Debye model. Our method is compared with prior cluster calculations and with corresponding values obtained from fitting experimental XAFS spectra on manganosite with simulated spectra.

  8. Applying a potential across a biomembrane

    DEFF Research Database (Denmark)

    Ambjörnsson, Tobias; Lomholt, Michael A; Hansen, Per Lyngs

    2007-01-01

    We investigate the effect on biomembrane mechanical properties due to the presence an external potential for a nonconductive incompressible membrane surrounded by different electrolytes. By solving the Debye-Hückel and Laplace equations for the electrostatic potential and using the relevant stres...

  9. Applying a potential across a biomembrane

    DEFF Research Database (Denmark)

    Ambjörnsson, Tobias; Lomholt, Michael A; Hansen, Per Lyngs

    2007-01-01

    We investigate the effect on biomembrane mechanical properties due to the presence an external potential for a nonconductive incompressible membrane surrounded by different electrolytes. By solving the Debye-Hückel and Laplace equations for the electrostatic potential and using the relevant stres...

  10. Introducing Electromagnetic Field Momentum

    Science.gov (United States)

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  11. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  12. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  13. Tunability enhanced electromagnetic wiggler

    Science.gov (United States)

    Schlueter, Ross D.; Deis, Gary A.

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  14. Do electromagnetic waves always propagate along null geodesics?

    CERN Document Server

    Asenjo, Felipe A

    2016-01-01

    We find exact solutions to Maxwell equations written in terms of four-vector potentials in non--rotating, as well as in G\\"odel and Kerr spacetimes. Exact electromagnetic waves solutions are written on given gravitational field backgrounds where they evolve. We find that in non--rotating spherical symmetric spacetimes, electromagnetic plane waves travel along null geodesics. However, electromagnetic plane waves on G\\"odel and Kerr spacetimes do not exhibit that behavior.

  15. Relativistic electromagnetic mass models in spherically symmetric spacetime

    CERN Document Server

    Maurya, S K; Ray, Saibal; Chatterjee, Vikram

    2015-01-01

    Under the static spherically symmetric Einstein-Maxwell spacetime of embedding class one we explore possibility of electromagnetic mass model where mass and other physical parameters have purely electromagnetic origin (Tiwari 1984, Gautreau 1985, Gron 1985). This work is in continuation of our earlier investigation (Maurya 2015a) where we developed an algorithm and found out three new solutions of electromagnetic mass models. In the present letter we consider different metric potentials $\

  16. Spectrum and electromagnetic transitions of bottomonium

    CERN Document Server

    Deng, Wei-Jun; Gui, Long-Cheng; Zhong, Xian-Hui

    2016-01-01

    Stimulated by the recently exciting progress in the observation of new bottomonium states, we study the bottomonium spectrum. To calculate the mass spectrum, we adopted a nonrelativistic screened potential model. The radial Schr\\"{o}dinger equation is solved with the three-point difference central method, where the spin-dependent potentials are dealt with non-perturbatively. With this treatment, the corrections of the spin-dependent potentials to the wavefunctions can be included successfully. Furthermore, we have calculated the electromagnetic transitions of the $nS$, $nP$ ($n\\leq 3$), and $nD$ ($n\\leq 2$) bottomonium states with a nonrelativistic electromagnetic transition operator widely applied to meson photoproduction reactions. Our calculated masses, hyperfine and fine splittings, and electromagnetic transition rates for the bottomonium states are in good agreement with the available experimental data. We hope our study can provide some useful references to determine the properties of the bottomonium st...

  17. Computer techniques for electromagnetics

    CERN Document Server

    Mittra, R

    1973-01-01

    Computer Techniques for Electromagnetics discusses the ways in which computer techniques solve practical problems in electromagnetics. It discusses the impact of the emergence of high-speed computers in the study of electromagnetics. This text provides a brief background on the approaches used by mathematical analysts in solving integral equations. It also demonstrates how to use computer techniques in computing current distribution, radar scattering, and waveguide discontinuities, and inverse scattering. This book will be useful for students looking for a comprehensive text on computer techni

  18. High frequency electromagnetic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Daily, W.; Ramirez, A.; Ueng, T.; Latorre, R.

    1989-09-01

    An experiment was conducted in G Tunnel at the Nevada Test Site to evaluate high frequency electromagnetic tomography as a candidate for in situ monitoring of hydrology in the near field of a heater placed in densely welded tuff. Tomographs of 200 MHz electromagnetic permittivity were made for several planes between boreholes. Data were taken before the heater was turned on, during heating and during cooldown of the rockmass. This data is interpreted to yield maps of changes in water content of the rockmass as a function of time. This interpretation is based on laboratory measurement of electromagnetic permittivity as a function of water content for densely welded tuff. 8 refs., 6 figs.

  19. Electromagnetic analysis of electromagnet for control element drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Kim, J.I.; Kim, J.H.; Kim, Y.W. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-06-01

    A 2-D electromagnetic numerical analysis model is developed to calculate the attraction force of the electromagnet for CEDM. trend relating to electromagnetic design within constrained. The important design variables of the electromagnet are current density and air gap length. The results show that the attraction force by using optimum design point is well within the acceptable level. It is anticipated that the results will eventually be utilized for more realitic design of the electromagnet. 10 refs., 38 figs., 2 tabs. (Author)

  20. Broadband electromagnetic analysis of compacted kaolin

    Science.gov (United States)

    Bore, Thierry; Wagner, Norman; Cai, Caifang; Scheuermann, Alexander

    2017-01-01

    The mechanical compaction of soil influences not only the mechanical strength and compressibility but also the hydraulic behavior in terms of hydraulic conductivity and soil suction. At the same time, electric and dielectric parameters are increasingly used to characterize soil and to relate them with mechanic and hydraulic parameters. In the presented study electromagnetic soil properties and suction were measured under defined conditions of standardized compaction tests. The impact of external mechanical stress conditions of nearly pure kaolinite was analyzed on soil suction and broadband electromagnetic soil properties. An experimental procedure was developed and validated to simultaneously determine mechanical, hydraulic and broadband (1 MHz-3 GHz) electromagnetic properties of the porous material. The frequency dependent electromagnetic properties were modeled with a classical mixture equation (advanced Lichtenecker and Rother model, ALRM) and a hydraulic-mechanical-electromagnetic coupling approach was introduced considering water saturation, soil structure (bulk density, porosity), soil suction (pore size distribution, water sorption) as well as electrical conductivity of the aqueous pore solution. Moreover, the relaxation behavior was analyzed with a generalized fractional relaxation model concerning a high-frequency water process and two interface processes extended with an apparent direct current conductivity contribution. The different modeling approaches provide a satisfactory agreement with experimental data for the real part. These results show the potential of broadband electromagnetic approaches for quantitative estimation of the hydraulic state of the soil during densification.

  1. Introduction to engineering electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeon Ho [Sungkyunkwan Univ., Kyongkido (Korea, Republic of). School of Information and Communication Engineering

    2013-11-01

    This book provides students with the missing link that can help them master the basic principles of electromagnetics. The concept of vector fields is introduced by starting with clear definitions of position, distance, and base vectors. The symmetries of typical configurations are discussed in detail, including cylindrical, spherical, translational, and two-fold rotational symmetries. To avoid serious confusion between symbols with two indices, the text adopts a new notation: a letter with subscript 1-2 for the work done in moving a unit charge from point 2 to point 1, in which the subscript 1-2 mimics the difference in potentials, while the hyphen implies a sense of backward direction, from 2 to 1. This book includes 300 figures in which real data are drawn to scale. Many figures provide a three-dimensional view. Each subsection includes a number of examples that are solved by examining rigorous approaches in steps. Each subsection ends with straightforward exercises and answers through which students can check if they correctly understood the concepts. A total 350 of examples and exercises are provided. At the end of each section, review questions are inserted to point out key concepts and relations discussed in the section. They are given with hints referring to the related equations and figures. The book contains a total of 280 end-of-chapter problems.

  2. Electromagnetic hypersensitivity: Fact or fiction?

    Energy Technology Data Exchange (ETDEWEB)

    Genuis, Stephen J., E-mail: sgenuis@ualberta.ca [University of Alberta (Canada); Lipp, Christopher T. [Faculty of Medicine at the University of Calgary (Canada)

    2012-01-01

    As the prevalence of wireless telecommunication escalates throughout the world, health professionals are faced with the challenge of patients who report symptoms they claim are connected with exposure to some frequencies of electromagnetic radiation (EMR). Some scientists and clinicians acknowledge the phenomenon of hypersensitivity to EMR resulting from common exposures such as wireless systems and electrical devices in the home or workplace; others suggest that electromagnetic hypersensitivity (EHS) is psychosomatic or fictitious. Various organizations including the World Health Organization as well as some nation states are carefully exploring this clinical phenomenon in order to better explain the rising prevalence of non-specific, multi-system, often debilitating symptoms associated with non-ionizing EMR exposure. As well as an assortment of physiological complaints, patients diagnosed with EHS also report profound social and personal challenges, impairing their ability to function normally in society. This paper offers a review of the sparse literature on this perplexing condition and a discussion of the controversy surrounding the legitimacy of the EHS diagnosis. Recommendations are provided to assist health professionals in caring for individuals complaining of EHS. - Highlights: Black-Right-Pointing-Pointer Many people report symptoms when near devices emanating electromagnetic fields(EMF). Black-Right-Pointing-Pointer Electromagnetic hypersensitivity (EHS) research has generated conflicting outcomes. Black-Right-Pointing-Pointer Recent evidence suggests pathophysiological change in some individuals with EHS. Black-Right-Pointing-Pointer EHS patients consistently report profound social and personal challenges. Black-Right-Pointing-Pointer Clinicians need to be apprised of the EHS condition and potential interventions.

  3. Electromagnetic fields and waves

    CERN Document Server

    Rojansky, Vladimir

    2012-01-01

    This comprehensive introduction to classical electromagnetic theory covers the major aspects, including scalar fields, vectors, laws of Ohm, Joule, Coulomb, Faraday, Maxwell's equation, and more. With numerous diagrams and illustrations.

  4. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  5. BGO* electromagnetic calorimeter

    CERN Multimedia

    CERN

    1988-01-01

    * Short for Bismuth-Germanium-Oxyde, a scintillator of high atomic number Z used in electromagnetic crystal calorimeters. BGO is characterized by fast rise time (a few nanoseconds) and short radiation length (1.11 cm).

  6. The classical electromagnetic field

    CERN Document Server

    Eyges, Leonard

    2010-01-01

    This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.

  7. Electromagnetism in the Movies.

    Science.gov (United States)

    Everitt, Lori R.; Patterson, Evelyn T.

    1999-01-01

    Describes how the authors used portions of popular movies to help students review concepts related to electromagnetism. Movies used and concepts covered in the review are listed, and a sample activity is described. (WRM)

  8. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  9. Computer-Aided Design of a Direct Current Electromagnet

    Directory of Open Access Journals (Sweden)

    Iancu Tătucu

    2009-10-01

    Full Text Available The paper presents the mathematical model and the simulation of a direct current electromagnet used for the transport of the steel ingots. For the simulation of any device one must dispose of a mathematical model, able to describe as accurately as possible the phenomena that take place. As the processes occurred in the case of an electromagnet are of an electromagnetic nature, one used the model of the electromagnetic potentials, and the simulation was performed with the help of the specialised software ANSYS.

  10. Maxwell's equations and their consequences elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W 0

    2013-01-01

    Elementary Electromagnetic Theory Volume 3: Maxwell's Equations and their Consequences is the third of three volumes that intend to cover electromagnetism and its potential theory. The third volume considers the implications of Maxwell's equations, such as electromagnetic radiation in simple cases, and its relation between Maxwell's equation and the Lorenz transformation. Included in this volume are chapters 11-14, which contain an in-depth discussion of the following topics: Electromagnetic Waves The Lorentz Invariance of Maxwell's Equation Radiation Motion of Charged Particles Intended

  11. Electromagnetic Properties of a Hot and Dense Medium

    CERN Document Server

    Masood, Samina

    2016-01-01

    We study the properties of an electromagnetically interacting medium in the presence of high concentration of electrons at extremely high temperatures and chemical potentials. We show that the electromagnetic properties of a medium such as the electric permittivity, magnetic permeability, magnetic moments and the propagation speed of electromagnetic waves as well as the corresponding particle processes depend on temperature and density of the medium. Electromagnetic properties of neutrinos are significantly modified due to their interactions with electrons when they propagate through such a medium of hot and dense electrons.

  12. Electromagnetic rotational actuation.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  13. The ATLAS electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Michel Mathieu, a technician for the ATLAS collaboration, is cabling the ATLAS electromagnetic calorimeter's first end-cap, before insertion into its cryostat. Millions of wires are connected to the electromagnetic calorimeter on this end-cap that must be carefully fed out from the detector so that data can be read out. Every element on the detector will be attached to one of these wires so that a full digital map of the end-cap can be recreated.

  14. Electromagnetic Education in India

    Directory of Open Access Journals (Sweden)

    Bajpai Shrish

    2016-06-01

    Full Text Available Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases. Electromagnetism has played a vital role in the progress of human kind ever since it has been understood. Electromagnets are found everywhere. One can find them in speakers, doorbells, home security systems, anti-shoplifting systems, hard drives, mobiles, microphones, Maglev trains, motors and many other everyday appliances and products. Before diving into the education system, it is necessary to reiterate its importance in various technologies that have evolved over time. Almost every domain of social life has electromagnetic playing its role. Be it the mobile vibrators you depend upon, a water pump, windshield wipers during rain and the power windows of your car or even the RFID tags that may ease your job during shopping. A flavor of electromagnetics is essential during primary level of schooling for the student to understand its future prospects and open his/her mind to a broad ocean of ideas. Due to such advancements this field can offer, study on such a field is highly beneficial for a developing country like India. The paper presents the scenario of electromagnetic education in India, its importance and numerous schemes taken by the government of India to uplift and acquaint the people about the importance of EM and its applications.

  15. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  16. Inhomogeneous electromagnetic gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Stein-Schabes, J.A.

    1985-04-15

    The collapse of an inhomogeneous dust cloud in the presence of an electromagnetic field is investigated in detail. The possibility of a naked singularity arising is studied using some known solutions for a spherical charged inhomogeneous dust cloud. It is found that locally naked singularities may develop when the arbitrary functions in the solution are chosen in a special way, but that a global naked singularity will not form. Also the role of the electromagnetic pressure is discussed.

  17. Model for Electromagnetic Information Leakage

    Directory of Open Access Journals (Sweden)

    Mao Jian

    2013-09-01

    Full Text Available Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and analyzes amount of leakage information with formulas.  

  18. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  19. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    Science.gov (United States)

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  1. Conducted Electromagnetic Interference (EMI) in Smart Grids

    CERN Document Server

    Smolenski, Robert

    2012-01-01

    As power systems develop to incorporate renewable energy sources, the delivery systems may be disrupted by the changes involved. The grid’s technology and management must be developed to form Smart Grids between consumers, suppliers and producers. Conducted Electromagnetic Interference (EMI) in Smart Grids considers the specific side effects related to electromagnetic interference (EMI) generated by the application of these Smart Grids. Conducted Electromagnetic Interference (EMI) in Smart Grids presents specific EMI conducted phenomena as well as effective methods to filter and handle them once identified. After introduction to Smart Grids, the following sections cover dedicated methods for EMI reduction and potential avenues for future development including chapters dedicated to: •potential system services, •descriptions of the EMI spectra shaping methods, •methods of interference voltage compensation, and theoretical analysis of experimental results.  By focusing on these key aspects, Conducted El...

  2. Excitation of high-frequency electromagnetic waves by energetic electrons with a loss cone distribution in a field-aligned potential drop

    Science.gov (United States)

    Fung, Shing F.; Vinas, Adolfo F.

    1994-01-01

    The electron cyclotron maser instability (CMI) driven by momentum space anisotropy (df/dp (sub perpendicular) greater than 0) has been invoked to explain many aspects, such as the modes of propagation, harmonic emissions, and the source characteristics of the auroral kilometric radiation (AKR). Recent satellite observations of AKR sources indicate that the source regions are often imbedded within the auroral acceleration region characterized by the presence of a field-aligned potential drop. In this paper we investigate the excitation of the fundamental extraordinary mode radiation due to the accelerated electrons. The momentum space distribution of these energetic electrons is modeled by a realistic upward loss cone as modified by the presence of a parallel potential drop below the observation point. On the basis of linear growth rate calculations we present the emission characteristics, such as the frequency spectrum and the emission angular distribution as functions of the plasma parameters. We will discuss the implication of our results on the generation of the AKR from the edges of the auroral density cavities.

  3. Off-Planar Geometry and Structural Instability of EDO-TTF Explained by Using the Extended Debye Polarizability Model for Bond Angles

    NARCIS (Netherlands)

    Linker, Gerrit-Jan; van Duijnen, Piet Th.; van Loosdrecht, Paul H. M.; Broer-Braam, Henderika

    2012-01-01

    The geometry of ethylenedioxy-tetrathiafulvalene, EDO-TTF, plays an important role in the metal-insulator transition in the charge transfer salt (EDO-TTF)(2)PF6. The planar and off-planar geometrical conformations of the EDO-TTF molecules are explained using an extended Debye polarizability model fo

  4. Electromagnetic configurations of rail guns

    Science.gov (United States)

    Fat'yanov, O. V.; Ostashev, V. E.; Lopyrev, A. N.; Ul'Yanov, A. V.

    1993-06-01

    Some problems associated with the electromagnetic acceleration of macrobodies in a rail gun are examined. An approach to the design of rail gun configurations is proposed, and some basic rail gun schemes are synthesized. The alternative rail gun schemes are compared in terms of electrode potential and stability of the electrode gap with respect to parasitic current shunting. The effect of the ohmic resistance of the electrodes and of the additional magnetization field on the spatial structure of the discharge in the rail gun channel is discussed. A classification of rail gun modifications is presented.

  5. Electromagnetic fields, environment and health

    CERN Document Server

    Perrin, Anne

    2013-01-01

    A good number of false ideas are circulating on the effects of non-ionizing radiations on our health, which can lead to an oversimplification of the issue, to potentially dangerous misconceptions or to misleading data analysis. Health effects may be exaggerated, or on the contrary underplayed. The authors of this work (doctors, engineers and researchers) have endeavored to supply validated and easily understandable scientific information on the electromagnetic fields and their biological and health effects. After a general review of the physics of the waves and a presentation of non-ionizing r

  6. Second-Harmonic Generation in Vertically Coupled InAs/GaAs Quantum Dots with a Gaussian Potential Distribution: Combined Effects of Electromagnetic Fields, Pressure, and Temperature

    Science.gov (United States)

    Ben Mahrsia, R.; Choubani, M.; Bouzaiene, L.; Maaref, H.

    2015-08-01

    Simulation of quantum dots (QD) is usually performed on the basis of abrupt changes between neighboring materials. In practice, it is not possible to construct such QD because in a real structure the interface between two adjacent materials is not a step. In the work discussed in this paper, vertically coupled InAs/GaAs quantum dots (VCQD) with a non-abrupt change between two neighboring materials are considered. A potential function in the form of a Gaussian distribution was used to show this effect. We also focused on studying the effect of structure, applied electric ( F) and magnetic ( B) fields, pressure ( P), and temperature ( T) on second-harmonic generation (SHG). The analytical expression for SHG was investigated theoretically by use of the density matrix approach, the effective mass, and the finite-difference method (FDM). It was found that the major resonant peak value of SHG is a non-monotonic function of the barrier width ( L B). Moreover, the major resonant peak of SHG is blue-shifted (red-shifted) and its magnitude increases (decreases) monotonically with increasing temperature (pressure). The results obtained also show that the magnitude and position of the resonant peaks of SHG are affected by changes in external conditions, for example applied electric and magnetic fields, structural dimensions of the coupled QD system, and relaxation time ( T 0). Calculations also show that SHG in a VCQD structure with a non-abrupt potential change can be controlled and optimized by appropriate choice of structural dimensions and the external conditions mentioned above.

  7. Effect of the Debye screening on the tunnel current through simple electrochemical bridged contact

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Medvedev, Oleg; Ulstrup, Jens

    2008-01-01

    General equations for tunnel current through electrochemical contact containing a redox-center in molecular bridge group are observed with allowing for potential distribution in the tunnel gap. Simple approximate expressions appropriate for the analysis of experimental data are also derived...

  8. An eigen theory of static electromagnetic field for anisotropic media

    Institute of Scientific and Technical Information of China (English)

    Shao-hua GUO

    2009-01-01

    Static electromagnetic fields are studied based on standard spaces of the physical presentation,and the modal equations of static electromagnetic fields for anisotropic media are derived. By introducing a new set of first-order potential functions,several novel theoretical results are obtained. It is found that,for isotropic media,electric or magnetic potentials are scalar; while for anisotropic media,they are vectors. Magnitude and direction of the vector potentials are related to the anisotropic subspaces. Based on these results,we discuss the laws of static electromagnetic fields for anisotropic media.

  9. Neuroprotective Potential of Superparamagnetic Iron Oxide Nanoparticles Along with Exposure to Electromagnetic Field in 6-OHDA Rat Model of Parkinson's Disease.

    Science.gov (United States)

    Umarao, Preeti; Bose, Samrat; Bhattacharyya, Supti; Kumar, Anil; Jain, Suman

    2016-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting mainly the dopaminergic neurons of the substantia nigra leading to various motor and non-motor deficits. We explored the neuroprotective potential of superparamagnetic iron oxide nanoparticles (IONPs) along with exposure to EMF in 6-OHDA rat model of PD. IONPs were implanted at the site of lesion and 24 h thereafter the rats were exposed to magnetic fields 2 h/day for one week. Bilateral lesions of the striatum were made with 6-OHDA. The rats in all the intervention groups improved progressively over the days and by post-surgery day 4 they were active and bright. We observed a significant beneficial effect of the IONPs implantation and MF exposure on feeding behavior, gait and postural stability. There was a significant enhancement of mitochondrial function and attenuation of lesion volume in all the intervention groups as compared to PD. The results demonstrate neuroprotective effect of iron oxide nanoparticle implantation and magnetic field exposure in an in vivo 6-OHDA rat model of PD.

  10. Electromagnetic protection assessment of naval vessels

    NARCIS (Netherlands)

    Middelkoop, R.; Vernooy, J.A.M.

    1993-01-01

    Modern naval vessels are well equipped with a lot of weapon and sensor systems, all controlled by electronics. Mutual interference between all those electronic systems as well as illumination of a ship by an Electromagnetic Pulse (EMP) caused by lightning or by a nuclear detonation can potentially u

  11. Electromagnetic radiation from a laser wakefield accelerator

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2008-01-01

    Coherent and incoherent electromagnetic radiation emitted from a laser wakefield accelerator is calculated based on Lienard-Wiechert potentials. It is found that at wavelengths longer than the bunch length, the radiation is coherent. The coherent radiation, which typically lies in the infrared range

  12. Electromagnetic Sources in Moving Simple Medium

    DEFF Research Database (Denmark)

    Johannsen, Günther

    1970-01-01

    A retarded potential tensor (4-vector) is derived in an arbitrary system of inertia for an arbitrary electromagnetic source in a moving homogeneous, isotropic, nondispersive, lossless dielectric. The velocity is uniform, and the result is relativistic correct. ©1970 The American Institute...

  13. Worldsheet electromagnetism and the superstring tension

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, P.K. (DAMTP, Univ. Cambridge (United Kingdom))

    1992-03-05

    A superstring action, invariant under the symmetries corresponding to a free differential N=1 superalgebra, is constructed. Its worldsheet fields include an electromagnetic gauge potential. Its equations of motion are those of the Green-Schwarz superstring but with the string tension given by the circulation of the worldsheet electric field around the string. (orig.).

  14. Electromagnetic Form Factor of Charged Scalar Meson

    Institute of Scientific and Technical Information of China (English)

    LI Heng-Mei; CHEN Ning; WANG Zhi-Gang; WAN Shao-Long

    2007-01-01

    Wavefunctions and the electromagnetic form factor of charged scalar mesons are studied with the vector-vectortype flat-bottom potential model under the framework of the spinor spinor Bethe Salpeter equation. The obtained results are in agreement with other theories.

  15. Electromagnetic radiation from a laser wakefield accelerator

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2008-01-01

    Coherent and incoherent electromagnetic radiation emitted from a laser wakefield accelerator is calculated based on Lienard-Wiechert potentials. It is found that at wavelengths longer than the bunch length, the radiation is coherent. The coherent radiation, which typically lies in the infrared

  16. Advances in information technologies for electromagnetics

    CERN Document Server

    Tarricone, Luciano

    2006-01-01

    Talks about the achieved and potentially obtainable advances in electromagnetics with innovative IT technologies. This work contains tutorial chapters, which introduce technologies, such as parallel and distributed computing, object-oriented technologies, grid computing, semantic grids, agent based computing and service-oriented architectures.

  17. An alternative formulation of classical electromagnetic duality

    CERN Document Server

    Li, K; Li, Kang; Naón, Carlos M.

    2001-01-01

    By introducing a doublet of electromagnetic four dimensional vector potentials, we set up a manifestly Lorentz covariant and SO(2) duality invariant classical field theory of electric and magnetic charges. In our formulation one does not need to introduce the concept of Dirac string.

  18. Stark broadening of Mg I and Mg II spectral lines and Debye shielding effect in laser induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cvejić, M.; Gavrilović, M.R.; Jovićević, S. [Institute of Physics, University of Belgrade, 11081 Belgrade, P.O. Box 68 (Serbia); Konjević, N., E-mail: nikruz@ff.bg.ac.rs [Faculty of Physics, University of Belgrade, 11001 Belgrade, P.O. Box 368 (Serbia)

    2013-07-01

    We report Stark broadening parameters for three Mg I lines and one Mg II line in the electron number density range (0.67–1.09) · 10{sup 17} cm{sup −3} and electron temperature interval (6200–6500) K. The electron density is determined from the half width of hydrogen impurity line, the H{sub α}, while the electron temperature is measured from relative intensities of Mg I or Al II lines using Boltzmann plot technique. The plasma source was induced by Nd:YAG laser radiation at 1.06 μm having pulse width 15 ns and pulse energy 50 mJ. Laser induced plasma is generated in front of a solid state surface. High speed photography is used to determine time of plasma decay with good homogeneity and then applied line self-absorption test and Abel inversion procedure. The details of data acquisition and data processing are described and illustrated with typical examples. The experimental results are compared with two sets of semiclassical calculations and the results of this comparison for Mg I lines are not unambiguous while for Mg II 448.1 nm line, the results of Dimitrijević and Sahal-Bréchot calculations agree well with our and other experimental results in the temperature range (5000–12,000) K and these theoretical results are recommended for plasma diagnostic purposes. The study of line shapes within Mg I 383.53 nm multiplet shows that the use of Debye shielding correction improves the agreement between theoretical and experimental Stark broadening parameters. - Highlights: • Stark broadening parameters for three Mg I and one Mg II line. • Comparison of Stark parameters with other experimental and theoretical results. • Recommendation of Mg II 448.1 nm line for plasma diagnostics. • Influence of Debye shielding effect to line widths of Mg I 383.53 nm multiplet. • Application of laser induced plasma for Stark broadening parameters measurement.

  19. On the invariance properties of the Klein–Gordon equation with external electromagnetic field

    Indian Academy of Sciences (India)

    N D Sen Gupta

    2003-09-01

    Here we attempt to find the nature of the external electromagnetic field such that the KG equation with external electromagnetic field is invariant. Lie’s extended group method is applied to obtain the class of external electromagnetic field which admits the invariance of the KG equation. Though, the field potential only explicitly appears in the equation, the constraints for the invariance are only on the electromagnetic field.

  20. Analysis of the Relationship between Hamming Distance and the Electromagnetic Information Leakage

    OpenAIRE

    Sun Haimeng; Liu Jinming; Zhang Jiemin; Mao Jian

    2013-01-01

    Electromagnetic information leak as a potential data security risk is more and more serious. Discussing the relationship between compromising emanations and Hamming distance is directed to preventing or reducing the electromagnetic information leakage. The paper presents the model of electromagnetic information leak, then the hierarchical protection strategy based on the model is proposed, that is anti-radiation, anti-intercept and anti-reconstruction. Analyzing the causes of electromagnetic ...

  1. The Electromagnetic Duality Formulation of Geometric Phases

    Science.gov (United States)

    Zhang, Yuchao; Li, Kang

    2015-06-01

    This paper focuses on the electromagnetic(EM) duality formulation of geometric phases of Aharonov-Bohm(A-B) effect and Aharonov-Casher(A-C) effect. Through the two four-vector potential formulation of electromagnetic theory, we construct a EM duality formulation for both A-B effect and A-C effect. The He-McKellar-Wilkens(HMW) effect is included as a EM duality counterpart of the A-C effect, and also the EM duality counterpart of the A-B effect is also predicted.

  2. Applied electromagnetic scattering theory

    CERN Document Server

    Osipov, Andrey A

    2017-01-01

    Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...

  3. Electromagnetic pollution. Screens accused

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, J.

    1996-04-01

    A recent experiment carried out by M. Bastide (Montpellier University, France) has shown an important increase of mortality, immunosuppression and morphological changes for chicks embryos when submitted to the very low frequency electromagnetic field of a personal computer screen during incubation. Similar effects on pregnant women working in front of cathode ray tubes have never been demonstrated. The paper gives an overview of the epidemiological studies carried out so far to determine the possible noxious effects of electromagnetic fields on public health. In particular, EdF (Electricite de France) has started three different inquiries involving 400000 workmens from electric power industry in order to determine some possible correlation between the exposure to electromagnetic fields and the occurrence of leukemias, brain tumors and melanomas. William Dab, from EdF Medical Studies Service indicates that only a very small relation with the occurrence of brain tumors and acute myeloid leukemias have been shown so far. (J.S.). 4 refs., 2 photos.

  4. Aircraft electromagnetic compatibility

    Science.gov (United States)

    Clarke, Clifton A.; Larsen, William E.

    1987-06-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  5. Electromagnetic induction studies

    Science.gov (United States)

    Hermance, J. F.

    1983-04-01

    Recent developments in electromagnetic induction studies of the lithosphere and the asthenosphere are reviewed. Attention is given to geoelectrical studies of active tectonic areas in terms of the major zones of crustal extension, the basin and range province along western regions of North America, and the Rio Grande rift. Studies have also been performed of tectonic activity around Iceland, the Salton Trough and Cerro Prieto, and the subduction zones of the Cascade Mountains volcanic belt, where magnetotelluric and geomagnetic variation studies have been done. Geomagnetic variations experiments have been reported in the Central Appalachians, and submarine electromagnetic studies along the Juan de Fuca ridge. Controlled source electromagnetic and dc resistivity investigations have been carried out in Nevada, Hawaii, and in the Adirondacks Mountains. Laboratory examinations on the conductivity of representative materials over a broad range of temperature, pressure, and chemistry are described.

  6. Electromagnetic characteristics of carbon nanotube film materials

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2015-08-01

    Full Text Available Carbon nanotube (CNT possesses remarkable electrical conductivity, which shows great potential for the application as electromagnetic shielding material. This paper aims to characterize the electromagnetic parameters of a high CNT loading film by using waveguide method. The effects of layer number of CNT laminate, CNT alignment and resin impregnation on the electromagnetic characteristics were analyzed. It is shown that CNT film exhibits anisotropic electromagnetic characteristic. Pristine CNT film shows higher real part of complex permittivity, conductivity and shielding effectiveness when the polarized direction of incident wave is perpendicular to the winding direction of CNT film. For the CNT film laminates, complex permittivity increases with increasing layer number, and correspondingly, shielding effectiveness decreases. The five-layer CNT film shows extraordinary shielding performance with shielding effectiveness ranging from 67 dB to 78 dB in X-band. Stretching process induces the alignment of CNTs. When aligned direction of CNTs is parallel to the electric field, CNT film shows negative permittivity and higher conductivity. Moreover, resin impregnation into CNT film leads to the decrease of conductivity and shielding effectiveness. This research will contribute to the structural design for the application of CNT film as electromagnetic shielding materials.

  7. Superconducting dipole electromagnet

    Science.gov (United States)

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  8. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  9. Dynamic electromagnetic metamaterials

    Directory of Open Access Journals (Sweden)

    Kebin Fan

    2015-01-01

    Full Text Available Electromagnetic metamaterials are designer materials made from ‘artificial atoms’ which provide unprecedented control over light matter interactions. Metamaterials are fashioned to yield a specific response to the electric and magnetic components of light and have realized a multitude of exotic properties difficult to achieve with natural materials. Having matured over the last decade and a half, researchers now look toward realizing applications of metamaterials. The ability to dynamically control novel responses exhibited by electromagnetic metamaterials would bolster this quest thus ushering in the next revolution in materials.

  10. Essentials of Computational Electromagnetics

    CERN Document Server

    Sheng, Xin-Qing

    2012-01-01

    Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifyin

  11. Lectures on electromagnetism

    CERN Document Server

    Das, Ashok

    2013-01-01

    These lecture notes on electromagnetism have evolved from graduate and undergraduate EM theory courses given by the author at the University of Rochester, with the basics presented with clarity and his characteristic attention to detail. The thirteen chapters cover, in logical sequence, topics ranging from electrostatics, magnetostatics and Maxwell's equations to plasmas and radiation. Boundary value problems are treated extensively, as are wave guides, electromagnetic interactions and fields. This second edition comprises many of the topics expanded with more details on the derivation of vari

  12. The theory of electromagnetism

    CERN Document Server

    Jones, D S

    1964-01-01

    The Theory of the Electomagnetism covers the behavior of electromagnetic fields and those parts of applied mathematics necessary to discover this behavior. This book is composed of 11 chapters that emphasize the Maxwell's equations. The first chapter is concerned with the general properties of solutions of Maxwell's equations in matter, which has certain macroscopic properties. The succeeding chapters consider specific problems in electromagnetism, including the determination of the field produced by a variable charge, first in isolation and then in the surface distributions of an antenna. The

  13. Electromagnetic fields and interactions

    CERN Document Server

    Becker, Richard

    1982-01-01

    For more than a century, ""Becker"" and its forerunner, ""Abraham-Becker,"" have served as the bible of electromagnetic theory for countless students. This definitive translation of the physics classic features both volumes of the original text.Volume I, on electromagnetic theory, includes an introduction to vector and tensor calculus, the electrostatic field, electric current and the field, and the theory of relativity. The second volume comprises a self-contained introduction to quantum theory that covers the classical principles of electron theory and quantum mechanics, problems involving

  14. Electromagnetic induction in Australia

    Science.gov (United States)

    Lilley, F. E. M.

    Electromagnetic induction at the terrestrial surface is a general and ubiquitous process. This note, which covers research on the subject in Australia, reflects the writer's own interest and refers particularly to induction by natural source fields in the period range of 1 minute to 1 day.Such source fields arise external to Earth, in the ionosphere and beyond, in the magnetosphere. The process of electromagnetic induction by these fields involves the flow through Earth of tens of thousands of amperes, over scale lengths of thousands of kilometers.

  15. Electromagnetic clutches and couplings

    CERN Document Server

    Vorob'Yeva, T M; Fry, D W; Higinbotham, W

    2013-01-01

    Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli

  16. Electromagnetic interference: a radiant future!

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Although Electromagnetic Interference and Electromagnetic Compatibility are well established domains, the introduction of new technologies results in new challenges. Changes in both measurement techniques, and technological trends resulting in new types of interference are described. These are the S

  17. Electromagnetic interference: a radiant future!

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Although Electromagnetic Interference and Electromagnetic Compatibility are well established domains, the introduction of new technologies results in new challenges. Changes in both measurement techniques, and technological trends resulting in new types of interference are described. These are the

  18. Electromagnetic fields in stratified media

    CERN Document Server

    Li, Kai

    2009-01-01

    Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.

  19. Application of the Debye formula to the computation of x-ray diffraction patterns of nanostructured diffusion couples

    Science.gov (United States)

    Cheung, Charles; Kelly, Brian; Unruh, Karl; Decamp, Matthew

    Time resolved optical pump/x-ray probe techniques have made it possible to acquire x-ray diffraction patterns corresponding to very early diffusion times in nanostructured diffusion couples. The analysis of these diffraction patterns, however, is complicated by significant line broadening and other finite size effects that appear in samples containing a relatively small number of scatterers. In order to better quantify these issues, x-ray diffraction patterns have been calculated by the direct application of the Debye formula to core/shell and thin film diffusion couples. In particular a series of diffraction patterns have been calculated as a function of the sample size and composition profile determined from the appropriate solutions to Fick's second law. The results of these calculations have been used to guide the interpretation of the measured diffraction patterns of Pt/Ni core/shell nanoparticles and Pt/Ni thin film multilayers. This material is based upon work supported by the National Science Foundation under Grant No. 1410076.

  20. High-Altitude Electromagnetic Pulse (HEMP) Testing

    Science.gov (United States)

    2015-07-09

    Electromagnetic Pulse Horizontal Electromagnetic Pulse Advanced Fast Electromagnetic Pulse Nuclear Weapons Effect Testing and Environments 16. SECURITY...TOP 01-2-620A 9 July 2015 G-1 APPENDIX G. ABBREVIATIONS. AFEMP Advanced Fast Electromagnetic ... Electromagnetic Pulse A burst of electromagnetic radiation from a nuclear explosion or a suddenly fluctuating magnetic field. The resulting electric and

  1. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  2. Statistical electromagnetics: Complex cavities

    NARCIS (Netherlands)

    Naus, H.W.L.

    2008-01-01

    A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased choic

  3. Nanofocusing of electromagnetic radiation

    DEFF Research Database (Denmark)

    Gramotnev, D. K.; Bozhevolnyi, Sergey I.

    2014-01-01

    Nanofocusing of electromagnetic radiation, that is, reducing the cross sections of propagating optical modes far beyond the diffraction limit in dielectric media, can be achieved in tapered metal-dielectric waveguides that support surface plasmon-polariton modes. Although the main principles...

  4. "Hearing" Electromagnetic Waves

    Science.gov (United States)

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  5. "Hearing" Electromagnetic Waves

    Science.gov (United States)

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  6. Equivalence principles and electromagnetism

    Science.gov (United States)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  7. Assessment of the neurotoxic potential of exposure to 50Hz extremely low frequency electromagnetic fields (ELF-EMF) in naïve and chemically stressed PC12 cells.

    Science.gov (United States)

    de Groot, Martje W G D M; Kock, Marjolijn D M; Westerink, Remco H S

    2014-09-01

    Increasing exposure to extremely low frequency electromagnetic fields (ELF-EMF), generated by power lines and electric appliances, raises concern about potential adverse health effects of ELF-EMF. The central nervous system is expected to be particularly vulnerable to ELF-EMF as its function strongly depends on electrical excitability. We therefore investigated effects of acute (30min) and sub-chronic (48h) exposure to 50Hz ELF-EMF on naïve and chemically stressed pheochromocytoma (PC12) cells. The latter have higher levels of iron and/or reactive oxygen species (ROS) and display increased vulnerability to environmental insults. Effects of ELF-EMF on Ca(2+)-homeostasis, ROS production and membrane integrity were assessed using Fura-2 single cell fluorescence microscopy, H2-DCFDA and CFDA assays, respectively. Our data demonstrate that acute exposure of naïve PC12 cells to 50Hz ELF-EMF up to 1000μT fails to affect basal or depolarization-evoked [Ca(2+)]i. Moreover, sub-chronic ELF-EMF exposure up to 1000μT has no consistent effects on Ca(2+)-homeostasis in naïve PC12 cells and does not affect ROS production and membrane integrity. Notably, in chemically stressed PC12 cells both acute and sub-chronic ELF-EMF exposure also failed to exert consistent effects on Ca(2+)-homeostasis, ROS production and membrane integrity. Our combined findings thus indicate that exposure to 50Hz ELF-EMF up to 1000μT, i.e. 10,000 times above background exposure, does not induce neurotoxic effects in vitro, neither in naïve nor in chemically stressed PC12 cells. Though our data require confirmation, e.g. in developing neuronal cells in vitro or (developing) animals, it appears that the neurotoxic risk of ELF-EMF exposure is limited.

  8. CALCULATION OF KAON ELECTROMAGNETIC FORM FACTOR

    Institute of Scientific and Technical Information of China (English)

    WANG ZHI-GANG; WAN SHAO-LONG; WANG KE-LIN

    2001-01-01

    The kaon meson electromagnetic form factor is calculated in the framework of coupled Schwinger-Dyson and Bethe-Salpeter formulation in simplified impulse approximation (dressed vertex) with modified fiat-bottom potential,which is a combination of the flat-bottom potential taking into consideration the infrared and ultraviolet asymptotic behaviours of the effective quark-gluon coupling. All the numerical results give a good fit to experimental values.

  9. Computational Electronics and Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    DeFord, J.F.

    1993-03-01

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  10. Electromagnetic Scattering at the Waveguide Step between Equilateral Triangular Waveguides

    Directory of Open Access Journals (Sweden)

    Ana Morán-López

    2016-01-01

    Full Text Available The analysis of the electromagnetic scattering at discontinuities between equilateral triangular waveguides is studied. The complete electromagnetic solution is derived using analytical closed form expressions for the mode spectrum of the equilateral waveguide. The mathematical formulation of the electromagnetic scattering problem is based on the quasi-analytical Mode-Matching method. This method benefits from the electromagnetic field division into symmetries as well as from the plane wave formulation presented for the expressions involved. The unification of the surface integrals used in the method thanks to the plane wave formulation is revealed, leading to expressions that are very well suited for its implementation in an electromagnetic analysis and design code. The obtained results for some cases of interest (building blocks for microwave components for communication systems are verified using other numerical methods included in a commercial software package, showing the potential of the presented approach based on quasi-analytic expressions.

  11. Elastic constants and Debye temperature of wz-AlN and wz-GaN semiconductors under high pressure from first-principles

    Indian Academy of Sciences (India)

    B P Pandey; V Kumar; Eduardo Menendez Proupin

    2014-09-01

    First-principles calculations were performed to study the elastic stiffness constants ($C_{ij}$) and Debye temperature ($_D$) of wurzite (wz) AlN and GaN binary semiconductors at high pressure. The lattice constants were calculated from the optimized structure of these materials. The band gaps were calculated at point using local density approximation (LDA) approach. The unit cell volume, lattice parameters, /, internal parameter (), elastic constant ($C_{ij}$), Debye temperature ($_D$), Hubbard parameter () and band gap ($E_g$) were studied under different pressures. The bulk modulus ($B_0$), reduced bulk modulus ($B'_0$) and Poisson ratio ($\\vee$) were also calculated. The calculated values of these parameters are in fair agreement with the available experimental and reported values.

  12. Off-planar geometry and structural instability of EDO-TTF explained by using the extended debye polarizability model for bond angles.

    Science.gov (United States)

    Linker, Gerrit-Jan; van Duijnen, Piet Th; van Loosdrecht, Paul H M; Broer, Ria

    2012-07-05

    The geometry of ethylenedioxy-tetrathiafulvalene, EDO-TTF, plays an important role in the metal-insulator transition in the charge transfer salt (EDO-TTF)(2)PF(6). The planar and off-planar geometrical conformations of the EDO-TTF molecules are explained using an extended Debye polarizability model for the bond angle. The geometrical structure of EDO-TTF is dictated by its four sulfur bond angles and these are, in turn, determined by the polarizability of the sulfur atoms. With Hartree-Fock and second-order Møller-Plesset perturbation theory calculations on EDO-TTF, TTF, H(2)S, and their oxygen and selenium substituted counterparts we confirm this hypothesis. The Debye polarizability model for bond angles relates directly the optimum bond angle with the polarizability of the center atom. Considering the (EDO-TTF)(2)PF(6) material in this light proves to be very fruitful.

  13. Thermal expansion, heat capacity and Grüneisen parameter of iridium phosphide Ir2P from quasi-harmonic Debye model

    Science.gov (United States)

    Liu, Z. J.; Song, T.; Sun, X. W.; Ma, Q.; Wang, T.; Guo, Y.

    2017-03-01

    Thermal expansion coefficient, heat capacity, and Grüneisen parameter of iridium phosphide Ir2P are reported by means of quasi-harmonic Debye model for the first time in the current study. This model combines with first-principles calculations within generalized gradient approximation using pseudopotentials and a plane-wave basis in the framework of density functional theory, and it takes into account the phononic effects within the quasi-harmonic approximation. The Debye temperature as a function of volume, the Grüneisen parameter, thermal expansion coefficient, constant-volume and constant-pressure heat capacities, and entropy on the temperature T are also successfully obtained. All the thermodynamic properties of Ir2P in the whole pressure range from 0 to 100 GPa and temperature range from 0 to 3000 K are summarized and discussed in detail.

  14. X-ray diffraction measurements of the c-axis Debye-Waller factors of YBa2Cu3O7 and HgBa2CaCu2O6

    OpenAIRE

    2003-01-01

    We report the first application of x-rays to the measurement of the temperature dependent Bragg peak intensities to obtain Debye-Waller factors on high-temperature superconductors. Intensities of (0,0,l) peaks of YBa2Cu3O7 and HgBa2CaCu2O6 thin films are measured to obtain the c-axis Debye-Waller factors. While lattice constant and some Debye-Waller factor measurements on high Tc superconductors show anomalies at the transition temperature, our measurements by x-ray diffraction show a smooth ...

  15. 电磁辐射致脑损伤与防护若干问题的思考%Potential solutions to brain injury induced by electromagnetic radiation and its protection

    Institute of Scientific and Technical Information of China (English)

    彭瑞云

    2011-01-01

    随着电磁波在通讯、医疗、工业、军事和家庭等各个领域的应用,电磁辐射已广泛存在于人们的日常生活和工作环境之中,其对健康造成的危害越来越引起人们的高度重视.研究发现,一定强度的电磁辐射可引起脑、生殖、心血管、免疫和眼等的损伤,其中对脑的危害备受关注.本文就电磁辐射致脑损伤效应、机制和防护研究现状进行综述,在此基础上,提出电磁辐射生物效应和防护研究的意见和建议.%Electromagnetic radiation has come to be widespread in daily lives and work environment following the wide use of electromagnetic wave in telecommunications, medicine , industry, the military and households. The harm of electromagnetic radiation to health has become a concern. It was found that elec:tromagnetic radiation of a particular magnitude may cause damage to such organs as the testicles, heart, spleen, and eyes, especially to the brain. The present review summarizes the effects, and mechanisms of and protection against the injury to the brain induced by electromagnetic radiation. Furthermore, the author advises on the bio-effect of and protection against electromagnetic radiation.

  16. The role of physiological elements in future therapies of rheumatoid arthritis. III. The role of the electromagnetic field in regulation of redox potential and life cycle of inflammatory cells.

    Science.gov (United States)

    Gajewski, Michał; Rzodkiewicz, Przemysław; Maśliński, Sławomir; Wojtecka-Łukasik, Elżbieta

    2015-01-01

    Each material consisting of charged particles can be influenced by a magnetic field. Polarized particles play an essential role in almost all physiological processes. Locally generated electromagnetic fields several physiological processes within the human body, for example: stimulation of nerves, muscles, and cardiac electrical activity. This phenomenon is used today in many medical applications. In this article, we discuss ways in which electromagnetic field affects the physiological and pathological processes in cells and tissues. This knowledge will help to better understand the electrophysiological phenomenon in connective tissue diseases and can bring new therapeutic strategies (in the form of "invisible drugs") for the treatment of rheumatic diseases?

  17. Dynamic Multiscale Quantum Mechanics/Electromagnetics Simulation Method.

    Science.gov (United States)

    Meng, Lingyi; Yam, ChiYung; Koo, SiuKong; Chen, Quan; Wong, Ngai; Chen, GuanHua

    2012-04-10

    A newly developed hybrid quantum mechanics and electromagnetics (QM/EM) method [Yam et al. Phys. Chem. Chem. Phys.2011, 13, 14365] is generalized to simulate the real time dynamics. Instead of the electric and magnetic fields, the scalar and vector potentials are used to integrate Maxwell's equations in the time domain. The TDDFT-NEGF-EOM method [Zheng et al. Phys. Rev. B2007, 75, 195127] is employed to simulate the electronic dynamics in the quantum mechanical region. By allowing the penetration of a classical electromagnetic wave into the quantum mechanical region, the electromagnetic wave for the entire simulating region can be determined consistently by solving Maxwell's equations. The transient potential distributions and current density at the interface between quantum mechanical and classical regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. Charge distribution, current density, and potentials at different temporal steps and spatial scales are integrated seamlessly within a unified computational framework.

  18. Debye series analysis of internal and near-surface fields for a homogeneous sphere illuminated by an axicon-generated vector Bessel beam

    Science.gov (United States)

    Qin, Shitong; Li, Renxian; Yang, Ruiping; Ding, Chunying

    2017-07-01

    The interaction of an axicon-generated vector Bessel beam (AGVBB) with a homogeneous sphere is investigated in the framework of generalized Lorenz-Mie theory (GLMT). An analytical expression of beam shape coefficients (BSCs) is derived using angular spectrum decomposition method (ASDM), and the scattering coefficients are expanded using Debye series (DSE) in order to isolate the contribution of single scattering process. The internal and near-surface electric fields are numerically analyzed, and the effect of beam location, polarization, order of beam, half-cone angle, and scattering process (namely Debye mode p) are mainly discussed. Numerical results show that a curve formed by extreme peaks can be observed, and the electric fields can be locally enhanced after the interaction of AGVBBs with the particle. Internal and near-surface fields, especially its local enhancement, are very sensitive to the beam parameters, including polarization, order, half-cone angle, etc. The internal fields can also be enhanced by various scattering process (or Debye mode p). Such results have important applications in various fields, including particle sizing, optical tweezers, etc.

  19. Childhood Leukemia and Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Alpaslan Türkkan

    2009-12-01

    Full Text Available In this review, the relationship between very low frequency electromagnetic fields, originating from high voltage powerlines, and childhood leukemia was evaluated. Electromagnetic fields have biological effects. Whole populations are effected by different levels of electromagnetic fields but children are more sensible. In urban areas high voltage powerlines are the main sources of electromagnetic fields. The relation of electromagnetic fields due to high voltage powerlines and leukemia with consideration of dose-response and distance is investigated in several studies. There are different opinions on the effects of electromagnetic fields on general health. The relation between electromagnetic fields and childhood leukemia must be considered separately. Although there is no limit value, it is generally accepted that exposure to 0.4 µT and over doubles the risk of leukemia in children 15 years and younger. (Journal of Current Pediatrics 2009; 7: 137-41

  20. Complex Relativity: Gravity and Electromagnetic Fields

    CERN Document Server

    Teisseyre, R; Teisseyre, Roman; Bialecki, Mariusz

    2005-01-01

    We present new aspects of the electromagnetic field by introducting the natural potentials. These natural potentials are suitable for constructing the first order distortions of the metric tensor of Complex Relativity - the theory combining the General Relativity with the electromagnetic equations. A transition from antisymmetric tensors to the symmetric ones helps to define the natural potentials; their form fits a system of the Dirac matrices and this representation leads to distortion of the metric tensor. Our considerations have originated from the recent progresses in the asymmetric continuum theories. One version of such theories assumes an existence of the antisymmetric strain and stress fields; these fields originate due to some kind of internal friction in a continuum medium which have elastic bonds related to rotations of the particles.

  1. pKa predictions with a coupled finite difference Poisson-Boltzmann and Debye-Hückel method.

    Science.gov (United States)

    Warwicker, Jim

    2011-12-01

    Modeling charge interactions is important for understanding many aspects of biological structure and function, and continuum methods such as Finite Difference Poisson-Boltzmann (FDPB) are commonly employed. Calculations of pH-dependence have identified separate populations; surface groups that can be modeled with a simple Debye-Hückel (DH) model, and buried groups, with stronger resultant interactions that are dependent on detailed conformation. This observation led to the development of a combined FDPB and DH method for pK(a) prediction (termed FD/DH). This study reports application of this method to ionizable groups, including engineered buried charges, in staphylococcal nuclease. The data had been made available to interested research groups before publication of mutant structures and/or pK(a) values. Overall, FD/DH calculations perform as intended with low ΔpK(a) values for surface groups (RMSD between predicted and experimental pK(a) values of 0.74), and much larger ΔpK(a) values for the engineered internal groups, with RMSD = 1.64, where mutant structures were known and RMSD = 1.80, where they were modeled. The weaker resultant interactions of the surface groups are determined mostly by charge-charge interactions. For the buried groups, R(2) for correlation between predicted and measured ΔpK(a) values is 0.74, despite the high RMSDs. Charge-charge interactions are much less important, with the R(2) value for buried group ΔpK(a) values increasing to 0.80 when the term describing charge desolvation alone is used. Engineered charge burial delivers a relatively uniform, nonspecific effect, in terms of pK(a) . How the protein environment adapts in atomic detail to deliver this resultant effect is still an open question.

  2. Dynamics of methanol in ionic liquids: validity of the Stokes-Einstein and Stokes-Einstein-Debye relations.

    Science.gov (United States)

    Herold, Elisabeth; Strauch, Matthias; Michalik, Dirk; Appelhagen, Andreas; Ludwig, Ralf

    2014-10-06

    The validity of Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations for methanol in the physical environment of the ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is studied by means of nuclear magnetic resonance (NMR) relaxation time experiments, viscosity measurements and molecular dynamics (MD) simulations. The reorientational correlation times of the hydroxyl groups of pure methanol and of methanol in the IL/methanol mixtures were determined. For that purpose an approach for estimating NMR deuteron quadrupole coupling constants, presented by Wendt and Farrar (Mol. Phys. 1998, 95, 1077-1081), was confirmed. The self-diffusion coefficients of methanol were taken from the MD simulations. The viscosities of all systems were then measured and the SE and SED relations validated. For pure methanol both relations are valid, whereas they become increasingly invalid with increasing IL concentration, as indicated by effective volumes and radii that are too low. The deviation from the SE and SED relations could be related to dynamical heterogeneities described by the non-Gaussian parameter α(t) obtained from MD simulations. For pure methanol, α(t) is close to zero in accord with the validity of both relations. With increasing IL concentration the dynamical heterogeneities of methanol increase strongly. The times t* at the maximum of α(t) increase linearly with the relative number of methanol monomers in the mixtures. Thus, the dynamical heterogeneities are largest for single methanol molecules fully embedded in the IL environment. In their own environment methanol molecules are highly mobile, whereas in the IL-rich region the mobility is strongly reduced leading to the non-validity of SE and SED relations.

  3. The primary extinction and static Debye-Waller factor in the characterization of textured nickel by X-ray diffraction; La extincion primaria y el factor estatico de Debye-Waller en la caracterizacion de niquel con textura mediante difraccion de rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Kryshtab, T.; Palacios G, J. [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, 07738 Mexico D. F. (Mexico); Cadena A, A. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Av. IPN s/n, 07738 Mexico D. F. (Mexico); Kryvko, A., E-mail: kryshtab@gmail.com [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Mecanica y Electrica, Unidad Zacatenco, 07360 Mexico D. F. (Mexico)

    2015-07-01

    The texture analysis using X-ray diffraction (XRD) implies measurement of pole figures (Pf) from the diffracted intensities considering the model of kinematical dispersion. The extinction phenomenon results in a decrease of diffracted intensity and that in turn in a decrease of pole densities (Pds). The phenomenon appears in the kinematical theory of XRD as the primary extinction and the secondary extinction to characterize the loss of intensity of kinematical dispersion. In turn, the static Debye-Waller factor is an integral characteristic of defects in crystals that is introduced in the kinematical theory of XRD and also is used in dynamical theory of XRD. In this work the correlation between the primary extinction coefficient and the static Debye-Waller factor in the case of textured nickel was determined. The value of static Debye-Waller factor was determined from the value of the calculated primary extinction coefficient. For the evaluation there were used Pds in the maxima of Pf obtained for 111 and 200 reflections with Mo Kα radiation, and the Pds in the maxima of Pf obtained for the first and second orders of these reflections with Cu Kα and Co Kα radiations. There were calculated the dislocation densities in grains using values of static Debye-Waller factor and the extinction coefficients. The dislocation densities calculated from these two characteristics are practically equal. (Author)

  4. ELECTROMAGNETIC RELEASE MECHANISM

    Science.gov (United States)

    Michelson, C.

    1960-09-13

    An electromagnetic release mechanism is offered that may be used, for example, for supporting a safety rod for a nuclear reactor. The release mechanism is designed to have a large excess holding force and a rapid, uniform, and dependable release. The fast release is accomplished by providing the electromagnet with slotttd polts separated by an insulating potting resin, and by constructing the poles with a ferro-nickel alloy. The combination of these two features materially reduces the eddy current power density whenever the magnetic field changes during a release operation. In addition to these features, the design of the armature is such as to provide ready entrance of fluid into any void that might tend to form during release of the armature. This also improves the release time for the mechanism. The large holding force for the mechanism is accomplished by providing a small, selected, uniform air gap between the inner pole piece and the armature.

  5. Classical Electromagnetic Theory

    CERN Document Server

    VanderLinde, Jack

    2004-01-01

    This book is a self contained course in electromagnetic theory suitable for senior physics and electrical engineering students as well as graduate students whose past has not prepared them well for books such as Jackson or Landau and Lifschitz. The text is liberally sprinkled with worked examples illustrating the application of the theory to various physical problems. In this new edition I have endeavored to improve the accuracy and readability, added and further clarified examples, added sections on Schwarz-Christoffel mappings, and to make the book more self sufficient added an appendix on orthogonal function expansions and added the derivation of Bessel functions and Legendre polynomials as well as derivation of their generating functions. The number of student exercises has been increased by 45 over the previous edition. This book stresses the unity of electromagnetic theory with electric and magnetic fields developed in parallel. SI units are used throughout and considerable use is made of tensor notatio...

  6. Electromagnetic fields and waves

    CERN Document Server

    Iskander, Magdy F

    2013-01-01

    The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...

  7. The KLOE electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M.; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Anulli, F.; Barbiellini, G.; Bencivenni, G.; Bertolucci, S.; Bini, C. E-mail: cesare.bini@roma1.infn.it; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Cabibbo, G.; Caloi, R.; Campana, P.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Ciambrone, P.; De Lucia, E.; De Simone, P.; De Zorzi, G.; Dell' Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Doria, A.; Erriquez, O.; Farilla, A.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giannasi, A.; Giovannella, S.; Graziani, E.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Keeble, L.; Kim, W.; Kuo, C.; Lanfranchi, G.; Lee-Franzini, J.; Lomtadze, T.; Mao, C.S.; Martemianov, M.; Mei, W.; Messi, R.; Miscetti, S.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Pacciani, L.; Palomba, M.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Picca, D.; Pirozzi, G.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Sciascia, B.; Scuri, F.; Sfiligoi, I.; Silano, P.; Spadaro, T.; Spiriti, E.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Ventura, A.; Woelfle, S.; Wu, Y.; Xie, Y.G.; Zema, P.F.; Zhang, C.D.; Zhang, J.Q.; Zhao, P.P

    2002-04-11

    The KLOE detector was designed primarily for the study of CP violation in neutral kaon decays at DAPHINE, the Frascati phi-factory. The detector consists of a tracker and an electromagnetic calorimeter. A lead-scintillating-fiber sampling calorimeter satisfies best the requirements of the experiment, providing adequate energy resolution and superior timing accuracy. We describe in the following the construction of the calorimeter, its calibration and how the calorimeter information is used to obtain energy, point of entry and time of the arrival of photons, electrons and charged particles. With e{sup +}e{sup -} collision data at DAPHINE for an integrated luminosity of some 2 pb{sup -1} we find for electromagnetic showers, an energy resolution of 5.7%/{radical}E(GeV) and a time resolution of 54/{radical}E(GeV) ps. We also present a measurement of efficiency for low energy photons.

  8. Electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  9. The KLOE electromagnetic calorimeter

    CERN Document Server

    Adinolfi, M; Antonelli, A; Antonelli, M; Anulli, F; Barbiellini, G; Bencivenni, G; Bertolucci, Sergio; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Cabibbo, G; Caloi, R; Campana, P; Casarsa, M; Cataldi, G; Ceradini, F; Cervelli, F; Ciambrone, P; De Lucia, E; De Simone, P; De Zorzi, G; Dell'Agnello, S; Denig, A; Di Domenico, A; Di Donato, C; Di Falco, S; Doria, A; Erriquez, O; Farilla, A; Ferrari, A; Ferrer, M L; Finocchiaro, G; Forti, C; Franceschi, A; Franzini, P; Gao, M L; Gatti, C; Gauzzi, P; Giannasi, A; Giovannella, S; Graziani, E; Han, H G; Han, S W; Huang, X; Incagli, M; Ingrosso, L; Keeble, L; Kim, W; Kuo, C; Lanfranchi, G; Lee-Franzini, J; Lomtadze, T A; Mao Chen Sheng; Martemyanov, M; Mei, W; Messi, R; Miscetti, S; Moccia, S; Moulson, M; Murtas, F; Müller, S; Pacciani, L; Palomba, M; Palutan, M; Pasqualucci, E; Passalacqua, L; Passeri, A; Picca, D; Pirozzi, G; Pontecorvo, L; Primavera, M; Santangelo, P; Santovetti, E; Saracino, G; Schamberger, R D; Sciascia, B; Scuri, F; Sfiligoi, I; Silano, P; Spadaro, T; Spiriti, E; Tortora, L; Valente, P; Valeriani, B; Venanzoni, G; Ventura, A; Wu, Y; Wölfle, S; Xie, Y G; Zema, P F; Zhang, C D; Zhang, J Q; Zhao, P P

    2002-01-01

    The KLOE detector was designed primarily for the study of CP violation in neutral kaon decays at DAPHINE, the Frascati phi-factory. The detector consists of a tracker and an electromagnetic calorimeter. A lead-scintillating-fiber sampling calorimeter satisfies best the requirements of the experiment, providing adequate energy resolution and superior timing accuracy. We describe in the following the construction of the calorimeter, its calibration and how the calorimeter information is used to obtain energy, point of entry and time of the arrival of photons, electrons and charged particles. With e sup + e sup - collision data at DAPHINE for an integrated luminosity of some 2 pb sup - sup 1 we find for electromagnetic showers, an energy resolution of 5.7%/sq root E(GeV) and a time resolution of 54/sq root E(GeV) ps. We also present a measurement of efficiency for low energy photons.

  10. Spatially dependent electromagnetically induced transparency

    CERN Document Server

    Radwell, Neal; Piccirillo, Bruno; Barnett, Stephen M; Franke-Arnold, Sonja

    2014-01-01

    Recent years have seen vast progress in the generation and detection of structured light, with potential applications in high capacity optical data storage and continuous variable quantum technologies. Here we measure the transmission of structured light through cold rubidium atoms and observe regions of electromagnetically induced transparency (EIT). We use q-plates to generate a probe beam with azimuthally varying phase and polarisation structure, and its right and left circular polarisation components provide the probe and control of an EIT transition. We observe an azimuthal modulation of the absorption profile that is dictated by the phase and polarisation structure of the probe laser. Conventional EIT systems do not exhibit phase sensitivity. We show, however, that a weak transverse magnetic field closes the EIT transitions, thereby generating phase dependent dark states which in turn lead to phase dependent transparency, in agreement with our measurements.

  11. Electromagnetic field and brain development.

    Science.gov (United States)

    Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra

    2016-09-01

    Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system.

  12. Gravitation and electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Sidharth, B.G. [Birla Science Centre, Adarsh Nagar, Hyderabad (India)

    2001-06-01

    The realms of gravitation, belonging to classical physics, and of electromagnetism, belonging to the theory of the electron and quantum mechanics have remained apart as two separate pillars, in spite of a century of effort by physicists to reconcile them. In this paper it is argued that if ideas of classical spacetime have been extended to include in addition to non-integrability non-commutavity also, then such a reconciliation is possible.

  13. Fractional Electromagnetic Waves

    CERN Document Server

    Gómez, J F; Bernal, J J; Tkach, V I; Guía, M

    2011-01-01

    In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.

  14. The KLOE electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adinolfi, M.; Ambrosino, F.; Antonelli, A.; Antonelli, M.; Anulli, F.; Barbiellini, G.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocci, V.; Bossi, F.; Branchini, P.; Cabibbo, G.; Caloi, R.; Campana, P.; Casarsa, M.; Cataldi, G.; Ceradini, F.; Cervelli, F.; Ciambrone, P.; De Lucia, E.; De Simone, P.; De Zorzi, G.; Dell' Agnello, S.; Denig, A.; Di Domenico, A.; Di Donato, C.; Di Falco, S.; Doria, A.; Erriquez, O.; Farilla, A.; Ferrari, A.; Ferrer, M.L.; Finocchiaro, G.; Forti, C.; Franceschi, A.; Franzini, P.; Gao, M.L.; Gatti, C.; Gauzzi, P.; Giannasi, A.; Giovannella, S.; Graziani, E.; Han, H.G.; Han, S.W.; Huang, X.; Incagli, M.; Ingrosso, L.; Keeble, L.; Kim, W.; Kuo, C.; Lanfranchi, G. E-mail: gaia.lanfranchi@lnf.infn.it; Lee-Franzini, J.; Lomtadze, T.; Mao, C.S.; Martemianov, M.; Mei, W.; Messi, R.; Miscetti, S.; Moccia, S.; Moulson, M.; Mueller, S.; Murtas, F.; Pacciani, L.; Palomba, M.; Palutan, M.; Pasqualucci, E.; Passalacqua, L.; Passeri, A.; Picca, D.; Pirozzi, G.; Pontecorvo, L.; Primavera, M.; Santangelo, P.; Santovetti, E.; Saracino, G.; Schamberger, R.D.; Sciascia, B.; Scuri, F.; Sfiligoi, I.; Silano, P.; Spadaro, T.; Spiriti, E.; Tortora, L.; Valente, P.; Valeriani, B.; Venanzoni, G.; Ventura, A.; Woelfle, S.; Wu, Y.; Xie, Y.G.; Zema, P.F.; Zhang, C.D.; Zhang, J.Q.; Zhao, P.P

    2002-11-21

    The KLOE calorimeter is a fine lead-scintillating fiber sampling calorimeter. We describe in the following the calibration procedures and the calorimeter performances obtained after 3 years of data taking. We get an energy resolution for electromagnetic showers of 5.4%/{radical}E(GeV) and a time resolution of 56 ps/{radical}E(GeV). We also present a measurement of efficiency for low-energy photons.

  15. Dynamic electromagnetic metamaterials

    OpenAIRE

    Fan, Kebin; Padilla, Willie J.

    2015-01-01

    Electromagnetic metamaterials are designer materials made from ‘artificial atoms’ which provide unprecedented control over light matter interactions. Metamaterials are fashioned to yield a specific response to the electric and magnetic components of light and have realized a multitude of exotic properties difficult to achieve with natural materials. Having matured over the last decade and a half, researchers now look toward realizing applications of metamaterials. The ability to dynamically c...

  16. Electromagnetism and interconnections

    CERN Document Server

    Charruau, S

    2009-01-01

    This book covers the theoretical problems of modeling electrical behavior of the interconnections encountered in everyday electronic products. The coverage shows the theoretical tools of waveform prediction at work in the design of a complex and high-speed digital electronic system. Scientists, research engineers, and postgraduate students interested in electromagnetism, microwave theory, electrical engineering, or the development of simulation tools software for high speed electronic system design automation will find this book an illuminating resource.

  17. Introduction to electromagnetic theory

    CERN Document Server

    Owen, George E

    2003-01-01

    A direct, stimulating approach to electromagnetic theory, this text employs matrices and matrix methods for the simple development of broad theorems. The author uses vector representation throughout the book, with numerous applications of Poisson's equation and the Laplace equation (the latter occurring in both electronics and magnetic media). Contents include the electrostatics of point charges, distributions of charge, conductors and dielectrics, currents and circuits, and the Lorentz force and the magnetic field. Additional topics comprise the magnetic field of steady currents, induced ele

  18. Belle electromagnetic calorimeter

    CERN Document Server

    Miyabayashi, K

    2002-01-01

    We report the performance of the Belle electromagnetic calorimeter for the first three years operation. Good mass resolutions for pi sup 0 and eta are obtained to be 4.8 and 12.1 MeV/c sup 2 , respectively. The degradation of light output due to the radiation damage is small, about 3% for the radiation dose of 40 rad. These performances promise further study of B physics with neutral particle reconstruction.

  19. Making electromagnetic wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Gerald [Center for Signals and Waves, 3803 Tonkawa Trail no. 2, Austin, TX 78756-3915 (United States)

    2004-06-04

    Electromagnetic wavelets are constructed using scalar wavelets as superpotentials, together with an appropriate polarization. It is shown that oblate spheroidal antennas, which are ideal for their production and reception, can be made by deforming and merging two branch cuts. This determines a unique field on the interior of the spheroid which gives the boundary conditions for the surface charge-current density necessary to radiate the wavelets. These sources are computed, including the impulse response of the antenna.

  20. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  1. The continuing challenge of electromagnetic launch

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, M.; Cnare, E.C.; Duggin, B.W.; Kaye, R.J.; Marder, B.M.; Shokair, I.R.

    1993-07-01

    Interest in launching payloads through the atmosphere to ever higher velocity is robust. For hundreds of years, guns and rockets have been improved for this purpose until they are now considered to be near to their performance limits. While the potential of electromagnetic technology to increase launch velocity has been known since late in the nineteenth century, it was not until about 1980 that a sustained and large-scale effort was started to exploit it. Electromagnetic launcher technology is restricted here to mean only that technology which establishes both a current density, J, and a magnetic field, B, within a part of the launch package, called the armature, so that J {times} B integrated over the volume of the armature is the launching force. Research and development activity was triggered by the discovery that high velocity can be produced with a simple railgun which uses an arc for its armature. This so called ``plasma-armature railgun`` has been the launcher technology upon which nearly all of the work has focused. Still, a relatively small parallel effort has also been made to explore the potential of electromagnetic launchers which do not use sliding contacts on stationary rails to establish current in the armature. One electromagnetic launcher of this type is called an induction coilgun because armature current is established by electromagnetic induction. In this paper, we first establish terminology which we will use not only to specify requirements for successful endoatmospheric launch but also to compare different launcher types. Then, we summarize the statuses of the railgun and induction coilgun technologies and discuss the issues which must be resolved before either of these launchers can offer substantial advantage for endoatomospheric launch.

  2. Sedenion unified theory of gravi-electromagnetism

    Science.gov (United States)

    Chanyal, B. C.

    2014-11-01

    In this paper, we represent 16-component sedenions, the generalization of octonions, which is noncommutative space-time algebra. The sedenions is neither a composition algebra nor a division algebra because it has zero divisors. Here we have formulated the sedenionic unified potential equations, unified fields equations and unified current equations of dyons and gravito-dyons. We have developed the sedenionic unified theory of dyons and gravito-dyons in terms of two eight-potentials leading to the structural symmetry between generalized electromagnetic fields of dyons and generalized gravito-Heavisidian fields of gravito-dyons. Thus we have obtained the sedenionic form of generalized Dirac-Maxwell's equations, unified work-energy theorem (Poynting theorem), generalized unified gravi-electromagnetic force and other quantum equations of dyons and gravito-dyons in simple, compact and consistent way incorporating the non-associativity and non-commutativity of sedenion variables.

  3. Anisotropic Harmonic Oscillator in a Static Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    LIN Qiong-Gui

    2002-01-01

    A nonrelativistic charged particle moving in an anisotropic harmonic oscillator potential plus a homogeneousstatic electromagnetic field is studied. Several configurations of the electromagnetic field are considered. The Schrodingerequation is solved analytically in most of the cases. The energy levels and wave functions are obtained explicitly. Insome of the cases, the ground state obtained is not a minimum wave packet, though it is of the Gaussian type. Coherentand squeezed states and their time evolution axe discussed in detail.

  4. The electromagnetic spectrum: current and future applications in oncology.

    Science.gov (United States)

    Allison, Ron R

    2013-05-01

    The electromagnetic spectrum is composed of waves of various energies that interact with matter. When focused upon and directed at tumors, these energy sources can be employed as a means of lesion ablation. While the use of x-rays is widely known in this regard, a growing body of evidence shows that other members of this family can also achieve oncologic success. This article will review therapeutic application of the electromagnetic spectrum in current interventions and potential future applications.

  5. Cellular Effects of Electromagnetic Radiation.

    Science.gov (United States)

    2014-09-26

    8217-- - - .- . - .- ’*-_- - 7 - r - .STUDIES OF EXPOSURE TO AMPLITUDE-MODULATED FIELDS The electromagnetic fields to which naval personnel are exposed tend to...radiation) ,.- Biological effects of electromagnetic fields , 20. ABSTRACT (Contimee an revers side II neceesmv aiId identify by Wek numbe") , .P-Giant...cells of characean algae were examined for electrophysiological sequelae to acute electromagnetic field irradiation at 10 mW/cm Carrier frequencies

  6. Electromagnetic field and cosmic censorship

    CERN Document Server

    Düztaş, Koray

    2013-01-01

    We construct a gedanken experiment in which an extremal Kerr black hole interacts with a test electromagnetic field. Using Teukolsky's solutions for electromagnetic perturbations in Kerr spacetime, and the conservation laws imposed by the energy momentum tensor of the electromagnetic field and the Killing vectors of the spacetime, we prove that this interaction cannot convert the black hole into a naked singularity, thus cosmic censorship conjecture is not violated in this case.

  7. Analytical Study of Electromagnetic Wave in Superlattice

    Institute of Scientific and Technical Information of China (English)

    LINChang; ZHANGXiu-Lian

    2004-01-01

    The theoretical description of soliton solutions and exact analytical solutions in the sine-Gordon equation is extended to superlattice physics. A family of interesting exact solutions and a new exact analytical solution have been obtained for the electromagnetic wave propagating through a superlattice. In more general cases, the vector potential along the propagating direction obeys the sine-Gordon equation. Some mathematical results of theoretical investigation are given for different cases in supedattices.

  8. Analytical Study of Electromagnetic Wave in Superlattice

    Institute of Scientific and Technical Information of China (English)

    LIN Chang; ZHANG Xiu-Lian

    2004-01-01

    The theoretical description of soliton solutions and exact analytical solutions in the sine-Gordon equation is extended to superlattice physics. A family of interesting exact solutions and a new exact analytical solution have been obtained for the electromagnetic wave propagating through a superlattice. In more general cases, the vector potential along the propagating direction obeys the sine-Gordon equation. Some mathematical results of theoretical investigation are given for different cases in superlattices.

  9. Charged Scalars in Transient Stellar Electromagnetic Fields

    Institute of Scientific and Technical Information of China (English)

    Marina-Aura Dariescu; Ciprian Dariescu; Ovidiu Buhucianu

    2011-01-01

    We consider a non-rotating strongly magnetized object, whose magnetic induction isof the form Bx = Bo{t)sin kz. In the electromagnetic field generated by only one component of the four-vector potential, we solve the Klein-Gordon equation and discuss the sudden growth of the scalar wave functions for wavenumbers inside computable ranges. In the case of unexcited transversal kinetic degrees, we write down the recurrent differential system for the amplitude functions and compute the respective conserved currents.

  10. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  11. Battlefield Electromagnetic Environments Office (BEEO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Battlefield Electromagnetic Environments Office (BEEO) develops, maintains, and operates the Army Materiel Command (AMC) databases for spectrum management, per...

  12. Method of moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2007-01-01

    Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t

  13. Electromagnetic waves in stratified media

    CERN Document Server

    Wait, James R; Fock, V A; Wait, J R

    2013-01-01

    International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne

  14. Noise induced calcium oscillations in a cell exposed to electromagnetic fields.

    Science.gov (United States)

    Zhang, Yuhong; Zhao, Yongli; Chen, Yafei; Yuan, Changqing; Zhan, Yong

    2015-01-01

    The effects of noise on the calcium oscillations in a cell exposed to electromagnetic fields are described by a dynamic model. Noise is a very important factor to be considered in the dynamic research on the calcium oscillations in a cell exposed to electromagnetic fields. Some meaningful results have been obtained here based on the discussion. The results show that the pattern of intracellular calcium oscillations exposure to electromagnetic fields can be influenced by noise. Furthermore, the intracellular calcium oscillations exposure to electromagnetic fields can also be induced by noise. And the work has also studied the relationships between the voltage sensitive calcium channel's open probability and electromagnetic field. The result can provide new insights into constructive roles and potential applications of selecting appropriate electromagnetic field frequency during the research of biological effect of electromagnetic field.

  15. Preparation of the ATLAS experiment in the LHC proton collider, performances of the electromagnetic calorimeter and its potentialities for the top quark; Preparation de l'experience ATLAS aupres du futur grand collisionneur de protons LHC: performances du calorimetre electromagnetique et potentiels pour la physique du quark top

    Energy Technology Data Exchange (ETDEWEB)

    Hubaut, F

    2007-03-15

    ATLAS is the biggest and the more complex detector ever built, it will operate on the LHC and is the outcome of a huge international collaboration of 2000 physicists. This document reviews the theoretical and experimental achievements of one of them, his collaboration spread over 7 years and has followed 2 axis. First, the design, construction and test of the electromagnetic calorimeter of ATLAS and secondly, the development of analysis strategies in the physics of the top quark. The expected important production of top quarks in LHC will allow an accurate measurement of the properties of this particle and in the same way will provide new testing areas for the standard model. The top quark, being extremely massive, might play a significant role in the mechanism of electro-weak symmetry breaking. This document is organized into 5 chapters: 1) ATLAS detector, performance and progress, 2) the optimization of the energy measurement with the electromagnetic calorimeter, 3) the performance of the electromagnetic calorimeter, 4) the physics of the top quark, and 5) the potentialities of ATLAS in the top quark sector. This document presented before an academic board will allow its author to manage research works and particularly to tutor thesis students. (A.C.)

  16. Electromagnetic waves and photons

    CERN Document Server

    Hofmann, Ralf

    2015-01-01

    We explore how the thermal ground states of two mixing and pure SU(2) Yang-Mills theories, SU(2)$_{\\tiny\\mbox{CMB}}$ of scale $\\Lambda_{\\tiny\\mbox{CMB}}\\sim 10^{-4}\\,$eV and SU(2)$_{e}$ of scale $\\Lambda_{e}\\sim 5\\times 10^5\\,$eV, associate either wave or particle aspects to electromagnetic disturbances during thermalisation towards the photon gas of a blackbody, in realising the photoelectric effect, and through the frequency dependence of the monochromatic, nonthermal beam structure in Thomson/Compton scattering.

  17. Electromagnetism from counting

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1992-12-01

    The fact that experimental accuracy is finite makes the measurement of particle positions and velocities non-local and often non- commutative even in a scale invariant theory. Applied to electromagnetic and gravitational phenomena, we argue that this leads to a relativistic action at a distance theory in which fields'' are simple a quasi-local interpolating concept extrapolated from macroscopic conservation laws. We sketch how this analysis could lead to classical field equations as a macroscopic approximation to relativistic quantum mechanics, but do not construct a formal proof.

  18. Electromagnetism from counting

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1992-12-01

    The fact that experimental accuracy is finite makes the measurement of particle positions and velocities non-local and often non- commutative even in a scale invariant theory. Applied to electromagnetic and gravitational phenomena, we argue that this leads to a relativistic action at a distance theory in which ``fields`` are simple a quasi-local interpolating concept extrapolated from macroscopic conservation laws. We sketch how this analysis could lead to classical field equations as a macroscopic approximation to relativistic quantum mechanics, but do not construct a formal proof.

  19. Introduction to electromagnetic engineering

    CERN Document Server

    Harrington, Roger E

    2003-01-01

    This study of electromagnetic theory introduces students to a broad range of quantities and concepts, imparting the necessary vector analysis and associated mathematics and reinforcing its teachings with several elementary field problems. Based on circuit theory rather than on the classical force-relationship approach, the text uses the theory of electric circuits to provide a system of experiments already familiar to the electrical engineer; a series of field concepts are then introduced as a logical extension of circuit theory. Virtually unobtainable elsewhere, this text was written by a pr

  20. Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip

    Science.gov (United States)

    Ranjit, N. K.; Shit, G. C.

    2017-09-01

    This paper aims to develop a mathematical model for magnetohydrodynamic flow of biofluids through a hydrophobic micro-channel with periodically contracting and expanding walls under the influence of an axially applied electric field. The velocity slip effects have been taken into account at the channel walls by employing different slip lengths due to hydrophobic gating. Different temperature jump factors have also been used to investigate the thermomechanical interactions at the fluid-solid interface. The electromagnetohydrodynamic flow in a microchannel is simplified under the framework of Debye-Hückel linearization approximation. We have derived the closed-form solutions for the linearized dimensionless boundary value problem under the assumptions of long wave length and low Reynolds number. The axial velocity, temperature, pressure distribution, stream function, wall shear stress and the Nusselt number have been appraised for diverse values of the parameters approaching into the problem. Our main focus is to determine the effects of different zeta potential on the axial velocity and temperature distribution under electromagnetic environment. This study puts forward an important observation that the different zeta potential plays an important role in controlling fluid velocity. The study further reveals that the temperature increases significantly with the Joule heating parameter and the Brinkman number (arises due to the dissipation of energy).

  1. Electron spin echo of Cu(2+) in the triglycine sulfate crystal family (TGS, TGSe, TGFB): electron spin-lattice relaxation, Debye temperature and spin-phonon coupling.

    Science.gov (United States)

    Lijewski, S; Goslar, J; Hoffmann, S K

    2006-07-05

    The electron spin-lattice relaxation of Cu(2+) has been studied by the electron spin echo technique in the temperature range 4.2-115 K in triglycine sulfate (TGS) family crystals. Assuming that the relaxation is due to Raman relaxation processes the Debye temperature Θ(D) was determined as 190 K for TGS, 168 K for triglycine selenate (TGSe) and 179 K for triglycine fluoroberyllate (TGFB). We also calculated the Θ(D) values from the sound velocities derived from available elastic constants. The elastic Debye temperatures were found as 348 K for TGS, 288 K for TGSe and 372 K for TGFB. The results shown good agreement with specific heat data for TGS. The elastic Θ(D) are considerably larger than those determined from the Raman spin-lattice relaxation. The possible reasons for this discrepancy are discussed. We propose to use a modified expression describing two-phonon Raman relaxation with a single variable only (Θ(D)) after elimination of the sound velocity. Moreover, we show that the relaxation data can be fitted using the elastic Debye temperature value as a constant with an additional relaxation process contributing at low temperatures. This mechanism can be related to a local mode of the Cu(2+) defect in the host lattice. Electron paramagnetic resonance g-factors and hyperfine splitting were analysed in terms of the molecular orbital theory and the d-orbital energies and covalency factors of the Cu(gly)(2) complexes were found. Using the structural data and calculated orbital energies the spin-phonon coupling matrix element of the second-order Raman process was calculated as 553 cm(-1) for TGS, 742 cm(-1) for TGSe and 569 cm(-1) for TGFB.

  2. Electromagnetic Field Penetration Studies

    Science.gov (United States)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  3. Metamaterials beyond electromagnetism.

    Science.gov (United States)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment-all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, 'space-coiling' metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials ('meta-liquids'), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  4. The HPS electromagnetic calorimeter

    Science.gov (United States)

    Balossino, I.; Baltzell, N.; Battaglieri, M.; Bondì, M.; Buchanan, E.; Calvo, D.; Celentano, A.; Charles, G.; Colaneri, L.; D'Angelo, A.; Napoli, M. De; Vita, R. De; Dupré, R.; Egiyan, H.; Ehrhart, M.; Filippi, A.; Garçon, M.; Gevorgyan, N.; Girod, F.-X.; Guidal, M.; Holtrop, M.; Iurasov, V.; Kubarovsky, V.; Livingston, K.; McCarty, K.; McCormick, J.; McKinnon, B.; Osipenko, M.; Paremuzyan, R.; Randazzo, N.; Rauly, E.; Raydo, B.; Rindel, E.; Rizzo, A.; Rosier, P.; Sipala, V.; Stepanyan, S.; Szumila-Vance, H.; Weinstein, L. B.

    2017-05-01

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called ;heavy photon.; Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier.

  5. Electromagnetic interaction of metamaterials

    Science.gov (United States)

    Canales, Peter R.

    The observation of extraordinary transmission through subwavelength apertures has propelled a great interest in understanding its nature. It defies classical theories of electromagnetic interaction by demanding a closer examination of the surface properties. Traditionally, as surface features become much smaller in size than a single wavelength of interest, the structure is essentially continuous. Any periodic subwavelength corrugation or aperture array should not interact strongly with an incident field and therefore not contribute to any significant transmission through the film. We find that this is not always the case and that we may tune the surface geometry at these scales to affect the overall medium behavior. It is possible that a material may transcend its own natural properties and, in essence, become a metamaterial. The following analysis examines the concepts of metamaterials from a fundamental viewpoint. It does not seek to disrupt classical theories but instead demonstrates their validity to describe a new phenomenon. Several theories have been proposed that offer unique surface interactions as evidence of enhanced transmission. It is proposed that a fundamental Maxwell representation is sufficient in predicting the interaction of an electromagnetic wave with a metamaterial. In particular, a formalism has been developed to analyze enhanced transmission through a metallic grating structure. To experimentally validate this model, a fabrication procedure has been developed that allows for the production of quality thick film structures with subwavelength features. Finally, the analysis of metamaterials looks towards the RF spectrum to demonstrate a novel design to achieve conformal waveguides and antennas.

  6. The HPS electromagnetic calorimeter

    CERN Document Server

    Balossino, Ilaria; Battaglieri, Marco; Bondi, Mariangela; Buchanan, Emma; Calvo, Daniela; Celentano, Andrea; Charles, Gabriel; Colaneri, Luca; D'Angelo, Annalisa; De Napoli, Marzio; De Vita, Raffaella; Dupre, Raphael; Ehrhart, Mathieu; Filippi, Alessandra; Garcon, Michel; Girod, Francois-Xavier; Guidal, Michel; Holtrop, Maurik; Iurasov, Volodymyr; Kubarovsky, Valery; McCarty, Kyle; McCormick, Jeremy; Osipenko, Mikhail; Paremuzyan, Rafayel; Randazzo, Nunzio; Rauly, Emmanuel; Raydo, Benjamin; Rindel, Emmanuel; Rizzo, Alessandro; Rosier, Philippe; Sipala, Valeria; Stepanyan, Stepan; Szumila-Vance, Holly; Weinstein, Lawrence

    2016-01-01

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon". Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungsten (PbWO$_4$) scintillating crystals, each read-out by an avalanche photodiode coupled to a custom trans-impedance amplifier.

  7. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  8. Evaluation of the Debye temperature for iron cores in human liver ferritin and its pharmaceutical analogue Ferrum Lek using Mossbauer spectroscopy

    CERN Document Server

    Dubiel, S M; Alenkina, I V; Oshtrakh, M I; Semionkin, V A

    2014-01-01

    An iron polymaltose complex Ferrum Lek used as antianemic drug and considered as a ferritin analogue and human liver ferritin were investigated in the temperature range from 295K to 90K by means of 57Fe Mossbauer spectroscopy with a high velocity resolution i.e. in 4096 channels. The Debye temperatures equal to 502K for Ferrum Lek and to 461K for human liver ferritin were determined from the temperature dependence of the center shift obtained using two different fitting procedures.

  9. The BCS-BE crossover phase diagram at T = 0 K for a d-wave superconductor: the importance of the Debye frequency and the tight binding band structure

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-Nunez, J J [Departamento de FIsica-FACYT-UC, Valencia, Estado Carabobo (Venezuela); Schmidt, A A [Departamento de Matematica, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Alvarez-Llamoza, O [Departamento de FIsica-FACYT-UC, Valencia, Estado Carabobo (Venezuela); Orozco, E [Departamento de FIsica-FACYT-UC, Valencia, Estado Carabobo (Venezuela)

    2004-06-30

    We consider the phase diagram of the BCS (Bardeen-Cooper-Schrieffer)-BE (Bose-Einstein) crossover in the ground state (T = 0 K) of a d{sub x{sup 2}}{sub -y{sup 2}}-wave superconductor, with a nearest neighbour tight binding structure, when we take into account the Debye (phononic) frequency around the chemical potential, {mu}. This approach is a continuation of the work of den Hertog (1999 Phys. Rev. B 60 559) and that of Soares et al (2002 Phys. Rev. B 65 174506). The latter authors considered the influence of the second-nearest neighbours, but neither set of authors took into account the effect of the Debye frequency, {omicron}{sub D}, or the influence of the next nearest neighbour matrix hopping element. We have found the following results: (1) there is not a metallic phase-that is, {delta}/4t {yields}0 when V/4t {yields}0, for all {omega}{sub D}/4t, for all {alpha} ' in (-1/2,+1/2), and for all n, where n is the carrier density per site, V is the attractive interaction, t is the nearest neighbour hopping integral, and {alpha}' is the next nearest neighbour hopping ratio; (2) the BCS-BE crossover line is strongly affected by the presence of {omicron}{sub D}/4t and that of {alpha}'-actually, the values of V/4t needed to achieve the Bose-Einstein regime become extremely large for small values of {omicron}{sub D}/4t; and (3) both {delta}/4t and {mu}/4t strongly depend on the values of {omicron}{sub D}/4t and {alpha}'. The results are in agreement with the ones found by Perali et al (2003 Phys. Rev. B 68 066501 (Preprint cond-mat/0211132)) and RodrIguez-Nunez et al (2003 Phys. Rev. B 68 066502), and in disagreement with those of den Hertog and Soares et al.

  10. Electromagnetic actuation in MEMS switches

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Mátéfi-Tempfli, Mária; Chemnitz, Steffen

    . Electromagnetic actuation is a very promising approach to operate such MEMS and Power MEMS devices, due to the long range, reproducible and strong forces generated by this method, among other advantages. However, the use of electromagnetic actuation in such devices requires the use of thick magnetic films, which...

  11. Advanced electromagnetic methods for aerospace vehicles

    Science.gov (United States)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  12. Models of electromagnetic properties of composite media

    Science.gov (United States)

    Liu, Jin

    Electromagnetic composite materials have attracted much interest in recent years, due to their desirable microwave and optical applications. One class of these is negative refractive index materials, or double negative materials, in which both permittivity and permeability of materials are simultaneously negative. Many exciting potential applications of double negative materials have been proposed, such as the perfect lens and the cloaking device. Here, a simple-cubic lattice of identical, homogeneous or coated non-metallic spherical particles embedded in a matrix is analyzed. One contribution of this work is the derivation of an analytical formula for the threshold dielectric loss angle of spherical inclusions, above which DNG behavior of the system is extinguished. In addition, analytical formulas are derived from which double negative bandwidth of a simple-cubic lattice of identical, magnetodielectric homogeneous or coated spheres can be determined. Another case of interest is nanocomposites, which commonly consist of nanoparticles embedded in a polymer matrix. These materials show superior dielectric or mechanical performance by taking advantage of the merits of their individual non-hybrid components. In one manifestation, diblock copolymers can be utilized to spatially separate nanoparticles by incorporating them in one block, preferentially, to form a long-range ordered structure. By designing this structure, the electromagnetic properties can be tailored for potential applications in novel devices. Here, molecular dynamics of polymer matrices and nanocomposites is analyzed by parametric modeling of their dielectric spectra, supporting design of a composite with desired electromagnetic properties.

  13. Unconventional Hamilton-type variational principles for electromagnetic elastodynamics

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electromagnetic elastodynamics can be established systematically. This new variational principles can fully characterize the initial-boundary-value problem of this dynamics. In this paper, the expression of the generalized principle of virtual work for electromagnetic dynamics is given. Based on this equation, it is possible not only to obtain the principle of virtual work in electromagnetic dynamics, but also to derive systematically the complementary functionals for eleven-field, nine-field and six-field unconventional Hamilton-type variational principles for electromagnetic elastodynamics, and the potential energy functionals for four-field and three-field ones by the generalized Legendre transformation given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.

  14. Macroscopic electromagnetic response of metamaterials with toroidal resonances

    CERN Document Server

    Savinov, V; Zheludev, N I

    2013-01-01

    Toroidal dipole, first described by Ia. B. Zeldovich [Sov. Phys. JETP 33, 1184 (1957)], is a distinct electromagnetic excitation that differs both from the electric and the magnetic dipoles. It has a number of intriguing properties: static toroidal nuclear dipole is responsible for parity violation in atomic spectra; interactions between static toroidal dipole and oscillating magnetic dipole are claimed to violate Newton's Third Law while non-stationary charge-current configurations involving toroidal multipoles have been predicted to produce vector potential in the absence of electromagnetic fields. Existence of the toroidal response in metamaterials was recently demonstrated and is now a growing field of research. However, no direct analytical link has yet been established between the transmission and reflection of macroscopic electromagnetic media and toroidal dipole excitations. To address this essential gap in electromagnetic theory we have developed an analytical approach linking microscopic and macrosc...

  15. Relativistic electromagnetic mass models in spherically symmetric spacetime

    Science.gov (United States)

    Maurya, S. K.; Gupta, Y. K.; Ray, Saibal; Chatterjee, Vikram

    2016-10-01

    Under the static spherically symmetric Einstein-Maxwell spacetime of embedding class one we explore possibility of constructing electromagnetic mass model where mass and other physical parameters have purely electromagnetic origin (Lorentz in Proc. Acad. Sci. Amst. 6, 1904). This work is in continuation of our earlier investigation of Maurya et al. (Eur. Phys. J. C 75:389, 2015a) where we developed an algorithm and found out three new solutions of electromagnetic mass model. In the present work we consider different metric potentials ν and λ and have analyzed them in a systematic way. It is observed that some of the previous solutions related to electromagnetic mass model are nothing but special cases of the presently obtained generalized solution set. We further verify the solution set and especially show that these are extremely applicable in the case of compact stars.

  16. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  17. Hybrid synchronous motor electromagnetic torque research

    Directory of Open Access Journals (Sweden)

    Suvorkova Elena E.

    2014-01-01

    Full Text Available Electromagnetic field distribution models in reluctance and permanent magnet parts were made by means of Elcut. Dependences of electromagnetic torque on torque angle were obtained.

  18. Electromagnetic Interference (EMI) and TEMPEST Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC) and TEMPEST testing are conducted at EPG's Blacktail Canyon Test Facility in one of its two...

  19. Octonionic matrix representation and electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Chanyal, B. C. [Kumaun University, S. S. J. Campus, Almora (India)

    2014-12-15

    Keeping in mind the important role of octonion algebra, we have obtained the electromagnetic field equations of dyons with an octonionic 8 x 8 matrix representation. In this paper, we consider the eight - dimensional octonionic space as a combination of two (external and internal) four-dimensional spaces for the existence of magnetic monopoles (dyons) in a higher-dimensional formalism. As such, we describe the octonion wave equations in terms of eight components from the 8 x 8 matrix representation. The octonion forms of the generalized potential, fields and current source of dyons in terms of 8 x 8 matrix are discussed in a consistent manner. Thus, we have obtained the generalized Dirac-Maxwell equations of dyons from an 8x8 matrix representation of the octonion wave equations in a compact and consistent manner. The generalized Dirac-Maxwell equations are fully symmetric Maxwell equations and allow for the possibility of magnetic charges and currents, analogous to electric charges and currents. Accordingly, we have obtained the octonionic Dirac wave equations in an external field from the matrix representation of the octonion-valued potentials of dyons.

  20. Electromagnetic Heat Transfer in Artificial Materials

    Science.gov (United States)

    Woods, Lilia; Drosdoff, David; Phan, Anh

    2014-03-01

    Electromagnetic energy exchange has found promising new opportunities by greatly enhancing the heat transfer between bodies via radiation in the near-field regime. The greatest heat transfer occurs when the bodies support surface plasmons or polaritons that share the same resonant frequency. It has been shown, however, that 2-D materials such as graphene can have their surface plasmons tuned by modifying the chemical potential and temperature. This allows for tuning its resonance with other systems. In this talk, we investigated the electromagnetic radiation in metamaterials characterized by a strong magnetic response. We study theoretically Pendry-like and magnetically active metamaterial/graphene composites. The possibility for enhancing or inhibiting the heat transfer via the graphene properties is investigated.

  1. Classical electromagnetic radiation of the Dirac electron

    Science.gov (United States)

    Lanyi, G.

    1973-01-01

    A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.

  2. Electromagnetic fields and life

    CERN Document Server

    Presman, A S

    1970-01-01

    A broad region of the electromagnetic spectrum long assumed to have no influence on living systems under natural conditions has been critically re-examined over the past decade. This spectral region extends from the superhigh radio frequencies, through de­ creasing frequencies, to and including essentially static electric and magnetic fields. The author of this monograph, A. S. Presman, has reviewed not only the extensive Russian literatur!;"l, but also al­l most equally comprehensively the non-Russian literature, dealing with biological influences of these fields. Treated also is literature shedding some light on possible theoretical foundations for these phenomena. A substantial, rapidly increasing number of studies in many laboratories and countries has now clearly established bio­ logical influences which are independent of the theoretically predictable, simple thermal effects. Indeed many of the effects are produced by field strengths very close to those within the natural environment. The author has,...

  3. Solved problems in electromagnetics

    CERN Document Server

    Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco

    2017-01-01

    This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong  didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .

  4. On steady electromagnetic equilibria

    Science.gov (United States)

    Lehnert, B.

    1986-12-01

    The existence of steady electromagnetic equilibrium states predicted by an extended Lorentz invariant formulation of Maxwell's equations is analyzed. General equilibrium solutions are outlined which lead to integrated field quantities of the system, such as total charge qo, magnetic moment Mo, mass mo and angular momentum so. The quantization of moMo/qo in terms of Bohr magnetons is shown to be equivalent to the proposed resonance condition of circulating self-confined radiation. Exact equilibrium solutions were deduced in two simple cases, thereby leading to a so of the same order as that of the electron, and to a qo one order of magnitude larger than the electronic charge. A variational procedure is suggested in search for states of minimum charge, under the subsidiary quantum conditions on moMo/qo and so, i.e., by varying the profile of the electric space charge distribution.

  5. Focusing of electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Dhayalan, V.

    1996-12-31

    The focusing of electromagnetic waves inside a slab has been examined together with two special cases in which the slab is reduced to a single interface or a single medium. To that end the exact solutions for the fields inside a layered medium have been used, given in terms of the outside current source in order to obtain the solutions for the focused electric field inside a slab. Both exact and asymptotic solutions of the problem have been considered, and the validity of the latter has been discussed. The author has developed a numerical algorithm for evaluation of the diffraction integral with special emphasis on reducing the computing time. The numerical techniques in the paper can be readily applied to evaluate similar diffraction integrals occurring e.g. in microstrip antennas. 46 refs.

  6. Electromagnetic Gyrokinetic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wan, W

    2003-11-19

    A new electromagnetic kinetic electron {delta} particle simulation model has been demonstrated to work well at large values of plasma {beta} times the ion-to-electron mass ratio. The simulation is three-dimensional using toroidal flux-tube geometry and includes electron-ion collisions. The model shows accurate shear Alfven wave damping and microtearing physics. Zonal flows with kinetic electrons are found to be turbulent with the spectrum peaking at zero and having a width in the frequency range of the driving turbulence. This is in contrast with adiabatic electron cases where the zonal flows are near stationary, even though the linear behavior of the zonal flow is not significantly affected by kinetic electrons. zonal fields are found to be very weak, consistent with theoretical predictions for {beta} below the kinetic ballooning limit. Detailed spectral analysis of the turbulence data is presented in the various limits.

  7. Discrete Classical Electromagnetic Fields

    CERN Document Server

    De Souza, M M

    1997-01-01

    The classical electromagnetic field of a spinless point electron is described in a formalism with extended causality by discrete finite transverse point-vector fields with discrete and localized point interactions. These fields are taken as a classical representation of photons, ``classical photons". They are all transversal photons; there are no scalar nor longitudinal photons as these are definitely eliminated by the gauge condition. The angular distribution of emitted photons coincides with the directions of maximum emission in the standard formalism. The Maxwell formalism and its standard field are retrieved by the replacement of these discrete fields by their space-time averages, and in this process scalar and longitudinal photons are necessarily created and added. Divergences and singularities are by-products of this averaging process. This formalism enlighten the meaning and the origin of the non-physical photons, the ones that violate the Lorentz condition in manifestly covariant quantization methods.

  8. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  9. Electromagnetic emission in the development of macroscopically unstable plastic deformation of a metal

    Science.gov (United States)

    Shibkov, A. A.; Titov, S. A.; Zheltov, M. A.; Gasanov, M. F.; Zolotov, A. E.; Proskuryakov, K. A.; Zhigachev, A. O.

    2016-01-01

    Electromagnetic emission accompanying the serrated deformation of the aluminum‒magnesium alloy Al-6Mg has been revealed and studied experimentally. By means of high-speed video recording and a complex of methods for measuring the strain, load, and electric potential, it has been found that there is a relation between the electromagnetic emission signals and the dynamics of deformation bands. Possible mechanisms of the generation of electromagnetic signals have been discussed.

  10. Electromagnetic properties of neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Saada, F. [Zurich Univ. (Switzerland). Inst. fuer Physik

    1996-11-01

    Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, {mu}{sub {nu}}, of the order of 10{sup -11} {mu}{sub B} would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of {approx_equal}10 eV would give {mu}{sub {nu}}{approx_equal}10{sup -18} {mu}{sub B}, much smaller than the present experimental upper limit of 2x10{sup -10} {mu}{sub B}. Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of {mu}{sub {nu}}, larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, {nu}e{sup -} scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the {nu}{sub e}, extending down to 2x10{sup -11} {mu}{sub B}. (author) 15 figs., 5 tabs., 96 refs.

  11. Compliance of the Stokes-Einstein model and breakdown of the Stokes-Einstein-Debye model for a urea-based supramolecular polymer of high viscosity.

    Science.gov (United States)

    Świergiel, Jolanta; Bouteiller, Laurent; Jadżyn, Jan

    2014-11-14

    Impedance spectroscopy was used for the study of the static and dynamic behavior of the electrical conductivity of a hydrogen-bonded supramolecular polymer of high viscosity. The experimental data are discussed in the frame of the Stokes-Einstein and Stokes-Einstein-Debye models. It was found that the translational movement of the ions is due to normal Brownian diffusion, which was revealed by a fulfillment of Ohm's law by the electric current and a strictly exponential decay of the current after removing the electric stimulus. The dependence of the dc conductivity on the viscosity of the medium fulfills the Stokes-Einstein model quite well. An extension of the model, by including in it the conductivity relaxation time, is proposed in this paper. A breakdown of the Stokes-Einstein-Debye model is revealed by the relations of the dipolar relaxation time to the viscosity and to the dc ionic conductivity. The importance of the C=O···H-N hydrogen bonds in that breakdown is discussed.

  12. Debye temperature of metallic nanowires--an experimental determination from the resistance of metallic nanowires in the temperature range 4.2 K-300 K.

    Science.gov (United States)

    Bid, Aveek; Bora, Achyut; Raychaudhuri, A K

    2007-06-01

    We have studied the resistance of metallic nanowires (silver and copper) as a function of the wire diameter in the temperature range 4.2 K-300 K. The nanowires with an average diameter of 15 nm-200 nm and length 6 microm were electrochemically deposited using polycarbonate membranes as template from AgNO3 and CuSO4, respectively. The wires after growth were removed from the membranes by dissolving the polymer in dichloromethane and their crystalline nature confirmed by XRD and TEM studies. The TEM study establishes that the nanowires are single crystalline and can have twin in them. The resistivity data was fitted to Bloch-Gruneisen theorem with the values of Debye temperature and the electron-acoustic phonon coupling constant as the two fit variables. The value of the Debye temperature obtained for the Ag wires was seen to match well with that of the bulk while for Cu wires a significant reduction was observed. The observed increase in resistivity with a decrease in the wire diameter could be explained as due to diffuse surface scattering of the conduction electrons.

  13. The Statics Dielectric Function and Interaction Potential In Strong Coupling With AdS/CFT

    CERN Document Server

    Liu, Lian; Liu, Hui

    2013-01-01

    In this paper, we studied the static dielectric function and interaction potential in strong coupling limit with AdS/CFT correspondence. The dielectric function is depressed compared with that in weak coupling. The interaction potential then presents a weaker screening characteristics in strong coupling, which indicates a smaller Debye mass compared with weak coupling.

  14. Applications of the electromagnetic Helmholtz resonator*

    Science.gov (United States)

    Stoneback, Russell Alan

    An electromagnetic Helmholtz resonator comprised of a capacitor with an aperture is investigated theoretically and experimentally. It is proposed that this resonance may be described using effective impedances describing the capacitor and aperture, similar to lumped element descriptions of the acoustic Helmholtz resonator. The dipole impedance of an electromagnetic aperture is derived and verified using the finite element method. Incorporating standard network relations, the aperture impedance can be used to calculate radiated power. Measurements of a capacitor demonstrates that the transmitted voltage through the capacitor is modified by induced charges. An induced voltage is introduced, and predictions agree with observations. Measurements of a capacitor with an aperture in the grounded plate indicate that induced currents cancel the imaginary impedance of the aperture, and double the real impedance. The observed impedance is close to predictions using the derived aperture impedance, confirming the utility of the aperture impedance in describing the system. The numerically obtained aperture electromagnetic fields are similar to the Birkeland current distribution and the cross polar cap potential in the Earth's polar ionosphere, motivating a model where the polar ionosphere is treated as an effective aperture. It is proposed that this effective aperture interacts with the capacitor formed between the Earth and ionosphere, creating an electromagnetic Helmholtz resonator. Predictions made with this model agree with measurements of transmitted power and phase velocity by FAST during a geomagnetic substorm, measurements of the Ionospheric Alfven Resonator, and oscillations recorded by ground based magnetometers. The same effective aperture behavior is expected in sunspots and polar coronal holes. A peak is predicted in Alfven wave power across the transition region for waves with a 5 min. period that delivers an average power over 100 W/m2 to the corona, sufficient to

  15. Aharonov-Bohm phase for an electromagnetic wave background

    Energy Technology Data Exchange (ETDEWEB)

    Bright, Max [California State University Fresno, Department of Physics, Fresno, CA (United States); Singleton, Douglas [California State University Fresno, Department of Physics, Fresno, CA (United States); UNESP-Univ. Estadual Paulista, ICTP South American Institute for Fundamental Research, Sao Paulo, SP (Brazil); Yoshida, Atsushi [University of Virginia, Department of Physics, Charlottesville, VA (United States); Hue University College of Education, Hue (Viet Nam)

    2015-09-15

    The canonical Aharonov-Bohm effect is usually studied with time-independent potentials. In this work, we investigate the Aharonov-Bohm phase acquired by a charged particle moving in time-dependent potentials. In particular, we focus on the case of a charged particle moving in the time-varying field of a plane electromagnetic wave. We work out the Aharonov-Bohm phase using both the potential (i.e. circular integral A{sub μ} dx{sup μ}) and the field (i.e. (1)/(2) ∫ F{sub μν}dσ{sup μν}) forms of the Aharonov-Bohm phase. We give conditions in terms of the parameters of the system (frequency of the electromagnetic wave, the size of the space-time loop, amplitude of the electromagnetic wave) under which the time-varying Aharonov-Bohm effect could be observed. (orig.)

  16. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites.

    Science.gov (United States)

    Xu, Ping; Han, Xijiang; Wang, Chao; Zhou, Donghua; Lv, Zushun; Wen, Aihua; Wang, Xiaohong; Zhang, Bin

    2008-08-28

    Microstructured Ni/PPy (PPy: polypyrrole) core/shell composites were prepared from an in situ chemical oxidative polymerization of pyrrole (Py) monomer in the presence of Ni powder, with ammonium persulfate (APS) as oxidant and citric acid (C6H8O7) as dopant. X-ray diffraction and Fourier transform infrared analyses indicate that there is no chemical interaction between Ni powder and protonated PPy. The mass percentages of PPy, calculated from the remanent weight percentages of Ni/PPy composites after thermogravimetric analysis, are in consistent with those as designed. The prepared Ni/PPy composites are soft and ferromagnetic materials, where a linear increase of saturation magnetization (MS) and remanent magnetization (MR) as a function of Ni powder content is proposed. The permeability of Ni/PPy composites presents a natural magnetic resonance at 6.0 GHz, and Cole-Cole semicircle was applied to explain the permittivity. Electromagnetic absorption less than -10 dB is found for Ni/Py=4:1 (11-15.4 GHz) and Ni/Py=2:1 (12-17.5 GHz). The ternary Debye relaxations for enhanced dielectric loss induced by PPy coatings and proper electromagnetic impedance matching due to the synergetic consequence of the Ni cores and PPy shells contribute to the improvement of the electromagnetic absorption of the Ni/PPy core/shell composites. It is important to notice that dielectric loss and electrical conductivity should be considered simultaneously in designing dielectric-type electromagnetic absorbing materials.

  17. Electromagnetic foundations of electrical engineering

    CERN Document Server

    Faria, J A Brandao

    2008-01-01

    The applications of electromagnetic phenomena within electrical engineering have been evolving and progressing at a fast pace. In contrast, the underlying principles have been stable for a long time and are not expected to undergo any changes. It is these electromagnetic field fundamentals that are the subject of discussion in this book with an emphasis on basic principles, concepts and governing laws that apply across the electrical engineering discipline. Electromagnetic Foundations of Electrical Engineering begins with an explanation of Maxwell's equations, from which the fundament

  18. Electromagnetic transients in power cables

    CERN Document Server

    da Silva, Filipe Faria

    2013-01-01

    From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,

  19. Biological effects of electromagnetic fields.

    Science.gov (United States)

    Macrì, M. A.; Di Luzio, Sr.; Di Luzio, S.

    2002-01-01

    Nowadays, concerns about hazards from electromagnetic fields represent an alarming source for human lives in technologically developed countries. We are surrounded by electromagnetic fields everywhere we spend our working hours, rest or recreational activities. The aim of this review is to summarize the biological effects due to these fields arising from power and transmission lines, electrical cable splices, electronic devices inside our homes and work-places, distribution networks and associated devices such as cellular telephones and wireless communication tower, etc. Special care has been reserved to study the biological effects of electromagnetic fields on cell lines of the mammalian immune system about which our research group has been working for several years.

  20. Differential forms on electromagnetic networks

    CERN Document Server

    Balasubramanian, N V; Sen Gupta, D P

    2013-01-01

    Differential Forms on Electromagnetic Networks deals with the use of combinatorial techniques in electrical circuit, machine analysis, and the relationship between circuit quantities and electromagnetic fields. The monograph is also an introduction to the organization of field equations by the methods of differential forms. The book covers topics such as algebraic structural relations in an electric circuit; mesh and node-pair analysis; exterior differential structures; generalized Stoke's theorem and tensor analysis; and Maxwell's electromagnetic equation. Also covered in the book are the app

  1. A primer on electromagnetic fields

    CERN Document Server

    Frezza, Fabrizio

    2015-01-01

    This book is a concise introduction to electromagnetics and electromagnetic fields that covers the aspects of most significance for engineering applications by means of a rigorous, analytical treatment. After an introduction to equations and basic theorems, topics of fundamental theoretical and applicative importance, including plane waves, transmission lines, waveguides, and Green's functions, are discussed in a deliberately general way. Care has been taken to ensure that the text is readily accessible and self-consistent, with conservation of the intermediate steps in the analytical derivations. The book offers the reader a clear, succinct course in basic electromagnetic theory. It will also be a useful lookup tool for students and designers.

  2. Multifunctional hybrids for electromagnetic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Huynen, I. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Quievy, N. [Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bailly, C. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bollen, P. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Detrembleur, C. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium); Eggermont, S.; Molenberg, I. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Thomassin, J.M.; Urbanczyk, L. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium)

    2011-05-15

    Highlights: > EM absorption requires low dielectric constant and {approx}1 S/m electrical conductivity. > New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. > The EM absorption in the GHz range is superior to any known material. > A closed form model is used to guide the design of the hybrid. > The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  3. Basics of quantum field theory of electromagnetic interaction processes in single-layer graphene

    Science.gov (United States)

    Hieu Nguyen, Van

    2016-09-01

    The content of this work is the study of electromagnetic interaction in single-layer graphene by means of the perturbation theory. The interaction of electromagnetic field with Dirac fermions in single-layer graphene has a peculiarity: Dirac fermions in graphene interact not only with the electromagnetic wave propagating within the graphene sheet, but also with electromagnetic field propagating from a location outside the graphene sheet and illuminating this sheet. The interaction Hamiltonian of the system comprising electromagnetic field and Dirac fermions fields contains the limits at graphene plane of electromagnetic field vector and scalar potentials which can be shortly called boundary electromagnetic field. The study of S-matrix requires knowing the limits at graphene plane of 2-point Green functions of electromagnetic field which also can be shortly called boundary 2-point Green functions of electromagnetic field. As the first example of the application of perturbation theory, the second order terms in the perturbative expansions of boundary 2-point Green functions of electromagnetic field as well as of 2-point Green functions of Dirac fermion fields are explicitly derived. Further extension of the application of perturbation theory is also discussed.

  4. Calculation of electromagnetic fields in inductor-screen-ingot systems

    Energy Technology Data Exchange (ETDEWEB)

    Getselev, Z.N.; Martynov, G.I.

    1977-01-01

    The method proposed is used for designing complex electromagnetic ''inductor-screen-ingot'' systems with non-uniform boundary conditions which are encountered in electromagnetic formation and induction heating. As a result of using the approximate Fourier transformation, the original system of integral equations is replaced by a system of linear algebraic equations with known coefficients and which is numerically solved on a computer. The vector potential in regional boundaries is calculated in the first stage, and the potential within the region is computed in the second stage. The method is analyzed in detail by solving five specific problems.

  5. Electromagnetic field theories for engineering

    CERN Document Server

    Salam, Md Abdus

    2014-01-01

    A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.

  6. Wave propagation in electromagnetic media

    CERN Document Server

    Davis, Julian L

    1990-01-01

    This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro­ magnetic materials. Since these volumes were designed to be relatively self­ contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...

  7. Earthquake prediction with electromagnetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp [Hayakawa Institute of Seismo Electomagnetics, Co. Ltd., University of Electro-Communications (UEC) Incubation Center, 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585 (Japan); Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo (Japan); Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062 (Japan); Fuji Security Systems. Co. Ltd., Iwato-cho 1, Shinjyuku-ku, Tokyo (Japan)

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  8. Electromagnetic identification of dielectric materials

    Directory of Open Access Journals (Sweden)

    A. F. Yanenko

    2010-05-01

    Full Text Available The electromagnetic features and parameters of dielectric materials, which are used in light industry and stomatology. The results of measuring are analyzed and the method of authentication is offered.

  9. Electromagnetic Signals from Bacterial DNA

    CERN Document Server

    Widom, A; Srivastava, Y N; Sivasubramanian, S

    2011-01-01

    Chemical reactions can be induced at a distance due to the propagation of electromagnetic signals during intermediate chemical stages. Although is is well known at optical frequencies, e.g. photosynthetic reactions, electromagnetic signals hold true for muck lower frequencies. In E. coli bacteria such electromagnetic signals can be generated by electric transitions between energy levels describing electrons moving around DNA loops. The electromagnetic signals between different bacteria within a community is a "wireless" version of intercellular communication found in bacterial communities connected by "nanowires". The wireless broadcasts can in principle be of both the AM and FM variety due to the magnetic flux periodicity in electron energy spectra in bacterial DNA orbital motions.

  10. Monte Carlo methods for electromagnetics

    CERN Document Server

    Sadiku, Matthew NO

    2009-01-01

    Until now, novices had to painstakingly dig through the literature to discover how to use Monte Carlo techniques for solving electromagnetic problems. Written by one of the foremost researchers in the field, Monte Carlo Methods for Electromagnetics provides a solid understanding of these methods and their applications in electromagnetic computation. Including much of his own work, the author brings together essential information from several different publications.Using a simple, clear writing style, the author begins with a historical background and review of electromagnetic theory. After addressing probability and statistics, he introduces the finite difference method as well as the fixed and floating random walk Monte Carlo methods. The text then applies the Exodus method to Laplace's and Poisson's equations and presents Monte Carlo techniques for handing Neumann problems. It also deals with whole field computation using the Markov chain, applies Monte Carlo methods to time-varying diffusion problems, and ...

  11. Classical electromagnetism in a nutshell

    CERN Document Server

    Garg, Anupam

    2012-01-01

    This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.

  12. Conical electromagnetic radiation flux concentrator

    Science.gov (United States)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  13. Spectrum and electromagnetic transitions of charmonium

    CERN Document Server

    Deng, Wei-Jun; Gui, Long-Cheng; Zhong, Xian-Hui

    2016-01-01

    We study the charmonium spectrum with two nonrelativistic quark models, the linear potential model and screened potential model. The radial Schr\\"{o}dinger equation is solved with a three-point difference central method. The corrections of the spin-dependent interactions to the wavefunctions are successfully included with a nonperturbative treatment. It is found that the spin-dependent potentials have notable corrections to the wavefunctions of $S$- and triplet $P$-wave states. For the low-lying charmonium states with a mass of $M< 4.1$ GeV, both the linear and screened potential models give a reasonable description of their mass spectrum, however, for the higher charmonium states, the predictions from these two models are quite different. Moreover, we evaluate the electromagnetic transitions of the $nS$, $nP$ ($n\\leq 3$), and $nD$ ($n\\leq 2$) charmonium states with a nonrelativistic electromagnetic transition operator widely applied to meson photoproduction reactions. We obtain a reasonable description of...

  14. Microwave characteristic simulation research for a kind of novel electromagnetic structure

    Institute of Scientific and Technical Information of China (English)

    Xu Zhanxian; Kong Lidu; Lin Weigan; Jia Baofu

    2008-01-01

    A kind of novel electromagnetic structure of Cassini cross section is proposed and simulation is implemented with business microwave soft CST based on finite integral technique (FIT). The electromagnetic field mode type of Cassini wave-guide belongs to TE, and the electromagnetic field intensity is stronger near the neck region than at other areas. For Cassini electromagnetic patches and lumped elements, the radar cross section (RCS) is smaller around 7 GHz with -30.85dBsm, and the absorbing property is better around 13GHz with 4.56dBsm difference of RCS from comparing of pure medium. For novel radiation structure of Cassini cross-section patches, the electromagnetic field value is larger in the neck areas of two half patches. At last, the potential application and development of Cassini oval structure are put forward in the electromagnetic stealth technology and antennae design.

  15. Analysis of the Relationship between Hamming Distance and the Electromagnetic Information Leakage

    Directory of Open Access Journals (Sweden)

    Sun Haimeng

    2013-07-01

    Full Text Available Electromagnetic information leak as a potential data security risk is more and more serious. Discussing the relationship between compromising emanations and Hamming distance is directed to preventing or reducing the electromagnetic information leakage. The paper presents the model of electromagnetic information leak, then the hierarchical protection strategy based on the model is proposed, that is anti-radiation, anti-intercept and anti-reconstruction. Analyzing the causes of electromagnetic information leak through the touch screen case, the paper describes the electromagnetic radiation intensity is correlated to the transition's Hamming distance. The paper presents the anti-intercept method, which is reducing the Hamming distance of the sensitive data or keep Hamming distance constant in order to reducing or preventing the electromagnetic information leakage. The anti-intercept method is available showed as the touch screen case.    

  16. Electromagnetic shielding effectiveness and mechanical properties of graphite-based polymeric films

    Science.gov (United States)

    Kenanakis, G.; Vasilopoulos, K. C.; Viskadourakis, Z.; Barkoula, N.-M.; Anastasiadis, S. H.; Kafesaki, M.; Economou, E. N.; Soukoulis, C. M.

    2016-09-01

    Modern electronics have nowadays evolved to offer highly sophisticated devices. It is not rare; however, their operation can be affected or even hindered by the surrounding electromagnetic radiation. In order to provide protection from undesired external electromagnetic sources and to ensure their unaffected performance, electromagnetic shielding is thus necessary. In this work, both the electromagnetic and mechanical properties of graphite-based polymeric films are studied. The investigated films show efficient electromagnetic shielding performance along with good mechanical stiffness for a certain graphite concentration. To the best of our knowledge, the present study illustrates for the first time both the electromagnetic shielding and mechanical properties of the polymer composite samples containing graphite filler at such high concentrations (namely 60-70 %). Our findings indicate that these materials can serve as potential candidates for several electronics applications.

  17. Multiforms, dyadics, and electromagnetic media

    CERN Document Server

    Lindell, Ismo V

    2015-01-01

    This book applies the four-dimensional formalism with an extended toolbox of operation rules, allowing readers to define more general classes of electromagnetic media and to analyze EM waves that can exist in them. End-of-chapter exercises. Formalism allows readers to find novel classes of media. Covers various properties of electromagnetic media in terms of which they can be set in different classes.

  18. Canonical quantization of macroscopic electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.u [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2010-12-15

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  19. Black Hole Thermodynamics and Electromagnetism

    CERN Document Server

    Sidharth, B G

    2005-01-01

    We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

  20. Canonical quantization of macroscopic electromagnetism

    CERN Document Server

    Philbin, T G

    2010-01-01

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetoelectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  1. Advanced Model of Electromagnetic Launcher

    Directory of Open Access Journals (Sweden)

    Karel Leubner

    2015-01-01

    Full Text Available An advanced 2D model of electromagnetic launcher is presented respecting the influence of eddy currents induced in the accelerated ferromagnetic body. The time evolution of electromagnetic field in the system, corresponding forces acting on the projectile and time evolutions of its velocity and current in the field circuit are solved numerically using own application Agros2d. The results are then processed and evaluated in Wolfram Mathematica. The methodology is illustrated with an example whose results are discussed.

  2. Radiation and propagation of electromagnetic waves

    CERN Document Server

    Tyras, George; Declaris, Nicholas

    1969-01-01

    Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a

  3. General Geometry and Geometry of Electromagnetism

    OpenAIRE

    Shahverdiyev, Shervgi S.

    2002-01-01

    It is shown that Electromagnetism creates geometry different from Riemannian geometry. General geometry including Riemannian geometry as a special case is constructed. It is proven that the most simplest special case of General Geometry is geometry underlying Electromagnetism. Action for electromagnetic field and Maxwell equations are derived from curvature function of geometry underlying Electromagnetism. And it is shown that equation of motion for a particle interacting with electromagnetic...

  4. Building a first order wave equation for the electromagnetic field: new perspectives on Dirac's equation

    CERN Document Server

    Duarte, Celso de Araujo

    2015-01-01

    Traditionally, the electromagnetic theory dictates the well-known second order differential equation for the components of the scalar and the vector potentials, or in other words, for the four-vector electromagnetic potential $\\phi^{\\mu}$. But the second order is not obligatory at least with respect to the electromagnetic radiation fields: actually, a heuristic first order differential equation can be constructed to describe the electromagnetic radiation, supported on the phenomenology of its electric and magnetic fields. Due to a formal similarity, such an equation suggests a direct comparative analysis with Dirac's equation for half spin fermions, conducting to the finding that the Dirac's spinor field $\\Psi$ for massive or massless fermions is equivalent to a set of two potential-like four vector fields $\\psi^{\\mu}$ and $\\chi^{\\mu}$. Under this point of view, striking similarities with the electromagnetic theory emerge with a category of "pseudo electric'' and "pseudo magnetic'' vector fermionic fields.

  5. DYNAMICAL MODEL OF ELECTROMAGNETIC DRIVE

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2016-02-01

    Full Text Available The article discusses the dynamic model of the rocket motor electromagnetic type, consisting of a source of electromagnetic waves of radio frequency band and a conical cavity in which electromagnetic waves are excited. The processes of excitation of electromagnetic oscillations in a cavity with conducting walls, as well as the waves of the YangMills field have been investigated. Multi-dimensional transient numerical model describing the processes of establishment of electromagnetic oscillations in a cavity with the conducting wall was created Separately, the case of standing waves in the cavity with conducting walls been tested. It is shown that the oscillation mode in the conducting resonator different from that in an ideal resonator, both in the steady and unsteady processes. The mechanism of formation of traction for the changes in the space-time metric, the contribution of particle currents, the Yang-Mills and electromagnetic field proposed. It is shown that the effect of the Yang-Mills field calls change the dielectric properties of vacuum, which leads to a change in capacitance of the resonator. Developed a dynamic model, which enables optimal traction on a significant number of parameters. It was found that the thrust increases in the Yang-Mills field parameters near the main resonance frequency. In the presence of thermal fluctuations and the Yang-Mills field as well the traction force changes sign, indicating the presence of various oscillation modes

  6. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  7. The CPLEAR Electromagnetic Calorimeter

    CERN Document Server

    Adler, R; Bal, F; Behnke, O; Bloch, P; Damianoglou, D; Dechelette, Paul; Dröge, M; Eckart, B; Felder, C; Fetscher, W; Fidecaro, Maria; Garreta, D; Gerber, H J; Gumplinger, P; Guyon, D; Johner, H U; Löfstedt, B; Kern, J; Kokkas, P; Krause, H; Mall, U; Marin, C P; Nanni, F; Pagels, B; Pavlopoulos, P; Petit, P; Polivka, G; Rheme, C; Ruf, T; Santoni, C; Schaller, L A; Schopper, A; Tauscher, Ludwig; Tschopp, H; Weber, P; Wendler, H; Witzig, C; Wolter, M

    1997-01-01

    A large-acceptance lead/gas sampling electromagnetic calorimeter (ECAL) was constructed for the CPLEAR experiment to detect photons from decays of $\\pi^0$s with momentum $p_{\\pi^0} \\le 800$ MeV$/c$. The main purpose of the ECAL is to determine the decay vertex of neutral-kaon decays $\\ko \\rightarrow \\pi^0\\pi^0 \\rightarrow 4 \\gamma$ and $\\ko \\rightarrow \\pi^0\\pi^0\\pi^0 \\rightarrow 6 \\gamma$. This requires a position-sensitive photon detector with high spatial granularity in $r$-, $\\varphi$-, and $z$-coordinates. The ECAL --- a barrel without end-caps located inside a magnetic field of 0.44 T --- consists of 18 identical concentric layers. Each layer of $1/3$ radiation length (X${_0}$) contains a converter plate followed by small cross-section high-gain tubes of 2640 mm active length which are sandwiched by passive pick-up strip plates. The ECAL, with a total of $6$ X${_0}$, has an energy resolution of $\\sigma (E)/E \\approx 13\\% / \\sqrt{E(\\mathrm{GeV})}$ and a position resolution of 4.5 mm for the shower foot. ...

  8. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  9. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Kees de Jager

    2004-08-01

    Although nucleons account for nearly all the visible mass in the universe, they have a complicated structure that is still incompletely understood. The first indication that nucleons have an internal structure, was the measurement of the proton magnetic moment by Frisch and Stern (1933) which revealed a large deviation from the value expected for a point-like Dirac particle. The investigation of the spatial structure of the nucleon, resulting in the first quantitative measurement of the proton charge radius, was initiated by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was obtained by scattering thermal neutrons off atomic electrons. The recent revival of its experimental study through the operational implementation of novel instrumentation has instigated a strong theoretical interest. Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum transferred to the nucleon by the virtual photon can be selected to probe different scales of the nucleon, from integral properties such as the charge radius to scaling properties of its internal constituents. Polarization instrumentation, polarized beams and targets, and the measurement of the polarization of the recoiling nucleon have been essential in the accurate separation of the charge and magnetic form factors and in studies of the elusive neutron charge form factor.

  10. ELECTROMAGNET CALORIMETER (ECAL)

    CERN Multimedia

    R. Rusack

    Installation is under way of the last piece of the electromagnetic calorimeter. This is the preshower (ES) that sits in front of the two endcap calorimeters. The construction of the ES was completed in December and went through a detailed set of tests in December and January. The two preshower detectors have a total of 4300 silicon sensors with 137,000 strips. After final assembly and system testing in January, only two of the strips were found to be defective. Once CMS was fully opened a new support structure (‘Gazprom’) was put into place underneath the beam pipe, to support the Surkov platform, on which the preshower installation takes place. In the early hours of 26th February the first two Dees, which form the ‘ES+’ endcap,  were transported to P5 , a journey that took two and a half hours. The Dees, still inside environmental protection boxes, were then lowered  underground and moved to the ‘+’ end of CMS. Installation start...

  11. Channeling and electromagnetic radiation of relativistic charged particles in metal-organic frameworks

    Science.gov (United States)

    Zhevago, N. K.; Glebov, V. I.

    2017-06-01

    We have developed the theory of electromagnetic interaction of relativistic charged particles with metal-organic frameworks (MOFs). The electrostatic potential and electron number density distribution in MOFs were calculated using the most accurate data for the atomic form factors. Peculiarities of axial channeling of fast charged particles and various types of electromagnetic radiation from relativistic particles has been discussed.

  12. On electromagnetic field problems in inhomogeneous media

    Science.gov (United States)

    Mohsen, A.

    1973-01-01

    Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.

  13. Novel Ansatzes and Scalar Quantities in Gravito-Electromagnetism

    CERN Document Server

    Bakopoulos, Athanasios

    2016-01-01

    In this work, we focus on the theory of Gravito-Electromagnetism (GEM) -- the theory that describes the dynamics of the gravitational field in terms of quantities met in Electromagnetism -- and we propose two novel forms of metric perturbations. The first one is a generalisation of the traditional GEM ansatz, and succeeds in reproducing the whole set of Maxwell's equations even for a dynamical vector potential A. The second form, the so-called alternative ansatz, goes beyond that leading to an expression for the Lorentz force that matches the one of Electromagnetism and is free of additional terms even for a dynamical scalar potential \\Phi. In the context of the linearised theory, we then search for scalar invariant quantities in analogy to Electromagnetism. We define three novel, 3rd-rank gravitational tensors, and demonstrate that the last two can be employed to construct scalar quantities that succeed in giving results very similar to those found in Electromagnetism. Finally, the gauge invariance of the li...

  14. Neutron powder diffraction study on the Debye-Waller factor in TiC and TiN compounds and comparison with X-ray results

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V.; Sima, V.; Smetana, Z.; Capkova, P. (Karlova Univ., Prague (Czechoslovakia))

    1985-03-16

    The Debye parameters B/sub eff/ representing random displacement of atoms are found to be nearly identical for the samples TiC/sub 0.96/, TiN/sub 0.98/, and TiC/sub 0.48/N/sub 0.51/, being equal to (0.28 +- 0.02), (0.29 +- 0.02), and (0.30 +- 0.03) x 10/sup -20/ cm/sup 2/, respectively. The intensities of neutron diffraction peaks are discussed in connection with the study of charge distribution in TiC/sub 0.96/ by X-ray diffraction and they exclude the interpretation of intensity deviations found previously by the systematic static displacements of titanium atoms outwards the carbon vacancies.

  15. Experimental investigation of change in sheet resistance and Debye temperatures in metallic thin films due to low-energy ion beam irradiation

    Science.gov (United States)

    Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2013-10-01

    We present a systematic experimental investigation of low-energy (0-1 kV) ion irradiation induced changes in sheet resistivity and Debye temperatures in metallic nano-films of Ag, Cu and Al of thickness d/λo ˜ 2-5, where d is the film thickness and λo is the bulk mean free path, as a function of ion beam induced defects and impurities in a controlled manner. Ions of both atomic (Ne, Ar and Kr) and molecular (H2, N2) gases are employed in the investigation and the number of defects and impurities in the nano-film can be varied in a controlled manner by varying the ionic mass number (1-84) and beam fluence (8.7 × 1015-1.4 × 1016 ions cm-2). Low-temperature measurements are carried out for pristine and irradiated films to obtain the residual sheet resistance (RRS). An empirical formula relating the variation of RRS with beam fluence and ionic mass number is proposed for the first time. The change in RRS is due to the large diffusion of the impurities inside the nano-films as confirmed from energy dispersive x-ray spectroscopy. The Debye temperature (ΘD) is determined from Bloch-Grüneisen fitting of the temperature variation of sheet resistance data and it is found that ΘD decreases with increase in both fluence and ionic mass number arising primarily from the change in bulk modulus of the nano-film.

  16. Commissioning of the ATLAS electromagnetic calorimeter and Z' {yields} e{sup +}e{sup -} discovery potential in the first LHC data; Mise en service du calorimetre electromagnetique d'Atlas et determination du potentiel de decouverte d'un Z' {yields} e{sup +}e{sup -} dans les premieres donnees LHC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-15

    After about fifteen years of development, the ATLAS detector is ready to operate and it recorded, in 2008, several millions of cosmic events as well as first LHC data. This achievement is based on the long experience of beam tests and on the large effort towards the detector in situ commissioning undertaken by the ATLAS collaboration. This promises fast ability to perform searches for evidence of the Higgs boson and new physics. I heavily contributed to the in situ commissioning of the electromagnetic calorimeter. To verify its performance, I studied the first cosmic data taken in 2006 which allowed the first in situ analysis of dead channels, energy reconstruction and detector response uniformity. This participation to the commissioning has continued with the study of the single beam data recorded during the first week of LHC operation (Sept. 2008). Expanding on my expertise of the electromagnetic calorimeter, I focused my physics analysis, prepared with simulation, on the promising discovery potential of new physics at LHC via the di-electron/di-photon decay of new heavy gauge boson in the early LHC data (the first 100 pb{sup -1}). Possible limitations coming from early hardware problems or imperfect electron energy calibration in first data have been estimated. According to the new schedule of LHC operation, this analysis will be possible with 10 TeV pp collisions data in 2010. (author)

  17. Electromagnetic Armor Based on the Principles of Reconnection Electromagnetic Launcher

    Institute of Scientific and Technical Information of China (English)

    Yu Haiqing; Li Weitao; Gao Haizhen

    2015-01-01

    Active electromagnetic armor is the latest concept of defense system, and it is highly probable for this technology to be applied to many domains such as future tanks, armored vehicles and the armor of warships. The studies on active electromagnetic defense technology in the world have a history of decades. But, there still exist bottlenecks and the interceptor is one of them. This paper studies the problem of interceptors based on the principles of reconnection electromagnetic launcher and presents a kind of simulation model of it. A small scale laboratory model is made, and related experimental researches and theoretical analyses have been carried out when the projectiles are different kinds of material and shape. Satisfactory results are reached and agree with the theoretical analyses.

  18. Electromagnetic aquametry electromagnetic wave interaction with water and moist substances

    CERN Document Server

    Kupfer, Klaus

    2006-01-01

    This book covers all aspects of Electromagnetic Aquametry. It summarizes the wide area of metrology and its applications in electromagnetic sensing of moist materials. The physical properties of water in various degrees of binding interacting with electromagnetic fields is presented by model systems. The book describes measurement methods and sensors in the frequency domain, TDR-techniques for environmental problems, methods and sensors for quality assessment of biological substances, and nuclear magnetic resonance techniques. Environmental sciences, as well as civil and geoengineering, fossil fuels, food and pharmaceutical science are the main fields of application. A very wide frequency sprectrum is used for dielectric measurement methods, but the microwave range is clearly dominant. Multiparameter methods as well as methods of principal components and artificial neural networks for density independent measurements are described.

  19. The variation of the electromagnetic coupling and quintessence

    CERN Document Server

    Bento, M C

    2008-01-01

    The properties of quintessence are examined through the study of the variation of the electromagnetic coupling. We consider two simple quintessence models with a modified exponential potential and study the parameter space constraints derived from the existing observational bounds on the variation of the fine structure constant and the most recent Wilkinson Microwave Anisotropy Probe observations.

  20. Dynamics of electromagnetically-transduced microresonators

    Science.gov (United States)

    Sabater, Andrew B.

    Electromagnetic transduction is a means of actuating and sensing microelectromechanical systems (MEMS) through the interaction of electric and magnetic fields. Electromagnetically-transduced devices are Lorentz force actuated and sensed via an induced electromotive force (EMF). As such, transduction requires that the vibrations of one of these devices take place within a magnetic field. Provided one can leverage relatively recent advances with rare-earth magnets or complementary metal-oxide-semiconductor (CMOS) fabrication for magnetic field generation, electromagnetic transduction offers many distinct advantages over other methods of actuating and sensing MEMS. These advantages include the ability to generate large forces and moments that are linearly related to the supplied current, comparatively low power consumption metrics obtained with comparatively-low excitation voltages, and comparatively-simple device geometries that do not interfere with transduction. This type of transduction also facilitates operation in fluidic or harsh environments. In addition, an electromagnetically-transduced microresonator (ETM) could be used in the future for numerous applications which utilize a microresonator, such as electrical signal processing and resonant-based mass sensing, as well as self-sustaining oscillators. Other potential applications that are relatively unique to ETMs are a product of electromagnetic transduction, like magnetic field sensing. Arrays of electromagnetically-transduced devices could also be used to improve a sensor's throughput, or the total amount of sensed information, as it is comparatively-easy to electrically-couple multiple devices together. The efforts associated with the design, fabrication and characterization in both low-pressure and atmospheric conditions of one such array that has multiple, easily-tailored resonances with single-input, single-output (SISO) characteristics are documented in this dissertation. This type of electromagnetic

  1. Anisotropic Harmonic Oscillator in s Static Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    LINQiong-Gui

    2002-01-01

    A nonrelativistic charged particle moving in an anisotropic harmonic oscillator potential plus a homogeneous static electromagnetic field is studied.Several configurations of the electromagnetic field are considered.The Schoedinger equation is solved analytically in most of the cases.The energy levels and wave functions are obtained explicitly.In some of the cases,the ground state obtained is not a minimum wave packet,though it is of the Gaussian type.Coherent and squeezed states and their time evolution are discussed in detail.

  2. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    CERN Document Server

    Peer, J

    2010-01-01

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced potentials are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  3. Quasinormal Modes of Electromagnetic Perturbation around a Stringy Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu; GUI Yuan-Xing; YU Fei; WANG Fu-Jun

    2007-01-01

    We investigate the electromagnetic perturbation around a stringy black hole. A second-order differential equation is obtained for the perturbation. The variation of the effective potential with r is presented. The complex frequencies of the quasinormal modes of electromagnetic perturbation around a stringy black hole are computed by the third Wentzel-Kramers-Brillouin (WKB) approximation. The results show that the parameters resulted from the compactification of higher dimensions can influence the quasinormal complex frequencies, and the Maxwell field around a stringy black hole damps more slowly than that around a Schwarzschild black hole.

  4. Nonlinear properties of gated graphene in a strong electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am [Yerevan State University, Department of Physics (Armenia); Moulopoulos, K., E-mail: cos@ucy.ac.cy [University of Cyprus, Department of Physics (Cyprus)

    2017-03-15

    We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.

  5. Non-Thermal Electromagnetic Radiation Damage to Lens Epithelium

    OpenAIRE

    Bormusov, Elvira; P.Andley, Usha; Sharon, Naomi; Schächter, Levi; Lahav, Assaf; Dovrat, Ahuva

    2008-01-01

    High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was us...

  6. Predictions of pressure-induced structural transition,mechanical and thermodynamic properties of α- and β-Si3N4 ceramics: ab initio and quasi-harmonic Debye modeling

    Institute of Scientific and Technical Information of China (English)

    Yu Ben-Hai; Chen Dong

    2012-01-01

    The plane-wave pseudo-potential method within the framework of ab initio technique is used to investigate the structural and elastic properties of α- and β-Si3N4.The ground-state parameters accord quite well with the experimental data.Our calculation reveals that α-Si3N4 can retain its stability to at least 40 GPa when compressed at 300 K.The α → β phase transformation would not occur in a pressure range of 0-40 GPa and a temperature range of 0-300 K.Actually,the α → β transition occurs at 1600 K and 7.98 GPa.For α- and β-Si3N4,the c axes are slightly more incompressible than the a axes.We conclude that β-Si3N4 is a hard material and ductile in nature.On the other hand,β-Si3N4 is also found to be an ionic material and can retain its mechanical stability in a pressure range of 0-10 GPa.Besides,the thermodynamic properties such as entropy,heat capacity,and Debye temperature of α- and β-Si3N4 are determined at various temperatures and pressures.Significant features in these properties are observed at high temperature.The calculated results are in good agreement with available experimental data and previous theoretical values.Many fundamental solid-state properties are reported at high pressure and high temperature.Therefore,our results may provide useful information for theoretical and experimental investigations of the Si3N4 polymorphs.

  7. CIME School on "Computational Electromagnetism"

    CERN Document Server

    Valli, Alberto

    2015-01-01

    Presenting topics that have not previously been contained in a single volume, this book offers an up-to-date review of computational methods in electromagnetism, with a focus on recent results in the numerical simulation of real-life electromagnetic problems and on theoretical results that are useful in devising and analyzing approximation algorithms. Based on four courses delivered in Cetraro in June 2014, the material covered includes the spatial discretization of Maxwell’s equations in a bounded domain, the numerical approximation of the eddy current model in harmonic regime, the time domain integral equation method (with an emphasis on the electric-field integral equation) and an overview of qualitative methods for inverse electromagnetic scattering problems. Assuming some knowledge of the variational formulation of PDEs and of finite element/boundary element methods, the book is suitable for PhD students and researchers interested in numerical approximation of partial differential equations and scienti...

  8. Electromagnetic contributions to pseudoscalar masses

    CERN Document Server

    Basak, S; Bernard, C; DeTar, C; Freeland, E; Freeman, W; Foley, J; Gottlieb, Steven; Heller, U M; Hetrick, J E; Laiho, J; Levkova, L; Oktay, M; Osborn, J; Sugar, R L; Torok, A; Toussaint, D; Van de Water, R S; Zhou, R

    2013-01-01

    We report on the calculation by the MILC Collaboration of the electromagnetic effects on kaon and pion masses. These masses are computed in QCD with dynamical (asqtad staggered) quarks plus quenched photons at three lattice spacings varying from 0.12 to 0.06 fm. The masses are fit to staggered chiral perturbation theory with NLO electromagnetic terms, as well as analytic terms at higher order. We extrapolate the results to physical light-quark masses and to the continuum limit. At the current stage of the analysis, most, but not all, of the systematic errors have been estimated. The main goal is the comparison of kaon electromagnetic splittings to those of the pion, i.e., an evaluation of the corrections to "Dashen's theorem." This in turn will allow us to significantly reduce the systematic errors in our determination of m_u/m_d.

  9. Traditional beliefs and electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Colin A. Ross

    2011-09-01

    Full Text Available The author proposes that a wide range of traditional beliefs and practices may provide clues to real electromagnetic field interactions in the biosphere. For instance, evil eye beliefs may be a cultural elaboration of the sense of being stared at, which in turn may have a basis in real electromagnetic emissions through the eye. Data to support this hypothesis are presented. Other traditional beliefs such as remote sensing of game and the importance of connection to the Earth Mother may also contain a kernel of truth. A series of testable scientific hypotheses concerning traditional beliefs and electromagnetic fields is presented. At this stage, the theory does not have sufficient evidence to be accepted as proven; its purpose is to stimulate thought and research

  10. Electromagnetic fields in biological systems

    CERN Document Server

    Lin, James C

    2016-01-01

    As wireless technology becomes more sophisticated and accessible to more users, the interactions of electromagnetic fields with biological systems have captured the interest not only of the scientific community but also the general public. Unintended or deleterious biological effects of electromagnetic fields and radiation may indicate grounds for health and safety precautions in their use. Spanning static fields to terahertz waves, Electromagnetic Fields in Biological Systems explores the range of consequences these fields have on the human body. With contributions by an array of experts, topics discussed include: Essential interactions and field coupling phenomena, highlighting their importance in research on biological effects and in scientific, industrial, and medical applications Electric field interactions in cells, focusing on ultrashort, pulsed high-intensity fields The effect of exposure to naturally occurring and human-made static, low-frequency, and pulsed magnetic fields in biological systems Dosi...

  11. Electromagnetic Fields and Bioenergy Phenomenon

    Directory of Open Access Journals (Sweden)

    İlhan Koşalay

    2014-08-01

    Full Text Available Electromagnetic energy is defined in the large frequency range and it shows its existence in different manners for every frequency range. When considering history of mankind, discovery of the electricity and presence of electrical and electronics based equipments is not very old. Human beings are exposed to electromagnetic fields and waves which they aren't used to live with those fields for ages. In this connection, lots of studies were done for the thesis of that these fields can produce harmful effects on people. Although results of the studies which were done in this area point out important subjects, sufficient outputs and judgments haven't been appeared yet in general meaning. This study was done to introduce findings which support that electromagnetic energy in some frequency can have beneficial effects on the living being.

  12. Electromagnetic nature of dark energy

    CERN Document Server

    Jimenez, Jose Beltran

    2009-01-01

    Out of the four components of the electromagnetic field, Maxwell's theory only contains two physical degrees of freedom. However, in an expanding universe, consistently eliminating one of the "unphysical" states in the covariant (Gupta-Bleuler) formalism turns out to be difficult to realize. In this work we explore the possibility of quantization without subsidiary conditions. This implies that the theory would contain a third physical state. The presence of such a new (temporal) electromagnetic mode on cosmological scales is shown to generate an effective cosmological constant which can account for the accelerated expansion of the universe. This new polarization state is completely decoupled from charged matter, but can be excited gravitationally. In fact, primordial electromagnetic quantum fluctuations produced during electroweak scale inflation could naturally explain the presence of this mode and also the measured value of the cosmological constant. The theory is compatible with all the local gravity test...

  13. Objects of maximum electromagnetic chirality

    CERN Document Server

    Fernandez-Corbaton, Ivan

    2015-01-01

    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. The upper bound is attained if and only if the object is transparent for fields of one handedness (helicity). Additionally, electromagnetic duality symmetry, i.e. helicity preservation upon scattering, turns out to be a necessary condition for reciprocal scatterers to attain the upper bound. We use these results to provide requirements for the design of such extremal scatterers. The requirements can be formulated as constraints on the polarizability tensors for dipolar scatterers or as material constitutive relations. We also outline two applications for objects of maximum electromagnetic chirality: A twofold resonantly enhanced and background free circular dichroism measurement setup, and angle independent helicity filtering glasses.

  14. Perturbations in electromagnetic dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, Jose Beltrán; Maroto, Antonio L. [Departamento de Física Teórica, Universidad Complutense de Madrid, 28040 Madrid (Spain); Koivisto, Tomi S. [Institute for Theoretical Physics, University of Heidelberg, 69120 Heidelberg (Germany); Mota, David F., E-mail: jobeltra@fis.ucm.es, E-mail: T.Koivisto@thphys.uni-heidelberg.de, E-mail: maroto@fis.ucm.es, E-mail: d.f.mota@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo (Norway)

    2009-10-01

    It has been recently proposed that the presence of a temporal electromagnetic field on cosmological scales could explain the phase of accelerated expansion that the universe is currently undergoing. The field contributes as a cosmological constant and therefore, the homogeneous cosmology produced by such a model is exactly the same as that of ΛCDM. However, unlike a cosmological constant term, electromagnetic fields can acquire perturbations which in principle could affect CMB anisotropies and structure formation. In this work, we study the evolution of inhomogeneous scalar perturbations in this model. We show that provided the initial electromagnetic fluctuations generated during inflation are small, the model is perfectly compatible with both CMB and large scale structure observations at the same level of accuracy as ΛCDM.

  15. Electromagnetic and microwave absorption properties of single-walled carbon nanotubes and CoFe{sub 2}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo; Sheng, Leimei, E-mail: slmss@shu.edu.cn; Yu, Liming; An, Kang; Ren, Wei; Zhao, Xinluo, E-mail: xlzhao@shu.edu.cn

    2015-03-15

    Highlights: • LPA-SWCNTs have been abundantly fabricated by a facile, time-saving, economical and non-hazardous method using DC arc discharge technique in low-pressure air. • The electromagnetic and microwave absorption properties of LPA-SWCNTs, CoFe{sub 2}O{sub 4} nanocrystals and LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites were investigated and the LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites exhibited excellent microwave absorption properties. • The Debye theory and impedance matching were used to analyze the electromagnetic parameters and microwave absorption properties. - Abstract: Single-walled carbon nanotubes were facilely and abundantly synthesized by low-pressure air arc discharge method (LPA-SWCNTs), and CoFe{sub 2}O{sub 4} nanocrystals were synthesized by a nitrate citric acid sol–gel auto-ignition method. The electromagnetic and microwave absorption properties of LPA-SWCNTs, CoFe{sub 2}O{sub 4} nanocrystals and their nanocomposites were investigated. The LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites showed excellent microwave absorption properties. The minimum efficient reflection loss is −30.7 dB at 12.9 GHz for 10 wt% of LPA-SWCNTs in the nanocomposites, and an effective absorption bandwidth with a reflection loss below −10 dB is 7.2 GHz. The Debye equation and impedance matching were introduced to explain the microwave absorption properties. Compared with the single-component materials, the LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites are an excellent candidate for microwave absorbers.

  16. Tinnitus and cell phones: the role of electromagnetic radiofrequency radiation

    Directory of Open Access Journals (Sweden)

    Luisa Nascimento Medeiros

    2016-02-01

    Full Text Available ABSTRACT INTRODUCTION: Tinnitus is a multifactorial condition and its prevalence has increased on the past decades. The worldwide progressive increase of the use of cell phones has exposed the peripheral auditory pathways to a higher dose of electromagnetic radiofrequency radiation (EMRFR. Some tinnitus patients report that the abusive use of mobiles, especially when repeated in the same ear, might worsen ipsilateral tinnitus. OBJECTIVE: The aim of this study was to evaluate the available evidence about the possible causal association between tinnitus and exposure to electromagnetic waves. METHODS: A literature review was performed searching for the following keywords: tinnitus, electromagnetic field, mobile phones, radio frequency, and electromagnetic hypersensitivity. We selected 165 articles that were considered clinically relevant in at least one of the subjects. RESULTS: EMRFR can penetrate exposed tissues and safety exposure levels have been established. These waves provoke proved thermogenic effects and potential biological and genotoxic effects. Some individuals are more sensitive to electromagnetic exposure (electrosensitivity, and thus, present earlier symptoms. There may be a common pathophysiology between this electrosensitivity and tinnitus. CONCLUSION: There are already reasonable evidences to suggest caution for using mobile phones to prevent auditory damage and the onset or worsening of tinnitus.

  17. Derivation of Electromagnetism from the Elastodynamics of the Spacetime Continuum

    Directory of Open Access Journals (Sweden)

    Millette P. A.

    2013-04-01

    Full Text Available We derive Electromagnetism from the Elastodynamics of the Spacetime Continuum based on the identification of the theory’s antisymmetric rotation tensor with the elec- tromagnetic field-strength tensor. The theory provides a physical explanation of the electromagnetic potential, which arises from transverse ( shearing displacements of the spacetime continuum, in contrast to mass which arises from longitudinal (dilatational displacements. In addition, the theory provides a physical explanation of the current density four-vector, as the 4-gradient of the volume dilatation of the spacetime con- tinuum. The Lorentz condition is obtained directly from the theory. In addition, we obtain a generalization of Electromagnetism for the situation where a volume force is present, in the general non-macroscopic case. Maxwell’s equations are found to remain unchanged, but the current density has an additional term proportional to the volume force.

  18. Implantable rhythm devices and electromagnetic interference: myth or reality?

    Science.gov (United States)

    Dyrda, Katia; Khairy, Paul

    2008-07-01

    Current medical guidelines have prompted implementation of increasing numbers of implantable rhythm devices, be they pacemakers, internal cardioverter-defibrillators or loop recorders. These devices rely on complex microcircuitry and use electromagnetic waves for communication. They are, therefore, susceptible to interference from surrounding electromagnetic radiation and magnetic energy. Hermetic shielding in metallic cases, filters, interference rejection circuits and bipolar sensing have contributed to their relative resistance to electromagnetic interference (EMI) in household and workplace environments. Device interactions have occurred in hospitals where EMI sources are ubiquitous, including radiation, electrocautery and MRI exposures. However, with rapidly evolving technology, devices and potential sources of EMI continue to change. This review provides a contemporary overview of the current state of knowledge regarding risks attributable to EMI; highlights current limitations of implantable rhythm devices; and attempts to distinguish myths from realities.

  19. An alternative explanation of the change in T-dependence of the effective Debye-Waller factor at T(c) or T(B).

    Science.gov (United States)

    Ngai, K L; Habasaki, J

    2014-09-21

    The cusp-like temperature dependence of the Debye-Waller factor or non-ergodicity parameter f(Q)(T) at some temperature T(c) above T(g) found by experiments in several fragile glassformers has been considered as critical evidence for validity of the ideal Mode Coupling Theory (MCT). A comprehensive review of experimental data of f(Q)(T) and beyond brings out various problems of the MCT predictions. For example, the molten salt, 0.4Ca(NO3)2-0.6KNO3 (CKN), was the first glassformer measured by neutron scattering to verify the cusp-like behavior of f(Q)(T) at T(c) predicted by ideal MCT. While the fits of the other scaling laws of MCT to viscosity, light scattering, and dielectric relaxation data all give T(c) in the range from 368 to 375 K, there is no evidence of cusp-like behavior of f(Q)(T) at T(c) from more accurate neutron scattering data obtained later on by Mezei and Russina [J. Phys.: Condens. Matter 11, A341 (1999)] at temperatures below 400 K. In several molecular glass-formers, experiments have found at temperatures below T(c) that [1-f(Q)(T)] is manifested as nearly constant loss (NCL) in the frequency dependent susceptibility. The NCL persists down to below T(g) and is not predicted by the ideal MCT. No clear evidence of the change of T-dependence of f(Q)(T) at any T(c) was found in intermediate and strong glassformers, although ideal MCT does not distinguish fragile and strong glassformers in predicting the critical behavior of f(Q)(T) a priori. Experiments found f(Q)(T) changes T-dependence not only at T(c) but also at the glass transition temperature T(g). The changes of T-dependence of f(Q)(T) at T(c) and T(g) are accompanied by corresponding changes of dynamic variables and thermodynamic quantities at T(B) ≈ T(c) and at T(g). The dynamic variables include the relaxation time τ(α)(T), the non-exponentiality parameter n(T), and the generalized fragility m(T) of the structural α-relaxation. The thermodynamic quantities are the free volume deduced

  20. Gauge Invariant Fractional Electromagnetic Fields

    CERN Document Server

    Lazo, Matheus Jatkoske

    2011-01-01

    Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.

  1. Circuit modeling for electromagnetic compatibility

    CERN Document Server

    Darney, Ian B

    2013-01-01

    Very simply, electromagnetic interference (EMI) costs money, reduces profits, and generally wreaks havoc for circuit designers in all industries. This book shows how the analytic tools of circuit theory can be used to simulate the coupling of interference into, and out of, any signal link in the system being reviewed. The technique is simple, systematic and accurate. It enables the design of any equipment to be tailored to meet EMC requirements. Every electronic system consists of a number of functional modules interconnected by signal links and power supply lines. Electromagnetic interference

  2. Electromagnetic compatibility principles and applications

    CERN Document Server

    Weston, David A

    2001-01-01

    This totally revised and expanded reference/text provides comprehensive, single-source coverage of the design, problem solving, and specifications of electromagnetic compatibility (EMC) into electrical equipment/systems-including new information on basic theories, applications, evaluations, prediction techniques, and practical diagnostic options for preventing EMI through cost-effective solutions. Offers the most recent guidelines, safety limits, and standards for human exposure to electromagnetic fields! Containing updated data on EMI diagnostic verification measurements, as well as over 900 drawings, photographs, tables, and equations-500 more than the previous edition

  3. Revisiting quaternion formulation and electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Negi, O.P.S.; Bisht, S.; Bisht, P.S. [Almara, Kumaun Univ. (India). Dept. of Physics

    1998-12-01

    Demonstrating the isomorphic matrix representation of biquaternions the dynamical variables. Maxwell`s equation and equation of motion are derived in compact and expanded forms, respectively, for quaternions and matrix representations. Isomorphic matrix representation has also been carried out to describe the generalized electromagnetism in the presence of magnetic monopole. Biquaternion Lorentz transformation mapping and the elementary transformation for various matrix representation of quaternion units are also analysed. It is shown that the biquaternion theory of generalized electromagnetic fields enhances the dimensionality of the representation from 4-dimensional linear vector space.

  4. Pre-Seismic Electromagnetic Effects

    Institute of Scientific and Technical Information of China (English)

    Guo Yahong

    2007-01-01

    Along with intense rock strain and rock bursting processes at the late stage of earthquake preparation, mechanical-electrical energy conversion appears in the seismogenic region and its nearby rock formations, which correspondingly stimulate certain electromagnetic effects. The paper mainly analyzes the pre-seismic electromagnetic effect of the ionosphere and proposes a method of monitoring VLF radio waves over the additional ionized region and so on. It is deemed that the method is of significance for short and imminent term prediction of strong earthquakes.

  5. Electromagnetic geothermometry theory, modeling, practice

    CERN Document Server

    Spichak, Viacheslav V

    2015-01-01

    Electromagnetic Geothermometry explores, presents and explains the new technique of temperature estimation within the Earth's interior; the Electromagnetic technique will identify zones of geothermal anomalies and thus provides locations for deep drilling. This book includes many case studies from geothermal areas such as Travale (Italy), Soultz-sous-Forêts (France) and Hengill (Iceland), allowing the author and reader to draw conclusions regarding the dominating heat transfer mechanisms, location of its sources and to constrain the locations for drilling of the new boreholes. Covering a to

  6. Mathematical methods of electromagnetic theory

    CERN Document Server

    Friedrichs, Kurt O

    2014-01-01

    This text provides a mathematically precise but intuitive introduction to classical electromagnetic theory and wave propagation, with a brief introduction to special relativity. While written in a distinctive, modern style, Friedrichs manages to convey the physical intuition and 19th century basis of the equations, with an emphasis on conservation laws. Particularly striking features of the book include: (a) a mathematically rigorous derivation of the interaction of electromagnetic waves with matter, (b) a straightforward explanation of how to use variational principles to solve problems in el

  7. Integral equation methods for electromagnetics

    CERN Document Server

    Volakis, John

    2012-01-01

    This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo

  8. Measurement of advanced electromagnetic radiation

    OpenAIRE

    Bajlo, Darko

    2017-01-01

    For the purpose of detecting advanced electromagnetic radiation predicted by Wheeler-Feynman absorber theory for the case of incomplete absorption of retarded electromagnetic radiation, pulses in duration of 6 ns to 24 ns, wavelength from 91 cm to 200 cm where supplied to three different transmitting antennas. Detection was done with a λ/20 monopole antenna in the advanced time window at a time 2r/c before the arrival of the center of the retarded pulse. At distances ranging from 430 cm to 18...

  9. Electromagnetic Gun With Commutated Coils

    Science.gov (United States)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  10. Power law inflation with electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xianghui; Isenberg, James, E-mail: isenberg@uoregon.edu

    2013-07-15

    We generalize Ringström’s global future causal stability results (Ringström 2009) [11] for certain expanding cosmological solutions of the Einstein-scalar field equations to solutions of the Einstein–Maxwell-scalar field system. In particular, after noting that the power law inflationary spacetimes (M{sup n+1},g{sup -hat}, ϕ{sup -hat}) considered by Ringström (2009) in [11] are solutions of the Einstein–Maxwell-scalar field system (with exponential potential) as well as of the Einstein-scalar field system (with the same exponential potential), we consider (nonlinear) perturbations of initial data sets of these spacetimes which include electromagnetic perturbations as well as gravitational and scalar perturbations. We show that if (as in Ringström (2009) [11]) we focus on pairs of relatively scaled open sets U{sub R{sub 0}}⊂U{sub 4R{sub 0}} on an initial slice of (M{sup n+1},g{sup -hat}), and if we choose a set of perturbed data which on U{sub 4R{sub 0}} is sufficiently close to that of (M{sup n+1},g{sup -hat},ϕ{sup -hat}, A{sup -hat} = 0), then in the maximal globally hyperbolic spacetime development (M{sup n+1},g,ϕ,A) of this data via the Einstein–Maxwell-scalar field equations, all causal geodesics emanating from U{sub R{sub 0}} are future complete (just as in (M{sup n+1},g{sup -hat})). We also verify that, in a certain sense, the future asymptotic behavior of the fields in the spacetime developments of the perturbed data sets does not differ significantly from the future asymptotic behavior of (M{sup n+1},g{sup -hat}, ϕ{sup -hat}, A{sup -hat} = 0). -- Highlights: •We prove stability of expanding solutions of the Einstein–Maxwell-scalar field equations. •All nearby solutions are geodesically complete. •The topology of the initial slice is irrelevant to our stability results.

  11. Possíveis efeitos adversos dos campos eletromagnéticos (50/60 Hz em humanos e em animais Potential adverse effects of electromagnetic fields (50/60 Hz on humans and animals

    Directory of Open Access Journals (Sweden)

    Caroline Wanderley Souto Ferreira Anselmo

    2005-12-01

    Full Text Available Os avanços tecnológicos têm aumentado o número de equipamentos elétricos e eletrônicos, seja nas residências ou mesmo no ambiente de trabalho, fazendo com que a população conviva com grande número de fontes de irradiação eletromagnética, com os mais diversos níveis de potência e freqüência. Por muitos anos, alguns cientistas e engenheiros acreditaram que o campo eletromagnético (CEM com freqüência extremamente baixa não pudesse causar efeitos e alterações significantes no material biológico. O objetivo deste trabalho é verificar os possíveis efeitos adversos dos CEMs em humanos e animais, que foram publicados nos últimos anos, através de uma revisão da literatura disponível em Medline, revistas nacionais e internacionais e catálogos de obras de referência na área dos CEM (50/60 Hz. Como resultado foi observado que o CEM (50/60 Hz é capaz de produzir diversos efeitos adversos em humanos e animais, como por exemplo: distúrbios na reprodução, doenças degenerativas, efeitos psiquiátricos e psicológicos, alterações citogenéticas, alterações no sistema cardiovascular, nervoso e neuroendócrino, bem como nos parâmetros biológicos e bioquímicos. Apesar de todas estas constatações e devido a muitas controvérsias entre vários autores, faz-se necessário um estudo mais específico e aprofundado sobre o assunto.The technologic development has increased the number of electric and electronic devices for household and work environment applications. In this way, we have to cope with a diverse quantity of electromagnetic irradiation sources, with different power and frequency ranges. For many years, some scientists and engineers believed that low-frequencies electromagnetic field (EMF could not cause any bad effect or substantial alterations on the biologic livings. This work has the objective to perform a literature review of the possible effects of EMF in human beings and animals, that was published in the

  12. Electromagnetic Fields and Public Health: Mobile Phones

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Electromagnetic fields and public health: mobile phones Fact sheet N° ... an estimated 6.9 billion subscriptions globally. The electromagnetic fields produced by mobile phones are classified by the ...

  13. Higher-order techniques in computational electromagnetics

    CERN Document Server

    Graglia, Roberto D

    2016-01-01

    Higher-Order Techniques in Computational Electromagnetics explains 'high-order' techniques that can significantly improve the accuracy, computational cost, and reliability of computational techniques for high-frequency electromagnetics, such as antennas, microwave devices and radar scattering applications.

  14. Spacetime algebra as a powerful tool for electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Dressel, Justin, E-mail: prof.justin.dressel@gmail.com [Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521 (United States); Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Konstantin Y. [Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Interdisciplinary Theoretical Science Research Group (iTHES), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Nori, Franco [Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-08

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann–Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric–magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  15. Gauge Invariant Formulation of the Interaction of Electromagnetic Radiation and Matter

    Science.gov (United States)

    Kobe, Donald H.; Smirl, Arthur L.

    1978-01-01

    Presents a discussion in Perturbation theory in quantum mechanics for the interaction of electromagnetic radiation with matter. Advocates the use of electric dipole interaction whenever it can be used as compared to the vector potential interaction. (GA)

  16. Mars Methane Analogue Mission (M3): Near Subsurface Electromagnetic Techniques and Analysis

    Science.gov (United States)

    Boivin, A.; Samson, C.; Holladay, J. S.; Cloutis, E. A.; Ernst, R. E.

    2012-03-01

    As part of the Canadian Space Agency's Mars Methane Analogue Mission, a micro-rover mission, an Electromagnetic Induction Sounder (EMIS) was used with the goal of demonstrating its value as a potential science instrument onboard future rovers.

  17. Electromagnetic field anomalies above an isometric depression

    Science.gov (United States)

    Golubtsova, N. S.

    1981-12-01

    The paper examines the three-dimensional simulation of the electromagnetic field above an isometric depression with conducting deposits. The model makes it possible to study the development of electromagnetic anomalies over such a depression and to make qualitative as well as quantitative assessments of the dependence of electromagnetic anomalies on field frequency, the dimensions of geoelectric inhomogeneities, and the specific resistance of the foundation of the depression. The present approach can be used in geoelectric and magnetotelluric studies of electromagnetic anomalies.

  18. A kinetic model for the one-dimensional electromagnetic solitons in an isothermal plasmapdf

    Energy Technology Data Exchange (ETDEWEB)

    tajima, Toshi

    2002-02-22

    Two nonlinear second order differential equations for the amplitude of the vector potential and for the electromagnetic potential are derived, starting from the full Maxwell equations where the field sources are calculated by integrating in the momentum space the particle distribution function, which is an exact solution of the relativistic Vlasov equation. The resulting equations are exact in describing a hot one-dimensional plasma sustaining a relativistically intense, circularly polarized electromagnetic polarized electromagnetic radiation. The case of standing soliton-like structures in an electron-positron plasma is then investigated. It is demonstrated that at ultrarelativistic temperatures extremely large amplitude solitons can be formed in a strongly overdense plasma.

  19. Ionic Debye Screening in Dense Liquid Plasmas Observed for Li+p,d Reactions with Liquid Li Target

    Institute of Scientific and Technical Information of China (English)

    J.Kasagi; H.Yonemura; Y.Toriyabe; A.Nakagawa; T.Sugawara; WANG Tie-shan

    2009-01-01

    Thick target yields of a particles emitted in the ~6Li(d,a)~4 He and ~7Li(p,a)~4 He reactions were measured for Li target in the solid and liquid phase.Observed reaction rates for the liquid Li are always larger than those for the solid.This suggests that the stopping power of hydrogen ion in the liquid Li metal might be smaller than in the solid.Using the empirically obtained stopping power for the liquid Li,we have deduced the screening potentials of the Li+p and Li+d reactions in both phases.The deduced screening potential for the liquid Li is about 500 eV larger than for the solid.This difference is attributed to the effect of liquefied Li~+ ions.It is concluded that the ionic screening is much stronger than the electronic screening in a low-temperature dense plasmas.

  20. New Concepts in Electromagnetic Materials and Antennas

    Science.gov (United States)

    2015-01-01

    AFRL-RY-WP-TR-2014-0233 NEW CONCEPTS IN ELECTROMAGNETIC MATERIALS AND ANTENNAS Jeffrey Allen, Naftali Herscovici, Brad Kramer, and...Bae-Ian Wu Antennas & Electromagnetics Technology Branch Multispectral Sensing & Detection Division JANUARY 2015 Final Report...Signature// //Signature// BRADLEY A. KRAMER, Program Manager TONY C. KIM, Branch Chief Antenna & Electromagnetic Technology

  1. Some Student Conceptions of Electromagnetic Induction

    Science.gov (United States)

    Thong, Wai Meng; Gunstone, Richard

    2008-01-01

    Introductory electromagnetism is a central part of undergraduate physics. Although there has been some research into student conceptions of electromagnetism, studies have been sparse and separated. This study sought to explore second year physics students' conceptions of electromagnetism, to investigate to what extent the results from the present…

  2. Explanations, Education, and Electromagnetic Fields.

    Science.gov (United States)

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  3. Electromagnetic Levitation of a Disc

    Science.gov (United States)

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  4. Electromagnetic transfer information in medicine

    Directory of Open Access Journals (Sweden)

    Settimio Grimaldi

    2012-09-01

    Full Text Available Background: Only recently has the critical importance of electromagnetic (EM field interactions in biology and medicine been recognized. We review the phenomenon of resonance signaling, discussing how specific frequencies modulate cellular function to restore or maintain health. Evidence: Application of EM tuned signals represents more than merely a new tool in Information Medicine. It can also be viewed in the larger context of Electromagnetic Medicine, the all-encompassing view that elevates the electromagnetic over the biochemical. The discovery by Zhadin that ultrasmall magnetic intensities are biologically significant suggests that EM signaling is endogenous to cell regulation, and consequently that the remarkable effectiveness of EM resonance treatments reflects a fundamental aspect of biological systems. The concept that organisms contain mechanisms for generating biologically useful electric signals is not new, dating back to the 19th century discovery of currents of injury by Matteucci. The corresponding modern-day version is that ion cyclotron resonance magnetic field combinations help regulate biological information. Prospects: The next advance in medicine will be to discern and apply those electromagnetic signaling parameters acting to promote wellness, with decreasing reliance on marginal biochemical remediation and pharmaceuticals.

  5. $\\Delta$-N Electromagnetic Transition

    CERN Document Server

    Loan, M

    1999-01-01

    The EM ratio for a free Delta electromagnetic transition is discussed within the frame work of nonrelativistic approach. Such an approach gives a good account of data for a free Delta but is less important for an intrinsically relativistic nuclear many body problem.

  6. Fast electromagnetic field strength probes

    NARCIS (Netherlands)

    Leferink, Frank; Serra, Ramiro

    2013-01-01

    Diode detectors and thermocouple detectors are conventionally used to measure electromagnetic field strength. Both detectors have some disadvantages for applications where a fast response and a high dynamic range is required. The diode detector is limited in dynamic range. The dynamic range is impor

  7. Operation of Electromagnetic Isotope Separator

    Institute of Scientific and Technical Information of China (English)

    MI; Ya-jing

    2015-01-01

    In 2015,we mainly completed the installation of the electromagnetic isotope separator comprehensive technical transformation projects,including the work of installation,debugging,commissioning and acceptance.In June 30,2015,according to the schedule requirements,the project

  8. Electromagnetic Levitation of a Disc

    Science.gov (United States)

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  9. Extrinsic electromagnetic chirality in metamaterials

    OpenAIRE

    Plum, E.; Fedotov, V. A.; Zheludev, N. I.

    2009-01-01

    Three- and two-dimensional chirality arising from the mutual orientation of non-chiral planar metamaterial structures and the incident electromagnetic wave (extrinsic chirality) lead to pronounced optical activity, circular dichroism and asymmetric transmission indistinguishable from those seen in media consisting of three- and two-dimensionally chiral molecules (intrinsic chirality).

  10. Biological effects of electromagnetic fields

    African Journals Online (AJOL)

    2012-02-28

    Feb 28, 2012 ... cell level studies have shown that electromagnetic fields do not have a directly .... The ionic flows, which can be formed in case these molecules are affected from ...... Electr Magn Biol Med 1st Orlando FL. 13. Magnusson M ...

  11. Coupling Electromagnetism to Global Charge

    CERN Document Server

    Guendelman, Eduardo

    2013-01-01

    It is shown that an alternative to the standard scalar QED is possible. In this new version there is only global gauge invariance as far as the charged scalar fields are concerned although local gauge invariance is kept for the electromagnetic field. The electromagnetic coupling has the form $j_\\mu (A^{\\mu} +\\partial^{\\mu}B)$ where $B$ is an auxiliary field and the current $j_\\mu$ is $A_{\\mu}$ independent so that no "sea gull terms" are introduced. In a model of this kind spontaneous breaking of symmetry does not lead to photon mass generation, instead the Goldstone boson becomes a massless source for the electromagnetic field. Infrared questions concerning the theory when spontaneous symmetry breaking takes place and generalizations to global vector QED are discussed. In this framework Q-Balls and other non topological solitons that owe their existence to a global U(1) symmetry can be coupled to electromagnetism and could represent multiply charged particles now in search in the LHC. Finally, we give an exam...

  12. Radiation leakage from electromagnetic oven

    Directory of Open Access Journals (Sweden)

    Abdurrahman Khalil

    2015-10-01

    Results & Discussions: The measurements have been done at some houses in Erbil city, according to the source of background radiation exist before measuring data. Our data compared with standard safe range of radiation data. Results showed that there is radiation leak form all type of electromagnetic oven and all at the order of safety compared with standard value.

  13. Landau levels for electromagnetic wave

    CERN Document Server

    Zyuzin, Vladimir A

    2016-01-01

    In this paper we show that the frequencies of propagating electromagnetic wave (photon) in rotating dielectric media obey Landau quantization. We show that the degeneracy of right and left helicities of photons is broken on the lowest Landau level. In spatially homogeneous system this level is shown to be helical, i.e. left and right helical photons counter-propagate.

  14. Cardiovascular Responses to Electromagnetic Radiation

    African Journals Online (AJOL)

    Dr Olaleye Samuel

    3Optoelectronics and Measurement Techniques Laboratory, Department of Electrical Engineering, 9014 University of Oulu, ... much less man made electromagnetic activity. ... the heart rate remains constant, the mobile phone opening and closing can be reflected in the ..... permeability in mammalian brain 7 days days after.

  15. Synthetic aperture controlled source electromagnetics

    NARCIS (Netherlands)

    Fan, Y.; Snieder, R.; Slob, E.; Hunziker, J.W.; Singer, J.; Sheiman, J.; Rosenquist, M.

    2010-01-01

    Controlled‐source electromagnetics (CSEM) has been used as a de‐risking tool in the hydrocarbon exploration industry. Although there have been successful applications of CSEM, this technique is still not widely used in the industry because the limited types of hydrocarbon reservoirs CSEM can detect.

  16. Heat Radiators for Electromagnetic Pumps

    Science.gov (United States)

    Campana, R. J.

    1986-01-01

    Report proposes use of carbon/carbon composite radiators in electromagnetic coolant pumps of nuclear reactors on spacecraft. Carbon/carbon composite materials function well at temperatures in excess of 2,200 K. Aluminum has melting temperature of only 880 K.

  17. Nanocomposites for electromagnetic radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Petrunin, V. F., E-mail: VFPetrunin@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    Specific features that characterize nanoparticles and which are due to their small size and allow one to enhance the interaction between the electromagnetic radiation and nanostructured materials and to develop the effective protection of man and equipment against harmful uncontrolled radiation are reported. Examples of the development of nanocomposite radar absorbing materials that can be used for protection of man and equipment are presented.

  18. Electromagnetic Corrections to the Hadronic Phase Shifts in Low-Energy $\\pi^{+}p$ Elastic Scattering

    CERN Document Server

    Gashi, A; Oades, G C; Rasche, G; Woolcock, W S

    1999-01-01

    We calculate for the s-, p(1/2)- and p(3/2)-waves the electromagnetic corrections which must be subtracted from the nuclear phase shifts obtained from the analysis of low energy pi+ p elastic scattering data, in order to obtain hadronic phase shifts. The calculation uses relativised Schroedinger equations containing the sum of an electromagnetic potential and an effective hadronic potential. We compare our results with those of previous calculations and qualitatively estimate the uncertainties in the corrections.

  19. Calculation of the π Meson Electromagnetic Form Factor

    Institute of Scientific and Technical Information of China (English)

    王志刚; 汪克林; 完绍龙

    2001-01-01

    The modified flat-bottom potential (MFBP) is given by the combination of the flat-bottom potential with considerations for the infrared and ultraviolet asymptotic behaviour of the effective quark-gluon coupling. The πmeson electromagnetic form factor is calculated in the framework of the coupled Schwinger-Dyson equation andthe Bethe-Salpeter equation in the simplified impulse approximation (dressed vertex) with the MFBP. All ournumerical results give a good fit to experimental values.

  20. Effect of Electromagnetic Treatment on Fatigue Resistance of 2011 Aluminum Alloy

    Science.gov (United States)

    Mohin, M. A.; Toofany, H.; Babutskyi, A.; Lewis, A.; Xu, Y. G.

    2016-08-01

    Beneficial effects of the electromagnetic treatment on fatigue resistance were reported on several engineering alloys. These could be linked to the dislocation activity and the rearrangement of the crystal structure of the material under the electromagnetic field (EMF), resulting in delayed crack initiation. This paper presents an experimental study on the effect of pulsed electromagnetic treatment on the fatigue resistance of 2011 aluminum alloy. Circular cantilever specimens with loads at their ends were tested on rotating fatigue machine SM1090. Fatigue lives of treated and untreated specimens were analyzed and compared systematically. It has been found that the effect of the pulsed electromagnetic treatment on the fatigue resistance is dependent on the intensity of the pulsed EMF and the number of the treatment applied. Clear beneficial effect of the pulsed electromagnetic treatment on the fatigue resistance of the aluminum alloys has been observed, demonstrating a potential new technique to industries for fatigue life extension.