WorldWideScience

Sample records for deacetylase inhibitor vorinostat

  1. Clinical pharmacology profile of vorinostat, a histone deacetylase inhibitor.

    Science.gov (United States)

    Iwamoto, Marian; Friedman, Evan J; Sandhu, Punam; Agrawal, Nancy G B; Rubin, Eric H; Wagner, John A

    2013-09-01

    Vorinostat is a histone deacetylase inhibitor that has demonstrated preclinical activity in numerous cancer models. Clinical activity has been demonstrated in patients with a variety of malignancies. Vorinostat is presently indicated for the treatment of patients with advanced cutaneous T cell lymphoma (CTCL). Clinical investigation is ongoing for therapy of other solid tumors and hematological malignancies either as monotherapy or in combination with other chemotherapeutic agents. This review summarizes the pharmacokinetic properties of vorinostat. Monotherapy pharmacokinetic data across a number of pharmacokinetic studies were reviewed, and data are presented. In addition, literature review was performed to obtain published Phase I and II pharmacokinetic combination therapy data to identify and characterize potential drug interactions with vorinostat. Pharmacokinetic data in special populations were also reviewed. The clinical pharmacology profile of vorinostat is favorable, exhibiting dose-proportional pharmacokinetics and modest food effect. There appear to be no major differences in the pharmacokinetics of vorinostat in special populations, including varying demographics and hepatic dysfunction. Combination therapy pharmacokinetic data indicate that vorinostat has a low propensity for drug interactions. Vorinostat's favorable clinical pharmacology and drug interaction profile aid in the ease of administration of vorinostat for the treatment of advanced CTCL and will be beneficial in continued assessment for other oncologic indications. Although a number of studies have been conducted to elucidate the detailed pharmacokinetic profile of vorinostat, more rigorous assessment of vorinostat pharmacokinetics, including clinical drug interaction studies, will be informative.

  2. Vorinostat, a histone deacetylase inhibitor, suppresses dendritic cell function and ameliorates experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Ge, Zhenzhen; Da, Yurong; Xue, Zhenyi; Zhang, Kai; Zhuang, Hao; Peng, Meiyu; Li, Yan; Li, Wen; Simard, Alain; Hao, Junwei; Yao, Zhi; Zhang, Rongxin

    2013-03-01

    Vorinostat, a histone deacetylase inhibitor, has been used clinically as an anticancer drug and also has immunosuppressive properties. However, the underlying mechanisms of effects of vorinostat on central nervous system (CNS) inflammatory diseases remain incomplete. Here, this study investigates the effects of vorinostat on human CD14(+) monocyte-derived dendritic cells (DCs) and mouse immature DC in vitro. Furthermore, we explore the therapeutic effects and cellular mechanisms of vorinostat on animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) in vivo. Our findings demonstrate that vorinostat inhibited human CD14(+) monocyte-derived DCs differentiation, maturation, endocytosis, and further inhibited mDCs' stimulation of allogeneic T-cell proliferation. In addition, vorinostat inhibited DC-directed Th1- (Type 1T helper) and Th17-polarizing cytokine production. Furthermore, vorinostat ameliorated Th1- and Th17-mediated EAE by reducing CNS inflammation and demyelination. What's more, Th1 and Th17 cell functions were suppressed in vorinostat-treated EAE mice. Finally, vorinostat suppressed expression of costimulatory molecules of DC in EAE mice. These suggest therapeutic effects of vorinostat on EAE which may by suppress DCs and DCs-mediated Th1 and Th17 cell functions. Our findings warrant further investigation in the potential of vorinostat for the treatment of human multiple sclerosis. Copyright © 2012. Published by Elsevier Inc.

  3. Proteasome inhibitor carfilzomib interacts synergistically with histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells.

    Science.gov (United States)

    Gao, Minjie; Gao, Lu; Tao, Yi; Hou, Jun; Yang, Guang; Wu, Xiaosong; Xu, Hongwei; Tompkins, Van S; Han, Ying; Wu, Huiqun; Zhan, Fenghuang; Shi, Jumei

    2014-06-01

    In the present study, we investigated the interactions between proteasome inhibitor carfilzomib (CFZ) and histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells. Coexposure of cells to minimally lethal concentrations of CFZ with very low concentration of vorinostat resulted in synergistic antiproliferative effects and enhanced apoptosis in Jurkat T-leukemia cells, accompanied with the sharply increased reactive oxygen species (ROS), the striking decrease in the mitochondrial membrane potential (MMP), the increased release of cytochrome c, the enhanced activation of caspase-9 and -3, and the cleavage of PARP. The combined treatment of Jurkat cells pre-treated with ROS scavengers N-acetylcysteine (NAC) significantly blocked the loss of mitochondrial membrane potential, suggesting that ROS generation was a former event of the loss of mitochondrial membrane potential. Furthermore, NAC also resulted in a marked reduction in apoptotic cells, indicating a critical role for increased ROS generation by combined treatment. In addition, combined treatment arrested the cell cycle in G2-M phase. These results imply that CFZ interacted synergistically with vorinostat in Jurkat T-leukemia cells, which raised the possibility that the combination of carfilzomib with vorinostat may represent a novel strategy in treating T-cell Leukemia. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  4. Histone deacetylase inhibitor vorinostat suppresses the growth of uterine sarcomas in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Petru Edgar

    2010-03-01

    Full Text Available Abstract Background Uterine sarcomas are very rare malignancies with no approved chemotherapy protocols. Histone deacetylase (HDAC inhibitors belong to the most promising groups of compounds for molecular targeting therapy. Here, we described the antitumor effects of suberoylanilide hydroxamic acid (SAHA; vorinostat on MES-SA uterine sarcoma cells in vitro and in vivo. We investigated effects of vorinostat on growth and colony forming ability by using uterine sarcoma MES-SA cells. We analyzed the influence of vorinostat on expression of different HDACs, p21WAF1 and activation of apoptosis. Finally, we examined the antitumor effects of vorinostat on uterine sarcoma in vivo. Results Vorinostat efficiently suppressed MES-SA cell growth at a low dosage (3 μM already after 24 hours treatment. Decrease of cell survival was even more pronounced after prolonged treatment and reached 9% and 2% after 48 and 72 hours of treatment, respectively. Colony forming capability of MES-SA cells treated with 3 μM vorinostat for 24 and 48 hours was significantly diminished and blocked after 72 hours. HDACs class I (HDAC2 and 3 as well as class II (HDAC7 were preferentially affected by this treatment. Vorinostat significantly increased p21WAF1 expression and apoptosis. Nude mice injected with 5 × 106 MES-SA cells were treated for 21 days with vorinostat (50 mg/kg/day and, in comparison to placebo group, a tumor growth reduction of more than 50% was observed. Results obtained by light- and electron-microscopy suggested pronounced activation of apoptosis in tumors isolated from vorinostat-treated mice. Conclusions Our data strongly indicate the high therapeutic potential of vorinostat in uterine sarcomas.

  5. Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma

    International Nuclear Information System (INIS)

    Saelen, Marie Grøn; Ree, Anne Hansen; Kristian, Alexandr; Fleten, Karianne Giller; Furre, Torbjørn; Hektoen, Helga Helseth; Flatmark, Kjersti

    2012-01-01

    The histone deacetylase inhibitor vorinostat is a candidate radiosensitizer in locally advanced rectal cancer (LARC). Radiosensitivity is critically influenced by hypoxia; hence, it is important to evaluate the efficacy of potential radiosensitizers under variable tissue oxygenation. Since fluoropyrimidine-based chemoradiotherapy (CRT) is the only clinically validated regimen in LARC, efficacy in combination with this established regimen should be assessed in preclinical models before a candidate drug enters clinical trials. Radiosensitization by vorinostat under hypoxia was studied in four colorectal carcinoma cell lines and in one colorectal carcinoma xenograft model by analysis of clonogenic survival and tumor growth delay, respectively. Radiosensitizing effects of vorinostat in combination with capecitabine were assessed by evaluation of tumor growth delay in two colorectal carcinoma xenografts models. Under hypoxia, radiosensitization by vorinostat was demonstrated in vitro in terms of decreased clonogenicity and in vivo as inhibition of tumor growth. Adding vorinostat to capecitabine-based CRT increased radiosensitivity of xenografts in terms of inhibited tumor growth. Vorinostat sensitized colorectal carcinoma cells to radiation under hypoxia in vitro and in vivo and improved therapeutic efficacy in combination with capecitabine-based CRT in vivo. The results encourage implementation of vorinostat into CRT in LARC trials

  6. Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma.

    Science.gov (United States)

    Saelen, Marie Grøn; Ree, Anne Hansen; Kristian, Alexandr; Fleten, Karianne Giller; Furre, Torbjørn; Hektoen, Helga Helseth; Flatmark, Kjersti

    2012-09-27

    The histone deacetylase inhibitor vorinostat is a candidate radiosensitizer in locally advanced rectal cancer (LARC). Radiosensitivity is critically influenced by hypoxia; hence, it is important to evaluate the efficacy of potential radiosensitizers under variable tissue oxygenation. Since fluoropyrimidine-based chemoradiotherapy (CRT) is the only clinically validated regimen in LARC, efficacy in combination with this established regimen should be assessed in preclinical models before a candidate drug enters clinical trials. Radiosensitization by vorinostat under hypoxia was studied in four colorectal carcinoma cell lines and in one colorectal carcinoma xenograft model by analysis of clonogenic survival and tumor growth delay, respectively. Radiosensitizing effects of vorinostat in combination with capecitabine were assessed by evaluation of tumor growth delay in two colorectal carcinoma xenografts models. Under hypoxia, radiosensitization by vorinostat was demonstrated in vitro in terms of decreased clonogenicity and in vivo as inhibition of tumor growth. Adding vorinostat to capecitabine-based CRT increased radiosensitivity of xenografts in terms of inhibited tumor growth. Vorinostat sensitized colorectal carcinoma cells to radiation under hypoxia in vitro and in vivo and improved therapeutic efficacy in combination with capecitabine-based CRT in vivo. The results encourage implementation of vorinostat into CRT in LARC trials.

  7. Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Saelen Marie

    2012-09-01

    Full Text Available Abstract Background The histone deacetylase inhibitor vorinostat is a candidate radiosensitizer in locally advanced rectal cancer (LARC. Radiosensitivity is critically influenced by hypoxia; hence, it is important to evaluate the efficacy of potential radiosensitizers under variable tissue oxygenation. Since fluoropyrimidine-based chemoradiotherapy (CRT is the only clinically validated regimen in LARC, efficacy in combination with this established regimen should be assessed in preclinical models before a candidate drug enters clinical trials. Methods Radiosensitization by vorinostat under hypoxia was studied in four colorectal carcinoma cell lines and in one colorectal carcinoma xenograft model by analysis of clonogenic survival and tumor growth delay, respectively. Radiosensitizing effects of vorinostat in combination with capecitabine were assessed by evaluation of tumor growth delay in two colorectal carcinoma xenografts models. Results Under hypoxia, radiosensitization by vorinostat was demonstrated in vitro in terms of decreased clonogenicity and in vivo as inhibition of tumor growth. Adding vorinostat to capecitabine-based CRT increased radiosensitivity of xenografts in terms of inhibited tumor growth. Conclusions Vorinostat sensitized colorectal carcinoma cells to radiation under hypoxia in vitro and in vivo and improved therapeutic efficacy in combination with capecitabine-based CRT in vivo. The results encourage implementation of vorinostat into CRT in LARC trials.

  8. Genistein cooperates with the histone deacetylase inhibitor vorinostat to induce cell death in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Phillip Cornel J

    2012-04-01

    Full Text Available Abstract Background Among American men, prostate cancer is the most common, non-cutaneous malignancy that accounted for an estimated 241,000 new cases and 34,000 deaths in 2011. Previous studies have suggested that Wnt pathway inhibitory genes are silenced by CpG hypermethylation, and other studies have suggested that genistein can demethylate hypermethylated DNA. Genistein is a soy isoflavone with diverse effects on cellular proliferation, survival, and gene expression that suggest it could be a potential therapeutic agent for prostate cancer. We undertook the present study to investigate the effects of genistein on the epigenome of prostate cancer cells and to discover novel combination approaches of other compounds with genistein that might be of translational utility. Here, we have investigated the effects of genistein on several prostate cancer cell lines, including the ARCaP-E/ARCaP-M model of the epithelial to mesenchymal transition (EMT, to analyze effects on their epigenetic state. In addition, we investigated the effects of combined treatment of genistein with the histone deacetylase inhibitor vorinostat on survival in prostate cancer cells. Methods Using whole genome expression profiling and whole genome methylation profiling, we have determined the genome-wide differences in genetic and epigenetic responses to genistein in prostate cancer cells before and after undergoing the EMT. Also, cells were treated with genistein, vorinostat, and combination treatment, where cell death and cell proliferation was determined. Results Contrary to earlier reports, genistein did not have an effect on CpG methylation at 20 μM, but it did affect histone H3K9 acetylation and induced increased expression of histone acetyltransferase 1 (HAT1. In addition, genistein also had differential effects on survival and cooperated with the histone deacteylase inhibitor vorinostat to induce cell death and inhibit proliferation. Conclusion Our results suggest that

  9. Tissue transglutaminase (TG2) is involved in the resistance of cancer cells to the histone deacetylase (HDAC) inhibitor vorinostat.

    Science.gov (United States)

    Carbone, Carmine; Di Gennaro, Elena; Piro, Geny; Milone, Maria Rita; Pucci, Biagio; Caraglia, Michele; Budillon, Alfredo

    2017-03-01

    Vorinostat demonstrated preclinical and clinical efficacy in human cancers and is the first histone deacetylase inhibitor (HDACi) approved for cancer treatment. Tissue transglutaminase (TG2) is a multifunctional enzyme that catalyzes a Ca 2+ dependent transamidating reaction resulting in covalent cross-links between proteins. TG2 acts also as G-protein in trans-membrane signaling and as a cell surface adhesion mediator. TG2 up-regulation has been demonstrated in several cancers and its expression levels correlate with resistance to chemotherapy and metastatic potential. We demonstrated that the anti-proliferative effect of the HDACi vorinostat is paralleled by the induction of TG2 mRNA and protein expression in cancer cells but not in ex vivo treated peripheral blood lymphocytes. This effect was also shared by other pan-HDACi and resulted in increased TG2 transamidating activity. Notably, high TG2 basal levels in a panel of cancer cell lines correlated with lower vorinostat antiproliferative activity. Notably, in TG2-knockdown cancer cells vorinostat anti-proliferative and pro-apoptotic effects were enhanced, whereas in TG2-full-length transfected cells were impaired, suggesting that TG2 could represent a mechanism of intrinsic or acquired resistance to vorinostat. In fact, co-treatment of tumor cells with inhibitors of TG2 transamidating activity potentiated the antitumor effect of vorinostat. Moreover, vorinostat-resistant MCF7 cells selected by stepwise increasing concentrations of the drug, significantly overexpressed TG2 protein compared to parental cells, and co-treatment of these cells with TG2 inhibitors reversed vorinostat-resistance. Taken together, our data demonstrated that TG2 is involved in the resistance of cancer cells to vorinostat, as well as to other HDACi.

  10. The histone deacetylase inhibitor, Vorinostat, represses hypoxia inducible factor 1 alpha expression through translational inhibition.

    Directory of Open Access Journals (Sweden)

    Darren M Hutt

    Full Text Available Hypoxia inducible factor 1α (HIF-1α is a master regulator of tumor angiogenesis being one of the major targets for cancer therapy. Previous studies have shown that Histone Deacetylase Inhibitors (HDACi block tumor angiogenesis through the inhibition of HIF-1α expression. As such, Vorinostat (Suberoylanilide Hydroxamic Acid/SAHA and Romidepsin, two HDACis, were recently approved by the Food and Drug Administration (FDA for the treatment of cutaneous T cell lymphoma. Although HDACis have been shown to affect HIF-1α expression by modulating its interactions with the Hsp70/Hsp90 chaperone axis or its acetylation status, the molecular mechanisms by which HDACis inhibit HIF-1α expression need to be further characterized. Here, we report that the FDA-approved HDACi Vorinostat/SAHA inhibits HIF-1α expression in liver cancer-derived cell lines, by a new mechanism independent of p53, prolyl-hydroxylases, autophagy and proteasome degradation. We found that SAHA or silencing of HDAC9 mechanism of action is due to inhibition of HIF-1α translation, which in turn, is mediated by the eukaryotic translation initiation factor--eIF3G. We also highlighted that HIF-1α translation is dramatically inhibited when SAHA is combined with eIF3H silencing. Taken together, we show that HDAC activity regulates HIF-1α translation, with HDACis such as SAHA representing a potential novel approach for the treatment of hepatocellular carcinoma.

  11. The Histone Deacetylase Inhibitor, Vorinostat, Reduces Tumor Growth at the Metastatic Bone Site and Associated Osteolysis, but Promotes Normal Bone Loss

    OpenAIRE

    Pratap, Jitesh; Akech, Jacqueline; Wixted, John J.; Szabo, Gabriela; Hussain, Sadiq; McGee-Lawrence, Meghan E.; Li, Xiaodong; Bedard, Krystin; Dhillon, Robinder J.; van Wijnen, Andre J.; Stein, Janet L.; Stein, Gary S.; Westendorf, Jennifer J.; Lian, Jane B.

    2010-01-01

    Vorinostat, an oral histone deacetylase inhibitor with anti-tumor activity, is in clinical trials for hematological and solid tumors that metastasize and compromise bone structure. Consequently, there is a requirement to establish the effects of vorinostat on tumor growth within bone. Breast (MDA-231) and prostate (PC3) cancer cells were injected into tibias of SCID/NCr mice and the effects of vorinostat on tumor growth and osteolytic disease were assessed by radiography, μCT, histological an...

  12. Combining the ABL1 kinase inhibitor ponatinib and the histone deacetylase inhibitor vorinostat: a potential treatment for BCR-ABL-positive leukemia.

    Science.gov (United States)

    Okabe, Seiichi; Tauchi, Tetsuzo; Kimura, Shinya; Maekawa, Taira; Kitahara, Toshihiko; Tanaka, Yoko; Ohyashiki, Kazuma

    2014-01-01

    Resistance to imatinib (Gleevec®) in cancer cells is frequently because of acquired point mutations in the kinase domain of BCR-ABL. Ponatinib, also known as AP24534, is an oral multi-targeted tyrosine kinase inhibitor (TKI), and it has been investigated in a pivotal phase 2 clinical trial. The histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid) has been evaluated for its significant clinical activity in hematological malignancies. Thus, treatments combining ABL TKIs with additional drugs may be a promising strategy in the treatment of leukemia. In the current study, we analyzed the efficacy of ponatinib and vorinostat treatment by using BCR-ABL-positive cell lines. Treatment with ponatinib for 72 h inhibited cell growth and induced apoptosis in K562 cells in a dose-dependent manner. We found that ponatinib potently inhibited the growth of Ba/F3 cells ectopically expressing BCR-ABL T315I mutation. Upon BCR-ABL phosphorylation, Crk-L was decreased, and poly (ADP-ribose) polymerase (PARP) was activated in a dose-dependent manner. Combined treatment of Ba/F3 T315I mutant cells with vorinostat and ponatinib resulted in significantly increased cytotoxicity. Additionally, the intracellular signaling of ponatinib and vorinostat was examined. Caspase 3 and PARP activation increased after combination treatment with ponatinib and vorinostat. Moreover, an increase in the phosphorylation levels of γH2A.X was observed. Previously established ponatinib-resistant Ba/F3 cells were also resistant to imatinib, nilotinib, and dasatinib. We investigated the difference in the efficacy of ponatinib and vorinostat by using ponatinib-resistant Ba/F3 cells. Combined treatment of ponatinib-resistant cells with ponatinib and vorinostat caused a significant increase in cytotoxicity. Thus, combined administration of ponatinib and vorinostat may be a powerful strategy against BCR-ABL mutant cells and could enhance the cytotoxic effects of ponatinib in those BCR

  13. The histone deacetylase inhibitor vorinostat (SAHA) increases the susceptibility of uninfected CD4+ T cells to HIV by increasing the kinetics and efficiency of postentry viral events.

    Science.gov (United States)

    Lucera, Mark B; Tilton, Carisa A; Mao, Hongxia; Dobrowolski, Curtis; Tabler, Caroline O; Haqqani, Aiman A; Karn, Jonathan; Tilton, John C

    2014-09-01

    Latently infected cells remain a primary barrier to eradication of HIV-1. Over the past decade, a better understanding of the molecular mechanisms by which latency is established and maintained has led to the discovery of a number of compounds that selectively reactivate latent proviruses without inducing polyclonal T cell activation. Recently, the histone deacetylase (HDAC) inhibitor vorinostat has been demonstrated to induce HIV transcription from latently infected cells when administered to patients. While vorinostat will be given in the context of antiretroviral therapy (ART), infection of new cells by induced virus remains a clinical concern. Here, we demonstrate that vorinostat significantly increases the susceptibility of CD4(+) T cells to infection by HIV in a dose- and time-dependent manner that is independent of receptor and coreceptor usage. Vorinostat does not enhance viral fusion with cells but rather enhances the kinetics and efficiency of postentry viral events, including reverse transcription, nuclear import, and integration, and enhances viral production in a spreading-infection assay. Selective inhibition of the cytoplasmic class IIb HDAC6 with tubacin recapitulated the effect of vorinostat. These findings reveal a previously unknown cytoplasmic effect of HDAC inhibitors promoting productive infection of CD4(+) T cells that is distinct from their well-characterized effects on nuclear histone acetylation and long-terminal-repeat (LTR) transcription. Our results indicate that careful monitoring of patients and ART intensification are warranted during vorinostat treatment and indicate that HDAC inhibitors that selectively target nuclear class I HDACs could reactivate latent HIV without increasing the susceptibility of uninfected cells to HIV. HDAC inhibitors, particularly vorinostat, are currently being investigated clinically as part of a "shock-and-kill" strategy to purge latent reservoirs of HIV. We demonstrate here that vorinostat increases the

  14. The Mechanism of Action of the Histone Deacetylase Inhibitor Vorinostat Involves Interaction with the Insulin-Like Growth Factor Signaling Pathway

    Science.gov (United States)

    Sarfstein, Rive; Bruchim, Ilan; Fishman, Ami; Werner, Haim

    2011-01-01

    A correlation between components of the insulin-like growth factor (IGF) system and endometrial cancer risk has been shown in recent studies. The antitumor action of vorinostat, a histone deacetylase inhibitor, involves changes in the expression of specific genes via acetylation of histones and transcription factors. The aim of this study was to establish whether vorinostat can modify the expression of specific genes related to the IGF-I receptor (IGF-IR) signaling pathway and revert the transformed phenotype. Human endometrioid (Type I, Ishikawa) and uterine serous papillary (Type II, USPC-2) endometrial cancer cell lines were treated with vorinostat in the presence or absence of IGF-I. Vorinostat increased IGF-IR phosphorylation, produced acetylation of histone H3, up-regulated pTEN and p21 expression, and reduced p53 and cyclin D1 levels in Ishikawa cells. Vorinostat up-regulated IGF-IR and p21 expression, produced acetylation of histone H3, and down-regulated the expression of total AKT, pTEN and cyclin D1 in USPC-2 cells. Of interest, IGF-IR activation was associated with a major elevation in IGF-IR promoter activity. In addition, vorinostat treatment induced apoptosis in both cell lines and abolished the anti-apoptotic activity of IGF-I both in the absence or presence of a humanized monoclonal IGF-IR antibody, MK-0646. Finally, vorinostat treatment led to a significant decrease in proliferation and colony forming capability in both cell lines. In summary, our studies demonstrate that vorinostat exhibits a potent apoptotic and anti-proliferative effect in both Type I and II endometrial cancer cells, thus suggesting that endometrial cancer may be therapeutically targeted by vorinostat. PMID:21931726

  15. The mechanism of action of the histone deacetylase inhibitor vorinostat involves interaction with the insulin-like growth factor signaling pathway.

    Directory of Open Access Journals (Sweden)

    Rive Sarfstein

    Full Text Available A correlation between components of the insulin-like growth factor (IGF system and endometrial cancer risk has been shown in recent studies. The antitumor action of vorinostat, a histone deacetylase inhibitor, involves changes in the expression of specific genes via acetylation of histones and transcription factors. The aim of this study was to establish whether vorinostat can modify the expression of specific genes related to the IGF-I receptor (IGF-IR signaling pathway and revert the transformed phenotype. Human endometrioid (Type I, Ishikawa and uterine serous papillary (Type II, USPC-2 endometrial cancer cell lines were treated with vorinostat in the presence or absence of IGF-I. Vorinostat increased IGF-IR phosphorylation, produced acetylation of histone H3, up-regulated pTEN and p21 expression, and reduced p53 and cyclin D1 levels in Ishikawa cells. Vorinostat up-regulated IGF-IR and p21 expression, produced acetylation of histone H3, and down-regulated the expression of total AKT, pTEN and cyclin D1 in USPC-2 cells. Of interest, IGF-IR activation was associated with a major elevation in IGF-IR promoter activity. In addition, vorinostat treatment induced apoptosis in both cell lines and abolished the anti-apoptotic activity of IGF-I both in the absence or presence of a humanized monoclonal IGF-IR antibody, MK-0646. Finally, vorinostat treatment led to a significant decrease in proliferation and colony forming capability in both cell lines. In summary, our studies demonstrate that vorinostat exhibits a potent apoptotic and anti-proliferative effect in both Type I and II endometrial cancer cells, thus suggesting that endometrial cancer may be therapeutically targeted by vorinostat.

  16. Genetic blockade of insulin-like growth factor-1 receptor via recombinant adenovirus in lung cancer can be enhanced by the histone deacetylase inhibitor, vorinostat.

    Science.gov (United States)

    Park, Mi-Young; Kim, Dal Rae; Eo, Eun Young; Lim, Hyo Jeong; Park, Jong Sun; Cho, Young-Jae; Yoon, Ho-Il; Lee, Jae Ho; Lee, Choon-Taek

    2013-01-01

    Many approaches have been suggested as anti-tumor therapy for targeting insulin-like growth factor 1 receptor (IGF-1R), such as monoclonal antibodies and tyrosine kinase inhibitor. We introduced recombinant adenoviruses expressing antisense, dominant negative or short hairpin RNA to IGF-1R. Moreover, we demonstrated that histone deacetylase inhibitor (vorinostat) can increase the transduction efficiency of adenoviruses by increasing CAR-induced transduction and by enhancing the transcription of the adenoviral transgene. In the present study, we showed that the combination of ad-sh (short hairpin) IGF-1R with vorinostat leads to a synergistic enhancement of IGF-1R blockade. We measured the change in IGF-1R upon cotreatment with vorinostat and ad-shIGF-1R. Changes in transduction efficiency of ad-shIGF-1R were measured by fluorescent microscopy. Changes in apoptotic proportion and cell survival after the cotreatment were measured by the sub-G1 assay and cell counts. The effect of nuclear factor (NF)-κB activation was also measured by NF-κB p65 activation enzyme-linked immunosorbent assay. Drug interactions were analyzed upon cotreatment with ad-shIGF-1R, vorinostat and cisplatin. Combined treatment of ad-shIGF-1R and vorinostat synergistically suppressed the IGF-1R expression in lung cancer cell lines and also increased the transduction efficiency of ad-shIGF-1R. Ad-shIGF-1R and vorinostat cotreatment increased apoptotic cell death and synergistically suppressed cell growth compared to ad-shIGF-1R or vorinostat treatment alone. Vorinostat suppressed NF-κB activation, which was activated by ad-shIGF-1R. Moreover, triple combination of ad-shIGF-1R, vorinostat and cisplatin demonstrated synergistic cytotoxicity on lung cancer cells. Vorinostat enhanced the blocking capability of ad-shIGF-1R. The combined treatment of vorinostat and ad-sh-IGF-1R appears to have promising potential as a new therapeutic approach for lung cancer. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Vorinostat, a histone deacetylase inhibitor, facilitates fear extinction and enhances expression of the hippocampal NR2B-containing NMDA receptor gene.

    Science.gov (United States)

    Fujita, Yosuke; Morinobu, Shigeru; Takei, Shiro; Fuchikami, Manabu; Matsumoto, Tomoya; Yamamoto, Shigeto; Yamawaki, Shigeto

    2012-05-01

    Histone acetylation, which alters the compact chromatin structure and changes the accessibility of DNA to regulatory proteins, is emerging as a fundamental mechanism for regulating gene expression. Histone deacetylase (HDAC) inhibitors increase histone acetylation and enhance fear extinction. In this study, we examined whether vorinostat, an HDAC inhibitor, facilitates fear extinction, using a contextual fear conditioning (FC) paradigm, in Sprague-Dawley rats. We found that vorinostat facilitated fear extinction. Next, the levels of global acetylated histone H3 and H4 were measured by Western blotting. We also assessed the effect of vorinostat on the hippocampal levels of NMDA receptor mRNA by real-time quantitative PCR (RT-PCR) and protein by Western blotting. 2 h after vorinostat administration, the levels acetylated histones and NR2B mRNA, but not NR1 or NR2A mRNA, were elevated in the hippocampus. The NR2B protein level was elevated 4 h after vorinostat administration. Last, we investigated the levels of acetylated histones and phospho-CREB (p-CREB) binding at the promoter of the NR2B gene using the chromatin immunoprecipitation (ChIP) assay followed by RT-PCR. The ChIP assay revealed increases in the levels of acetylated histones and they were accompanied by enhanced binding of p-CREB to its binding site at the promoter of the NR2B gene 2 h after vorinostat administration. These findings suggest that vorinostat increases the expression of NR2B in the hippocampus by enhancing histone acetylation, and this process may be implicated in fear extinction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Quantitative Analysis of the Proteome Response to the Histone Deacetylase Inhibitor (HDACi) Vorinostat in Niemann-Pick Type C1 disease.

    Science.gov (United States)

    Subramanian, Kanagaraj; Rauniyar, Navin; Lavalleé-Adam, Mathieu; Yates, John R; Balch, William E

    2017-11-01

    Niemann-Pick type C (NPC) disease is an inherited, progressive neurodegenerative disorder principally caused by mutations in the NPC1 gene. NPC disease is characterized by the accumulation of unesterified cholesterol in the late endosomes (LE) and lysosomes (Ly) (LE/Ly). Vorinostat, a histone deacetylase inhibitor (HDACi), restores cholesterol homeostasis in fibroblasts derived from NPC patients; however, the exact mechanism by which Vorinostat restores cholesterol level is not known yet. In this study, we performed comparative proteomic profiling of the response of NPC1 I1061T fibroblasts to Vorinostat. After stringent statistical criteria to filter identified proteins, we observed 202 proteins that are differentially expressed in Vorinostat-treated fibroblasts. These proteins are members of diverse cellular pathways including the endomembrane dependent protein folding-stability-degradation-trafficking axis, energy metabolism, and lipid metabolism. Our study shows that treatment of NPC1 I1061T fibroblasts with Vorinostat not only enhances pathways promoting the folding, stabilization and trafficking of NPC1 (I1061T) mutant to the LE/Ly, but alters the expression of lysosomal proteins, specifically the lysosomal acid lipase (LIPA) involved in the LIPA->NPC2->NPC1 based flow of cholesterol from the LE/Ly lumen to the LE/Ly membrane. We posit that the Vorinostat may modulate numerous pathways that operate in an integrated fashion through epigenetic and post-translational modifications reflecting acetylation/deacetylation balance to help manage the defective NPC1 fold, the function of the LE/Ly system and/or additional cholesterol metabolism/distribution pathways, that could globally contribute to improved mitigation of NPC1 disease in the clinic based on as yet uncharacterized principles of cellular metabolism dictating cholesterol homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat.

    Science.gov (United States)

    Munkacsi, Andrew B; Hammond, Natalie; Schneider, Remy T; Senanayake, Dinindu S; Higaki, Katsumi; Lagutin, Kirill; Bloor, Stephen J; Ory, Daniel S; Maue, Robert A; Chen, Fannie W; Hernandez-Ono, Antonio; Dahlson, Nicole; Repa, Joyce J; Ginsberg, Henry N; Ioannou, Yiannis A; Sturley, Stephen L

    2017-03-17

    Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1 nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null ( Npc1 -/- ) and missense ( Npc1 nmf164 ) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat*

    Science.gov (United States)

    Munkacsi, Andrew B.; Hammond, Natalie; Schneider, Remy T.; Senanayake, Dinindu S.; Higaki, Katsumi; Lagutin, Kirill; Bloor, Stephen J.; Ory, Daniel S.; Maue, Robert A.; Chen, Fannie W.; Hernandez-Ono, Antonio; Dahlson, Nicole; Repa, Joyce J.; Ginsberg, Henry N.; Ioannou, Yiannis A.; Sturley, Stephen L.

    2017-01-01

    Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null (Npc1−/−) and missense (Npc1nmf164) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease. PMID:28031458

  1. A phase I-II study of the histone deacetylase inhibitor vorinostat plus sequential weekly paclitaxel and doxorubicin-cyclophosphamide in locally advanced breast cancer.

    Science.gov (United States)

    Tu, Yifan; Hershman, Dawn L; Bhalla, Kapil; Fiskus, Warren; Pellegrino, Christine M; Andreopoulou, Eleni; Makower, Della; Kalinsky, Kevin; Fehn, Karen; Fineberg, Susan; Negassa, Abdissa; Montgomery, Leslie L; Wiechmann, Lisa S; Alpaugh, R Katherine; Huang, Min; Sparano, Joseph A

    2014-07-01

    Histone deacetylases (HDACs) are a family of enzymes that regulate chromatin remodeling and gene transcription. Vorinostat is a panHDAC inhibitor that sensitizes breast cancer cells to taxanes and trastuzumab by suppressing HDAC6 and Hsp90 client proteins. Fifty-five patients with clinical stage IIA-IIIC breast cancer received 12 weekly doses of paclitaxel (80 mg/m(2)) plus vorinostat (200-300 mg PO BID) on days 1-3 of each paclitaxel dose plus trastuzumab (for Her2/neu positive disease only), followed by doxorubicin/cyclophosphamide (60/600 mg/m(2) every 2 weeks plus pegfilgrastim). The primary study endpoint was pathologic complete response (pCR). pCR occurred in 13 of 24 evaluable patients with Her2-positive disease (54, 95 % confidence intervals [CI] 35-72 %), which met the prespecified study endpoint. pCR occurred in 4 of 15 patients with triple negative disease (27, 95 % CI 11-52 %) and none of 12 patients with ER-positive, Her2/neu negative disease (0, 95 % CI 0-24 %), which did not meet the prespecified endpoint. ER-positive tumors exhibited lower Ki67 and higher Hsp70 expression, and HDAC6, Hsp70, p21, and p27 expression were not predictive of response. Vorinostat increased acetylation of Hsp90 and alpha tubulin, and reduced expression of Hsp90 client proteins and HDAC6 in the primary tumor. Combination of vorinostat with weekly paclitaxel plus trastuzumab followed by doxorubicin-cyclophosphamide is associated with a high pCR rate in locally advanced Her2/neu positive breast cancer. Consistent with cell line and xenograft data, vorinostat increased acetylation of Hsp90 and alpha tubulin, and decreased Hsp90 client protein and HDAC6 expression in human breast cancers in vivo.

  2. Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination.

    Science.gov (United States)

    Millward, Michael; Price, Timothy; Townsend, Amanda; Sweeney, Christopher; Spencer, Andrew; Sukumaran, Shawgi; Longenecker, Angie; Lee, Lonnie; Lay, Ana; Sharma, Girish; Gemmill, Robert M; Drabkin, Harry A; Lloyd, G Kenneth; Neuteboom, Saskia T C; McConkey, David J; Palladino, Michael A; Spear, Matthew A

    2012-12-01

    Combining proteasome and histone deacetylase (HDAC) inhibition has been seen to provide synergistic anti-tumor activity, with complementary effects on a number of signaling pathways. The novel bi-cyclic structure of marizomib with its unique proteasome inhibition, toxicology and efficacy profiles, suggested utility in combining it with an HDAC inhibitor such as vorinostat. Thus, in this study in vitro studies assessed the potential utility of combining marizomib and vorinostat, followed by a clinical trial with the objectives of assessing the recommended phase 2 dose (RP2D), pharmacokinetics (PK), pharmacodynamics (PD), safety and preliminary anti-tumor activity of the combination in patients. Combinations of marizomib and vorinostat were assessed in vitro. Subsequently, in a Phase 1 clinical trial patients with melanoma, pancreatic carcinoma or Non-small Cell Lung Cancer (NSCLC) were given escalating doses of weekly marizomib in combination with vorinostat 300 mg daily for 16 days in 28 day cycles. In addition to standard safety studies, proteasome inhibition and pharmacokinetics were assayed. Marked synergy of marizomib and vorinostat was seen in tumor cell lines derived from patients with NSCLC, melanoma and pancreatic carcinoma. In the clinical trial, 22 patients were enrolled. Increased toxicity was not seen with the combination. Co-administration did not appear to affect the PK or PD of either drug in comparison to historical data. Although no responses were demonstrated using RECIST criteria, 61% of evaluable patients demonstrated stable disease with 39% having decreases in tumor measurements. Treatment of multiple tumor cell lines with marizomib and vorinostat resulted in a highly synergistic antitumor activity. The combination of full dose marizomib with vorinostat is tolerable in patients with safety findings consistent with either drug alone.

  3. DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Lenz Heinz-Josef

    2009-11-01

    Full Text Available Abstract Background Despite the significant progress made in colon cancer chemotherapy, advanced disease remains largely incurable and novel efficacious chemotherapies are urgently needed. Histone deacetylase inhibitors (HDACi represent a novel class of agents which have demonstrated promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this study was to identify genes in colon cancer cells that are differentially regulated by two clinically advanced hydroxamic acid HDACi, vorinostat and LBH589 to provide rationale for novel drug combination partners and identify a core set of HDACi-regulated genes. Methods HCT116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed using the Illumina Human-6 V2 BeadChip array and Ingenuity® Pathway Analysis. Results Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell cycle arrest and inhibited the growth of both HCT116 and HT29 cells. Bioinformatic analysis of the microarray profiling revealed significant similarity in the genes altered in expression following treatment with the two HDACi tested within each cell line. However, analysis of genes that were altered in expression in the HCT116 and HT29 cells revealed cell-line-specific responses to HDACi treatment. In addition a core cassette of 11 genes modulated by both vorinostat and LBH589 were identified in both colon cancer cell lines analyzed. Conclusion This study identified HDACi-induced alterations in critical genes involved in nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential intervention points for novel therapeutic combinations in colon cancer. This information will assist in the identification of novel pathways and targets

  4. A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model of the histone deacetylase (HDAC) inhibitor vorinostat for pediatric and adult patients and its application for dose specification.

    Science.gov (United States)

    Moj, Daniel; Britz, Hannah; Burhenne, Jürgen; Stewart, Clinton F; Egerer, Gerlinde; Haefeli, Walter E; Lehr, Thorsten

    2017-11-01

    This study aimed at recommending pediatric dosages of the histone deacetylase (HDAC) inhibitor vorinostat and potentially more effective adult dosing regimens than the approved standard dosing regimen of 400 mg/day, using a comprehensive physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling approach. A PBPK/PD model for vorinostat was developed for predictions in adults and children. It includes the maturation of relevant metabolizing enzymes. The PBPK model was expanded by (1) effect compartments to describe vorinostat concentration-time profiles in peripheral blood mononuclear cells (PBMCs), (2) an indirect response model to predict the HDAC inhibition, and (3) a thrombocyte model to predict the dose-limiting thrombocytopenia. Parameterization of drug and system-specific processes was based on published and unpublished in silico, in vivo, and in vitro data. The PBPK modeling software used was PK-Sim and MoBi. The PBPK/PD model suggests dosages of 80 and 230 mg/m 2 for children of 0-1 and 1-17 years of age, respectively. In comparison with the approved standard treatment, in silico trials reveal 11 dosing regimens (9 oral, and 2 intravenous infusion rates) increasing the HDAC inhibition by an average of 31%, prolonging the HDAC inhibition by 181%, while only decreasing the circulating thrombocytes to a tolerable 53%. The most promising dosing regimen prolongs the HDAC inhibition by 509%. Thoroughly developed PBPK models enable dosage recommendations in pediatric patients and integrated PBPK/PD models, considering PD biomarkers (e.g., HDAC activity and platelet count), are well suited to guide future efficacy trials by identifying dosing regimens potentially superior to standard dosing regimens.

  5. Circulating YKL-40 in patients with essential thrombocythemia and polycythemia vera treated with the novel histone deacetylase inhibitor vorinostat

    DEFF Research Database (Denmark)

    Andersen, Christen Lykkegaard; Bjørn, Mads Emil; McMullin, Mary Frances

    2014-01-01

    YKL-40 regulates vascular endothelial growth factors and induces tumor proliferation. We investigated YKL-40 before and after treatment with vorinostat in 31 polycythemia vera (PV) and 16 essential thrombocythemia (ET) patients. Baseline PV patient levels were 2 times higher than in healthy...

  6. Intracellular vorinostat accumulation and its relationship to histone deacetylase activity in soft tissue sarcoma patients.

    Science.gov (United States)

    Burhenne, Jürgen; Liu, Lu; Heilig, Christoph E; Meid, Andreas D; Leisen, Margarete; Schmitt, Thomas; Kasper, Bernd; Haefeli, Walter E; Mikus, Gerd; Egerer, Gerlinde

    2017-08-01

    In the regulation of chromatin-structure and histone function, histone deacetylases (HDACs) are key enzymes and thus modulators of epigenetic regulation and gene expression. Accesses of the HDAC inhibitor vorinostat to intracellular compartments are essential to exert epigenetic effects. In ten sarcoma patients receiving oral Zolinza (400 mg qd) vorinostat concentrations in plasma and peripheral blood mononuclear cells (PBMCs) were quantified using validated LC/MS/MS assays to determine intracellular and extracellular pharmacokinetic data. Cellular HDAC activity was evaluated using a fluorogenic assay. Concentration-response relationships were established between intracellular and extracellular vorinostat concentrations and HDAC inhibition in PBMCs. Pharmacokinetics of vorinostat and its two main inactive metabolites were determined over 8 h in plasma and PBMCs. Steady state AUCs (±SD) and T 1/2 (±SD) were calculated to 4.61 ± 0.87 h µM and 1.73 ± 0.69 h (plasma) and 15.2 ± 9.03 h µM and 5.30 ± 4.27 h (PBMCs). Intracellular accumulation of vorinostat was determined together with prolonged vorinostat elimination in PBMCs. Cellular HDAC inhibition increased parallel with vorinostat concentrations in plasma and PBMCs. For effective inhibition of cellular HDACs (IC 50 ) vorinostat concentrations of 0.05 µM in plasma and 0.17 µM in PBMCs were necessary. HDAC inhibition closely followed intracellular vorinostat concentrations and was short-lasting, which may contribute to the limited efficacy seen with vorinostat in solid tumors so far.

  7. Vorinostat, a histone deacetylase (HDAC) inhibitor, promotes cell cycle arrest and re-sensitizes rituximab- and chemo-resistant lymphoma cells to chemotherapy agents.

    Science.gov (United States)

    Xue, Kai; Gu, Juan J; Zhang, Qunling; Mavis, Cory; Hernandez-Ilizaliturri, Francisco J; Czuczman, Myron S; Guo, Ye

    2016-02-01

    Preclinical models of chemotherapy resistance and clinical observations derived from the prospective multicenter phase III collaborative trial in relapsed aggressive lymphoma (CORAL) study demonstrated that primary refractory/relapsed B cell diffuse large B cell lymphoma has a poor clinical outcome with current available second-line treatments. Preclinically, we found that rituximab resistance is associated with a deregulation on the mitochondrial potential rendering lymphoma cells resistant to chemotherapy-induced apoptotic stimuli. There is a dire need to develop agents capable to execute alternative pathways of cell death in an attempt to overcome chemotherapy resistance. Posttranscriptional histone modification plays an important role in regulating gene transcription and is altered by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs regulate several key cellular functions, including cell proliferation, cell cycle, apoptosis, angiogenesis, migration, antigen presentation, and/or immune regulation. Given their influence in multiple regulatory pathways, HDAC inhibition is an attractive strategy to evaluate its anti-proliferation activity in cancer cells. To this end, we studied the anti-proliferation activity and mechanisms of action of suberoylanilide hydroxamic acid (SAHA, vorinostat) in rituximab-chemotherapy-resistant preclinical models. A panel of rituximab-chemotherapy-sensitive (RSCL) and rituximab-chemotherapy-resistant cell lines (RRCL) and primary tumor cells isolated from relapsed/refractory B cell lymphoma patients were exposed to escalating doses of vorinostat. Changes in mitochondrial potential, ATP synthesis, and cell cycle distribution were determined by Alamar blue reduction, Titer-Glo luminescent assays, and flow cytometric, respectively. Protein lysates were isolated from vorinostat-exposed cells, and changes in members of Bcl-2 family, cell cycle regulatory proteins, and the acetylation status of histone H3 were

  8. The Existing Drug Vorinostat as a New Lead Against Cryptosporidiosis by Targeting the Parasite Histone Deacetylases.

    Science.gov (United States)

    Guo, Fengguang; Zhang, Haili; McNair, Nina N; Mead, Jan R; Zhu, Guan

    2018-03-13

    Cryptosporidiosis affects all human populations, but can be much more severe or life-threatening in children and individuals with weak or weakened immune systems. However, current options to treat cryptosporidiosis are limited. An in vitro phenotypic screening assay was employed to screen 1200 existing drugs for their anticryptosporidial activity and to determine the inhibitory kinetics of top hits. Selected top hits were further evaluated in mice. The action of the lead compound vorinostat on the parasite histone deacetylase (HDAC) was biochemically validated. Fifteen compounds exhibited anticryptosporidial activity at nanomolar level in vitro. Among them, the histone deacetylase (HDAC) inhibitor vorinostat retained outstanding efficacy in vitro (half maximal effective concentration, EC50 = 203 nM) and in an interleukin 12 knockout mouse model (50% inhibition dose = 7.5 mg/kg). Vorinostat was effective on various parasite developmental stages and could irreversibly kill the parasite. Vorinostat was highly effective against the parasite native HDAC enzymes (half maximal inhibitory concentration, IC50 = 90.0 nM) and a recombinant Cryptosporidium parvum HDAC (the inhibitor constant, Ki = 123.0 nM). These findings suggest the potential for repurposing of vorinostat to treat cryptosporidiosis, and imply that the parasite HDAC can be explored for developing more selective anticryptosporidial therapeutics.

  9. Design, Synthesis and Biological Evaluation of Histone Deacetylase (HDAC) Inhibitors: Saha (Vorinostat) Analogs and Biaryl Indolyl Benzamide Inhibitors Display Isoform Selectivity

    Science.gov (United States)

    Negmeldin, Ahmed Thabet

    HDAC proteins have emerged as interesting targets for anti-cancer drugs due to their involvement in cancers, as well as several other diseases. Several HDAC inhibitors have been approved by the FDA as anti-cancer drugs, including SAHA (suberoylanilide hydroxamic acid, Vorinostat). Unfortunately, SAHA inhibits most HDAC isoforms, which limit its use as a pharmacological tool and may lead to side effects in the clinic. In this work we were interested in developing isoform selective HDAC inhibitors, which may decrease or eliminate the side effects associated with non-selective inhibitors treatment. In addition, isoform selective HDAC inhibitors can be used as biological tools to help understand the HDAC-related cancer biology. Our strategy was based on synthesis and screening of several derivatives of the non-selective FDA approved drug SAHA substituted at different positions of the linker region. Several SAHA analogs modified at the C4 and C5 positions of the linker were synthesized. The new C4- and C5-modified SAHA libraries, along with the previously synthesized C2-modified SAHA analogs were screened in vitro and in cellulo for HDAC isoform selectivity. Interestingly, several analogs exhibited dual HDAC6/HDAC8 selectivity. Enantioselective syntheses of the pure enantiomers of some of the interesting analogs were performed and the enantiomers were screened in vitro. Among the most interesting analogs, ( R)-C4-benzyl SAHA displayed 520- to 1300-fold selectivity for HDAC6 and HDAC8 over HDAC1, 2, and 3, with IC50 values of 48 and 27 nM with HDAC6 and 8, respectively. Docking studies were performed to provide structural rationale for the observed selectivity of the new analogs. In addition, rational design, synthesis, and screening of several other biaryl indolyl benzamide HDAC inhibitors is discussed, and some showed modest HDAC1 selectivity. The new biaryl indolyl benzamides can be useful to further develop HDAC1 selective inhibitors. The dual HDAC6/8 selective

  10. Overview of the Classical Histone Deacetylase Enzymes and Histone Deacetylase Inhibitors

    OpenAIRE

    Ververis, Katherine; Karagiannis, Tom C.

    2012-01-01

    The important role of histone deacetylase enzymes in regulating gene expression, cellular proliferation, and survival has made them attractive targets for the development of histone deacetylase inhibitors as anticancer drugs. Suberoylanilide hydroxamic acid (Vorinostat, Zolinza), a structural analogue of the prototypical Trichostatin A, was approved by the US Food and Drug Administration for the treatment of advanced cutaneous T-cell lymphoma in 2006. This was followed by approval of the cycl...

  11. Quantification of vorinostat and its main metabolites in plasma and intracellular vorinostat in PBMCs by liquid chromatography coupled to tandem mass spectrometry and its relation to histone deacetylase activity in human blood.

    Science.gov (United States)

    Liu, Lu; Detering, Jan-Christoph; Milde, Till; Haefeli, Walter Emil; Witt, Olaf; Burhenne, Jürgen

    2014-08-01

    Vorinostat (suberoylanilide hydroxamic acid) is the first approved histone deacetylase (HDAC) inhibitor for the treatment of cutaneous T-cell lymphoma after progressive disease following two systemic therapies. Intracellular access of vorinostat is essential to exert its epigenetic effects. Therefore, we studied the relationship between vorinostat extracellular (plasma) and intracellular (peripheral blood mononuclear cells, PBMCs) concentration and assessed its concentration-effect relationship by HDAC activity testing. Assays were developed and validated for the low nanomolar quantification of vorinostat and two inactive metabolites in human plasma and PBMCs. For the vorinostat extraction from plasma and PBMCs solid-phase extraction and liquid-liquid extraction methods were applied. Extraction recoveries ranged from 88.6% to 114.4% for all analytes and extraction methods. Extracts were chromatographed on a Phenomenex Luna column isocratically (plasma) or by gradient (PBMCs) consisting of acidic ammonium acetate, acetonitrile, and methanol. The analytes were quantified using deuterated internal standards and positive electrospray tandem mass spectrometry (multiple reaction monitoring) with lower limits of quantification of 11.0 ng/mL (plasma) and 0.1 ng/3 × 10(6) cells (PBMCs). The calibrated ranges were linear for vorinostat in plasma 11.0-1100 (11,000) ng/mL (metabolites) and PBMCs 0.1-10.0 ng/3 × 10(6) cells with correlation coefficients >0.99, an overall accuracy varying between -6.7% and +3.8% in plasma, -8.1% and -1.5% in PBMCs, and an overall precision ranging from 3.2% to 6.1% in plasma and 0.8% to 4.0% in PBMCs (SD batch-to-batch). The application to blood samples from healthy volunteers incubated with vorinostat revealed accumulation of vorinostat in PBMCs, effective intracellular HDAC inhibition at therapeutic vorinostat concentrations and a direct vorinostat concentration dependency to HDAC inhibition. Copyright © 2014 Elsevier B.V. All rights

  12. Potential non-oncological applications of histone deacetylase inhibitors.

    Science.gov (United States)

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac

  13. Histone Deacetylase Inhibitors as Anticancer Drugs.

    Science.gov (United States)

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  14. Histone Deacetylase Inhibitors as Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Tomas Eckschlager

    2017-07-01

    Full Text Available Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC and histone acetyltransferases (HAT. HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  15. The HDAC inhibitor Vorinostat diminishes the in vitro metastatic behavior of Osteosarcoma cells.

    Science.gov (United States)

    Mu, Xiaodong; Brynien, Daniel; Weiss, Kurt R

    2015-01-01

    Osteosarcoma (OS) is the most common primary malignancy of bone and affects patients in the first two decades of life. The greatest determinant of survival is the presence of pulmonary metastatic disease. The role of epigenetic regulation in OS, specifically the biology of metastases, is unknown. Our previous study with the murine OS cell populations K7M2 and K12 demonstrated a significant correlation of metastatic potential with the DNA methylation level of tumor suppressor genes. In the current study, we investigated if the histone deacetylase (HDAC) inhibitor, vorinostat, could regulate the metastatic potential of highly metastatic OS cells. Our results revealed that vorinostat treatment of highly metastatic K7M2 OS cells was able to greatly reduce the proliferation and metastatic potential of the cells. Morphological features related to cell motility and invasion were changed by vorinostat treatment. In addition, the gene expressions of mTOR, ALDH1, and PGC-1 were downregulated by vorinostat treatment. These data suggest that vorinostat may be an effective modulator of OS cell metastatic potential and should be studied in preclinical models of metastatic OS.

  16. The HDAC Inhibitor Vorinostat Diminishes the In Vitro Metastatic Behavior of Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    2015-01-01

    Full Text Available Osteosarcoma (OS is the most common primary malignancy of bone and affects patients in the first two decades of life. The greatest determinant of survival is the presence of pulmonary metastatic disease. The role of epigenetic regulation in OS, specifically the biology of metastases, is unknown. Our previous study with the murine OS cell populations K7M2 and K12 demonstrated a significant correlation of metastatic potential with the DNA methylation level of tumor suppressor genes. In the current study, we investigated if the histone deacetylase (HDAC inhibitor, vorinostat, could regulate the metastatic potential of highly metastatic OS cells. Our results revealed that vorinostat treatment of highly metastatic K7M2 OS cells was able to greatly reduce the proliferation and metastatic potential of the cells. Morphological features related to cell motility and invasion were changed by vorinostat treatment. In addition, the gene expressions of mTOR, ALDH1, and PGC-1 were downregulated by vorinostat treatment. These data suggest that vorinostat may be an effective modulator of OS cell metastatic potential and should be studied in preclinical models of metastatic OS.

  17. Vorinostat

    Science.gov (United States)

    Vorinostat is used to treat cutaneous T-cell lymphoma (CTCL, a type of cancer) in people whose ... or has come back after taking other medications. Vorinostat is in a class of medications called histone ...

  18. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    Science.gov (United States)

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  19. Antioxidants Impair Anti-Tumoral Effects of Vorinostat, but Not Anti-Neoplastic Effects of Vorinostat and Caspase-8 Downregulation

    OpenAIRE

    Bergadà, Laura; Yeramian, Andree; Sorolla, Annabel; Matias-Guiu, Xavier; Dolcet, Xavier

    2014-01-01

    We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat...

  20. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    Full Text Available Katherine Ververis,1 Alison Hiong,1 Tom C Karagiannis,1,* Paul V Licciardi2,*1Epigenomic Medicine, Alfred Medical Research and Education Precinct, 2Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, VIC, Australia*These authors contributed equally to this workAbstract: Histone deacetylase (HDAC inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza and depsipeptide (romidepsin, Istodax. More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the

  1. Immunomodulatory effects of histone deacetylase inhibitors.

    Science.gov (United States)

    Licciardi, P V; Ververis, K; Tang, M L; El-Osta, A; Karagiannis, T C

    2013-05-01

    Histone deacetylase inhibitors (HDACi) have emerged as a new generation of anticancer therapeutics. The classical broad-spectrum HDACi typically alter the cell cycle distribution and induce cell death, apoptosis and differentiation in malignant and transformed cells. This provides the basis for the clinical potential of HDACi in cancer therapy. Currently two compounds, suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved for by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Apart from clinical application in oncology, HDACi have also been investigated as potential therapeutics for various pathologies including those of the central nervous system (such as Huntington's disease and multiple sclerosis), cardiac conditions (particularly hypertrophy), arthritis and malaria. Further, evidence is accumulating for potent immunomodulatory effects of classical HDACi which is the focus of this review. We review the antiinflammatory effects of HDACi and in particular findings implicating regulation of the innate and adaptive immune systems by HDAC enzymes. The recent findings highlighting the immunomodulatory function of HDAC11 which relates to balancing immune activation versus tolerance are also discussed.

  2. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model.

    Science.gov (United States)

    Kurundkar, Deepali; Srivastava, Ritesh K; Chaudhary, Sandeep C; Ballestas, Mary E; Kopelovich, Levy; Elmets, Craig A; Athar, Mohammad

    2013-01-15

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    Energy Technology Data Exchange (ETDEWEB)

    Kurundkar, Deepali; Srivastava, Ritesh K.; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Kopelovich, Levy [Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd., Suite 2114, Bethesda, MD 20892 (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States)

    2013-01-15

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.

  4. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    International Nuclear Information System (INIS)

    Kurundkar, Deepali; Srivastava, Ritesh K.; Chaudhary, Sandeep C.; Ballestas, Mary E.; Kopelovich, Levy; Elmets, Craig A.; Athar, Mohammad

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.

  5. New clinical developments in histone deacetylase inhibitors for epigenetic therapy of cancer

    Directory of Open Access Journals (Sweden)

    Ma Yuehua

    2009-06-01

    Full Text Available Abstract DNA methylation and histone acetylation are two well known epigenetic chromatin modifications. Epigenetic agents leading to DNA hypomethylation and histone hyperacetylation have been approved for treatment of hematological disorders. The first histone deacetylase inhibitor, vorinostat, has been licensed for cutaneous T cell lymphoma treatment. More than 11 new epigenetic agents are in various stages of clinical development for therapy of multiple cancer types. In this review we summarize novel histone deacetylase inhibitors and new regimens from clinical trials for epigenetic therapy of cancer.

  6. Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo.

    Science.gov (United States)

    Xu, Song; De Veirman, Kim; Evans, Holly; Santini, Gaia Cecilia; Vande Broek, Isabelle; Leleu, Xavier; De Becker, Ann; Van Camp, Ben; Croucher, Peter; Vanderkerken, Karin; Van Riet, Ivan

    2013-05-01

    Vorinostat, a histone deacetylase (HDAC) inhibitor currently in a clinical phase III trial for multiple myeloma (MM) patients, has been reported to cause bone loss. The purpose of this study was to test whether, and to what extent, vorinostat influences the osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro and bone formation in vivo. Bone marrow-derived MSCs were prepared from both normal donors and MM patients. The MSCs were cultured in an osteogenic differentiation induction medium to induce osteogenic differentiation, which was evaluated by alkaline phosphatase (ALP) staining, Alizarin Red S staining and the mRNA expression of osteogenic markers. Naïve mice were administered vorinostat (100 mg/kg, ip) every other day for 3 weeks. After the mice were sacrificed, bone formation was assessed based on serum osteocalcin level and histomorphometric analysis. Vorinostat inhibited the viability of hMSCs in a concentration-dependent manner (the IC50 value was 15.57 μmol/L). The low concentration of vorinostat (1 μmol/L) did not significantly increase apoptosis in hMSCs, whereas pronounced apoptosis was observed following exposure to higher concentrations of vorinostat (10 and 50 μmol/L). In bone marrow-derived hMSCs from both normal donors and MM patients, vorinostat (1 μmol/L) significantly increased ALP activity, mRNA expression of osteogenic markers, and matrix mineralization. These effects were associated with upregulation of the bone-specifying transcription factor Runx2 and with the epigenetic alterations during normal hMSCs osteogenic differentiation. Importantly, the mice treated with vorinostat did not show any bone loss in response to the optimized treatment regimen. Vorinostat, known as a potent anti-myeloma drug, stimulates MSC osteogenesis in vitro. With the optimized treatment regimen, any decrease in bone formation was not observed in vivo.

  7. Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes.

    Science.gov (United States)

    Ververis, Katherine; Rodd, Annabelle L; Tang, Michelle M; El-Osta, Assam; Karagiannis, Tom C

    2011-12-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutics with suberoylanilide hydroxamic acid (Vorinostat) and depsipeptide (Romidepsin) already being approved for clinical use. Numerous studies have identified that histone deacetylase inhibitors will be most effective in the clinic when used in combination with conventional cancer therapies such as ionizing radiation and chemotherapeutic agents. One promising combination, particularly for hematologic malignancies, involves the use of histone deacetylase inhibitors with the anthracycline, doxorubicin. However, we previously identified that trichostatin A can potentiate doxorubicin-induced hypertrophy, the dose-limiting side-effect of the anthracycline, in cardiac myocytes. Here we have the extended the earlier studies and evaluated the effects of combinations of the histone deacetylase inhibitors, trichostatin A, valproic acid and sodium butyrate on doxorubicin-induced DNA double-strand breaks in cardiomyocytes. Using γH2AX as a molecular marker for the DNA lesions, we identified that all of the broad-spectrum histone deacetylase inhibitors tested augment doxorubicin-induced DNA damage. Furthermore, it is evident from the fluorescence photomicrographs of stained nuclei that the histone deacetylase inhibitors also augment doxorubicin-induced hypertrophy. These observations highlight the importance of investigating potential side-effects, in relevant model systems, which may be associated with emerging combination therapies for cancer.

  8. Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): a phase 3, double-blind, randomised, placebo-controlled trial

    NARCIS (Netherlands)

    Krug, Lee M.; Kindler, Hedy L.; Calvert, Hilary; Manegold, Christian; Tsao, Anne S.; Fennell, Dean; Öhman, Ronny; Plummer, Ruth; Eberhardt, Wilfried E. E.; Fukuoka, Kazuya; Gaafar, Rabab M.; Lafitte, Jean-Jacques; Hillerdal, Gunnar; Chu, Quincy; Buikhuisen, Wieneke A.; Lubiniecki, Gregory M.; Sun, Xing; Smith, Margaret; Baas, Paul

    2015-01-01

    Vorinostat is a histone deacetylase inhibitor that changes gene expression and protein activity. On the basis of the clinical benefit reported in patients with malignant pleural mesothelioma treated in a phase 1 study of vorinostat, we designed this phase 3 trial to investigate whether vorinostat

  9. Biomarkers of histone deacetylase inhibitor activity in a phase 1 combined-modality study with radiotherapy.

    Directory of Open Access Journals (Sweden)

    Anne Hansen Ree

    Full Text Available Following the demonstration that histone deacetylase inhibitors enhanced experimental radiation-induced clonogenic suppression, the Pelvic Radiation and Vorinostat (PRAVO phase 1 study, combining fractionated radiotherapy with daily vorinostat for pelvic carcinoma, was designed to evaluate both clinical and novel biomarker endpoints, the latter relating to pharmacodynamic indicators of vorinostat action in clinical radiotherapy.Potential biomarkers of vorinostat radiosensitizing action, not simultaneously manifesting molecular perturbations elicited by the radiation itself, were explored by gene expression array analysis of study patients' peripheral blood mononuclear cells (PBMC, sampled at baseline (T0 and on-treatment two and 24 hours (T2 and T24 after the patients had received vorinostat.This strategy revealed 1,600 array probes that were common for the comparisons T2 versus T0 and T24 versus T2 across all of the patients, and furthermore, that no significantly differential expression was observed between the T0 and T24 groups. Functional annotation analysis of the array data showed that a significant number of identified genes were implicated in gene regulation, the cell cycle, and chromatin biology. Gene expression was validated both in patients' PBMC and in vorinostat-treated human carcinoma xenograft models, and transient repression of MYC was consistently observed.Within the design of the PRAVO study, all of the identified genes showed rapid and transient induction or repression and therefore, in principle, fulfilled the requirement of being pharmacodynamic biomarkers of vorinostat action in fractionated radiotherapy, possibly underscoring the role of MYC in this therapeutic setting.

  10. Role of 5'TG3'-interacting factors (TGIFs) in Vorinostat (HDAC inhibitor)-mediated Corneal Fibrosis Inhibition.

    Science.gov (United States)

    Sharma, Ajay; Sinha, Nishant R; Siddiqui, Saad; Mohan, Rajiv R

    2015-01-01

    We have previously reported that vorinostat, an FDA-approved, clinically used histone deacetylase (HDAC) inhibitor, attenuates corneal fibrosis in vivo in rabbits by blocking transforming growth factor β (TGFβ). The 5'TG3'-interacting factors (TGIFs) are transcriptional repressors of TGFβ1 signaling via the Smad pathway. The present study was designed to explore the expression of TGIFs in human corneal fibroblasts and to investigate their role in mediating the antifibrotic effect of vorinostat. Human corneal fibroblast cultures were generated from donor corneas. RNA isolation, cDNA preparation, and PCR were performed to detect the presence of TGIF1 and TGIF2 transcripts. The cultures were exposed to vorinostat (2.5 µM) to test its effect on TGIF mRNA and protein levels using qPCR and immunoblotting. Myofibroblast formation was induced with TGFβ1 (5 ng/ml) treatment under serum-free conditions. The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (αSMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Smad2/3/4 and TGIF knockdowns were performed using pre-validated RNAi/siRNAs and a commercially available transfection reagent. Human corneal fibroblasts showed the expression of TGIF1 and TGIF2. Vorinostat (2.5 µM) caused a 2.8-3.3-fold increase in TGIF1 and TGIF2 mRNA levels and a 1.4-1.8-fold increase in TGIF1 and TGIF2 protein levels. Vorinostat treatment also caused a significant increase in acetylhistone H3 and acetylhistone H4. Vorinostat-induced increases in TGIF1 and TGIF2 were accompanied by a concurrent decrease in corneal fibrosis, as indicated by a decrease in αSMA mRNA by 83±7.7% and protein levels by 97±5%. The RNAi-mediated knockdown of Smad2, Smad3, and Smad4 markedly attenuated TGFβ1-evoked transdifferentiation of fibroblasts to myofibroblasts. The siRNA-mediated knockdown of TGIF1 and TGIF2 neutralized vorinostat-evoked decreases in αSMA mRNA by 31%-45% and protein

  11. Phase I study of the mTOR inhibitor ridaforolimus and the HDAC inhibitor vorinostat in advanced renal cell carcinoma and other solid tumors.

    Science.gov (United States)

    Zibelman, Matthew; Wong, Yu-Ning; Devarajan, Karthik; Malizzia, Lois; Corrigan, Alycia; Olszanski, Anthony J; Denlinger, Crystal S; Roethke, Susan K; Tetzlaff, Colleen H; Plimack, Elizabeth R

    2015-10-01

    Drugs inhibiting the mammalian target of rapamycin (mTOR) are approved in the treatment of renal cell carcinoma (RCC), but resistance inevitably emerges. Proposed escape pathways include increased phosphorylation of Akt, which can be down regulated by histone deacetylase (HDAC) inhibitors. We hypothesized that co-treatment with the mTOR inhibitor ridaforolimus and the HDAC inhibitor vorinostat may abrogate resistance in RCC. This phase 1 study evaluated the co-administration of ridaforolimus and vorinostat in patients with advanced solid tumors. The primary objective was to determine the maximum tolerated dose (MTD) in RCC patients. Although all solid tumors were allowed, prior cytotoxic chemotherapy was limited to 1 regimen. Using a modified 3 + 3 dose escalation design, various dose combinations were tested concurrently in separate cohorts. Efficacy was a secondary endpoint. Fifteen patients were treated at one of three dose levels, thirteen with RCC (10 clear cell, 3 papillary). Dosing was limited by thrombocytopenia. The MTD was determined to be ridaforolimus 20 mg daily days 1-5 with vorinostat 100 mg BID days 1-3 weekly, however late onset thrombocytopenia led to a lower recommended phase II dose: ridaforolimus 20 mg daily days 1-5 with vorinostat 100 mg daily days 1-3 weekly. Two patients, both with papillary RCC, maintained disease control for 54 and 80 weeks, respectively. The combination of ridaforolimus and vorinostat was tolerable at the recommended phase II dose. Two patients with papillary RCC experienced prolonged disease stabilization, thus further study of combined HDAC and mTOR inhibition in this population is warranted.

  12. CCR 20th Anniversary Commentary: Vorinostat-Gateway to Epigenetic Therapy.

    Science.gov (United States)

    Kelly, Wm Kevin; Marks, Paul; Richon, Victoria M

    2015-05-15

    The study by Kelly and colleagues, published in the September 1, 2003, issue of Clinical Cancer Research, established the safety and biologic activity of the first-in-class histone deacetylase inhibitor, vorinostat, which was administered intravenously. Subsequent studies led to the development of oral vorinostat and the regulatory approval of vorinostat for cutaneous T-cell lymphomas, which opened the door for the next generation of inhibitors. ©2015 American Association for Cancer Research.

  13. A Histone Deacetylase Inhibitor Suppresses Epithelial-Mesenchymal Transition and Attenuates Chemoresistance in Biliary Tract Cancer.

    Directory of Open Access Journals (Sweden)

    Takuya Sakamoto

    Full Text Available Epithelial-mesenchymal transition (EMT is involved in the characteristics of malignancy, such as invasion, metastasis, and chemoresistance. In biliary tract cancer (BTC, EMT is induced by transforming growth factor-beta 1 (TGF-β1. The EMT is reversible; therefore, it is conceivable that it could be related to some epigenetic changes. We focused on histone deacetylase (HDAC inhibitors as regulators of TGF-β1 signaling, and investigated their effect on EMT and chemoresistance. We employed four BTC cell lines (MzChA-1, gemcitabine-resistant MzChA-1, TFK-1, and gemcitabine-resistant TFK-1 and used vorinostat as the HDAC inhibitor. The relative mRNA expression of an epithelial marker (CDH1 and mesenchymal markers (CDH2, vimentin, SNAI1 were measured by qRT-PCR to evaluate factors associated with EMT. MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay was performed to evaluate the chemoresistance of each cell line. In addition, NOD/SCID mice were used to evaluate the effect of vorinostat in vivo. In the parent MzChA-1 and TFK-1 cell lines, TGF-β1 induced EMT and chemoresistance; while vorinostat inhibited the EMT and chemoresistance induced by TGF-β1. In gemcitabine-resistant cell lines that highly expressed TGF-β1, vorinostat inhibited EMT and attenuated chemoresistance. We showed that vorinostat inhibits nuclear translocation of SMAD4 which is a signaling factor of TGF-β1, and this is one of the mechanisms by which vorinostat regulates EMT. We also showed that vorinostat attenuates the binding affinity of SMAD4 to the CDH1-related transcription factors SNAI1, SNAI2, ZEB1, ZEB2, and TWIST. Furthermore, combination therapy with vorinostat and gemcitabine improved survival time in the mice xenografted with gemcitabine resistant MzChA-1 cells. In conclusion, vorinostat regulated TGF-β1-induced EMT and chemoresistance through inhibition of SMAD4 nuclear translocation.

  14. Tetrahydroisoquinolines as novel histone deacetylase inhibitors for treatment of cancer

    Directory of Open Access Journals (Sweden)

    Danqi Chen

    2016-01-01

    Full Text Available Histone acetylation is a critical process in the regulation of chromatin structure and gene expression. Histone deacetylases (HDACs remove the acetyl group, leading to chromatin condensation and transcriptional repression. HDAC inhibitors are considered a new class of anticancer agents and have been shown to alter gene transcription and exert antitumor effects. This paper describes our work on the structural determination and structure-activity relationship (SAR optimization of tetrahydroisoquinoline compounds as HDAC inhibitors. These compounds were tested for their ability to inhibit HDAC 1, 3, 6 and for their ability to inhibit the proliferation of a panel of cancer cell lines. Among these, compound 82 showed the greatest inhibitory activity toward HDAC 1, 3, 6 and strongly inhibited growth of the cancer cell lines, with results clearly superior to those of the reference compound, vorinostat (SAHA. Compound 82 increased the acetylation of histones H3, H4 and tubulin in a concentration-dependent manner, suggesting that it is a broad inhibitor of HDACs.

  15. Antioxidants impair anti-tumoral effects of Vorinostat, but not anti-neoplastic effects of Vorinostat and caspase-8 downregulation.

    Science.gov (United States)

    Bergadà, Laura; Yeramian, Andree; Sorolla, Annabel; Matias-Guiu, Xavier; Dolcet, Xavier

    2014-01-01

    We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat induces formation of reactive oxygen species and DNA damage. To investigate the role of oxidative stress as anti-neoplastic mechanism, we have evaluated the effects of different antioxidants (Bha, Nac and Tiron) on endometrial carcinoma cell line Ishikawa treated with Vorinostat. We show that Bha, Nac and Tiron markedly inhibited the cytotoxic effects of Vorinostat, increasing cell viability in vitro. We found that all three antioxidants did not inhibited accumulation of acetyl Histone H4, so that antioxidants did not inhibit Vorinostat activity. Finally, we have evaluated the effects of antioxidants on anti-tumoral activity of Vorinostat as monotherapy or in combination with caspase-8 downregulation in vivo. Interestingly, antioxidants blocked the reduction of tumour growth caused by Vorinostat, but they were unable to inhibit anti-tumoral activity of Vorinostat plus caspase-8 inhibition.

  16. Influence of natural and synthetic histone deacetylase inhibitors on chromatin.

    Science.gov (United States)

    Licciardi, Paul V; Kwa, Faith A A; Ververis, Katherine; Di Costanzo, Natasha; Balcerczyk, Aneta; Tang, Mimi L; El-Osta, Assam; Karagiannis, Tom C

    2012-07-15

    Histone deacetylase inhibitors (HDACIs) have emerged as a new class of anticancer therapeutics. The hydroxamic acid, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™), and the cyclic peptide, depsipeptide (Romidepsin, Istodax™), were approved by the U.S. Food and Drug Administration (FDA) for the treatment of cutaneous T-cell lymphoma in 2006 and 2009, respectively. At least 15 HDACIs are currently undergoing clinical trials either alone or in combination with other therapeutic modalities for the treatment of numerous hematological and solid malignancies. The potential utility of HDACIs has been extended to nononcologic applications, including autoimmune disorders, inflammation, diseases of the central nervous system, and malaria. Given the promise of HDACIs, there is growing interest in the potential of dietary compounds that possess HDAC inhibition activity. This review is focused on the identification of and recent findings with HDACIs from dietary, medicinal plant, and microbial sources. We discuss the mechanisms of action and clinical potential of natural HDACIs. Apart from identification of further HDACI compounds from dietary sources, further research will be aimed at understanding the effects on gene regulation on lifetime exposure to these compounds. Another important issue that requires clarification.

  17. Combination of Vorinostat and caspase‐8 inhibition exhibits high anti‐tumoral activity on endometrial cancer cells

    OpenAIRE

    Bergadà, Laura; Sorolla, Annabel; Yeramian, Andree; Eritja, Nuria; Mirantes, Cristina; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-01-01

    Histone deacetylase inhibitors such as Vorinostat display anti‐neoplastic activity against a variety of solid tumors. Here, we have investigated the anti‐tumoral activity of Vorinostat on endometrial cancer cells. We have found that Vorinostat caused cell growth arrest, loss of clonogenic growth and apoptosis of endometrial cancer cells. Vorinostat‐induced the activation of caspase‐8 and ‐9, the initiators caspases of the extrinsic and the intrinsic apoptotic pathways, respectively. Next, we ...

  18. Inhibitors of Histone Deacetylases Are Weak Activators of the FMR1 Gene in Fragile X Syndrome Cell Lines

    Directory of Open Access Journals (Sweden)

    Alexander A. Dolskiy

    2017-01-01

    Full Text Available Fragile X syndrome is the most common cause of inherited intellectual disability in humans. It is a result of CGG repeat expansion in the 5′ untranslated region (5′ UTR of the FMR1 gene. This gene encodes the FMRP protein that is involved in neuronal development. Repeat expansion leads to heterochromatinization of the promoter, gene silencing, and the subsequent absence of FMRP. To date, there is no specific therapy for the syndrome. All treatments in clinic practice provide symptomatic therapy. The development of drug therapy for Fragile X syndrome treatment is connected with the search for inhibitors of enzymes that are responsible for heterochromatinization. Here, we report a weak transcriptional activity of the FMR1 gene and the absence of FMRP protein after Fragile X syndrome cell lines treatment with two FDA approved inhibitors of histone deacetylases, romidepsin and vorinostat. We demonstrate that romidepsin, an inhibitor of class I histone deacetylases, does not activate FMR1 expression in patient cell cultures, whereas vorinostat, an inhibitor of classes I and II histone deacetylases, activates a low level of FMR1 expression in some patient cell lines.

  19. Histone Deacetylase Inhibitors Are Protective in Acute but Not in Chronic Models of Ototoxicity

    Directory of Open Access Journals (Sweden)

    Chao-Hui Yang

    2017-10-01

    Full Text Available Previous studies have reported that modification of histones alters aminoglycoside-induced hair cell death and hearing loss. In this study, we investigated three FDA-approved histone deacetylase (HDAC inhibitors (vorinostat/SAHA, belinostat, and panobinostat as protectants against aminoglycoside-induced ototoxicity in murine cochlear explants and in vivo in both guinea pigs and CBA/J mice. Individually, all three HDAC inhibitors reduced gentamicin (GM-induced hair cell loss in a dose-dependent fashion in explants. In vivo, however, treatment with SAHA attenuated neither GM-induced hearing loss and hair cell loss in guinea pigs nor kanamycin (KM-induced hearing loss and hair cell loss in mice under chronic models of ototoxicity. These findings suggest that treatment with the HDAC inhibitor SAHA attenuates aminoglycoside-induced ototoxicity in an acute model, but not in chronic models, cautioning that one cannot rely solely on in vitro experiments to test the efficacy of otoprotectant compounds.

  20. Role of 5′TG3′-interacting factors (TGIFs) in Vorinostat (HDAC inhibitor)-mediated Corneal Fibrosis Inhibition

    Science.gov (United States)

    Sharma, Ajay; Sinha, Nishant R.; Siddiqui, Saad

    2015-01-01

    Purpose We have previously reported that vorinostat, an FDA-approved, clinically used histone deacetylase (HDAC) inhibitor, attenuates corneal fibrosis in vivo in rabbits by blocking transforming growth factor β (TGFβ). The 5′TG3′-interacting factors (TGIFs) are transcriptional repressors of TGFβ1 signaling via the Smad pathway. The present study was designed to explore the expression of TGIFs in human corneal fibroblasts and to investigate their role in mediating the antifibrotic effect of vorinostat. Methods Human corneal fibroblast cultures were generated from donor corneas. RNA isolation, cDNA preparation, and PCR were performed to detect the presence of TGIF1 and TGIF2 transcripts. The cultures were exposed to vorinostat (2.5 µM) to test its effect on TGIF mRNA and protein levels using qPCR and immunoblotting. Myofibroblast formation was induced with TGFβ1 (5 ng/ml) treatment under serum-free conditions. The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (αSMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Smad2/3/4 and TGIF knockdowns were performed using pre-validated RNAi/siRNAs and a commercially available transfection reagent. Results Human corneal fibroblasts showed the expression of TGIF1 and TGIF2. Vorinostat (2.5 µM) caused a 2.8–3.3-fold increase in TGIF1 and TGIF2 mRNA levels and a 1.4–1.8-fold increase in TGIF1 and TGIF2 protein levels. Vorinostat treatment also caused a significant increase in acetylhistone H3 and acetylhistone H4. Vorinostat-induced increases in TGIF1 and TGIF2 were accompanied by a concurrent decrease in corneal fibrosis, as indicated by a decrease in αSMA mRNA by 83±7.7% and protein levels by 97±5%. The RNAi-mediated knockdown of Smad2, Smad3, and Smad4 markedly attenuated TGFβ1-evoked transdifferentiation of fibroblasts to myofibroblasts. The siRNA-mediated knockdown of TGIF1 and TGIF2 neutralized vorinostat-evoked decreases in

  1. Unexpected Biotransformation of the HDAC Inhibitor Vorinostat Yields Aniline-Containing Fungal Metabolites.

    Science.gov (United States)

    Adpressa, Donovon A; Stalheim, Kayla J; Proteau, Philip J; Loesgen, Sandra

    2017-07-21

    The diversity of genetically encoded small molecules produced by filamentous fungi remains largely unexplored, which makes these fungi an attractive source for the discovery of new compounds. However, accessing their full chemical repertoire under common laboratory culture conditions is a challenge. Epigenetic manipulation of gene expression has become a well-established tool for overcoming this obstacle. Here, we report that perturbation of the endophytic ascomycete Chalara sp. 6661, producer of the isofusidienol class of antibiotics, with the HDAC inhibitor vorinostat resulted in the production of four new modified xanthones. The structures of chalanilines A (1) and B (2) and adenosine-coupled xanthones A (3) and B (4) were determined by extensive NMR spectroscopic analyses, and the bioactivities of 1-4 were tested in antibiotic and cytotoxicity assays. Incorporation studies with deuterium-labeled vorinostat indicate that the aniline moiety in chalalanine A is derived from vorinostat itself. Our study shows that Chalara sp. is able to metabolize the HDAC inhibitor vorinostat to release aniline. This is a rare report of fungal biotransformation of the popular epigenetic modifier vorinostat into aniline-containing polyketides.

  2. Therapeutic Strategies to Enhance the Anticancer Efficacy of Histone Deacetylase Inhibitors

    Directory of Open Access Journals (Sweden)

    Claudia P. Miller

    2011-01-01

    Full Text Available Histone acetylation is a posttranslational modification that plays a role in regulating gene expression. More recently, other nonhistone proteins have been identified to be acetylated which can regulate their function, stability, localization, or interaction with other molecules. Modulating acetylation with histone deacetylase inhibitors (HDACi has been validated to have anticancer effects in preclinical and clinical cancer models. This has led to development and approval of the first HDACi, vorinostat, for the treatment of cutaneous T cell lymphoma. However, to date, targeting acetylation with HDACi as a monotherapy has shown modest activity against other cancers. To improve their efficacy, HDACi have been paired with other antitumor agents. Here, we discuss several combination therapies, highlighting various epigenetic drugs, ROS-generating agents, proteasome inhibitors, and DNA-damaging compounds that together may provide a therapeutic advantage over single-agent strategies.

  3. Vorinostat in solid and hematologic malignancies

    Directory of Open Access Journals (Sweden)

    Richon Victoria M

    2009-07-01

    Full Text Available Abstract Vorinostat (Zolinza®, a histone deacetylase inhibitor, was approved by the US Food and Drug Administration in October 2006 for the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma who have progressive, persistent or recurrent disease on or following two systemic therapies. This review summarizes evidence on the use of vorinostat in solid and hematologic malignancies and collated tolerability data from the vorinostat clinical trial program. Pooled vorinostat clinical trial data from 498 patients with solid or hematologic malignancies show that vorinostat was well tolerated as monotherapy or combination therapy. The most commonly reported drug-related adverse events (AEs associated with monotherapy (n = 341 were fatigue (61.9%, nausea (55.7%, diarrhea (49.3%, anorexia (48.1%, and vomiting (32.8%, and Grade 3/4 drug-related AEs included fatigue (12.0%, thrombocytopenia (10.6%, dehydration (7.3%, and decreased platelet count (5.3%. The most common drug-related AEs observed with vorinostat in combination therapy (n = 157, most of whom received vorinostat 400 mg qd for 14 days were nausea (48.4%, diarrhea (40.8%, fatigue (34.4%, vomiting (31.2%, and anorexia (20.4%, with the majority of AEs being Grade 2 or less. In Phase I trials, combinations with vorinostat were generally well tolerated and preliminary evidence of anticancer activity as monotherapy or in combination with other systemic therapies has been observed across a range of malignancies. Ongoing and planned studies will further evaluate the potential of vorinostat in combination therapy, including combinations with radiation, in patients with diverse malignancy types, including non-small-cell lung cancer, glioblastoma multiforme, multiple myeloma, and myelodysplastic syndrome.

  4. Combined Effect of Vorinostat and Grape Seed Proanthocyanidins ...

    African Journals Online (AJOL)

    Purpose: To demonstrate the effect of histone deacetylase-inhibitor, vorinostat, on antitumour activity of grape seed proanthocyanidins (GSPs) in non-small cell lung cancer (NSCLC) cells. Methods: Expression of thymidine phosphorlase (TP) and thymidylate synthase (TS) was measured by real-time PCR and western ...

  5. Histone deacetylase inhibitors in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Sarah Deleu

    2009-06-01

    Full Text Available Novel drugs such as bortezomib and high dose chemotherapy combined with stem cell transplantation improved the outcome of multiple myeloma patients in the past decade. However, multiple myeloma often remains incurable due to the development of drug resistance governed by the bone marrow micro-environment. Therefore targeting new pathways to overcome this resistance is needed. Histone deacetylase (HDAC inhibitors represent a new class of anti-myeloma agents. Inhibiting HDACs results in histone hyperacetylation and alterations in chromatine structure, which, in turn, cause growth arrest differentiation and/or apoptosis in several tumor cells. Here we summarize the molecular actions of HDACi as a single agent or in combination with other drugs in different in vitro and in vivo myeloma models and in (preclinical trials.

  6. Vorinostat enhances the cisplatin-mediated anticancer effects in small cell lung cancer cells.

    Science.gov (United States)

    Pan, Chun-Hao; Chang, Ying-Fang; Lee, Ming-Shuo; Wen, B-Chen; Ko, Jen-Chung; Liang, Sheng-Kai; Liang, Mei-Chih

    2016-11-07

    Vorinostat, a histone deacetylase (HDAC) inhibitor, is a promising agent for cancer therapy. Combining vorinostat with cisplatin may relax the chromatin structure and facilitate the accessibility of cisplatin, thus enhancing its cytotoxicity. Studies have not yet investigated the effects of the combination of vorinostat and cisplatin on small cell lung cancer (SCLC). We first assessed the efficacy of vorinostat with etoposide/cisplatin (EP; triple combination) and then investigated the effects of cotreatment with vorinostat and cisplatin on H209 and H146 SCLC cell lines. The anticancer effects of various combinations were determined in terms of cell viability, apoptosis, cell cycle distribution, and vorinostat-regulated proteins. We also evaluated the efficacy of vorinostat/cisplatin combination in H209 xenograft nude mice. Our data revealed that the triple combination engendered a significant reduction of cell viability and high apoptotic cell death. In addition, vorinostat combined with cisplatin enhanced cell growth inhibition, induced apoptosis, and promoted cell cycle arrest. We observed that the acetylation levels of histone H3 and α-tubulin were higher in combination treatments than in vorinostat treatment alone. Moreover, vorinostat reduced the expression of thymidylate synthase (TS), and TS remained inhibited after cotreament with cisplatin. Furthermore, an in vivo study revealed that the combination of vorinostat and cisplatin significantly inhibited tumor growth in xenograft nude mice (tumor growth inhibition T/C% = 20.5 %). Combined treatments with vorinostat promote the cytotoxicity of cisplatin and induce the expression of vorinostat-regulated acetyl proteins, eventually enhancing antitumor effects in SCLC cell lines. Triple combinations with a low dosage of cisplatin demonstrate similar therapeutic effects. Such triple combinations, if applied clinically, may reduce the undesired adverse effects of cisplatin. The effects of the combination of

  7. Comparative gene expression profiling of P. falciparum malaria parasites exposed to three different histone deacetylase inhibitors.

    Directory of Open Access Journals (Sweden)

    Katherine T Andrews

    Full Text Available Histone deacetylase (HDAC inhibitors are being intensively pursued as potential new drugs for a range of diseases, including malaria. HDAC inhibitors are also important tools for the study of epigenetic mechanisms, transcriptional control, and other important cellular processes. In this study the effects of three structurally related antimalarial HDAC inhibitors on P. falciparum malaria parasite gene expression were compared. The three hydroxamate-based compounds, trichostatin A (TSA, suberoylanilide hydroxamic acid (SAHA; Vorinostat® and a 2-aminosuberic acid derivative (2-ASA-9, all caused profound transcriptional effects, with ~2-21% of genes having >2-fold altered expression following 2 h exposure to the compounds. Only two genes, alpha tubulin II and a hydrolase, were up-regulated by all three compounds after 2 h exposure in all biological replicates examined. The transcriptional changes observed after 2 h exposure to HDAC inhibitors were found to be largely transitory, with only 1-5% of genes being regulated after removing the compounds and culturing for a further 2 h. Despite some structural similarity, the three inhibitors caused quite diverse transcriptional effects, possibly reflecting subtle differences in mode of action or cellular distribution. This dataset represents an important contribution to our understanding of how HDAC inhibitors act on malaria parasites and identifies alpha tubulin II as a potential transcriptional marker of HDAC inhibition in malaria parasites that may be able to be exploited for future development of HDAC inhibitors as new antimalarial agents.

  8. Effect of histone deacetylase inhibitor, trichostatin A, on cartilage ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research June 2017; 16 (6): 1253-1257 ... Conclusion: Treatment with trichostatin A, an HDAC inhibitor, enhances cartilage regeneration in rabbit ..... deacetylase activity in rheumatoid arthritis and asthma.

  9. Pharmacological Analysis of Vorinostat Analogues as Potential Anti-tumor Agents Targeting Human Histone Deacetylases: an Epigenetic Treatment Stratagem for Cancers.

    Science.gov (United States)

    Praseetha, Sugathan; Bandaru, Srinivas; Nayarisseri, Anuraj; Sureshkumar, Sivanpillai

    2016-01-01

    Alteration of the acetylation status of chromatin and other non-histone proteins by HDAC inhibitors has evolved as an excellent epigenetic strategy in treatment of cancers. The present study was sought to identify compounds with positive pharmacological profiles targeting HDAC1. Analogues of Vorinostat synthesized by Cai et al, 2015 formed the test compounds for the present pharmacological evaluation. Hydroxamte analogue 6H showed superior pharmacological profile in comparison to all the compounds in the analogue dataset owing to its better electrostatic interactions and hydrogen bonding patterns. In order to identify compounds with even better high affinity and pharmacological profile than 6H and Vorinostat, virtual screening was performed. A total of 83 compounds similar to Vorinostat and 154 compounds akin to analogue 6H were retrieved. SCHEMBL15675695 (PubCid: 15739209) and AKOS019005527 (PubCid: 80442147) similar to Vorinostat and 6H, were the best docked compounds among the virtually screened compounds. However, in spite of having good affinity, none of the virtually screened compounds had better affinity than that of 6H. In addition SCHEMBL15675695 was predicted to be a carcinogen while AKOS019005527 is Ames toxic. From, our extensive analysis involving binding affinity analysis, ADMET properties predictions and pharmacophoric mappings, we report Vorinostat hydroxamate analogue 6H to be a potential candidate for HDAC inhibition in treatment of cancers through an epigenetic strategy.

  10. Interpreting clinical assays for histone deacetylase inhibitors

    International Nuclear Information System (INIS)

    Martinet, Nadine; Bertrand, Philippe

    2011-01-01

    As opposed to genetics, dealing with gene expressions by direct DNA sequence modifications, the term epigenetics applies to all the external influences that target the chromatin structure of cells with impact on gene expression unrelated to the sequence coding of DNA itself. In normal cells, epigenetics modulates gene expression through all development steps. When “imprinted” early by the environment, epigenetic changes influence the organism at an early stage and can be transmitted to the progeny. Together with DNA sequence alterations, DNA aberrant cytosine methylation and microRNA deregulation, epigenetic modifications participate in the malignant transformation of cells. Their reversible nature has led to the emergence of the promising field of epigenetic therapy. The efforts made to inhibit in particular the epigenetic enzyme family called histone deacetylases (HDACs) are described. HDAC inhibitors (HDACi) have been proposed as a viable clinical therapeutic approach for the treatment of leukemia and solid tumors, but also to a lesser degree for noncancerous diseases. Three epigenetic drugs are already arriving at the patient’s bedside, and more than 100 clinical assays for HDACi are registered on the National Cancer Institute website. They explore the eventual additive benefits of combined therapies. In the context of the pleiotropic effects of HDAC isoforms, more specific HDACi and more informative screening tests are being developed for the benefit of the patients

  11. A genome scale RNAi screen identifies GLI1 as a novel gene regulating vorinostat sensitivity.

    Science.gov (United States)

    Falkenberg, K J; Newbold, A; Gould, C M; Luu, J; Trapani, J A; Matthews, G M; Simpson, K J; Johnstone, R W

    2016-07-01

    Vorinostat is an FDA-approved histone deacetylase inhibitor (HDACi) that has proven clinical success in some patients; however, it remains unclear why certain patients remain unresponsive to this agent and other HDACis. Constitutive STAT (signal transducer and activator of transcription) activation, overexpression of prosurvival Bcl-2 proteins and loss of HR23B have been identified as potential biomarkers of HDACi resistance; however, none have yet been used to aid the clinical utility of HDACi. Herein, we aimed to further elucidate vorinostat-resistance mechanisms through a functional genomics screen to identify novel genes that when knocked down by RNA interference (RNAi) sensitized cells to vorinostat-induced apoptosis. A synthetic lethal functional screen using a whole-genome protein-coding RNAi library was used to identify genes that when knocked down cooperated with vorinostat to induce tumor cell apoptosis in otherwise resistant cells. Through iterative screening, we identified 10 vorinostat-resistance candidate genes that sensitized specifically to vorinostat. One of these vorinostat-resistance genes was GLI1, an oncogene not previously known to regulate the activity of HDACi. Treatment of vorinostat-resistant cells with the GLI1 small-molecule inhibitor, GANT61, phenocopied the effect of GLI1 knockdown. The mechanism by which GLI1 loss of function sensitized tumor cells to vorinostat-induced apoptosis is at least in part through interactions with vorinostat to alter gene expression in a manner that favored apoptosis. Upon GLI1 knockdown and vorinostat treatment, BCL2L1 expression was repressed and overexpression of BCL2L1 inhibited GLI1-knockdown-mediated vorinostat sensitization. Taken together, we present the identification and characterization of GLI1 as a new HDACi resistance gene, providing a strong rationale for development of GLI1 inhibitors for clinical use in combination with HDACi therapy.

  12. Acetylation site specificities of lysine deacetylase inhibitors in human cells

    DEFF Research Database (Denmark)

    Schölz, Christian; Weinert, Brian Tate; Wagner, Sebastian A

    2015-01-01

    Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain acety......1-α, providing a possible mechanistic explanation of its adverse, pro-inflammatory effects. Our results offer a systems view of KDACI specificities, providing a framework for studying function of acetylation and deacetylases....

  13. Genome-wide functional genomic and transcriptomic analyses for genes regulating sensitivity to vorinostat.

    Science.gov (United States)

    Falkenberg, Katrina J; Gould, Cathryn M; Johnstone, Ricky W; Simpson, Kaylene J

    2014-01-01

    Identification of mechanisms of resistance to histone deacetylase inhibitors, such as vorinostat, is important in order to utilise these anticancer compounds more efficiently in the clinic. Here, we present a dataset containing multiple tiers of stringent siRNA screening for genes that when knocked down conferred sensitivity to vorinostat-induced cell death. We also present data from a miRNA overexpression screen for miRNAs contributing to vorinostat sensitivity. Furthermore, we provide transcriptomic analysis using massively parallel sequencing upon knockdown of 14 validated vorinostat-resistance genes. These datasets are suitable for analysis of genes and miRNAs involved in cell death in the presence and absence of vorinostat as well as computational biology approaches to identify gene regulatory networks.

  14. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents

    Directory of Open Access Journals (Sweden)

    Petrillo Richard L

    2010-02-01

    Full Text Available Abstract Histone deacetylases (HDACs can regulate expression of tumor suppressor genes and activities of transcriptional factors involved in both cancer initiation and progression through alteration of either DNA or the structural components of chromatin. Recently, the role of gene repression through modulation such as acetylation in cancer patients has been clinically validated with several inhibitors of HDACs. One of the HDAC inhibitors, vorinostat, has been approved by FDA for treating cutaneous T-cell lymphoma (CTCL for patients with progressive, persistent, or recurrent disease on or following two systemic therapies. Other inhibitors, for example, FK228, PXD101, PCI-24781, ITF2357, MGCD0103, MS-275, valproic acid and LBH589 have also demonstrated therapeutic potential as monotherapy or combination with other anti-tumor drugs in CTCL and other malignancies. At least 80 clinical trials are underway, testing more than eleven different HDAC inhibitory agents including both hematological and solid malignancies. This review focuses on recent development in clinical trials testing HDAC inhibitors as anti-tumor agents.

  15. Histone Deacetylase Inhibitors Antagonize Distinct Pathways to Suppress Tumorigenesis of Embryonal Rhabdomyosarcoma.

    Directory of Open Access Journals (Sweden)

    Terra Vleeshouwer-Neumann

    Full Text Available Embryonal rhabdomyosarcoma (ERMS is the most common soft tissue cancer in children. The prognosis of patients with relapsed or metastatic disease remains poor. ERMS genomes show few recurrent mutations, suggesting that other molecular mechanisms such as epigenetic regulation might play a major role in driving ERMS tumor biology. In this study, we have demonstrated the diverse roles of histone deacetylases (HDACs in the pathogenesis of ERMS by characterizing effects of HDAC inhibitors, trichostatin A (TSA and suberoylanilide hydroxamic acid (SAHA; also known as vorinostat in vitro and in vivo. TSA and SAHA suppress ERMS tumor growth and progression by inducing myogenic differentiation as well as reducing the self-renewal and migratory capacity of ERMS cells. Differential expression profiling and pathway analysis revealed downregulation of key oncogenic pathways upon HDAC inhibitor treatment. By gain-of-function, loss-of-function, and chromatin immunoprecipitation (ChIP studies, we show that Notch1- and EphrinB1-mediated pathways are regulated by HDACs to inhibit differentiation and enhance migratory capacity of ERMS cells, respectively. Our study demonstrates that aberrant HDAC activity plays a major role in ERMS pathogenesis. Druggable targets in the molecular pathways affected by HDAC inhibitors represent novel therapeutic options for ERMS patients.

  16. Vorinostat eliminates multicellular resistance of mesothelioma 3D spheroids via restoration of Noxa expression.

    Directory of Open Access Journals (Sweden)

    Dario Barbone

    Full Text Available When grown in 3D cultures as spheroids, mesothelioma cells acquire a multicellular resistance to apoptosis that resembles that of solid tumors. We have previously found that resistance to the proteasome inhibitor bortezomib in 3D can be explained by a lack of upregulation of Noxa, the pro-apoptotic BH3 sensitizer that acts via displacement of the Bak/Bax-activator BH3-only protein, Bim. We hypothesized that the histone deacetylase inhibitor vorinostat might reverse this block to Noxa upregulation in 3D. Indeed, we found that vorinostat effectively restored upregulation of Noxa protein and message and abolished multicellular resistance to bortezomib in the 3D spheroids. The ability of vorinostat to reverse resistance was ablated by knockdown of Noxa or Bim, confirming the essential role of the Noxa/Bim axis in the response to vorinostat. Addition of vorinostat similarly increased the apoptotic response to bortezomib in another 3D model, the tumor fragment spheroid, which is grown from human mesothelioma ex vivo. In addition to its benefit when used with bortezomib, vorinostat also enhanced the response to cisplatin plus pemetrexed, as shown in both 3D models. Our results using clinically relevant 3D models show that the manipulation of the core apoptotic repertoire may improve the chemosensitivity of mesothelioma. Whereas neither vorinostat nor bortezomib alone has been clinically effective in mesothelioma, vorinostat may undermine chemoresistance to bortezomib and to other therapies thereby providing a rationale for combinatorial strategies.

  17. Vorinostat Eliminates Multicellular Resistance of Mesothelioma 3D Spheroids via Restoration of Noxa Expression

    Science.gov (United States)

    Barbone, Dario; Cheung, Priscilla; Battula, Sailaja; Busacca, Sara; Gray, Steven G.; Longley, Daniel B.; Bueno, Raphael; Sugarbaker, David J.; Fennell, Dean A.; Broaddus, V. Courtney

    2012-01-01

    When grown in 3D cultures as spheroids, mesothelioma cells acquire a multicellular resistance to apoptosis that resembles that of solid tumors. We have previously found that resistance to the proteasome inhibitor bortezomib in 3D can be explained by a lack of upregulation of Noxa, the pro-apoptotic BH3 sensitizer that acts via displacement of the Bak/Bax-activator BH3-only protein, Bim. We hypothesized that the histone deacetylase inhibitor vorinostat might reverse this block to Noxa upregulation in 3D. Indeed, we found that vorinostat effectively restored upregulation of Noxa protein and message and abolished multicellular resistance to bortezomib in the 3D spheroids. The ability of vorinostat to reverse resistance was ablated by knockdown of Noxa or Bim, confirming the essential role of the Noxa/Bim axis in the response to vorinostat. Addition of vorinostat similarly increased the apoptotic response to bortezomib in another 3D model, the tumor fragment spheroid, which is grown from human mesothelioma ex vivo. In addition to its benefit when used with bortezomib, vorinostat also enhanced the response to cisplatin plus pemetrexed, as shown in both 3D models. Our results using clinically relevant 3D models show that the manipulation of the core apoptotic repertoire may improve the chemosensitivity of mesothelioma. Whereas neither vorinostat nor bortezomib alone has been clinically effective in mesothelioma, vorinostat may undermine chemoresistance to bortezomib and to other therapies thereby providing a rationale for combinatorial strategies. PMID:23300762

  18. Efficacy of vorinostat in a murine model of polycythemia vera

    Science.gov (United States)

    Akada, Hajime; Akada, Saeko; Gajra, Ajeet; Bair, Alicia; Graziano, Stephen; Hutchison, Robert E.

    2012-01-01

    The discovery of the JAK2V617F mutation in most patients with Ph-negative myeloproliferative neoplasms has led to the development of JAK2 kinase inhibitors. However, JAK2 inhibitor therapy has shown limited efficacy and dose-limiting hematopoietic toxicities in clinical trials. In the present study, we describe the effects of vorinostat, a small-molecule inhibitor of histone deacetylase, against cells expressing JAK2V617F and in an animal model of polycythemia vera (PV). We found that vorinostat markedly inhibited proliferation and induced apoptosis in cells expressing JAK2V617F. In addition, vorinostat significantly inhibited JAK2V617F-expressing mouse and human PV hematopoietic progenitors. Biochemical analyses revealed significant inhibition of phosphorylation of JAK2, Stat5, Stat3, Akt, and Erk1/2 in vorinostat-treated, JAK2V617F-expressing human erythroleukemia (HEL) cells. Expression of JAK2V617F and several other genes, including GATA1, KLF1, FOG1, SCL, C/EPBα, PU.1, and NF-E2, was significantly down-regulated, whereas the expression of SOCS1 and SOCS3 was up-regulated by vorinostat treatment. More importantly, we observed that vorinostat treatment normalized the peripheral blood counts and markedly reduced splenomegaly in Jak2V617F knock-in mice compared with placebo treatment. Vorinostat treatment also decreased the mutant allele burden in mice. Our results suggest that vorinostat may have therapeutic potential for the treatment of PV and other JAK2V617F-associated myeloproliferative neoplasms. PMID:22408262

  19. Vorinostat plus tacrolimus/methotrexate to prevent GVHD after myeloablative conditioning, unrelated donor HCT

    NARCIS (Netherlands)

    Choi, S.W.; Braun, T.; Henig, I.; Gatza, E.; Magenau, J.; Parkin, B.; Pawarode, A.; Riwes, M.; Yanik, G.; Dinarello, C.A.; Reddy, P.

    2017-01-01

    The oral histone deacetylase (HDAC) inhibitor (vorinostat) is safe and results in low incidence of acute graft-versus-host disease (GVHD) after reduced-intensity conditioning, related donor hematopoietic cell transplantation (HCT). However, its safety and efficacy in preventing acute GVHD in

  20. Effect of histone deacetylase inhibitor, trichostatin A, on cartilage ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of histone deacetylase (HDAC) inhibitor, trichostatin A (TCA), on cartilage regeneration in a rabbit perichondrial graft model. Methods: Perichondrial grafts (20 × 20 mm2) were derived from the ears of New Zealand rabbits and transplanted onto the paravertebral muscle of the face of each ...

  1. Combining the pan-aurora kinase inhibitor AMG 900 with histone deacetylase inhibitors enhances antitumor activity in prostate cancer

    International Nuclear Information System (INIS)

    Paller, Channing J; Wissing, Michel D; Mendonca, Janet; Sharma, Anup; Kim, Eugene; Kim, Hea-Soo; Kortenhorst, Madeleine S Q; Gerber, Stephanie; Rosen, Marc; Shaikh, Faraz; Zahurak, Marianna L; Rudek, Michelle A; Hammers, Hans; Rudin, Charles M; Carducci, Michael A; Kachhap, Sushant K

    2014-01-01

    Histone deacetylase inhibitors (HDACIs) are being tested in clinical trials for the treatment of solid tumors. While most studies have focused on the reexpression of silenced tumor suppressor genes, a number of genes/pathways are downregulated by HDACIs. This provides opportunities for combination therapy: agents that further disable these pathways through inhibition of residual gene function are speculated to enhance cell death in combination with HDACIs. A previous study from our group indicated that mitotic checkpoint kinases such as PLK1 and Aurora A are downregulated by HDACIs. We used in vitro and in vivo xenograft models of prostate cancer (PCA) to test whether combination of HDACIs with the pan-aurora kinase inhibitor AMG 900 can synergistically or additively kill PCA cells. AMG 900 and HDACIs synergistically decreased cell proliferation activity and clonogenic survival in DU-145, LNCaP, and PC3 PCA cell lines compared to single-agent treatment. Cellular senescence, polyploidy, and apoptosis was significantly increased in all cell lines after combination treatment. In vivo xenograft studies indicated decreased tumor growth and decreased aurora B kinase activity in mice treated with low-dose AMG 900 and vorinostat compared to either agent alone. Pharmacodynamics was assessed by scoring for phosphorylated histone H3 through immunofluorescence. Our results indicate that combination treatment with low doses of AMG 900 and HDACIs could be a promising therapy for future clinical trials against PCA

  2. Vorinostat-induced autophagy switches from a death-promoting to a cytoprotective signal to drive acquired resistance.

    Science.gov (United States)

    Dupéré-Richer, D; Kinal, M; Ménasché, V; Nielsen, T H; Del Rincon, S; Pettersson, F; Miller, W H

    2013-02-07

    Histone deacetylase inhibitors (HDACi) have shown promising activity against hematological malignancies in clinical trials and have led to the approval of vorinostat for the treatment of cutaneous T-cell lymphoma. However, de novo or acquired resistance to HDACi therapy is inevitable, and their molecular mechanisms are still unclear. To gain insight into HDACi resistance, we developed vorinostat-resistant clones from the hematological cell lines U937 and SUDHL6. Although cross-resistant to some but not all HDACi, the resistant cell lines exhibit dramatically increased sensitivity toward chloroquine, an inhibitor of autophagy. Consistent with this, resistant cells growing in vorinostat show increased autophagy. Inhibition of autophagy in vorinostat-resistant U937 cells by knockdown of Beclin-1 or Lamp-2 (lysosome-associated membrane protein 2) restores sensitivity to vorinostat. Interestingly, autophagy is also activated in parental U937 cells by de novo treatment with vorinostat. However, in contrast to the resistant cells, inhibition of autophagy decreases sensitivity to vorinostat. These results indicate that autophagy can switch from a proapoptotic signal to a prosurvival function driving acquired resistance. Moreover, inducers of autophagy (such as mammalian target of rapamycin inhibitors) synergize with vorinostat to induce cell death in parental cells, whereas the resistant cells remain insensitive. These data highlight the complexity of the design of combination strategies using modulators of autophagy and HDACi for the treatment of hematological malignancies.

  3. Role of Hydroxamate-Based Histone Deacetylase Inhibitors (Hb-HDACIs) in the Treatment of Solid Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Grassadonia, Antonino [Department of Experimental and Clinical Sciences, University ’G. d’Annunzio’, I-66013 Chieti (Italy); Cioffi, Pasquale; Simiele, Felice [Hospital Pharmacy, “SS. Annunziata” Hospital, I-66013 Chieti (Italy); Iezzi, Laura; Zilli, Marinella [Oncology Department, “SS. Annunziata” Hospital, I-66013 Chieti (Italy); Natoli, Clara, E-mail: natoli@unich.it [Department of Experimental and Clinical Sciences, University ’G. d’Annunzio’, I-66013 Chieti (Italy)

    2013-07-25

    Hydroxamate-based histone deacetylase inhibitors (Hb-HDACIs), such as vorinostat, belinostat and panobinostat, have been previously shown to have a wide range of activity in hematologic malignancies such as cutaneous T-cell lymphoma and multiple myeloma. Recent data show that they synergize with a variety of cytotoxic and molecular targeted agents in many different solid tumors, including breast, prostate, pancreatic, lung and ovarian cancer. Hb-HDACIs have a quite good toxicity profile and are now being tested in phase I and II clinical trials in solid tumors with promising results in selected neoplasms, such as hepatocarcinoma. This review will focus on their clinical activity and safety in patients with advanced solid neoplasms.

  4. Role of Hydroxamate-Based Histone Deacetylase Inhibitors (Hb-HDACIs) in the Treatment of Solid Malignancies

    International Nuclear Information System (INIS)

    Grassadonia, Antonino; Cioffi, Pasquale; Simiele, Felice; Iezzi, Laura; Zilli, Marinella; Natoli, Clara

    2013-01-01

    Hydroxamate-based histone deacetylase inhibitors (Hb-HDACIs), such as vorinostat, belinostat and panobinostat, have been previously shown to have a wide range of activity in hematologic malignancies such as cutaneous T-cell lymphoma and multiple myeloma. Recent data show that they synergize with a variety of cytotoxic and molecular targeted agents in many different solid tumors, including breast, prostate, pancreatic, lung and ovarian cancer. Hb-HDACIs have a quite good toxicity profile and are now being tested in phase I and II clinical trials in solid tumors with promising results in selected neoplasms, such as hepatocarcinoma. This review will focus on their clinical activity and safety in patients with advanced solid neoplasms

  5. Role of Hydroxamate-Based Histone Deacetylase Inhibitors (Hb-HDACIs in the Treatment of Solid Malignancies

    Directory of Open Access Journals (Sweden)

    Marinella Zilli

    2013-07-01

    Full Text Available Hydroxamate-based histone deacetylase inhibitors (Hb-HDACIs, such as vorinostat, belinostat and panobinostat, have been previously shown to have a wide range of activity in hematologic malignancies such as cutaneous T-cell lymphoma and multiple myeloma. Recent data show that they synergize with a variety of cytotoxic and molecular targeted agents in many different solid tumors, including breast, prostate, pancreatic, lung and ovarian cancer. Hb-HDACIs have a quite good toxicity profile and are now being tested in phase I and II clinical trials in solid tumors with promising results in selected neoplasms, such as hepatocarcinoma. This review will focus on their clinical activity and safety in patients with advanced solid neoplasms.

  6. Combination treatment with docetaxel and histone deacetylase inhibitors downregulates androgen receptor signaling in castration-resistant prostate cancer.

    Science.gov (United States)

    Park, Sang Eun; Kim, Ha-Gyeong; Kim, Dong Eun; Jung, Yoo Jung; Kim, Yunlim; Jeong, Seong-Yun; Choi, Eun Kyung; Hwang, Jung Jin; Kim, Choung-Soo

    2018-04-01

    Backgrounds Since most patients with castration-resistant prostate cancer (CRPC) develop resistance to its standard therapy docetaxel, many studies have attempted to identify novel combination treatment to meet the large clinical unmet need. In this study, we examined whether histone deacetylase inhibitors (HDACIs) enhanced the effect of docetaxel on AR signaling in CRPC cells harboring AR and its splice variants. Methods HDACIs (vorinostat and CG200745) were tested for their ability to enhance the effects of docetaxel on cell viability and inhibition of AR signaling in CRPC 22Rv1 and VCaP cells by using CellTiter-Glo™ Luminescent cell viability assay, synergy index analysis and Western blotting. The nuclear localization of AR was examined via immunocytochemical staining in 22Rv1 cells and primary tumor cells from a patient with CRPC. Results Combination treatment with HDACIs (vorinostat or CG200745) and docetaxel synergistically inhibited the growth of 22Rv1 and VCaP cells. Consistently, the combination treatment decreased the levels of full-length AR (AR-FL), AR splice variants (AR-Vs), prostate-specific antigen (PSA), and anti-apoptotic Bcl-2 proteins more efficiently compared with docetaxel or vorinostat alone. Moreover, the combination treatment accelerated the acetylation and bundling of tubulin, which significantly inhibited the nuclear accumulation of AR in 22Rv1 cells. The cytoplasmic colocalization of AR-FL and AR-V7 with microtubule bundles increased after combination treatment in primary tumor cells from a patient with CRPC. Conclusions The results suggested that docetaxel, in combination with HDACIs, suppressed the expression and nuclear translocation of AR-FL and AR-Vs and showed synergistic anti-proliferative effect in CRPC cells. This combination therapy may be useful for the treatment of patients with CRPC.

  7. Combination of Vorinostat and caspase-8 inhibition exhibits high anti-tumoral activity on endometrial cancer cells.

    Science.gov (United States)

    Bergadà, Laura; Sorolla, Annabel; Yeramian, Andree; Eritja, Nuria; Mirantes, Cristina; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-08-01

    Histone deacetylase inhibitors such as Vorinostat display anti-neoplastic activity against a variety of solid tumors. Here, we have investigated the anti-tumoral activity of Vorinostat on endometrial cancer cells. We have found that Vorinostat caused cell growth arrest, loss of clonogenic growth and apoptosis of endometrial cancer cells. Vorinostat-induced the activation of caspase-8 and -9, the initiators caspases of the extrinsic and the intrinsic apoptotic pathways, respectively. Next, we investigated the role of the extrinsic pathway in apoptosis triggered by Vorinostat. We found that Vorinostat caused a dramatic decrease of FLIP mRNA and protein levels. However, overexpression of the long from of FLIP did not block Vorinostat-induced apoptosis. To further investigate the role of extrinsic apoptotic pathway in Vorinostat-induced apoptosis, we performed an shRNA-mediated knock-down of caspase-8. Surprisingly, downregulation of caspase-8 alone caused a marked decrease in clonogenic ability and reduced the growth of endometrial cancer xenografts in vivo, revealing that targeting caspase-8 may be an attractive target for anticancer therapy on endometrial tumors. Furthermore, combination of caspase-8 inhibition and Vorinostat treatment caused an enhancement of apoptotic cell death and a further decrease of clonogenic growth of endometrial cancer cells. More importantly, combination of Vorinostat and caspase-8 inhibition caused a nearly complete inhibition of tumor xenograft growth. Finally, we demonstrate that cell death triggered by Vorinostat alone or in combination with caspase-8 shRNAs was inhibited by the anti-apoptotic protein Bcl-XL. Our results suggest that combinatory therapies using Vorinostat treatment and caspase-8 inhibition can be an effective treatment for endometrial carcinomas. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Integrated analysis of the molecular action of Vorinostat identifies epi-sensitised targets for combination therapy.

    Science.gov (United States)

    Hay, Jodie F; Lappin, Katrina; Liberante, Fabio; Kettyle, Laura M; Matchett, Kyle B; Thompson, Alexander; Mills, Ken I

    2017-09-15

    Several histone deacetylase inhibitors including Vorinostat have received FDA approval for the treatment of haematological malignancies. However, data from these trials indicate that Vorinostat has limited efficacy as a monotherapy, prompting the need for rational design of combination therapies. A number of epi-sensitised pathways, including sonic hedgehog (SHH), were identified in AML cells by integration of global patterns of histone H3 lysine 9 (H3K9) acetylation with transcriptomic analysis following Vorinostat-treatment. Direct targeting of the SHH pathway with SANT-1, following Vorinostat induced epi-sensitisation, resulted in synergistic cell death of AML cells. In addition, xenograft studies demonstrated that combination therapy induced a marked reduction in leukemic burden compared to control or single agents. Together, the data supports epi-sensitisation as a potential component of the strategy for the rational development of combination therapies in AML.

  9. The sensitivity of diffuse large B-cell lymphoma cell lines to histone deacetylase inhibitor-induced apoptosis is modulated by BCL-2 family protein activity.

    Directory of Open Access Journals (Sweden)

    Ryan C Thompson

    Full Text Available BACKGROUND: Diffuse large B-cell lymphoma (DLBCL is a genetically heterogeneous disease and this variation can often be used to explain the response of individual patients to chemotherapy. One cancer therapeutic approach currently in clinical trials uses histone deacetylase inhibitors (HDACi's as monotherapy or in combination with other agents. METHODOLOGY/PRINCIPAL FINDINGS: We have used a variety of cell-based and molecular/biochemical assays to show that two pan-HDAC inhibitors, trichostatin A and vorinostat, induce apoptosis in seven of eight human DLBCL cell lines. Consistent with previous reports implicating the BCL-2 family in regulating HDACi-induced apoptosis, ectopic over-expression of anti-apoptotic proteins BCL-2 and BCL-XL or pro-apoptotic protein BIM in these cell lines conferred further resistance or sensitivity, respectively, to HDACi treatment. Additionally, BCL-2 family antgonist ABT-737 increased the sensitivity of several DLBCL cell lines to vorinostat-induced apoptosis, including one cell line (SUDHL6 that is resistant to vorinostat alone. Moreover, two variants of the HDACi-sensitive SUDHL4 cell line that have decreased sensitivity to vorinostat showed up-regulation of BCL-2 family anti-apoptotic proteins such as BCL-XL and MCL-1, as well as decreased sensitivity to ABT-737. These results suggest that the regulation and overall balance of anti- to pro-apoptotic BCL-2 family protein expression is important in defining the sensitivity of DLBCL to HDACi-induced apoptosis. However, the sensitivity of DLBCL cell lines to HDACi treatment does not correlate with expression of any individual BCL-2 family member. CONCLUSIONS/SIGNIFICANCE: These studies indicate that the sensitivity of DLBCL to treatment with HDACi's is dependent on the complex regulation of BCL-2 family members and that BCL-2 antagonists may enhance the response of a subset of DLBCL patients to HDACi treatment.

  10. Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes

    DEFF Research Database (Denmark)

    Maolanon, Alex; Kristensen, Helle; Leman, Luke

    2017-01-01

    Inhibition of histone deacetylase (HDAC) enzymes has emerged as a target for development of cancer chemotherapy. Four compounds have gained approval for clinical use by the Food and Drug Administration (FDA) in the US, and several are currently in clinical trials. However, none of these compounds...... HDAC enzymes may hold an advantage over traditional hydroxamic acid-containing inhibitors, which rely on chelation to the conserved active site zinc ion. Here, we review the literature on macrocyclic HDAC inhibitors obtained from natural sources and structure-activity relationship studies inspired...

  11. Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Luca A Petruccelli

    Full Text Available Histone deacetylase inhibitors (HDACi are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents.

  12. Vorinostat Induces Reactive Oxygen Species and DNA Damage in Acute Myeloid Leukemia Cells

    Science.gov (United States)

    Pettersson, Filippa; Retrouvey, Hélène; Skoulikas, Sophia; Miller, Wilson H.

    2011-01-01

    Histone deacetylase inhibitors (HDACi) are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML) cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC) reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents. PMID:21695163

  13. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer.

    Directory of Open Access Journals (Sweden)

    Sofie Claerhout

    Full Text Available Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future.Using microarray technology, we generated a gene expression profile of human gastric cancer-specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern.We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment.

  14. Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer

    Science.gov (United States)

    Choi, Woonyoung; Park, Yun-Yong; Kim, KyoungHyun; Kim, Sang-Bae; Lee, Ju-Seog; Mills, Gordon B.; Cho, Jae Yong

    2011-01-01

    Background Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future. Methodology/Principal Findings Using microarray technology, we generated a gene expression profile of human gastric cancer–specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A) whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern. Conclusions/Significance We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment. PMID:21931799

  15. Trends in the treatment of cutaneous T-cell lymphoma – critical evaluation and perspectives on vorinostat

    Directory of Open Access Journals (Sweden)

    Zhang CL

    2012-02-01

    Full Text Available Sophia Rangwala, Madeleine Duvic, Chunlei ZhangDepartment of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USAAbstract: Epigenetic modification with small molecule histone deacetylase inhibitors has been a promising new anti-neoplastic approach for various solid and hematological malignancies, particularly cutaneous T-cell lymphoma (CTCL. Oral vorinostat was the first histone deacetylase inhibitor approved to enter the clinical oncology market for treating CTCL patients who have progressive, persistent, or recurrent disease after failing two systemic therapies. In two phase II clinical trials, oral vorinostat was found to be safe and effective at a dose of 400 mg/day, with an overall response rate of 24%–30% in heavily pretreated patients with advanced CTCL, including those with large-cell transformed mycosis fungoides and Sézary syndrome. About half of CTCL patients receiving vorinostat also experienced substantial relief in pruritus and thus a marked improvement in quality of life. A subsequent follow-up study reported long-term safety and clinical benefits of vorinostat in patients with refractory CTCL, regardless of previous treatment failures. The most frequent side effects of vorinostat include gastrointestinal symptoms, fatigue, and thrombocytopenia. These adverse reactions are dose-related and reversible upon cessation of therapy. Preclinical studies have supported the therapeutic potential of vorinostat by demonstrating in vitro and in vivo anti-tumor activities against CTCL, including selective induction of apoptosis in malignant T cells, inhibition of angiogenesis, suppression of signal transducer and activator of transcription proteins, and up-regulation of pro-apoptotic proteins. Identification of biomarkers of response and resistance will help select CTCL patients most likely to benefit from treatment and guide the design of effective combination therapies.Keywords: cutaneous T-cell lymphoma

  16. Developing selective histone deacetylases (HDACs) inhibitors through ebselen and analogs.

    Science.gov (United States)

    Wang, Yuren; Wallach, Jason; Duane, Stephanie; Wang, Yuan; Wu, Jianghong; Wang, Jeffrey; Adejare, Adeboye; Ma, Haiching

    2017-01-01

    Histone deacetylases (HDACs) are key regulators of gene expression in cells and have been investigated as important therapeutic targets for cancer and other diseases. Different subtypes of HDACs appear to play disparate roles in the cells and are associated with specific diseases. Therefore, substantial effort has been made to develop subtype-selective HDAC inhibitors. In an effort to discover existing scaffolds with HDAC inhibitory activity, we screened a drug library approved by the US Food and Drug Administration and a National Institutes of Health Clinical Collection compound library in HDAC enzymatic assays. Ebselen, a clinical safe compound, was identified as a weak inhibitor of several HDACs, including HDAC1, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, and HDAC9 with half maximal inhibitory concentrations approximately single digit of µM. Two ebselen analogs, ebselen oxide and ebsulfur (a diselenide analog of ebselen), also inhibited these HDACs, however with improved potencies on HDAC8. Benzisothiazol, the core structure of ebsulfur, specifically inhibited HDAC6 at a single digit of µM but had no inhibition on other HDACs. Further efforts on structure-activity relationship based on the core structure of ebsulfur led to the discovery of a novel class of potent and selective HDAC6 inhibitors with RBC-2008 as the lead compound with single-digit nM potency. This class of histone deacetylase inhibitor features a novel pharmacophore with an ebsulfur scaffold selectively targeting HDAC6. Consistent with its inhibition on HDAC6, RBC-2008 significantly increased the acetylation levels of α-tubulin in PC-3 cells. Furthermore, treatment with these compounds led to cell death of multiple tumor cell lines in a dose-dependent manner. These results demonstrated that ebselen and ebsulfur analogs are inhibitors of HDACs, supporting further preclinical development of this class of compounds for potential therapeutic applications.

  17. Final Results of a Phase 1 Study of Vorinostat, Pegylated Liposomal Doxorubicin, and Bortezomib in Relapsed or Refractory Multiple Myeloma.

    Science.gov (United States)

    Voorhees, Peter M; Gasparetto, Cristina; Moore, Dominic T; Winans, Diane; Orlowski, Robert Z; Hurd, David D

    2017-07-01

    Deacetylase inhibitors have synergistic activity in combination with proteasome inhibitors and anthracyclines in preclinical models of multiple myeloma (MM). We therefore evaluated the safety and efficacy of the deacetylase inhibitor vorinostat in combination with pegylated liposomal doxorubicin (PLD) and bortezomib in relapsed/refractory MM. Thirty-two patients were treated with PLD and bortezomib in combination with escalating doses of vorinostat on days 4 to 11 or 1 to 14. The maximum tolerated dose of vorinostat was 400 mg on days 4 to 11. Neutropenia and thrombocytopenia attributable to protocol therapy were seen in 59% and 94% of patients, of which 37% and 47% were of grade 3 or higher severity, respectively. Constitutional and gastrointestinal adverse events of all grades were common, the majority of which were less than grade 3 in severity. The overall response rate (partial response rate or better) was 65% and the clinical benefit rate (minimal response rate or better) 74%. The overall response rate was 83%, 71%, and 45% for patients with bortezomib-naive, -sensitive, and -refractory MM, respectively. The median progression-free survival was 13.9 months and the 3-year overall survival 77%. Whole blood proteasome activity assays demonstrated a potential impact of vorinostat on the chymotryptic-like activity of the proteasome. Further evaluation of PLD, bortezomib, and deacetylase inhibitor combinations is warranted, with special attention directed toward strategies to improve tolerability. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Analysis of the genomic response of human prostate cancer cells to histone deacetylase inhibitors.

    Science.gov (United States)

    Kortenhorst, Madeleine S Q; Wissing, Michel D; Rodríguez, Ronald; Kachhap, Sushant K; Jans, Judith J M; Van der Groep, Petra; Verheul, Henk M W; Gupta, Anuj; Aiyetan, Paul O; van der Wall, Elsken; Carducci, Michael A; Van Diest, Paul J; Marchionni, Luigi

    2013-09-01

    Histone deacetylases (HDACs) have emerged as important targets for cancer treatment. HDAC-inhibitors (HDACis) are well tolerated in patients and have been approved for the treatment of patients with cutaneous T-cell lymphoma (CTCL). To improve the clinical benefit of HDACis in solid tumors, combination strategies with HDACis could be employed. In this study, we applied Analysis of Functional Annotation (AFA) to provide a comprehensive list of genes and pathways affected upon HDACi-treatment in prostate cancer cells. This approach provides an unbiased and objective approach to high throughput data mining. By performing AFA on gene expression data from prostate cancer cell lines DU-145 (an HDACi-sensitive cell line) and PC3 (a relatively HDACi-resistant cell line) treated with HDACis valproic acid or vorinostat, we identified biological processes that are affected by HDACis and are therefore potential treatment targets for combination therapy. Our analysis revealed that HDAC-inhibition resulted among others in upregulation of major histocompatibility complex (MHC) genes and deregulation of the mitotic spindle checkpoint by downregulation of genes involved in mitosis. These findings were confirmed by AFA on publicly available data sets from HDACi-treated prostate cancer cells. In total, we analyzed 375 microarrays with HDACi treated and non-treated (control) prostate cancer cells. All results from this extensive analysis are provided as an online research source (available at the journal's website and at http://luigimarchionni.org/HDACIs.html). By publishing this data, we aim to enhance our understanding of the cellular changes after HDAC-inhibition, and to identify novel potential combination strategies with HDACis for the treatment of prostate cancer patients.

  19. Biomarker modulation following short-term vorinostat in women with newly diagnosed primary breast cancer.

    Science.gov (United States)

    Stearns, Vered; Jacobs, Lisa K; Fackler, Maryjo; Tsangaris, Theodore N; Rudek, Michelle A; Higgins, Michaela; Lange, Julie; Cheng, Zandra; Slater, Shannon A; Jeter, Stacie C; Powers, Penny; Briest, Susanne; Chao, Calvin; Yoshizawa, Carl; Sugar, Elizabeth; Espinoza-Delgado, Igor; Sukumar, Saraswati; Gabrielson, Edward; Davidson, Nancy E

    2013-07-15

    Agents that target the epigenome show activity in breast cancer models. In preclinical studies, the histone deacetylase inhibitor vorinostat induces cell-cycle arrest, apoptosis, and differentiation. We evaluated biomarker modulation in breast cancer tissues obtained from women with newly diagnosed invasive disease who received vorinostat and those who did not. Tumor specimens were collected from 25 women who received up to 6 doses of oral vorinostat 300 mg twice daily and from 25 untreated controls in a nonrandomized study. Candidate gene expression was analyzed by reverse transcription PCR (RT-PCR) using the Oncotype DX 21-gene assay, and by immunohistochemistry for Ki-67 and cleaved caspase-3. Matched samples from treated women were analyzed for gene methylation by quantitative multiplex methylation-specific PCR (QM-MSP). Wilcoxon nonparametric tests were used to compare changes in quantitative gene expression levels pre- and post-vorinostat with changes in expression in untreated controls, and changes in gene methylation between pre- and post-vorinostat samples. Vorinostat was well tolerated and there were no study-related delays in treatment. Compared with untreated controls, there were statistically significant decreases in the expression of proliferation-associated genes Ki-67 (P = 0.003), STK15 (P = 0.005), and Cyclin B1 (P = 0.03) following vorinostat, but not in other genes by the Oncotype DX assay, or in expression of Ki-67 or cleaved caspase-3 by immunohistochemistry. Changes in methylation were not observed. Short-term vorinostat administration is associated with a significant decrease in expression of proliferation-associated genes in untreated breast cancers. This demonstration of biologic activity supports investigation of vorinostat in combination with other agents for the management of breast cancer.

  20. Vorinostat in combination with bortezomib in patients with advanced malignancies directly alters transcription of target genes.

    Science.gov (United States)

    Kolesar, Jill M; Traynor, Anne M; Holen, Kyle D; Hoang, Tien; Seo, Songwon; Kim, Kyungmann; Alberti, Dona; Espinoza-Delgado, Igor; Wright, John J; Wilding, George; Bailey, Howard H; Schelman, William R

    2013-09-01

    Vorinostat is a small molecule inhibitor of class I and II histone deacetylase enzymes which alters the expression of target genes including the cell cycle gene p21, leading to cell cycle arrest and apoptosis. Patients enrolled in a phase I trial were treated with vorinostat alone on day 1 and vorinostat and bortezomib in combination on day 9. Paired biopsies were obtained in eleven subjects. Blood samples were obtained on days 1 and 9 of cycle 1 prior to dosing and 2 and 6 h post-dosing in all 60 subjects. Gene expression of p21, HSP70, AKT, Nur77, ERB1, and ERB2 was evaluated in peripheral blood mononuclear cells and tissue samples. Chromatin immunoprecipitation of p21, HSP70, and Nur77 was also performed in biopsy samples. In peripheral blood mononuclear cells, Nur77 was significantly and consistently decreased 2 h after vorinostat administration on both days 1 and 9, median ratio of gene expression relative to baseline of 0.69 with interquartile range 0.49-1.04 (p vorinostat and bortezomib. p21, a downstream target of Nur77, was significantly decreased on day 9, 2 and 6 h after administration of vorinostat and bortezomib, 0.67 (0.41-1.03) (p vorinostat in tissue biopsies in most patients. Vorinostat inhibits Nur77 expression, which in turn may decrease p21 and AKT expression in PBMCs. The influence of vorinostat on target gene expression in tumor tissue was variable; however, most patients demonstrated interaction of acetylated H3 with Nur77, HSP70, and p21 which provides evidence of interaction with the transcriptionally active acetylated H3.

  1. Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives.

    Science.gov (United States)

    Hailu, Gebremedhin S; Robaa, Dina; Forgione, Mariantonietta; Sippl, Wolfgang; Rotili, Dante; Mai, Antonello

    2017-06-22

    Current therapies for human parasite infections rely on a few drugs, most of which have severe side effects, and their helpfulness is being seriously compromised by the drug resistance problem. Globally, this is pushing discovery research of antiparasitic drugs toward new agents endowed with new mechanisms of action. By using a "drug repurposing" strategy, histone deacetylase inhibitors (HDACi), which are presently clinically approved for cancer use, are now under investigation for various parasite infections. Because parasitic Zn 2+ - and NAD + -dependent HDACs play crucial roles in the modulation of parasite gene expression and many of them are pro-survival for several parasites under various conditions, they are now emerging as novel potential antiparasitic targets. This Perspective summarizes the state of knowledge of HDACi (both class I/II HDACi and sirtuin inhibitors) targeted to the main human parasitic diseases (schistosomiasis, malaria, trypanosomiasis, leishmaniasis, and toxoplasmosis) and provides visions into the main issues that challenge their development as antiparasitic agents.

  2. Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and beta-cell protection

    NARCIS (Netherlands)

    Christensen, D.P.; Gysemans, C.; Lundh, M.; Dahllof, M.S.; Noesgaard, D.; Schmidt, S.F.; Mandrup, S; Birkbak, N.; Workman, C.T.; Piemonti, L.; Blaabjerg, L.; Monzani, V.; Fossati, G.; Mascagni, P.; Paraskevas, S.; Aikin, R.A.; Billestrup, N.; Grunnet, L.G.; Dinarello, C.A.; Mathieu, C.; Mandrup-Poulsen, T.

    2014-01-01

    Type 1 diabetes is due to destruction of pancreatic beta-cells. Lysine deacetylase inhibitors (KDACi) protect beta-cells from inflammatory destruction in vitro and are promising immunomodulators. Here we demonstrate that the clinically well-tolerated KDACi vorinostat and givinostat revert diabetes

  3. Modeling the Effects of Vorinostat In Vivo Reveals both Transient and Delayed HIV Transcriptional Activation and Minimal Killing of Latently Infected Cells.

    Science.gov (United States)

    Ke, Ruian; Lewin, Sharon R; Elliott, Julian H; Perelson, Alan S

    2015-10-01

    Recent efforts to cure human immunodeficiency virus type-1 (HIV-1) infection have focused on developing latency reversing agents as a first step to eradicate the latent reservoir. The histone deacetylase inhibitor, vorinostat, has been shown to activate HIV RNA transcription in CD4+ T-cells and alter host cell gene transcription in HIV-infected individuals on antiretroviral therapy. In order to understand how latently infected cells respond dynamically to vorinostat treatment and determine the impact of vorinostat on reservoir size in vivo, we have constructed viral dynamic models of latency that incorporate vorinostat treatment. We fitted these models to data collected from a recent clinical trial in which vorinostat was administered daily for 14 days to HIV-infected individuals on suppressive ART. The results show that HIV transcription is increased transiently during the first few hours or days of treatment and that there is a delay before a sustained increase of HIV transcription, whose duration varies among study participants and may depend on the long term impact of vorinostat on host gene expression. Parameter estimation suggests that in latently infected cells, HIV transcription induced by vorinostat occurs at lower levels than in productively infected cells. Furthermore, the estimated loss rate of transcriptionally induced cells remains close to baseline in most study participants, suggesting vorinostat treatment does not induce latently infected cell killing and thus reduce the latent reservoir in vivo.

  4. Santacruzamate A, a potent and selective histone deacetylase inhibitor from the Panamanian marine cyanobacterium cf. Symploca sp.

    Science.gov (United States)

    Pavlik, Christopher M; Wong, Christina Y B; Ononye, Sophia; Lopez, Dioxelis D; Engene, Niclas; McPhail, Kerry L; Gerwick, William H; Balunas, Marcy J

    2013-11-22

    A dark brown tuft-forming cyanobacterium, morphologically resembling the genus Symploca, was collected during an expedition to the Coiba National Park, a UNESCO World Heritage Site on the Pacific coast of Panama. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is 4.5% divergent from the type strain for Symploca and thus is likely a new genus. Fractionation of the crude extract led to the isolation of a new cytotoxin, designated santacruzamate A (1), which has several structural features in common with suberoylanilide hydroxamic acid [(2), SAHA, trade name Vorinostat], a clinically approved histone deacetylase (HDAC) inhibitor used to treat refractory cutaneous T-cell lymphoma. Recognition of the structural similarly of 1 and SAHA led to the characterization of santacruzamate A as a picomolar level selective inhibitor of HDAC2, a Class I HDAC, with relatively little inhibition of HDAC4 or HDAC6, both Class II HDACs. As a result, chemical syntheses of santacruzamate A as well as a structurally intriguing hybrid molecule, which blends aspects of both agents (1 and 2), were achieved and evaluated for their HDAC activity and specificity.

  5. Santacruzamate A, a Potent and Selective Histone Deacetylase (HDAC) Inhibitor from the Panamanian Marine Cyanobacterium cf. Symploca sp.

    Science.gov (United States)

    Pavlik, Christopher M.; Wong, Christina Y.B.; Ononye, Sophia; Lopez, Dioxelis D.; Engene, Niclas; McPhail, Kerry L.; Gerwick, William H.; Balunas, Marcy J.

    2013-01-01

    A dark-brown tuft-forming cyanobacterium, morphologically resembling the genus Symploca, was collected during an expedition to the Coiba National Park, a UNESCO World Heritage Site on the Pacific coast of Panama. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is 4.5% divergent from the type strain for Symploca, and thus is likely a new genus. Fractionation of the crude extract led to the isolation of a new cytotoxin, designated santacruzamate A (1), which has several structural features in common with suberoylanilide hydroxamic acid [(2), SAHA, trade name Vorinostat®], a clinically approved histone deacetylase (HDAC) inhibitor used to treat refractory cutaneous T-cell lymphoma. Recognition of the structural similarly of 1 and SAHA led to the characterization of santacruzamate A as a picomolar level selective inhibitor of HDAC2, a Class I HDAC, with relatively little inhibition of HDAC4 or HDAC6, both Class II HDACs. As a result, chemical syntheses of santacruzamate A as well as a structurally intriguing hybrid molecule, which blends aspects of both agents (1 and 2), were achieved and evaluated for their HDAC activity and specificity. PMID:24164245

  6. Histone deacetylase inhibitors: can we consider potent anti-neoplastic agents for the treatment of asthma?

    Science.gov (United States)

    Royce, Simon G; Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    Histone deacetylase inhibitors have emerged as a new class of anti-cancer therapeutics due to their potent anti-proliferative and apoptotic effects in malignant cells. Accumulating evidence is indicating that histone deacetylase inhibitors may also have potential clinical utility in non-oncological applications, including asthma. However, the potential of histone deacetylase inhibitors in asthma remains controversial. For example, the mechanisms of action of the broad-spectrum histone deacetylase inhibitor, Trichostatin A, in animal models of allergic airways disease are conflicting. Further, there is evidence suggesting potential problems associated with histone deacetylase 2 inhibition and conventional glucocorticosteroid therapy. Similarly, disparate findings are emerging following modulation of the class III, sirtuin 1 enzyme. Indeed, it is becoming apparent that the mechanism of action may not be related to histone deacetylase inhibition activity per se. Further, there is only limited evidence that these compounds possess anti-inflammatory effects in models of asthma. In this review, we provide an overview of the biology of the metal-dependent and sirtuin deacetylases in the context of asthma. The controversies surrounding the potential use of histone deacetylase inhibitors in asthma are discussed and future directions involving the investigation of more specific analogues are explored.

  7. Developing selective histone deacetylases (HDACs inhibitors through ebselen and analogs

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-05-01

    Full Text Available Yuren Wang,1 Jason Wallach,2 Stephanie Duane,1 Yuan Wang,1 Jianghong Wu,1 Jeffrey Wang,1 Adeboye Adejare,2 Haiching Ma1 1Reaction Biology Corp., Malvern, 2Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA Abstract: Histone deacetylases (HDACs are key regulators of gene expression in cells and have been investigated as important therapeutic targets for cancer and other diseases. Different subtypes of HDACs appear to play disparate roles in the cells and are associated with specific diseases. Therefore, substantial effort has been made to develop subtype-selective HDAC inhibitors. In an effort to discover existing scaffolds with HDAC inhibitory activity, we screened a drug library approved by the US Food and Drug Administration and a National Institutes of Health Clinical Collection compound library in HDAC enzymatic assays. Ebselen, a clinical safe compound, was identified as a weak inhibitor of several HDACs, including HDAC1, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, and HDAC9 with half maximal inhibitory concentrations approximately single digit of µM. Two ebselen analogs, ebselen oxide and ebsulfur (a diselenide analog of ebselen, also inhibited these HDACs, however with improved potencies on HDAC8. Benzisothiazol, the core structure of ebsulfur, specifically inhibited HDAC6 at a single digit of µM but had no inhibition on other HDACs. Further efforts on structure–activity relationship based on the core structure of ebsulfur led to the discovery of a novel class of potent and selective HDAC6 inhibitors with RBC-2008 as the lead compound with single-digit nM potency. This class of histone deacetylase inhibitor features a novel pharmacophore with an ebsulfur scaffold selectively targeting HDAC6. Consistent with its inhibition on HDAC6, RBC-2008 significantly increased the acetylation levels of α-tubulin in PC-3 cells. Furthermore, treatment with these compounds led to

  8. Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp-derived cells.

    LENUS (Irish Health Repository)

    Duncan, Henry F

    2012-03-01

    Histone deacetylase inhibitors (HDACis) alter the homeostatic balance between 2 groups of cellular enzymes, histone deacetylases (HDACs) and histone acetyltransferases (HATs), increasing transcription and influencing cell behavior. This study investigated the potential of 2 HDACis, valproic acid (VPA) and trichostatin A (TSA), to promote reparative processes in pulp cells as assayed by viability, cell cycle, and mineralization analyses.

  9. Macrocyclic Peptoid–Peptide Hybrids as Inhibitors of Class I Histone Deacetylases

    DEFF Research Database (Denmark)

    Olsen, Christian Adam; Montero, Ana; Leman, Luke J.

    2012-01-01

    We report the design, synthesis, and biological evaluation of the first macrocyclic peptoid-containing histone deacetylase (HDAC) inhibitors. The compounds selectively inhibit human class I HDAC isoforms in vitro, with no inhibition of the tubulin deacetylase activity associated with class IIb HDAC...

  10. A novel histone deacetylase inhibitor, CG200745, potentiates anticancer effect of docetaxel in prostate cancer via decreasing Mcl-1 and Bcl-XL.

    Science.gov (United States)

    Hwang, Jung Jin; Kim, Yong Sook; Kim, Taelim; Kim, Mi Joung; Jeong, In Gab; Lee, Je-Hwan; Choi, Jene; Jang, Sejin; Ro, Seonggu; Kim, Choung-Soo

    2012-08-01

    We synthesized a novel hydroxamate-based pan-histone deacetylase inhibitor (HDACI), CG200745 {(E)-2-(Naphthalen-1-yloxymethyl)-oct-2-enedioic acid 1-[(3-dimethylamino-propyl)-amide] 8-hydroxyamide]}. Like other inhibitors, for example vorinostat and belinostat, CG200745 has the hydroxamic acid moiety to bind zinc at the bottom of catalytic pocket. Firstly, we analyzed its inhibitory activity against histone deacetylase (HDAC) in hormone-dependent LNCaP cells and hormone-independent DU145 and PC3 cells. CG200745 inhibited deacetylation of histone H3 and tubulin as much as vorinostat and belinostat did. CG200745 also inhibited growth of prostate cancer cells, increased sub-G1 population, and activated caspase-9, -3 and -8 in LNCaP, DU145 and PC3 cells. These results indicate that CG200745 induces apoptosis. Next, we examined the effect of CG200745 on cell death induced by docetaxel in DU145 cells in vitro and in vivo. Compared to mono-treatment with each drug, pre-treatment of DU145 cells with docetaxel followed by CG200745 showed synergistic cytotoxicity, and increased the apoptotic sub-G1 population, caspase activation, and tubulin acetylation. Moreover, the combination treatment decreased Mcl-1 and Bcl-(XL). Docetaxel and CG200745 combination reduced tumor size in the DU145 xenograft model. These preclinical results show that combination treatment with docetaxel and new HDACI, CG200745, potentiated anti-tumor effect in hormone-refractory prostate cancer (HRPC) cells via activation of apoptosis.

  11. Vorinostat enhances protein stability of p27 and p21 through negative regulation of Skp2 and Cks1 in human breast cancer cells.

    Science.gov (United States)

    Uehara, Norihisa; Yoshizawa, Katsuhiko; Tsubura, Airo

    2012-07-01

    Vorinostat is a histone deacetylase inhibitor that blocks cancer cell proliferation through the regulation of cyclin-dependent kinase inhibitors. We, herein, examined the involvement of S-phase kinase-associated protein 2 (Skp2) and cyclin-dependent kinase subunit 1 (Cks1), the components of the SCFSkp2-Cks1 (Skp1/Cul1/F-box protein) ubiquitin ligase complex, in the regulation of p27 and p21 during vorinostat-induced growth arrest of MDA-MB-231 and MCF-7 human breast cancer cells. Vorinostat significantly reduced BrdU incorporation in MDA-MB-231 and MCF-7 cells, which was associated with increased p27 and p21 protein levels without concomitant induction of p27 mRNA. Vorinostat-induced accumulation of p27 and p21 proteins was inversely correlated with the mRNA and protein levels of Skp2 and Cks1. Cycloheximide chase analysis revealed that vorinostat increased the half-life of p27 and p21 proteins. The accumulation of p27 and p21 proteins was attenuated by forced expression of Skp2 and Cks1, which conferred resistance to the vorinostat-induced S-phase reduction. These results suggest that vorinostat-induced growth arrest may be in part due to the enhanced protein stability of p27 and p21 through the downregulation of Skp2 and Cks1.

  12. Vorinostat Modulates the Imbalance of T Cell Subsets, Suppresses Macrophage Activity, and Ameliorates Experimental Autoimmune Uveoretinitis.

    Science.gov (United States)

    Fang, Sijie; Meng, Xiangda; Zhang, Zhuhong; Wang, Yang; Liu, Yuanyuan; You, Caiyun; Yan, Hua

    2016-03-01

    The purpose of the study was to investigate the anti-inflammatory efficiency of vorinostat, a histone deacetylase inhibitor, in experimental autoimmune uveitis (EAU). EAU was induced in female C57BL/6J mice immunized with interphotoreceptor retinoid-binding protein peptide. Vorinostat or the control treatment, phosphate-buffered saline, was administrated orally from 3 days before immunization until euthanasia at day 21 after immunization. The clinical and histopathological scores of mice were graded, and the integrity of the blood-retinal barrier was examined by Evans blue staining. T helper cell subsets were measured by flow cytometry, and the macrophage functions were evaluated with immunohistochemistry staining and immunofluorescence assays. The mRNA levels of tight junction proteins were measured by qRT-PCR. The expression levels of intraocular cytokines and transcription factors were examined by western blotting. Vorinostat relieved both clinical and histopathological manifestations of EAU in our mouse model, and the BRB integrity was maintained in vorinostat-treated mice, which had less vasculature leakage and higher mRNA and protein expressions of tight junction proteins than controls. Moreover, vorinostat repressed Th1 and Th17 cells and increased Th0 and Treg cells. Additionally, the INF-γ and IL-17A expression levels were significantly decreased, while the IL-10 level was increased by vorinostat treatment. Furthermore, due to the reduced TNF-α level, the macrophage activity was considerably inhibited in EAU mice. Finally, transcription factors, including STAT1, STAT3, and p65, were greatly suppressed by vorinostat treatment. Our data suggest that vorinostat might be a potential anti-inflammatory agent in the management of uveitis and other autoimmune inflammatory diseases.

  13. Vorinostat increases expression of functional norepinephrine transporter in neuroblastoma in vitro and in vivo model systems

    Science.gov (United States)

    More, Swati S.; Itsara, Melissa; Yang, Xiaodong; Geier, Ethan G.; Tadano, Michelle K.; Seo, Youngho; VanBrocklin, Henry F.; Weiss, William A.; Mueller, Sabine; Haas-Kogan, Daphne A.; DuBois, Steven G.; Matthay, Katherine K.; Giacomini, Kathleen M.

    2011-01-01

    Purpose Histone deacetylase (HDAC) inhibition causes transcriptional activation or repression of several genes that in turn can influence the biodistribution of other chemotherapeutic agents. Here, we hypothesize that the combination of vorinostat, a HDAC inhibitor, with 131I-metaiodobenzylguanidine (MIBG) would lead to preferential accumulation of the latter in neuroblastoma (NB) tumors via increased expression of the human norepinephrine transporter (NET). Experimental Design In vitro and in vivo experiments examined the effect of vorinostat on the expression of NET, an uptake transporter for 131I-MIBG. Human NB cell lines (Kelly and SH-SY-5Y) and NB1691luc mouse xenografts were employed. The upregulated NET protein was characterized for its effect on 123I-MIBG biodistribution. Results Preincubation of NB cell lines, Kelly and SH-SY-5Y, with vorinostat caused dose-dependent increases in NET mRNA and protein levels. Accompanying this was a corresponding dose-dependent increase in MIBG uptake in NB cell lines. Four-fold and 2.5 fold increases were observed in Kelly and SH-SY-5Y cells, respectively, pre-treated with vorinostat in comparison to untreated cells. Similarly, NB xenografts, created by intravenous tail vein injection of NB1691-luc, and harvested from nude mice livers treated with vorinostat (150 mg/kg i.p.) showed substantial increases in NET protein expression. Maximal effect of vorinostat pretreatment in NB xenografts on 123I-MIBG biodistribution was observed in tumors that exhibited enhanced uptake in vorinostat treated (0.062 ± 0.011 μCi/(mg tissue-dose injected)) versus untreated mice (0.022 ± 0.003 μCi/(mg tissue-dose injected); p vorinostat treatment can enhance NB therapy with 131I-MIBG. PMID:21421857

  14. Inhibition of multiple pathogenic pathways by histone deacetylase inhibitor SAHA in a corneal alkali-burn injury model

    Science.gov (United States)

    Li, Xinyu; Zhou, Qinbo; Hanus, Jakub; Anderson, Chastain; Zhang, Hongmei; Dellinger, Michael; Brekken, Rolf; Wang, Shusheng

    2013-01-01

    Neovascularization (NV) in the cornea is a major cause of vision impairment and corneal blindness. Hemangiogenesis and lymphangiogenesis induced by inflammation underlie the pathogenesis of corneal NV. The current mainstay treatment, corticosteroid, treats the inflammation associated with corneal NV, but is not satisfactory due to such side effects as cataract and the increase in intraocular pressure. It is imperative to develop a novel therapy that specifically targets the hemangiogenesis, lymphangiogenesis and inflammation pathways underlying corneal NV. Histone deacetylase inhibitors (HDACi) have been in clinical trials for cancer and other diseases. In particular, HDACi suberoylanilide hydroxamic acid (SAHA, vorinostat, Zolinza) has been approved by the FDA for the treatment of cutaneous T-cell lymphoma. The functional mechanism of SAHA in cancer and especially in corneal NV remains unclear. Here, we show that topical application of SAHA inhibits neovascularization in an alkali-burn corneal injury model. Mechanistically, SAHA inhibits corneal NV by repressing hemangiogenesis, inflammation pathways and previously overlooked lymphangiogenesis. Topical SAHA is well tolerated on the ocular surface. In addition, the potency of SAHA in corneal NV appears to be comparable to the current steroid therapy. SAHA may possess promising therapeutic potential in alkali-burn corneal injury and other inflammatory neovascularization disorders. PMID:23186311

  15. Therapeutic applications of histone deacetylase inhibitors in sarcoma.

    Science.gov (United States)

    Tang, Fan; Choy, Edwin; Tu, Chongqi; Hornicek, Francis; Duan, Zhenfeng

    2017-09-01

    Sarcomas are a rare group of malignant tumors originating from mesenchymal stem cells. Surgery, radiation and chemotherapy are currently the only standard treatments for sarcoma. However, their response rates to chemotherapy are quite low. Toxic side effects and multi-drug chemoresistance make treatment even more challenging. Therefore, better drugs to treat sarcomas are needed. Histone deacetylase inhibitors (HDAC inhibitors, HDACi, HDIs) are epigenetic modifying agents that can inhibit sarcoma growth in vitro and in vivo through a variety of pathways, including inducing tumor cell apoptosis, causing cell cycle arrest, impairing tumor invasion and preventing metastasis. Importantly, preclinical studies have revealed that HDIs can not only sensitize sarcomas to chemotherapy and radiotherapy, but also increase treatment responses when combined with other chemotherapeutic drugs. Several phase I and II clinical trials have been conducted to assess the efficacy of HDIs either as monotherapy or in combination with standard chemotherapeutic agents or targeted therapeutic drugs for sarcomas. Combination regimen for sarcomas appear to be more promising than monotherapy when using HDIs. This review summarizes our current understanding and therapeutic applications of HDIs in sarcomas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Restoration of Transforming Growth Factor Beta Signaling by Histone Deacetylase Inhibitors in Human Prostate Carcinoma

    National Research Council Canada - National Science Library

    Qian, Zheng D

    2006-01-01

    The goal of the current grant is to investigate the potential antitumor activity of histone deacetylase inhibitor MS-275 along with the activation of TGFb signaling pathway with the restoration of TGFb receptor II...

  17. Restoration of Transforming Growth Factor Beta Signaling by Histone Deacetylase Inhibitors in Human Prostate Carcinoma

    National Research Council Canada - National Science Library

    Qian, Zheng D

    2005-01-01

    The goal of the current grant is to investigate the potential antitumor activity of histone deacetylase inhibitor MS-275 a with the activation of TGFb signaling pathway with the restoration of TGFbeta receptor II...

  18. Vorinostat and metformin sensitize EGFR-TKI resistant NSCLC cells via BIM-dependent apoptosis induction.

    Science.gov (United States)

    Chen, Hengyi; Wang, Yubo; Lin, Caiyu; Lu, Conghua; Han, Rui; Jiao, Lin; Li, Li; He, Yong

    2017-11-07

    There is a close relationship between low expression of BIM and resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Vorinostat is a pan-histone deacetylase inhibitor (HDACi) that augments BIM expression in various types of tumor cells, however, this effect is attenuated by the high expression of anti-apoptotic proteins in EGFR-TKI resistant non-small cell lung cancer (NSCLC) cells. Vorinostat in combination with metformin - a compound that can inhibit anti-apoptotic proteins expression, might cooperate to activate apoptotic signaling and overcome EGFR-TKI resistance. This study aimed to investigate the cooperative effect and evaluate possible molecular mechanisms. The results showed that vorinostat combined with gefitinib augmented BIM expression and increased the sensitivity of EGFR-TKI resistant NSCLC cells to gefitinib, adding metformin simultaneously could obviously inhibit the expression of anti-apoptotic proteins, and further increased expression levels of BIM and BAX, and as a result, further improved the sensitivity of gefitinib both on the NSCLC cells with intrinsic and acquired resistance to EGFR-TKI. In addition, autophagy induced by gefitinib and vorinostat could be significantly suppressed by metformin, which might also contribute to enhance apoptosis and improve sensitivity of gefitinib. These results suggested that the combination of vorinostat and metformin might represent a novel strategy to overcome EGFR-TKI resistance associated with BIM-dependent apoptosis in larger heterogeneous populations.

  19. Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma.

    Science.gov (United States)

    Jeannot, Victor; Busser, Benoit; Vanwonterghem, Laetitia; Michallet, Sophie; Ferroudj, Sana; Cokol, Murat; Coll, Jean-Luc; Ozturk, Mehmet; Hurbin, Amandine

    2016-01-01

    Development of drug resistance limits the efficacy of targeted therapies. Alternative approaches using different combinations of therapeutic agents to inhibit several pathways could be a more effective strategy for treating cancer. The effects of the approved epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (gefitinib) or a multi-targeted kinase inhibitor (sorafenib) in combination with a histone deacetylase inhibitor (vorinostat) on cell proliferation, cell cycle distribution, apoptosis, and signaling pathway activation in human lung adenocarcinoma and hepatocarcinoma cells with wild-type EGFR and mutant KRAS were investigated. The effects of the synergistic drug combinations were also studied in human lung adenocarcinoma and hepatocarcinoma cells in vivo. The combination of gefitinib and vorinostat synergistically reduced cell growth and strongly induced apoptosis through inhibition of the insulin-like growth factor-1 receptor/protein kinase B (IGF-1R/AKT)-dependent signaling pathway. Moreover, the gefitinib and vorinostat combination strongly inhibited tumor growth in mice with lung adenocarcinoma or hepatocarcinoma tumor xenografts. In contrast, the combination of sorafenib and vorinostat did not inhibit cell proliferation compared to a single treatment and induced G 2 /M cell cycle arrest without apoptosis. The sorafenib and vorinostat combination sustained the IGF-1R-, AKT-, and mitogen-activated protein kinase-dependent signaling pathways. These results showed that there was synergistic cytotoxicity when vorinostat was combined with gefitinib for both lung adenocarcinoma and hepatocarcinoma with mutant KRAS in vitro and in vivo but that the combination of vorinostat with sorafenib did not show any benefit. These findings highlight the important role of the IGF-1R/AKT pathway in the resistance to targeted therapies and support the use of histone deacetylase inhibitors in combination with EGFR-tyrosine kinase inhibitors, especially for

  20. Histone Deacetylase Inhibitors Prolong Cardiac Repolarization through Transcriptional Mechanisms.

    Science.gov (United States)

    Spence, Stan; Deurinck, Mark; Ju, Haisong; Traebert, Martin; McLean, LeeAnne; Marlowe, Jennifer; Emotte, Corinne; Tritto, Elaine; Tseng, Min; Shultz, Michael; Friedrichs, Gregory S

    2016-09-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of anticancer agents that modify gene expression by altering the acetylation status of lysine residues of histone proteins, thereby inducing transcription, cell cycle arrest, differentiation, and cell death or apoptosis of cancer cells. In the clinical setting, treatment with HDAC inhibitors has been associated with delayed cardiac repolarization and in rare instances a lethal ventricular tachyarrhythmia known as torsades de pointes. The mechanism(s) of HDAC inhibitor-induced effects on cardiac repolarization is unknown. We demonstrate that administration of structurally diverse HDAC inhibitors to dogs causes delayed but persistent increases in the heart rate corrected QT interval (QTc), an in vivo measure of cardiac repolarization, at timepoints far removed from the Tmax for parent drug and metabolites. Transcriptional profiling of ventricular myocardium from dogs treated with various HDAC inhibitors demonstrated effects on genes involved in protein trafficking, scaffolding and insertion of various ion channels into the cell membrane as well as genes for specific ion channel subunits involved in cardiac repolarization. Extensive in vitro ion channel profiling of various structural classes of HDAC inhibitors (and their major metabolites) by binding and acute patch clamp assays failed to show any consistent correlations with direct ion channel blockade. Drug-induced rescue of an intracellular trafficking-deficient mutant potassium ion channel, hERG (G601S), and decreased maturation (glycosylation) of wild-type hERG expressed by CHO cells in vitro correlated with prolongation of QTc intervals observed in vivo The results suggest that HDAC inhibitor-induced prolongation of cardiac repolarization may be mediated in part by transcriptional changes of genes required for ion channel trafficking and localization to the sarcolemma. These data have broad implications for the development of these drug classes and

  1. Vorinostat plus tacrolimus and mycophenolate to prevent graft-versus-host disease after related-donor reduced-intensity conditioning allogeneic haemopoietic stem-cell transplantation: a phase 1/2 trial

    NARCIS (Netherlands)

    Choi, S.W.; Braun, T.; Chang, L.; Ferrara, J.L.; Pawarode, A.; Magenau, J.M.; Hou, G.; Beumer, J.H.; Levine, J.E.; Goldstein, S.; Couriel, D.R.; Stockerl-Goldstein, K.; Krijanovski, O.I.; Kitko, C.; Yanik, G.A.; Lehmann, M.H.; Tawara, I.; Sun, Y; Paczesny, S.; Mapara, M.Y.; Dinarello, C.A.; Dipersio, J.F.; Reddy, P.

    2014-01-01

    BACKGROUND: Acute graft-versus-host disease (GVHD) remains a barrier to more widespread application of allogeneic haemopoietic stem-cell transplantation. Vorinostat is an inhibitor of histone deacetylases and was shown to attenuate GVHD in preclinical models. We aimed to study the safety and

  2. Activation of the Unfolded Protein Response Contributes toward the Antitumor Activity of Vorinostat

    Directory of Open Access Journals (Sweden)

    Soumen Kahali

    2010-01-01

    Full Text Available Histone deacetylase (HDAC inhibitors represent an emerging class of anticancer agents progressing through clinical trials. Although their primary target is thought to involve acetylation of core histones, several nonhistone substrates have been identified, including heat shock protein (HSP 90, which may contribute towards their antitumor activity. Glucose-regulated protein 78 (GRP78 is a member of the HSP family of molecular chaperones and plays a central role in regulating the unfolded protein response (UPR. Emerging data suggest that GRP78 is critical in cellular adaptation and survival associated with oncogenesis and may serve as a cancer-specific therapeutic target. On the basis of shared homology with HSP family proteins, we sought to determine whether GRP78 could serve as a molecular target of the HDAC inhibitor vorinostat. Vorinostat treatment led to GRP78 acetylation, dissociation, and subsequent activation of its client protein double-stranded RNA-activated protein-like endoplasmic reticulum kinase (PERK. Investigations in a panel of cancer cell lines identified that UPR activation after vorinostat exposure is specific to certain lines. Mass spectrometry performed on immunoprecipitated GRP78 identified lysine-585 as a specific vorinostat-induced acetylation site of GRP78. Downstream activation of the UPR was confirmed, including eukaryotic initiating factor 2α phosphorylation and increase in ATF4 and C/EBP homologous protein expression. To determine the biologic relevance of UPR activation after vorinostat, RNA interference of PERK was performed, demonstrating significantly decreased sensitivity to vorinostat-induced cytotoxicity. Collectively, these findings indicate that GRP78 is a biologic target of vorinostat, and activation of the UPR through PERK phosphorylation contributes toward its antitumor activity.

  3. Additive effects of vorinostat and MLN8237 in pediatric leukemia, medulloblastoma, and neuroblastoma cell lines.

    Science.gov (United States)

    Muscal, Jodi A; Scorsone, Kathleen A; Zhang, Linna; Ecsedy, Jeffrey A; Berg, Stacey L

    2013-02-01

    Histone deacetylase (HDAC) inhibitors, such as vorinostat, decrease Aurora kinase activity by a variety of mechanisms. Vorinostat and MLN8237, a selective Aurora A kinase inhibitor, disrupt the spindle assembly and the mitotic checkpoint at different points, suggesting that the combination could have increased antitumor activity. The purpose of this study was to determine the cytotoxicity of vorinostat and MLN8237 in pediatric tumor cell lines. Cell survival was measured after 72 h of drug treatment using a modified methyl tetrazolium assay. For drug combination experiments, cells were exposed to medium alone (controls), single drug alone, or to different concentrations of the combination of the two drugs, for a total of 36 concentration pairs per plate. The interaction of the drug combination was analyzed using the universal response surface approach. The cells express the target of MLN8237, Aurora A. For each cell line, the single agent IC(50) for MLN8237 and for vorinostat was in the clinically relevant range. Both drugs inhibited cell survival in a concentration-dependent fashion. At concentrations of MLN8237 exceeding approximately 1 μM, there was a paradoxical increase in viability signal in all three lines that may be explained by inhibition of Aurora B kinase. The combination of MLN8237 and vorinostat showed additive cytotoxicity in all three cell lines and nearly abrogated the paradoxical increase in survival noted at high single-agent MLN8237 concentrations. MLN8237 and vorinostat are active in vitro against cancer cell lines. These results provide important preclinical support for the development of future clinical studies of MLN8237and vorinostat.

  4. A Rationally Designed Histone Deacetylase Inhibitor with Distinct Antitumor Activity against Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Ya-Ting Yang

    2009-06-01

    Full Text Available Histone deacetylase inhibitors (HDACIs are a class of antineoplastic agents previously demonstrating preclinical chemosensitizing activity against drug-resistant cancer cells and mouse xenografts. However, whereas clinical studies have shown efficacy against human hematologic malignancies, solid tumor trials have proved disappointing. We previously developed a novel HDACI, “OSU-HDAC42,” and herein examine its activity against ovarian cancer cell lines and xenografts. OSU-HDAC42, (i unlike most HDACIs, elicited a more than five-fold increase in G2-phase cells, at 2.5 µM, with G2 arrest followed by apoptosis; (ii at 1.0 µM, completely repressed messenger RNA expression of the cell cycle progression gene cdc2; (iii at low doses (0.25–1.0 µM for 24 hours, induced tumor cell epithelial differentiation, as evidenced by morphology changes and a more than five-fold up-regulation of epithelium-specific cytokeratins; (iv potently abrogated the growth of numerous ovarian cancer cells, with IC50 values of 0.5 to 1.0 µM, whereas also remaining eight-fold less toxic (IC50 of 8.6 µM to normal ovarian surface epithelial cells; and (v chemosensitizated platinum-resistant mouse xenografts to cisplatin. Compared with the clinically approved HDACI suberoylanilide hydroxamic acid (vorinostat, 1.0 µM OSU-HDAC42 was more biochemically potent (i.e., enzyme-inhibitory, as suggested by greater gene up-regulation and acetylation of both histone and nonhistone proteins. In p53-dysfunctional cells, however, OSU-HDAC42 was two- to eight-fold less inductive of p53-regulated genes, whereas also having a two-fold higher IC50 than p53-functional cells, demonstrating some interaction with p53 tumor-suppressive cascades. These findings establish OSU-HDAC42 as a promising therapeutic agent for drug-resistant ovarian cancer and justify its further investigation.

  5. The effect of histone deacetylase inhibitors on AHSP expression

    Science.gov (United States)

    Ziari, Katayoun; Ranjbaran, Reza; Nikouyan, Negin

    2018-01-01

    Alpha-hemoglobin stabilizing protein (AHSP) is a molecular chaperone that can reduce the damage caused by excess free α-globin to erythroid cells in patients with impaired β-globin chain synthesis. We assessed the effect of sodium phenylbutyrate and sodium valproate, two histone deacetylase inhibitors (HDIs) that are being studied for the treatment of hemoglobinopathies, on the expression of AHSP, BCL11A (all isoforms), γ-globin genes (HBG1/2), and some related transcription factors including GATA1, NFE2, EKLF, KLF4, and STAT3. For this purpose, the K562 cell line was cultured for 2, 4, and 6 days in the presence and absence of sodium phenylbutyrate and sodium valproate. Relative real-time qRT-PCR analysis of mRNA levels was performed to determine the effects of the two compounds on gene expression. Expression of all target mRNAs increased significantly (p sodium valproate had a more considerable effect than sodium phenylbutyrate (p sodium valproate after 6 days. Both compounds repressed the expression of BCL11A (-XL, -L, -S) and up-regulated GATA1, NFE2, EKLF, KLF4, STAT3, AHSP, and γ-globin genes expression. Moreover, sodium valproate showed a stronger effect on repressing BCL11A and escalating the expression of other target genes. The findings of this in vitro experiment could be considered in selecting drugs for clinical use in patients with β-hemoglobinopathies. PMID:29389946

  6. Histone deacetylase inhibitors promote the tumoricidal effect of HAMLET.

    Science.gov (United States)

    Brest, Patrick; Gustafsson, Mattias; Mossberg, Ann-Kristin; Gustafsson, Lotta; Duringer, Caroline; Hamiche, Ali; Svanborg, Catharina

    2007-12-01

    Histone deacetylase inhibitors (HDIs) and HAMLET (human alpha-lactalbumin made lethal to tumor cells) interact with histones, modify the structure of chromatin, and trigger tumor cell death. This study investigated how the combination of HDIs and HAMLET influences cell viability, histone acetylation, and DNA integrity. The pretreatment of tumor cells with HDIs was shown to enhance the lethal effect of HAMLET and the histone hyperacetylation response to HDIs increased even further after HAMLET treatment. HDIs and HAMLET were shown to target different histone domains as HAMLET bound tailless core histones, whereas HDIs modify the acetylation of the histone tail. DNA damage in response to HAMLET was increased by HDIs. The DNA repair response (p21WAFI expression) was induced by both agonists but abolished when the two agonists were combined. The results suggest that the synergy of HDIs and HAMLET is based on different but converging death pathways, both involving chromatin alterations. We speculate that HAMLET and HDIs might be combined to promote tumor cell death in vivo.

  7. Histone Deacetylase Inhibitor Therapy in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Noriyuki Takai

    2010-01-01

    Full Text Available Since epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in ovarian cancers, novel compounds endowed with a histone deacetylase (HDAC inhibitory activity are an attractive therapeutic approach. In this review, we discuss the biologic and therapeutic effects of HDAC inhibitors (HDACIs in treating ovarian cancer. HDACIs were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and expression of genes related to the malignant phenotype in a variety of ovarian cancer cell lines. Furthermore, HDACIs were able to induce the accumulation of acetylated histones in the chromatin of the p21WAF1 gene in human ovarian carcinoma cells. In xenograft models, some of HDACIs have demonstrated antitumor activity with only few side effects. Some clinical trials demonstrate that HDACI drugs provide an important class of new mechanism-based therapeutics for ovarian cancer. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating ovarian cancer, especially focusing on preclinical studies and clinical trials.

  8. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells.

    Science.gov (United States)

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L; Han, Jessica H; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H; Bussey, Kimberly J; Meldrum, Deirdre R

    2016-08-09

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an 'epigenetic' drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat's differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action.

  9. The effect of histone deacetylase inhibitors on AHSP expression.

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Okhovat

    Full Text Available Alpha-hemoglobin stabilizing protein (AHSP is a molecular chaperone that can reduce the damage caused by excess free α-globin to erythroid cells in patients with impaired β-globin chain synthesis. We assessed the effect of sodium phenylbutyrate and sodium valproate, two histone deacetylase inhibitors (HDIs that are being studied for the treatment of hemoglobinopathies, on the expression of AHSP, BCL11A (all isoforms, γ-globin genes (HBG1/2, and some related transcription factors including GATA1, NFE2, EKLF, KLF4, and STAT3. For this purpose, the K562 cell line was cultured for 2, 4, and 6 days in the presence and absence of sodium phenylbutyrate and sodium valproate. Relative real-time qRT-PCR analysis of mRNA levels was performed to determine the effects of the two compounds on gene expression. Expression of all target mRNAs increased significantly (p < 0.05, except for the expression of BCL11A, which was down-regulated (p < 0.05 in the cells treated with both compounds relative to the levels measured for untreated cells. The findings indicated that sodium valproate had a more considerable effect than sodium phenylbutyrate (p < 0.0005 on BCL11A repression and the up-regulation of other studied genes. γ-Globin and AHSP gene expression continuously increased during the culture period in the treated cells, with the highest gene expression observed for 1 mM sodium valproate after 6 days. Both compounds repressed the expression of BCL11A (-XL, -L, -S and up-regulated GATA1, NFE2, EKLF, KLF4, STAT3, AHSP, and γ-globin genes expression. Moreover, sodium valproate showed a stronger effect on repressing BCL11A and escalating the expression of other target genes. The findings of this in vitro experiment could be considered in selecting drugs for clinical use in patients with β-hemoglobinopathies.

  10. Phase I/II trial of vorinostat combined with temozolomide and radiation therapy for newly diagnosed glioblastoma: results of Alliance N0874/ABTC 02.

    Science.gov (United States)

    Galanis, Evanthia; Anderson, S Keith; Miller, C Ryan; Sarkaria, Jann N; Jaeckle, Kurt; Buckner, Jan C; Ligon, Keith L; Ballman, Karla V; Moore, Dennis F; Nebozhyn, Michael; Loboda, Andrey; Schiff, David; Ahluwalia, Manmeet Singh; Lee, Eudocia Q; Gerstner, Elizabeth R; Lesser, Glenn J; Prados, Michael; Grossman, Stuart A; Cerhan, Jane; Giannini, Caterina; Wen, Patrick Y

    2018-03-27

    Vorinostat, a histone deacetylase (HDAC) inhibitor, has shown radiosensitizing properties in preclinical studies. This open-label, single-arm trial evaluated the maximum tolerated dose (MTD; phase I) and efficacy (phase II) of vorinostat combined with standard chemoradiation in newly diagnosed glioblastoma. Patients received oral vorinostat (300 or 400 mg/day) on days 1-5 weekly during temozolomide chemoradiation. Following a 4- to 6-week rest, patients received up to 12 cycles of standard adjuvant temozolomide and vorinostat (400 mg/day) on days 1-7 and 15-21 of each 28-day cycle. Association between vorinostat response signatures and progression-free survival (PFS) and overall survival (OS) was assessed based on RNA sequencing of baseline tumor tissue. Phase I and phase II enrolled 15 and 107 patients, respectively. The combination therapy MTD was vorinostat 300 mg/day and temozolomide 75 mg/m2/day. Dose-limiting toxicities were grade 4 neutropenia and thrombocytopenia and grade 3 aspartate aminotransferase elevation, hyperglycemia, fatigue, and wound dehiscence. The primary efficacy endpoint in the phase II cohort, OS rate at 15 months, was 55.1% (median OS 16.1 mo), and consequently, the study did not meet its efficacy objective. Most common treatment-related grade 3/4 toxicities in the phase II component were lymphopenia (32.7%), thrombocytopenia (28.0%), and neutropenia (21.5%). RNA expression profiling of baseline tumors (N = 76) demonstrated that vorinostat resistance (sig-79) and sensitivity (sig-139) signatures had a reverse and positive association with OS/PFS, respectively. Vorinostat combined with standard chemoradiation had acceptable tolerability in newly diagnosed glioblastoma. Although the primary efficacy endpoint was not met, vorinostat sensitivity and resistance signatures could facilitate patient selection in future trials.

  11. Histone deacetylase inhibition regulates inflammation and enhances Tregs after allogeneic hematopoietic cell transplantation in humans

    NARCIS (Netherlands)

    Choi, S.W.; Gatza, E.; Hou, G.; Sun, Y; Whitfield, J.; Song, Y.; Oravecz-Wilson, K.; Tawara, I.; Dinarello, C.A.; Reddy, P.

    2015-01-01

    We examined immunological responses in patients receiving histone deacetylase (HDAC) inhibition (vorinostat) for graft-versus-host disease prophylaxis after allogeneic hematopoietic cell transplant. Vorinostat treatment increased histone acetylation in peripheral blood mononuclear cells (PBMCs) from

  12. Potentiation of apoptosis by histone deacetylase inhibitors and doxorubicin combination: cytoplasmic cathepsin B as a mediator of apoptosis in multiple myeloma.

    Science.gov (United States)

    Cheriyath, V; Kuhns, M A; Kalaycio, M E; Borden, E C

    2011-03-15

    Although inhibitors of histone deacetylase inhibitors (HDACis) in combination with genotoxins potentiate apoptosis, the role of proteases other than caspases in this process remained elusive. Therefore, we examined the potentiation of apoptosis and related mechanisms of HDACis and doxorubicin combination in a panel of myeloma cell lines and in 25 primary myelomas. At IC(50) concentrations, sodium butyrate (an HDACi) or doxorubicin alone caused little apoptosis. However, their combination potentiated apoptosis and synergistically reduced the viability of myeloma cells independent of p53 and caspase 3-7 activation. Potentiated apoptosis correlated with nuclear translocation of apoptosis-inducing factor, suggesting the induction of caspase 3- and 7-independent pathways. Consistent with this, butyrate and doxorubicin combination significantly increased the activity of cytoplasmic cathepsin B. Inhibition of cathepsin B either with a small-molecule inhibitor or downregulation with a siRNA reversed butyrate- and doxorubicin-potentiated apoptosis. Finally, ex vivo, clinically relevant concentrations of butyrate or SAHA (suberoylanilide hydroxamic acid, vorinostat, an HDACi in clinical testing) in combination with doxorubicin significantly (Pmediating apoptosis potentiated by HDACi and doxorubicin combinations in myeloma. Our results support a molecular model of lysosomal-mitochondrial crosstalk in HDACi- and doxorubicin-potentiated apoptosis through the activation of cathepsin B.

  13. Vorinostat approved in Japan for treatment of cutaneous T-cell lymphomas: status and prospects

    Directory of Open Access Journals (Sweden)

    Sato A

    2012-04-01

    Full Text Available Akinori SatoDepartment of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, JapanAbstract: Histone acetylation and deacetylation play important roles in the regulation of gene transcription and in the modulation of chromatin structure. The levels of histone acetylation are determined by the activities of histone acetyltransferases and histone deacetylases (HDACs. HDACs are associated with a number of oncogenes and tumor suppressor genes and can be aberrantly expressed and/or inappropriately activated in cancer cells. HDAC inhibitors have therefore recently emerged as a novel treatment modality against malignancies. They regulate gene expression by enhancing the acetylation of not only histones but also nonhistone proteins, including transcription factors, transcription regulators, signal transduction mediators, and DNA repair enzymes, and they inhibit cancer growth. Vorinostat (suberoylanilide hydroxamic acid is one of the most potent HDAC inhibitors, and was approved in Japan in 2011 for the treatment of cutaneous T-cell lymphoma. Numerous clinical trials have shown it to be effective against cutaneous T-cell lymphoma but less so against other types of cancer. Because vorinostat can overcome resistance to or enhance the efficacy of other anticancer agents, such as 5-fluorouracil, carboplatin, paclitaxel, bortezomib, and tamoxifen, combination therapies using vorinostat and these agents have been investigated. This review introduces the background and mechanism of action of vorinostat and describes the results of clinical trials using vorinostat, both as a single agent and in combination with other anticancer agents, against cutaneous T-cell lymphoma and other malignancies.Keywords: vorinostat, T-cell lymphoma, cancer, novel treatment

  14. Subchronic Toxicities of HZ1006, a Hydroxamate-Based Histone Deacetylase Inhibitor, in Beagle Dogs and Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Xiaofang Zhang

    2016-11-01

    Full Text Available Histone deacetylase inhibitors (HDACIs, such as vorinostat and panobinostat, have been shown to have active effects on many hematologic malignancies, including multiple myeloma and cutaneous T-cell lymphoma. Hydroxamate-based (Hb HDACIs have very good toxicity profiles and are currently being tested in phases I and II clinical trials with promising results in selected neoplasms, such as bladder carcinoma. One of the Hb-HDACIs, HZ1006, has been demonstrated to be a promising drug for clinical use. The aim of our study was to determine the possible target of toxicity and to identify a non-toxic dose of HZ1006 for clinical use. In our studies, the repeated dosage toxicity of HZ1006 in Beagle dogs and Sprague Dawley (SD rats was identified. Dogs and rats received HZ1006 orally (0–80 and 0–120 mg/kg/day, respectively on a continuous daily dosing agenda for 28 days following a 14-day dosage-free period. HZ1006’s NOAEL (No Observed Adverse Effect Level by daily oral administration for dogs and rats was 5 mg/kg and 60 mg/kg, respectively, and the minimum toxic dose was 20 and 120 mg/kg, respectively. All the side effects indicated that the digestive tract, the male reproductive tract, the respiratory tract and the hematological systems might be HZ1006 toxic targets in humans. HZ1006 could be a good candidate or a safe succedaneum to other existing HDACIs for the treatment of some solid tumor and hematologic malignancies.

  15. Hematologic Response to Vorinostat Treatment in Relapsed Myeloid Leukemia of Down Syndrome.

    Science.gov (United States)

    Scheer, Carina; Kratz, Christian; Witt, Olaf; Creutzig, Ursula; Reinhardt, Dirk; Klusmann, Jan-Henning

    2016-09-01

    Children with Down syndrome are at high risk to develop myeloid leukemia (ML-DS). Despite their excellent prognosis, children with ML-DS particularly suffer from severe therapy-related toxicities and for relapsed ML-DS the cure rates are very poor. Here we report the clinical course of one child with ML-DS treated with the histone deacetylase (HDAC) inhibitor vorinostat (suberoylanilide hydroxamic acid) after second relapse. The child had previously received conventional chemotherapy and stem cell transplantation, yet showed a remarkable clinical and hematologic response. Thus, HDAC inhibitor may represent an effective class of drugs for the treatment of ML-DS. © 2016 Wiley Periodicals, Inc.

  16. Vorinostat ameliorates impaired fear extinction possibly via the hippocampal NMDA-CaMKII pathway in an animal model of posttraumatic stress disorder.

    Science.gov (United States)

    Matsumoto, Yasutaka; Morinobu, Shigeru; Yamamoto, Shigeto; Matsumoto, Tomoya; Takei, Shiro; Fujita, Yosuke; Yamawaki, Shigeto

    2013-09-01

    Given that impairment of fear extinction plays a pivotal role in the pathophysiology of posttraumatic stress disorder (PTSD), drugs that facilitate fear extinction may be useful as novel treatments for PTSD. Histone deacetylase (HDAC) inhibitors have recently been shown to enhance fear extinction in animal studies. Using a single prolonged stress (SPS) paradigm, an animal model of PTSD, we examined whether the HDAC inhibitor vorinostat can facilitate fear extinction in rats, and elucidated the mechanism by which vorinostat enhanced fear extinction, focusing on the N-methyl-D-aspartate (NMDA) receptor signals in the hippocampus. Seven days after SPS, rats received contextual fear conditioning, followed by 2-day extinction training. Vorinostat was intraperitoneally injected immediately after second extinction training session. Contextual fear response was assessed 24 h after vorinostat injection. Hippocampal tissues were dissected 2 h after vorinostat injection. The levels of mRNA and protein tested were measured by RT-PCR or western blotting, respectively. Systemic administration of vorinostat with extinction training significantly enhanced fear extinction in SPS rats as compared with the controls. Furthermore, vorinostat enhanced the hippocampal levels of NR2B and calcium/calmodulin kinase II (CaMKII) α and β proteins, accompanied by increases in the levels of acetylated histone H3 and H4. These findings suggest that vorinostat ameliorated the impaired fear extinction in SPS rats, and this effect was associated with an increase in histone acetylation and thereby enhancement of NR2B and CaMKII in the hippocampus. Our results may provide new insight into the molecular and therapeutic mechanisms of PTSD.

  17. Translational Phase I Trial of Vorinostat (Suberoylanilide Hydroxamic Acid) Combined with Cytarabine and Etoposide in Patients with Relapsed, Refractory, or High-Risk Acute Myeloid Leukemia

    Science.gov (United States)

    Gojo, Ivana; Tan, Ming; Fang, Hong-Bin; Sadowska, Mariola; Lapidus, Rena; Baer, Maria R.; Carrier, France; Beumer, Jan H.; Anyang, Bean N.; Srivastava, Rakesh K.; Espinoza-Delgado, Igor; Ross, Douglas D.

    2015-01-01

    Purpose To determine the maximum-tolerated dose (MTD) of the histone deacetylase inhibitor vorinostat combined with fixed doses of cytarabine (ara-C or cytosine arabinoside) and etoposide in patients with poor-risk or advanced acute leukemia, to obtain preliminary efficacy data, describe pharmacokinetics, and in vivo pharmacodynamic effects of vorinostat in leukemia blasts. Experimental Design In this open-label phase I study, vorinostat was given orally on days one to seven at three escalating dose levels: 200 mg twice a day, 200 mg three times a day, and 300 mg twice a day. On days 11 to 14, etoposide (100 mg/m2) and cytarabine (1 or 2 g/m2 twice a day if ≥65 or vorinostat 200 mg twice a day. Of 21 patients enrolled, seven attained a complete remission (CR) or CR with incomplete platelet recovery, including six of 13 patients treated at the MTD. The median remission duration was seven months. No differences in percentage S-phase cells or multidrug resistance transporter (MDR1 or BCRP) expression or function were observed in vivo in leukemia blasts upon vorinostat treatment. Conclusions Vorinostat 200 mg twice a day can be given safely for seven days before treatment with cytarabine and etoposide. The relatively high CR rate seen at the MTD in this poor-risk group of patients with AML warrants further studies to confirm these findings. PMID:23403629

  18. Anti-leukemia activity of MS-275 histone deacetylase inhibitor implicates 4-1BBL/4-1BB immunomodulatory functions.

    Directory of Open Access Journals (Sweden)

    Bérengère Vire

    Full Text Available Histone deacetylase inhibitors (HDACi have demonstrated promising therapeutic potential in clinical trials for hematological malignancies. HDACi, such as SAHA/Vorinostat, Trichostatin A, and MS-275 were found to induce apoptosis of leukemic blasts through activation of the death receptor pathway and transcriptional induction of the Tumor Necrosis Factor (TNF-related pro-apoptotic family members, TRAIL and FasL. The impact of HDACi on TNF-related costimulatory molecules such as 4-1BB ligand (4-1BBL/TNFSF9 is however not known. Following exposure to SAHA/Vorinostat, Trichostatin A, and MS-275, transcript levels were determined by real time PCR in Jurkat, Raji and U937 cells. Treatment with HDACi up-regulated TNFSF9 gene expression in the three leukemia cell lines, yet to different extend and with distinct kinetics, which did not require de novo protein synthesis and was not associated with DNAse I hypersensitive chromatin remodeling. Transcriptional activity of TNFSF9 promoter-luciferase constructs was induced up to 12 fold by HDACi, and implication of Sp1/Sp3 transcription factors binding to functional GC-box elements was evidenced by reporter gene assays, site-directed mutagenesis, and electrophoretic mobility shift assays. Functionality of modulated target genes was assessed in allogeneic mixed leukocyte reaction experiments. MS-275- and to a lesser extent Trichostatin A- and SAHA-treated Raji cells significantly up regulated T lymphocytes proliferation which was reduced by about 50% by a 4-1BB blocking recombinant protein, while MS-275- but neither Trichostatin A- nor SAHA-treated cells up-regulated IFNgamma secretion by T lymphocytes. Our results identify 4-1BBL/4-1BB as a downstream target of HDACi, especially of MS-275 anti-leukemia action in vitro. Thus, HDACi such as MS-275 displaying dual TNF-dependent proapoptotic and costimulatory activities might be favored for inclusion in HDACi-based anti-cancer therapeutic strategies.

  19. Ex vivo response to histone deacetylase (HDAC inhibitors of the HIV long terminal repeat (LTR derived from HIV-infected patients on antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Hao K Lu

    Full Text Available Histone deacetylase inhibitors (HDACi can induce human immunodeficiency virus (HIV transcription from the HIV long terminal repeat (LTR. However, ex vivo and in vivo responses to HDACi are variable and the activity of HDACi in cells other than T-cells have not been well characterised. Here, we developed a novel assay to determine the activity of HDACi on patient-derived HIV LTRs in different cell types. HIV LTRs from integrated virus were amplified using triple-nested Alu-PCR from total memory CD4+ T-cells (CD45RO+ isolated from HIV-infected patients prior to and following suppressive antiretroviral therapy. NL4-3 or patient-derived HIV LTRs were cloned into the chromatin forming episomal vector pCEP4, and the effect of HDACi investigated in the astrocyte and epithelial cell lines SVG and HeLa, respectively. There were no significant differences in the sequence of the HIV LTRs isolated from CD4+ T-cells prior to and after 18 months of combination antiretroviral therapy (cART. We found that in both cell lines, the HDACi panobinostat, trichostatin A, vorinostat and entinostat activated patient-derived HIV LTRs to similar levels seen with NL4-3 and all patient derived isolates had similar sensitivity to maximum HDACi stimulation. We observed a marked difference in the maximum fold induction of luciferase by HDACi in HeLa and SVG, suggesting that the effect of HDACi may be influenced by the cellular environment. Finally, we observed significant synergy in activation of the LTR with vorinostat and the viral protein Tat. Together, our results suggest that the LTR sequence of integrated virus is not a major determinant of a functional response to an HDACi.

  20. Cell lines radiosensitization of thyroid cancer by histone deacetylase inhibitors

    International Nuclear Information System (INIS)

    Perona, M; Dagrosa, M A; Rossich, L; Casal, M; Pisarev, M A; Thomasz, L; Juvenal G J

    2012-01-01

    Introduction: Thyroid cancer is the most common endocrine neoplasia. Surgical resection and radioactive iodine is an effective treatment for well-differentiated tumors. Histone deacetylase inhibitors (HDAC-I) are agents that cause hyperacetylation of histone proteins and as a consequence remodeling of chromatin structure. They can induce growth arrest, differentiation and apoptotic cell death in different tumor cells. The use of HDAC-I agents could be of utility to enhance the response to external radiation therapy of those thyroid cancers that are refractory to most conventional therapeutic treatments. Objective: To study the effect of HDAC-I as radiosensitizers for the treatment of thyroid cancer and their ability to induce differentiation of thyroid cancer cells. Materials and methods: The human thyroid follicular (WRO) and papillary (TPC-1) carcinoma cell lines were seeded and incubated with increasing doses (0, 0.3, 0.5, 1 and 1.5 mM) of the HDAC-I sodium butirate (NaB) and valproic acid (VA) to evaluate cell proliferation and iodide uptake. Cells were irradiated with a 60 Co γ-ray source (1 ± 5% Gy/min) and postirradiation survival was quantified with the colony formation assay. Survival fraction at 2 Gy (SF2) was calculated for each cell line. Cell cycle and cell death were evaluated at a dose of 3 Gy. Iodide uptake, PCR analysis and transient transfection studies were performed. Results: Cell proliferation was not significantly suppressed after 24 hours of incubation with both drugs at all assayed doses. Iodide uptake was not modified after incubation with HDAC-I of both cell lines. SF2 was reduced from 68 ± 1.6 % in the control WRO cells to 42 ± 3.8 % (P<0.001) in NaB-treated cells. In TPC-1 SF2 was reduced from 32 ± 1.1 % in the control cells to 24 ± 0.8 % (P<0.01). In VA-treated cells SF2 was reduced from 69 ± 0.02 % in control WRO cells to 56 ± 0.01 % (P<0.01) and from 31 ± 2 % in control TPC-1 cells to 11 ± 1 % (P<0.01). There was an arrest

  1. Vorinostat, a HDAC inhibitor, showed anti-osteoarthritic activities through inhibition of iNOS and MMP expression, p38 and ERK phosphorylation and blocking NF-κB nuclear translocation.

    Science.gov (United States)

    Zhong, Hui-ming; Ding, Qian-hai; Chen, Wei-ping; Luo, Ru-bin

    2013-10-01

    Overproduction of nitric oxide (NO) and matrix metalloproteinases (MMPs) plays an important role in the pathogenesis of osteoarthritis (OA). In present study, we investigated whether vorinostat can inhibit the catabolic effects of IL-1β in vitro, especially the inhibition of MMPs and inducible nitric oxide synthase (iNOS) through the attenuation of nuclear factor kappa-B (NF-κB) and mitogen activated protein kinase (MAPK) pathways in human chondrocytes. Human OA chondrocytes were either left untreated or treated with various concentrations of vorinostat followed by incubation with IL-1β (5ng/mL). Effects of vorinostat on IL-1β-induced gene and protein expression of iNOS, MMP-1, MMP-13 and tissue inhibitors of metalloproteinase-1 (TIMP-1) were verified by quantitative real time-PCR and Western blot analysis. Production of NO, MMP-1, MMP-13 and TIMP-1 released in culture supernatant was estimated using commercially available kits. The roles of NF-κB and MAPK pathways in the regulation of targeted genes and the mechanism involved in vorinostat mediated modulation of these genes were determined by Western blot using specific antibodies. We found that vorinostat down-regulated iNOS, MMP-1 and MMP-13 expression and up-regulated TIMP-1 expression in human OA chondrocytes. In addition, the release of NO, MMP-1 and MMP-13 secreted from IL-1β stimulated chondrocytes was also suppressed by vorinostat. Interestingly, vorinostat selectively inhibited IL-1β-induced p38 and ERK1/2 activation without affecting JNK activation. Furthermore, we observed that vorinostat inhibited NF-κB pathway by suppressing the degradation of I-κBα and attenuating NF-κB p65 translocation to the nucleus. These results suggest that vorinostat may be a promising therapeutic agent for the prevention and treatment of OA. © 2013.

  2. A phase 1 clinical trial of vorinostat in combination with decitabine in patients with acute myeloid leukaemia or myelodysplastic syndrome.

    Science.gov (United States)

    Kirschbaum, Mark; Gojo, Ivana; Goldberg, Stuart L; Bredeson, Christopher; Kujawski, Lisa A; Yang, Allen; Marks, Peter; Frankel, Paul; Sun, Xing; Tosolini, Alessandra; Eid, Joseph E; Lubiniecki, Gregory M; Issa, Jean-Pierre

    2014-10-01

    Patients with acute myeloid leukaemia (AML) or myelodysplastic syndrome (MDS) may respond to treatment with epigenetic-modifying agents. Histone deacetylase inhibitors may synergize with hypomethylating agents. This phase 1 dose-escalation study was designed to determine the maximum tolerated dose, recommended phase 2 dose, safety and tolerability of vorinostat plus decitabine in patients with relapsed/refractory AML, newly-diagnosed AML, or intermediate- to high-grade MDS. Thirty-four patients received concurrent therapy with decitabine plus vorinostat and 37 received sequential therapy with decitabine followed by vorinostat. Twenty-nine patients had relapsed/refractory AML, 31 had untreated AML and 11 had MDS. The target maximum administered dose (MAD) of decitabine 20 mg/m(2) daily for 5 d plus vorinostat 400 mg/d for 14 d was achieved for concurrent and sequential schedules, with one dose-limiting toxicity (Grade 3 QTc prolongation) reported in the sequential arm. Common toxicities were haematological and gastrointestinal. Responses were observed more frequently at the MAD on the concurrent schedule compared with the sequential schedule in untreated AML (46% vs. 14%), relapsed/refractory AML (15% vs. 0%) and MDS (60% vs. 0%). Decitabine plus vorinostat given concurrently or sequentially appears to be safe and well-tolerated. Concurrent therapy shows promising clinical activity in AML or MDS, warranting further investigation. © 2014 John Wiley & Sons Ltd.

  3. Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells.

    Science.gov (United States)

    Kwak, Tae Won; Kim, Do Hyung; Jeong, Young-Il; Kang, Dae Hwan

    2015-09-26

    The aim of this study is to evaluate the anticancer activity of vorinostat-incorporated nanoparticles (vorinostat-NPs) against HuCC-T1 human cholangiocarcinoma cells. Vorinostat-NPs were fabricated by a nanoprecipitation method using poly(DL-lactide-co-glycolide)/poly(ethylene glycol) copolymer. Vorinostat-NPs exhibited spherical shapes with sizes Vorinostat-NPs have anticancer activity similar to that of vorinostat in vitro. Vorinostat-NPs as well as vorinostat itself increased acetylation of histone-H3. Furthermore, vorinostat-NPs have similar effectiveness in the suppression or expression of histone deacetylase, mutant type p53, p21, and PARP/cleaved caspase-3. However, vorinostat-NPs showed improved antitumor activity against HuCC-T1 cancer cell-bearing mice compared to vorinostat, whereas empty nanoparticles had no effect on tumor growth. Furthermore, vorinostat-NPs increased the expression of acetylated histone H3 in tumor tissue and suppressed histone deacetylase (HDAC) expression in vivo. The improved antitumor activity of vorinostat-NPs can be explained by molecular imaging studies using near-infrared (NIR) dye-incorporated nanoparticles, i.e. NIR-dye-incorporated nanoparticles were intensively accumulated in the tumor region rather than normal one. Our results demonstrate that vorinostat and vorinostat-NPs exert anticancer activity against HuCC-T1 cholangiocarcinoma cells by specific inhibition of HDAC expression. Thus, we suggest that vorinostat-NPs are a promising candidate for anticancer chemotherapy in cholangiocarcinoma. Graphical abstract Local delivery strategy of vorinostat-NPs against cholangiocarcinomas.

  4. The Process and Strategy for Developing Selective Histone Deacetylase 3 Inhibitors

    NARCIS (Netherlands)

    Cao, Fangyuan; Zwinderman, Martijn R H; Dekker, Frank J

    2018-01-01

    Histone deacetylases (HDACs) are epigenetic drug targets that have gained major scientific attention. Inhibition of these important regulatory enzymes is used to treat cancer, and has the potential to treat a host of other diseases. However, currently marketed HDAC inhibitors lack selectivity for

  5. New benzothiazole/thiazole-containing hydroxamic acids as potent histone deacetylase inhibitors and antitumor agents

    DEFF Research Database (Denmark)

    Thanh Tung, Truong; Oanh, Dao Thi Kim; Dung, Phan Thi Phuong

    2013-01-01

    Results from clinical studies have demonstrated that inhibitors of histone deacetylase (HDAC) enzymes possess promise for the treatment of several types of cancer. Zolinza(®) (widely known as SAHA) has been approved by the FDA for the treatment of T-cell lymphoma. As a continuity of our ongoing...

  6. Prostate Cancer Prevention by Sulforaphane, a Novel Dietary Histone Deacetylase Inhibitor

    National Research Council Canada - National Science Library

    Zhen, Yu

    2008-01-01

    ...) as a novel histone deacetylases (HDAC) inhibitor and explore the mechanism of SFN protection against prostate cancer, different stage of prostate cancerous cells were treated with 15muM or 30 muM SFN and harvest 48hr later for MTT assay...

  7. Vorinostat plus tacrolimus/methotrexate to prevent GVHD after myeloablative conditioning, unrelated donor HCT.

    Science.gov (United States)

    Choi, Sung Won; Braun, Thomas; Henig, Israel; Gatza, Erin; Magenau, John; Parkin, Brian; Pawarode, Attaphol; Riwes, Mary; Yanik, Greg; Dinarello, Charles A; Reddy, Pavan

    2017-10-12

    The oral histone deacetylase (HDAC) inhibitor (vorinostat) is safe and results in low incidence of acute graft-versus-host disease (GVHD) after reduced-intensity conditioning, related donor hematopoietic cell transplantation (HCT). However, its safety and efficacy in preventing acute GVHD in settings of heightened clinical risk that use myeloablative conditioning, unrelated donor (URD), and methotrexate are not known. We conducted a prospective, phase 2 study in this higher-risk setting. We enrolled 37 patients to provide 80% power to detect a significant difference in grade 2 to 4 acute GVHD of 50% compared with a reduction in target to 28%. Eligibility included adults with a hematological malignancy to receive myeloablative HCT from an available 8/8-HLA matched URD. Patients received GVHD prophylaxis with tacrolimus and methotrexate. Vorinostat (100 mg twice daily) was started on day -10 and continued through day +100 post-HCT. Median age was 56 years (range, 18-69 years), and 95% had acute myelogenous leukemia or high-risk myelodysplastic syndrome. Vorinostat was safe and tolerable. The cumulative incidence of grade 2 to 4 acute GVHD at day 100 was 22%, and for grade 3 to 4 it was 8%. The cumulative incidence of chronic GVHD was 29%; relapse, nonrelapse mortality, GVHD-free relapse-free survival, and overall survival at 1 year were 19%, 16%, 47%, and 76%, respectively. Correlative analyses showed enhanced histone (H3) acetylation in peripheral blood mononuclear cells and reduced interleukin 6 ( P = .028) and GVHD biomarkers (Reg3, P = .041; ST2, P = .002) at day 30 post-HCT in vorinostat-treated subjects compared with similarly treated patients who did not receive vorinostat. Vorinostat for GVHD prevention is an effective strategy that should be confirmed in a randomized phase 3 study. This trial was registered at www.clinicaltrials.gov as #NCT01790568. © 2017 by The American Society of Hematology.

  8. Possible involvement of ROS generation in vorinostat pretreatment induced enhancement of the antibacterial activity of ciprofloxacin

    Directory of Open Access Journals (Sweden)

    Masadeh MM

    2017-10-01

    ability of these agents to enhance oxidative stress in bacterial cells. Keywords: flouroquinolones, MIC, histone deacetylase inhibitor, oxidative stress, antimicrobial susceptibility 

  9. Combining the pan-aurora kinase inhibitor AMG 900 with histone deacetylase inhibitors enhances antitumor activity in prostate cancer

    NARCIS (Netherlands)

    Paller, C.J.; Wissing, M.D.; Mendonca, J.; Sharma, A.; Kim, E.; Kim, H.S.; Kortenhorst, M.S.Q.; Gerber, S.; Rosen, M.; Shaikh, F.; Zahurak, M.L.; Rudek, M.A.; Hammers, H.; Rudin, C.M.; Carducci, M.A.; Kachhap, S.K.

    2014-01-01

    Histone deacetylase inhibitors (HDACIs) are being tested in clinical trials for the treatment of solid tumors. While most studies have focused on the reexpression of silenced tumor suppressor genes, a number of genes/pathways are downregulated by HDACIs. This provides opportunities for combination

  10. Design and synthesis of aryl ether and sulfone hydroxamic acids as potent histone deacetylase (HDAC) inhibitors.

    Science.gov (United States)

    Pabba, Chittari; Gregg, Brian T; Kitchen, Douglas B; Chen, Zhen Jia; Judkins, Angela

    2011-01-01

    A series of novel hydroxamic acid based histone deacetylases (HDAC) inhibitors with aryl ether and aryl sulfone residues at the terminus of a substituted, unsaturated 5-carbon spacer moiety have been synthesized for the first time and evaluated. Compounds with meta- and para-substitution on the aryl ring of ether hydroxamic acids 19c, 20c, 19e, 19f and 19g are potent HDAC inhibitors with activities at low nanomolar levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    OpenAIRE

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats...

  12. The Process and Strategy for Developing Selective Histone Deacetylase 3 Inhibitors

    Directory of Open Access Journals (Sweden)

    Fangyuan Cao

    2018-03-01

    Full Text Available Histone deacetylases (HDACs are epigenetic drug targets that have gained major scientific attention. Inhibition of these important regulatory enzymes is used to treat cancer, and has the potential to treat a host of other diseases. However, currently marketed HDAC inhibitors lack selectivity for the various HDAC isoenzymes. Several studies have shown that HDAC3, in particular, plays an important role in inflammation and degenerative neurological diseases, but the development of selective HDAC3 inhibitors has been challenging. This review provides an up-to-date overview of selective HDAC3 inhibitors, and aims to support the development of novel HDAC3 inhibitors in the future.

  13. A phase 2 study of vorinostat in locally advanced, recurrent, or metastatic adenoid cystic carcinoma.

    Science.gov (United States)

    Goncalves, Priscila H; Heilbrun, Lance K; Barrett, Michael T; Kummar, Shivaani; Hansen, Aaron R; Siu, Lillian L; Piekarz, Richard L; Sukari, Ammar W; Chao, Joseph; Pilat, Mary Jo; Smith, Daryn W; Casetta, Lindsay; Boerner, Scott A; Chen, Alice; Lenkiewicz, Elizabeth; Malasi, Smriti; LoRusso, Patricia M

    2017-05-16

    Vorinostat is a histone deacetylase inhibitor (HDACi). Based on a confirmed partial response (PR) in an adenoid cystic carcinoma (ACC) patient treated with vorinostat in a prior phase 1 trial, we initiated this phase 2 trial. Vorinostat was administered orally 400 mg daily, 28 day cycles. The primary objective was to evaluate response rate (RR). Exploratory studies included whole exome sequencing (WES) of selected patients. Thirty patients were enrolled. Median age of patients was 53 years (range 21-73). Median number of cycles was 5 (range 1-66). Lymphopenia (n = 5), hypertension (n = 3), oral pain (n = 2), thromboembolic events (n = 2) and fatigue (n = 2) were the only grade 3 adverse events (AEs) that occurred in more than 1 patient. Eleven patients were dose reduced secondary to drug-related AEs. Two patients had a partial response (PR), with response durations of 53 and 7.2 months. One patient had a minor response with a decrease in ascites (for 19 cycles). Stable disease was the best response in 27 patients. Targeted and WES of 8 patients in this trial identified mutations in chromatin remodeling genes highlighting the role of the epigenome in ACC. Vorinostat demonstrated efficacy in patients with ACC supporting the inclusion of HDACi in future studies to treat ACC.

  14. Phase I study of combination of vorinostat, carboplatin, and gemcitabine in women with recurrent, platinum-sensitive epithelial ovarian, fallopian tube, or peritoneal cancer.

    Science.gov (United States)

    Matulonis, Ursula; Berlin, Suzanne; Lee, Hang; Whalen, Christin; Obermayer, Elizabeth; Penson, Richard; Liu, Joyce; Campos, Susana; Krasner, Carolyn; Horowitz, Neil

    2015-08-01

    Combining histone deacetylase inhibitors and chemotherapy is synergistic. This phase I study combined escalating vorinostat doses with constant doses of carboplatin and gemcitabine for the treatment of recurrent platinum-sensitive ovarian cancer. The objectives of this study were to determine the maximally tolerated dose of this combination; secondary objectives included preliminary response rate of this regimen and toxicity profile. Fifteen patients with relapsed ovarian cancer were enrolled into this phase I study. Doses of carboplatin and gemcitabine were AUC 4 on day 1 and 1000 mg/m(2) on days 1 and 8, respectively; cycles were administered every 21 days. Vorinostat was tested using four different schedules. The first dose level (DL A) tested vorinostat as daily oral dosing from days 1 to 14. DL B tested twice daily (BID) vorinostat dosing on days 1-3 and 8-10. DL C tested BID vorinostat dosing on days 1, 2, 8, and 9, starting vorinostat 1 day prior to initiation of carboplatin and gemcitabine, and DL D tested vorinostat on days 1 and 2 with chemotherapy starting on day 2. All four DLs tested resulted in dose-limiting toxicities, and no MTD was determined. Toxicities were mostly hematologic. Seven patients were evaluable for RECIST assessment, and six of them had partial responses (PR) via RECIST. Combination of carboplatin, gemcitabine, and vorinostat has activity in relapsed platinum-sensitive ovarian cancer, but was difficult to combine because of hematologic toxicities in this phase I study. No maximally tolerated dose was found, and the study was terminated early.

  15. Phase I Study of Vorinostat as a Radiation Sensitizer with 131I-Metaiodobenzylguanidine (131I-MIBG) for Patients with Relapsed or Refractory Neuroblastoma.

    Science.gov (United States)

    DuBois, Steven G; Groshen, Susan; Park, Julie R; Haas-Kogan, Daphne A; Yang, Xiaodong; Geier, Ethan; Chen, Eugene; Giacomini, Kathy; Weiss, Brian; Cohn, Susan L; Granger, M Meaghan; Yanik, Gregory A; Hawkins, Randall; Courtier, Jesse; Jackson, Hollie; Goodarzian, Fariba; Shimada, Hiroyuki; Czarnecki, Scarlett; Tsao-Wei, Denice; Villablanca, Judith G; Marachelian, Araz; Matthay, Katherine K

    2015-06-15

    (131)I-metaiodobenzylguanidine (MIBG) is a radiopharmaceutical with activity in neuroblastoma. Vorinostat is a histone deacetylase inhibitor that has radiosensitizing properties. The goal of this phase I study was to determine the MTDs of vorinostat and MIBG in combination. Patients ≤ 30 years with relapsed/refractory MIBG-avid neuroblastoma were eligible. Patients received oral vorinostat (dose levels 180 and 230 mg/m(2)) daily days 1 to 14. MIBG (dose levels 8, 12, 15, and 18 mCi/kg) was given on day 3 and peripheral blood stem cells on day 17. Alternating dose escalation of vorinostat and MIBG was performed using a 3+3 design. Twenty-seven patients enrolled to six dose levels, with 23 evaluable for dose escalation. No dose-limiting toxicities (DLT) were seen in the first three dose levels. At dose level 4 (15 mCi/kg MIBG/230 mg/m(2) vorinostat), 1 of 6 patients had DLT with grade 4 hypokalemia. At dose level 5 (18 mCi/kg MIBG/230 mg/m(2) vorinostat), 2 patients had dose-limiting bleeding (one grade 3 and one grade 5). At dose level 5a (18 mCi/kg MIBG/180 mg/m(2) vorinostat), 0 of 6 patients had DLT. The most common toxicities were neutropenia and thrombocytopenia. The response rate was 12% across all dose levels and 17% at dose level 5a. Histone acetylation increased from baseline in peripheral blood mononuclear cells collected on days 3 and 12 to 14. Vorinostat at 180 mg/m(2)/dose is tolerable with 18 mCi/kg MIBG. A phase II trial comparing this regimen to single-agent MIBG is ongoing. ©2015 American Association for Cancer Research.

  16. A pediatric phase 1 trial of vorinostat and temozolomide in relapsed or refractory primary brain or spinal cord tumors: a Children's Oncology Group phase 1 consortium study.

    Science.gov (United States)

    Hummel, Trent R; Wagner, Lars; Ahern, Charlotte; Fouladi, Maryam; Reid, Joel M; McGovern, Renee M; Ames, Matthew M; Gilbertson, Richard J; Horton, Terzah; Ingle, Ashish M; Weigel, Brenda; Blaney, Susan M

    2013-09-01

    We conducted a pediatric phase I study to estimate the maximum tolerated dose (MTD), dose-limiting toxicities (DLT), and pharmacokinetic properties of vorinostat, a histone deacetylase (HDAC) inhibitor, when given in combination with temozolomide in children with refractory or recurrent CNS malignancies. Vorinostat, followed by temozolomide approximately 1 hour later, was orally administered, once daily, for 5 consecutive days every 28 days at three dose levels using the rolling six design. Studies of histone accumulation in peripheral blood mononuclear cells were performed on Day 1 at 0, 6, and 24 hours after vorinostat dosing. Vorinostat pharmacokinetics (PK) and serum MGMT promoter status were also assessed. Nineteen eligible patients were enrolled and 18 patients were evaluable for toxicity. There were no DLTs observed at dose level 1 or 2. DLTs occurred in four patients at dose level 3: thrombocytopenia (4), neutropenia (3), and leucopenia (1). Non-dose limiting grade 3 or 4 toxicities related to protocol therapy were also hematologic and included neutropenia, lymphopenia, thrombocytopenia, anemia, and leucopenia. Three patients exhibited stable disease and one patient had a partial response. There was no clear relationship between vorinostat dosage and drug exposure over the dose range studied. Accumulation of acetylated H3 histone in PBMC was observed after administration of vorinostat. Five-day cycles of vorinostat in combination with temozolomide are well tolerated in children with recurrent CNS malignancies with myelosuppression as the DLT. The recommended phase II combination doses are vorinostat, 300 mg/m(2) /day and temozolomide, 150 mg/m(2) /day. Copyright © 2013 Wiley Periodicals, Inc.

  17. Phase I and pharmacodynamic study of vorinostat combined with capecitabine and cisplatin as first-line chemotherapy in advanced gastric cancer.

    Science.gov (United States)

    Yoo, Changhoon; Ryu, Min-Hee; Na, Young-Soon; Ryoo, Baek-Yeol; Lee, Chae-Won; Maeng, Jeheon; Kim, Se-Yeon; Koo, Dong Hoe; Park, Inkeun; Kang, Yoon-Koo

    2014-04-01

    A phase I trial of first-line vorinostat, an orally bio-available histone deacetylase inhibitor, in combination with capecitabine plus cisplatin (XP) was performed to assess recommend phase II trial dose in patients with advanced gastric cancer. Five dose levels of three-weekly vorinostat-XP were tested; vorinostat was dosed at 300-400 mg once daily on Days 1-14, capecitabine at 800-1,000 mg/m(2) twice daily on Days 1-14, and cisplatin at 60-80 mg/m(2) on Day 1. To assess the pharmacodynamics of vorinostat, histone H3 acetylation was assessed in peripheral blood mononuclear cells before the study treatment and at Day 8 of cycle 1. In total, 30 patients with unresectable or metastatic gastric adenocarcinoma were included. Dose-limiting toxicities were thrombocytopenia, fatigue, stomatitis, and anorexia. The following doses were recommended for phase II trial: 400 mg of vorinostat once daily, 1,000 mg/m(2) of capecitabine twice daily, and 60 mg/m(2) of cisplatin. The most common grade 3-4 toxicities were neutropenia (47 %), anorexia (20 %), thrombocytopenia (17 %), and fatigue (13 %). In overall, response rate was 56 % (95 % confidence interval [CI]: 32-81). With a median follow-up of 14.1 months, the median progression-free survival and overall survival were 7.1 months (95 % CI: 3.8-10.3) and 18.0 months (95 % CI: 4.8-31.1), respectively. The change in H3 acetylation after treatment with vorinostat correlated significantly with the vorinostat dose (300 vs. 400 mg/day) and the baseline level of H3 acetylation before treatment. Three-weekly vorinostat-XP regimen is feasible and recommended for further development in advanced gastric cancer.

  18. Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and β-cell protection

    DEFF Research Database (Denmark)

    Christensen, Dan Ploug; Gysemans, Conny; Lundh, Morten

    2014-01-01

    Type 1 diabetes is due to destruction of pancreatic β-cells. Lysine deacetylase inhibitors (KDACi) protect β-cells from inflammatory destruction in vitro and are promising immunomodulators. Here we demonstrate that the clinically well-tolerated KDACi vorinostat and givinostat revert diabetes...... in the nonobese diabetic (NOD) mouse model of type 1 diabetes and counteract inflammatory target cell damage by a mechanism of action consistent with transcription factor-rather than global chromatin-hyperacetylation. Weaning NOD mice received low doses of vorinostat and givinostat in their drinking water until...... 100-120 d of age. Diabetes incidence was reduced by 38% and 45%, respectively, there was a 15% increase in the percentage of islets without infiltration, and pancreatic insulin content increased by 200%. Vorinostat treatment increased the frequency of functional regulatory T-cell subsets...

  19. Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors.

    Science.gov (United States)

    Ishihara, Kenji; Takahashi, Aki; Kaneko, Motoko; Sugeno, Hiroki; Hirasawa, Noriyasu; Hong, JangJa; Zee, OkPyo; Ohuchi, Kazuo

    2007-03-06

    EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells without attenuating the level of FIP1L1-PDGFRA mRNA, and induced the expression of markers for mature eosinophils such as integrin beta7, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of histones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.

  20. Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors.

    Science.gov (United States)

    Mahalingam, Devalingam; Mita, Monica; Sarantopoulos, John; Wood, Leslie; Amaravadi, Ravi K; Davis, Lisa E; Mita, Alain C; Curiel, Tyler J; Espitia, Claudia M; Nawrocki, Steffan T; Giles, Francis J; Carew, Jennifer S

    2014-08-01

    We previously reported that inhibition of autophagy significantly augmented the anticancer activity of the histone deacetylase (HDAC) inhibitor vorinostat (VOR) through a cathepsin D-mediated mechanism. We thus conducted a first-in-human study to investigate the safety, preliminary efficacy, pharmacokinetics (PK), and pharmacodynamics (PD) of the combination of the autophagy inhibitor hydroxychloroquine (HCQ) and VOR in patients with advanced solid tumors. Of 27 patients treated in the study, 24 were considered fully evaluable for study assessments and toxicity. Patients were treated orally with escalating doses of HCQ daily (QD) (d 2 to 21 of a 21-d cycle) in combination with 400 mg VOR QD (d one to 21). Treatment-related adverse events (AE) included grade 1 to 2 nausea, diarrhea, fatigue, weight loss, anemia, and elevated creatinine. Grade 3 fatigue and/or myelosuppression were observed in a minority of patients. Fatigue and gastrointestinal AE were dose-limiting toxicities. Six-hundred milligrams HCQ and 400 mg VOR was established as the maximum tolerated dose and recommended phase II regimen. One patient with renal cell carcinoma had a confirmed durable partial response and 2 patients with colorectal cancer had prolonged stable disease. The addition of HCQ did not significantly impact the PK profile of VOR. Treatment-related increases in the expression of CDKN1A and CTSD were more pronounced in tumor biopsies than peripheral blood mononuclear cells. Based on the safety and preliminary efficacy of this combination, additional clinical studies are currently being planned to further investigate autophagy inhibition as a new approach to increase the efficacy of HDAC inhibitors.

  1. Epigenetic Activity of Peroxisome Proliferator-Activated Receptor Gamma Agonists Increases the Anticancer Effect of Histone Deacetylase Inhibitors on Multiple Myeloma Cells.

    Directory of Open Access Journals (Sweden)

    Nassera Aouali

    Full Text Available Epigenetic modifications play a major role in the development of multiple myeloma. We have previously reported that the PPARγ agonist pioglitazone (PIO enhances, in-vitro, the cytotoxic effect of the Histone deacetylase inhibitor (HDACi, valproic acid (VPA, on multiple myeloma cells. Here, we described the development of a new multiple myeloma mouse model using MOLP8 cells, in order to evaluate the effect of VPA/PIO combination on the progression of myeloma cells, by analyzing the proliferation of bone marrow plasma cells. We showed that VPA/PIO delays the progression of the disease and the invasion of myeloma cells in the bone marrow. Mechanistically, we demonstrated that VPA/PIO increases the cleavage of caspase 3 and PARP, and induces the acetylation of Histone 3 (H3. Furthermore, we provided evidence that PPARγ agonist is able to enhance the action of other HDACi such as Vorinostat or Mocetinostat. Using PPARγ antagonist or siPPARγ, we strongly suggest that, as described during adipogenesis, PIO behaves as an epigenetic regulator by improving the activity of HDACi. This study highlights the therapeutic benefit of PIO/VPA combination, compared to VPA treatment as a single-arm therapy on multiple myeloma and further highlights that such combination may constitute a new promising treatment strategy which should be supported by clinical trials.

  2. Vorinostat-eluting poly(DL-lactide-co-glycolide) nanofiber-coated stent for inhibition of cholangiocarcinoma cells.

    Science.gov (United States)

    Kwak, Tae Won; Lee, Hye Lim; Song, Yeon Hui; Kim, Chan; Kim, Jungsoo; Seo, Sol-Ji; Jeong, Young-Il; Kang, Dae Hwan

    2017-01-01

    The aim of this study was to fabricate a vorinostat (Zolinza™)-eluting nanofiber membrane-coated gastrointestinal (GI) stent and to study its antitumor activity against cholangiocarcinoma (CCA) cells in vitro and in vivo. Vorinostat and poly(DL-lactide-co-glycolide) dissolved in an organic solvent was sprayed onto a GI stent to make a nanofiber-coated stent using an electro-spinning machine. Intact vorinostat and vorinostat released from nanofibers was used to assess anticancer activity in vitro against various CCA cells. The antitumor activity of the vorinostat-eluting nanofiber membrane-coated stent was evaluated using HuCC-T1 bearing mice. A vorinostat-incorporated polymer nanofiber membrane was formed on the surface of the GI stent. Vorinostat was continuously released from the nanofiber membrane over 10 days, and its release rate was higher in cell culture media than in phosphate-buffered saline. Released vorinostat showed similar anticancer activity against various CCA cells in vitro compared to that of vorinostat. Like vorinostat, vorinostat released from nanofibers induced acetylation of histone H4 and inhibited histone deacetylases 1⋅3⋅4/5/7 expression in vitro and in vivo. Furthermore, vorinostat nanofibers showed a higher tumor growth inhibition rate in HuCC-T1 bearing mice than vorinostat injections. Vorinostat-eluting nanofiber membranes showed significant antitumor activity against CCA cells in vitro and in vivo. We suggest the vorinostat nanofiber-coated stent may be a promising candidate for CCA treatment.

  3. A Chimeric SERM-Histone Deacetylase Inhibitor Approach to Breast Cancer Therapy

    OpenAIRE

    Patel, Hitisha K.; Siklos, Marton I.; Abdelkarim, Hazem; Mendonca, Emma L.; Vaidya, Aditya; Petukhov, Pavel A.; Thatcher, Gregory R. J.

    2013-01-01

    Breast cancer remains a significant cause of death in women and few therapeutic options exist for estrogen receptor negative ER(−) cancers. Epigenetic re-activation of target genes using histone deacetylase (HDAC) inhibitors has been proposed in ER(−) cancers to resensitize to therapy using selective estrogen receptor modulators (SERMs) that are effective in ER(+) cancer treatment. Based upon preliminary studies in ER(+) and ER(−) breast cancer cells treated with combinations of HDAC inhibito...

  4. Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): a phase 3, double-blind, randomised, placebo-controlled trial.

    Science.gov (United States)

    Krug, Lee M; Kindler, Hedy L; Calvert, Hilary; Manegold, Christian; Tsao, Anne S; Fennell, Dean; Öhman, Ronny; Plummer, Ruth; Eberhardt, Wilfried E E; Fukuoka, Kazuya; Gaafar, Rabab M; Lafitte, Jean-Jacques; Hillerdal, Gunnar; Chu, Quincy; Buikhuisen, Wieneke A; Lubiniecki, Gregory M; Sun, Xing; Smith, Margaret; Baas, Paul

    2015-04-01

    Vorinostat is a histone deacetylase inhibitor that changes gene expression and protein activity. On the basis of the clinical benefit reported in patients with malignant pleural mesothelioma treated in a phase 1 study of vorinostat, we designed this phase 3 trial to investigate whether vorinostat given as a second-line or third-line therapy improved patients' overall survival. This double-blind, randomised, placebo-controlled trial was done in 90 international centres. Patients with measurable advanced malignant pleural mesothelioma and disease progression after one or two previous systemic regimens were eligible. After stratification for Karnofsky performance status, histology, and number of previous chemotherapy regimens, patients were randomly assigned (1:1) by use of an interactive voice response system with a block size of four to either treatment with vorinostat or placebo. Patients received oral vorinostat 300 mg (or matching placebo) twice daily on days 1, 2, 3, 8, 9, 10, 15, 16, and 17 of a 21-day cycle. The primary endpoints were overall survival and safety and tolerability of vorinostat. The primary efficacy comparison was done in the intention-to-treat population, and safety and tolerability was assessed in the treated population. This trial is registered with ClinicalTrials.gov, number NCT00128102. From July 12, 2005, to Feb 14, 2011, 661 patients were enrolled and randomly assigned to receive either vorinostat (n=329) or placebo (n=332) and included in the intention-to-treat analysis. Median overall survival for vorinostat was 30·7 weeks (95% CI 26·7-36·1) versus 27·1 weeks (23·1-31·9) for placebo (hazard ratio 0·98, 95% CI 0·83-1·17, p=0·86). The most common grade 3 or worse adverse events for patients treated with vorinostat were fatigue or malaise (51 [16%] patients in the vorinostat group vs 25 [8%] in the placebo group]) and dyspnoea (35 [11%] vs 45 [14%]). In this randomised trial, vorinostat given as a second-line or third

  5. Histone deacetylase inhibitors for the treatment of cancer stem cells

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, Marcela; Vaněk, Tomáš

    2016-01-01

    Roč. 7, č. 12 (2016), s. 2217-2231 ISSN 2040-2503 R&D Projects: GA MŠk LD14128 Institutional support: RVO:61389030 Keywords : acute myeloid-leukemia * epithelial-mesenchymal transition * acute myelogenous leukemia * tumor-initiating cells * human aml cells * breast-cancer * hdac inhibitors * sirtuin inhibitors * colorectal-cancer * anticancer agents Subject RIV: CC - Organic Chemistry Impact factor: 2.608, year: 2016

  6. Vorinostat Enhances Cytotoxicity of SN-38 and Temozolomide in Ewing Sarcoma Cells and Activates STAT3/AKT/MAPK Pathways.

    Directory of Open Access Journals (Sweden)

    Valerie B Sampson

    Full Text Available Histone deacetylase inhibitors (HDACi have been evaluated in patients with Ewing sarcoma (EWS but demonstrated limited activity. To better understand the potential for HDACi in EWS, we evaluated the combination of the HDACi vorinostat, with DNA damaging agents SN-38 (the active metabolite of irinotecan and topoisomerase 1 inhibitor plus the alkylating agent temozolomide (ST. Drugs were evaluated in sequential and simultaneous combinations in two EWS cell lines. Results demonstrate that cell viability, DNA damage and reactive oxygen species (ROS production are dependent on the sequence of drug administration. Enhanced cytotoxicity is exhibited in vitro in EWS cell lines treated with ST administered before vorinostat, which was modestly higher than concomitant treatment and superior to vorinostat administered before ST. Drug combinations downregulate cyclin D1 to induce G0/G1 arrest and promote apoptosis by cleavage of caspase-3 and PARP. When ST is administered before or concomitantly with vorinostat there is activation of STAT3, MAPK and the p53 pathway. In contrast, when vorinostat is administered before ST, there is DNA repair, increased AKT phosphorylation and reduced H2B acetylation. Inhibition of AKT using the small molecule inhibitor MK-2206 did not restore H2B acetylation. Combining ST with the dual ALK and IGF-1R inhibitor, AZD3463 simultaneously inhibited STAT3 and AKT to enhance the cytotoxic effects of ST and further reduce cell growth suggesting that STAT3 and AKT activation were in part mediated by ALK and IGF-1R signaling. In summary, potent antiproliferative and proapoptotic activity were demonstrated for ST induced DNA damage before or simultaneous with HDAC inhibition and cell death was mediated through the p53 pathway. These observations may aid in designing new protocols for treating pediatric patients with high-risk EWS.

  7. Vorinostat Enhances Cytotoxicity of SN-38 and Temozolomide in Ewing Sarcoma Cells and Activates STAT3/AKT/MAPK Pathways.

    Science.gov (United States)

    Sampson, Valerie B; Vetter, Nancy S; Kamara, Davida F; Collier, Anderson B; Gresh, Renee C; Kolb, E Anders

    2015-01-01

    Histone deacetylase inhibitors (HDACi) have been evaluated in patients with Ewing sarcoma (EWS) but demonstrated limited activity. To better understand the potential for HDACi in EWS, we evaluated the combination of the HDACi vorinostat, with DNA damaging agents SN-38 (the active metabolite of irinotecan and topoisomerase 1 inhibitor) plus the alkylating agent temozolomide (ST). Drugs were evaluated in sequential and simultaneous combinations in two EWS cell lines. Results demonstrate that cell viability, DNA damage and reactive oxygen species (ROS) production are dependent on the sequence of drug administration. Enhanced cytotoxicity is exhibited in vitro in EWS cell lines treated with ST administered before vorinostat, which was modestly higher than concomitant treatment and superior to vorinostat administered before ST. Drug combinations downregulate cyclin D1 to induce G0/G1 arrest and promote apoptosis by cleavage of caspase-3 and PARP. When ST is administered before or concomitantly with vorinostat there is activation of STAT3, MAPK and the p53 pathway. In contrast, when vorinostat is administered before ST, there is DNA repair, increased AKT phosphorylation and reduced H2B acetylation. Inhibition of AKT using the small molecule inhibitor MK-2206 did not restore H2B acetylation. Combining ST with the dual ALK and IGF-1R inhibitor, AZD3463 simultaneously inhibited STAT3 and AKT to enhance the cytotoxic effects of ST and further reduce cell growth suggesting that STAT3 and AKT activation were in part mediated by ALK and IGF-1R signaling. In summary, potent antiproliferative and proapoptotic activity were demonstrated for ST induced DNA damage before or simultaneous with HDAC inhibition and cell death was mediated through the p53 pathway. These observations may aid in designing new protocols for treating pediatric patients with high-risk EWS.

  8. Hemolytic anemia in two patients with glioblastoma multiforme: A possible interaction between vorinostat and dapsone.

    Science.gov (United States)

    Lewis, Jennifer A; Petty, William J; Harmon, Michele; Peacock, James E; Valente, Kari; Owen, John; Pirmohamed, Munir; Lesser, Glenn J

    2015-06-01

    Patients undergoing treatment for glioblastoma multiforme are routinely placed on prophylactic treatment for Pneumocystis jirovecii pneumonia because of significant therapy-induced lymphopenia. In patients with sulfa allergies, dapsone prophylaxis is often used due to its efficacy, long half-life, cost effectiveness, and general safety at low doses. However, dapsone may uncommonly induce a hemolytic anemia, particularly in patients deficient of glucose-6-phosphate dehydrogenase. This hemolysis is thought to be a result of oxidative stress on red blood cells induced by dapsone metabolites which produce reactive oxygen species that disrupt the red blood cell membrane and promote splenic sequestration. A single case report of dapsone-induced hemolytic anemia in a patient with glioblastoma multiforme has been reported. We present two patients with glioblastoma multiforme who developed severe hemolytic anemia shortly after initiating therapy with vorinostat, a pan-active histone deacetylase inhibitor, while on prophylactic dapsone. There are several potential mechanisms by which histone deacetylase inhibition may alter dapsone metabolism including changes in hepatic acetylation or N-glucuronidation leading to an increase in the bioavailability of dapsone's hematotoxic metabolites. In addition, vorinostat may lead to increased hemolysis through inhibition of heat shock protein-90, a chaperone protein that maintains the integrity of the red blood cell membrane cytoskeleton. The potential interaction between dapsone and vorinostat may have important clinical implications as more than 10 clinical trials evaluating drug combinations with vorinostat in patients with malignant glioma are either ongoing or planned in North America. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Synergistic activity of vorinostat combined with gefitinib but not with sorafenib in mutant KRAS human non-small cell lung cancers and hepatocarcinoma

    Directory of Open Access Journals (Sweden)

    Jeannot V

    2016-11-01

    Full Text Available Victor Jeannot,1,2 Benoit Busser,1–3 Laetitia Vanwonterghem,1,2 Sophie Michallet,1,2 Sana Ferroudj,1,2 Murat Cokol,4 Jean-Luc Coll,1,2 Mehmet Ozturk,1,2,5 Amandine Hurbin1,2 1INSERM U1209, Department Cancer Targets and Experimental Therapeutics, Grenoble, France; 2University Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France; 3Department of Biochemistry, Toxicology and Pharmacology, Grenoble University Hospital, Grenoble, France; 4Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey; 5Faculty of Medicine, Dokuz Eyul University, Izmir Biomedicine and Genome Center, Izmir, Turkey Abstract: Development of drug resistance limits the efficacy of targeted therapies. Alternative approaches using different combinations of therapeutic agents to inhibit several pathways could be a more effective strategy for treating cancer. The effects of the approved epidermal growth factor receptor (EGFR-tyrosine kinase inhibitor (gefitinib or a multi-targeted kinase inhibitor (sorafenib in combination with a histone deacetylase inhibitor (vorinostat on cell proliferation, cell cycle distribution, apoptosis, and signaling pathway activation in human lung adenocarcinoma and hepatocarcinoma cells with wild-type EGFR and mutant KRAS were investigated. The effects of the synergistic drug combinations were also studied in human lung adenocarcinoma and hepatocarcinoma cells in vivo. The combination of gefitinib and vorinostat synergistically reduced cell growth and strongly induced apoptosis through inhibition of the insulin-like growth factor-1 receptor/protein kinase B (IGF-1R/AKT-dependent signaling pathway. Moreover, the gefitinib and vorinostat combination strongly inhibited tumor growth in mice with lung adenocarcinoma or hepatocarcinoma tumor xenografts. In contrast, the combination of sorafenib and vorinostat did not inhibit cell proliferation compared to a single treatment and induced G2/M cell cycle arrest without

  10. Inhibition of SRC-3 enhances sensitivity of human cancer cells to histone deacetylase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhengzhi, E-mail: zouzhengzhi@m.scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Luo, Xiaoyong [Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang 471000 (China); Nie, Peipei [KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510000 (China); Wu, Baoyan; Zhang, Tao; Wei, Yanchun [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510000 (China); Wang, Wenyi [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Geng, Guojun; Jiang, Jie [Xiamen Cancer Center, Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China); Mi, Yanjun, E-mail: myjgj_77@163.com [Xiamen Cancer Center, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361000 (China)

    2016-09-09

    SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors (SAHA and romidepsin). In contrast, overexpression of SRC-3 decreased SAHA-induced cancer cell apoptosis. Furthermore, we found that SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. The combination of bufalin and SAHA was particular efficient in attenuating AKT activation and reducing Bcl-2 levels. Taken together, these accumulating data might guide development of new breast and lung cancer therapies. - Highlights: • Depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors. • Overexpression of SRC-3 enhanced cancer cell resistance to HDAC inhibitors. • SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. • Bufalin synergized with HDAC inhibitor attenuated AKT activation and reduced Bcl-2 levels in human cancer cell.

  11. The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Scheipers, Peter; Sørensen, Poul

    2003-01-01

    though several genes modulated by HDAC inhibition have been identified, those genes clearly responsible for the biological effects of these drugs have remained elusive. We investigated the pharmacological effect of the HDACI and potential anti-cancer agent Trichostatin A (TSA) on primary T cells.......Histone deacetylase inhibitors (HDACIs) induce hyperacetylation of core histones modulating chromatin structure and affecting gene expression. These compounds are also able to induce growth arrest, cell differentiation, and apoptotic cell death of tumor cells in vitro as well as in vivo. Even...

  12. A potent trifluoromethyl ketone histone deacetylase inhibitor exhibits class-dependent mechanism of action

    DEFF Research Database (Denmark)

    Madsen, Andreas Stahl; Olsen, Christian Adam

    2016-01-01

    Histone deacetylase (HDAC) enzymes are validated targets for treatment of certain cancers and have potential as targets for pharmacological intervention in a number of other diseases. Thus, inhibitors of these enzymes have received considerable attention, but these are often evaluated by IC50 value......-on–fast-off mechanism was observed, but the trifluoromethyl ketone compound exhibited differential mechanisms depending on the enzyme isoform. The trifluoromethyl ketone compound displayed a fast-on–fast-off mechanism against class-IIa HDACs 4 and 7, but slow-binding mechanisms against class-I and class-IIb enzymes...

  13. Novel amide derivatives as inhibitors of histone deacetylase: design, synthesis and SAR

    DEFF Research Database (Denmark)

    Andrianov, V.; Gailite, V.; Lola, D.

    2009-01-01

    Enzymatic inhibition of histone deacetylase (HDAC) activity is emerging as an innovative and effective approach for the treatment of cancer. A series of novel amide derivatives have been synthesized and evaluated for their ability to inhibit human HDACs. Multiple compounds were identified as potent...... HDAC inhibitors (HDACi), with IC(50) values in the low nanomolar (nM) range against enzyme activity in HeLa cell extracts and sub-microM for their in vitro anti-proliferative effect on cell lines. The introduction of an unsaturated linking group between the terminal aryl ring and the amide moiety...

  14. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing.

    Directory of Open Access Journals (Sweden)

    Datsen George Wei

    2014-04-01

    Full Text Available Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD, a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM compared with vorinostat (VOR; EC50 = 3,950 nM and other histone deacetylase (HDAC inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM. The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART, a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART.

  15. Bortezomib-induced sensitization of malignant human glioma cells to vorinostat-induced apoptosis depends on reactive oxygen species production, mitochondrial dysfunction, Noxa upregulation, Mcl-1 cleavage, and DNA damage.

    Science.gov (United States)

    Premkumar, Daniel R; Jane, Esther P; Agostino, Naomi R; DiDomenico, Joseph D; Pollack, Ian F

    2013-02-01

    Glioblastomas are invasive tumors with poor prognosis despite current therapies. Histone deacetylase inhibitors (HDACIs) represent a class of agents that can modulate gene expression to reduce tumor growth, and we and others have noted some antiglioma activity from HDACIs, such as vorinostat, although insufficient to warrant use as monotherapy. We have recently demonstrated that proteasome inhibitors, such as bortezomib, dramatically sensitized highly resistant glioma cells to apoptosis induction, suggesting that proteasomal inhibition may be a promising combination strategy for glioma therapeutics. In this study, we examined whether bortezomib could enhance response to HDAC inhibition in glioma cells. Although primary cells from glioblastoma multiforme (GBM) patients and established glioma cell lines did not show significant induction of apoptosis with vorinostat treatment alone, the combination of vorinostat plus bortezomib significantly enhanced apoptosis. The enhanced efficacy was due to proapoptotic mitochondrial injury and increased generation of reactive oxygen species. Our results also revealed that combination of bortezomib with vorinostat enhanced apoptosis by increasing Mcl-1 cleavage, Noxa upregulation, Bak and Bax activation, and cytochrome c release. Further downregulation of Mcl-1 using shRNA enhanced cell killing by the bortezomib/vorinostat combination. Vorinostat induced a rapid and sustained phosphorylation of histone H2AX in primary GBM and T98G cells, and this effect was significantly enhanced by co-administration of bortezomib. Vorinostat/bortezomib combination also induced Rad51 downregulation, which plays an important role in the synergistic enhancement of DNA damage and apoptosis. The significantly enhanced antitumor activity that results from the combination of bortezomib and HDACIs offers promise as a novel treatment for glioma patients. Copyright © 2011 Wiley Periodicals, Inc.

  16. A phase IIb trial of vorinostat in combination with lenalidomide and dexamethasone in patients with multiple myeloma refractory to previous lenalidomide-containing regimens.

    Science.gov (United States)

    Sanchez, Larysa; Vesole, David H; Richter, Joshua R; Biran, Noa; Bilotti, Elizabeth; McBride, Laura; Anand, Palka; Ivanovski, Kristin; Siegel, David S

    2017-02-01

    Clinical trials of vorinostat, a Class I/II histone deacetylase inhibitor, in combination with proteasome inhibitors and immunomodulatory agents have shown activity in relapsed/refractory multiple myeloma. This phase IIb, open-label, single-institution study evaluated the efficacy of vorinostat in combination with lenalidomide and dexamethasone in lenalidomide-refractory patients. Patients were considered lenalidomide-refractory if they had no clinical response (vorinostat 400 mg days 1-7 and 15-21, lenalidomide 25 mg days 1-21, and dexamethasone 40 mg days 1, 8, 15 and 22 in 28-day cycles. Twenty-five patients were enrolled, median age was 65 years and patients had received a median of 5 prior regimens. The overall response rate was 24% (6 partial responses) and clinical benefit rate (≥stable disease) was 80%. Median time to a partial response was 1·9 months and median duration of response was 3·3 months. Median progression-free survival was 5·3 months. Most common grade 3/4 adverse events were neutropenia (48%), thrombocytopenia (32%), anaemia (20%) and gastrointestinal toxicities (16%). In this heavily pre-treated population, vorinostat in combination with lenalidomide and dexamethasone was active in lenalidomide-refractory patients. © 2016 John Wiley & Sons Ltd.

  17. The effect of vorinostat on the development of resistance to doxorubicin in neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Timothy B Lautz

    Full Text Available Histone deacetylase (HDAC inhibitors, especially vorinostat, are currently under investigation as potential adjuncts in the treatment of neuroblastoma. The effect of vorinostat co-treatment on the development of resistance to other chemotherapeutic agents is unknown. In the present study, we treated two human neuroblastoma cell lines [SK-N-SH and SK-N-Be(2C] with progressively increasing doses of doxorubicin under two conditions: with and without vorinsotat co-therapy. The resultant doxorubicin-resistant (DoxR and vorinostat-treated doxorubicin resistant (DoxR-v cells were equally resistant to doxorubicin despite significantly lower P-glycoprotein expression in the DoxR-v cells. Whole genome analysis was performed using the Ilumina Human HT-12 v4 Expression Beadchip to identify genes with differential expression unique to the DoxR-v cells. We uncovered a number of genes whose differential expression in the DoxR-v cells might contribute to their resistant phenotype, including hypoxia inducible factor-2. Finally, we used Gene Ontology to categorize the biological functions of the differentially expressed genes unique to the DoxR-v cells and found that genes involved in cellular metabolism were especially affected.

  18. An epithelial marker promoter induction screen identifies histone deacetylase inhibitors to restore epithelial differentiation and abolishes anchorage independence growth in cancers.

    Science.gov (United States)

    Tang, H M; Kuay, K T; Koh, P F; Asad, M; Tan, T Z; Chung, V Y; Lee, S C; Thiery, J P; Huang, Ry-J

    2016-01-01

    Epithelial-mesenchymal transition (EMT), a crucial mechanism in development, mediates aggressiveness during carcinoma progression and therapeutic refractoriness. The reversibility of EMT makes it an attractive strategy in designing novel therapeutic approaches. Therefore, drug discovery pipelines for EMT reversal are in need to discover emerging classes of compounds. Here, we outline a pre-clinical drug screening platform for EMT reversal that consists of three phases of drug discovery and validation. From the Phase 1 epithelial marker promoter induction (EpI) screen on a library consisting of compounds being approved by Food and Drug Administration (FDA), Vorinostat (SAHA), a histone deacetylase inhibitor (HDACi), is identified to exert EMT reversal effects by restoring the expression of an epithelial marker, E-cadherin. An expanded screen on 41 HDACi further identifies 28 compounds, such as class I-specific HDACi Mocetinosat, Entinostat and CI994, to restore E-cadherin and ErbB3 expressions in ovarian, pancreatic and bladder carcinoma cells. Mocetinostat is the most potent HDACi to restore epithelial differentiation with the lowest concentration required for 50% induction of epithelial promoter activity (EpIC-50).The HDACi exerts paradoxical effects on EMT transcriptional factors such as SNAI and ZEB family and the effects are context-dependent in epithelial- and mesenchymal-like cells. In vitro functional studies further show that HDACi induced significant increase in anoikis and decrease in spheroid formation in ovarian and bladder carcinoma cells with mesenchymal features. This study demonstrates a robust drug screening pipeline for the discovery of compounds capable of restoring epithelial differentiation that lead to significant functional lethality.

  19. The effect of a histone deacetylase inhibitor - valproic acid - on nucleoli in human leukaemic myeloblasts.

    Science.gov (United States)

    Smetana, K; Zápotocký, M

    2010-01-01

    The present study was undertaken to provide more information on nucleolar changes induced by a histone deacetylase inhibitor such as valproic acid in leukaemic myeloblasts at the single-cell level. For this study, RNA in nucleoli was visualized by a simple but sensitive cytochemical procedure in unfixed cytospins of short-term bone marrow cultures from patients suffering from acute myeloid leukaemia. Valproic acid in leukaemic myeloblasts markedly reduced the nucleolar size and also produced significant transformation of "active" to "resting" and "inactive" nucleoli that reflected the alteration of the nucleolar transcription in sensitive myeloblasts. On this occasion it should be added that valproic acid significantly increased the incidence of altered myeloblasts that changed to apoptotic cells or apoptotic bodies and cell ghosts. In contrast to the above-mentioned decreased nucleolar size, the nucleolar RNA concentration, expressed by computerassisted RNA image densitometry in valproic acidtreated myeloblasts, was not significantly changed. The results of the present study clearly indicated that the nucleolar size and transformation of "active" to "sleeping" or "inactive" nucleoli are convenient markers of the sensitivity and alteration of leukaemic myeloblasts produced by a histone deacetylase inhibitor, valproic acid, at the single-cell level.

  20. Histone deacetylase inhibitors improve the replication of oncolytic herpes simplex virus in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    James J Cody

    Full Text Available New therapies are needed for metastatic breast cancer patients. Oncolytic herpes simplex virus (oHSV is an exciting therapy being developed for use against aggressive tumors and established metastases. Although oHSV have been demonstrated safe in clinical trials, a lack of sufficient potency has slowed the clinical application of this approach. We utilized histone deacetylase (HDAC inhibitors, which have been noted to impair the innate antiviral response and improve gene transcription from viral vectors, to enhance the replication of oHSV in breast cancer cells. A panel of chemically diverse HDAC inhibitors were tested at three different doses (LD50 for their ability to modulate the replication of oHSV in breast cancer cells. Several of the tested HDAC inhibitors enhanced oHSV replication at low multiplicity of infection (MOI following pre-treatment of the metastatic breast cancer cell line MDA-MB-231 and the oHSV-resistant cell line 4T1, but not in the normal breast epithelial cell line MCF10A. Inhibitors of class I HDACs, including pan-selective compounds, were more effective for increasing oHSV replication compared to inhibitors that selectively target class II HDACs. These studies demonstrate that select HDAC inhibitors increase oHSV replication in breast cancer cells and provides support for pre-clinical evaluation of this combination strategy.

  1. Homology modeling of parasite histone deacetylases to guide the structure-based design of selective inhibitors.

    Science.gov (United States)

    Melesina, Jelena; Robaa, Dina; Pierce, Raymond J; Romier, Christophe; Sippl, Wolfgang

    2015-11-01

    Histone deacetylases (HDACs) are promising epigenetic targets for the treatment of various diseases, including cancer and neurodegenerative disorders. There is evidence that they can also be addressed to treat parasitic infections. Recently, the first X-ray structure of a parasite HDAC was published, Schistosoma mansoni HDAC8, giving structural insights into its inhibition. However, most of the targets from parasites of interest still lack this structural information. Therefore, we prepared homology models of relevant parasitic HDACs and compared them to human and S. mansoni HDACs. The information about known S. mansoni HDAC8 inhibitors and compounds that affect the growth of Trypanosoma, Leishmania and Plasmodium species was used to validate the models by docking and molecular dynamics studies. Our results provide analysis of structural features of parasitic HDACs and should be helpful for selecting promising candidates for biological testing and for structure-based optimisation of parasite-specific inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration.

    Science.gov (United States)

    Ganai, Shabir Ahmad; Ramadoss, Mahalakshmi; Mahadevan, Vijayalakshmi

    2016-01-01

    Epigenetic regulation of neuronal signalling through histone acetylation dictates transcription programs that govern neuronal memory, plasticity and learning paradigms. Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) are antagonistic enzymes that regulate gene expression through acetylation and deacetylation of histone proteins around which DNA is wrapped inside a eukaryotic cell nucleus. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and have been implicated in muscular dystrophy, loss of memory, neurodegeneration and autistic disorders. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique in therapy. This review presents evolving applications of HDAC inhibitors as potential drugs in neurological research and therapy. Mechanisms that govern their expression profiles in neuronal signalling, plasticity and learning will be covered. Promising and exciting possibilities of HDAC inhibitors in memory formation, fear conditioning, ischemic stroke and neural regeneration have been detailed.

  3. Valproic Acid as a Potential Inhibitor of Plasmodium falciparum Histone Deacetylase 1 (PfHDAC1: An in Silico Approach

    Directory of Open Access Journals (Sweden)

    Mohamed A. Abdallah Elbadawi

    2015-02-01

    Full Text Available A new Plasmodium falciparum histone deacetylase1 (PfHDAC1 homology model was built based on the highest sequence identity available template human histone deacetylase 2 structure. The generated model was carefully evaluated for stereochemical accuracy, folding correctness and overall structure quality. All evaluations were acceptable and consistent. Docking a group of hydroxamic acid histone deacetylase inhibitors and valproic acid has shown binding poses that agree well with inhibitor-bound histone deacetylase-solved structural interactions. Docking affinity dG scores were in agreement with available experimental binding affinities. Further, enzyme-ligand complex stability and reliability were investigated by running 5-nanosecond molecular dynamics simulations. Thorough analysis of the simulation trajectories has shown that enzyme-ligand complexes were stable during the simulation period. Interestingly, the calculated theoretical binding energies of the docked hydroxamic acid inhibitors have shown that the model can discriminate between strong and weaker inhibitors and agrees well with the experimental affinities reported in the literature. The model and the docking methodology can be used in screening virtual libraries for PfHDAC1 inhibitors, since the docking scores have ranked ligands in accordance with experimental binding affinities. Valproic acid calculated theoretical binding energy suggests that it may inhibit PfHDAC1.

  4. Synergistic efficacy in human ovarian cancer cells by histone deacetylase inhibitor TSA and proteasome inhibitor PS-341.

    Science.gov (United States)

    Fang, Yong; Hu, Yi; Wu, Peng; Wang, Beibei; Tian, Yuan; Xia, Xi; Zhang, Qinghua; Chen, Tong; Jiang, Xuefeng; Ma, Quanfu; Xu, Gang; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding; Meng, Li

    2011-05-01

    Histone deacetylase inhibitors and proteasome inhibitor are all emerging as new classes of anticancer agents. We chose TSA and PS-341 to identify whether they have a synergistic efficacy on human ovarian cancer cells. After incubated with 500 nM TSA or/and 40 nM PS-341, we found that combined groups resulted in a striking increase of apoptosis and G2/M blocking rates, no matter in A2780, cisplatin-sensitive ovarian cancer cell line OV2008 or its resistant variant C13*. This demonstrated that TSA interacted synergistically with PS-341, which raised the possibility that combined the two drugs may represent a novel strategy in ovarian cancer.

  5. [Dexamethasone and vorinostat cooperatively promote differentiation and apoptosis in Kasumi-1 leukemia cells through ubiquitination and degradation of AML1-ETO].

    Science.gov (United States)

    Chen, Li-ping; Zhang, Jian-wei; Xu, Fa-mei; Xing, Hai-yan; Tian, Zheng; Wang, Min; Wang, Jian-xiang

    2013-09-01

    To probe the effects of dexamethasone (DEX) combined with histone deacetylase (HDAC) inhibitor vorinostat on inhibiting proliferation and inducing differentiation and apoptosis in Kasumi-1 leukemia cells, and its possible mechanisms in order to provide a theoretical basis for the treatment of AML1-ETO positive AML. The cell survival, differentiation and apoptosis rates were tested by MTT or flow cytometry analysis after Kasumi-1 cells were treated by DMSO, DEX (20 nmol/L), vorinostat (1 μmol/L) or DEX (20 nmol/L) in combination with vorinostat (1 μmol/L). WB and IP-WB were performed to detect AML1-ETO and its ubiquitination. Treatment with the combination of DEX and vorinostat for 48 h led to statistically significant differences of inhibited proliferation [(42.06±8.20)%], increased differentiation [(52.83±8.97)%] and apoptosis [(52.92±2.53)%] of Kasumi-1 cells when compared with vorinostat [(33.82±9.41)%, (43.93±9.04)% and (42.98±3.01)%, respectively], DEX [(17.30±3.49)%, (22.53±4.51)% and (19.57±2.17)%, respectively] or control [(6.96±0.39)%, (21.73±2.03)% and (6.96±0.39)%, respectively]. Also significant ubiquitination and decreased AML1-ETO protein in Kasumi-1 cells after the combination treatment over single agent or control were observed. The results indicated that DEX and vorinostat could synergistically inhibit the Kasumi-1 cells proliferation, induce Kasumi-1 cells differentiation and apoptosis through ubiquitination and degradation of AML1-ETO.

  6. Reactivation of estrogen receptor α by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor.

    Science.gov (United States)

    Stark, Karri; Burger, Angelika; Wu, Jianmei; Shelton, Phillip; Polin, Lisa; Li, Jing

    2013-01-01

    Aminoflavone (AF) acts as a ligand of the aryl hydrocarbon receptor (AhR). Expression of estrogen receptor α (ERα) and AhR-mediated transcriptional induction of CYP1A1 can sensitize breast cancer cells to AF. The objective of this study was to investigate the combined antitumor effect of AF and the histone deacetylase inhibitor vorinostat for treating mesenchymal-like triple-negative breast cancer (TNBC) as well as the underlying mechanisms of such treatment. In vitro antiproliferative activity of AFP464 (AF prodrug) in breast cancer cell lines was evaluated by MTS assay. In vitro, the combined effect of AFP464 and vorinostat on cell proliferation was assessed by the Chou-Talalay method. In vivo, antitumor activity of AFP464, given alone and in combination with vorinostat, was studied using TNBC xenograft models. Knockdown of ERα was performed using specific, small-interfering RNA. Western blot, quantitative RT-PCR, immunofluorescence, and immunohistochemical staining were performed to study the mechanisms underlying the combined antitumor effect. Luminal and basal A subtype breast cancer cell lines were sensitive to AFP464, whereas basal B subtype or mesenchymal-like TNBC cells were resistant. Vorinostat sensitized mesenchymal-like TNBC MDA-MB-231 and Hs578T cells to AFP464. It also potentiated the antitumor activity of AFP464 in a xenograft model using MDA-MB-231 cells. In vitro and in vivo mechanistic studies suggested that vorinostat reactivated ERα expression and restored AhR-mediated transcriptional induction of CYP1A1. The response of breast cancer cells to AF or AFP464 was associated with their gene expression profile. Vorinostat sensitized mesenchymal-like TNBC to AF, at least in part, by reactivating ERα expression and restoring the responsiveness of AhR to AF.

  7. Murine hematopoietic stem cell dormancy controlled by induction of a novel short form of PSF1 by histone deacetylase inhibitors

    International Nuclear Information System (INIS)

    Han, Yinglu; Gong, Zhi-Yuan; Takakura, Nobuyuki

    2015-01-01

    Hematopoietic stem cells (HSCs) can survive long-term in a state of dormancy. Little is known about how histone deacetylase inhibitors (HDACi) affect HSC kinetics. Here, we use trichostatin A (TSA), a histone deacetylase inhibitor, to enforce histone acetylation and show that this suppresses cell cycle entry by dormant HSCs. Previously, we found that haploinsufficiency of PSF1, a DNA replication factor, led to attenuation of the bone marrow (BM) HSC pool size and lack of acute proliferation after 5-FU ablation. Because PSF1 protein is present in CD34 + transiently amplifying HSCs but not in CD34 − long-term reconstituting-HSCs which are resting in a dormant state, we analyzed the relationship between dormancy and PSF1 expression, and how a histone deacetylase inhibitor affects this. We found that CD34 + HSCs produce long functional PSF1 (PSF1a) but CD34 − HSCs produce a shorter possibly non-functional PSF1 (PSF1b, c, dominantly PSF1c). Using PSF1a-overexpressing NIH-3T3 cells in which the endogenous PSF1 promoter is suppressed, we found that TSA treatment promotes production of the shorter form of PSF1 possibly by inducing recruitment of E2F family factors upstream of the PSF1 transcription start site. Our data document one mechanism by which histone deacetylase inhibitors affect the dormancy of HSCs by regulating the DNA replication factor PSF1. - Highlights: • Hematopoetic stem cell dormancy is controlled by histone deacetylation inhibitors. • Dormancy of HSCs is associated with a shorter form of non-functional PSF1. • Histone deacetylase inhibitors suppress PSF1 promoter activity

  8. Murine hematopoietic stem cell dormancy controlled by induction of a novel short form of PSF1 by histone deacetylase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yinglu; Gong, Zhi-Yuan [Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Takakura, Nobuyuki, E-mail: ntakaku@biken.osaka-u.ac.jp [Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Japan Science Technology Agency, CREST, K' s Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2015-06-10

    Hematopoietic stem cells (HSCs) can survive long-term in a state of dormancy. Little is known about how histone deacetylase inhibitors (HDACi) affect HSC kinetics. Here, we use trichostatin A (TSA), a histone deacetylase inhibitor, to enforce histone acetylation and show that this suppresses cell cycle entry by dormant HSCs. Previously, we found that haploinsufficiency of PSF1, a DNA replication factor, led to attenuation of the bone marrow (BM) HSC pool size and lack of acute proliferation after 5-FU ablation. Because PSF1 protein is present in CD34{sup +} transiently amplifying HSCs but not in CD34{sup −} long-term reconstituting-HSCs which are resting in a dormant state, we analyzed the relationship between dormancy and PSF1 expression, and how a histone deacetylase inhibitor affects this. We found that CD34{sup +} HSCs produce long functional PSF1 (PSF1a) but CD34{sup −} HSCs produce a shorter possibly non-functional PSF1 (PSF1b, c, dominantly PSF1c). Using PSF1a-overexpressing NIH-3T3 cells in which the endogenous PSF1 promoter is suppressed, we found that TSA treatment promotes production of the shorter form of PSF1 possibly by inducing recruitment of E2F family factors upstream of the PSF1 transcription start site. Our data document one mechanism by which histone deacetylase inhibitors affect the dormancy of HSCs by regulating the DNA replication factor PSF1. - Highlights: • Hematopoetic stem cell dormancy is controlled by histone deacetylation inhibitors. • Dormancy of HSCs is associated with a shorter form of non-functional PSF1. • Histone deacetylase inhibitors suppress PSF1 promoter activity.

  9. The Histone Deacetylase Inhibitors MS-275 and SAHA Suppress the p38 Mitogen-Activated Protein Kinase Signaling Pathway and Chemotaxis in Rheumatoid Arthritic Synovial Fibroblastic E11 Cells

    Directory of Open Access Journals (Sweden)

    Hai-Shu Lin

    2013-11-01

    Full Text Available MS-275 (entinostat and SAHA (vorinostat, two histone deacetylase (HDAC inhibitors currently in oncological trials, have displayed potent anti-rheumatic activities in rodent models of rheumatoid arthritis (RA. To further elucidate their anti-inflammatory mechanisms, the impact of MS-275 and SAHA on the p38 mitogen-activated protein kinase (MAPK signaling pathway and chemotaxis was assessed in human rheumatoid arthritic synovial fibroblastic E11 cells. MS-275 and SAHA significantly suppressed the expression of p38α  MAPK, but induced the expression of MAPK phosphatase-1 (MKP-1, an endogenous suppressor of p38α  in E11 cells. At the same time, the association between p38α and MKP-1 was up-regulated and consequently, the activation (phosphorylation of p38α  was inhibited. Moreover, MS-275 and SAHA suppressed granulocyte chemotactic protein-2 (GCP-2, monocyte chemotactic protein-2 (MCP-2 and macrophage migration inhibitory factor (MIF in E11 cells in a concentration-dependent manner. Subsequently, E11-driven migration of THP-1 and U937 monocytes was inhibited. In summary, suppression of the p38 MAPK signaling pathway and chemotaxis appear to be important anti-rheumatic mechanisms of action of these HDAC inhibitors.

  10. The Role of Dietary Histone Deacetylases (HDACs Inhibitors in Health and Disease

    Directory of Open Access Journals (Sweden)

    Shalome A. Bassett

    2014-10-01

    Full Text Available Modification of the histone proteins associated with DNA is an important process in the epigenetic regulation of DNA structure and function. There are several known modifications to histones, including methylation, acetylation, and phosphorylation, and a range of factors influence each of these. Histone deacetylases (HDACs remove the acetyl group from lysine residues within a range of proteins, including transcription factors and histones. Whilst this means that their influence on cellular processes is more complex and far-reaching than histone modifications alone, their predominant function appears to relate to histones; through deacetylation of lysine residues they can influence expression of genes encoded by DNA linked to the histone molecule. HDAC inhibitors in turn regulate the activity of HDACs, and have been widely used as therapeutics in psychiatry and neurology, in which a number of adverse outcomes are associated with aberrant HDAC function. More recently, dietary HDAC inhibitors have been shown to have a regulatory effect similar to that of pharmacological HDAC inhibitors without the possible side-effects. Here, we discuss a number of dietary HDAC inhibitors, and how they may have therapeutic potential in the context of a whole food.

  11. Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells

    Directory of Open Access Journals (Sweden)

    Doughty Martin L

    2011-05-01

    Full Text Available Abstract Background Histone deacetylases (HDACs are enzymes that modulate gene expression and cellular processes by deacetylating histones and non-histone proteins. While small molecule inhibitors of HDAC activity (HDACi are used clinically in the treatment of cancer, pre-clinical treatment models suggest they also exert neuroprotective effects and stimulate neurogenesis in neuropathological conditions. However, the direct effects of HDACi on cell cycle progression and proliferation, two properties required for continued neurogenesis, have not been fully characterized in adult neural stem cells (NSCs. In this study, we examined the effects of two broad class I and class II HDACi on adult mouse NSCs, the hydroxamate-based HDACi suberoylanilide hydroxamic acid (vorinostat, SAHA and the short chain fatty acid HDACi sodium butyrate. Results We show that both HDACi suppress the formation of neurospheres by adult mouse NSCs grown in proliferation culture conditions in vitro. DNA synthesis is significantly inhibited in adult mouse NSCs exposed to either SAHA or sodium butyrate and inhibition is associated with an arrest in the G1 phase of the cell cycle. HDACi exposure also resulted in transcriptional changes in adult mouse NSCs. Cdk inhibitor genes p21 and p27 transcript levels are increased and associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27. mRNA levels for notch effector Hes genes and Spry-box stem cell transcription factors are downregulated, whereas pro-neural transcription factors Neurog1 and Neurod1 are upregulated. Lastly, we show HDAC inhibition under proliferation culture conditions leads to long-term changes in cell fate in adult mouse NSCs induced to differentiate in vitro. Conclusion SAHA and sodium butyrate directly regulate cdk inhibitor transcription to control cell cycle progression in adult mouse NSCs. HDAC inhibition results in G1 arrest in adult mouse NSCs and transcriptional changes

  12. Preclinical Studies of Chemotherapy Using Histone Deacetylase Inhibitors in Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Noriyuki Takai

    2010-01-01

    Full Text Available Because epigenetic alterations are believed to be involved in the repression of tumor suppressor genes and promotion of tumorigenesis in endometrial cancers, novel compounds endowed with a histone deacetylase (HDAC inhibitory activity are an attractive therapeutic approach. In this review, we discuss the biologic and therapeutic effects of HDAC inhibitors (HDACIs in treating endometrial cancer. HDACIs were able to mediate inhibition of cell growth, cell cycle arrest, apoptosis, and the expression of genes related to the malignant phenotype in a variety of endometrial cancer cell lines. Furthermore, HDACIs were able to induce the accumulation of acetylated histones in the chromatin of the p21WAF1 gene in human endometrial carcinoma cells. In xenograft models, some HDACIs have demonstrated antitumor activity with only few side effects. In this review, we discuss the biologic and therapeutic effects of HDACIs in treating endometrial cancer, with a special focus on preclinical studies.

  13. An Isochemogenic Set of Inhibitors To Define the Therapeutic Potential of Histone Deacetylases in β-Cell Protection

    DEFF Research Database (Denmark)

    Wagner, Florence F; Lundh, Morten; Kaya, Taner

    2016-01-01

    Modulation of histone deacetylase (HDAC) activity has been implicated as a potential therapeutic strategy for multiple diseases. However, it has been difficult to dissect the role of individual HDACs due to a lack of selective small-molecule inhibitors. Here, we report the synthesis of a series...... of highly potent and isoform-selective class I HDAC inhibitors, rationally designed by exploiting minimal structural changes to the clinically experienced HDAC inhibitor CI-994. We used this toolkit of isochemogenic or chemically matched inhibitors to probe the role of class I HDACs in β-cell pathobiology...... pancreatic β-cells from inflammatory cytokines and nutrient overload in diabetes....

  14. Rational combination treatment with histone deacetylase inhibitors and immunomodulatory drugs in multiple myeloma

    International Nuclear Information System (INIS)

    Hideshima, T; Cottini, F; Ohguchi, H; Jakubikova, J; Gorgun, G; Mimura, N; Tai, Y-T; Munshi, N C; Richardson, P G; Anderson, K C

    2015-01-01

    Immunomodulatory drugs (IMiDs) thalidomide, lenalidomide (Len) and pomalidomide trigger anti-tumor activities in multiple myeloma (MM) by targetting cereblon and thereby impacting IZF1/3, c-Myc and IRF4. Histone deacetylase inhibitors (HDACi) also downregulate c-Myc. We therefore determined whether IMiDs with HDACi trigger significant MM cell growth inhibition by inhibiting or downregulating c-Myc. Combination treatment of Len with non-selective HDACi suberoylanilide hydroxamic acid or class-I HDAC-selective inhibitor MS275 induces synergic cytotoxicity, associated with downregulation of c-Myc. Unexpectedly, we observed that decreased levels of cereblon (CRBN), a primary target protein of IMiDs, was triggered by these agents. Indeed, sequential treatment of MM cells with MS275 followed by Len shows less efficacy than simultaneous treatment with this combination. Importantly ACY1215, an HDAC6 inhibitor with minimal effects on class-I HDACs, together with Len induces synergistic MM cytotoxicity without alteration of CRBN expression. Our results showed that only modest class-I HDAC inhibition is able to induce synergistic MM cytotoxicity in combination with Len. These studies may provide the framework for utilizing HDACi in combination with Len to both avoid CRBN downregulation and enhance anti-MM activities

  15. Rational combination treatment with histone deacetylase inhibitors and immunomodulatory drugs in multiple myeloma.

    Science.gov (United States)

    Hideshima, T; Cottini, F; Ohguchi, H; Jakubikova, J; Gorgun, G; Mimura, N; Tai, Y-T; Munshi, N C; Richardson, P G; Anderson, K C

    2015-05-15

    Immunomodulatory drugs (IMiDs) thalidomide, lenalidomide (Len) and pomalidomide trigger anti-tumor activities in multiple myeloma (MM) by targetting cereblon and thereby impacting IZF1/3, c-Myc and IRF4. Histone deacetylase inhibitors (HDACi) also downregulate c-Myc. We therefore determined whether IMiDs with HDACi trigger significant MM cell growth inhibition by inhibiting or downregulating c-Myc. Combination treatment of Len with non-selective HDACi suberoylanilide hydroxamic acid or class-I HDAC-selective inhibitor MS275 induces synergic cytotoxicity, associated with downregulation of c-Myc. Unexpectedly, we observed that decreased levels of cereblon (CRBN), a primary target protein of IMiDs, was triggered by these agents. Indeed, sequential treatment of MM cells with MS275 followed by Len shows less efficacy than simultaneous treatment with this combination. Importantly ACY1215, an HDAC6 inhibitor with minimal effects on class-I HDACs, together with Len induces synergistic MM cytotoxicity without alteration of CRBN expression. Our results showed that only modest class-I HDAC inhibition is able to induce synergistic MM cytotoxicity in combination with Len. These studies may provide the framework for utilizing HDACi in combination with Len to both avoid CRBN downregulation and enhance anti-MM activities.

  16. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel.

    Science.gov (United States)

    Kuwajima, Akiko; Iwashita, Jun; Murata, Jun; Abe, Tatsuya

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have anticancer effects. Their effects on expression of cell adhesion molecules might be related to their effects on tumor cell invasion. Murine B16-BL6 cells were treated with the HDAC inhibitors, butyrate or trichostatin A. Melanoma cell invasion of the artificial basement membrane, Matrigel, was examined by Transwell chamber assay. Butyrate as well as trichostatin A inhibited the cell growth mainly by arresting the cell cycle. The cell invasion of Matrigel was inhibited by butyrate and trichostatin A. The butyrate treatment increased the cell-cell aggregation, although neither E-cadherin nor N-cadherin mRNA were up-regulated. Both mRNA expression and protein levels of the immunoglobulin superfamily cell adhesion molecules, Mel-CAM and L1-CAM, were increased in the butyrate-treated cells. The HDAC inhibitor butyrate blocked the B16-BL6 melanoma cell invasion of Matrigel, although it increased the expression of Mel-CAM and L1-CAM which are important to the metastatic potential.

  17. Vorinostat and Concurrent Stereotactic Radiosurgery for Non-Small Cell Lung Cancer Brain Metastases: A Phase 1 Dose Escalation Trial.

    Science.gov (United States)

    Choi, Clara Y H; Wakelee, Heather A; Neal, Joel W; Pinder-Schenck, Mary C; Yu, Hsiang-Hsuan Michael; Chang, Steven D; Adler, John R; Modlin, Leslie A; Harsh, Griffith R; Soltys, Scott G

    2017-09-01

    To determine the maximum tolerated dose (MTD) of vorinostat, a histone deacetylase inhibitor, given concurrently with stereotactic radiosurgery (SRS) to treat non-small cell lung cancer (NSCLC) brain metastases. Secondary objectives were to determine toxicity, local failure, distant intracranial failure, and overall survival rates. In this multicenter study, patients with 1 to 4 NSCLC brain metastases, each ≤2 cm, were enrolled in a phase 1, 3 + 3 dose escalation trial. Vorinostat dose levels were 200, 300, and 400 mg orally once daily for 14 days. Single-fraction SRS was delivered on day 3. A dose-limiting toxicity (DLT) was defined as any Common Terminology Criteria for Adverse Events version 3.0 grade 3 to 5 acute nonhematologic adverse event related to vorinostat or SRS occurring within 30 days. From 2009 to 2014, 17 patients were enrolled and 12 patients completed study treatment. Because no DLTs were observed, the MTD was established as 400 mg. Acute adverse events were reported by 10 patients (59%). Five patients discontinued vorinostat early and withdrew from the study. The most common reasons for withdrawal were dyspnea (n=2), nausea (n=1), and fatigue (n=2). With a median follow-up of 12 months (range, 1-64 months), Kaplan-Meier overall survival was 13 months. There were no local failures. One patient (8%) at the 400-mg dose level with a 2.0-cm metastasis developed histologically confirmed grade 4 radiation necrosis 2 months after SRS. The MTD of vorinostat with concurrent SRS was established as 400 mg. Although no DLTs were observed, 5 patients withdrew before completing the treatment course, a result that emphasizes the need for supportive care during vorinostat administration. There were no local failures. A larger, randomized trial may evaluate both the tolerability and potential local control benefit of vorinostat concurrent with SRS for brain metastases. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Marbostat-100 Defines a New Class of Potent and Selective Antiinflammatory and Antirheumatic Histone Deacetylase 6 Inhibitors.

    Science.gov (United States)

    Sellmer, Andreas; Stangl, Hubert; Beyer, Mandy; Grünstein, Elisabeth; Leonhardt, Michel; Pongratz, Herwig; Eichhorn, Emerich; Elz, Sigurd; Striegl, Birgit; Jenei-Lanzl, Zsuzsa; Dove, Stefan; Straub, Rainer H; Krämer, Oliver H; Mahboobi, Siavosh

    2018-04-26

    Epigenetic modifiers of the histone deacetylase (HDAC) family contribute to autoimmunity, cancer, HIV infection, inflammation, and neurodegeneration. Hence, histone deacetylase inhibitors (HDACi), which alter protein acetylation, gene expression patterns, and cell fate decisions, represent promising new drugs for the therapy of these diseases. Whereas pan-HDACi inhibit all 11 Zn 2+ -dependent histone deacetylases (HDACs) and cause a broad spectrum of side effects, specific inhibitors of histone deacetylase 6 (HDAC6i) are supposed to have less side effects. We present the synthesis and biological evaluation of Marbostats, novel HDAC6i that contain the hydroxamic acid moiety linked to tetrahydro-β-carboline derivatives. Our lead compound Marbostat-100 is a more potent and more selective HDAC6i than previously established well-characterized compounds in vitro as well as in cells. Moreover, Marbostat-100 is well tolerated by mice and effective against collagen type II induced arthritis. Thus, Marbostat-100 represents a most selective known HDAC6i and the possibility for clinical evaluation of a HDAC isoform-specific drug.

  19. Gastrointestinal toxicity of vorinostat: reanalysis of phase 1 study results with emphasis on dose-volume effects of pelvic radiotherapy

    International Nuclear Information System (INIS)

    Bratland, Åse; Dueland, Svein; Hollywood, Donal; Flatmark, Kjersti; Ree, Anne H

    2011-01-01

    In early-phase studies with targeted therapeutics and radiotherapy, it may be difficult to decide whether an adverse event should be considered a dose-limiting toxicity (DLT) of the investigational systemic agent, as acute normal tissue toxicity is frequently encountered with radiation alone. We have reanalyzed the toxicity data from a recently conducted phase 1 study on vorinostat, a histone deacetylase inhibitor, in combination with pelvic palliative radiotherapy, with emphasis on the dose distribution within the irradiated bowel volume to the development of DLT. Of 14 eligible patients, three individuals experienced Common Terminology Criteria of Adverse Events grade 3 gastrointestinal and related toxicities, representing a toxicity profile vorinostat has in common with radiotherapy to pelvic target volumes. For each study patient, the relative volumes of small bowel receiving radiation doses between 6 Gy and 30 Gy at 6-Gy intervals (V6-V30) were determined from the treatment-planning computed tomography scans. The single patient that experienced a DLT at the second highest dose level of vorinostat, which was determined as the maximum-tolerated dose, had V6-V30 dose-volume estimates that were considerably higher than any other study patient. This patient may have experienced an adverse radiation dose-volume effect rather than a toxic effect of the investigational drug. When reporting early-phase trial results on the tolerability of a systemic targeted therapeutic used as potential radiosensitizing agent, radiation dose-volume effects should be quantified to enable full interpretation of the study toxicity profile.

  20. Effects of histone deacetylase inhibitors on regenerative cell responses in human dental pulp cells.

    Science.gov (United States)

    Luo, Z; Wang, Z; He, X; Liu, N; Liu, B; Sun, L; Wang, J; Ma, F; Duncan, H; He, W; Cooper, P

    2017-04-04

    To investigate the growth, migratory and adhesive effects of trichostatin A (TSA) and valproic acid (VPA), two histone deacetylase inhibitors (HDACis), on human dental pulp stem cells (hDPSCs). To verify that TSA or VPA functions as an HDAC inhibitor, the expressions of histones H3 and H4 were examined using Western blotting analysis. hDPSC growth and metabolic activity was evaluated by MTT viability analysis at different time-points and by cell count experiments. The expression of cell cycle regulatory proteins and apoptosis-associated proteins was examined by Western blot analysis. Migration effects were investigated using wound healing and transwell migration assays. An adhesion assay was also performed in the presence and absence of HDACis. The levels of chemokines and adhesion molecules relevant to repair in hDPSCs were also assessed by qRT-PCR and Western blot analysis. The data were analysed, where appropriate, using Student's t-test or one-way anova followed by the Student-Newman-Keuls test using SPSS software. Trichostatin A and VPA enhanced acetylation of histones H3 and H4 (P  0.05). At the same time, the expression of Cdx2 and cyclin A was upregulated by 2 nmol L -1 TSA and 1 mmol L -1 VPA (P < 0.05). Higher TSA or VPA concentrations induced apoptosis in hDPSCs in the cell count and apoptosis experiments (P < 0.05). Moreover, TSA and VPA significantly depressed the expression of Cdx2 and cyclin A (P < 0.05), whilst it significantly improved the level of p21 (P < 0.05). TSA and VPA promoted migration and adhesion of hDPSCs (P < 0.05). The levels of chemokines and adhesion molecules were significantly upregulated after exposure of hDPSCs to 20 nmol L -1 TSA or 1 mmol L -1 VPA (P < 0.05). Histone deacetylase inhibitors at specific concentrations promoted proliferation, migration and adhesion of hDPSCs, which may contribute to novel regenerative therapies for pulpal disease treatment. © 2017 International Endodontic Journal. Published

  1. Histone deacetylase inhibitors reverse age-related increases in side effects of haloperidol in mice.

    Science.gov (United States)

    Montalvo-Ortiz, Janitza L; Fisher, Daniel W; Rodríguez, Guadalupe; Fang, Deyu; Csernansky, John G; Dong, Hongxin

    2017-08-01

    Older patients can be especially susceptible to antipsychotic-induced side effects, and the pharmacodynamic mechanism underlying this phenomenon remains unclear. We hypothesized that age-related epigenetic alterations lead to decreased expression and functionality of the dopamine D2 receptor (D2R), contributing to this susceptibility. In this study, we treated young (2-3 months old) and aged (22-24 months old) C57BL/6 mice with the D2R antagonist haloperidol (HAL) once a day for 14 days to evaluate HAL-induced motor side effects. In addition, we pretreated separate groups of young and aged mice with histone deacetylase (HDAC) inhibitors valproic acid (VPA) or entinostat (MS-275) and then administered HAL. Our results show that the motor side effects of HAL are exaggerated in aged mice as compared to young mice and that HDAC inhibitors are able to reverse the severity of these deficits. HAL-induced motor deficits in aged mice are associated with an age- and drug-dependent decrease in striatal D2R protein levels and functionality. Further, histone acetylation was reduced while histone tri-methylation was increased at specific lysine residues of H3 and H4 within the Drd2 promoter in the striatum of aged mice. HDAC inhibitors, particularly VPA, restored striatal D2R protein levels and functionality and reversed age- and drug-related histone modifications at the Drd2 promoter. These results suggest that epigenetic changes at the striatal Drd2 promoter drive age-related increases in antipsychotic side effect susceptibility, and HDAC inhibitors may be an effective adjunct treatment strategy to reduce side effects in aged populations.

  2. Role of hTERT in apoptosis of cervical cancer induced by histone deacetylase inhibitor

    International Nuclear Information System (INIS)

    Wu, Peng; Meng, Li; Wang, Hui; Zhou, Jianfeng; Xu, Gang; Wang, Shixuan; Xi, Ling; Chen, Gang; Wang, Beibei; Zhu, Tao; Lu, Yunping; Ma, Ding

    2005-01-01

    Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase holoenzyme as well as the rate-limiting component of the telomerase enzyme complex. However, the role of the hTERT in apoptosis induced by histone deacetylase inhibitor has only been marginally addressed. For the first time, our study demonstrated that trichostatin A (TSA) briefly activated the proliferation of cervical cancer cell lines, HeLa and SiHa, within 12 h, but then inhibited cell growth after that time point. In response to TSA, hTERT expression, telomerase activity, and telomere length also underwent similar changes during the same time frame. Furthermore, the data in our study showed that cells transfected with dominant negative hTERT were more likely to undergo apoptosis induced by TSA than cells transfected with wild-type hTERT. The cyclin/cdk inhibitor p21 waf1 was down-regulated by hTERT without changing the expression of p53. Results from this study suggest that the hTERT might be a primary target of TSA and the anti-apoptosis effect of hTERT might be carried out through a p21 waf1 -dependent and p53-independent pathway

  3. Antitumor Action of a Novel Histone Deacetylase Inhibitor, YF479, in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2014-08-01

    Full Text Available Accumulating evidence demonstrates important roles for histone deacetylase in tumorigenesis (HDACs, highlighting them as attractive targets for antitumor drug development. Histone deactylase inhibitors (HDACIs, which have shown favorable anti-tumor activity with low toxicity in clinical investigations, are a promising class of anticancer therapeutics. Here, we screened our compound library to explore small molecules that possess anti-HDAC activity and identified a novel HDACI, YF479. Suberoylanilide hydroxamic acid (SAHA, which was the first approved HDAC inhibitor for clinical treatment by the FDA, was as positive control in our experiments. We further demonstrated YF479 abated cell viability, suppressed colony formation and tumor cell motility in vitro. To investigate YF479 with superior pharmacodynamic properties, we developed spontaneous and experimental breast cancer animal models. Our results showed YF479 significantly inhibited breast tumor growth and metastasis in vivo. Further study indicated YF479 suppressed both early and end stages of metastatic progression. Subsequent adjuvant chemotherapy animal experiment revealed the elimination of local-regional recurrence (LRR and distant metastasis by YF479. More important, YF479 remarkably prolonged the survival of tumor-bearing mice. Intriguingly, YF479 displayed more potent anti-tumor activity in vitro and in vivo compared with SAHA. Together, our results suggest that YF479, a novel HDACI, inhibits breast tumor growth, metastasis and recurrence. In light of these results, YF479 may be an effective therapeutic option in clinical trials for patients burdened by breast cancer.

  4. Gene expression profiling in response to the histone deacetylase inhibitor BL1521 in neuroblastoma

    International Nuclear Information System (INIS)

    Ruijter, Annemieke J.M. de; Meinsma, Rutger J.; Bosma, Peter; Kemp, Stephan; Caron, Huib N.; Kuilenburg, Andre B.P. van

    2005-01-01

    Neuroblastoma is a childhood tumor with a poor survival in advanced stage disease despite intensive chemotherapeutic regimes. The new histone deacetylase (HDAC) inhibitor BL1521 has shown promising results in neuroblastoma. Inhibition of HDAC resulted in a decrease in proliferation and metabolic activity, induction of apoptosis and differentiation of neuroblastoma cells. In order to elucidate the mechanism mediating the effects of BL1521 on neuroblastoma cells, we investigated the gene expression profile of an MYCN single copy (SKNAS) and an MYCN amplified (IMR32) neuroblastoma cell line after treatment with BL1521 using the Affymetrix oligonucleotide array U133A. An altered expression of 255 genes was observed in both neuroblastoma cell lines. The majority of these genes were involved in gene expression, cellular metabolism, and cell signaling. We observed changes in the expression of vital genes belonging to the cell cycle (cyclin D1 and CDK4) and apoptosis (BNIP3, BID, and BCL2) pathway in response to BL1521. The expression of 37 genes was altered by both BL1521 and Trichostatin A, which could indicate a common gene set regulated by different HDAC inhibitors. BL1521 treatment changed the expression of a number of MYCN-associated genes. Several genes in the Wnt and the Delta/Notch pathways were changed in response to BL1521 treatment, suggesting that BL1521 is able to induce the differentiation of neuroblastoma cells into a more mature phenotype

  5. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

    Science.gov (United States)

    Lee, Eunjo; Song, Min-Ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-09-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

  6. Structures of the Peptidoglycan N-Acetylglucosamine Deacetylase Bc1974 and Its Complexes with Zinc Metalloenzyme Inhibitors.

    Science.gov (United States)

    Giastas, Petros; Andreou, Athena; Papakyriakou, Athanasios; Koutsioulis, Dimitris; Balomenou, Stavroula; Tzartos, Socrates J; Bouriotis, Vassilis; Eliopoulos, Elias E

    2018-02-06

    The cell wall peptidoglycan is recognized as a primary target of the innate immune system, and usually its disintegration results in bacterial lysis. Bacillus cereus, a close relative of the highly virulent Bacillus anthracis, contains 10 polysaccharide deacetylases. Among these, the peptidoglycan N-acetylglucosamine deacetylase Bc1974 is the highest homologue to the Bacillus anthracis Ba1977 that is required for full virulence and is involved in resistance to the host's lysozyme. These metalloenzymes belong to the carbohydrate esterase family 4 (CE4) and are attractive targets for the development of new anti-infective agents. Herein we report the first X-ray crystal structures of the NodB domain of Bc1974, the conserved catalytic core of CE4s, in the unliganded form and in complex with four known metalloenzyme inhibitors and two amino acid hydroxamates that target the active site metal. These structures revealed the presence of two conformational states of a catalytic loop known as motif-4 (MT4), which were not observed previously for peptidoglycan deacetylases, but were recently shown in the structure of a Vibrio clolerae chitin deacetylase. By employing molecular docking of a substrate model, we describe a catalytic mechanism that probably involves initial binding of the substrate in a receptive, more open state of MT4 and optimal catalytic activity in the closed state of MT4, consistent with the previous observations. The ligand-bound structures presented here, in addition to the five Bc1974 inhibitors identified, provide a valuable basis for the design of antibacterial agents that target the peptidoglycan deacetylase Ba1977.

  7. The gene signature in CCAAT-enhancer-binding protein alpha dysfunctional acute myeloid leukemia predicts responsiveness to histone deacetylase inhibitors

    Czech Academy of Sciences Publication Activity Database

    Liss, A.; Ooi, C.; Zjablovskaja, Polina; Benoukraf, T.; Radomska, H.S.; Ju, C.; Wu, M.C.; Balaštík, Martin; Delwel, R.; Brdička, Tomáš; Tan, P.; Tenen, D.G.; Alberich-Jorda, Meritxell

    2014-01-01

    Roč. 99, č. 4 (2014), s. 697-705 ISSN 0390-6078 R&D Projects: GA MŠk LK21307; GA MŠk(CZ) LK11213 Grant - others:NIH(US) CA66996; NIH(US) CA118316 Institutional support: RVO:68378050 Keywords : C/EBPa * histone deacetylase inhibitor * acute myeloid leukemia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.814, year: 2014

  8. EFFECTS OF HISTONE DEACETYLASE INHIBITOR, SAHA, ON EFFECTOR AND FOXP3+ REGULATORY T CELLS IN RHESUS MACAQUES

    OpenAIRE

    Johnson, Jennifer; Pahuja, Anil; Graham, Melanie; Hering, Bernhard; Hancock, Wayne W.; Pratima, Bansal-Pakala

    2008-01-01

    SAHA, a histone deacetylase inhibitor (HDACi), is clinically approved for treatment of cutaneous T-cell lymphoma. Although the exact underlying mechanisms are unknown, HDACi arrest the cell cycle in rapidly proliferating tumor cells and promote their apoptosis. HDACi were also recently shown to enhance the production and suppressive functions of Foxp3+ regulatory T (Treg) cells in rodents, leading us to begin to investigate the actions of HDACi on rhesus monkey T cells for the sake of potenti...

  9. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine.

    Science.gov (United States)

    Mohamed, Elham A; Zhao, Yunqi; Meshali, Mahasen M; Remsberg, Connie M; Borg, Thanaa M; Foda, Abdel Monem M; Takemoto, Jody K; Sayre, Casey L; Martinez, Stephanie E; Davies, Neal M; Forrest, M Laird

    2012-10-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anticancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat's pharmacokinetics in rats was investigated after intravenous (i.v.) (10 mg/kg) and oral (p.o.) (50 mg/kg) micellar administrations and compared with a conventional polyethylene glycol 400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 to 8.15 ± 0.60 and 10.24 ± 0.92 mg/mL at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19%, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the p.o. and i.v. pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. Copyright © 2012 Wiley Periodicals, Inc.

  10. Vorinostat in refractory soft tissue sarcomas - Results of a multi-centre phase II trial of the German Soft Tissue Sarcoma and Bone Tumour Working Group (AIO).

    Science.gov (United States)

    Schmitt, Thomas; Mayer-Steinacker, Regine; Mayer, Frank; Grünwald, Viktor; Schütte, Jochen; Hartmann, Jörg T; Kasper, Bernd; Hüsing, Johannes; Hajda, Jacek; Ottawa, Gregor; Mechtersheimer, Gunhild; Mikus, Gerd; Burhenne, Jürgen; Lehmann, Lorenz; Heilig, Christoph E; Ho, Anthony D; Egerer, Gerlinde

    2016-09-01

    New treatment options for patients with metastatic Soft Tissue Sarcoma are urgently needed. Preclinical studies suggested activity of vorinostat, a histone deacetylase inhibitor. A multi-centre, open-label, non-randomised phase II trial to investigate the efficacy and safety of vorinostat in patients with locally advanced or metastatic Soft Tissue Sarcoma failing 1st-line anthracycline-based chemotherapy was initiated. Patients were treated with vorinostat 400 mg po qd for 28 d followed by a treatment-free period of 7 d, representing a treatment cycle of 5 weeks. Restaging was performed every three cycles or at clinical progression. Between 06/10 and 09/13, 40 Soft Tissue Sarcoma patients were treated with vorinostat at seven participating centres. Patients had received 1 (n=8, 20%), 2 (n=10, 25%) or ≥3 (n=22, 55%) previous lines of chemotherapy. Best response after three cycles of treatment was stable disease (n=9, 23%). Median progression-free survival and overall survival were 3.2 and 12.3 months, respectively. Six patients showed long-lasting disease stabilisation for up to ten cycles. Statistical analyses failed to identify baseline predictive markers in this subgroup. Major toxicities (grade ≥III) included haematological toxicity (n=6, 15%) gastrointestinal disorders (n=5, 13%), fatigue (n=4, 10%), musculoskeletal pain (n=4, 10%), and pneumonia (n=2, 5%). In a heavily pre-treated patient population, objective response to vorinostat was low. However, a small subgroup of patients had long-lasting disease stabilisation. Further studies aiming to identify predictive markers for treatment response as well as exploration of combination regimens are warranted. NCT00918489 (ClinicalTrials.gov) EudraCT-number: 2008-008513-19. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Histone deacetylase inhibitors potentiate photochemotherapy in cutaneous T-cell lymphoma MyLa cells.

    Science.gov (United States)

    Sung, Jane J; Ververis, Katherine; Karagiannis, Tom C

    2014-02-05

    Cutaneous T cell lymphomas (CTCL) represent rare extranodal non-Hodgkin's lymphomas, which are characterised by pleomorphic skin lesions and distinct T-cell markers. CTCL is a relatively benign disease in its early stages, but survival rates decrease significantly with progression. Histone deacetylase inhibitors (HDACi) have recently emerged as a new class of targeted anticancer therapies for CTCL, which have been shown to induce growth inhibition, terminal differentiation and apoptosis in various cancers in vitro and in vivo. In addition to the intrinsic anticancer properties of HDACi, recent studies have demonstrated its ability to synergise with phototherapy. In particular, we examine the therapeutic potential of HDACi in combination with ultraviolet A (UV-A) phototherapy, employing a halogenated DNA minor groove binding ligand called UVASens as a photosensitiser. In vitro studies have demonstrated that UVASens is approximately 1000-fold more potent than current psoralens. The extreme photopotency of UVASens allows the use of lower radiation doses minimising the carcinogenic risks associated with the long-term use of phototherapy. Considering, previous findings using the photosensitiser UVASens and potential synergy of HDACi with phototherapy, it was hypothesised that HDACi will augment photochemotherapy-induced cytotoxicity in CTCL MyLa cells. The findings indicated that combinations of UVASens/UV-A photochemotherapy and HDACi significantly decreased cell viability and increased apoptosis and DNA double-strand breaks in MyLa cells. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  12. Complex molecular mechanisms cooperate to mediate histone deacetylase inhibitors anti-tumour activity in neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Nardou Katya

    2008-06-01

    Full Text Available Abstract Background Histone deacetylase inhibitors (HDACi are a new class of promising anti-tumour agent inhibiting cell proliferation and survival in tumour cells with very low toxicity toward normal cells. Neuroblastoma (NB is the second most common solid tumour in children still associated with poor outcome in higher stages and, thus NB strongly requires novel treatment modalities. Results We show here that the HDACi Sodium Butyrate (NaB, suberoylanilide hydroxamic acid (SAHA and Trichostatin A (TSA strongly reduce NB cells viability. The anti-tumour activity of these HDACi involved the induction of cell cycle arrest in the G2/M phase, followed by the activation of the intrinsic apoptotic pathway, via the activation of the caspases cascade. Moreover, HDACi mediated the activation of the pro-apoptotic proteins Bid and BimEL and the inactivation of the anti-apoptotic proteins XIAP, Bcl-xL, RIP and survivin, that further enhanced the apoptotic signal. Interestingly, the activity of these apoptosis regulators was modulated by several different mechanisms, either by caspases dependent proteolytic cleavage or by degradation via the proteasome pathway. In addition, HDACi strongly impaired the hypoxia-induced secretion of VEGF by NB cells. Conclusion HDACi are therefore interesting new anti-tumour agents for targeting highly malignant tumours such as NB, as these agents display a strong toxicity toward aggressive NB cells and they may possibly reduce angiogenesis by decreasing VEGF production by NB cells.

  13. Inhibition and reversal of nickel-induced transformation by the histone deacetylase inhibitor trichostatin A

    International Nuclear Information System (INIS)

    Zhang Qunwei; Salnikow, Konstantin; Kluz, Thomas; Chen, L.C.; Su, W.C.; Costa, Max

    2003-01-01

    The carcinogenic process initiated by nongenotoxic carcinogens involves modulation of gene expression. Nickel compounds have low mutagenic activity, but are highly carcinogenic. In vitro both mouse and human cells can be efficiently transformed by soluble and insoluble nickel compounds to anchorage-independent growth. Because previous studies have shown that carcinogenic nickel compounds silence genes by inhibiting histone acetylation and enhancing DNA methylation, we investigated the effect of enhancing histone acetylation on cell transformation. The exposure of nickel-transformed cells to the histone deacetylase inhibitor trichostatin A (TSA) resulted in the appearance of significant number of revertants measured by their inability to grow in soft agar. Using the Affymetrix GeneChip we found that the level of expression of a significant number of genes was changed (suppressed or upregulated) in nickel-transformed clones but returned to a normal level in revertants obtained following TSA treatment. Moreover, we found that treatment of cells with TSA inhibited the ability of nickel to transform mouse PW cells to anchorage-independent growth. Treatment with TSA also inhibited the ability of nickel to transform human HOS cells, although to a lesser extent. In contrast, treatment with TSA was not able to revert established cancer cell lines as readily as the nickel-transformed cells. These data indicated that modulation of gene expression is important for nickel-induced transformation

  14. Sensitization to UV-induced apoptosis by the histone deacetylase inhibitor trichostatin A (TSA)

    International Nuclear Information System (INIS)

    Kim, Myoung Sook; Baek, Jin Hyen; Chakravarty, Devulapalli; Sidransky, David; Carrier, France

    2005-01-01

    UV-induced apoptosis is a protective mechanism that is primarily caused by DNA damage. Cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts are the main DNA adducts triggered by UV radiation. Because the formation of DNA lesions in the chromatin is modulated by the structure of the nucleosomes, we postulated that modification of chromatin compaction could affect the formation of the lesions and consequently apoptosis. To verify this possibility we treated human colon carcinoma RKO cells with the histone deacetylase inhibitor trichostatin A (TSA) prior to exposure to UV radiation. Our data show that pre-treatment with TSA increased UV killing efficiency by more than threefold. This effect correlated with increased formation of CPDs and consequently apoptosis. On the other hand, TSA treatment after UV exposure rather than before had no more effect than UV radiation alone. This suggests that a primed (opened) chromatin status is required to sensitize the cells. Moreover, TSA sensitization to UV-induced apoptosis is p53 dependent. p53 and acetylation of the core histones may thus contribute to UV-induced apoptosis by modulating the formation of DNA lesions on chromatin

  15. Identification of novel targets for PGC-1α and histone deacetylase inhibitors in neuroblastoma cells

    International Nuclear Information System (INIS)

    Cowell, Rita M.; Talati, Pratik; Blake, Kathryn R.; Meador-Woodruff, James H.; Russell, James W.

    2009-01-01

    Recent evidence suggests that the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) is involved in the pathology of Huntington's Disease (HD). While animals lacking PGC-1α express lower levels of genes involved in antioxidant defense and oxidative phosphorylation in the brain, little is known about other targets for PGC-1α in neuronal cells and whether there are ways to pharmacologically target PGC-1α in neurons. Here, PGC-1α overexpression in SH-SY5Y neuroblastoma cells upregulated expression of genes involved in mitochondrial function, glucose transport, fatty acid metabolism, and synaptic function. Overexpression also decreased vulnerability to hydrogen peroxide-induced cell death and caspase 3 activation. Treatment of cells with the histone deacetylase inhibitors (HDACi's) trichostatin A and valproic acid upregulated PGC-1α and glucose transporter 4 (GLUT4). These results suggest that PGC-1α regulates multiple pathways in neurons and that HDACi's may be good candidates to target PGC-1α and GLUT4 in HD and other neurological disorders.

  16. Experimental treatment of pancreatic cancer with two novel histone deacetylase inhibitors

    Science.gov (United States)

    Haefner, Martin; Bluethner, Thilo; Niederhagen, Manuel; Moebius, Christian; Wittekind, Christian; Mossner, Joachim; Caca, Karel; Wiedmann, Marcus

    2008-01-01

    AIM: To investigate in vitro and in vivo treatment with histone deacetylase inhibitors NVP-LAQ824 and NVP-LBH589 in pancreatic cancer. METHODS: Cell-growth inhibition by NVP-LAQ824 and NVP-LBH589 was studied in vitro in 8 human pancreatic cancer cell lines using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, the anti-tumoral effect of NVP-LBH589 was studied in a chimeric mouse model. Anti-tumoral activity of the drugs was assessed by immunoblotting for p21WAF-1, acH4, cell cycle analysis, TUNEL assay, and immunohistochemistry for MIB-1. RESULTS: In vitro treatment with both compounds significantly suppressed the growth of all cancer cell lines and was associated with hyperacetylation of nucleosomal histone H4, increased expression of p21WAF-1, cell cycle arrest at G2/M-checkpoint, and increased apoptosis. In vivo, NVP-LBH589 alone significantly reduced tumor mass and potentiated the efficacy of gemcitabine. Further analysis of the tumor specimens revealed slightly increased apoptosis and no significant reduction of cell proliferation. CONCLUSION: Our findings suggest that NVP-LBH589 and NVP-LAQ824 are active against human pancreatic cancer, although the precise mechanism of in vivo drug action is not yet completely understood. Therefore, further preclinical and clinical studies for the treatment of pancreatic cancer are recommended. PMID:18595135

  17. Contrasting Effects of Histone Deacetylase Inhibitors on Reward and Aversive Olfactory Memories in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Gabrielle A Lockett

    2014-06-01

    Full Text Available Much of what we have learnt from rodent models about the essential role of epigenetic processes in brain plasticity has made use of aversive learning, yet the role of histone acetylation in aversive memory in the honey bee, a popular invertebrate model for both memory and epigenetics, was previously unknown. We examined the effects of histone deacetylase (HDAC inhibition on both aversive and reward olfactory associative learning in a discrimination proboscis extension reflex (PER assay. We report that treatment with the HDAC inhibitors APHA compound 8 (C8, phenylbutyrate (PB or sodium butyrate (NaB impaired discrimination memory due to impairment of aversive memory in a dose-dependent manner, while simultaneously having no effect on reward memory. Treatment with C8 1 h before training, 1 h after training or 1 h before testing, impaired aversive but not reward memory at test. C8 treatment 1 h before training also improved aversive but not reward learning during training. PB treatment only impaired aversive memory at test when administered 1 h after training, suggesting an effect on memory consolidation specifically. Specific impairment of aversive memory (but not reward memory by HDAC inhibiting compounds was robust, reproducible, occurred following treatment with three drugs targeting the same mechanism, and is likely to be genuinely due to alterations to memory as sucrose sensitivity and locomotion were unaffected by HDAC inhibitor treatment. This pharmacological dissection of memory highlights the involvement of histone acetylation in aversive memory in the honey bee, and expands our knowledge of epigenetic control of neural plasticity in invertebrates.

  18. Histone Deacetylase Inhibitor Alleviates the Neurodegenerative Phenotypes and Histone Dysregulation in Presenilins-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Ting Cao

    2018-05-01

    Full Text Available Histone acetylation has been shown to play a crucial role in memory formation, and histone deacetylase (HDAC inhibitor sodium butyrate (NaB has been demonstrated to improve memory performance and rescue the neurodegeneration of several Alzheimer’s Disease (AD mouse models. The forebrain presenilin-1 and presenilin-2 conditional double knockout (cDKO mice showed memory impairment, forebrain degeneration, tau hyperphosphorylation and inflammation that closely mimics AD-like phenotypes. In this article, we have investigated the effects of systemic administration of NaB on neurodegenerative phenotypes in cDKO mice. We found that chronic NaB treatment significantly restored contextual memory but did not alter cued memory in cDKO mice while such an effect was not permanent after treatment withdrawal. We further revealed that NaB treatment did not rescue reduced synaptic numbers and cortical shrinkage in cDKO mice, but significantly increased the neurogenesis in subgranular zone of dentate gyrus (DG. We also observed that tau hyperphosphorylation and inflammation related protein glial fibrillary acidic protein (GFAP level were decreased in cDKO mice by NaB. Furthermore, GO and pathway analysis for the RNA-Seq data demonstrated that NaB treatment induced enrichment of transcripts associated with inflammation/immune processes and cytokine-cytokine receptor interactions. RT-PCR confirmed that NaB treatment inhibited the expression of inflammation related genes such as S100a9 and Ccl4 found upregulated in the brain of cDKO mice. Surprisingly, the level of brain histone acetylation in cDKO mice was dramatically increased and was decreased by the administration of NaB, which may reflect dysregulation of histone acetylation underlying memory impairment in cDKO mice. These results shed some lights on the possible molecular mechanisms of HDAC inhibitor in alleviating the neurodegenerative phenotypes of cDKO mice and provide a promising target for treating AD.

  19. The histone deacetylase inhibitor Trichostatin A modulates CD4+ T cell responses

    Directory of Open Access Journals (Sweden)

    Moreira José

    2003-11-01

    Full Text Available Abstract Background Histone deacetylase inhibitors (HDACIs induce hyperacetylation of core histones modulating chromatin structure and affecting gene expression. These compounds are also able to induce growth arrest, cell differentiation, and apoptotic cell death of tumor cells in vitro as well as in vivo. Even though several genes modulated by HDAC inhibition have been identified, those genes clearly responsible for the biological effects of these drugs have remained elusive. We investigated the pharmacological effect of the HDACI and potential anti-cancer agent Trichostatin A (TSA on primary T cells. Methods To ascertain the effect of TSA on resting and activated T cells we used a model system where an enriched cell population consisting of primary T-cells was stimulated in vitro with immobilized anti-CD3/anti-CD28 antibodies whilst exposed to pharmacological concentrations of Trichostatin A. Results We found that this drug causes a rapid decline in cytokine expression, accumulation of cells in the G1 phase of the cell cycle, and induces apoptotic cell death. The mitochondrial respiratory chain (MRC plays a critical role in the apoptotic response to TSA, as dissipation of mitochondrial membrane potential and reactive oxygen species (ROS scavengers block TSA-induced T-cell death. Treatment of T cells with TSA results in the altered expression of a subset of genes involved in T cell responses, as assessed by microarray gene expression profiling. We also observed up- as well as down-regulation of various costimulatory/adhesion molecules, such as CD28 and CD154, important for T-cell function. Conclusions Taken together, our findings indicate that HDAC inhibitors have an immunomodulatory potential that may contribute to the potency and specificity of these antineoplastic compounds and might be useful in the treatment of autoimmune disorders.

  20. Radiosensitizing Effect of a Phenylbutyrate-Derived Histone Deacetylase Inhibitor in Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Lu, Yen-Shen; Chou, Chia-Hung; Tzen, Kai-Yuan; Gao, Ming; Cheng, Ann-Lii; Kulp, Samuel K.; Cheng, Jason Chia-Hsien

    2012-01-01

    Purpose: Radiotherapy is integrated into the multimodal treatment of localized hepatocellular carcinoma (HCC) refractory to conventional treatment. Tumor control remains unsatisfactory and the sublethal effect associates with secondary spread. The use of an effective molecularly targeted agent in combination with radiotherapy is a potential therapeutic approach. Our aim was to assess the effect of combining a phenylbutyrate-derived histone deacetylase (HDAC) inhibitor, AR-42, with radiotherapy in in vitro and in vivo models of human HCC. Methods and Materials: Human HCC cell lines (Huh-7 and PLC-5) were used to evaluate the in vitro synergism of combining AR-42 with irradiation. Flow cytometry analyzed the cell cycle changes, whereas Western blot investigated the protein expressions after the combined treatment. Severe combined immunodeficient (SCID) mice bearing ectopic and orthotopic HCC xenografts were treated with AR-42 and/or radiotherapy for the in vivo response. Results: AR-42 significantly enhanced radiation-induced cell death by the inhibition of the DNA end-binding activity of Ku70, a highly versatile regulatory protein for DNA repair, telomere maintenance, and apoptosis. In ectopic xenografts of Huh-7 and PLC-5, pretreatment with AR-42 significantly enhanced the tumor-suppressive effect of radiotherapy by 48% and 66%, respectively. A similar combinatorial effect of AR-42 (10 and 25 mg/kg) and radiotherapy was observed in Huh-7 orthotopic model of tumor growth by 52% and 82%, respectively. This tumor suppression was associated with inhibition of intratumoral Ku70 activity as well as reductions in markers of HDAC activity and proliferation, and increased apoptosis. Conclusion: AR-42 is a potent, orally bioavailable inhibitor of HDAC with therapeutic value as a radiosensitizer of HCC.

  1. Activation of HIV Transcription with Short-Course Vorinostat in HIV-Infected Patients on Suppressive Antiretroviral Therapy

    Science.gov (United States)

    Solomon, Ajantha; Ghneim, Khader; Ahlers, Jeffrey; Cameron, Mark J.; Smith, Miranda Z.; Spelman, Tim; McMahon, James; Velayudham, Pushparaj; Brown, Gregor; Roney, Janine; Watson, Jo; Prince, Miles H.; Hoy, Jennifer F.; Chomont, Nicolas; Fromentin, Rémi; Procopio, Francesco A.; Zeidan, Joumana; Palmer, Sarah; Odevall, Lina; Johnstone, Ricky W.; Martin, Ben P.; Sinclair, Elizabeth; Deeks, Steven G.; Hazuda, Daria J.; Cameron, Paul U.; Sékaly, Rafick-Pierre; Lewin, Sharon R.

    2014-01-01

    Human immunodeficiency virus (HIV) persistence in latently infected resting memory CD4+ T-cells is the major barrier to HIV cure. Cellular histone deacetylases (HDACs) are important in maintaining HIV latency and histone deacetylase inhibitors (HDACi) may reverse latency by activating HIV transcription from latently infected CD4+ T-cells. We performed a single arm, open label, proof-of-concept study in which vorinostat, a pan-HDACi, was administered 400 mg orally once daily for 14 days to 20 HIV-infected individuals on suppressive antiretroviral therapy (ART). The primary endpoint was change in cell associated unspliced (CA-US) HIV RNA in total CD4+ T-cells from blood at day 14. The study is registered at ClinicalTrials.gov (NCT01365065). Vorinostat was safe and well tolerated and there were no dose modifications or study drug discontinuations. CA-US HIV RNA in blood increased significantly in 18/20 patients (90%) with a median fold change from baseline to peak value of 7.4 (IQR 3.4, 9.1). CA-US RNA was significantly elevated 8 hours post drug and remained elevated 70 days after last dose. Significant early changes in expression of genes associated with chromatin remodeling and activation of HIV transcription correlated with the magnitude of increased CA-US HIV RNA. There were no statistically significant changes in plasma HIV RNA, concentration of HIV DNA, integrated DNA, inducible virus in CD4+ T-cells or markers of T-cell activation. Vorinostat induced a significant and sustained increase in HIV transcription from latency in the majority of HIV-infected patients. However, additional interventions will be needed to efficiently induce virus production and ultimately eliminate latently infected cells. Trial Registration ClinicalTrials.gov NCT01365065 PMID:25393648

  2. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Julian H Elliott

    2014-10-01

    Full Text Available Human immunodeficiency virus (HIV persistence in latently infected resting memory CD4+ T-cells is the major barrier to HIV cure. Cellular histone deacetylases (HDACs are important in maintaining HIV latency and histone deacetylase inhibitors (HDACi may reverse latency by activating HIV transcription from latently infected CD4+ T-cells. We performed a single arm, open label, proof-of-concept study in which vorinostat, a pan-HDACi, was administered 400 mg orally once daily for 14 days to 20 HIV-infected individuals on suppressive antiretroviral therapy (ART. The primary endpoint was change in cell associated unspliced (CA-US HIV RNA in total CD4+ T-cells from blood at day 14. The study is registered at ClinicalTrials.gov (NCT01365065. Vorinostat was safe and well tolerated and there were no dose modifications or study drug discontinuations. CA-US HIV RNA in blood increased significantly in 18/20 patients (90% with a median fold change from baseline to peak value of 7.4 (IQR 3.4, 9.1. CA-US RNA was significantly elevated 8 hours post drug and remained elevated 70 days after last dose. Significant early changes in expression of genes associated with chromatin remodeling and activation of HIV transcription correlated with the magnitude of increased CA-US HIV RNA. There were no statistically significant changes in plasma HIV RNA, concentration of HIV DNA, integrated DNA, inducible virus in CD4+ T-cells or markers of T-cell activation. Vorinostat induced a significant and sustained increase in HIV transcription from latency in the majority of HIV-infected patients. However, additional interventions will be needed to efficiently induce virus production and ultimately eliminate latently infected cells.ClinicalTrials.gov NCT01365065.

  3. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2007-10-01

    Full Text Available Abstract Background Osteoblast differentiation requires the coordinated stepwise expression of multiple genes. Histone deacetylase inhibitors (HDIs accelerate the osteoblast differentiation process by blocking the activity of histone deacetylases (HDACs, which alter gene expression by modifying chromatin structure. We previously demonstrated that HDIs and HDAC3 shRNAs accelerate matrix mineralization and the expression of osteoblast maturation genes (e.g. alkaline phosphatase, osteocalcin. Identifying other genes that are differentially regulated by HDIs might identify new pathways that contribute to osteoblast differentiation. Results To identify other osteoblast genes that are altered early by HDIs, we incubated MC3T3-E1 preosteoblasts with HDIs (trichostatin A, MS-275, or valproic acid for 18 hours in osteogenic conditions. The promotion of osteoblast differentiation by HDIs in this experiment was confirmed by osteogenic assays. Gene expression profiles relative to vehicle-treated cells were assessed by microarray analysis with Affymetrix GeneChip 430 2.0 arrays. The regulation of several genes by HDIs in MC3T3-E1 cells and primary osteoblasts was verified by quantitative real-time PCR. Nine genes were differentially regulated by at least two-fold after exposure to each of the three HDIs and six were verified by PCR in osteoblasts. Four of the verified genes (solute carrier family 9 isoform 3 regulator 1 (Slc9a3r1, sorbitol dehydrogenase 1, a kinase anchor protein, and glutathione S-transferase alpha 4 were induced. Two genes (proteasome subunit, beta type 10 and adaptor-related protein complex AP-4 sigma 1 were suppressed. We also identified eight growth factors and growth factor receptor genes that are significantly altered by each of the HDIs, including Frizzled related proteins 1 and 4, which modulate the Wnt signaling pathway. Conclusion This study identifies osteoblast genes that are regulated early by HDIs and indicates pathways that

  4. Vorinostat-An overview

    Directory of Open Access Journals (Sweden)

    Aditya Kumar Bubna

    2015-01-01

    Full Text Available Vorinostat is a new drug used in the management of cutaneous T cell lymphoma when the disease persists, gets worse or comes back during or after treatment with other medicines. It is an efficacious and well tolerated drug and has been considered a novel drug in the treatment of this condition. Currently apart from cutaneous T cell lymphoma the role of Vorinostat for other types of cancers is being investigated both as mono-therapy and combination therapy.

  5. Vorinostat?An Overview

    OpenAIRE

    Bubna, Aditya Kumar

    2015-01-01

    Vorinostat is a new drug used in the management of cutaneous T cell lymphoma when the disease persists, gets worse or comes back during or after treatment with other medicines. It is an efficacious and well tolerated drug and has been considered a novel drug in the treatment of this condition. Currently apart from cutaneous T cell lymphoma the role of Vorinostat for other types of cancers is being investigated both as mono-therapy and combination therapy.

  6. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Henry F., E-mail: Hal.Duncan@dental.tcd.ie [Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2 (Ireland); Smith, Anthony J. [Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham (United Kingdom); Fleming, Garry J.P. [Material Science Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Trinity College Dublin, Dublin (Ireland); Cooper, Paul R. [Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham (United Kingdom)

    2013-06-10

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2.

  7. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes.

    Directory of Open Access Journals (Sweden)

    Richard Brad Jones

    2014-08-01

    Full Text Available Resting memory CD4+ T-cells harboring latent HIV proviruses represent a critical barrier to viral eradication. Histone deacetylase inhibitors (HDACis, such as suberanilohydroxamic acid (SAHA, romidepsin, and panobinostat have been shown to induce HIV expression in these resting cells. Recently, it has been demonstrated that the low levels of viral gene expression induced by a candidate HDACi may be insufficient to cause the death of infected cells by viral cytopathic effects, necessitating their elimination by immune effectors, such as cytotoxic T-lymphocytes (CTL. Here, we study the impact of three HDACis in clinical development on T-cell effector functions. We report two modes of HDACi-induced functional impairment: i the rapid suppression of cytokine production from viable T-cells induced by all three HDACis ii the selective death of activated T-cells occurring at later time-points following transient exposures to romidepsin or, to a lesser extent, panobinostat. As a net result of these factors, HDACis impaired CTL-mediated IFN-γ production, as well as the elimination of HIV-infected or peptide-pulsed target cells, both in liquid culture and in collagen matrices. Romidepsin exerted greater inhibition of antiviral function than SAHA or panobinostat over the dose ranges tested. These data suggest that treatment with HDACis to mobilize the latent reservoir could have unintended negative impacts on the effector functions of CTL. This could influence the effectiveness of HDACi-based eradication strategies, by impairing elimination of infected cells, and is a critical consideration for trials where therapeutic interruptions are being contemplated, given the importance of CTL in containing rebound viremia.

  8. Histone deacetylase inhibitor trichostatin A enhances myogenesis by coordinating muscle regulatory factors and myogenic repressors

    International Nuclear Information System (INIS)

    Hagiwara, Hiroki; Saito, Fumiaki; Masaki, Toshihiro; Ikeda, Miki; Nakamura-Ohkuma, Ayami; Shimizu, Teruo; Matsumura, Kiichiro

    2011-01-01

    Highlights: ► We investigated the effect of TSA, one of most potent HDACIs, on myogenesis using the C2C12 skeletal muscle cell line. ► TSA enhances the expression of myosin heavy chain without affecting DAPC expression. ► TSA enhances the expression of the early MRFs, Myf5 and MEF2, and suppresses the late MRF, myogenin, after 24 h treatment. ► TSA enhances the expression of the myogenic repressors, Ids, which inhibit myogenic differentiation. ► TSA promotes myogenesis by coordinating the expression of MRFs and myogenic repressors. -- Abstract: Histone deacetylase inhibitors (HDACIs) are known to promote skeletal muscle formation. However, their mechanisms that include effects on the expression of major muscle components such as the dystrophin-associated proteins complex (DAPC) or myogenic regulatory factors (MRFs) remain unknown. In this study, we investigated the effects of HDACIs on skeletal muscle formation using the C2C12 cell culture system. C2C12 myoblasts were exposed to trichostatin A (TSA), one of the most potent HDACIs, and differentiation was subsequently induced. We found that TSA enhances the expression of myosin heavy chain without affecting DAPC expression. In addition, TSA increases the expression of the early MRFs, Myf5 and MEF2, whereas it suppresses the expression of the late MRF, myogenin. Interestingly, TSA also enhances the expression of Id1, Id2, and Id3 (Ids). Ids are myogenic repressors that inhibit myogenic differentiation. These findings suggest that TSA promotes gene expression in proliferation and suppresses it in the differentiation stage of muscle formation. Taken together, our data demonstrate that TSA enhances myogenesis by coordinating the expression of MRFs and myogenic repressors.

  9. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    International Nuclear Information System (INIS)

    Duncan, Henry F.; Smith, Anthony J.; Fleming, Garry J.P.; Cooper, Paul R.

    2013-01-01

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2

  10. Histone deacetylase inhibitors VPA and TSA induce apoptosis and autophagy in pancreatic cancer cells.

    Science.gov (United States)

    Gilardini Montani, Maria Saveria; Granato, Marisa; Santoni, Claudio; Del Porto, Paola; Merendino, Nicolò; D'Orazi, Gabriella; Faggioni, Alberto; Cirone, Mara

    2017-04-01

    Histone deacetylase inhibitors (HDACi) are anti-neoplastic agents that are known to affect the growth of different cancer types, but their underlying mechanisms are still incompletely understood. Here, we compared the effects of two HDACi, i.e., Trichostatin A (TSA) and Valproic Acid (VPA), on the induction of cell death and autophagy in pancreatic cancer-derived cells that exhibit a high metastatic capacity and carry KRAS/p53 double mutations. Cell viability and proliferation tests were carried out using Trypan blue dye exclusion, MTT and BrdU assays. FACS analyses were carried out to assess cell cycle progression, apoptosis, reactive oxygen species (ROS) production and mitochondrial depolarization, while Western blot and immunoprecipitation analyses were employed to detect proteins involved in apoptosis and autophagy. We found that both VPA and TSA can induce apoptosis in Panc1 and PaCa44 pancreatic cancer-derived cells by triggering mitochondrial membrane depolarization, Cytochrome c release and Caspase 3 activation, although VPA was more effective than TSA, especially in Panc1 cells. As underlying molecular events, we found that ERK1/2 was de-phosphorylated and that the c-Myc and mutant p53 protein levels were reduced after VPA and, to a lesser extent, after TSA treatment. Up-regulation of p21 and Puma was also observed, concomitantly with mutant p53 degradation. In addition, we found that in both cell lines VPA increased the pro-apoptotic Bim level, reduced the anti-apoptotic Mcl-1 level and increased ROS production and autophagy, while TSA was able to induce these effects only in PaCA44 cells. From our results we conclude that both VPA and TSA can induce pancreatic cancer cell apoptosis and autophagy. VPA appears have a stronger and broader cytotoxic effect than TSA and, thus, may represent a better choice for anti-pancreatic cancer therapy.

  11. Synergistic anticancer effects of cisplatin and histone deacetylase inhibitors (SAHA and TSA) on cholangiocarcinoma cell lines.

    Science.gov (United States)

    Asgar, Md Ali; Senawong, Gulsiri; Sripa, Banchob; Senawong, Thanaset

    2016-01-01

    Clinical application of cisplatin against cholangiocarcinoma is often associated with resistance and toxicity posing urgent demand for combination therapy. In this study, we evaluated the combined anticancer effect of cisplatin and histone deacetylase inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), on the cholangiocarcinoma KKU-100 and KKU-M214 cell lines. Antiproliferative activity was evaluated using MTT assay. Apoptosis induction and cell cycle arrest were analyzed by flow cytometry. Cell cycle and apoptosis regulating proteins were evaluated by western blot analysis. MTT assay showed that cisplatin, SAHA and TSA dose-dependently reduced the viability of KKU-100 and KKU-M214 cells. The combination of cisplatin and HDACIs exerted significantly more cytotoxicity than the single drugs. Combination indices below 1.0 reflect synergism between cisplatin and HDACIs, leading to positive dose reductions of cisplatin and HDACIs. Cisplatin and HDACIs alone induced G0/G1 phase arrest in KKU-100 cells, but the drug combinations increased sub-G1 percent more than either drug. However, cisplatin and HDACIs alone or in combination increased only the sub-G1 percent in KKU-M214 cells. Annexin V-FITC staining revealed that cisplatin and HDACIs combinations induced more apoptotic cell death of both KKU-100 and KKU-M214 cells than the single drug. In KKU-100 cells, growth inhibition was accompanied by upregulation of p53 and p21 and downregulation of CDK4 and Bcl-2 due to exposure to cisplatin, SAHA and TSA alone or in combination. Moreover, combination of agents exerted higher impacts on protein expression. Single agents or combination did not affect p53 expression, however, combination of cisplatin and HDACIs increased the expression of p21 in KKU-M214 cells. Taken together, cisplatin and HDACIs combination may improve the therapeutic outcome in cholangiocarcinoma patients.

  12. The effects of the Histone Deacetylase (HDAC Inhibitor 4-Phenylbutyrate on gap junction conductance and permeability

    Directory of Open Access Journals (Sweden)

    Joshua eKaufman

    2013-09-01

    Full Text Available Longitudinal resistance is a key factor in determining cardiac action potential propagation. Action potential conduction velocity has been shown to be proportional to the square root of longitudinal resistance. A major determinant of longitudinal resistance in myocardium is the gap junction channel, comprised of connexin proteins. Within the ventricular myocardium connexin 43 (Cx43 is the dominantly expressed connexin. Reduced numbers of gap junction channels will result in an increase in longitudinal resistance creating the possibility of slowed conduction velocity while increased numbers of channels would potentially result in an increase in conduction velocity. We sought to determine if inhibition of histone deacetylase (HDAC by 4-phenylbutyrate (4-PB, a known inhibitor of HDAC resulted in an increase in junctional conductance and permeability, which is not the result of changes in single channel unitary conductance. These experiments were performed using HEK-293 cells and HeLa cells stably transfected with Cx43. Following treatment with increasing concentrations of 4-PB up-regulation of Cx43 was observed via Western blot analysis. Junctional (gj conductance and unitary single channel conductance were measured via whole-cell patch clamp. In addition intercellular transfer of Lucifer Yellow (LY was determined by fluorescence microscopy. The data in this study indicates that 4-PB is able to enhance functional Cx43 gap junction coupling as indicated by LY dye transfer and multichannel and single channel data along with Western blot analysis. As a corollary, pharmacological agents such as 4-PB have the potential, by increasing intercellular coupling, to reduce the effect of ischemia. It remains to be seen whether drugs like 4-PB will be effective in preventing cardiac maladies.

  13. Phase I/II trial of vorinostat (SAHA) and erlotinib for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations after erlotinib progression.

    Science.gov (United States)

    Reguart, Noemi; Rosell, Rafael; Cardenal, Felipe; Cardona, Andres F; Isla, Dolores; Palmero, Ramon; Moran, Teresa; Rolfo, Christian; Pallarès, M Cinta; Insa, Amelia; Carcereny, Enric; Majem, Margarita; De Castro, Javier; Queralt, Cristina; Molina, Miguel A; Taron, Miquel

    2014-05-01

    Vorinostat or suberoylanilide hydroxamic acid (SAHA) is a novel histone deacetylase inhibitor with demonstrated antiproliferative effects due to drug-induced accumulation of acetylated proteins, including the heat shock protein 90. We prospectively studied the activity of vorinostat plus erlotinib in EGFR-mutated NSCLC patients with progression to tyrosine kinase inhibitors. We conducted this prospective, non-randomized, multicenter, phase I/II trial to evaluate the maximum tolerated dose, toxicity profile and efficacy of erlotinib and vorinostat. Patients with advanced NSCLC harboring EGFR mutations and progressive disease after a minimum of 12 weeks on erlotinib were included. The maximum tolerated dose of vorinostat plus erlotinib was used as recommended dose for the phase II (RDP2) to assess the efficacy of the combination. The primary end point was progression-free-survival rate at 12 weeks (PFSR12w). Pre-treatment plasma samples were required to assess T790M resistant mutation. A total of 33 patients were enrolled in the phase I-II trial. The maximum tolerated dose was erlotinib 150 mg p.o., QD, and 400mg p.o., QD, on days 1-7 and 15-21 in a 28-day cycle. Among the 25 patients treated at the RDP2, the most common toxicities included anemia, fatigue and diarrhea. No responses were observed. PFSR12w was 28% (IC 95%: 18.0-37.2); median progression-free survival (PFS) was 8 weeks (IC 95%: 7.43-8.45) and overall survival (OS) 10.3 months (95% CI: 2.4-18.1). Full dose of continuous erlotinib with vorinostat 400mg p.o., QD on alternative weeks can be safely administered. Still, the combination has no meaningful activity in EGFR-mutated NSCLC patients after TKI progression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1 in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cyril Sobolewski

    2015-08-01

    Full Text Available The RNA-binding protein tristetraprolin (TTP promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE. In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC inhibitors (Trichostatin A, SAHA and sodium butyrate promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells and cervix carcinoma cells (HeLa. We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1. Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer.

  15. Experience Modulates the Effects of Histone Deacetylase Inhibitors on Gene and Protein Expression in the Hippocampus: Impaired Plasticity in Aging.

    Science.gov (United States)

    Sewal, Angila S; Patzke, Holger; Perez, Evelyn J; Park, Pul; Lehrmann, Elin; Zhang, Yongqing; Becker, Kevin G; Fletcher, Bonnie R; Long, Jeffrey M; Rapp, Peter R

    2015-08-19

    The therapeutic potential of histone deacetylase inhibitor (HDACi) treatment has attracted considerable attention in the emerging area of cognitive neuroepigenetics. The possibility that ongoing cognitive experience importantly regulates the cell biological effects of HDACi administration, however, has not been systematically examined. In an initial experiment addressing this issue, we tested whether water maze training influences the gene expression response to acute systemic HDACi administration in the young adult rat hippocampus. Training powerfully modulated the response to HDACi treatment, increasing the total number of genes regulated to nearly 3000, including many not typically linked to neural plasticity, compared with neuroepigenetics. Copyright © 2015 the authors 0270-6474/15/3511730-14$15.00/0.

  16. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines - An Isobolographic Analysis.

    Directory of Open Access Journals (Sweden)

    Anna Wawruszak

    Full Text Available Histone deacetylase inhibitors (HDIs are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA and suberoylanilide hydroxamic acid (SAHA, vorinostat, alone or in combination with cisplatin (CDDP on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic interaction was observed for the combination of CDDP with VPA in MDA-MB-231 "triple-negative" (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers.

  17. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yingying; Chen, Xi; Yu, Dehai [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Tao [Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Cui, Jiuwei; Wang, Guanjun [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Hu, Ji-Fan, E-mail: jifan@stanford.edu [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Wei, E-mail: jdyylw@163.com [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China)

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  18. Different effects of histone deacetylase inhibitors nicotinamide and trichostatin A (TSA) in C17.2 neural stem cells.

    Science.gov (United States)

    Wang, Haifeng; Cheng, Hua; Wang, Kai; Wen, Tieqiao

    2012-11-01

    Histone deacetylase inhibitors are involved in proliferation, apoptosis, cell cycle, mRNA transcription, and protein expression in various cells. However, the molecular mechanism underlying such functions is still not fully clear. In this study, we used C17.2 neural stem cell (NSC) line as a model to evaluate the effects of nicotinamide and trichostatin A (TSA) on cell characteristics. Results show that nicotinamide and TSA greatly inhibit cell growth, lead to cell morphology changes, and effectively induce cell apoptosis in a dose-dependent manner. Western blot analyses confirmed that nicotinamide significantly decreases the expression of bcl-2 and p38. Further insight into the molecular mechanisms shows the suppression of phosphorylation in eukaryotic initiation factor 4E-binding protein 1 (4EBP1) by nicotinamide, whereas, an increased expression of bcl-2 and p38 and phosphorylation of 4EBP1 by TSA. However, both nicotinamide and TSA significantly increase the expression of cytochrome c (cyt c). These results strongly suggest that bcl-2, p38, cyt c, and p-4EBP1 could suppress proliferation and induce apoptosis of C17.2 NSCs mediated by histone deacetylase inhibitors, nicotinamide and TSA, involving different molecular mechanisms.

  19. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors

    DEFF Research Database (Denmark)

    Khan, N.; Jeffers, M.; Kumar, S.

    2008-01-01

    The human HDAC (histone deacetylase) family, a well-validated anticancer target, plays a key role in the control of gene expression through regulation of transcription. While HDACs can be subdivided into three main classes, the class I, class II and class III HDACs (sirtuins), it is presently...

  20. Vorinostat with Sustained Exposure and High Solubility in Poly(ethylene glycol)-b-poly(DL-lactic acid) Micelle Nanocarriers: Characterization and Effects on Pharmacokinetics in Rat Serum and Urine

    Science.gov (United States)

    Mohamed, Elham A.; Zhao, Yunqi; Meshali, Mahasen M.; Remsberg, Connie M.; Borg, Thanaa M.; Foda, Abdel Monem M.; Takemoto, Jody K.; Sayre, Casey; Martinez, Stephanie; Davies, Neal M.; Forrest, M. Laird

    2015-01-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anti-cancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat’s pharmacokinetics in rats were investigated after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) micellar administrations and compared to a conventional PEG400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 mg/ml to 8.15 ± 0.60 mg/ml and 10.24 ± 0.92 mg/ml at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 nm and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19 %, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the oral and intravenous pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. PMID:22806441

  1. The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet ß cells in vivo and in vitro

    DEFF Research Database (Denmark)

    Lewis, Eli C; Blaabjerg, Lykke; Størling, Joachim

    2011-01-01

    of histone deacetylases (HDAC) are used commonly in humans but also possess antiinflammatory and cytokine-suppressing properties. Here we show that oral administration of the HDAC inhibitor ITF2357 to mice normalized streptozotocin (STZ)-induced hyperglycemia at the clinically relevant doses of 1.25-2.5 mg...... production and decreased apoptosis rates from 14.3% (vehicle) to 2.6% (ITF2357). Inducible nitric oxide synthase (iNOS) levels decreased in association with reduced islet-derived nitrite levels. In peritoneal macrophages and splenocytes, ITF2357 inhibited the production of nitrite, as well as that of TNFa...... and IFN¿ at an IC(50) of 25-50 nmol/L. In the insulin-producing INS cells challenged with the combination of IL-1ß plus IFN¿, apoptosis was reduced by 50% (P orally active HDAC inhibitor ITF2357 favors ß-cell survival during inflammatory conditions....

  2. Anti-tumor activity of N-hydroxy-7-(2-naphthylthio) heptanomide, a novel histone deacetylase inhibitor

    International Nuclear Information System (INIS)

    Kim, Dong Hoon; Lee, Jiyong; Kim, Kyung Noo; Kim, Hye Jin; Jeung, Hei Cheul; Chung, Hyun Cheol; Kwon, Ho Jeong

    2007-01-01

    Histone deacetylase (HDAC), a key enzyme in gene expression and carcinogenesis, is considered an attractive target molecule for cancer therapy. Here, we report a new synthetic small molecule, N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), as a HDAC inhibitor with anti-tumor activity both in vitro and in vivo. The compound inhibited HDAC enzyme activity as well as proliferation of human fibrosarcoma cells (HT1080) in vitro. Treatment of cells with HNHA elicited histone hyperacetylation leading to an up-regulation of p21 transcription, cell cycle arrest, and an inhibition of HT1080 cell invasion. Moreover, HNHA effectively inhibited the growth of tumor tissue in a mouse xenograph assay in vivo. Together, these data demonstrate that this novel HDAC inhibitor could be developed as a potential anti-tumor agent targeting HDAC

  3. Preclinical Activity of the Rational Combination of Selumetinib (AZD6244) in Combination with Vorinostat in KRAS-Mutant Colorectal Cancer Models

    Science.gov (United States)

    Morelli, M. Pia; Tentler, John J.; Kulikowski, Gillian N.; Tan, Aik-Choon; Bradshaw-Pierce, Erica L.; Pitts, Todd M.; Brown, Amy M.; Nallapareddy, Sujatha; Arcaroli, John J.; Serkova, Natalie J.; Hidalgo, Manuel; Ciardiello, Fortunato; Eckhardt, S. Gail

    2013-01-01

    Purpose Despite the availability of several active combination regimens for advanced colorectal cancer (CRC), the 5-year survival rate remains poor at less than 10%,supporting the development of novel therapeutic approaches. In this study, we focused on the preclinical assessment of a rationally based combination against KRAS-mutated CRC by testing the combination of the MEK inhibitor, selumetinib, and vorinostat, a histone deacetylase (HDAC) inhibitor. Experimental Design Transcriptional profiling and gene set enrichment analysis (baseline and post-treatment) of CRC cell lines provided the rationale for the combination. The activity of selumetinib and vorinostat against the KRAS-mutant SW620 and SW480 CRC cell lines was studied in vitro and in vivo. The effects of this combination on tumor phenotype were assessed using monolayer and 3-dimensional cultures, flow cytometry, apoptosis, and cell migration. In vivo, tumor growth inhibition, 18F-fluoro-deoxy-glucose positron emission tomography (FDG-PET), and proton nuclear magnetic resonance were carried out to evaluate the growth inhibitory and metabolic responses, respectively, in CRC xenografts. Results In vitro, treatment with selumetinib and vorinostat resulted in a synergistic inhibition of proliferation and spheroid formation in both CRC cell lines. This inhibition was associated with an increase in apoptosis, cell-cycle arrest in G1, and reduced cellular migration and VEGF-A secretion. In vivo, the combination resulted in additive tumor growth inhibition. The metabolic response to selumetinib and vorinostat consisted of significant inhibition of membrane phospholipids; no significant changes in glucose uptake or metabolism were observed in any of the treatment groups. Conclusion These data indicate that the rationally based combination of the mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor, selumetinib, with the HDAC inhibitor vorinostat results in synergistic antiproliferative

  4. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer.

    Science.gov (United States)

    Tanimoto, Azusa; Takeuchi, Shinji; Arai, Sachiko; Fukuda, Koji; Yamada, Tadaaki; Roca, Xavier; Ong, S Tiong; Yano, Seiji

    2017-06-15

    Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism. Experimental Design: We used EGFR -mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR. Results: EGFR -mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR -mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR -T790M mutations. Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR -mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 23(12); 3139-49. ©2016 AACR . ©2016 American Association for Cancer Research.

  5. Vorinostat-eluting poly(DL-lactide-co-glycolide nanofiber-coated stent for inhibition of cholangiocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Kwak TW

    2017-10-01

    Full Text Available Tae Won Kwak,1,* Hye Lim Lee,2,* Yeon Hui Song,2 Chan Kim,3 Jungsoo Kim,2 Sol-Ji Seo,2 Young-Il Jeong,2 Dae Hwan Kang2,4 1Medical Convergence Textile Center, Gyeongbuk, Republic of Korea; 2Biomedical Research Institute, Pusan National University Hospital, Pusan, Republic of Korea; 3Amogreentech Co. Ltd. Gyeonggi-do, Republic of Korea; 4Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam, Republic of Korea *These authors contributed equally to this work Purpose: The aim of this study was to fabricate a vorinostat (Zolinza™-eluting nanofiber membrane-coated gastrointestinal (GI stent and to study its antitumor activity against cholangiocarcinoma (CCA cells in vitro and in vivo. Methods: Vorinostat and poly(DL-lactide-co-glycolide dissolved in an organic solvent was sprayed onto a GI stent to make a nanofiber-coated stent using an electro-spinning machine. Intact vorinostat and vorinostat released from nanofibers was used to assess anticancer activity in vitro against various CCA cells. The antitumor activity of the vorinostat-eluting nanofiber membrane-coated stent was evaluated using HuCC-T1 bearing mice. Results: A vorinostat-incorporated polymer nanofiber membrane was formed on the surface of the GI stent. Vorinostat was continuously released from the nanofiber membrane over 10 days, and its release rate was higher in cell culture media than in phosphate-buffered saline. Released vorinostat showed similar anticancer activity against various CCA cells in vitro compared to that of vorinostat. Like vorinostat, vorinostat released from nanofibers induced acetylation of histone H4 and inhibited histone deacetylases 1·3·4/5/7 expression in vitro and in vivo. Furthermore, vorinostat nanofibers showed a higher tumor growth inhibition rate in HuCC-T1 bearing mice than vorinostat injections. Conclusion: Vorinostat-eluting nanofiber membranes showed significant antitumor

  6. Combinations of Novel Histone Deacetylase and Bcr-Abl Inhibitors in the Therapy of Imatinib Mesylate-Sensitive and -Refractory Bcr-Abl Expressing Leukemia

    Science.gov (United States)

    2008-12-01

    Balasis,1Purva Bali,1Veronica Estrella ,1Sandhya Kumaraswamy,1 Rekha Rao,1Kathy Rocha,1Bryan Herger,1Francis Lee,2 Victoria Richon,3 and Kapil Bhalla1...Balasis M, Bali P, Estrella V, Kumaraswamy S, et al. Histone deacetylase inhibitors deplete EZH2 and associated Polycomb Repressive Complex 2 proteins

  7. Combination Therapy With Histone Deacetylase Inhibitors (HDACi for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi

    Directory of Open Access Journals (Sweden)

    Amila Suraweera

    2018-03-01

    Full Text Available Genetic and epigenetic changes in DNA are involved in cancer development and tumor progression. Histone deacetylases (HDACs are key regulators of gene expression that act as transcriptional repressors by removing acetyl groups from histones. HDACs are dysregulated in many cancers, making them a therapeutic target for the treatment of cancer. Histone deacetylase inhibitors (HDACi, a novel class of small-molecular therapeutics, are now approved by the Food and Drug Administration as anticancer agents. While they have shown great promise, resistance to HDACi is often observed and furthermore, HDACi have shown limited success in treating solid tumors. The combination of HDACi with standard chemotherapeutic drugs has demonstrated promising anticancer effects in both preclinical and clinical studies. In this review, we summarize the research thus far on HDACi in combination therapy, with other anticancer agents and their translation into preclinical and clinical studies. We additionally highlight the side effects associated with HDACi in cancer therapy and discuss potential biomarkers to either select or predict a patient’s response to these agents, in order to limit the off-target toxicity associated with HDACi.

  8. Trichostatin A, a histone deacetylase inhibitor, potentiated cytotoxic effect of lionizing radiation in human head and neck cancer cell lines

    International Nuclear Information System (INIS)

    Kim, Jin Ho; Shin, Jin Hee; Chie, Eui Kyu; Wu, Hong Gyun; Kim, Jae Sung; Kim, Il Han; Ha, Sung Whan; Park, Charn Il; Kang, Wee Saing

    2004-01-01

    We have previously reported that human glioblastoma cells are sensitized to radiation-induced death after their exposure to trichostatin A (TSA), a histone deacetylase inhibitor (HDAC-I), prior to the irradiation. We aimed to measure the magnitude of the radiosensitizing effect of TSA in human head and neck cancer cell lines. human head and neck cancer cell lines, HN-3 and HN-9, were exposed to 0, 50, 100, and 200 nM TSA for 18 hr prior to irradiation. Then, the TSA-treated cells were irradiated with 0, 2, 4, 6, and 8 Gy, and cell survival was measured by clonogenic assay. Pre-irradiation exposure to TSA was found to radiosensitize HN-3 and HN-9 cell lines. In HN-9 cells, the fraction surviving after 2 Gy (SF2) was significantly reduced by treatment of TSA at concentration as low as 50 nM. However, a treatment with 200 nM TSA was required to significantly decrease SF2 in the HN-3 cell line. SER of pre-irradiation treatment with 200 nM TSA was 1.84 in HN-3 and 7.24 in HN-9, respectively. Our results clearly showed that human head and neck cancer cell lines can be sensitized to ionizing radiation by pre-irradiation inhibition of histone deacetylase (HDAC) using TSA, and that this potentiation might well be a general phenomenon

  9. Acetylation of FoxO1 Activates Bim Expression to Induce Apoptosis in Response to Histone Deacetylase Inhibitor Depsipeptide Treatment

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2009-04-01

    Full Text Available Histone deacetylase (HDAC inhibitors have been shown to induce cell cycle arrest and apoptosis in cancer cells. However, the mechanisms of HDAC inhibitor induced apoptosis are incompletely understood. In this study, depsipeptide, a novel HDAC inhibitor, was shown to be able to induce significant apoptotic cell death in human lung cancer cells. Further study showed that Bim, a BH3-only proapoptotic protein, was significantly upregulated by depsipeptide in cancer cells, and Bim's function in depsipeptide-induced apoptosis was confirmed by knockdown of Bim with RNAi. In addition, we found that depsipeptide-induced expression of Bim was directly dependent on acetylation of forkhead box class O1 (FoxO1 that is catalyzed by cyclic adenosine monophosphate-responsive element-binding protein-binding protein, and indirectly induced by a decreased four-and-a-half LIM-domain protein 2. Moreover, our results demonstrated that FoxO1 acetylation is required for the depsipeptide-induced activation of Bim and apoptosis, using transfection with a plasmid containing FoxO1 mutated at lysine sites and a luciferase reporter assay. These data show for the first time that an HDAC inhibitor induces apoptosis through the FoxO1 acetylation-Bim pathway.

  10. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    International Nuclear Information System (INIS)

    Sharma, Bhupesh; Sharma, P.M.

    2013-01-01

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  11. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  12. Gastrointestinal toxicity of vorinostat: reanalysis of phase 1 study results with emphasis on dose-volume effects of pelvic radiotherapy

    LENUS (Irish Health Repository)

    Bratland, Ase

    2011-04-08

    Abstract Background In early-phase studies with targeted therapeutics and radiotherapy, it may be difficult to decide whether an adverse event should be considered a dose-limiting toxicity (DLT) of the investigational systemic agent, as acute normal tissue toxicity is frequently encountered with radiation alone. We have reanalyzed the toxicity data from a recently conducted phase 1 study on vorinostat, a histone deacetylase inhibitor, in combination with pelvic palliative radiotherapy, with emphasis on the dose distribution within the irradiated bowel volume to the development of DLT. Findings Of 14 eligible patients, three individuals experienced Common Terminology Criteria of Adverse Events grade 3 gastrointestinal and related toxicities, representing a toxicity profile vorinostat has in common with radiotherapy to pelvic target volumes. For each study patient, the relative volumes of small bowel receiving radiation doses between 6 Gy and 30 Gy at 6-Gy intervals (V6-V30) were determined from the treatment-planning computed tomography scans. The single patient that experienced a DLT at the second highest dose level of vorinostat, which was determined as the maximum-tolerated dose, had V6-V30 dose-volume estimates that were considerably higher than any other study patient. This patient may have experienced an adverse radiation dose-volume effect rather than a toxic effect of the investigational drug. Conclusions When reporting early-phase trial results on the tolerability of a systemic targeted therapeutic used as potential radiosensitizing agent, radiation dose-volume effects should be quantified to enable full interpretation of the study toxicity profile. Trial registration ClinicalTrials.gov: NCT00455351

  13. Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations.

    Directory of Open Access Journals (Sweden)

    Michal Yalon

    Full Text Available Inhibitors of poly[ADP-ribose] polymerase 1 (PARPis show promise for treatment of cancers which lack capacity for homologous recombination repair (HRR. However, new therapeutic strategies are required in order to overcome innate and acquired resistance to these drugs and thus expand the array of cancers that could benefit from them. We show that human cancer cell lines which respond poorly to ABT-888 (a PARPi, become sensitive to it when co-treated with vorinostat (a histone deacetylase inhibitor (HDACi. Vorinostat also sensitized PARPis insensitive cancer cell lines to 6-thioguanine (6-TG-a drug that targets PARPis sensitive cells. The sensitizing effect of vorinostat was associated with increased phosphorylation of eukaryotic initiation factor (eIF 2α which in and of itself increases the sensitivity of cancer cells to ABT-888. Importantly, these drug combinations did not affect survival of normal fibroblasts and breast cells, and significantly increased the inhibition of xenograft tumor growth relative to each drug alone, without affecting the mice weight or their liver and kidney function. Our results show that combination of vorinostat and ABT-888 could potentially prove useful for treatment of cancer with innate resistance to PARPis due to active HRR machinery, while the combination of vorinostat and 6-TG could potentially overcome innate or acquired resistance to PARPis due to secondary or reversal BRCA mutations, to decreased PARP-1 level or to increased expression of multiple drug resistant proteins. Importantly, drugs which increase phosphorylation of eIF2α may mimic the sensitizing effect of vorinostat on cellular response to PARPis or to 6-TG, without activating all of its downstream effectors.

  14. The histone deacetylase inhibitor SAHA acts in synergism with fenretinide and doxorubicin to control growth of rhabdoid tumor cells

    International Nuclear Information System (INIS)

    Kerl, Kornelius; Eveslage, Maria; Jung, Manfred; Meisterernst, Michael; Frühwald, Michael; Ries, David; Unland, Rebecca; Borchert, Christiane; Moreno, Natalia; Hasselblatt, Martin; Jürgens, Heribert; Kool, Marcel; Görlich, Dennis

    2013-01-01

    Rhabdoid tumors are highly aggressive malignancies affecting infants and very young children. In many instances these tumors are resistant to conventional type chemotherapy necessitating alternative approaches. Proliferation assays (MTT), apoptosis (propidium iodide/annexin V) and cell cycle analysis (DAPI), RNA expression microarrays and western blots were used to identify synergism of the HDAC (histone deacetylase) inhibitor SAHA with fenretinide, tamoxifen and doxorubicin in rhabdoidtumor cell lines. HDAC1 and HDAC2 are overexpressed in primary rhabdoid tumors and rhabdoid tumor cell lines. Targeting HDACs in rhabdoid tumors induces cell cycle arrest and apoptosis. On the other hand HDAC inhibition induces deregulated gene programs (MYCC-, RB program and the stem cell program) in rhabdoid tumors. These programs are in general associated with cell cycle progression. Targeting these activated pro-proliferative genes by combined approaches of HDAC-inhibitors plus fenretinide, which inhibits cyclinD1, exhibit strong synergistic effects on induction of apoptosis. Furthermore, HDAC inhibition sensitizes rhabdoid tumor cell lines to cell death induced by chemotherapy. Our data demonstrate that HDAC inhibitor treatment in combination with fenretinide or conventional chemotherapy is a promising tool for the treatment of chemoresistant rhabdoid tumors

  15. An atlas of histone deacetylase expression in breast cancer: fluorescence methodology for comparative semi-quantitative analysis.

    Science.gov (United States)

    Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    The histone deacetylase inhibitors, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Numerous histone deacetylase inhibitors are currently undergoing clinical trials, predominantly in combination with other cancer modalities, for the treatment of various haematological and solid malignancies. Most of the traditional compounds are known as broad-spectrum or pan-histone deacetylase inhibitors, possessing activity against a number of the 11 metal-dependent enzymes. One of the main questions in the field is whether class- or isoform-specific compounds would offer a therapeutic benefit compared to broad-spectrum inhibitors. Therefore, analysis of the relative expression of the different histone deacetylase enzymes in cancer cells and tissues is important to determine whether there are specific targets. We used a panel of antibodies directed against the 11 known mammalian histone deacetylases to determine expression levels in MCF7 breast cancer cells and in tissue representative of invasive ductal cell carcinoma and ductal carcinoma in situ. Firstly, we utilized a semi-quantitative method based on immunofluorescence staining to examine expression of the different histone deacetylases in MCF7 cells. Our findings indicate high expression levels of HDAC1, 3 and 6 in accordance with findings from others using RT-PCR and immunoblotting. Following validation of our approach we examined the expression of the different isoforms in representative control and breast cancer tissue. In general, our findings indicate higher expression of class I histone deacetylases compared to class II enzymes in breast cancer tissue. Analysis of individual cancer cells in the same tissue indicated marked heterogeneity in the expression of most class I enzymes indicating potential complications with the use of class- or isoform

  16. Sodium valproate, a histone deacetylase inhibitor, modulates the vascular endothelial growth inhibitor-mediated cell death in human osteosarcoma and vascular endothelial cells.

    Science.gov (United States)

    Yamanegi, Koji; Kawabe, Mutsuki; Futani, Hiroyuki; Nishiura, Hiroshi; Yamada, Naoko; Kato-Kogoe, Nahoko; Kishimoto, Hiromitsu; Yoshiya, Shinichi; Nakasho, Keiji

    2015-05-01

    The level of vascular endothelial growth inhibitor (VEGI) has been reported to be negatively associated with neovascularization in malignant tumors. The soluble form of VEGI is a potent anti-angiogenic factor due to its effects in inhibiting endothelial cell proliferation. This inhibition is mediated by death receptor 3 (DR3), which contains a death domain in its cytoplasmic tail capable of inducing apoptosis that can be subsequently blocked by decoy receptor 3 (DcR3). We investigated the effects of sodium valproate (VPA) and trichostatin A (TSA), histone deacetylase inhibitors, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Consequently, treatment with VPA and TSA increased the VEGI and DR3 expression levels without inducing DcR3 production in the OS cell lines. In contrast, the effect on the HMVE cells was limited, with no evidence of growth inhibition or an increase in the DR3 and DcR3 expression. However, VPA-induced soluble VEGI in the OS cell culture medium markedly inhibited the vascular tube formation of HMVE cells, while VEGI overexpression resulted in enhanced OS cell death. Taken together, the HDAC inhibitor has anti-angiogenesis and antitumor activities that mediate soluble VEGI/DR3-induced apoptosis via both autocrine and paracrine pathways. This study indicates that the HDAC inhibitor may be exploited as a therapeutic strategy modulating the soluble VEGI/DR3 pathway in osteosarcoma patients.

  17. Histone Deacetylase Inhibitors Increase p27Kip1 by Affecting Its Ubiquitin-Dependent Degradation through Skp2 Downregulation

    Directory of Open Access Journals (Sweden)

    Adriana Borriello

    2016-01-01

    Full Text Available Histone deacetylase inhibitors (HDACIs represent an intriguing class of pharmacologically active compounds. Currently, some HDACIs are FDA approved for cancer therapy and many others are in clinical trials, showing important clinical activities at well tolerated doses. HDACIs also interfere with the aging process and are involved in the control of inflammation and oxidative stress. In vitro, HDACIs induce different cellular responses including growth arrest, differentiation, and apoptosis. Here, we evaluated the effects of HDACIs on p27Kip1, a key cyclin-dependent kinase inhibitor (CKI. We observed that HDACI-dependent antiproliferative activity is associated with p27Kip1 accumulation due to a reduced protein degradation. p27Kip1 removal requires a preliminary ubiquitination step due to the Skp2-SCF E3 ligase complex. We demonstrated that HDACIs increase p27Kip1 stability through downregulation of Skp2 protein levels. Skp2 decline is only partially due to a reduced Skp2 gene expression. Conversely, the protein decrease is more profound and enduring compared to the changes of Skp2 transcript. This argues for HDACIs effects on Skp2 protein posttranslational modifications and/or on its removal. In summary, we demonstrate that HDACIs increase p27Kip1 by hampering its nuclear ubiquitination/degradation. The findings might be of relevance in the phenotypic effects of these compounds, including their anticancer and aging-modulating activities.

  18. Sustained Low-Dose Treatment with the Histone Deacetylase Inhibitor LBH589 Induces Terminal Differentiation of Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Jason E. Cain

    2013-01-01

    Full Text Available Histone deacetylase inhibitors (HDACi were identified nearly four decades ago based on their ability to induce cellular differentiation. However, the clinical development of these compounds as cancer therapies has focused on their capacity to induce apoptosis in hematologic and lymphoid malignancies, often in combination with conventional cytotoxic agents. In many cases, HDACi doses necessary to induce these effects result in significant toxicity. Since osteosarcoma cells express markers of terminal osteoblast differentiation in response to DNA methyltransferase inhibitors, we reasoned that the epigenetic reprogramming capacity of HDACi might be exploited for therapeutic benefit. Here, we show that continuous exposure of osteosarcoma cells to low concentrations of HDACi LBH589 (Panobinostat over a three-week period induces terminal osteoblast differentiation and irreversible senescence without inducing cell death. Remarkably, transcriptional profiling revealed that HDACi therapy initiated gene signatures characteristic of chondrocyte and adipocyte lineages in addition to marked upregulation of mature osteoblast markers. In a mouse xenograft model, continuous low dose treatment with LBH589 induced a sustained cytostatic response accompanied by induction of mature osteoblast gene expression. These data suggest that the remarkable capacity of osteosarcoma cells to differentiate in response to HDACi therapy could be exploited for therapeutic benefit without inducing systemic toxicity.

  19. CRA-024781: a novel synthetic inhibitor of histone deacetylase enzymes with antitumor activity in vitro and in vivo.

    Science.gov (United States)

    Buggy, Joseph J; Cao, Z Alexander; Bass, Kathryn E; Verner, Erik; Balasubramanian, Sriram; Liu, Liang; Schultz, Brian E; Young, Peter R; Dalrymple, Stacie A

    2006-05-01

    CRA-024781 is a novel, broad spectrum hydroxamic acid-based inhibitor of histone deacetylase (HDAC) that shows antitumor activity in vitro and in vivo preclinically and is under evaluation in phase I clinical trials for cancer. CRA-024781 inhibited pure recombinant HDAC1 with a K(i) of 0.007 mumol/L, and also inhibited the other HDAC isozymes HDAC2, HDAC3/SMRT, HDAC6, HDAC8, and HDAC10 in the nanomolar range. Treatment of cultured tumor cell lines grown in vitro with CRA-024781 resulted in the accumulation of acetylated histone and acetylated tubulin, resulting in an inhibition of tumor cell growth and the induction of apoptosis. CRA-024781 parenterally administered to mice harboring HCT116 or DLD-1 colon tumor xenografts resulted in a statistically significant reduction in tumor growth at doses that were well tolerated as measured by body weight. Inhibition of tumor growth was accompanied by an increase in the acetylation of alpha-tubulin in peripheral blood mononuclear cells, and an alteration in the expression of many genes in the tumors, including several involved in apoptosis and cell growth. These results reveal CRA-024781 to be a novel HDAC inhibitor with potent antitumor activity.

  20. Deciphering the molecular events necessary for synergistic tumor cell apoptosis mediated by the histone deacetylase inhibitor vorinostat and the BH3 mimetic ABT-737

    NARCIS (Netherlands)

    Wiegmans, Adrian P.; Alsop, Amber E.; Bots, Michael; Cluse, Leonie A.; Williams, Steven P.; Banks, Kellie-Marie; Ralli, Rachael; Scott, Clare L.; Frenzel, Anna; Villunger, Andreas; Johnstone, Ricky W.

    2011-01-01

    The concept of personalized anticancer therapy is based on the use of targeted therapeutics through in-depth knowledge of the molecular mechanisms of action of these agents when used alone and in combination. We have identified the apoptotic proteins and pathways necessary for synergistic tumor cell

  1. Conformationally rigid histone deacetylase inhibitors correct DF508-CFTR protein function

    DEFF Research Database (Denmark)

    Vickers, Chris J.; Olsen, Christian Adam; Hutt, Darren M.

    2011-01-01

    and bacterial infection, therapy using HDAC inhibitors has the potential to treat and correct the underlying etiology associated with the disorder. Subsequently, we have synthesized conformationally well-defined cyclic tetrapeptide derivatives based on the natural product HDAC inhibitor Apicidin, in order...

  2. Vorinostat Combined with High-Dose Gemcitabine, Busulfan, and Melphalan with Autologous Stem Cell Transplantation in Patients with Refractory Lymphomas.

    Science.gov (United States)

    Nieto, Yago; Valdez, Benigno C; Thall, Peter F; Ahmed, Sairah; Jones, Roy B; Hosing, Chitra; Popat, Uday; Shpall, Elizabeth J; Qazilbash, Muzaffar; Gulbis, Alison; Anderlini, Paolo; Alousi, Amin; Shah, Nina; Bashir, Qaiser; Liu, Yan; Oki, Yasuhiro; Hagemeister, Frederick; Fanale, Michelle; Dabaja, Bouthaina; Pinnix, Chelsea; Champlin, Richard; Andersson, Borje S

    2015-11-01

    More active high-dose regimens are needed for refractory/poor-risk relapsed lymphomas. We previously developed a regimen of infusional gemcitabine/busulfan/melphalan, exploiting the synergistic interaction. Its encouraging activity in refractory lymphomas led us to further enhance its use as a platform for epigenetic modulation. We previously observed increased cytotoxicity in refractory lymphoma cell lines when the histone deacetylase inhibitor vorinostat was added to gemcitabine/busulfan/melphalan, which prompted us to clinically study this four-drug combination. Patients ages 12 to 65 with refractory diffuse large B cell lymphoma (DLCL), Hodgkin (HL), or T lymphoma were eligible. Vorinostat was given at 200 mg/day to 1000 mg/day (days -8 to -3). Gemcitabine was infused continuously at 10 mg/m(2)/minute over 4.5 hours (days -8 and -3). Busulfan dosing targeted 4000 μM-minute/day (days -8 to -5). Melphalan was infused at 60 mg/m(2)/day (days -3 and -2). Patients with CD20(+) tumors received rituximab (375 mg/m(2), days +1 and +8). We enrolled 78 patients: 52 DLCL, 20 HL, and 6 T lymphoma; median age 44 years (range, 15 to 65); median 3 prior chemotherapy lines (range, 2 to 7); and 48% of patients had positron emission tomography-positive tumors at high-dose chemotherapy (29% unresponsive). The vorinostat dose was safely escalated up to 1000 mg/day, with no treatment-related deaths. Toxicities included mucositis and dermatitis. Neutrophils and platelets engrafted promptly. At median follow-up of 25 (range, 16 to 41) months, event-free and overall survival were 61.5% and 73%, respectively (DLCL) and 45% and 80%, respectively (HL). In conclusion, vorinostat/gemcitabine/busulfan/melphalan is safe and highly active in refractory/poor-risk relapsed lymphomas, warranting further evaluation. This trial was registered at ClinicalTrials.gov (NCI-2011-02891). Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights

  3. Targeting MTA1/HIF-1alpha Signaling by Pterostilbene in Combination with Histone Deacetylase Inhibitor Attenuates Prostate Cancer Progression (Open Access)

    Science.gov (United States)

    2017-08-30

    expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation. Mol. Cancer Ther. 6:51–60. 25...2673 Introduction Prostate cancer (PCa) is the second most common cause of cancer - related death in men in the USA because of advanced castrate...signaling by pterostilbene in combination with histone deacetylase inhibitor attenuates prostate cancer progression Nasir A. Butt1,2, Avinash Kumar1,3

  4. Novel histone deacetylase 8-selective inhibitor 1,3,4-oxadiazole-alanine hybrid induces apoptosis in breast cancer cells.

    Science.gov (United States)

    Pidugu, Vijaya Rao; Yarla, Nagendra Sastry; Bishayee, Anupam; Kalle, Arunasree M; Satya, Alapati Krishna

    2017-11-01

    Identification of isoform-specific histone deacetylase inhibitors (HDACi) is a significant advantage to overcome the adverse side effects of pan-HDACi for the treatment of various diseases, including cancer. We have designed, and synthesized novel 1,3,4 oxadiazole with glycine/alanine hybrids as HDAC8-specific inhibitors and preliminary evaluation has indicated that 1,3,4 oxadiazole with alanine hybrid [(R)-2-amino-N-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)propanamide (10b)] to be a potent HDAC8 inhibitor. In the present study, the in vitro efficacy of the molecule in inhibiting the cancer cell proliferation and the underlying molecular mechanism was studied. 10b inhibited the growth of MDA-MB-231 and MCF7 breast cancer cells, with a lower IC 50 of 230 and 1000 nM, respectively, compared to K562, COLO-205 and HepG2 cells and was not cytotoxic to normal breast epithelial cells, MCF10A. 10b was specific to HDAC8 and did not affect the expression of other class I HDACs. Further, a dose-dependent increase in H3K9 acetylation levels demonstrated the HDAC-inhibitory activity of 10b in MDA-MB-231 cells. Flow cytometric analysis indicated a dose-dependent increase and decrease in the percent apoptotic cells and mitochondrial membrane potential, respectively, when treated with 10b. Immunoblot analysis showed a modulation of Bax/Bcl2 ratio with a decrease in Bcl2 expression and no change in Bax expression. 10b treatment resulted in induction of p21 and inhibition of CDK1 proteins along with cytochrome c release from mitochondria, activation of caspases-3 and -9 and cleavage of poly ADP-ribose polymerase leading to apoptotic death of MDA-MB-231 and MCF7 cells. In conclusion, our results clearly demonstrated the efficacy of 10b as an anticancer agent against breast cancer.

  5. Sodium Valproate, a Histone Deacetylase Inhibitor, Is Associated With Reduced Stroke Risk After Previous Ischemic Stroke or Transient Ischemic Attack

    Science.gov (United States)

    Brookes, Rebecca L.; Crichton, Siobhan; Wolfe, Charles D.A.; Yi, Qilong; Li, Linxin; Hankey, Graeme J.; Rothwell, Peter M.

    2018-01-01

    Background and Purpose— A variant in the histone deacetylase 9 (HDAC9) gene is associated with large artery stroke. Therefore, inhibiting HDAC9 might offer a novel secondary preventative treatment for ischemic stroke. The antiepileptic drug sodium valproate (SVA) is a nonspecific inhibitor of HDAC9. We tested whether SVA therapy given after ischemic stroke was associated with reduced recurrent stroke rate. Methods— Data were pooled from 3 prospective studies recruiting patients with previous stroke or transient ischemic attack and long-term follow-up: the South London Stroke Register, The Vitamins to Prevent Stroke Study, and the Oxford Vascular Study. Patients receiving SVA were compared with patients who received antiepileptic drugs other than SVA using survival analysis and Cox Regression. Results— A total of 11 949 patients with confirmed ischemic event were included. Recurrent stroke rate was lower in patient taking SVA (17 of 168) than other antiepileptic drugs (105 of 530; log-rank survival analysis P=0.002). On Cox regression, controlling for potential cofounders, SVA remained associated with reduced stroke (hazard ratio=0.44; 95% confidence interval: 0.3–0.7; P=0.002). A similar result was obtained when patients taking SVA were compared with all cases not taking SVA (Cox regression, hazard ratio=0.47; 95% confidence interval: 0.29–0.77; P=0.003). Conclusions— These results suggest that exposure to SVA, an inhibitor of HDAC, may be associated with a lower recurrent stroke risk although we cannot exclude residual confounding in this study design. This supports the hypothesis that HDAC9 is important in the ischemic stroke pathogenesis and that its inhibition, by SVA or a more specific HDAC9 inhibitor, is worthy of evaluation as a treatment to prevent recurrent ischemic stroke. PMID:29247141

  6. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models.

    Directory of Open Access Journals (Sweden)

    Li Shen

    Full Text Available Immunosuppressive factors such as regulatory T cells (Tregs limit the efficacy of immunotherapies. Histone deacetylase (HDAC inhibitors have been reported to have antitumor activity in different malignancies and immunomodulatory effects. Herein, we report the Tregs-targeting and immune-promoting effect of a class I specific HDAC inhibitor, entinostat, in combination with either IL-2 in a murine renal cell carcinoma (RENCA model or a survivin-based vaccine therapy (SurVaxM in a castration resistant prostate cancer (CR Myc-CaP model.RENCA or CR Myc-CaP tumors were implanted orthotopically or subcutaneously, respectively. Inoculated mice were randomized into four treatment groups: vehicle, entinostat, cytokine or vaccine, and combination. Tregs in the blood were assessed by FACS analysis. Real time quantitative PCR and Western blot analysis of isolated T cell subpopulations from spleen were performed to determine Foxp3 gene and protein expression. The suppressive function of Tregs was tested by T cell proliferation assay. Low dose (5 mg/kg entinostat reduced Foxp3 levels in Tregs and this was associated with enhanced tumor growth inhibition in combination with either IL-2 or a SurVaxM vaccine. Entinostat down-regulated Foxp3 expression transcriptionally and blocked Tregs suppressive function without affecting T effector cells (Teffs. In vitro low dose entinostat (0.5 µM induced STAT3 acetylation and a specific inhibitor of STAT3 partially rescued entinostat-induced down-regulation of Foxp3, suggesting that STAT3 signaling is involved in Foxp3 down-regulation by entinostat.These results demonstrate a novel immunomodulatory effect of class I HDAC inhibition and provide a rationale for the clinical testing of entinostat to enhance cancer immunotherapy.

  7. Histone deacetylase inhibitor, Trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Charles Coombes R

    2006-02-01

    Full Text Available Abstract Background Cyclin D1 is an important regulator of G1-S phase cell cycle transition and has been shown to be important for breast cancer development. GSK3β phosphorylates cyclin D1 on Thr-286, resulting in enhanced ubiquitylation, nuclear export and degradation of the cyclin in the cytoplasm. Recent findings suggest that the development of small-molecule cyclin D1 ablative agents is of clinical relevance. We have previously shown that the histone deacetylase inhibitor trichostatin A (TSA induces the rapid ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells prior to repression of cyclin D1 gene (CCND1 transcription. TSA treatment also resulted in accumulation of polyubiquitylated GFP-cyclin D1 species and reduced levels of the recombinant protein within the nucleus. Results Here we provide further evidence for TSA-induced ubiquitin-dependent degradation of cyclin D1 and demonstrate that GSK3β-mediated nuclear export facilitates this activity. Our observations suggest that TSA treatment results in enhanced cyclin D1 degradation via the GSK3β/CRM1-dependent nuclear export/26S proteasomal degradation pathway in MCF-7 cells. Conclusion We have demonstrated that rapid TSA-induced cyclin D1 degradation in MCF-7 cells requires GSK3β-mediated Thr-286 phosphorylation and the ubiquitin-dependent 26S proteasome pathway. Drug induced cyclin D1 repression contributes to the inhibition of breast cancer cell proliferation and can sensitize cells to CDK and Akt inhibitors. In addition, anti-cyclin D1 therapy may be highly specific for treating human breast cancer. The development of potent and effective cyclin D1 ablative agents is therefore of clinical relevance. Our findings suggest that HDAC inhibitors may have therapeutic potential as small-molecule cyclin D1 ablative agents.

  8. Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Yao, Chaogang; Zhou, Yang; Zhu, Jianguo; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2011-12-01

    Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.

  9. Histone Deacetylase Inhibitor Induced Radiation Sensitization Effects on Human Cancer Cells after Photon and Hadron Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Ariungerel Gerelchuluun

    2018-02-01

    Full Text Available Suberoylanilide hydroxamic acid (SAHA is a histone deacetylase inhibitor, which has been widely utilized throughout the cancer research field. SAHA-induced radiosensitization in normal human fibroblasts AG1522 and lung carcinoma cells A549 were evaluated with a combination of γ-rays, proton, and carbon ion exposure. Growth delay was observed in both cell lines during SAHA treatment; 2 μM SAHA treatment decreased clonogenicity and induced cell cycle block in G1 phase but 0.2 μM SAHA treatment did not show either of them. Low LET (Linear Energy Transfer irradiated A549 cells showed radiosensitization effects on cell killing in cycling and G1 phase with 0.2 or 2 μM SAHA pretreatment. In contrast, minimal sensitization was observed in normal human cells after low and high LET radiation exposure. The potentially lethal damage repair was not affected by SAHA treatment. SAHA treatment reduced the rate of γ-H2AX foci disappearance and suppressed RAD51 and RPA (Replication Protein A focus formation. Suppression of DNA double strand break repair by SAHA did not result in the differences of SAHA-induced radiosensitization between human cancer cells and normal cells. In conclusion, our results suggest SAHA treatment will sensitize cancer cells to low and high LET radiation with minimum effects to normal cells.

  10. Pluripotency maintenance in mouse somatic cell nuclear transfer embryos and its improvement by treatment with the histone deacetylase inhibitor TSA.

    Science.gov (United States)

    Hai, Tang; Hao, Jie; Wang, Liu; Jouneau, Alice; Zhou, Qi

    2011-02-01

    Reprogramming of somatic cells to pluripotency can be achieved by nuclear transfer into enucleated oocytes (SCNT). A key event of this process is the demethylation of the Oct4 gene and its temporally and spatially regulated expression. Different studies have shown that it occurs abnormally in some SCNT embryos. TSA is a histone deacetylase inhibitor known to increase the efficiency of development to term of SCNT embryos, but its impact on the developmental features of SCNT embryos is poorly understood. Here, we have followed the fate of the pluripotent cells within SCNT embryos, from the late blastocyst to the early epiblast prior to gastrulation. Our data show a delay in development correlated with a defect in forming and maintaining a correct number of Oct4 expressing ICM and epiblast cells in SCNT embryos. As a consequence, during the outgrowth phase of embryonic stem cell derivation as well as during diapause in vivo, part of the SCNT blastocysts completely lose their ICM cells. Meanwhile, the others display a correctly reprogrammed ICM compatible with the derivation of ES cells and development of the epiblast. Our data also indicate that TSA favors the establishment of pluripotency in SCNT embryos.

  11. Transcription factor Sox4 is required for PUMA-mediated apoptosis induced by histone deacetylase inhibitor, TSA.

    Science.gov (United States)

    Jang, Sang-Min; Kang, Eun-Jin; Kim, Jung-Woong; Kim, Chul-Hong; An, Joo-Hee; Choi, Kyung-Hee

    2013-08-23

    PUMA is a crucial regulator of apoptotic cell death mediated by p53-dependent and p53-independent mechanisms. In many cancer cells, PUMA expression is induced in response to DNA-damaging reagent in a p53-dependent manner. However, few studies have investigated transcription factors that lead to the induction of PUMA expression via p53-independent apoptotic signaling. In this study, we found that the transcription factor Sox4 increased PUMA expression in response to trichostatin A (TSA), a histone deacetylase inhibitor in the p53-null human lung cancer cell line H1299. Ectopic expression of Sox4 led to the induction of PUMA expression at the mRNA and protein levels, and TSA-mediated up-regulation of PUMA transcription was repressed by the knockdown of Sox4. Using luciferase assays and chromatin immunoprecipitation, we also determined that Sox4 recruits p300 on the PUMA promoter region and increases PUMA gene expression in response to TSA treatment. Taken together, these results suggest that Sox4 is required for p53-independent apoptotic cell death mediated by PUMA induction via TSA treatment. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  12. Short- and long-term effects of nicotine and the histone deacetylase inhibitor phenylbutyrate on novel object recognition in zebrafish.

    Science.gov (United States)

    Faillace, M P; Pisera-Fuster, A; Medrano, M P; Bejarano, A C; Bernabeu, R O

    2017-03-01

    Zebrafish have a sophisticated color- and shape-sensitive visual system, so we examined color cue-based novel object recognition in zebrafish. We evaluated preference in the absence or presence of drugs that affect attention and memory retention in rodents: nicotine and the histone deacetylase inhibitor (HDACi) phenylbutyrate (PhB). The objective of this study was to evaluate whether nicotine and PhB affect innate preferences of zebrafish for familiar and novel objects after short- and long-retention intervals. We developed modified object recognition (OR) tasks using neutral novel and familiar objects in different colors. We also tested objects which differed with respect to the exploratory behavior they elicited from naïve zebrafish. Zebrafish showed an innate preference for exploring red or green objects rather than yellow or blue objects. Zebrafish were better at discriminating color changes than changes in object shape or size. Nicotine significantly enhanced or changed short-term innate novel object preference whereas PhB had similar effects when preference was assessed 24 h after training. Analysis of other zebrafish behaviors corroborated these results. Zebrafish were innately reluctant or prone to explore colored novel objects, so drug effects on innate preference for objects can be evaluated changing the color of objects with a simple geometry. Zebrafish exhibited recognition memory for novel objects with similar innate significance. Interestingly, nicotine and PhB significantly modified innate object preference.

  13. Augmentation of Cationic Antimicrobial Peptide Production with Histone Deacetylase Inhibitors as a Novel Epigenetic Therapy for Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Roshan D. Yedery

    2015-01-01

    Full Text Available The emergence of antibiotic resistance seriously threatens our ability to treat many common and medically important bacterial infections. Novel therapeutics are needed that can be used alone or in conjunction with antibiotics. Cationic antimicrobial peptides (CAMPs are important effectors of the host innate defense that exhibit broad-spectrum activity against a wide range of microorganisms. CAMPs are carried within phagocytic granules and are constitutively or inducibly expressed by multiple cell types, including epithelial cells. The role of histone modification enzymes, specifically the histone deacetylases (HDAC, in down-regulating the transcription of CAMP-encoding genes is increasingly appreciated as is the capacity of HDAC inhibitors (HDACi to block the action of HDACs to increase CAMP expression. The use of synthetic and natural HDACi molecules to increase CAMPs on mucosal surfaces, therefore, has potential therapeutic applications. Here, we review host and pathogen regulation of CAMP expression through the induction of HDACs and assess the therapeutic potential of natural and synthetic HDACi based on evidence from tissue culture systems, animal models, and clinical trials.

  14. Exposure to histone deacetylase inhibitors during Pavlovian conditioning enhances subsequent cue-induced reinstatement of operant behavior.

    Science.gov (United States)

    Ploense, Kyle L; Kerstetter, Kerry A; Wade, Matthew A; Woodward, Nicholas C; Maliniak, Dan; Reyes, Michael; Uchizono, Russell S; Bredy, Timothy W; Kippin, Tod E

    2013-06-01

    Histone deacetylase inhibitors (HDACIs) strengthen memory following fear conditioning and cocaine-induced conditioned place preference. Here, we examined the effects of two nonspecific HDACIs, valproic acid (VPA) and sodium butyrate (NaB), on appetitive learning measured by conditioned stimulus (CS)-induced reinstatement of operant responding. Rats were trained to lever press for food reinforcement and then injected with VPA (50-200 mg/kg, i.p.), NaB (250-1000 mg/kg, i.p.), or saline vehicle (1.0 ml/kg), 2 h before receiving pairings of noncontingent presentation of food pellets preceded by a tone+light cue CS. Rats next underwent extinction of operant responding followed by response-contingent re-exposure to the CS. Rats receiving VPA (100 mg/kg) or NaB (1000 mg/kg) before conditioning displayed significantly higher cue-induced reinstatement than did saline controls. Rats that received either vehicle or VPA (100 mg/kg) before a conditioning session with a randomized relation between presentation of food pellets and the CS failed to show subsequent cue-induced reinstatement with no difference between the two groups. These findings indicate that, under certain contexts, HDACIs strengthen memory formation by specifically increasing the associative strength of the CS, not through an increasing motivation to seek reinforcement. © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  15. Viability of D283 medulloblastoma cells treated with a histone deacetylase inhibitor combined with bombesin receptor antagonists.

    Science.gov (United States)

    Jaeger, Mariane; Ghisleni, Eduarda C; Fratini, Lívia; Brunetto, Algemir L; Gregianin, Lauro José; Brunetto, André T; Schwartsmann, Gilberto; de Farias, Caroline B; Roesler, Rafael

    2016-01-01

    Medulloblastoma (MB) comprises four distinct molecular subgroups, and survival remains particularly poor in patients with Group 3 tumors. Mutations and copy number variations result in altered epigenetic regulation of gene expression in Group 3 MB. Histone deacetylase inhibitors (HDACi) reduce proliferation, promote cell death and neuronal differentiation, and increase sensitivity to radiation and chemotherapy in experimental MB. Bombesin receptor antagonists potentiate the antiproliferative effects of HDACi in lung cancer cells and show promise as experimental therapies for several human cancers. Here, we examined the viability of D283 cells, which belong to Group 3 MB, treated with an HDACi alone or combined with bombesin receptor antagonists. D283 MB cells were treated with different doses of the HDACi sodium butyrate (NaB), the neuromedin B receptor (NMBR) antagonist BIM-23127, the gastrin releasing peptide receptor (GRPR) antagonist RC-3095, or combinations of NaB with each receptor antagonist. Cell viability was examined by cell counting. NaB alone or combined with receptor antagonists reduced cell viability at all doses tested. BIM-23127 alone did not affect cell viability, whereas RC-3095 at an intermediate dose significantly increased cell number. Although HDACi are promising agents to inhibit MB growth, the present results provide preliminary evidence that combining HDACi with bombesin receptor antagonists is not an effective strategy to improve the effects of HDACi against MB cells.

  16. Thioester derivatives of the natural product psammaplin A as potent histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Matthias G. J. Baud

    2013-01-01

    Full Text Available There has been significant interest in the bioactivity of the natural product psammaplin A, most recently as a potent and isoform selective HDAC inhibitor. Here we report our preliminary studies on thioester HDAC inhibitors derived from the active monomeric (thiol form of psammaplin A, as a means to improve compound delivery into cells. We have discovered that such compounds exhibit both potent cytotoxicity and enzymatic inhibitory activity against recombinant HDAC1. The latter effect is surprising since previous SAR suggested that modification of the thiol functionality should detrimentally affect HDAC potency. We therefore also report our preliminary studies on the mechanism of action of this observed effect.

  17. Prediction of pH-dependent aqueous solubility of Histone Deacetylase (HDAC) inhibitors

    DEFF Research Database (Denmark)

    Kouskoumvekaki, Irene; Hansen, Niclas Tue; Bjorkling, F.

    2008-01-01

    on the series of HDAC inhibitors by use of Self-Organizing Maps (SOM) and 2D-projection of the HDAC inhibitors on the chemical space of the training data set of the artificial neural network (ANN) module. The model was refined for the particular chemical space of interest, which led to two modifications...... can develop models that are more accurate in predicting differences in the solubility of structurally very similar compounds than models that have been trained on structurally unbiased, diverse data sets. Such 'tailor-made' models have the potential to become trustworthy enough to replace time...

  18. Experimental in vivo and in vitro treatment with a new histone deacetylase inhibitor belinostat inhibits the growth of pancreatic cancer

    International Nuclear Information System (INIS)

    Dovzhanskiy, Dmitriy I; Arnold, Stefanie M; Hackert, Thilo; Oehme, Ina; Witt, Olaf; Felix, Klaus; Giese, Nathalia; Werner, Jens

    2012-01-01

    Treatment options for pancreatic ductal adenocarcinoma (PDAC) are limited. Histone deacetylase inhibitors are a new and promising drug family with strong anticancer activity. The aim of this study was to examine the efficacy of in vitro and in vivo treatment with the novel pan-HDAC inhibitor belinostat on the growth of human PDAC cells. The proliferation of tumour cell lines (T3M4, AsPC-1 and Panc-1) was determined using an MTT assay. Apoptosis was analysed using flow cytometry. Furthermore, p21 Cip1/Waf1 and acetylated histone H4 (acH4) expression were confirmed by immunoblot analysis. The in vivo effect of belinostat was studied in a chimeric mouse model. Antitumoural activity was assessed by immunohistochemistry for Ki-67. Treatment with belinostat resulted in significant in vitro and in vivo growth inhibition of PDAC cells. This was associated with a dose-dependent induction of tumour cell apoptosis. The apoptotic effect of gemcitabine was further enhanced by belinostat. Moreover, treatment with belinostat increased expression of the cell cycle regulator p21 Cip1/Waf1 in Panc-1, and of acH4 in all cell lines tested. The reductions in xenograft tumour volumes were associated with inhibition of cell proliferation. Experimental treatment of human PDAC cells with belinostat is effective in vitro and in vivo and may enhance the efficacy of gemcitabine. A consecutive study of belinostat in pancreatic cancer patients alone, and in combination with gemcitabine, could further clarify these effects in the clinical setting

  19. Deep brain stimulation, histone deacetylase inhibitors and glutamatergic drugs rescue resistance to fear extinction in a genetic mouse model

    Science.gov (United States)

    Whittle, Nigel; Schmuckermair, Claudia; Gunduz Cinar, Ozge; Hauschild, Markus; Ferraguti, Francesco; Holmes, Andrew; Singewald, Nicolas

    2013-01-01

    Anxiety disorders are characterized by persistent, excessive fear. Therapeutic interventions that reverse deficits in fear extinction represent a tractable approach to treating these disorders. We previously reported that 129S1/SvImJ (S1) mice show no extinction learning following normal fear conditioning. We now demonstrate that weak fear conditioning does permit fear reduction during massed extinction training in S1 mice, but reveals specific deficiency in extinction memory consolidation/retrieval. Rescue of this impaired extinction consolidation/retrieval was achieved with d-cycloserine (N-methly-d-aspartate partial agonist) or MS-275 (histone deacetylase (HDAC) inhibitor), applied after extinction training. We next examined the ability of different drugs and non-pharmacological manipulations to rescue the extreme fear extinction deficit in S1 following normal fear conditioning with the ultimate aim to produce low fear levels in extinction retrieval tests. Results showed that deep brain stimulation (DBS) by applying high frequency stimulation to the nucleus accumbens (ventral striatum) during extinction training, indeed significantly reduced fear during extinction retrieval compared to sham stimulation controls. Rescue of both impaired extinction acquisition and deficient extinction consolidation/retrieval was achieved with prior extinction training administration of valproic acid (a GABAergic enhancer and HDAC inhibitor) or AMN082 [metabotropic glutamate receptor 7 (mGlu7) agonist], while MS-275 or PEPA (AMPA receptor potentiator) failed to affect extinction acquisition in S1 mice. Collectively, these data identify potential beneficial effects of DBS and various drug treatments, including those with HDAC inhibiting or mGlu7 agonism properties, as adjuncts to overcome treatment resistance in exposure-based therapies. This article is part of a Special Issue entitled ‘Cognitive Enhancers’. PMID:22722028

  20. Histone deacetylase inhibitors reduce the number of herpes simplex virus-1 genomes initiating expression in individual cells

    Directory of Open Access Journals (Sweden)

    Lev Shapira

    2016-12-01

    Full Text Available Although many viral particles can enter a single cell, the number of viral genomes per cell that establish infection is limited. However, mechanisms underlying this restriction were not explored in depth. For herpesviruses, one of the possible mechanisms suggested is chromatinization and silencing of the incoming genomes. To test this hypothesis, we followed infection with three herpes simplex virus 1 (HSV-1 fluorescence-expressing recombinants in the presence or absence of histone deacetylases inhibitors (HDACi’s. Unexpectedly, a lower number of viral genomes initiated expression in the presence of these inhibitors. This phenomenon was observed using several HDACi: Trichostatin A (TSA, Suberohydroxamic Acid (SBX, Valporic Acid (VPA and Suberoylanilide Hydoxamic Acid (SAHA. We found that HDACi presence did not change the progeny outcome from the infected cells but did alter the kinetic of the gene expression from the viral genomes. Different cell types (HFF, Vero and U2OS, which vary in their capability to activate intrinsic and innate immunity, show a cell specific basal average number of viral genomes establishing infection. Importantly, in all cell types, treatment with TSA reduced the number of viral genomes. ND10 nuclear bodies are known to interact with the incoming herpes genomes and repress viral replication. The viral immediate early protein, ICP0, is known to disassemble the ND10 bodies and to induce degradation of some of the host proteins in these domains. HDACi treated cells expressed higher levels of some of the host ND10 proteins (PML and ATRX, which may explain the lower number of viral genomes initiating expression per cell. Corroborating this hypothesis, infection with three HSV-1 recombinants carrying a deletion in the gene coding for ICP0, show a reduction in the number of genomes being expressed in U2OS cells. We suggest that alterations in the levels of host proteins involved in intrinsic antiviral defense may result in

  1. Experimental study on inhibitory effects of histone deacetylase inhibitor MS-275 and TSA on bladder cancer cells.

    Science.gov (United States)

    Qu, Wei; Kang, Yin-Dong; Zhou, Mei-Sheng; Fu, Li-Li; Hua, Zhen-Hao; Wang, Li-Ming

    2010-01-01

    To investigate the inhibitory effect of histone deacetylase (HDAC) inhibitors (MS-275 and TSA) on T24 human bladder cancer cells in vitro, and explore the possible mechanism. The MTT assay was employed to evaluate the inhibitory effect of MS-275 and TSA on T24 cell growth. FCM was used to analyze the variation of T24 cell cycle distribution and the apoptotic ratio after T24 cells were treated with MS-275 and TSA. Histone acetylation level was detected by Western blot. mRNA expression of p21 WAF1/CIP1, cyclin A, and cyclin E was measured by FQ-PCR. Dynamic changes of Bcl-2 and bax expression were detected by FCM. MS-275 and TSA inhibited T24 cell growth in a concentration and time-dependent manner. Treatment with 4 μmol/l MS-275 or 0.4 μmol/l TSA blocked cell cycling in the G0/G1 phase and induced a significant increase in cell apoptosis. MS-275 and TSA significantly increased the level of histone acetylation, induced p21CIP1WAF1 mRNA expression, and inhibited cyclin A mRNA expression, though no significant effect was observed on cyclin E. Bcl-2 expression was down-regulated, while bax expression was up-regulated. HDAC inhibitors can block bladder cancer cell cycle in vitro and induce apoptosis. The molecular mechanism may be associated with increased level of histone acetylation, down-regulation of p21WAF1/CIP1 expression, up-regulation of cyclin A expression, and dynamic change of bcl-2 and bax expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts

    Science.gov (United States)

    He, Yingzi; Cai, Chengfu; Tang, Dongmei; Sun, Shan; Li, Huawei

    2014-01-01

    In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying hair cell development and regeneration. Histone deacetylase (HDAC) activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU) incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA) or valproic acid (VPA) increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21Cip1 and p27Kip1 expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line. PMID:25431550

  3. Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells.

    Science.gov (United States)

    Oh, Eun-Taex; Park, Moon-Taek; Choi, Bo-Hwa; Ro, Seonggu; Choi, Eun-Kyung; Jeong, Seong-Yun; Park, Heon Joo

    2012-04-01

    Histone deacetylase (HDAC) plays an important role in cancer onset and progression. Therefore, inhibition of HDAC offers potential as an effective cancer treatment regimen. CG200745, (E)-N(1)-(3-(dimethylamino)propyl)-N(8)-hydroxy-2-((naphthalene-1-loxy)methyl)oct-2-enediamide, is a novel HDAC inhibitor presently undergoing a phase I clinical trial. Enhancement of p53 acetylation by HDAC inhibitors induces cell cycle arrest, differentiation, and apoptosis in cancer cells. The purpose of the present study was to investigate the role of p53 acetylation in the cancer cell death caused by CG200745. CG200745-induced clonogenic cell death was 2-fold greater in RKO cells expressing wild-type p53 than in p53-deficient RC10.1 cells. CG200745 treatment was also cytotoxic to PC-3 human prostate cancer cells, which express wild-type p53. CG200745 increased acetylation of p53 lysine residues K320, K373, and K382. CG200745 induced the accumulation of p53, promoted p53-dependent transactivation, and enhanced the expression of MDM2 and p21(Waf1/Cip1) proteins, which are encoded by p53 target genes. An examination of CG200745 effects on p53 acetylation using cells transfected with various p53 mutants showed that cells expressing p53 K382R mutants were significantly resistant to CG200745-induced clonogenic cell death compared with wild-type p53 cells. Moreover, p53 transactivation in response to CG200745 was suppressed in all cells carrying mutant forms of p53, especially K382R. Taken together, these results suggest that acetylation of p53 at K382 plays an important role in CG200745-induced p53 transactivation and clonogenic cell death.

  4. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts

    Directory of Open Access Journals (Sweden)

    Yingzi eHe

    2014-11-01

    Full Text Available In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, nonmammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well suited for studying hair cell development and regeneration. Histone deacetylase (HDAC activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA or valproic acid (VPA increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21Cip1 and p27Kip1 expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line.

  5. Mechanism for the differentiation of EoL-1 cells into eosinophils by histone deacetylase inhibitors.

    Science.gov (United States)

    Kaneko, Motoko; Ishihara, Kenji; Takahashi, Aki; Hong, Jangja; Hirasawa, Noriyasu; Zee, Okpyo; Ohuchi, Kazuo

    2007-01-01

    EoL-1 cells have a FIP1L1-PDGFRA fusion gene which causes the transformation of eosinophilic precursor cells into leukemia cells. Recently, we suggested that the induction of differentiation of EoL-1 cells into eosinophils by the HDAC inhibitors apicidin and n-butyrate is due to the continuous inhibition of HDACs. However, neither apicidin nor n-butyrate inhibited the expression of FIP1L1-PDGFRA mRNA, although both these inhibitors suppressed cell proliferation. Therefore, in this study, we analyzed whether the levels of FIP1L1-PDGFRalpha protein and phosphorylated-Stat5 involved in the signaling for the proliferation of EoL-1 cells are attenuated by HDAC inhibitors. EoL-1 cells were incubated in the presence of apicidin, TSA or n-butyrate. FIP1L1-PDGFRalpha and phosphorylated-Stat5 were detected by Western blotting. Treatment of EoL-1 cells with apicidin at 100 nM or n-butyrate at 500 microM decreased the levels of FIP1L1-PDGFRalpha protein and phosphorylated-Stat5, while that with trichostatin A at 30 nM did not. The decrease in the level of FIP1L1-PDGFRalpha protein caused by apicidin and n-butyrate might be one of the mechanisms by which EoL-1 cells are induced to differentiate into eosinophils by these HDAC inhibitors.

  6. Synthesis and Pharmacological Evaluation of Selective Histone Deacetylase 6 Inhibitors in Melanoma Models

    Czech Academy of Sciences Publication Activity Database

    Tavares, M. T.; Shen, S.; Knox, T.; Hadley, M.; Kutil, Zsofia; Bařinka, Cyril; Villagra, A.; Kozikowski, A. P.

    2017-01-01

    Roč. 8, č. 10 (2017), s. 1031-1036 ISSN 1948-5875 R&D Projects: GA ČR GA15-19640S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : HDAC6 inhibitors * nexturastat A * melanoma Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.746, year: 2016

  7. Vorinostat synergizes with ridaforolimus and abrogates the ridaforolimus-induced activation of AKT in synovial sarcoma cells.

    Science.gov (United States)

    Morgan, Sherif S; Cranmer, Lee D

    2014-11-18

    Curative treatments for patients with metastatic synovial sarcoma (SS) do not exist, and such patients have a poor prognosis. We explored combinations of molecularly-targeted and cytotoxic agents to identify synergistic treatment combinations in SS cells. Two SS cell lines (HS-SY-II and SYO-I) were treated with single agents or combinations of molecularly targeted therapies (HDAC inhibitor, vorinostat; mTOR inhibitor, ridaforolimus) and cytotoxic agents. After 72 hours, cell viability was measured using the MTS cell proliferation assay. Combination Indices (CI) were calculated to determine whether each combination was synergistic, additive, or antagonistic. Western Blot analysis assessed alterations in total and phospho-AKT protein levels in response to drug treatment. We determined the single-agent IC50 for ridaforolimus, vorinostat, doxorubicin, and melphalan in HS-SY-II and SYO-I. Synergism was apparent in cells co-treated with ridaforolimus and vorinostat: CI was 0.28 and 0.63 in HS-SY-II and SYO-I, respectively. Ridaforolimus/doxorubicin and ridaforolimus/melphalan exhibited synergism in both cell lines. An additive effect was observed with combination of vorinostat/doxorubicin in both cell lines. Vorinostat/melphalan was synergistic in HS-SY-II and additive in SYO-I. Western blot analysis demonstrated that ridaforolimus increased pAKT-ser473 levels; this effect was abrogated by vorinostat co-treatment. The combination of ridaforolimus and vorinostat demonstrates in vitro synergism in SS. Addition of vorinostat abrogated ridaforolimus-induced AKT activation. Since AKT activation is a possible mechanism of resistance to mTOR inhibitors, adding vorinostat (or another HDAC inhibitor) may be a route to circumvent AKT-mediated resistance to mTOR inhibitors.

  8. Unlocking the chromatin of adenoid cystic carcinomas using HDAC inhibitors sensitize cancer stem cells to cisplatin and induces tumor senescence

    Directory of Open Access Journals (Sweden)

    Luciana O. Almeida

    2017-05-01

    Full Text Available Adenoid cystic carcinoma (ACC is an uncommon malignancy of the salivary glands that is characterized by local recurrence and distant metastasis due to its resistance to conventional therapy. Platinum-based therapies have been extensively explored as a treatment for ACC, but they show little effectiveness. Studies have shown that a specific group of tumor cells, harboring characteristics of cancer stem cells (CSCs, are involved in chemoresistance of myeloid leukemias, breast, colorectal and pancreatic carcinomas. Therapeutic strategies that target CSCs improve the survival of patients by decreasing the rates of tumor relapse, and epigenetic drugs, such as histone deacetylase inhibitors (HDACi, have shown promising results in targeting CSCs. In this study, we investigated the effect of the HDACi Suberoylanilide hydroxamic acid (Vorinostat, and cisplatin, alone or in combination, on CSCs and non-CSCs from ACC. We used CSCs as a biological marker for tumor resistance to therapy in patient-derived xenograft (PDX samples and ACC primary cells. We found that cisplatin reduced tumor viability, but enriched the population of CSCs. Systemic administration of Vorinostat reduced the number of detectable CSCs in vivo and in vitro, and a low dose of Vorinostat decreased tumor cell viability. However, the combination of Vorinostat and cisplatin was extremely effective in depleting CSCs and reducing tumor viability in all ACC primary cells by activating cellular senescence. These observations suggest that HDACi and intercalating agents act more efficiently in combination to destroy tumor cells and their stem cells.

  9. EFFECTS OF HISTONE DEACETYLASE INHIBITOR, SAHA, ON EFFECTOR AND FOXP3+ REGULATORY T CELLS IN RHESUS MACAQUES

    Science.gov (United States)

    Johnson, Jennifer; Pahuja, Anil; Graham, Melanie; Hering, Bernhard; Hancock, Wayne W.; Pratima, Bansal-Pakala

    2008-01-01

    SAHA, a histone deacetylase inhibitor (HDACi), is clinically approved for treatment of cutaneous T-cell lymphoma. Although the exact underlying mechanisms are unknown, HDACi arrest the cell cycle in rapidly proliferating tumor cells and promote their apoptosis. HDACi were also recently shown to enhance the production and suppressive functions of Foxp3+ regulatory T (Treg) cells in rodents, leading us to begin to investigate the actions of HDACi on rhesus monkey T cells for the sake of potential preclinical applications. In this study, we show that SAHA inhibits polyclonal activation and proliferation of rhesus T cells and that the anti-proliferative effects are due to inhibition of T effector (Teff) cells and enhancement of Treg cells. Cryopreserved rhesus macaque splenocytes were CFSE labeled, stimulated with anti-CD3/anti-CD28 and cultured for 5 days in the presence of varying concentrations of SAHA. Samples were then co-stained to evaluate CD4 and CD8 expression. 10 and 5μM concentrations of SAHA were toxic to splenocytes. Proliferation was inhibited by 57% in CD4 cells and 47% in CD8 cells when unseparated splenocytes were cultured with 3 μM SAHA. Effector cells alone showed a decreased inhibition to proliferation when cultured with 3 μM and 1 μM SAHA when compared to Teff plus Treg cells. Our data suggest that SAHA can be used as part of an immunosuppressive protocol to enhance graft survival by limiting Teff cell proliferation as well as increasing Treg cells, thereby promoting tolerance. PMID:18374101

  10. Histone deacetylase inhibitor trichostatin A resensitizes gemcitabine resistant urothelial carcinoma cells via suppression of TG-interacting factor

    International Nuclear Information System (INIS)

    Yeh, Bi-Wen; Li, Wei-Ming; Li, Ching-Chia; Kang, Wan-Yi; Huang, Chun-Nung; Hour, Tzyh-Chyuan; Liu, Zi-Miao

    2016-01-01

    Gemcitabine and cisplatin (GC) has been widely used for advanced and metastatic urothelial carcinoma (UC). However, resistance to this remedy has been noticed. We have demonstrated that increase of TG-interacting factor (TGIF) in specimens is associated with worse prognosis of upper tract UC (UTUC) patients. The roles of TGIF in the gemcitabine resistance of UC were explored. Specimens of 23 locally advanced/advanced stage UTUC patients who received GC systemic chemotherapy after radical nephroureterectomy were collected to evaluate the alterations of TGIF in the resistance to the remedy by using immunohistochemistry. In vitro characterizations of mechanisms mediating TGIF in gemcitabine resistance were conducted by analyzing NTUB1 cells and their gemcitabine-resistant subline, NGR cells. Our results show that increased TGIF is significantly associated with chemo-resistance, poor progression-free survival, and higher cancer-related deaths of UTUC patients. Higher increases of TGIF, p-AKT Ser473 and invasive ability were demonstrated in NGR cells. Overexpression of TGIF in NTUB1 cells upregulated p-AKT Ser473 activation, enhanced migration ability, and attenuated cellular sensitivity to gemcitabine. Knockdown of TGIF in NGR cells downregulated p-AKT Ser473 activation, declined migration ability, and enhanced cellular sensitivity to gemcitabine. In addition, histone deacetylases inhibitor trichostatin A (TSA) inhibited TGIF, p-AKT Ser473 expression and migration ability. Synergistic effects of gemcitabine and TSA on NGR cells were also demonstrated. Collectively, TGIF contributes to the gemcitabine resistance of UC via AKT activation. Combined treatment with gemcitabine and TSA might be a promising therapeutic remedy to improve the gemcitabine resistance of UC. - Highlights: • TGIF expression in UC cells is associated with chemoresistance to gemcitabine. • TGIF-regulated AKT activation contributes to the gemcitabine resistance. • Increased TGIF is significantly

  11. Histone deacetylase inhibitor trichostatin A resensitizes gemcitabine resistant urothelial carcinoma cells via suppression of TG-interacting factor

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Bi-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Li, Wei-Ming [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Li, Ching-Chia [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Kang, Wan-Yi [Department of Pathology, Kuo General Hospital, Tainan 701, Taiwan (China); Huang, Chun-Nung [Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Hour, Tzyh-Chyuan [Institute of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Liu, Zi-Miao [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); and others

    2016-01-01

    Gemcitabine and cisplatin (GC) has been widely used for advanced and metastatic urothelial carcinoma (UC). However, resistance to this remedy has been noticed. We have demonstrated that increase of TG-interacting factor (TGIF) in specimens is associated with worse prognosis of upper tract UC (UTUC) patients. The roles of TGIF in the gemcitabine resistance of UC were explored. Specimens of 23 locally advanced/advanced stage UTUC patients who received GC systemic chemotherapy after radical nephroureterectomy were collected to evaluate the alterations of TGIF in the resistance to the remedy by using immunohistochemistry. In vitro characterizations of mechanisms mediating TGIF in gemcitabine resistance were conducted by analyzing NTUB1 cells and their gemcitabine-resistant subline, NGR cells. Our results show that increased TGIF is significantly associated with chemo-resistance, poor progression-free survival, and higher cancer-related deaths of UTUC patients. Higher increases of TGIF, p-AKT{sup Ser473} and invasive ability were demonstrated in NGR cells. Overexpression of TGIF in NTUB1 cells upregulated p-AKT{sup Ser473} activation, enhanced migration ability, and attenuated cellular sensitivity to gemcitabine. Knockdown of TGIF in NGR cells downregulated p-AKT{sup Ser473} activation, declined migration ability, and enhanced cellular sensitivity to gemcitabine. In addition, histone deacetylases inhibitor trichostatin A (TSA) inhibited TGIF, p-AKT{sup Ser473} expression and migration ability. Synergistic effects of gemcitabine and TSA on NGR cells were also demonstrated. Collectively, TGIF contributes to the gemcitabine resistance of UC via AKT activation. Combined treatment with gemcitabine and TSA might be a promising therapeutic remedy to improve the gemcitabine resistance of UC. - Highlights: • TGIF expression in UC cells is associated with chemoresistance to gemcitabine. • TGIF-regulated AKT activation contributes to the gemcitabine resistance. • Increased

  12. Breakdown of the FLT3-ITD/STAT5 axis and synergistic apoptosis induction by the histone deacetylase inhibitor panobinostat and FLT3-specific inhibitors.

    Science.gov (United States)

    Pietschmann, Kristin; Bolck, Hella Anna; Buchwald, Marc; Spielberg, Steffi; Polzer, Harald; Spiekermann, Karsten; Bug, Gesine; Heinzel, Thorsten; Böhmer, Frank-Dietmar; Krämer, Oliver H

    2012-11-01

    Activating mutations of the class III receptor tyrosine kinase FLT3 are the most frequent molecular aberration in acute myeloid leukemia (AML). Mutant FLT3 accelerates proliferation, suppresses apoptosis, and correlates with poor prognosis. Therefore, it is a promising therapeutic target. Here, we show that RNA interference against FLT3 with an internal tandem duplication (FLT3-ITD) potentiates the efficacy of the histone deacetylase inhibitor (HDACi) panobinostat (LBH589) against AML cells expressing FLT3-ITD. Similar to RNA interference, tyrosine kinase inhibitors (TKI; AC220/cpd.102/PKC412) in combination with LBH589 exhibit superior activity against AML cells. Median dose-effect analyses of drug-induced apoptosis rates of AML cells (MV4-11 and MOLM-13) revealed combination index (CI) values indicating strong synergism. AC220, the most potent and FLT3-specific TKI, shows highest synergism with LBH589 in the low nanomolar range. A 4-hour exposure to LBH589 + AC220 already generates more than 50% apoptosis after 24 hours. Different cell lines lacking FLT3-ITD as well as normal peripheral blood mononuclear cells are not significantly affected by LBH589 + TKI, showing the specificity of this treatment regimen. Immunoblot analyses show that LBH589 + TKI induce apoptosis via degradation of FLT3-ITD and its prosurvival target STAT5. Previously, we showed the LBH589-induced proteasomal degradation of FLT3-ITD. Here, we show that activated caspase-3 also contributes to the degradation of FLT3-ITD and that STAT5 is a direct target of this protease. Our data strongly emphasize HDACi/TKI drug combinations as promising modality for the treatment of FLT3-ITD-positive AMLs. ©2012 AACR.

  13. Novel histone deacetylase inhibitor AR-42 exhibits antitumor activity in pancreatic cancer cells by affecting multiple biochemical pathways.

    Directory of Open Access Journals (Sweden)

    Yi-Jin Chen

    Full Text Available Pancreatic cancer is one of the most lethal types of cancer with a 5-year survival rate of ~5%. Histone deacetylases (HDACs participate in many cellular processes, including carcinogenesis, and pharmacological inhibition of HDACs has emerged as a potential therapeutic strategy. In this study, we explored antitumor activity of the novel HDAC inhibitor AR-42 in pancreatic cancer.Human pancreatic cancer cell lines BxPC-3 and PANC-1 were used in this study. Real-time PCR, RT-PCR, and western blotting were employed to investigate expression of specific genes and proteins, respectively. Translocation of apoptosis-inducing factor was investigated by immunofluorescence and subcellular fractionation. The number of apoptotic cells, cell cycle stages, and reactive oxygen species (ROS generation levels were determined by flow cytometry. Cell invasiveness was examined by the Matrigel invasion assay. Efficacy of AR-42 in vivo was evaluated by utilizing BxPC-3 xenograft mouse model.AR-42 inhibited pancreatic cancer cell proliferation by causing G2/M cell cycle arrest via regulating expression levels of genes and proteins involved in cell cycle. AR-42 also induced ROS generation and DNA damage, triggering apoptosis of pancreatic cancer cells via both caspase-3-dependent and caspase-3-independent pathways. In addition, AR-42 increased expression levels of negative regulators of p53 (miR-125b, miR-30d, and miR33, which could contribute to lower expression level of mutant p53 in pancreatic cancer cells. Cell invasion assay showed that AR-42 reduced cancer cell aggressiveness and significantly diminished BxPC-3 xenograft tumor growth in vivo.AR-42, a novel HDAC inhibitor, inhibited pancreatic cancer cells by regulating p53 expression, inducing cell cycle arrest, particularly at the G2/M stage, and activating multiple apoptosis pathways. Additionally, AR-42 inhibited cell invasiveness and potently suppressed pancreatic cancer tumors in vivo. We conclude that by

  14. Downregulation of HMGA2 by the pan-deacetylase inhibitor panobinostat is dependent on hsa-let-7b expression in liver cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Di Fazio, Pietro, E-mail: difazio@med.uni-marburg.de [Institute for Surgical Research, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg (Germany); Montalbano, Roberta [Institute for Surgical Research, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg (Germany); Neureiter, Daniel; Alinger, Beate [Institute of Pathology, Paracelsus Private Medical University of Salzburg, Salzburg (Austria); Schmidt, Ansgar [Institute for Pathology, Philipps University of Marburg, Marburg (Germany); Merkel, Anna Lena; Quint, Karl; Ocker, Matthias [Institute for Surgical Research, Philipps University of Marburg, Baldingerstrasse, 35043 Marburg (Germany)

    2012-09-10

    Inhibitors of protein deacetylases represent a novel therapeutic option for cancer diseases due to their effects on transcriptional regulation by interfering with histones acetylation and on several other cellular pathways. Recently, their ability to modulate several transcription factors and, interestingly, also co-factors, which actively participate in formation and modulation of transcription complexes was shown. We here investigate whether HMGA2 (High Mobility Group AT-2 hook), a nuclear non-histone transcriptional co-factor with known oncogenic properties, can be influenced by the novel pan-deacetylase inhibitor panobinostat (LBH589) in human hepatocellular carcinoma models. Panobinostat strongly downregulated HMGA2 in HepG2 and Hep3B cells; this effect was mediated by transcriptional upregulation and promotion of the maturation of the tumorsuppressor miRNA hsa-let-7b, which could inhibit HMGA2 expression via RNA interference pathways. siRNA knockdown of HMGA2 or transfection of hsa-let-7b mimicking oligonucleotides confirmed the role of HMGA2 in regulating cell proliferation and apoptosis in liver cancer cell lines. Co-incubation with panobinostat showed an additive effect on inhibition of cell proliferation using an impedance-based real-time cell analyzer. Treatment of HepG2 xenografts with panobinostat also led to a downregulation of HMGA2 in vivo. These findings show that pan-deacetylase inhibitors also modulate other signaling pathways and networks than histone modifications to influence cell fate. -- Highlights: Black-Right-Pointing-Pointer Panobinostat for the treatment of liver cancer. Black-Right-Pointing-Pointer Panobinostat meddles with miRNAs-dependent transcriptional and translational control. Black-Right-Pointing-Pointer Tumorsuppressor miRNA hsa-let-7b upregulation. Black-Right-Pointing-Pointer HMGA2 is downregulated via RNA interference pathways mediated by hsa-let-7b. Black-Right-Pointing-Pointer Panobinostat determines inhibition of

  15. NBM-HD-1: A Novel Histone Deacetylase Inhibitor with Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Wei-Jan Huang

    2012-01-01

    Full Text Available HDAC inhibitors (HDACis have been developed as promising anticancer agents in recent years. In this study, we synthesized and characterized a novel HDACi, termed NBM-HD-1. This agent was derived from the semisynthesis of propolin G, isolated from Taiwanese green propolis (TGP, and was shown to be a potent suppressor of tumor cell growth in human breast cancer cells (MCF-7 and MDA-MB-231 and rat glioma cells (C6, with an IC50 ranging from 8.5 to 10.3 μM. Western blot demonstrated that levels of p21(Waf1/Cip1, gelsolin, Ac-histone 4, and Ac-tubulin markedly increased after treatment of cancer cells with NBM-HD-1. After NBM-HD-1 treatment for 1–4 h, p-PTEN and p-AKT levels were markedly decreased. Furthermore, we also found the anticancer activities of NBM-HD-1 in regulating cell cycle regulators. Treatment with NBM-HD-1, p21(Waf1/Cip1 gene expression had markedly increased while cyclin B1 and D1 gene expressions had markedly decreased. On the other hand, we found that NBM-HD-1 increased the expressions of tumor-suppressor gene p53 in a dose-dependent manner. Finally, we showed that NBM-HD-1 exhibited potent antitumor activity in a xenograft model. In conclusion, this study demonstrated that this compound, NBM-HD-1, is a novel and potent HDACi with anticancer activity in vitro and in vivo.

  16. Class 1-Selective Histone Deacetylase (HDAC) Inhibitors Enhance HIV Latency Reversal while Preserving the Activity of HDAC Isoforms Necessary for Maximal HIV Gene Expression.

    Science.gov (United States)

    Zaikos, Thomas D; Painter, Mark M; Sebastian Kettinger, Nadia T; Terry, Valeri H; Collins, Kathleen L

    2018-03-15

    Combinations of drugs that affect distinct mechanisms of HIV latency aim to induce robust latency reversal leading to cytopathicity and elimination of the persistent HIV reservoir. Thus far, attempts have focused on combinations of protein kinase C (PKC) agonists and pan-histone deacetylase inhibitors (HDIs) despite the knowledge that HIV gene expression is regulated by class 1 histone deacetylases. We hypothesized that class 1-selective HDIs would promote more robust HIV latency reversal in combination with a PKC agonist than pan-HDIs because they preserve the activity of proviral factors regulated by non-class 1 histone deacetylases. Here, we show that class 1-selective agents used alone or with the PKC agonist bryostatin-1 induced more HIV protein expression per infected cell. In addition, the combination of entinostat and bryostatin-1 induced viral outgrowth, whereas bryostatin-1 combinations with pan-HDIs did not. When class 1-selective HDIs were used in combination with pan-HDIs, the amount of viral protein expression and virus outgrowth resembled that of pan-HDIs alone, suggesting that pan-HDIs inhibit robust gene expression induced by class 1-selective HDIs. Consistent with this, pan-HDI-containing combinations reduced the activity of NF-κB and Hsp90, two cellular factors necessary for potent HIV protein expression, but did not significantly reduce overall cell viability. An assessment of viral clearance from in vitro cultures indicated that maximal protein expression induced by class 1-selective HDI treatment was crucial for reservoir clearance. These findings elucidate the limitations of current approaches and provide a path toward more effective strategies to eliminate the HIV reservoir. IMPORTANCE Despite effective antiretroviral therapy, HIV evades eradication in a latent form that is not affected by currently available drug regimens. Pharmacologic latency reversal that leads to death of cellular reservoirs has been proposed as a strategy for

  17. Transcriptional Modulation of Human Endogenous Retroviruses in Primary CD4+ T Cells Following Vorinostat Treatment

    Directory of Open Access Journals (Sweden)

    Cory H. White

    2018-04-01

    Full Text Available The greatest obstacle to a cure for HIV is the provirus that integrates into the genome of the infected cell and persists despite antiretroviral therapy. A “shock and kill” approach has been proposed as a strategy for an HIV cure whereby drugs and compounds referred to as latency-reversing agents (LRAs are used to “shock” the silent provirus into active replication to permit “killing” by virus-induced pathology or immune recognition. The LRA most utilized to date in clinical trials has been the histone deacetylase (HDAC inhibitor—vorinostat. Potentially, pathological off-target effects of vorinostat may result from the activation of human endogenous retroviruses (HERVs, which share common ancestry with exogenous retroviruses including HIV. To explore the effects of HDAC inhibition on HERV transcription, an unbiased pharmacogenomics approach (total RNA-Seq was used to evaluate HERV expression following the exposure of primary CD4+ T cells to a high dose of vorinostat. Over 2,000 individual HERV elements were found to be significantly modulated by vorinostat, whereby elements belonging to the ERVL family (e.g., LTR16C and LTR33 were predominantly downregulated, in contrast to LTR12 elements of the HERV-9 family, which exhibited the greatest signal, with the upregulation of 140 distinct elements. The modulation of three different LTR12 elements by vorinostat was confirmed by droplet digital PCR along a dose–response curve. The monitoring of LTR12 expression during clinical trials with vorinostat may be indicated to assess the impact of this HERV on the human genome and host immunity.

  18. Blockade of the ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Toshiaki; Ozaki, Kei-ichi; Fujio, Kohsuke; Kajikawa, Shu-hei [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Uesato, Shin-ichi [Department of Biotechnology, Faculty of Engineering, Kansai University, Osaka 564-8680 (Japan); Watanabe, Kazushi [Proubase Technology Inc., Kanagawa 211-0063 (Japan); Tanimura, Susumu [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Koji, Takehiko [Department of Histology and Cell Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Kohno, Michiaki, E-mail: kohnom@nagasaki-u.ac.jp [Laboratory of Cell Regulation, Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Proubase Technology Inc., Kanagawa 211-0063 (Japan); Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501 (Japan)

    2013-04-19

    Highlights: •Blockade of the ERK pathway enhances the anticancer efficacy of HDAC inhibitors. •MEK inhibitors sensitize human tumor xenografts to HDAC inhibitor cytotoxicity. •Such the enhanced efficacy is achieved by a transient blockade of the ERK pathway. •This drug combination provides a promising therapeutic strategy for cancer patients. -- Abstract: The ERK pathway is up-regulated in various human cancers and represents a prime target for mechanism-based approaches to cancer treatment. Specific blockade of the ERK pathway alone induces mostly cytostatic rather than pro-apoptotic effects, however, resulting in a limited therapeutic efficacy of the ERK kinase (MEK) inhibitors. We previously showed that MEK inhibitors markedly enhance the ability of histone deacetylase (HDAC) inhibitors to induce apoptosis in tumor cells with constitutive ERK pathway activation in vitro. To evaluate the therapeutic efficacy of such drug combinations, we administered the MEK inhibitor PD184352 or AZD6244 together with the HDAC inhibitor MS-275 in nude mice harboring HT-29 or H1650 xenografts. Co-administration of the MEK inhibitor markedly sensitized the human xenografts to MS-275 cytotoxicity. A dose of MS-275 that alone showed only moderate cytotoxicity thus suppressed the growth of tumor xenografts almost completely as well as induced a marked reduction in tumor cellularity when administered with PD184352 or AZD6244. The combination of the two types of inhibitor also induced marked oxidative stress, which appeared to result in DNA damage and massive cell death, specifically in the tumor xenografts. The enhanced therapeutic efficacy of the drug combination was achieved by a relatively transient blockade of the ERK pathway. Administration of both MEK and HDAC inhibitors represents a promising chemotherapeutic strategy with improved safety for cancer patients.

  19. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Krauze, Andra V. [Radiation Oncology Branch, National Cancer Institute/National Institutes of Health, Bethesda, Maryland (United States); Myrehaug, Sten D. [Department of Radiation Oncology, Lakeridge Health Durham Regional Cancer Centre, Oshawa, Ontario (Canada); Chang, Michael G.; Holdford, Diane J. [Massey Cancer Center Virginia Commonwealth University, Richmond, Virginia (United States); Smith, Sharon; Shih, Joanna; Tofilon, Philip J. [Radiation Oncology Branch, National Cancer Institute/National Institutes of Health, Bethesda, Maryland (United States); Fine, Howard A. [New York University Langone Medical Center, New York, New York (United States); Camphausen, Kevin, E-mail: camphauk@mail.nih.gov [Radiation Oncology Branch, National Cancer Institute/National Institutes of Health, Bethesda, Maryland (United States)

    2015-08-01

    Purpose: Valproic acid (VPA) is an antiepileptic agent with histone deacetylase inhibitor (HDACi) activity shown to sensitize glioblastoma (GBM) cells to radiation in preclinical models. We evaluated the addition of VPA to standard radiation therapy (RT) plus temozolomide (TMZ) in patients with newly diagnosed GBM. Methods and Materials: Thirty-seven patients with newly diagnosed GBM were enrolled between July 2006 and April 2013. Patients received VPA, 25 mg/kg orally, divided into 2 daily doses concurrent with RT and TMZ. The first dose of VPA was given 1 week before the first day of RT at 10 to 15 mg/kg/day and subsequently increased up to 25 mg/kg/day over the week prior to radiation. VPA- and TMZ-related acute toxicities were evaluated using Common Toxicity Criteria version 3.0 (National Cancer Institute Cancer Therapy Evaluation Program) and Cancer Radiation Morbidity Scoring Scheme for toxicity and adverse event reporting (Radiation Therapy Oncology Group/European Organization for Research and Treatment). Results: A total of 81% of patients took VPA according to protocol. Median overall survival (OS) was 29.6 months (range: 21-63.8 months), and median progression-free survival (PFS) was 10.5 months (range: 6.8-51.2 months). OS at 6, 12, and 24 months was 97%, 86%, and 56%, respectively. PFS at 6, 12, and 24 months was 70%, 43%, and 38% respectively. The most common grade 3/4 toxicities of VPA in conjunction with RT/TMZ therapy were blood and bone marrow toxicity (32%), neurological toxicity (11%), and metabolic and laboratory toxicity (8%). Younger age and class V recursive partitioning analysis (RPA) results were significant for both OS and PFS. VPA levels were not correlated with grade 3 or 4 toxicity levels. Conclusions: Addition of VPA to concurrent RT/TMZ in patients with newly diagnosed GBM was well tolerated. Additionally, VPA may result in improved outcomes compared to historical data and merits further study.

  20. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae Myung Park

    Full Text Available MSH3 is a DNA mismatch repair (MMR gene that undergoes frequent somatic mutation in colorectal cancers (CRCs with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown.We utilized isogenic HCT116 (MLH1-/MSH3- cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3 and also MSH3 by chromosome 5 (HCT116+3+5. We generated HCT116+3+5, SW480 (MLH1+/MSH3+ and SW48 (MLH1-/MSH3+ cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU, SN-38, oxaliplatin, or the histone deacetylase (HDAC inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed.MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB repair. We then utilized PCI-24781 that interferes with homologous recombination (HR indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone.MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1

  1. Histone deacetylase inhibitor, 2-propylpentanoic acid, increases the chemosensitivity and radiosensitivity of human glioma cell lines in vitro

    Institute of Scientific and Technical Information of China (English)

    SHAO Cui-jie; WU Ming-wei; CHEN Fu-rong; LI Cong; XIA Yun-fei; CHEN Zhong-ping

    2012-01-01

    Background Treatment for malignant glioma generally consists of cytoreductive surgery followed by radiotherapy and chemotherapy.In this study,we intended to investigate the effects of 2-propylpentanoic acid (VPA),a histone deacetylase inhibitor,on chemosensitivity and radiosensitivity in human glioma cell lines.Methods Human glioma cell lines,T98-G,and SF295,were treated with temozolomide (TMZ) or irradiation (IR),with or without VPA (1.0 mmol/L).Then,cytotoxicity and clonogenic survival assay was performed.Cell cycle stage,apoptosis,and autophagy were also detected using flow cytometry and dansyl monocadaverin (MDC) incorporation assay.One-way analysis of variance (ANOVA) and t-test were used to analyze the differences among variant groups.Results Mild cytotoxicity of VPA was revealed in both cell lines,T98-G and SF295,with the 50% inhibiting concentration (IC50) value of (3.85±0.58) mmol/L and (2.15±0.38) mmol/L,respectively; while the IC50 value of TMZ was (0.20±0.09) mmol/L for T98-G and (0.08±0.02) mmol/L for SF295.Moreover,if combined with VPA (1.0 mmol/L) for 96hours,the sensitivity of glioma cells to TMZ was significant increased (P <0.05).The surviving fractions at 2 Gy (SF2) of T98-G and SF295 cells exposed to IR alone were 0.52 and 0.58.However,when VPA was combined with IR,the SF2 of T98-G and SF295 dropped to 0.39 (P=0.047) and 0.49 (P=-0.049),respectively.Treatment with VPA plus TMZ or IR also resulted in a significant decrease in the proportion of cells in the G2 phase and increased apoptotic rates as well as autophagy in T98-G and SF295 cell lines (P <0.01).Conclusion VPA may enhance the activities of TMZ and IR on glioma cells possibly through cell cycle block and promote autophagy,and thus could be a potential sensitizer of glioma treatment.

  2. Iron complexation to histone deacetylase inhibitors SAHA and LAQ824 in PEGylated liposomes can considerably improve pharmacokinetics in rats.

    Science.gov (United States)

    Wang, Yan; Tu, Sheng; Steffen, Dana; Xiong, May

    2014-01-01

    The formulation of histone deacetylase inhibitors (HDACi) is challenging due to poor water solubility and rapid elimination of drugs in vivo. This study investigated the effects of complexing iron (Fe3+) to the HDACi suberoylanilide hydroxamic acid (SAHA) and LAQ824 (LAQ) prior to their encapsulation into PEGylated liposomes, and investigated whether this technique could improve drug solubility, in vitro release and in vivo pharmacokinetic (PK) properties. METHODS. The reaction stoichiometry, binding constants and solubility were measured for Fe complexes of SAHA and LAQ. The complexes were passively encapsulated into PEGylated liposomes and characterized by size distribution, zeta-potential, encapsulation efficiency (EE), and in vitro drug release studies. PC-3 cells were used to verify the in vitro anticancer activity of the formulations. In vivo pharmacokinetic properties of liposomal LAQ-Fe (L-LAQ-Fe) was evaluated in rats. RESULTS. SAHA and LAQ form complexes with Fe at 1:1 stoichiometric ratio, with a binding constant on the order of 104 M-1. Fe complexation improved the aqueous solubility and the liposomal encapsulation efficiency of SAHA and LAQ (29-35% EE, final drug concentration > 1 mM). Liposomal encapsulated complexes (L-HDACi-Fe) exhibited sustained in vitro release properties compared to L-HDACi but cytotoxicity on PC-3 cells was comparable to free drugs. The PK of L-LAQ-Fe revealed 15-fold improvement in the plasma t1/2 (12.11 h)and 211-fold improvement in the AUC∞ (105.7 µg·h/ml) compared to free LAQ (0.79 h, 0.5 µg·h/ml). Similarly, the plasma t1/2 of Fe was determined to be 11.83 h in a separate experiment using radioactive Fe-59. The majority of Fe-59 activity was found in liver and spleen of rats and correlates with liposomal uptake by the mononuclear phagocyte system. CONCLUSIONS. We have demonstrated that encapsulation of Fe complexes of HDACi into PEGylated liposomes can improve overall drug aqueous solubility, in vitro release and in

  3. Role of chromatin structure modulation by the histone deacetylase inhibitor trichostatin A on the radio-sensitivity of ataxia telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Meschini, Roberta, E-mail: meschini@unitus.it; Morucci, Elisa; Berni, Andrea; Lopez-Martinez, Wilner; Palitti, Fabrizio

    2015-07-15

    Highlights: • Role of chromatin compaction on chromosomal instability. • Reduced radiation-induced clastogenicity in Ataxia telangiectasia cell lines. • Histone tails hyperacetylation reduces heterochromatin content favouring DSBs repair. - Abstract: At present, a lot is known about biochemical aspects of double strand breaks (DBS) repair but how chromatin structure affects this process and the sensitivity of DNA to DSB induction is still an unresolved question. Ataxia telangiectasia (A-T) patients are characterised by very high sensitivity to DSB-inducing agents such as ionising radiation. This radiosensitivity is revealed with an enhancement of chromosomal instability as a consequence of defective DNA repair for a small fraction of breaks located in the heterochromatin, where they are less accessible. Besides, recently it has been reported that Ataxia Telangiectasia Mutated (ATM) mediated signalling modifies chromatin structure. In order to study the impact of chromatin compaction on the chromosomal instability of A-T cells, the response to trichostatin-A, an histone deacetylase inhibitor, in normal and A-T lymphoblastoid cell lines was investigated testing its effect on chromosomal aberrations, cell cycle progression, DNA damage and repair after exposure to X-rays. The results suggest that the response to both trichostatin-A pre- and continuous treatments is independent of the presence of either functional or mutated ATM protein, as the reduction of chromosomal damage was found also in the wild-type cell line. The presence of trichostatin-A before exposure to X-rays could give rise to prompt DNA repair functioning on chromatin structure already in an open conformation. Differently, trichostatin-A post-treatment causing hyperacetylation of histone tails and reducing the heterochromatic DNA content might diminish the requirement for ATM and favour DSBs repair reducing chromosomal damage only in A-T cells. This fact could suggest that trichostatin-A post

  4. Sex-Dependent Effects of the Histone Deacetylase Inhibitor, Sodium Valproate, on Reversal Learning After Developmental Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Christina R. Steadman Tyler

    2018-06-01

    Full Text Available Several studies have demonstrated that exposure to arsenic in drinking water adversely affects brain development and cognitive function in adulthood. While the mechanism by which arsenic induces adverse neurological outcomes remains elusive, studies suggest a link between reduced levels of histone acetylation and impaired performance on a variety of behavioral tasks following arsenic exposure. Using our developmental arsenic exposure (DAE paradigm, we have previously reported reduced histone acetylation and associated histone acetyltransferase enzyme expression in the frontal cortex of C57BL/6J adult male mice, with no changes observed in the female frontal cortex. In the present study, we sought to determine if DAE produced sex-dependent deficits in frontal cortical executive function using the Y-maze acquisition and reversal learning tasks, which are specific for assessing cognitive flexibility. Further, we tested whether the administration of valproic acid, a class I–IIa histone deacetylase inhibitor, was able to mitigate behavioral and biochemical changes resulting from DAE. As anticipated, DAE inhibited acquisition and reversal learning performance in adult male, but not female, mice. Valproate treatment for 2 weeks restored reversal performance in the male arsenic-exposed offspring, while not affecting female performance. Protein levels of HDACs 1, 2, and 5 were elevated following behavioral assessment but only in DAE male mice; restoration of appropriate HDAC levels occurred after valproate treatment and was concurrent with improved behavioral performance, particularly during reversal learning. Female frontal cortical levels of HDAC enzymes were not impacted by DAE or valproate treatment. Finally, mRNA expression levels of brain-derived neurotrophic factor, Bdnf, which has been implicated in the control of frontal cortical flexibility and is regulated by HDAC5, were elevated in DAE male mice and restored to normal levels following HDACi

  5. Analysis of the interplay between all-trans retinoic acid and histone deacetylase inhibitors in leukemic cells

    DEFF Research Database (Denmark)

    Noack, Katrin; Mahendrarajah, Nisintha; Hennig, Dorle

    2017-01-01

    The treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) induces granulocytic differentiation. This process renders APL cells resistant to cytotoxic chemotherapies. Epigenetic regulators of the histone deacetylases (HDACs) family, which comprise four classes (I–IV),...

  6. Plasma and cerebrospinal fluid pharmacokinetics of the histone deacetylase inhibitor, belinostat (PXD101), in non-human primates

    DEFF Research Database (Denmark)

    Warren, K.E.; McCully, C.; Dvinge, H.

    2008-01-01

    PURPOSE: Histone deacetylases (HDAC) are involved in the regulation of gene transcription. Aberrant HDAC activity has been associated with tumorigenesis, and, therefore, HDACs are potential targets for the treatment of cancers, including tumors of the central nervous system (CNS). Belinostat is a...

  7. Inhibitors of histone deacetylase

    DEFF Research Database (Denmark)

    2015-01-01

    of the invention are useful for treating, alleviating, and/or preventing various conditions, including for example, a metabolic disorder such as type 1 or type 2 diabetes, dyslipidemias, lipodystrophies, liver disease associated with metabolic syndrome, polycystic ovarian syndrome, or obesity; inflammatory disease...

  8. Characterization and biological significance of deacetylase

    International Nuclear Information System (INIS)

    Dipaola, E.A.

    1985-01-01

    An attempt is made to clarify the mechanism by which the one known deacetylase inhibitor, sodium butyrate, works and to identify other inhibitors of deacetylase activity. In doing so it was hoped to characterize the enzyme and to better understand its role in regulating genomic expression. The data showed that deacetylases not only showed activity toward their natural histone substrates, but also toward free acetyllysine and to a lesser degree toward acetylcholine, the latter being the natural substrate for acetylcholinesterases. Conversely, acetylcholinesterase was shown to be able to deacetylate groups from acetyllysine and acetylated histones. Decamethonium bromide, a well-known binder of acetylcholinesterase would not absorb the deacetylase. Diisopropylfluorophosphate (DFP), an anti-cholinesterase, exhibited no inhibitory effect on deacetylase activity, while acetylcholinesterase showed little or no sensitivity to butyrate inhibition. These findings along with the use of 3 H-DFP binding to fingerprint enzyme bands on gels became the basic criteria for distinguishing between deacetylase and acetylcholinesterase activity

  9. Imprinted CDKN1C is a tumor suppressor in rhabdoid tumor and activated by restoration of SMARCB1 and histone deacetylase inhibitors.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Algar

    Full Text Available SMARCB1 is deleted in rhabdoid tumor, an aggressive paediatric malignancy affecting the kidney and CNS. We hypothesized that the oncogenic pathway in rhabdoid tumors involved epigenetic silencing of key cell cycle regulators as a consequence of altered chromatin-remodelling, attributable to loss of SMARCB1, and that this hypothesis if proven could provide a biological rationale for testing epigenetic therapies in this disease. We used an inducible expression system to show that the imprinted cell cycle inhibitor CDKN1C is a downstream target for SMARCB1 and is transcriptionally activated by increased histone H3 and H4 acetylation at the promoter. We also show that CDKN1C expression induces cell cycle arrest, CDKN1C knockdown with siRNA is associated with increased proliferation, and is able to compete against the anti-proliferative effect of restored SMARCB1 expression. The histone deacetylase inhibitor (HDACi, Romidepsin, specifically restored CDKN1C expression in rhabdoid tumor cells through promoter histone H3 and H4 acetylation, recapitulating the effect of SMARCB1 on CDKNIC allelic expression, and induced cell cycle arrest in G401 and STM91-01 rhabdoid tumor cell lines. CDKN1C expression was also shown to be generally absent in clinical specimens of rhabdoid tumor, however CDKN1A and CDKN1B expression persisted. Our observations suggest that maintenance of CDKN1C expression plays a critical role in preventing rhabdoid tumor growth. Significantly, we report for the first time, parallels between the molecular pathways of SMARCB1 restoration and Romidepsin treatment, and demonstrate a biological basis for the further exploration of histone deacetylase inhibitors as relevant therapeutic reagents in the treatment of rhabdoid tumor.

  10. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B

    DEFF Research Database (Denmark)

    Skov, Søren; Pedersen, Marianne Terndrup; Andresen, Lars

    2005-01-01

    We show that histone deacetylase (HDAC) inhibitors lead to functional expression of MHC class I-related chain A and B (MICA/B) on cancer cells, making them potent targets for natural killer (NK) cell-mediated killing through a NK group 2, member D (NKG2D) restricted mechanism. Blocking either...

  11. Development of a UV-Cleavable Protecting Group for Hydroxylamines, Synthesis of a StructurallyWide Variety of Hydroxamic Acids, and Identification of Histone Deacetylase Inhibitors

    DEFF Research Database (Denmark)

    Mortensen, Kim Thollund

    Photo-cleavable protecting groups are highly applicable for the synthesis of structural complex and sensitive compounds, including biological important molecules. Herein, we present the development of a novel O-hydroxylamine photo-cleavable protecting group, based on the methyl-6-nitroveratryl...... moiety. We demonstrate the application of the protected hydroxylamine derivative for the synthesis of N-alkylated hydroxamic acids. We have shown that the construct is stable toward a diverse set of reaction conditions, as well as orthogonal with conventional protection groups. The O......-protected hydroxylamine derivative was applied to synthesize a small collection of N-alkylated hydroxamic acids as inhibitors of the histone deacetylase enzymes, an important class of enzymes for the treatment of a range of diseases, most importantly cancer. During my external stay at Nanyang Technological University...

  12. The lysine deacetylase inhibitor givinostat inhibits ß-cell IL-1ß induced IL-1ß transcription and processing

    DEFF Research Database (Denmark)

    Dahllöf, Mattias Salling; Christensen, Dan P; Lundh, Morten

    2012-01-01

    . Further, IL-1R antagonism improves normoglycemia and ß-cell function in type 2 diabetic patients. Inhibition of lysine deacetylases (KDACi) counteracts ß-cell toxicity induced by the combination of IL-1 and IFN¿ and reduces diabetes incidence in non-obese diabetic (NOD) mice. We hypothesized that KDACi......Aims: Pro-inflammatory cytokines and chemokines, in particular IL-1ß, IFN¿, and CXCL10, contribute to ß-cell failure and loss in DM via IL-1R, IFN¿R, and TLR4 signaling. IL-1 signaling deficiency reduces diabetes incidence, islet IL-1ß secretion, and hyperglycemia in animal models of diabetes...

  13. Ruxolitinib combined with vorinostat suppresses tumor growth and alters metabolic phenotype in hematological diseases.

    Science.gov (United States)

    Civallero, Monica; Cosenza, Maria; Pozzi, Samantha; Sacchi, Stefano

    2017-11-28

    JAK-2 dysregulation plays an important role as an oncogenic driver, and is thus a promising therapeutic target in hematological malignancies. Ruxolitinib is a pyrrolo[2.3-d]pyrimidine derivative with inhibitory activity against JAK1 and JAK2, moderate activity against TYK2, and minor activity against JAK3. Vorinostat is an HDAC inhibitor that reduces JAK-2 expression, thus affecting JAK-2 mRNA expression and increasing JAK-2 proteasomal deterioration. Here we hypothesized that the combination of ruxolitinib and vorinostat could have synergistic effects against hematological disease. We tested combinations of low doses of ruxolitinib and vorinostat in 12 cell lines, and observed highly synergistic cytotoxic action in six cell lines, which was maintained for up to 120 h in the presence of stromal cells. The sensitivity of the six cell lines may be explained by the broad effects of the drug combination, which can affect various targets. Treatment with the combination of ruxolitinib and vorinostat appeared to induce a possible reversal of the Warburg effect, with associated ROS production, apoptotic events, and growth inhibition. Decreased glucose metabolism may have markedly sensitized the six more susceptible cell lines to combined treatment. Therapeutic inhibition of the JAK/STAT pathway seems to offer substantial anti-tumor benefit, and combined therapy with ruxolitinib and vorinostat may represent a promising novel therapeutic modality for hematological neoplasms.

  14. Vorinostat and hydroxychloroquine improve immunity and inhibit autophagy in metastatic colorectal cancer.

    Science.gov (United States)

    Patel, Sukeshi; Hurez, Vincent; Nawrocki, Steffan T; Goros, Martin; Michalek, Joel; Sarantopoulos, John; Curiel, Tyler; Mahalingam, Devalingam

    2016-09-13

    Hydroxychloroquine (HCQ) enhances the anti-cancer activity of the histone deacetylase inhibitor, vorinostat (VOR), in pre-clinical models and early phase clinical studies of metastatic colorectal cancer (mCRC). Mechanisms could include autophagy inhibition, accumulation of ubiquitinated proteins, and subsequent tumor cell apoptosis. There is growing evidence that autophagy inhibition could lead to improved anti-cancer immunity. To date, effects of autophagy on immunity have not been reported in cancer patients. To address this, we expanded an ongoing clinical study to include patients with advanced, refractory mCRC to evaluate further the clinical efficacy and immune effects of VOR plus HCQ. Refractory mCRC patients received VOR 400 milligrams orally with HCQ 600 milligrams orally daily, in a 3-week cycle. The primary endpoint was median progression-free survival (mPFS). Secondary endpoints include median overall survival (mOS), adverse events (AE), pharmacodynamic of inhibition of autophagy in primary tumors, immune cell analyses, and cytokine levels. Twenty patients were enrolled (19 evaluable for survival) with a mPFS of 2.8 months and mOS of 6.7 months. Treatment-related grade 3-4 AEs occurred in 8 patients (40%), with fatigue, nausea/vomiting, and anemia being the most common. Treatment significantly reduced CD4+CD25hiFoxp3+ regulatory and PD-1+ (exhausted) CD4+ and CD8+ T cells and decreased CD45RO-CD62L+ (naive) T cells, consistent with improved anti-tumor immunity. On-study tumor biopsies showed increases in lysosomal protease cathepsin D and p62 accumulation, consistent with autophagy inhibition. Taken together, VOR plus HCQ is active, safe and well tolerated in refractory CRC patients, resulting in potentially improved anti-tumor immunity and inhibition of autophagy.

  15. The Bone Marrow-Mediated Protection of Myeloproliferative Neoplastic Cells to Vorinostat and Ruxolitinib Relies on the Activation of JNK and PI3K Signalling Pathways.

    Directory of Open Access Journals (Sweden)

    Bruno A Cardoso

    Full Text Available The classical BCR-ABL-negative Myeloproliferative Neoplasms (MPN are a group of heterogeneous haematological diseases characterized by constitutive JAK-STAT pathway activation. Targeted therapy with Ruxolitinib, a JAK1/2-specific inhibitor, achieves symptomatic improvement but does not eliminate the neoplastic clone. Similar effects are seen with histone deacetylase inhibitors (HDACi, albeit with poorer tolerance. Here, we show that bone marrow (BM stromal cells (HS-5 protected MPN-derived cell lines (SET-2; HEL and UKE-1 and MPN patient-derived BM cells from the cytotoxic effects of Ruxolitinib and the HDACi Vorinostat. This protective effect was mediated, at least in part, by the secretion of soluble factors from the BM stroma. In addition, it correlated with the activation of signalling pathways important for cellular homeostasis, such as JAK-STAT, PI3K, JNK, MEK-ERK and NF-κB. Importantly, the pharmacological inhibition of JNK and PI3K pathways completely abrogated the BM protective effect on MPN cell lines and MPN patient samples. Our findings shed light on mechanisms of tumour survival and may indicate novel therapeutic approaches for the treatment of MPN.

  16. The Bone Marrow-Mediated Protection of Myeloproliferative Neoplastic Cells to Vorinostat and Ruxolitinib Relies on the Activation of JNK and PI3K Signalling Pathways

    Science.gov (United States)

    Cardoso, Bruno A.; Belo, Hélio; Barata, João T.; Almeida, António M.

    2015-01-01

    The classical BCR-ABL-negative Myeloproliferative Neoplasms (MPN) are a group of heterogeneous haematological diseases characterized by constitutive JAK-STAT pathway activation. Targeted therapy with Ruxolitinib, a JAK1/2-specific inhibitor, achieves symptomatic improvement but does not eliminate the neoplastic clone. Similar effects are seen with histone deacetylase inhibitors (HDACi), albeit with poorer tolerance. Here, we show that bone marrow (BM) stromal cells (HS-5) protected MPN-derived cell lines (SET-2; HEL and UKE-1) and MPN patient-derived BM cells from the cytotoxic effects of Ruxolitinib and the HDACi Vorinostat. This protective effect was mediated, at least in part, by the secretion of soluble factors from the BM stroma. In addition, it correlated with the activation of signalling pathways important for cellular homeostasis, such as JAK-STAT, PI3K, JNK, MEK-ERK and NF-κB. Importantly, the pharmacological inhibition of JNK and PI3K pathways completely abrogated the BM protective effect on MPN cell lines and MPN patient samples. Our findings shed light on mechanisms of tumour survival and may indicate novel therapeutic approaches for the treatment of MPN. PMID:26623653

  17. Utilization of Boron Compounds for the Modification of Suberoyl Anilide Hydroxamic Acid as Inhibitor of Histone Deacetylase Class II Homo sapiens

    Science.gov (United States)

    Bakri, Ridla; Parikesit, Arli Aditya; Satriyanto, Cipta Prio; Kerami, Djati; Tambunan, Usman Sumo Friend

    2014-01-01

    Histone deacetylase (HDAC) has a critical function in regulating gene expression. The inhibition of HDAC has developed as an interesting anticancer research area that targets biological processes such as cell cycle, apoptosis, and cell differentiation. In this study, an HDAC inhibitor that is available commercially, suberoyl anilide hydroxamic acid (SAHA), has been modified to improve its efficacy and reduce the side effects of the compound. Hydrophobic cap and zinc-binding group of these compounds were substituted with boron-based compounds, whereas the linker region was substituted with p-aminobenzoic acid. The molecular docking analysis resulted in 8 ligands with ΔG binding value more negative than the standards, SAHA and trichostatin A (TSA). That ligands were analyzed based on the nature of QSAR, pharmacological properties, and ADME-Tox. It is conducted to obtain a potent inhibitor of HDAC class II Homo sapiens. The screening process result gave one best ligand, Nova2 (513246-99-6), which was then further studied by molecular dynamics simulations. PMID:25214833

  18. CRA-026440: a potent, broad-spectrum, hydroxamic histone deacetylase inhibitor with antiproliferative and antiangiogenic activity in vitro and in vivo.

    Science.gov (United States)

    Cao, Z Alexander; Bass, Kathryn E; Balasubramanian, Sriram; Liu, Liang; Schultz, Brian; Verner, Erik; Dai, Yuqin; Molina, Rafael A; Davis, Jack R; Misialek, Shawn; Sendzik, Martin; Orr, Christine J; Leung, Ling; Callan, Ondine; Young, Peter; Dalrymple, Stacie A; Buggy, Joseph J

    2006-07-01

    CRA-026440 is a novel, broad-spectrum, hydroxamic acid-based inhibitor of histone deacetylase (HDAC) that shows antitumor and antiangiogenic activities in vitro and in vivo preclinically. CRA-026440 inhibited pure recombinant isozymes HDAC1, HDAC2, HDAC3/SMRT, HDAC6, HDAC8, and HDAC10 in the nanomolar range. Treatment of cultured tumor cell lines grown in vitro with CRA-026440 resulted in the accumulation of acetylated histone and acetylated tubulin, leading to an inhibition of tumor cell growth and the induction of apoptosis. CRA-026440 inhibited ex vivo angiogenesis in a dose-dependent manner. CRA-026440 parenterally given to mice harboring HCT116 or U937 human tumor xenografts resulted in a statistically significant reduction in tumor growth. CRA-026440, when used in combination with Avastin, achieved greater preclinical efficacy in HCT 116 colorectal tumor model. Inhibition of tumor growth was accompanied by an increase in the acetylation of alpha-tubulin in peripheral blood mononuclear cells and an alteration in the expression of many genes in the tumors, including several involved in angiogenesis, apoptosis, and cell growth. These results reveal CRA-026440 to be a novel HDAC inhibitor with potent antitumor activity.

  19. Reolysin and Histone Deacetylase Inhibition in the Treatment of Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Alena C. Jaime-Ramirez

    2017-06-01

    Full Text Available Oncolytic viruses (OVs are emerging as powerful anti-cancer agents and are currently being tested for their safety and efficacy in patients. Reovirus (Reolysin, a naturally occurring non-pathogenic, double-stranded RNA virus, has natural oncolytic activity and is being tested in phase I–III clinical trials in a variety of tumor types. With its recent US Food and Drug Administration (FDA orphan drug designation for several tumor types, Reolysin is a potential therapeutic agent for various cancers, including head and neck squamous cell carcinomas (HNSCCs, which have a 5-year survival of ∼55%. Histone deacetylase inhibitors (HDACis comprise a structurally diverse class of compounds with targeted anti-cancer effects. The first FDA-approved HDACi, vorinostat (suberoylanilide hydroxamic acid [SAHA], is currently being tested in patients with head and neck cancer. Recent findings indicate that HDAC inhibition in myeloma cells results in the upregulation of the Reolysin entry receptor, junctional adhesion molecule 1 (JAM-1, facilitating reovirus infection and tumor cell killing both in vitro and in vivo. In this study, we tested the anti-tumor efficacy of HDAC inhibitors AR-42 or SAHA in conjunction with Reolysin in HNSCCs. While HDAC inhibition increased JAM-1 and reovirus entry, the impact of this combination therapy was tested on the development of anti-tumor immune responses.

  20. Activating Transcription Factor 3 regulates in part the enhanced tumour cell cytotoxicity of the histone deacetylase inhibitor M344 and cisplatin in combination

    Directory of Open Access Journals (Sweden)

    St Germain Carly

    2010-09-01

    Full Text Available Abstract Background Activating Transcription Factor (ATF 3 is a key regulator of the cellular integrated stress response whose expression has also been correlated with pro-apoptotic activities in tumour cell models. Combination treatments with chemotherapeutic drugs, such as cisplatin, and histone deacetylase (HDAC inhibitors have been demonstrated to enhance tumour cell cytotoxicity. We recently demonstrated a role for ATF3 in regulating cisplatin-induced apoptosis and others have shown that HDAC inhibition can also induce cellular stress. In this study, we evaluated the role of ATF3 in regulating the co-operative cytotoxicity of cisplatin in combination with an HDAC inhibitor. Results The HDAC inhibitor M344 induced ATF3 expression at the protein and mRNA level in a panel of human derived cancer cell lines as determined by Western blot and quantitative RT-PCR analyses. Combination treatment with M344 and cisplatin lead to increased induction of ATF3 compared with cisplatin alone. Utilizing the MTT cell viability assay, M344 treatments also enhanced the cytotoxic effects of cisplatin in these cancer cell lines. The mechanism of ATF3 induction by M344 was found to be independent of MAPKinase pathways and dependent on ATF4, a known regulator of ATF3 expression. ATF4 heterozygote (+/- and knock out (-/- mouse embryonic fibroblast (MEF as well as chromatin immunoprecipitation (ChIP assays were utilized in determining the mechanistic induction of ATF3 by M344. We also demonstrated that ATF3 regulates the enhanced cytotoxicity of M344 in combination with cisplatin as evidenced by attenuation of cytotoxicity in shRNAs targeting ATF3 expressing cells. Conclusion This study identifies the pro-apoptotic factor, ATF3 as a novel target of M344, as well as a mediator of the co-operative effects of cisplatin and M344 induced tumour cell cytotoxicity.

  1. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities

    DEFF Research Database (Denmark)

    Kitir, Betül; Maolanon, Alex R.; Ohm, Ragnhild G.

    2017-01-01

    medicines. Therefore, detailed mechanistic information and precise characterization of the chemical probes used to investigate the effects of HDAC enzymes are vital. We interrogated Nature's arsenal of macrocyclic nonribosomal peptide HDAC inhibitors by chemical synthesis and evaluation of more than 30...... natural products and analogues. This furnished surprising trends in binding affinities for the various macrocycles, which were then exploited for the design of highly potent class I and IIb HDAC inhibitors. Furthermore, thorough kinetic investigation revealed unexpected inhibitory mechanisms of important...

  2. Chitin deacetylase

    International Nuclear Information System (INIS)

    Ito, E.; Araki, Y.

    1988-01-01

    This paper discusses chitosan which is a unique polysaccharide in that it possesses free amino groups. The authors state that most of the amino sugar residing in naturally occurring polysaccharides is believed to be N-acylated. An enzyme catalyzing the conversion of chitin to chitosan was first demonstrated in an extract of Mucor rouxii. A similar enzyme was found in the culture filtrate of a plant pathogen, Colletotrichum lindemuthianum. They present the chitin deacetylase activity assayed by measuring the radioactivity of [ 3 H] acetic acid liberated from a water-soluble chitin derivative, glycol [acetyl- 3 H] chitin

  3. A facile route to form self-carried redox-responsive vorinostat nanodrug for effective solid tumor therapy

    Directory of Open Access Journals (Sweden)

    Han LQ

    2016-11-01

    Full Text Available Leiqiang Han, Tianqi Wang, Jingliang Wu, Xiaolan Yin, Hao Fang, Na Zhang School of Pharmaceutical Science, Shandong University, Ji’nan, Shandong, People’s Republic of China Abstract: Small molecule-based nanodrugs with nanoparticles (NPs that are mainly composed of small molecules, have been considered as a promising candidate for a next-generation nanodrug, owing to their unique properties. Vorinostat (SAHA is a canonical US Food and Drug Administration-approved histone deacetylase (HDAC inhibitor for the treatment of cutaneous T-cell lymphoma. However, the lack of efficacy against solid tumors hinders its progress in clinical use. Herein, a novel nanodrug of SAHA was developed based on disulfide-linked prodrug SAHA-S-S-VE. SAHA-S-S-VE could self-assemble into 148 nm NPs by disulfide-induced mechanisms, which were validated by molecular dynamics simulations. Under reduced conditions, the redox-responsive behavior of SAHA-S-S-VE was investigated, and the HDAC inhibition results verified the efficient release of free SAHA. With a biocompatible d-a-tocopheryl polyethylene glycol succinate (TPGS functionalization, the SAHA-S-S-VE/TPGS NPs exhibited low critical aggregation concentration of 4.5 µM and outstanding stability in vitro with drug-loading capacity of 24%. In vitro biological assessment indicated that SAHA-S-S-VE/TPGS NPs had significant anticancer activity against HepG2. Further in vivo evaluation demonstrated that the resulting NPs could be accumulated in the tumor region and inhibit the tumor growth effectively. This approach, which turned SAHA into a self-assembled redox-responsive nanodrug, provided a new channel for the use of HDAC inhibitor in solid tumor therapy. Keywords: SAHA, HDAC, small molecule, nanoparticles, self-assemble, disulfide bond

  4. Improved Histone Deacetylase Inhibitors as Therapeutics for the Neurodegenerative Disease Friedreich’s Ataxia: A New Synthetic Route

    Directory of Open Access Journals (Sweden)

    Joel M. Gottesfeld

    2011-12-01

    Full Text Available Friedreich’s ataxia (FRDA is caused by transcriptional repression of the nuclear FXN gene encoding the essential mitochondrial protein frataxin. Based on the hypothesis that the acetylation state of the histone proteins is responsible for gene silencing in FRDA, previous work in our lab identified a first generation of HDAC inhibitors (pimelic o-aminobenzamides, which increase FXN mRNA in lymphocytes from FRDA patients. Importantly, these compounds also function in a FRDA mouse model to increase FXN mRNA levels in the brain and heart. While the first generation of HDAC inhibitors hold promise as potential therapeutics for FRDA, they have two potential problems: less than optimal brain penetration and metabolic instability in acidic conditions. Extensive optimization focusing on modifying the left benzene ring, linker and the right benzene ring lead to a novel class of HDAC inhibitors that have optimized pharmacological properties (increased brain penetration and acid stability compared to the previous HDAC inhibitors. This article will describe the chemical synthesis and pharmacological properties of these new HDAC inhibitors.

  5. Combination of the oral histone deacetylase inhibitor resminostat with oncolytic measles vaccine virus as a new option for epi-virotherapeutic treatment of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Benjamin Ruf

    Full Text Available Epigenetic therapies such as histone deacetylase inhibitors (HDACi not only have the capability to decrease tumor cell proliferation and to induce tumor cell death but also to silence antiviral response genes. Here, we investigated whether the combination of an oncolytic measles vaccine virus (MeV with the novel oral HDACi resminostat (Res, being in clinical testing in patients with hepatocellular carcinoma (HCC, results in an enhanced efficacy of this epi-virotherapeutic approach compared to any of the two corresponding monotherapies. When testing a panel of human hepatoma cell lines, we found (i a significantly improved rate of primary infections when using oncolytic MeV under concurrent treatment with resminostat, (ii a boosted cytotoxic effect of the epi-virotherapeutic combination (Res + MeV with enhanced induction of apoptosis, and, quite importantly, (iii an absence of any resminostat-induced impairment of MeV replication and spread. Beyond that, we could also show that (iv resminostat, after hepatoma cell stimulation with exogenous human interferon (IFN-β, is able to prevent the induction of IFN-stimulated genes, such as IFIT-1. This finding outlines the possible impact of resminostat on cellular innate immunity, being instrumental in overcoming resistances to MeV-mediated viral oncolysis. Thus, our results support the onset of epi-virotherapeutic clinical trials in patients exhibiting advanced stages of HCC.

  6. Valproic Acid, a Histone Deacetylase Inhibitor, in Combination with Paclitaxel for Anaplastic Thyroid Cancer: Results of a Multicenter Randomized Controlled Phase II/III Trial

    Directory of Open Access Journals (Sweden)

    Maria Graziella Catalano

    2016-01-01

    Full Text Available Anaplastic thyroid cancer (ATC has a median survival less than 5 months and, to date, no effective therapy exists. Taxanes have recently been stated as the main drug treatment for ATC, and the histone deacetylase inhibitor valproic acid efficiently potentiates the effects of paclitaxel in vitro. Based on these data, this trial assessed the efficacy and safety of the combination of paclitaxel and valproic acid for the treatment of ATC. This was a randomized, controlled phase II/III trial, performed on 25 ATC patients across 5 centers in northwest Italy. The experimental arm received the combination of paclitaxel (80 mg/m2/weekly and valproic acid (1,000 mg/day; the control arm received paclitaxel alone. Overall survival and disease progression, evaluated in terms of progression-free survival, were the primary outcomes. The secondary outcome was the pharmacokinetics of paclitaxel. The coadministration of valproic acid did not influence the pharmacokinetics of paclitaxel. Neither median survival nor median time to progression was statistically different in the two arms. Median survival of operated-on patients was significantly better than that of patients who were not operated on. The present trial demonstrates that the addition of valproic acid to paclitaxel has no effect on overall survival and disease progression of ATC patients. This trial is registered with EudraCT 2008-005221-11.

  7. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    Andrade, F.O.; Nagamine, M.K.; De Conti, A.; Chaible, L.M.; Fontelles, C.C.; Jordão Junior, A.A.; Vannucchi, H.; Dagli, M.L.Z.; Bassoli, B.K.; Moreno, F.S.; Ong, T.P.

    2012-01-01

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10 4 cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21 WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered

  8. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.O. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Nagamine, M.K. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); De Conti, A. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Chaible, L.M. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Fontelles, C.C. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil); Jordão Junior, A.A.; Vannucchi, H. [Divisão de Nutrição, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Dagli, M.L.Z. [Laboratório de Oncologia Experimental, Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Bassoli, B.K.; Moreno, F.S.; Ong, T.P. [Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-22

    The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10{sup 4} cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21{sup WAF1} by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

  9. Mechanism for the decrease in the FIP1L1-PDGFRalpha protein level in EoL-1 cells by histone deacetylase inhibitors.

    Science.gov (United States)

    Ishihara, Kenji; Kaneko, Motoko; Kitamura, Hajime; Takahashi, Aki; Hong, Jang Ja; Seyama, Toshio; Iida, Koji; Wada, Hiroshi; Hirasawa, Noriyasu; Ohuchi, Kazuo

    2008-01-01

    Acetylation and deacetylation of proteins occur in cells in response to various stimuli, and are reversibly catalyzed by histone acetyltransferase and histone deacetylase (HDAC), respectively. EoL-1 cells have an FIP1L1-PDGFRA fusion gene that causes transformation of eosinophilic precursor cells into leukemia cells. The HDAC inhibitors apicidin and n-butyrate suppress the proliferation of EoL-1 cells and induce differentiation into eosinophils by a decrease in the protein level of FIP1L1-PDGFRalpha without affecting the mRNA level for FIP1L1-PDGFRA. In this study, we analyzed the mechanism by which the protein level of FIP1L1-PDGFRalpha is decreased by apicidin and n-butyrate. EoL-1 cells were incubated in the presence of the HDAC inhibitors apicidin, trichostatin A or n-butyrate. The protein levels of FIP1L1-PDGFRalpha and phosphorylated eIF-2alpha were determined by Western blotting. Actinomycin D and cycloheximide were used to block RNA synthesis and protein synthesis, respectively, in the chasing experiment of the amount of FIP1L1-PDGFRalpha protein. When apicidin- and n-butyrate-treated EoL-1 cells were incubated in the presence of actinomycin D, the decrease in the protein level of FIP1L1-PDGFRalpha was significantly enhanced when compared with controls. In contrast, the protein levels were not changed by cycloheximide among these groups. Apicidin and n-butyrate induced the continuous phosphorylation of eIF-2alpha for up to 8 days. The decrease in the level of FIP1L1-PDGFRalpha protein by continuous inhibition of HDAC may be due to the decrease in the translation rate of FIP1L1-PDGFRA. Copyright 2008 S. Karger AG, Basel.

  10. Treatment of nasopharyngeal carcinoma cells with the histone-deacetylase inhibitor abexinostat: cooperative effects with cis-platin and radiotherapy on patient-derived xenografts.

    Directory of Open Access Journals (Sweden)

    Mélanie Gressette

    Full Text Available EBV-related nasopharyngeal carcinomas (NPCs still raise serious therapeutic problems. The therapeutic potential of the histone-deacetylase (HDAC inhibitor Abexinostat was investigated using 5 preclinical NPC models including 2 patient-derived xenografts (C15 and C17. The cytotoxicity of Abexinostat used either alone or in combination with cis-platin or irradiation was assessed in vitro by MTT and clonogenic assays using 2 EBV-negative (CNE1 and HONE1 and 3 EBV-positive NPC models (C15, C17 and C666-1. Subsequently, the 3 EBV-positive models were used under the form of xenografts to assess the impact of systemic treatments by Abexinostat or combinations of Abexinostat with cis-platin or irradiation. Several cell proteins known to be affected by HDAC inhibitors and the small viral non-coding RNA EBER1 were investigated in the treated tumors. Synergistic cytotoxic effects of Abexinostat combined with cis-platin or irradiation were demonstrated in vitro for each NPC model. When using xenografts, Abexinostat by itself (12.5 mg/kg, BID, 4 days a week for 3 weeks had significant anti-tumor effects against C17. Cooperative effects with cis-platin (2 mg/kg, IP, at days 3, 10 and 17 and irradiation (1 Gy were observed for the C15 and C17 xenografts. Simultaneously two types of biological alterations were induced in the tumor tissue, especially in the C17 model: a depletion of the DNA-repair protein RAD51 and a stronger in situ detection of the small viral RNA EBER1. Overall, these results support implementation of phase I/II clinical trials of Abexinostat for the treatment of NPC. A depletion of RAD51 is likely to contribute to the cooperation of Abexinostat with DNA damaging agents. Reduction of RAD51 combined to enhanced detection of EBER 1 might be helpful for early assessment of tumor response.

  11. Potential anti-cancer activity of N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA), a histone deacetylase inhibitor, against breast cancer both in vitro and in vivo

    International Nuclear Information System (INIS)

    Park, Ki-Cheong; Kim, Seung-Won; Park, Ji-Hyun

    2011-01-01

    Histone deacetylase (HDAC) is an attractive target for cancer therapy because it plays a key role in gene expression and carcinogenesis. N-hydroxy-7-(2-naphthylthio) heptanomide (HNHA) is a novel synthetic HDAC inhibitor (HDACI) that shows better pharmacological properties than a known HDACI present in the human fibrosarcoma cell: suberoylanilide hydroxamic acid (SAHA). Here, we investigate the anti-cancer activity of HNHA against breast cancer both in vitro and in vivo. HNHA arrested the cell cycle at the G 1 /S phase via p21 induction, which led to profound inhibition of cancer cell growth in vitro. In addition, HNHA-treated cells showed markedly decreased levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1α than SAHA and fumagillin (FUMA) when accompanied by increased histone acetylation. HNHA significantly inhibited tumor growth in an in vivo mouse xenograft model. HNHA-treated mice survived significantly longer than SAHA- and FUMA-treated mice. Dynamic MRI showed significantly decreased blood flow in the HNHA-treated mice, implying that HNHA inhibits tumor neovascularization. This finding was accompanied by marked reductions of proangiogenic factors and significant induction of angiogenesis inhibitors in tumor tissues. We have shown that HNHA is an effective anti-tumor agent in breast cancer cells in vitro and in breast cancer xenografts in vivo. Collectively, these findings indicate that HNHA may be a potent anti-cancer agent against breast cancer due to its multi-faceted inhibition of HDAC activity, as well as anti-angiogenesis activity. (author)

  12. Differential effects of histone deacetylase inhibitors on cellular drug transporters and their implications for using epigenetic modifiers in combination chemotherapy.

    Science.gov (United States)

    Valdez, Benigno C; Li, Yang; Murray, David; Brammer, Jonathan E; Liu, Yan; Hosing, Chitra; Nieto, Yago; Champlin, Richard E; Andersson, Borje S

    2016-09-27

    HDAC inhibitors, DNA alkylators and nucleoside analogs are effective components of combination chemotherapy. To determine a possible mechanism of their synergism, we analyzed the effects of HDAC inhibitors on the expression of drug transporters which export DNA alkylators. Exposure of PEER lymphoma T-cells to 15 nM romidepsin (Rom) resulted in 40%-50% reduction in mRNA for the drug transporter MRP1 and up to ~500-fold increase in the MDR1 mRNA within 32-48 hrs. MRP1 protein levels concomitantly decreased while MDR1 increased. Other HDAC inhibitors - panobinostat, belinostat and suberoylanilide hydroxamic acid (SAHA) - had similar effects on these transporters. The protein level of MRP1 correlated with cellular resistance to busulfan and chlorambucil, and Rom exposure sensitized cells to these DNA alkylators. The decrease in MRP1 correlated with decreased cellular drug export activity, and increased level of MDR1 correlated with increased export of daunorubicin. A similar decrease in the level of MRP1 protein, and increase in MDR1, were observed when mononuclear cells derived from patients with T-cell malignancies were exposed to Rom. Decreased MRP1 and increased MDR1 expressions were also observed in blood mononuclear cells from lymphoma patients who received SAHA-containing chemotherapy in a clinical trial. This inhibitory effect of HDAC inhibitors on the expression of MRP1 suggests that their synergism with DNA alkylating agents is partly due to decreased efflux of these alkylators. Our results further imply the possibility of antagonistic effects when HDAC inhibitors are combined with anthracyclines and other MDR1 drug ligands in chemotherapy.

  13. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington's disease

    Science.gov (United States)

    Jia, Haiqun; Pallos, Judit; Jacques, Vincent; Lau, Alice; Tang, Bin; Cooper, Andrew; Syed, Adeela; Purcell, Judith; Chen, Yi; Sharma, Shefali; Sangrey, Gavin R.; Darnell, Shayna B.; Plasterer, Heather; Sadri-Vakili, Ghazaleh; Gottesfeld, Joel M.; Thompson, Leslie M.; Rusche, James R.; Marsh, J. Lawrence; Thomas, Elizabeth A.

    2012-01-01

    We have previously demonstrated amelioration of Huntington's disease (HD)-related phenotypes in R6/2 transgenic mice in response to treatment with the novel histone deacetylase (HDAC) inhibitor 4b. Here we have measured the selectivity profiles of 4b and related compounds against class I and class II HDACs and have tested their ability to restore altered expression of genes related to HD pathology in mice and to rescue disease effects in cell culture and Drosophila models of HD. R6/2 transgenic and wild-type (wt) mice received daily injections of HDAC inhibitors for 3 days followed by real-time PCR analysis to detect expression differences for 13 HD-related genes. We find that HDACi 4b and 136, two compounds showing high potency for inhibiting HDAC3 were most effective in reversing the expression of genes relevant to HD, including Ppp1r1b, which encodes DARPP-32, a marker for medium spiny striatal neurons. In contrast, compounds targeting HDAC1 were less effective at correcting gene expression abnormalities in R6/2 transgenic mice, but did cause significant increases in the expression of selected genes. An additional panel of 4b-related compounds was tested in a Drosophila model of HD and in STHdhQ111 striatal cells to further distinguish HDAC selectivity. Significant improvement in huntingtin-elicited Drosophila eye neurodegeneration in the fly was observed in response to treatment with compounds targeting human HDAC1 and/or HDAC3. In STHdhQ111 striatal cells, the ability of HDAC inhibitors to improve Htt-elicited metabolic deficits correlated with the potency at inhibiting HDAC1 and HDAC3, although the IC50 values for HDAC1 inhibition were typically 10-fold higher than for inhibition of HDAC3. Assessment of HDAC protein localization in brain tissue by Western blot analysis revealed accumulation of HDAC1 and HDAC3 in the nucleus of HD transgenic mice compared to wt mice, with a concurrent decrease in cytoplasmic localization, suggesting that these HDACs contribute

  14. The anti-tumor histone deacetylase inhibitor SAHA and the natural flavonoid curcumin exhibit synergistic neuroprotection against amyloid-beta toxicity.

    Directory of Open Access Journals (Sweden)

    Jia Meng

    Full Text Available With the trend of an increasing aged population worldwide, Alzheimer's disease (AD, an age-related neurodegenerative disorder, as one of the major causes of dementia in elderly people is of growing concern. Despite the many hard efforts attempted during the past several decades in trying to elucidate the pathological mechanisms underlying AD and putting forward potential therapeutic strategies, there is still a lack of effective treatments for AD. The efficacy of many potential therapeutic drugs for AD is of main concern in clinical practice. For example, large bodies of evidence show that the anti-tumor histone deacetylase (HDAC inhibitor, suberoylanilidehydroxamic acid (SAHA, may be of benefit for the treatment of AD; however, its extensive inhibition of HDACs makes it a poor therapeutic. Moreover, the natural flavonoid, curcumin, may also have a potential therapeutic benefit against AD; however, it is plagued by low bioavailability. Therefore, the integrative effects of SAHA and curcumin were investigated as a protection against amyloid-beta neurotoxicity in vitro. We hypothesized that at low doses their synergistic effect would improve therapeutic selectivity, based on experiments that showed that at low concentrations SAHA and curcumin could provide comprehensive protection against Aβ25-35-induced neuronal damage in PC12 cells, strongly implying potent synergism. Furthermore, network analysis suggested that the possible mechanism underlying their synergistic action might be derived from restoration of the damaged functional link between Akt and the CBP/p300 pathway, which plays a crucial role in the pathological development of AD. Thus, our findings provided a feasible avenue for the application of a synergistic drug combination, SAHA and curcumin, in the treatment of AD.

  15. In vivo efficacy of the histone deacetylase inhibitor suberoylanilide hydroxamic acid in combination with radiotherapy in a malignant rhabdoid tumor mouse model

    International Nuclear Information System (INIS)

    Thiemann, Markus; Kulozik, Andreas E; Debus, Jürgen; Huber, Peter E; Battmann, Claudia; Oertel, Susanne; Ehemann, Volker; Weichert, Wilko; Stenzinger, Albrecht; Bischof, Marc; Weber, Klaus-J; Perez, Ramon Lopez; Haberkorn, Uwe

    2012-01-01

    Histone deacetylase inhibitors are promising new substances in cancer therapy and have also been shown to sensitize different tumor cells to irradiation (XRT). We explored the effect as well as the radiosensitizing properties of suberoylanilide hydroxamic acid (SAHA) in vivo in a malignant rhabdoid tumor (MRT) mouse model. Potential radiosensitization by SAHA was assessed in MRT xenografts by analysis of tumor growth delay, necrosis (HE), apoptosis (TUNEL), proliferation (ki-67) and γH2AX expression as well as dynamic 18 F-Fluorodeoxyglucose Positron Emission Tomography ( 18 F-FDG -PET) after treatment with either SAHA alone, single-dose (10 Gy) or fractionated XRT (3 × 3Gy) solely as well as in combination with SAHA compared to controls. SAHA only had no significant effect on tumor growth. Combination of SAHA for 8 days with single-dose XRT resulted in a higher number of complete remissions, but failed to prove a significant growth delay compared to XRT only. In contrast fractionated XRT plus SAHA for 3 weeks did induce significant tumor growth delay in MRT-xenografts. The histological examination showed a significant effect of XRT in tumor necrosis, expression of Ki-67, γH2AX and apoptosis. SAHA only had no significant effect in the histological examination. Comparison of xenografts treated with XRT and XRT plus SAHA revealed a significantly increased γH2AX expression and apoptosis induction in the mice tumors after combination treatment with single-dose as well as fractionated XRT. The combination of SAHA with XRT showed a tendency to increased necrosis and decrease of proliferation compared to XRT only, which, however, was not significant. The 18 F-FDG-PET results showed no significant differences in the standard uptake value or glucose transport kinetics after either treatment. SAHA did not have a significant effect alone, but proved to enhance the effect of XRT in our MRT in vivo model

  16. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses vasculogenic mimicry and proliferation of highly aggressive pancreatic cancer PaTu8988 cells

    International Nuclear Information System (INIS)

    Xu, Xing-dong; Yang, Lan; Zheng, Li-yun; Pan, Yan-yan; Cao, Zhi-fei; Zhang, Zhi-qing; Zhou, Quan-sheng; Yang, Bo; Cao, Cong

    2014-01-01

    Pancreatic cancer is one of the most aggressive human malignancies with a extremely low 5-year survival rate. Hence, the search for more effective anti-pancreatic cancer agents is urgent. PaTu8988 pancreatic cancer cells were treated with different concentrations of suberoylanilide hydroxamic acid (SAHA), cell survival, proliferation, migration and vasculogenic mimicry (VM) were analyzed. Associated signaling changes were also analyzed by RT-PCR and Western blots. Here, we reported that SAHA, a histone deacetylase inhibitor (HDACi), exerted significant inhibitory efficiency against pancreatic cancer cell survival, proliferation, migration and VM. SAHA dose-dependently inhibited PaTu8988 pancreatic cancer cell growth with the IC-50 of 3.4 ± 0. 7 μM. Meanwhile, SAHA suppressed PaTu8988 cell cycle progression through inducing G2/M arrest, which was associated with cyclin-dependent kinase 1 (CDK-1)/cyclin-B1 degradation and p21/p27 upregulation. Further, SAHA induced both apoptotic and non-apoptotic death of PaTu8988 cells. Significantly, SAHA suppressed PaTu8988 cell in vitro migration and cell-dominant tube formation or VM, which was accompanied by semaphorin-4D (Sema-4D) and integrin-β5 down-regulation. Our evidences showed that Akt activation might be important for Sema-4D expression in PaTu8988 cells, and SAHA-induced Sema-4D down-regulation might be associated with Akt inhibition. This study is among the first to report the VM formation in cultured human pancreatic cancer cells. And we provided strong evidence to suggest that SAHA executes significant anti-VM efficiency in the progressive pancreatic cancer cells. Thus, SAHA could be further investigated as a promising anti-pancreatic cancer agent

  17. RuvBL2 Is Involved in Histone Deacetylase Inhibitor PCI-24781-Induced Cell Death in SK-N-DZ Neuroblastoma Cells

    Science.gov (United States)

    Zhan, Qinglei; Tsai, Sauna; Lu, Yonghai; Wang, Chunmei; Kwan, Yiuwa; Ngai, Saiming

    2013-01-01

    Neuroblastoma is the second most common solid tumor diagnosed during infancy. The survival rate among children with high-risk neuroblastoma is less than 40%, highlighting the urgent needs for new treatment strategies. PCI-24781 is a novel hydroxamic acid-based histone deacetylase (HDAC) inhibitor that has high efficacy and safety for cancer treatment. However, the underlying mechanisms of PCI-24781 are not clearly elucidated in neuroblastoma cells. In the present study, we demonstrated that PCI-24781 treatment significantly inhibited tumor growth at very low doses in neuroblastoma cells SK-N-DZ, not in normal cell line HS-68. However, PCI-24781 caused the accumulation of acetylated histone H3 both in SK-N-DZ and HS-68 cell line. Treatment of SK-N-DZ with PCI-24781 also induced cell cycle arrest in G2/M phase and activated apoptosis signaling pathways via the up-regulation of DR4, p21, p53 and caspase 3. Further proteomic analysis revealed differential protein expression profiles between non-treated and PCI-24781 treated SK-N-DZ cells. Totally 42 differentially expressed proteins were identified by MALDI-TOF MS system. Western blotting confirmed the expression level of five candidate proteins including prohibitin, hHR23a, RuvBL2, TRAP1 and PDCD6IP. Selective knockdown of RuvBL2 rescued cells from PCI-24781-induced cell death, implying that RuvBL2 might play an important role in anti-tumor activity of PCI-24781 in SK-N-DZ cells. The present results provide a new insight into the potential mechanism of PCI-24781 in SK-N-DZ cell line. PMID:23977108

  18. Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth.

    Science.gov (United States)

    Chua, Ming Jang; Arnold, Megan S J; Xu, Weijun; Lancelot, Julien; Lamotte, Suzanne; Späth, Gerald F; Prina, Eric; Pierce, Raymond J; Fairlie, David P; Skinner-Adams, Tina S; Andrews, Katherine T

    2017-04-01

    Malaria, schistosomiasis and leishmaniases are among the most prevalent tropical parasitic diseases and each requires new innovative treatments. Targeting essential parasite pathways, such as those that regulate gene expression and cell cycle progression, is a key strategy for discovering new drug leads. In this study, four clinically approved anti-cancer drugs (Vorinostat, Belinostat, Panobinostat and Romidepsin) that target histone/lysine deacetylase enzymes were examined for in vitro activity against Plasmodium knowlesi, Schistosoma mansoni, Leishmania amazonensis and L. donovani parasites and two for in vivo activity in a mouse malaria model. All four compounds were potent inhibitors of P. knowlesi malaria parasites (IC 50 9-370 nM), with belinostat, panobinostat and vorinostat having 8-45 fold selectivity for the parasite over human neonatal foreskin fibroblast (NFF) or human embryonic kidney (HEK 293) cells, while romidepsin was not selective. Each of the HDAC inhibitor drugs caused hyperacetylation of P. knowlesi histone H4. None of the drugs was active against Leishmania amastigote or promastigote parasites (IC 50  > 20 μM) or S. mansoni schistosomula (IC 50  > 10 μM), however romidepsin inhibited S. mansoni adult worm parings and egg production (IC 50 ∼10 μM). Modest in vivo activity was observed in P. berghei infected mice dosed orally with vorinostat or panobinostat (25 mg/kg twice daily for four days), with a significant reduction in parasitemia observed on days 4-7 and 4-10 after infection (P < 0.05), respectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth

    Directory of Open Access Journals (Sweden)

    Ming Jang Chua

    2017-04-01

    Full Text Available Malaria, schistosomiasis and leishmaniases are among the most prevalent tropical parasitic diseases and each requires new innovative treatments. Targeting essential parasite pathways, such as those that regulate gene expression and cell cycle progression, is a key strategy for discovering new drug leads. In this study, four clinically approved anti-cancer drugs (Vorinostat, Belinostat, Panobinostat and Romidepsin that target histone/lysine deacetylase enzymes were examined for in vitro activity against Plasmodium knowlesi, Schistosoma mansoni, Leishmania amazonensis and L. donovani parasites and two for in vivo activity in a mouse malaria model. All four compounds were potent inhibitors of P. knowlesi malaria parasites (IC50 9–370 nM, with belinostat, panobinostat and vorinostat having 8–45 fold selectivity for the parasite over human neonatal foreskin fibroblast (NFF or human embryonic kidney (HEK 293 cells, while romidepsin was not selective. Each of the HDAC inhibitor drugs caused hyperacetylation of P. knowlesi histone H4. None of the drugs was active against Leishmania amastigote or promastigote parasites (IC50 > 20 μM or S. mansoni schistosomula (IC50 > 10 μM, however romidepsin inhibited S. mansoni adult worm parings and egg production (IC50 ∼10 μM. Modest in vivo activity was observed in P. berghei infected mice dosed orally with vorinostat or panobinostat (25 mg/kg twice daily for four days, with a significant reduction in parasitemia observed on days 4–7 and 4–10 after infection (P < 0.05, respectively.

  20. Functional link between DNA damage responses and transcriptional regulation by ATM in response to a histone deacetylase inhibitor TSA.

    Science.gov (United States)

    Lee, Jong-Soo

    2007-09-01

    Mutations in the ATM (ataxia-telangiectasia mutated) gene, which encodes a 370 kd protein with a kinase catalytic domain, predisposes people to cancers, and these mutations are also linked to ataxia-telangiectasia (A-T). The histone acetylaion/deacetylation- dependent chromatin remodeling can activate the ATM kinase-mediated DNA damage signal pathway (in an accompanying work, Lee, 2007). This has led us to study whether this modification can impinge on the ATM-mediated DNA damage response via transcriptional modulation in order to understand the function of ATM in the regulation of gene transcription. To identify the genes whose expression is regulated by ATM in response to histone deaceylase (HDAC) inhibition, we performed an analysis of oligonucleotide microarrays with using the appropriate cell lines, isogenic A-T (ATM(-)) and control (ATM(+)) cells, following treatment with a HDAC inhibitor TSA. Treatment with TSA reprograms the differential gene expression profile in response to HDAC inhibition in ATM(-) cells and ATM(+) cells. We analyzed the genes that are regulated by TSA in the ATM-dependent manner, and we classified these genes into different functional categories, including those involved in cell cycle/DNA replication, DNA repair, apoptosis, growth/differentiation, cell- cell adhesion, signal transduction, metabolism and transcription. We found that while some genes are regulated by TSA without regard to ATM, the patterns of gene regulation are differentially regulated in an ATM-dependent manner. Taken together, these finding indicate that ATM can regulate the transcription of genes that play critical roles in the molecular response to DNA damage, and this response is modulated through an altered HDAC inhibition-mediated gene expression.

  1. The chemopreventive activity of the histone deacetylase inhibitor tributyrin in colon carcinogenesis involves the induction of apoptosis and reduction of DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Heidor, Renato [Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Advanced Research Center in Food Science and Nutrition (NAPAN) and Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Furtado, Kelly Silva; Ortega, Juliana Festa [Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Oliveira, Tiago Franco de [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Tavares, Paulo Eduardo Latorre Martins; Vieira, Alessandra; Miranda, Mayara Lilian Paulino [Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Purgatto, Eduardo [Laboratory of Food Chemistry and Biochemistry, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Advanced Research Center in Food Science and Nutrition (NAPAN) and Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Moreno, Fernando Salvador, E-mail: rmoreno@usp.br [Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil); Advanced Research Center in Food Science and Nutrition (NAPAN) and Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo (Brazil)

    2014-04-15

    The chemopreventive activity of the histone deacetylase inhibitor (HDACi) tributyrin (TB), a prodrug of butyric acid (BA), was evaluated in a rat model of colon carcinogenesis. The animals were treated with TB (TB group: 200 mg/100 g of body weight, b.w.) or maltodextrin (MD isocaloric control group: 300 mg/100 g b.w.) daily for 9 consecutive weeks. In the 3rd and 4th weeks of treatment, the rats in the TB and MD groups were given DMH (40 mg/kg b.w.) twice a week. After 9 weeks, the animals were euthanized, and the distal colon was examined. Compared with the control group (MD group), TB treatment reduced the total number of aberrant crypt foci (ACF; p < 0.05) as well as the ACF with ≥ 4 crypts (p < 0.05), which are considered more aggressive, but not inhibited the formation of DMH-induced O6-methyldeoxyguanosine DNA adducts. The TB group also showed a higher apoptotic index (p < 0.05) and reduced DNA damage (p < 0.05) compared with MD group. TB acted as a HDACi, as rats treated with the prodrug of BA had higher levels of histone H3K9 acetylation compared with the MD group (p < 0.05). TB administration resulted in increased colonic tissue concentrations of BA (p < 0.05) compared with the control animals. These results suggest that TB can be considered a promising chemopreventive agent for colon carcinogenesis because it reduced the number of ACF, including those that were more aggressive. Induction of apoptosis and reduction of DNA damage are cellular mechanisms that appear to be involved in the chemopreventive activity of TB. - Highlights: • Tributyrin is a chemopreventive agent for rat colon aberrant crypt foci. • Tributyrin increased apoptosis in an experimental rat colon carcinogenesis model. • Tributyrin treatment in a rat colon carcinogenesis model decreased DNA damage. • Tributyrin treatment induced H3K9 acetylation in a rat colon carcinogenesis model.

  2. The chemopreventive activity of the histone deacetylase inhibitor tributyrin in colon carcinogenesis involves the induction of apoptosis and reduction of DNA damage

    International Nuclear Information System (INIS)

    Heidor, Renato; Furtado, Kelly Silva; Ortega, Juliana Festa; Oliveira, Tiago Franco de; Tavares, Paulo Eduardo Latorre Martins; Vieira, Alessandra; Miranda, Mayara Lilian Paulino; Purgatto, Eduardo; Moreno, Fernando Salvador

    2014-01-01

    The chemopreventive activity of the histone deacetylase inhibitor (HDACi) tributyrin (TB), a prodrug of butyric acid (BA), was evaluated in a rat model of colon carcinogenesis. The animals were treated with TB (TB group: 200 mg/100 g of body weight, b.w.) or maltodextrin (MD isocaloric control group: 300 mg/100 g b.w.) daily for 9 consecutive weeks. In the 3rd and 4th weeks of treatment, the rats in the TB and MD groups were given DMH (40 mg/kg b.w.) twice a week. After 9 weeks, the animals were euthanized, and the distal colon was examined. Compared with the control group (MD group), TB treatment reduced the total number of aberrant crypt foci (ACF; p < 0.05) as well as the ACF with ≥ 4 crypts (p < 0.05), which are considered more aggressive, but not inhibited the formation of DMH-induced O6-methyldeoxyguanosine DNA adducts. The TB group also showed a higher apoptotic index (p < 0.05) and reduced DNA damage (p < 0.05) compared with MD group. TB acted as a HDACi, as rats treated with the prodrug of BA had higher levels of histone H3K9 acetylation compared with the MD group (p < 0.05). TB administration resulted in increased colonic tissue concentrations of BA (p < 0.05) compared with the control animals. These results suggest that TB can be considered a promising chemopreventive agent for colon carcinogenesis because it reduced the number of ACF, including those that were more aggressive. Induction of apoptosis and reduction of DNA damage are cellular mechanisms that appear to be involved in the chemopreventive activity of TB. - Highlights: • Tributyrin is a chemopreventive agent for rat colon aberrant crypt foci. • Tributyrin increased apoptosis in an experimental rat colon carcinogenesis model. • Tributyrin treatment in a rat colon carcinogenesis model decreased DNA damage. • Tributyrin treatment induced H3K9 acetylation in a rat colon carcinogenesis model

  3. Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio

    International Nuclear Information System (INIS)

    Mühlethaler-Mottet, Annick; Flahaut, Marjorie; Bourloud, Katia Balmas; Auderset, Katya; Meier, Roland; Joseph, Jean-Marc; Gross, Nicole

    2006-01-01

    Neuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified. NB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting. Sub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL

  4. Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice.

    Science.gov (United States)

    Kv, Athira; Madhana, Rajaram Mohanrao; Js, Indu Chandran; Lahkar, Mangala; Sinha, Swapnil; Naidu, V G M

    2018-05-15

    Major depressive disorder (MDD) is a multifactorial neuropsychiatric disorder. Chronic administration of corticosterone (CORT) to rodents is used to mimic the stress associated dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, a well-established feature found in depressive patients. Recently, preclinical studies have demonstrated the antidepressant potential of histone deacetylase (HDAC) inhibitors. So, we examined the antidepressant potential of vorinostat (VOR), a HDAC inhibitor against CORT injections in male mice. VOR (25 mg/kg; intraperitoneal) and fluoxetine (FLX) (15 mg/kg; oral) treatments were provided to CORT administered mice. At the end of dosing schedule, neurobehavioral tests were conducted; followed by mechanistic evaluation through biochemical analysis, RTPCR and western blot in serum and hippocampus. Neurobehavioral tests revealed the development of anxiety/depressive-like behavior in CORT mice as compared to the vehicle control. Depressive-mice showed concomitant HPA axis dysregulation as observed from the significant increase in serum CORT and ACTH. Chronic CORT administration was found to significantly increase hippocampal malondialdehyde (MDA) and iNOS levels while lowering glutathione (GSH) content, as compared to vehicle control. VOR treatment, in a similar manner to the classical antidepressant FLX, significantly ameliorated anxiety/depressive-like behavior along with HPA axis alterations induced by CORT. The antidepressant-like ability of drug treatments against chronic CORT induced stress model, as revealed in our study, may be due to their potential to mitigate inflammatory damage and oxidative stress via modulation of hippocampal NF-κB p65, COX-2, HDAC2 and phosphorylated JNK levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition.

    Directory of Open Access Journals (Sweden)

    Stuart J Smith

    Full Text Available INTRODUCTION: Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS. METHODS: CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat. RESULTS: Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches. CONCLUSIONS: Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system.

  6. Systematic Analysis of Time-Series Gene Expression Data on Tumor Cell-Selective Apoptotic Responses to HDAC Inhibitors

    Directory of Open Access Journals (Sweden)

    Yun-feng Qi

    2014-01-01

    Full Text Available SAHA (suberoylanilide hydroxamic acid or vorinostat is the first nonselective histone deacetylase (HDAC inhibitor approved by the US Food and Drug Administration (FDA. SAHA affects histone acetylation in chromatin and a variety of nonhistone substrates, thus influencing many cellular processes. In particularly, SAHA induces selective apoptosis of tumor cells, although the mechanism is not well understood. A series of microarray experiments was recently conducted to investigate tumor cell-selective proapoptotic transcriptional responses induced by SAHA. Based on that gene expression time series, we propose a novel framework for detailed analysis of the mechanism of tumor cell apoptosis selectively induced by SAHA. Our analyses indicated that SAHA selectively disrupted the DNA damage response, cell cycle, p53 expression, and mitochondrial integrity of tumor samples to induce selective tumor cell apoptosis. Our results suggest a possible regulation network. Our research extends the existing research.

  7. Antitumor activity of vorinostat-incorporated nanoparticles against human cholangiocarcinoma cells

    OpenAIRE

    Kwak, Tae Won; Kim, Do Hyung; Jeong, Young-Il; Kang, Dae Hwan

    2015-01-01

    Background The aim of this study is to evaluate the anticancer activity of vorinostat-incorporated nanoparticles (vorinostat-NPs) against HuCC-T1 human cholangiocarcinoma cells. Vorinostat-NPs were fabricated by a nanoprecipitation method using poly(dl-lactide-co-glycolide)/poly(ethylene glycol) copolymer. Results Vorinostat-NPs exhibited spherical shapes with sizes

  8. Neuroprotection by the histone deacetylase inhibitor trichostatin A in a model of lipopolysaccharide-sensitised neonatal hypoxic-ischaemic brain injury

    Directory of Open Access Journals (Sweden)

    Fleiss Bobbi

    2012-04-01

    Full Text Available Abstract Background Perinatal brain injury is complex and often associated with both inflammation and hypoxia-ischaemia (HI. In adult inflammatory brain injury models, therapies to increase acetylation are efficacious in reducing inflammation and cerebral injury. Our aim in the present study was to examine the neuropathological and functional effects of the histone deacetylase inhibitor (HDACi trichostatin A (TSA in a model of neonatal lipopolysaccharide (LPS-sensitised HI. We hypothesised that, by decreasing inflammation, TSA would improve injury and behavioural outcome. Furthermore, TSA’s effects on oligodendrocyte development, which is acetylation-dependent, were investigated. Methods On postnatal day 8 (P8, male and female mice were exposed to LPS together with or without TSA. On P9 (14 hours after LPS, mice were exposed to HI (50 minutes at 10% O2. Neuropathology was assessed at 24 hours, 5 days and 27 days post-LPS/HI via immunohistochemistry and/or Western blot analysis for markers of grey matter (microtubule-associated protein 2, white matter (myelin basic protein and cell death (activated caspase-3. Effects of TSA on LPS or LPS/HI-induced inflammation (cytokines and microglia number were assessed by Luminex assay and immunohistochemistry. Expression of acetylation-dependent oligodendrocyte maturational corepressors was assessed with quantitative PCR 6 hours after LPS and at 24 hours and 27 days post-LPS/HI. Animal behaviour was monitored with the open-field and trace fear-conditioning paradigms at 25 days post-LPS/HI to identify functional implications of changes in neuropathology associated with TSA treatment. Results TSA induced increased Ac-H4 in females only after LPS exposure. Also only in females, TSA reduced grey matter and white matter injury at 5 days post-LPS/HI. Treatment altered animal behaviour in the open field and improved learning in the fear-conditioning test in females compared with LPS/HI-only females at

  9. HDAC inhibitors repress BARD1 isoform expression in acute myeloid leukemia cells via activation of miR-19a and/or b.

    Directory of Open Access Journals (Sweden)

    Ilaria Lepore

    Full Text Available Over the past years BARD1 (BRCA1-associated RING domain 1 has been considered as both a BRCA1 (BReast Cancer susceptibility gene 1, early onset interactor and tumor suppressor gene mutated in breast and ovarian cancers. Despite its role as a stable heterodimer with BRCA1, increasing evidence indicates that BARD1 also has BRCA1-independent oncogenic functions. Here, we investigate BARD1 expression and function in human acute myeloid leukemias and its modulation by epigenetic mechanism(s and microRNAs. We show that the HDACi (histone deacetylase inhibitor Vorinostat reduces BARD1 mRNA levels by increasing miR-19a and miR-19b expression levels. Moreover, we identify a specific BARD1 isoform, which might act as tumor diagnostic and prognostic markers.

  10. 4-(1-Ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide – A new pleiotropic HDAC inhibitor targeting cancer cell signalling and cytoskeletal organisation

    Energy Technology Data Exchange (ETDEWEB)

    Mahal, Katharina, E-mail: katharina.mahal@uni-bayreuth.de [Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany); Kahlen, Philip, E-mail: philip.kahlen@uni-bayreuth.de [Department of Genetics, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany); Biersack, Bernhard, E-mail: bernhard.biersack@yahoo.com [Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany); Schobert, Rainer, E-mail: rainer.schobert@uni-bayreuth.de [Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth (Germany)

    2015-08-15

    Histone deacetylases (HDAC) which play a crucial role in cancer cell proliferation are promising drug targets. However, HDAC inhibitors (HDACi) modelled on natural hydroxamic acids such as trichostatin A frequently lead to resistance or even an increased agressiveness of tumours. As a workaround we developed 4-(1-ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide (etacrox), a hydroxamic acid that combines HDAC inhibition with synergistic effects of the 4,5-diarylimidazole residue. Etacrox proved highly cytotoxic against a panel of metastatic and resistant cancer cell lines while showing greater specificity for cancer over non-malignant cells when compared to the approved HDACi vorinostat. Like the latter, etacrox and the closely related imidazoles bimacroxam and animacroxam acted as pan-HDACi yet showed some specificity for HDAC6. Akt signalling and interference with nuclear beta-catenin localisation were elicited by etacrox at lower concentrations when compared to vorinostat. Moreover, etacrox disrupted the microtubule and focal adhesion dynamics of cancer cells and inhibited the proteolytic activity of prometastatic and proangiogenic matrix metalloproteinases. As a consequence, etacrox acted strongly antimigratory and antiinvasive against various cancer cell lines in three-dimensional transwell invasion assays and also antiangiogenic in vivo with respect to blood vessel formation in the chorioallantoic membrane assay. These pleiotropic effects and its water-solubility and tolerance by mice render etacrox a promising new HDACi candidate. - Graphical abstract: A novel histone deacetylase inhibitor with pleiotropic anticancer effects. - Highlights: • Etacrox is a new HDACi with cytotoxic, antiangiogenic and antiinvasive activity. • Etacrox causes aberrant cancer cell signalling and cytoskeletal reorganisation. • Pro-metastatic and angiogenic matrix metalloproteinases are inhibited by etacrox. • Etacrox impairs blood vessel maturation in vivo and cancer cell

  11. 4-(1-Ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide – A new pleiotropic HDAC inhibitor targeting cancer cell signalling and cytoskeletal organisation

    International Nuclear Information System (INIS)

    Mahal, Katharina; Kahlen, Philip; Biersack, Bernhard; Schobert, Rainer

    2015-01-01

    Histone deacetylases (HDAC) which play a crucial role in cancer cell proliferation are promising drug targets. However, HDAC inhibitors (HDACi) modelled on natural hydroxamic acids such as trichostatin A frequently lead to resistance or even an increased agressiveness of tumours. As a workaround we developed 4-(1-ethyl-4-anisyl-imidazol-5-yl)-N-hydroxycinnamide (etacrox), a hydroxamic acid that combines HDAC inhibition with synergistic effects of the 4,5-diarylimidazole residue. Etacrox proved highly cytotoxic against a panel of metastatic and resistant cancer cell lines while showing greater specificity for cancer over non-malignant cells when compared to the approved HDACi vorinostat. Like the latter, etacrox and the closely related imidazoles bimacroxam and animacroxam acted as pan-HDACi yet showed some specificity for HDAC6. Akt signalling and interference with nuclear beta-catenin localisation were elicited by etacrox at lower concentrations when compared to vorinostat. Moreover, etacrox disrupted the microtubule and focal adhesion dynamics of cancer cells and inhibited the proteolytic activity of prometastatic and proangiogenic matrix metalloproteinases. As a consequence, etacrox acted strongly antimigratory and antiinvasive against various cancer cell lines in three-dimensional transwell invasion assays and also antiangiogenic in vivo with respect to blood vessel formation in the chorioallantoic membrane assay. These pleiotropic effects and its water-solubility and tolerance by mice render etacrox a promising new HDACi candidate. - Graphical abstract: A novel histone deacetylase inhibitor with pleiotropic anticancer effects. - Highlights: • Etacrox is a new HDACi with cytotoxic, antiangiogenic and antiinvasive activity. • Etacrox causes aberrant cancer cell signalling and cytoskeletal reorganisation. • Pro-metastatic and angiogenic matrix metalloproteinases are inhibited by etacrox. • Etacrox impairs blood vessel maturation in vivo and cancer cell

  12. Histone deacetylase inhibitors restore IL-10 expression in lipopolysaccharide-induced cell inflammation and reduce IL-1β and IL-6 production in breast silicone implant in C57BL/6J wild-type murine model.

    Science.gov (United States)

    Di Liddo, Rosa; Valente, Sergio; Taurone, Samanta; Zwergel, Clemens; Marrocco, Biagina; Turchetta, Rosaria; Conconi, Maria Teresa; Scarpa, Carlotta; Bertalot, Thomas; Schrenk, Sandra; Mai, Antonello; Artico, Marco

    2016-01-20

    Among epigenetic enzymes, histone deacetylases (HDACs) are responsible for regulating the expression of an extensive array of genes by reversible deacetylation of nuclear histones as well as a large number of non-histone proteins. Initially proposed for cancer therapy, recently the interest for HDAC inhibitors (HDACi) as orally active, safe, and anti-inflammatory agents is rising due to their ability in reducing the severity of inflammatory and autoimmune diseases. In particular, selective HDAC3, HDAC6, and HDAC8 inhibitors have been described to downregulate the expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-1β, and IL-6). Herein, using KB31, C2C12, and 3T3-J2 cell lines, we demonstrated that, under lipopolysaccharide-induced in vitro inflammation, HDAC3/6/8 inhibitor MC2625 and HDAC6-selective inhibitor MC2780 were effective at a concentration of 30 ng/mL to downregulate mRNA expression of pro-inflammatory cytokines (IL-1β and IL-6) and to promote the transcription of IL-10 gene, without affecting the cell viability. Afterwards, we investigated by immunohistochemistry the activity of MC2625 and MC2780 at a concentration of 60 ng/kg animal weight to regulate silicone-triggered immune response in C57BL/6J female mice. Our findings evidenced the ability of such inhibitors to reduce host inflammation in silicone implants promoting a thickness reduction of peri-implant fibrous capsule, upregulating IL-10 expression, and reducing the production of both IL-1β and IL-6. These results underline the potential application of MC2625 and MC2780 in inflammation-related diseases.

  13. Combined Effect of Vorinostat and Grape Seed Proanthocyanidins ...

    African Journals Online (AJOL)

    1Department of Medical Oncology, 2Department of Ophthalmology, Cangzhou ... of grape seed proanthocyanidins (GSPs) in non-small cell lung cancer ... Conclusion: The combination of vorinostat and GSPs can be an effective and innovative ...

  14. Structure of Prokaryotic Polyamine Deacetylase Reveals Evolutionary Functional Relationships with Eukaryotic Histone Deacetylases

    Energy Technology Data Exchange (ETDEWEB)

    P Lombardi; H Angell; D Whittington; E Flynn; K Rajashankar; D Christianson

    2011-12-31

    Polyamines are a ubiquitous class of polycationic small molecules that can influence gene expression by binding to nucleic acids. Reversible polyamine acetylation regulates nucleic acid binding and is required for normal cell cycle progression and proliferation. Here, we report the structures of Mycoplana ramosa acetylpolyamine amidohydrolase (APAH) complexed with a transition state analogue and a hydroxamate inhibitor and an inactive mutant complexed with two acetylpolyamine substrates. The structure of APAH is the first of a histone deacetylase-like oligomer and reveals that an 18-residue insert in the L2 loop promotes dimerization and the formation of an 18 {angstrom} long 'L'-shaped active site tunnel at the dimer interface, accessible only to narrow and flexible substrates. The importance of dimerization for polyamine deacetylase function leads to the suggestion that a comparable dimeric or double-domain histone deacetylase could catalyze polyamine deacetylation reactions in eukaryotes.

  15. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells.

    Science.gov (United States)

    Liu, Quan; Liu, Juan; Roschmann, Kristina Irene Lisolette; van Egmond, Danielle; Golebski, Korneliusz; Fokkens, Wytske Johanna; Wang, Dehui; van Drunen, Cornelis Maria

    2013-04-11

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells.

  16. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Michele Cea

    Full Text Available Aberrant histone deacetylase (HDAC activity is frequent in human leukemias. However, while classical, NAD(+-independent HDACs are an established therapeutic target, the relevance of NAD(+-dependent HDACs (sirtuins in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527 and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD(+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.

  17. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites.

    Science.gov (United States)

    Engel, Jessica A; Jones, Amy J; Avery, Vicky M; Sumanadasa, Subathdrage D M; Ng, Susanna S; Fairlie, David P; Skinner-Adams, Tina; Andrews, Katherine T

    2015-12-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat(®)), romidepsin (Istodax(®)) and belinostat (Beleodaq(®)), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10-200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  18. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites

    Directory of Open Access Journals (Sweden)

    Jessica A. Engel

    2015-12-01

    Full Text Available Histone deacetylase (HDAC enzymes work together with histone acetyltransferases (HATs to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat®, romidepsin (Istodax® and belinostat (Beleodaq®, are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10–200 nM, while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM. The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  19. Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines

    DEFF Research Database (Denmark)

    Lundh, M; Christensen, D P; Rasmussen, D N

    2010-01-01

    Cytokine-induced beta cell toxicity is abrogated by non-selective inhibitors of lysine deacetylases (KDACs). The KDAC family consists of 11 members, namely histone deacetylases HDAC1 to HDAC11, but it is not known which KDAC members play a role in cytokine-mediated beta cell death. The aim...

  20. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells

    NARCIS (Netherlands)

    Liu, Quan; Liu, Juan; Roschmann, Kristina Irene Lisolette; van Egmond, Danielle; Golebski, Korneliusz; Fokkens, Wytske Johanna; Wang, Dehui; van Drunen, Cornelis Maria

    2013-01-01

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely

  1. Effect of ketoconazole-mediated CYP3A4 inhibition on clinical pharmacokinetics of panobinostat (LBH589), an orally active histone deacetylase inhibitor

    NARCIS (Netherlands)

    A.P. Hamberg (Paul); M.M. Woo (Margaret M.); L.C. Chen (Lin-Chi); J. Verweij (Jaap); M.G. Porro; L. Zhao (Ling); W. Li (Weili); D.A.J. van der Biessen (Diane); H.S. Sharma (Hari); T. Hengelage (Thomas); M.J.A. de Jonge (Maja)

    2011-01-01

    textabstractPurpose: Panobinostat is partly metabolized by CYP3A4 in vitro. This study evaluated the effect of a potent CYP3A inhibitor, ketoconazole, on the pharmacokinetics and safety of panobinostat. Methods: Patients received a single panobinostat oral dose on day 1, followed by 4 days wash-out

  2. Effects of treatment with suppressive combination antiretroviral drug therapy and the histone deacetylase inhibitor suberoylanilide hydroxamic acid; (SAHA on SIV-infected Chinese rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Binhua Ling

    Full Text Available Viral reservoirs-persistent residual virus despite combination antiretroviral therapy (cART-remain an obstacle to cure of HIV-1 infection. Difficulty studying reservoirs in patients underscores the need for animal models that mimics HIV infected humans on cART. We studied SIV-infected Chinese-origin rhesus macaques (Ch-RM treated with intensive combination antiretroviral therapy (cART and 3 weeks of treatment with the histone deacetyalse inhibitor, suberoylanilide hydroxamic acid (SAHA.SIVmac251 infected Ch-RM received reverse transcriptase inhibitors PMPA and FTC and integrase inhibitor L-870812 beginning 7 weeks post infection. Integrase inhibitor L-900564 and boosted protease inhibitor treatment with Darunavir and Ritonavir were added later. cART was continued for 45 weeks, with daily SAHA administered for the last 3 weeks, followed by euthanasia/necropsy. Plasma viral RNA and cell/tissue-associated SIV gag RNA and DNA were quantified by qRT-PCR/qPCR, with flow cytometry monitoring changes in immune cell populations.Upon cART initiation, plasma viremia declined, remaining <30 SIV RNA copy Eq/ml during cART, with occasional blips. Decreased viral replication was associated with decreased immune activation and partial restoration of intestinal CD4+ T cells. SAHA was well tolerated but did not result in demonstrable treatment-associated changes in plasma or cell associated viral parameters.The ability to achieve and sustain virological suppression makes cART-suppressed, SIV-infected Ch-RM a potentially useful model to evaluate interventions targeting residual virus. However, despite intensive cART over one year, persistent viral DNA and RNA remained in tissues of all three animals. While well tolerated, three weeks of SAHA treatment did not demonstrably impact viral RNA levels in plasma or tissues; perhaps reflecting dosing, sampling and assay limitations.

  3. Largazole, a class I histone deacetylase inhibitor, enhances TNF-α-induced ICAM-1 and VCAM-1 expression in rheumatoid arthritis synovial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Salahuddin, E-mail: Salah.Ahmed@utoledo.edu [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Riegsecker, Sharayah; Beamer, Maria; Rahman, Ayesha; Bellini, Joseph V. [Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States); Bhansali, Pravin; Tillekeratne, L.M. Viranga [Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, OH (United States)

    2013-07-15

    In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1–5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (0.5–5 μM) inhibited the constitutive expression of HDAC1 (0–30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ∼ 220% with a concomitant decrease in HDAC5 [30–58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also induced HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α + LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA. - Highlights: • Largazole enhances TNF-α-induced ICAM-1 and VCAM-1. • Largazole upregulates class II HDAC (HDAC6) in RA synovial fibroblasts. • Largazole also induces the expression of phospho-p38

  4. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells

    OpenAIRE

    Liu, Q.; Liu, J.; Roschmann, K.I.L.; Egmond, D. van; Golebski, K.; Fokkens, W.J.; Wang, D.; Drunen, C.M. van

    2013-01-01

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL3...

  5. Trichostatin A, a histone deacetylase inhibitor, suppresses JAK2/STAT3 signaling via inducing the promoter-associated histone acetylation of SOCS1 and SOCS3 in human colorectal cancer cells.

    Science.gov (United States)

    Xiong, Hua; Du, Wan; Zhang, Yan-Jie; Hong, Jie; Su, Wen-Yu; Tang, Jie-Ting; Wang, Ying-Chao; Lu, Rong; Fang, Jing-Yuan

    2012-02-01

    Aberrant janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is involved in the oncogenesis of several cancers. Suppressors of cytokine signaling (SOCS) genes and SH2-containing protein tyrosine phosphatase 1 (SHP1) proteins, which are negative regulators of JAK/STAT signaling, have been reported to have tumor suppressor functions. However, in colorectal cancer (CRC) cells, the mechanisms that regulate SOCS and SHP1 genes, and the cause of abnormalities in the JAK/STAT signaling pathway, remain largely unknown. The present study shows that trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, leads to the hyperacetylation of histones associated with the SOCS1 and SOCS3 promoters, but not the SHP1 promoter in CRC cells. This indicates that histone modifications are involved in the regulation of SOCS1 and SOCS3. Moreover, upregulation of SOCS1 and SOCS3 expression was achieved using TSA, which also significantly downregulated JAK2/STAT3 signaling in CRC cells. We also demonstrate that TSA suppresses the growth of CRC cells, and induces G1 cell cycle arrest and apoptosis through the regulation of downstream targets of JAK2/STAT3 signaling, including Bcl-2, survivin and p16(ink4a) . Therefore, our data demonstrate that TSA may induce SOCS1 and SOCS3 expression by inducing histone modifications and consequently inhibits JAK2/STAT3 signaling in CRC cells. These results also establish a mechanistic link between the inhibition of JAK2/STAT3 signaling and the anticancer action of TSA in CRC cells. Copyright © 2011 Wiley Periodicals, Inc.

  6. Profile of Class I Histone Deacetylases (HDAC) by Human Dendritic Cells after Alcohol Consumption and In Vitro Alcohol Treatment and Their Implication in Oxidative Stress: Role of HDAC Inhibitors Trichostatin A and Mocetinostat.

    Science.gov (United States)

    Agudelo, Marisela; Figueroa, Gloria; Parira, Tiyash; Yndart, Adriana; Muñoz, Karla; Atluri, Venkata; Samikkannu, Thangavel; Nair, Madhavan P

    2016-01-01

    Epigenetic mechanisms have been shown to play a role in alcohol use disorders (AUDs) and may prove to be valuable therapeutic targets. However, the involvement of histone deacetylases (HDACs) on alcohol-induced oxidative stress of human primary monocyte-derived dendritic cells (MDDCs) has not been elucidated. In the current study, we took a novel approach combining ex vivo, in vitro and in silico analyses to elucidate the mechanisms of alcohol-induced oxidative stress and role of HDACs in the periphery. ex vivo and in vitro analyses of alcohol-modulation of class I HDACs and activity by MDDCs from self-reported alcohol users and non-alcohol users was performed. Additionally, MDDCs treated with alcohol were assessed using qRT-PCR, western blot, and fluorometric assay. The functional effects of alcohol-induce oxidative stress were measured in vitro using PCR array and in silico using gene expression network analysis. Our findings show, for the first time, that MDDCs from self-reported alcohol users have higher levels of class I HDACs compare to controls and alcohol treatment in vitro differentially modulates HDACs expression. Further, HDAC inhibitors (HDACi) blocked alcohol-induction of class I HDACs and modulated alcohol-induced oxidative stress related genes expressed by MDDCs. In silico analysis revealed new target genes and pathways on the mode of action of alcohol and HDACi. Findings elucidating the ability of alcohol to modulate class I HDACs may be useful for the treatment of alcohol-induced oxidative damage and may delineate new potential immune-modulatory mechanisms.

  7. CCLab--a multi-objective genetic algorithm based combinatorial library design software and an application for histone deacetylase inhibitor design.

    Science.gov (United States)

    Fang, Guanghua; Xue, Mengzhu; Su, Mingbo; Hu, Dingyu; Li, Yanlian; Xiong, Bing; Ma, Lanping; Meng, Tao; Chen, Yuelei; Li, Jingya; Li, Jia; Shen, Jingkang

    2012-07-15

    The introduction of the multi-objective optimization has dramatically changed the virtual combinatorial library design, which can consider many objectives simultaneously, such as synthesis cost and drug-likeness, thus may increase positive rates of biological active compounds. Here we described a software called CCLab (Combinatorial Chemistry Laboratory) for combinatorial library design based on the multi-objective genetic algorithm. Tests of the convergence ability and the ratio to re-take the building blocks in the reference library were conducted to assess the software in silico, and then it was applied to a real case of designing a 5×6 HDAC inhibitor library. Sixteen compounds in the resulted library were synthesized, and the histone deactetylase (HDAC) enzymatic assays proved that 14 compounds showed inhibitory ratios more than 50% against tested 3 HDAC enzymes at concentration of 20 μg/mL, with IC(50) values of 3 compounds comparable to SAHA. These results demonstrated that the CCLab software could enhance the hit rates of the designed library and would be beneficial for medicinal chemists to design focused library in drug development (the software can be downloaded at: http://202.127.30.184:8080/drugdesign.html). Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. A phase II study of vorinostat (MK-0683) in patients with polycythaemia vera and essential thrombocythaemia

    DEFF Research Database (Denmark)

    Andersen, Christen L; McMullin, Mary F; Ejerblad, Elisabeth

    2013-01-01

    objective was to evaluate if vorinostat was followed by a decline in clonal myeloproliferation as defined by European Leukaemia Net. Thirty patients (48%) completed the intervention period (24 weeks of therapy). An intention-to-treat response rate of 35% was identified. Pruritus was resolved [19% to 0% (P=0...... (5 patients). In conclusion, vorinostat showed effectiveness by normalizing elevated leucocyte and platelet counts, resolving pruritus and significantly reducing splenomegaly. However, vorinostat was associated with significant side effects resulting in a high discontinuation rate. A lower dose...... of vorinostat in combination with conventional and/or novel targeted therapies may be warranted in future studies....

  9. TAL1/SCL is downregulated upon histone deacetylase inhibition in T-cell acute lymphoblastic leukemia cells

    NARCIS (Netherlands)

    Cardoso, B. A.; de Almeida, S. F.; Laranjeira, A. B. A.; Carmo-Fonseca, M.; Yunes, J. A.; Coffer, P. J.; Barata, J. T.

    2011-01-01

    The transcription factor T-cell acute lymphocytic leukemia (TAL)-1 is a major T-cell oncogene associated with poor prognosis in T-cell acute lymphoblastic leukemia (T-ALL). TAL1 binds histone deacetylase 1 and incubation with histone deacetylase inhibitors (HDACis) promotes apoptosis of leukemia

  10. Structure of ‘linkerless’ hydroxamic acid inhibitor-HDAC8 complex confirms the formation of an isoform-specific subpocket

    Energy Technology Data Exchange (ETDEWEB)

    Tabackman, Alexa A.; Frankson, Rochelle; Marsan, Eric S.; Perry, Kay; Cole, Kathryn E. (Ithaca); (Cornell); (Christopher Newport U)

    2016-11-04

    Histone deacetylases (HDACs) catalyze the hydrolysis of acetylated lysine side chains in histone and non-histone proteins, and play a critical role in the regulation of many biological processes, including cell differentiation, proliferation, senescence, and apoptosis. Aberrant HDAC activity is associated with cancer, making these enzymes important targets for drug design. In general, HDAC inhibitors (HDACi) block the proliferation of tumor cells by inducing cell differentiation, cell cycle arrest, and/or apoptosis, and comprise some of the leading therapies in cancer treatments. To date, four HDACi have been FDA approved for the treatment of cancers: suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza®), romidepsin (FK228, Istodax®), belinostat (Beleodaq®), and panobinostat (Farydak®). Most current inhibitors are pan-HDACi, and non-selectively target a number of HDAC isoforms. Six previously reported HDACi were rationally designed, however, to target a unique sub-pocket found only in HDAC8. While these inhibitors were indeed potent against HDAC8, and even demonstrated specificity for HDAC8 over HDACs 1 and 6, there were no structural data to confirm the mode of binding. Here we report the X-ray crystal structure of Compound 6 complexed with HDAC8 to 1.98 Å resolution. We also describe the use of molecular docking studies to explore the binding interactions of the other 5 related HDACi. Our studies confirm that the HDACi induce the formation of and bind in the HDAC8-specific subpocket, offering insights into isoform-specific inhibition.

  11. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.

    Directory of Open Access Journals (Sweden)

    Gabriela Silva

    Full Text Available BACKGROUND: Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS and acute myeloid leukaemia (AML. Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action. METHODOLOGY/PRINCIPAL FINDINGS: Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33(+ cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3 and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1 and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1. CONCLUSION: This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.

  12. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.

    Science.gov (United States)

    Silva, Gabriela; Cardoso, Bruno A; Belo, Hélio; Almeida, António Medina

    2013-01-01

    Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action. Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33(+) cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3) and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1) and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1. This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.

  13. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand?

    Science.gov (United States)

    Whittle, Nigel; Singewald, Nicolas

    2014-04-01

    A novel strategy to treat anxiety and fear-related disorders such as phobias, panic and PTSD (post-traumatic stress disorder) is combining CBT (cognitive behavioural therapy), including extinction-based exposure therapy, with cognitive enhancers. By targeting and boosting mechanisms underlying learning, drug development in this field aims at designing CBT-augmenting compounds that help to overcome extinction learning deficits, promote long-term fear inhibition and thus support relapse prevention. Progress in revealing the role of epigenetic regulation of specific genes associated with extinction memory generation has opened new avenues in this direction. The present review examines recent evidence from pre-clinical studies showing that increasing histone acetylation, either via genetic or pharmacological inhibition of HDACs (histone deacetylases) by e.g. vorinostat/SAHA (suberoylanilide hydroxamic acid), entinostat/MS-275, sodium butyrate, TSA (trichostatin A) or VPA (valproic acid), or by targeting HATs (histone acetyltransferases), augments fear extinction and, importantly, generates a long-term extinction memory that can protect from return of fear phenomena. The molecular mechanisms and pathways involved including BDNF (brain-derived neurotrophic factor) and NMDA (N-methyl-D-aspartate) receptor signalling are just beginning to be revealed. First studies in healthy humans are in support of extinction-facilitating effects of HDAC inhibitors. Very recent evidence that HDAC inhibitors can rescue deficits in extinction-memory-impaired rodents indicates a potential clinical utility of this approach also for exposure therapy-resistant patients. Important future work includes investigation of the long-term safety aspects of HDAC inhibitor treatment, as well as design of isotype(s)-specific inhibitors. Taken together, HDAC inhibitors display promising potential as pharmacological adjuncts to augment the efficacy of exposure-based approaches in anxiety and trauma therapy.

  14. Inhibitors

    Science.gov (United States)

    ... JM, and the Hemophilia Inhibitor Research Study Investigators. Validation of Nijmegen-Bethesda assay modifications to allow inhibitor ... webinars on blood disorders Language: English (US) Español (Spanish) File Formats Help: How do I view different ...

  15. Preparation of a mixed-matrix hydrogel of vorinostat for topical administration on the rats as experimental model.

    Science.gov (United States)

    Dai, Wenwen; Wang, Chenhui; Yu, Changhui; Yao, Ju; Sun, Fengying; Teng, Lesheng; Li, Youxin

    2015-10-12

    Oral vorinostat has the remarkable curative effect on aggravated and recurrent cutaneous T-cell lymphoma (CTCL), but is accompanied by serious adverse effects. Therefore, oral vorinostat is not applicable to the treatment of early stage CTCL. The aim of this study is to develop a novel vorinostat formulation which is effective for early stage CTCL and free of the serious adverse effects. A mixed-matrix hydrogel of vorinostat was prepared and characterized as a potential topical skin delivery system. Moisture retention, swelling behavior, viscosity, real-time morphology and differential scanning calorimeter analysis (DSC) of hydrogel were evaluated to select the solvent, matrix and humectant. The optimal HPMC/HPC ratio, pH, additive, dose and drug loading of vorinostat hydrogel were determined by evaluating the cumulative vorinostat amount of skin retention and transdermal amount of vorinostat through the skin in vitro. The optimal hydrogel presented a low transdermal amount of vorinostat through the skin, suggesting that the hydrogel reduced the amount of vorinostat that was absorbed in the systemic circulation. More importantly, in vivo percutaneous permeation experiments were also performed to evaluate the permeation behavior of vorinostat into the skin. The topical application with a much lower dose showed higher AUC (the cumulative vorinostat amount of skin retention) than oral application and the hydrogel achieved a sustained permeation of vorinostat in the skin for 24h in vivo. It indicated that a higher relative bioavailability for hydrogel was achieved compared with oral vorinostat. Moreover, there was no damage, inflammation or cell swelling of the skin after administration. Thus, the mixed-matrix vorinostat hydrogel prepared in this study could deliver vorinostat into local skin more efficiently than oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition

    DEFF Research Database (Denmark)

    Ropero, S; Fraga, MF; Ballestar, E

    2006-01-01

    Disruption of histone acetylation patterns is a common feature of cancer cells, but very little is known about its genetic basis. We have identified truncating mutations in one of the primary human histone deacetylases, HDAC2, in sporadic carcinomas with microsatellite instability and in tumors a...... deacetylase inhibitors. As such drugs may serve as therapeutic agents for cancer, our findings support the use of HDAC2 mutational status in future pharmacogenetic treatment of these individuals....

  17. HTP Nutraceutical Screening for Histone Deacetylase Inhibitors and Effects of HDACis on Tumor-suppressing miRNAs by Trichostatin A and Grapeseed (Vitis vinifera) in HeLa cells.

    Science.gov (United States)

    Mazzio, Elizabeth A; Soliman, Karam F A

    2017-01-02

    Aggressive tumor malignancies are a consequence of delayed diagnosis, epigenetic/phenotype changes and chemo-radiation resistance. Histone deacetylases (HDACs) are a major epigenetic regulator of transcriptional repression, which are highly overexpressed in advanced malignancy. While original chemotherapy drugs were modeled after phytochemicals elucidated by botanical screenings, HDAC inhibitors (HDACi) such as apicidin, trichostatin A (TSA) and butyrate were discovered as products of fungus and microbes, in particular, gut microbiota. Therefore, a persistent question remains as to the inherent existence of HDACis in raw undigested dietary plant material. In this study, we conduct a high-throughput (HTP) screening of ~1,600 non-fermented commonly used nutraceuticals (spices, herbs, teas, vegetables, fruits, seeds, rinds etc.) at (HeLa cell lysates. Human HDAC kinetic validation was performed using a standard fluorometric activity assay, followed by an enzymatic-linked immuno-captured ELISA. Both methods were verified using HDACi panel drugs: TSA, apicidin, suberohydroxamic acid, M344, CL-994, valproic acid and sodium phenylbutyrate. The HTP screening was then conducted, followed by a study comparing biological effects of HDACis in HeLa cells, including analysis of whole-transcriptome non-coding RNAs using Affymetrix miRNA 4.1-panel arrays. The HTP screening results confirmed 44/1600 as potential HDACis to which 31 were further eliminated as false-positives. Methodological challenges/concerns are addressed regarding plant product false-positives that arise from the signal reduction of commercial lysine development reagents. Only 13 HDACis were found having an IC 50 under HeLa cells, where the data suggest predominant effects are anti-mitotic rather than cytotoxic. Lastly, differential effects of TSA vs. GSE at sub-lethal concentrations tested on HeLa cells show 6,631 miRNAs expressed in resting cells, 35 significantly up-regulated (TSA) and 81 up-regulated (GSE

  18. Redundant Control of Adipogenesis by Histone Deacetylases 1 and 2*

    OpenAIRE

    Haberland, Michael; Carrer, Michele; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2010-01-01

    Adipocyte differentiation is a well defined process that is under the control of transcriptional activators and repressors. We show that histone deacetylase (HDAC) inhibitors efficiently block adipocyte differentiation in vitro. This effect is specific to adipogenesis, as another mesenchymal differentiation process, osteoblastogenesis, is enhanced upon HDAC inhibition. Through the systematic genetic deletion of HDAC genes in cultured mesenchymal precursor cells, we show that deletion of HDAC1...

  19. Vorinostat enhances the anticancer effect of oxaliplatin on hepatocellular carcinoma cells.

    Science.gov (United States)

    Liao, Bo; Zhang, Yingying; Sun, Quan; Jiang, Ping

    2018-01-01

    Oxaliplatin-based systemic chemotherapy has been proposed to have efficacy in hepatocellular carcinoma (HCC). We investigated the combination of vorinostat and oxaliplatin for possible synergism in HCC cells. SMMC7721, BEL7402, and HepG2 cells were treated with vorinostat and oxaliplatin. Cytotoxicity assay, tumorigenicity assay in vitro, cell cycle analysis, apoptosis analysis, western blot analysis, animal model study, immunohistochemistry, and quantitative PCR were performed. We found that vorinostat and oxaliplatin inhibited the proliferation of SMMC7721, BEL7402, and HepG2 cells. The combination index (CI) values were all vorinostat and oxaliplatin induced G2/M phase arrest, triggered caspase-dependent apoptosis, and decreased tumorigenicity both in vitro and in vivo. Vorinostat suppressed the expression of BRCA1 induced by oxaliplatin. In conclusion, cotreatment with vorinostat and oxaliplatin exhibited synergism in HCC cells. The combination inhibited cell proliferation and tumorigenicity both in vitro and in vivo through induction of cell cycle arrest and apoptosis. Our results predict that a combination of vorinostat and oxaliplatin may be useful in the treatment of advanced HCC. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  20. Vorinostat increases carboplatin and paclitaxel activity in non-small cell lung cancer cells

    OpenAIRE

    Owonikoko, Taofeek K.; Ramalingam, Suresh S.; Kanterewicz, Beatriz; Balius, Trent; Belani, Chandra P.; Hershberger, Pamela A.

    2010-01-01

    We observed a 53% response rate in non-small cell lung cancer (NSCLC) patients treated with vorinostat plus paclitaxel/carboplatin in a Phase I trial. Studies were undertaken to investigate the mechanism (s) underlying this activity. Growth inhibition was assessed in NSCLC cells by MTT assay after 72 h of continuous drug exposure. Vorinostat (1 µM) inhibited growth by: 17±7% in A549, 28±6% in 128-88T, 39±8% in Calu1, and 41±7% in 201T cells. Vorinostat addition to carboplatin or paclitaxel le...

  1. Phase IB trial of ixabepilone and vorinostat in metastatic breast cancer.

    Science.gov (United States)

    Luu, Thehang; Kim, Kyu-Pyo; Blanchard, Suzette; Anyang, Bean; Hurria, Arti; Yang, Lixin; Beumer, Jan H; Somlo, George; Yen, Yun

    2018-01-01

    To translate promising preclinical data on the combination of vorinostat and ixabepilone for metastatic breast cancer (MBC) into clinical trials. We conducted a randomized two-arm Phase IB clinical trial of ascending doses of vorinostat and ixabepilone in prior -treated MBC patients. To determine the maximum tolerated dose (MTD), 37 patients were randomized to schedule A: every-3-week ixabepilone + vorinostat (days 1-14), or schedule B: weekly ixabepilone + vorinostat (days 1-7; 15-21) Pharmacokinetics were assessed. Nineteen additional patients were randomized to schedule A or B and objective response rate (ORR), clinical benefit rate (CBR), toxicity, progression-free survival (PFS), and overall survival (OS) were assessed. The schedule A MTD was vorinostat 300 mg daily (days 1-14), ixabepilone 32 mg/m 2 (day 2); 21-day cycle 27% dose-limiting toxicities (DLTs). The schedule B MTD was vorinostat 300 mg daily (days 1-7; 15-21), ixabepilone 16 mg/m 2 (days 2, 9, 16); 28-day cycle; no DLTs. Vorinostat and ixabepilone clearances were 194 L/h and 21.3 L/h/m 2 , respectively. Grade 3 peripheral sensory neuropathy was reported in 8% (A) and 21% (B) of patients. The ORR and CBR were 22 and 22% (A); 30 and 35% (B). Median PFS was 3.9 (A) and 3.7 (B) months. OS was 14.8 (A) and 17.1 (B) months. We established the MTD of vorinostat and ixabepilone. This drug combination offers a novel therapy for previously treated MBC patients. The potential for lower toxicity and comparable efficacy compared to current therapies warrants further study.

  2. Methyl Effect in Azumamides Provides Insight Into Histone Deacetylase Inhibition by Macrocycles

    DEFF Research Database (Denmark)

    Maolanon, Alex; Villadsen, Jesper; Christensen, Niels Johan

    2014-01-01

    Natural, nonribosomal cyclotetrapeptides have traditionally been a rich source of inspiration for design of potent histone deacetylase (HDAC) inhibitors. We recently disclosed the total synthesis and full HDAC pro fi ling of the naturally occurring azumamides ( J. Med. Chem. 2013 , 56 , 6512...

  3. Synergistic Anticancer Effects of Vorinostat and Epigallocatechin-3-Gallate against HuCC-T1 Human Cholangiocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Tae Won Kwak

    2013-01-01

    Full Text Available The aim of this study was to investigate the effect of the combination of vorinostat and epigallocatechin-3-gallate against HuCC-T1 human cholangiocarcinoma cells. A novel chemotherapy strategy is required as cholangiocarcinomas rarely respond to conventional chemotherapeutic agents. Both vorinostat and EGCG induce apoptosis and suppress invasion, migration, and angiogenesis of tumor cells. The combination of vorinostat and EGCG showed synergistic growth inhibitory effects and induced apoptosis in tumor cells. The Bax/Bcl-2 expression ratio and caspase-3 and -7 activity increased, but poly (ADP-ribose polymerase expression decreased when compared to treatment with each agent alone. Furthermore, invasion, matrix metalloproteinase (MMP expression, and migration of tumor cells decreased following treatment with the vorinostat and EGCG combination compared to those of vorinostat or EGCG alone. Tube length and junction number of human umbilical vein endothelial cells (HUVECs decreased as well as vascular endothelial growth factor expression following vorinostat and EGCG combined treatment. These results indicate that the combination of vorinostat and EGCG had a synergistic effect on inhibiting tumor cell angiogenesis potential. We suggest that the combination of vorinostat and EGCG is a novel option for cholangiocarcinoma chemotherapy.

  4. Histone deacetylases as regulators of inflammation and immunity.

    Science.gov (United States)

    Shakespear, Melanie R; Halili, Maria A; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J

    2011-07-01

    Histone deacetylases (HDACs) remove an acetyl group from lysine residues of target proteins to regulate cellular processes. Small-molecule inhibitors of HDACs cause cellular growth arrest, differentiation and/or apoptosis, and some are used clinically as anticancer drugs. In animal models, HDAC inhibitors are therapeutic for several inflammatory diseases, but exacerbate atherosclerosis and compromise host defence. Loss of HDAC function has also been linked to chronic lung diseases in humans. These contrasting effects might reflect distinct roles for individual HDACs in immune responses. Here, we review the current understanding of innate and adaptive immune pathways that are regulated by classical HDAC enzymes. The objective is to provide a rationale for targeting (or not targeting) individual HDAC enzymes with inhibitors for future immune-related applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Michaelsen, Signe Regner; Rasmussen, Rikke Darling

    2017-01-01

    the sensitizing effect of the HDACi trichostatin A (TSA) to the alkylating agent lomustine (CCNU), which is used in the clinic for the treatment of GBM. METHODS: Twelve primary GBM cell cultures grown as neurospheres were used in this study, as well as one established GBM-derived cell line (U87 MG). Histone...... are problems that call for a prompt development of novel therapeutic strategies. While only displaying modest efficacies as mono-therapy in pre-clinical settings, histone deacetylase inhibitors (HDACi) have shown promising sensitizing effects to a number of cytotoxic agents. Here, we sought to investigate...

  6. Innovative Strategies for Selective Inhibition of Histone Deacetylases

    DEFF Research Database (Denmark)

    Maolanon, Alex Ramalak; Madsen, Andreas Stahl; Olsen, Christian Adam

    2016-01-01

    Histone deacetylases (HDAC) are a family of closely related enzymes involved in epigenetic and posttranscriptional regulation of numerous genes and proteins. Their deregulation is associated with a number of diseases, and a handful of HDAC inhibitors have been approved for cancer treatment. None......, functionally important, features. Based on this analysis, we suggest alternative strategies to achieve selective HDAC inhibition that does not rely on chelation of the zinc ion in the active site but rather on disruption of protein-protein interactions important for HDAC activity. We believe that, although...

  7. Histone deacetylases in memory and cognition.

    Science.gov (United States)

    Penney, Jay; Tsai, Li-Huei

    2014-12-09

    Over the past 30 years, lysine acetylation of histone and nonhistone proteins has become established as a key modulator of gene expression regulating numerous aspects of cell biology. Neuronal growth and plasticity are no exception; roles for lysine acetylation and deacetylation in brain function and dysfunction continue to be uncovered. Transcriptional programs coupling synaptic activity to changes in gene expression are critical to the plasticity mechanisms underlying higher brain functions. These transcriptional programs can be modulated by changes in histone acetylation, and in many cases, transcription factors and histone-modifying enzymes are recruited together to plasticity-associated genes. Lysine acetylation, catalyzed by lysine acetyltransferases (KATs), generally promotes cognitive performance, whereas the opposing process, catalyzed by histone lysine deacetylases (HDACs), appears to negatively regulate cognition in multiple brain regions. Consistently, mutation or deregulation of different KATs or HDACs contributes to neurological dysfunction and neurodegeneration. HDAC inhibitors have shown promise as a treatment to combat the cognitive decline associated with aging and neurodegenerative disease, as well as to ameliorate the symptoms of depression and posttraumatic stress disorder, among others. In this review, we discuss the evidence for the roles of HDACs in cognitive function as well as in neurological disorders and disease. In particular, we focus on HDAC2, which plays a central role in coupling lysine acetylation to synaptic plasticity and mediates many of the effects of HDAC inhibition in cognition and disease. Copyright © 2014, American Association for the Advancement of Science.

  8. Histone deacetylases (HDACs and brain function

    Directory of Open Access Journals (Sweden)

    Claude-Henry Volmar

    2015-01-01

    Full Text Available Modulation of gene expression is a constant and necessary event for mammalian brain function. An important way of regulating gene expression is through the remodeling of chromatin, the complex of DNA, and histone proteins around which DNA wraps. The “histone code hypothesis” places histone post-translational modifications as a significant part of chromatin remodeling to regulate transcriptional activity. Acetylation of histones by histone acetyl transferases and deacetylation by histone deacetylases (HDACs at lysine residues are the most studied histone post-translational modifications in cognition and neuropsychiatric diseases. Here, we review the literature regarding the role of HDACs in brain function. Among the roles of HDACs in the brain, studies show that they participate in glial lineage development, learning and memory, neuropsychiatric diseases, and even rare neurologic diseases. Most HDACs can be targeted with small molecules. However, additional brain-penetrant specific inhibitors with high central nervous system exposure are needed to determine the cause-and-effect relationship between individual HDACs and brain-associated diseases.

  9. Vorinostat enhances chemosensitivity to arsenic trioxide in K562 cell line

    Directory of Open Access Journals (Sweden)

    Nainong Li

    2015-05-01

    Full Text Available Objective. This study aimed to investigate the chemosensitive augmentation effect and mechanism of HDAC inhibitor Vorinostat (SAHA in combination with arsenic trioxide (ATO on proliferation and apoptosis of K562 cells.Methods. The CCK-8 assay was used to compare proliferation of the cells. Annexin-V and PI staining by flow cytometry and acridine orange/ethidium bromide stains were used to detect and quantify apoptosis. Western blot was used to detect expression of p21, Akt, pAkt, p210, Acetyl-Histone H3, and Acetyl-Histone H4 proteins.Results. SAHA and ATO inhibited proliferation of K562 cells in an additive and time- and dose-dependent manner. SAHA in combination with ATO showed significant apoptosis of K562 cells in comparison to the single drugs alone (p < 0.01. Both SAHA and ATO alone and in combination showed lower levels of p210 expression. SAHA and SAHA and ATO combined treatment showed increased levels of Acetyl-Histone H3 and Acetyl-Histone H4 protein expression. SAHA alone showed increased expression of p21, while ATO alone and in combination with SAHA showed no significant change. SAHA and ATO combined therapy showed lower levels of Akt and pAkt protein expression than SAHA or ATO alone.Conclusion. SAHA and ATO combined treatment inhibited proliferation, induced apoptosis, and showed a chemosensitive augmentation effect on K562 cells. The mechanism might be associated with increasing histone acetylation levels as well as regulating the Akt signaling pathway.

  10. A phase I study of vorinostat in combination with bortezomib in patients with advanced malignancies.

    Science.gov (United States)

    Schelman, William R; Traynor, Anne M; Holen, Kyle D; Kolesar, Jill M; Attia, Steven; Hoang, Tien; Eickhoff, Jens; Jiang, Zhisheng; Alberti, Dona; Marnocha, Rebecca; Reid, Joel M; Ames, Matthew M; McGovern, Renee M; Espinoza-Delgado, Igor; Wright, John J; Wilding, George; Bailey, Howard H

    2013-12-01

    A phase I study to assess the maximum-tolerated dose (MTD), dose-limiting toxicity (DLT), pharmacokinetics (PK) and antitumor activity of vorinostat in combination with bortezomib in patients with advanced solid tumors. Patients received vorinostat orally once daily on days 1-14 and bortezomib intravenously on days 1, 4, 8 and 11 of a 21-day cycle. Starting dose (level 1) was vorinostat (400 mg) and bortezomib (0.7 mg/m(2)). Bortezomib dosing was increased using a standard phase I dose-escalation schema. PKs were evaluated during cycle 1. Twenty-three patients received 57 cycles of treatment on four dose levels ranging from bortezomib 0.7 mg/m(2) to 1.5 mg/m(2). The MTD was established at vorinostat 400 mg daily and bortezomib 1.3 mg/m(2). DLTs consisted of grade 3 fatigue in three patients (1 mg/m(2),1.3 mg/m(2) and 1.5 mg/m(2)) and grade 3 hyponatremia in one patient (1.5 mg/m(2)). The most common grade 1/2 toxicities included nausea (60.9%), fatigue (34.8%), diaphoresis (34.8%), anorexia (30.4%) and constipation (26.1%). Objective partial responses were observed in one patient with NSCLC and in one patient with treatment-refractory soft tissue sarcoma. Bortezomib did not affect the PKs of vorinostat; however, the Cmax and AUC of the acid metabolite were significantly increased on day 2 compared with day 1. This combination was generally well-tolerated at doses that achieved clinical benefit. The MTD was established at vorinostat 400 mg daily × 14 days and bortezomib 1.3 mg/m(2) on days 1, 4, 8 and 11 of a 21-day cycle.

  11. Sequential Exposure of Bortezomib and Vorinostat is Synergistic in Multiple Myeloma Cells

    Science.gov (United States)

    Nanavati, Charvi; Mager, Donald E.

    2018-01-01

    Purpose To examine the combination of bortezomib and vorinostat in multiple myeloma cells (U266) and xenografts, and to assess the nature of their potential interactions with semi-mechanistic pharmacodynamic models and biomarkers. Methods U266 proliferation was examined for a range of bortezomib and vorinostat exposure times and concentrations (alone and in combination). A non-competitive interaction model was used with interaction parameters that reflect the nature of drug interactions after simultaneous and sequential exposures. p21 and cleaved PARP were measured using immunoblotting to assess critical biomarker dynamics. For xenografts, data were extracted from literature and modeled with a PK/PD model with an interaction parameter. Results Estimated model parameters for simultaneous in vitro and xenograft treatments suggested additive drug effects. The sequence of bortezomib preincubation for 24 hours, followed by vorinostat for 24 hours, resulted in an estimated interaction term significantly less than 1, suggesting synergistic effects. p21 and cleaved PARP were also up-regulated the most in this sequence. Conclusions Semi-mechanistic pharmacodynamic modeling suggests synergistic pharmacodynamic interactions for the sequential administration of bortezomib followed by vorinostat. Increased p21 and cleaved PARP expression can potentially explain mechanisms of their enhanced effects, which require further PK/PD systems analysis to suggest an optimal dosing regimen. PMID:28101809

  12. Electrooxidation and amperometric determination of vorinostat on hierarchical leaf-like gold nanolayers.

    Science.gov (United States)

    Vais, R Dehdari; Karimian, K; Heli, H

    2018-02-01

    Hierarchical leaf-like gold nanolayers were electrodeposited using choline chloride as a shape directing agent and characterized using field emission scanning electron microscopy. The electrooxidation behavior of vorinostat was then studied on the nanolayers and the kinetic parameters of the electrodic process were obtained by voltammetric measurements in a phosphate buffer solution at pH 7.40. Vorinostat was electrooxidized on the nanolayers' surface at a lower potential and with a higher rate, compared to a polycrystalline smooth gold surface, through an irreversible process. Based on the results, an amperometric sensor was designed using the hierarchical leaf-like gold nanolayers for the determination of vorinostat. A linear dynamic range of 4.0-52μmol L -1 with a calibration sensitivity of 7.7mAmol -1 L, and a detection limit of 1.40μmolL -1 were obtained. The amperometry method was also applied to the analysis of vorinostat capsules. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Direct but no transgenerational effects of decitabine and vorinostat on male fertility.

    Directory of Open Access Journals (Sweden)

    Ruth Kläver

    Full Text Available Establishment and maintenance of the correct epigenetic code is essential for a plethora of physiological pathways and disturbed epigenetic patterns can provoke severe consequences, e.g. tumour formation. In recent years, epigenetic drugs altering the epigenome of tumours actively have been developed for anti-cancer therapies. However, such drugs could potentially also affect other physiological pathways and systems in which intact epigenetic patterns are essential. Amongst those, male fertility is one of the most prominent. Consequently, we addressed possible direct effects of two epigenetic drugs, decitabine and vorinostat, on both, the male germ line and fertility. In addition, we checked for putative transgenerational epigenetic effects on the germ line of subsequent generations (F1-F3. Parental adult male C57Bl/6 mice were treated with either decitabine or vorinostat and analysed as well as three subsequent untreated generations derived from these males. Treatment directly affected several reproductive parameters as testis (decitabine & vorinostat and epididymis weight, size of accessory sex glands (vorinostat, the height of the seminiferous epithelium and sperm concentration and morphology (decitabine. Furthermore, after decitabine administration, DNA methylation of a number of loci was altered in sperm. However, when analysing fertility of treated mice (fertilisation, litter size and sex ratio, no major effect of the selected epigenetic drugs on male fertility was detected. In subsequent generations (F1-F3 generations only subtle changes on reproductive organs, sperm parameters and DNA methylation but no overall effect on fertility was observed. Consequently, in mice, decitabine and vorinostat neither affected male fertility per se nor caused marked transgenerational effects. We therefore suggest that both drugs do not induce major adverse effects-in terms of male fertility and transgenerational epigenetic inheritance-when used in anti-cancer-therapies.

  14. Direct but no transgenerational effects of decitabine and vorinostat on male fertility.

    Science.gov (United States)

    Kläver, Ruth; Sánchez, Victoria; Damm, Oliver S; Redmann, Klaus; Lahrmann, Elisabeth; Sandhowe-Klaverkamp, Reinhild; Rohde, Christian; Wistuba, Joachim; Ehmcke, Jens; Schlatt, Stefan; Gromoll, Jörg

    2015-01-01

    Establishment and maintenance of the correct epigenetic code is essential for a plethora of physiological pathways and disturbed epigenetic patterns can provoke severe consequences, e.g. tumour formation. In recent years, epigenetic drugs altering the epigenome of tumours actively have been developed for anti-cancer therapies. However, such drugs could potentially also affect other physiological pathways and systems in which intact epigenetic patterns are essential. Amongst those, male fertility is one of the most prominent. Consequently, we addressed possible direct effects of two epigenetic drugs, decitabine and vorinostat, on both, the male germ line and fertility. In addition, we checked for putative transgenerational epigenetic effects on the germ line of subsequent generations (F1-F3). Parental adult male C57Bl/6 mice were treated with either decitabine or vorinostat and analysed as well as three subsequent untreated generations derived from these males. Treatment directly affected several reproductive parameters as testis (decitabine & vorinostat) and epididymis weight, size of accessory sex glands (vorinostat), the height of the seminiferous epithelium and sperm concentration and morphology (decitabine). Furthermore, after decitabine administration, DNA methylation of a number of loci was altered in sperm. However, when analysing fertility of treated mice (fertilisation, litter size and sex ratio), no major effect of the selected epigenetic drugs on male fertility was detected. In subsequent generations (F1-F3 generations) only subtle changes on reproductive organs, sperm parameters and DNA methylation but no overall effect on fertility was observed. Consequently, in mice, decitabine and vorinostat neither affected male fertility per se nor caused marked transgenerational effects. We therefore suggest that both drugs do not induce major adverse effects-in terms of male fertility and transgenerational epigenetic inheritance-when used in anti-cancer-therapies.

  15. Histone Deacetylase Inhibition Induces Odor Preference Memory Extension and Maintains Enhanced AMPA Receptor Expression in the Rat Pup Model

    Science.gov (United States)

    Bhattacharya, Sriya; Mukherjee, Bandhan; Doré, Jules J. E.; Yuan, Qi; Harley, Carolyn W.; McLean, John H.

    2017-01-01

    Histone deacetylase (HDAC) plays a role in synaptic plasticity and long-term memory formation. We hypothesized that trichostatin-A (TSA), an HDAC inhibitor, would promote long-term odor preference memory and maintain enhanced GluA1 receptor levels that have been hypothesized to support memory. We used an early odor preference learning model in…

  16. Post-Training Intrahippocampal Inhibition of Class I Histone Deacetylases Enhances Long-Term Object-Location Memory

    Science.gov (United States)

    Hawk, Joshua D.; Florian, Cedrick; Abel, Ted

    2011-01-01

    Long-term memory formation involves covalent modification of the histone proteins that package DNA. Reducing histone acetylation by mutating histone acetyltransferases impairs long-term memory, and enhancing histone acetylation by inhibiting histone deacetylases (HDACs) improves long-term memory. Previous studies using HDAC inhibitors to enhance…

  17. Histone deacetylase inhibition sensitizes osteosarcoma to heavy ion radiotherapy

    International Nuclear Information System (INIS)

    Blattmann, Claudia; Oertel, Susanne; Thiemann, Markus; Dittmar, Anne; Roth, Eva; Kulozik, Andreas E.; Ehemann, Volker; Weichert, Wilko; Huber, Peter E.; Stenzinger, Albrecht; Debus, Jürgen

    2015-01-01

    Minimal improvements in treatment or survival of patients with osteosarcoma have been achieved during the last three decades. Especially in the case of incomplete tumor resection, prognosis remains poor. Heavy ion radiotherapy (HIT) and modern anticancer drugs like histone deacetylase inhibitors (HDACi) have shown promising effects in osteosarcoma in vitro. In this study, we tested the effect of HIT and the combination of HIT and the HDACi suberoylanilide hydroxamic acid (SAHA) in a xenograft mouse model. Osteosarcoma xenografts were established by subcutaneous injection of KHOS-24OS cells and treated with either vehicle (DMSO), SAHA, HIT or HIT and SAHA. Tumor growth was determined and tumor necrosis, proliferation rate, apoptotic rate as well as vessel density were evaluated. Here, we show that the combination of HIT and SAHA induced a significant delay of tumor growth through increased rate of apoptosis, increased expression of p53 and p21 Waf1/Cip1 , inhibition of proliferation and angiogenesis compared to tumors treated with HIT only. HIT and in particular the combination of HIT and histone deacetylase inhibition is a promising treatment strategy in OS and may be tested in clinical trials

  18. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment.

    Science.gov (United States)

    Vargas-López, Viviana; Lamprea, Marisol R; Múnera, Alejandro

    2016-10-01

    Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A phase I study of vorinostat combined with bortezomib in Japanese patients with relapsed or refractory multiple myeloma.

    Science.gov (United States)

    Ogawa, Yoshiaki; Ogura, Michinori; Tobinai, Kensei; Ando, Kiyoshi; Suzuki, Tatsuya; Watanabe, Takashi; Ohmachi, Ken; Uchida, Toshiki; Hanson, Mary E; Tanaka, Yoshinobu; Koh, Yasuhiro; Shimamoto, Takashi; Hotta, Tomomitsu

    2016-01-01

    This study was undertaken to evaluate safety and pharmacokinetics and to determine treatment doses of vorinostat plus bortezomib in Japanese patients with relapsed or refractory multiple myeloma (MM). Of 9 originally enrolled patients, 2 were refractory to bortezomib, and both experienced dose-limiting toxicity (DLT), prompting a protocol amendment to exclude bortezomib-refractory individuals. Patients not considered bortezomib refractory (N = 7) received 21-day cycles of 1.3 mg/m(2) intravenous bortezomib (Days 1, 4, 8, and 11) and oral vorinostat 400 mg (Days 1 through 14) and were further evaluated. Vorinostat and bortezomib treatment doses were determined by DLT and safety, tolerability, and treatment response were assessed. Of 7 enrolled patients, 6 were evaluated, and one developed DLTs. The most common adverse events were leukopenia, neutropenia, thrombocytopenia, diarrhea, nausea, decreased appetite, and vomiting. Combination of vorinostat plus bortezomib did not increase vorinostat exposure at Day 11 [AUC0-24 h ratio (95% CI) = 1.08 (0.80, 1.45)]; geometric mean AUC0-24 h ratio for bortezomib (90% CI) was 1.96 (1.24-3.12). Objective therapeutic response occurred in 3 patients, including 1 complete response and 2 partial responses. Vorinostat 400 mg plus bortezomib 1.3 mg/m(2) was safe and well-tolerated in Japanese patients with relapsed or refractory MM not considered bortezomib refractory (NCT00858234).

  20. Butyrate decreases its own oxidation in colorectal cancer cells through inhibition of histone deacetylases.

    Science.gov (United States)

    Han, Anna; Bennett, Natalie; Ahmed, Bettaieb; Whelan, Jay; Donohoe, Dallas R

    2018-06-05

    Colorectal cancer is characterized by an increase in the utilization of glucose and a diminishment in the oxidation of butyrate, which is a short chain fatty acid. In colorectal cancer cells, butyrate inhibits histone deacetylases to increase the expression of genes that slow the cell cycle and induce apoptosis. Understanding the mechanisms that contribute to the metabolic shift away from butyrate oxidation in cancer cells is important in in understanding the beneficial effects of the molecule toward colorectal cancer. Here, we demonstrate that butyrate decreased its own oxidation in cancerous colonocytes. Butyrate lowered the expression of short chain acyl-CoA dehydrogenase, an enzyme that mediates the oxidation of short-chain fatty acids. Butyrate does not alter short chain acyl-CoA dehydrogenase levels in non-cancerous colonocytes. Trichostatin A, a structurally unrelated inhibitor of histone deacetylases, and propionate also decreased the level of short chain acyl-CoA dehydrogenase, which alluded to inhibition of histone deacetylases as a part of the mechanism. Knockdown of histone deacetylase isoform 1, but not isoform 2 or 3, inhibited the ability of butyrate to decrease short chain acyl-CoA dehydrogenase expression. This work identifies a mechanism by which butyrate selective targets colorectal cancer cells to reduce its own metabolism.

  1. Histone deacetylase regulates insulin signaling via two pathways in pancreatic β cells.

    Directory of Open Access Journals (Sweden)

    Yukina Kawada

    Full Text Available Recent studies demonstrated that insulin signaling plays important roles in the regulation of pancreatic β cell mass, the reduction of which is known to be involved in the development of diabetes. However, the mechanism underlying the alteration of insulin signaling in pancreatic β cells remains unclear. The involvement of epigenetic control in the onset of diabetes has also been reported. Thus, we analyzed the epigenetic control of insulin receptor substrate 2 (IRS2 expression in the MIN6 mouse insulinoma cell line. We found concomitant IRS2 up-regulation and enhanced insulin signaling in MIN6 cells, which resulted in an increase in cell proliferation. The H3K9 acetylation status of the Irs2 promoter was positively associated with IRS2 expression. Treatment of MIN6 cells with histone deacetylase inhibitors led to increased IRS2 expression, but this occurred in concert with low insulin signaling. We observed increased IRS2 lysine acetylation as a consequence of histone deacetylase inhibition, a modification that was coupled with a decrease in IRS2 tyrosine phosphorylation. These results suggest that insulin signaling in pancreatic β cells is regulated by histone deacetylases through two novel pathways affecting IRS2: the epigenetic control of IRS2 expression by H3K9 promoter acetylation, and the regulation of IRS2 activity through protein modification. The identification of the histone deacetylase isoform(s involved in these mechanisms would be a valuable approach for the treatment of type 2 diabetes.

  2. Histone deacetylases and their roles in mineralized tissue regeneration

    Directory of Open Access Journals (Sweden)

    Nam Cong-Nhat Huynh

    2017-12-01

    Full Text Available Histone acetylation is an important epigenetic mechanism that controls expression of certain genes. It includes non-sequence-based changes of chromosomal regional structure that can alter the expression of genes. Acetylation of histones is controlled by the activity of two groups of enzymes: the histone acetyltransferases (HATs and histone deacetylases (HDACs. HDACs remove acetyl groups from the histone tail, which alters its charge and thus promotes compaction of DNA in the nucleosome. HDACs render the chromatin structure into a more compact form of heterochromatin, which makes the genes inaccessible for transcription. By altering the transcriptional activity of bone-associated genes, HDACs control both osteogenesis and osteoclastogenesis. This review presents an overview of the function of HDACs in the modulation of bone formation. Special attention is paid to the use of HDAC inhibitors in mineralized tissue regeneration from cells of dental origin.

  3. Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis

    Directory of Open Access Journals (Sweden)

    Frederic eLamoth

    2015-02-01

    Full Text Available Invasive aspergillosis (IA is a life-threatening infection due to Aspergillus fumigatus and other Aspergillus spp. Drugs targeting the fungal cell membrane (triazoles, amphotericin B or cell wall (echinocandins are currently the sole therapeutic options against IA. Their limited efficacy and the emergence of resistance warrant the identification of new antifungal targets. Histone deacetylases (HDACs are enzymes responsible of the deacetylation of lysine residues of core histones, thus controlling chromatin remodeling and transcriptional activation. HDACs also control the acetylation and activation status of multiple non-histone proteins, including the heat shock protein 90 (Hsp90, an essential molecular chaperone for fungal virulence and antifungal resistance. This review provides an overview of the different HDACs in Aspergillus spp. as well as their respective contribution to total HDAC activity, fungal growth, stress responses, and virulence. The potential of HDAC inhibitors, currently under development for cancer therapy, as novel alternative antifungal agents against IA is discussed.

  4. A Phase I study of intermittently dosed vorinostat in combination with bortezomib in patients with advanced solid tumors.

    Science.gov (United States)

    Deming, Dustin A; Ninan, Jacob; Bailey, Howard H; Kolesar, Jill M; Eickhoff, Jens; Reid, Joel M; Ames, Matthew M; McGovern, Renee M; Alberti, Dona; Marnocha, Rebecca; Espinoza-Delgado, Igor; Wright, John; Wilding, George; Schelman, William R

    2014-04-01

    Accumulating evidence shows evidence of efficacy with the combination of vorinostat and bortezomib in solid tumors. We previously examined a once-daily continuous dosing schedule of vorinostat in combination with bortezomib which was well tolerated in cycles 1 and 2; however, there was concern regarding the tolerability through multiple cycles. This study was conducted to evaluate an intermittent dosing schedule of vorinostat with bortezomib. Vorinostat was initially administered orally twice daily on days 1-14 with bortezomib IV on days 1, 4, 8, and 11 of a 21 day cycle. Two DLTs (elevated ALT and fatigue) were observed at dose level 1, thus the protocol was amended to administer vorinostat intermittently twice daily on days 1-4 and 8-11. 29 patients were enrolled; 13 men and 16 women. Common cancer types included sarcoma, pancreatic, colorectal, GIST, and breast. The most common Grade 3-4 toxicities at any dose level included thrombocytopenia, fatigue, increased ALT, elevated INR, and diarrhea. DLTs in the intermittent dosing scheduled included thrombocytopenia and fatigue. The Cmax and AUC for the intermittent dosing regimen were similar to those observed in the daily dosing. In this heavily pretreated population, stable disease was observed in patients with sarcoma, colorectal adenocarcinoma and GIST. The MTD was established at vorinostat 300 mg BID on days 1-4 and 8-11 and bortezomib 1.3 mg/m(2) IV on days 1, 4, 8, and 11 of a 21 day cycle. Tolerability was not improved with the intermittent dosing schedule of vorinostat when compared to continuous dosing.

  5. Comparative effects of 4-phenyl-3-butenoic acid and vorinostat on cell growth and signaling.

    Science.gov (United States)

    Burns, Timothy J; Ali, Amna; Matesic, Diane F

    2015-02-01

    4-phenyl-3-butenoic acid (PBA) is a small-molecule anti-inflammatory agent, which has been shown to inhibit growth, increase gap junction intercellular communication and modulate activation of p38 mitogen-activated protein kinase (p38 MAPK) and c-jun n-terminal kinase (JNK) in tumorigenic cells at concentrations that do not similarly affect non-tumorigenic cells. Vorinostat is an anticancer agent structurally similar to PBA. The purpose of this study was to compare the effects of these two agents on JNK and p38 activation, cell growth and gap junction intercellular communication (GJIC). Cell growth, GJIC and western blot analyses were performed utilizing tumorigenic WBras1 and H2009 human carcinoma cells, and non-tumorigenic WBneo3 and human bronchial epithelial (HBE) cells. Both compounds significantly inhibited WBras1 and H2009 tumorigenic cell growth and increased GJIC in WBras1 cells, as previously reported for PBA. Under similar conditions, both compounds increased phosphorylation of p38 MAPK in tumorigenic but not in non-tumorigenic cells and decreased phosphorylation of JNK in tumorigenic cells. However, a decrease in phosphorylation of JNK occurred in non-tumorigenic WBras1 cells following vorinostat treatment but not PBA treatment. Both compounds showed a selective growth inhibition of H2009 human carcinoma over normal HBE lung cells but, unlike PBA, vorinostat significantly decreased cell growth in WBneo3 cells. Overall, PBA exhibited similar effects to vorinostat in tumorigenic cells, while also showing reduced effects on JNK phosphorylation and growth in non-tumorigenic cells compared to ras-transformed cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. DECIDER: prospective randomized multicenter phase II trial of low-dose decitabine (DAC) administered alone or in combination with the histone deacetylase inhibitor valproic acid (VPA) and all-trans retinoic acid (ATRA) in patients >60 years with acute myeloid leukemia who are ineligible for induction chemotherapy

    International Nuclear Information System (INIS)

    Grishina, Olga; Schmoor, Claudia; Döhner, Konstanze; Hackanson, Björn; Lubrich, Beate; May, Annette M.; Cieslik, Caroline; Müller, Michael J.; Lübbert, Michael

    2015-01-01

    Acute myeloid leukemia (AML) is predominantly a disease of older patients with a poor long-term survival. Approval of decitabine (DAC) in the European Union (EU) in 2012 for the treatment of patients with AML ≥65 years marks the potential for hypomethylating agents in elderly AML. Nevertheless the situation is dissatisfactory and the quest for novel treatment approaches, including combination epigenetic therapy is actively ongoing. The given randomized trial should be helpful in investigating the question whether combinations of DAC with the histone deacetylase (HDAC) inhibitor valproic acid (VPA) and/or all-trans retinoic acid (ATRA), which in vitro show a very promising synergism, are superior to the DAC monotherapy. The accompanying translational research project will contribute to find surrogate molecular end points for drug efficacy and better tailor epigenetic therapy. An additional aim of the study is to investigate the prognostic value of geriatric assessments for elderly AML patients treated non-intensively. DECIDER is a prospective, randomized, observer blind, parallel group, multicenter, Phase II study with a 2x2 factorial design. The primary endpoint is objective best overall response (complete remission (CR) and partial remission (PR)). The target population is AML patients aged 60 years or older and unfit for standard induction chemotherapy. Patients are randomized to one of the four treatment groups: DAC alone or in combination with VPA or ATRA or with both add-on drugs. One interim safety analysis was planned and carried out with the objective to stop early one or more of the treatment arms in case of an unacceptable death rate. This analysis showed that in all treatment arms the critical stopping rule was not reached. No important safety issues were observed. The Data Monitoring Committee (DMC) recommended continuing the study as planned. The first patient was included in December 2011. A total of 189 out of 200 planned patients were randomized

  7. Vorinostat in combination with lenalidomide and dexamethasone in patients with relapsed or refractory multiple myeloma

    International Nuclear Information System (INIS)

    Siegel, D S; Richardson, P; Dimopoulos, M; Moreau, P; Mitsiades, C; Weber, D; Houp, J; Gause, C; Vuocolo, S; Eid, J; Graef, T; Anderson, K C

    2014-01-01

    The addition of vorinostat to lenalidomide/dexamethasone represents a novel combination therapy in multiple myeloma (MM), informed by laboratory studies suggesting synergy. This was a phase I, multicenter, open-label, non-randomized, dose-escalating study in patients with relapsed or relapsed and refractory MM. Clinical evaluation, electrocardiogram, laboratory studies and adverse events were obtained and assessed. The maximum-tolerated dose was not reached owing to a non-occurrence of two dose-limiting toxicities per six patients tested at any of the dosing levels. Patients tolerated the highest dose tested (Level 5) and this was considered the maximum administered dose: at 400 mg vorinostat on days 1–7 and 15–21, 25 mg lenalidomide on days 1–21 and 40 mg dexamethasone on days 1, 8, 15 and 22, per 28-day cycle. Drug-related adverse events were reported in 90% of patients serious adverse experiences were reported in 45% of the patients and 22% of all patients had adverse experiences considered, possibly related to study drug by the investigators. A confirmed partial response or better was reported for 14/30 patients (47%) evaluable for efficacy, including 31% of patients previously treated with lenalidomide. Vorinostat in combination with lenalidomide and dexamethasone proved tolerable with appropriate supportive care, with encouraging activity observed

  8. Phase I study of vorinostat in combination with temozolomide in patients with high-grade gliomas: North American Brain Tumor Consortium Study 04-03.

    Science.gov (United States)

    Lee, Eudocia Q; Puduvalli, Vinay K; Reid, Joel M; Kuhn, John G; Lamborn, Kathleen R; Cloughesy, Timothy F; Chang, Susan M; Drappatz, Jan; Yung, W K Alfred; Gilbert, Mark R; Robins, H Ian; Lieberman, Frank S; Lassman, Andrew B; McGovern, Renee M; Xu, Jihong; Desideri, Serena; Ye, Xiabu; Ames, Matthew M; Espinoza-Delgado, Igor; Prados, Michael D; Wen, Patrick Y

    2012-11-01

    A phase I, dose-finding study of vorinostat in combination with temozolomide (TMZ) was conducted to determine the maximum tolerated dose (MTD), safety, and pharmacokinetics in patients with high-grade glioma (HGG). This phase I, dose-finding, investigational study was conducted in two parts. Part 1 was a dose-escalation study of vorinostat in combination with TMZ 150 mg/m(2)/day for 5 days every 28 days. Part 2 was a dose-escalation study of vorinostat in combination with TMZ 150 mg/m(2)/day for 5 days of the first cycle and 200 mg/m(2)/day for 5 days of the subsequent 28-day cycles. In part 1, the MTD of vorinostat administered on days 1 to 7 and 15 to 21 of every 28-day cycle, in combination with TMZ, was 500 mg daily. Dose-limiting toxicities (DLT) included grade 3 anorexia, grade 3 ALT, and grade 5 hemorrhage in the setting of grade 4 thrombocytopenia. In part 2, the MTD of vorinostat on days 1 to 7 and 15 to 21 of every 28-day cycle, combined with TMZ, was 400 mg daily. No DLTs were encountered, but vorinostat dosing could not be escalated further due to thrombocytopenia. The most common serious adverse events were fatigue, lymphopenia, thrombocytopenia, and thromboembolic events. There were no apparent pharmacokinetic interactions between vorinostat and TMZ. Vorinostat treatment resulted in hyperacetylation of histones H3 and H4 in peripheral mononuclear cells. Vorinostat in combination with temozolomide is well tolerated in patients with HGG. A phase I/II trial of vorinostat with radiotherapy and concomitant TMZ in newly diagnosed glioblastoma is underway. ©2012 AACR.

  9. Dietary inhibitors of histone deacetylases in intestinal immunity anc homeostasis

    NARCIS (Netherlands)

    Schilderink, R.; Verseijden, C.; de Jonge, W. J.

    2013-01-01

    Intestinal epithelial cells (IECs) are integral players in homeostasis of immunity and host defense in the gut and are under influence of the intestinal microbiome. Microbial metabolites and dietary components, including short chain fatty acids (acetate, propionate, and butyrate, SCFAs), have an

  10. Histone deacetylase inhibitors suppress immune activation in primary mouse microglia

    NARCIS (Netherlands)

    Kannan, Vishnu; Brouwer, Nieske; Hanisch, Uwe-Karsten; Regen, Tommy; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.

    Neuroinflammation is required for tissue clearance and repair after infections or insults. To prevent excessive damage, it is crucial to limit the extent of neuroinflammation and thereby the activation of its principal effector cell, microglia. The two main major innate immune cell types in the CNS

  11. Light-Controlled Histone Deacetylase (HDAC) Inhibitors : Towards Photopharmacological Chemotherapy

    NARCIS (Netherlands)

    Szymanski, Wiktor; Ourailidou, Maria E.; Velema, Willem A.; Dekker, Frank J.; Feringa, Ben L.

    2015-01-01

    Cancer treatment suffers from limitations that have a major impact on the patient's quality of life and survival. In the case of chemotherapy, the systemic distribution of cytotoxic drugs reduces their efficacy and causes severe side effects due to nonselective toxicity. Photopharmacology allows a

  12. Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition

    International Nuclear Information System (INIS)

    Flatmark, Kjersti; Nome, Ragnhild V; Folkvord, Sigurd; Bratland, Åse; Rasmussen, Heidi; Ellefsen, Mali Strand; Fodstad, Øystein; Ree, Anne Hansen

    2006-01-01

    The tumor response to preoperative radiotherapy of locally advanced rectal cancer varies greatly, warranting the use of experimental models to assay the efficacy of molecular targeting agents in rectal cancer radiosensitization. Histone deacetylase (HDAC) inhibitors, agents that cause hyperacetylation of histone proteins and thereby remodeling of chromatin structure, may override cell cycle checkpoint responses to DNA damage and amplify radiation-induced tumor cell death. Human colorectal carcinoma cell lines were exposed to ionizing radiation and HDAC inhibitors, and cell cycle profiles and regulatory factors, as well as clonogenicity, were analyzed. In addition to G 2 /M phase arrest following irradiation, the cell lines displayed cell cycle responses typical for either intact or defective p53 function (the presence or absence, respectively, of radiation-induced expression of the cell cycle inhibitor p21 and subsequent accumulation of G 1 phase cells). In contrast, histone acetylation was associated with complete depletion of the G 1 population of cells with functional p53 but accumulation of both G 1 and G 2 /M populations of cells with defective p53. The cellular phenotypes upon HDAC inhibition were consistent with the observed repression of Polo-like kinase-1, a regulatory G 2 /M phase kinase. Following pre-treatment with HDAC inhibitors currently undergoing clinical investigation, the inhibitory effect of ionizing radiation on clonogenicity was significantly amplified. In these experimental models, HDAC inhibition sensitized the tumor cells to ionizing radiation, which is in accordance with the concept of increased probability of tumor cell death when chromatin structure is modified

  13. Genetic dissection of histone deacetylase requirement in tumor cells

    Science.gov (United States)

    Haberland, Michael; Johnson, Aaron; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylase inhibitors (HDACi) represent a new group of drugs currently being tested in a wide variety of clinical applications. They are especially effective in preclinical models of cancer where they show antiproliferative action in many different types of cancer cells. Recently, the first HDACi was approved for the treatment of cutaneous T cell lymphomas. Most HDACi currently in clinical development act by unspecifically interfering with the enzymatic activity of all class I HDACs (HDAC1, 2, 3, and 8), and it is widely believed that the development of isoform-specific HDACi could lead to better therapeutic efficacy. The contribution of the individual class I HDACs to different disease states, however, has so far not been fully elucidated. Here, we use a genetic approach to dissect the involvement of the different class I HDACs in tumor cells. We show that deletion of a single HDAC is not sufficient to induce cell death, but that HDAC1 and 2 play redundant and essential roles in tumor cell survival. Their deletion leads to nuclear bridging, nuclear fragmentation, and mitotic catastrophe, mirroring the effects of HDACi on cancer cells. These findings suggest that pharmacological inhibition of HDAC1 and 2 may be sufficient for anticancer activity, providing an experimental framework for the development of isoform-specific HDAC inhibitors. PMID:19416910

  14. Histone deacetylases and their inhibition in Candida species

    Directory of Open Access Journals (Sweden)

    Cecile Garnaud

    2016-08-01

    Full Text Available Fungi are generally benign members of the human mucosal flora or live as saprophytes in the environment. However, they can become pathogenic, leading to invasive and life threatening infections in vulnerable patients. These invasive fungal infections are regarded as a major public health problem on a similar scale to tuberculosis or malaria. Current treatment for these infections is based on only four available drug classes. This limited therapeutic arsenal and the emergence of drug-resistant strains are a matter of concern due to the growing number of patients to be treated, and new therapeutic strategies are urgently needed. Adaptation of fungi to drug pressure involves transcriptional regulation, in which chromatin dynamics and histone modifications play a major role. Histone deacetylases (HDACs remove acetyl groups from histones and actively participate in controlling stress responses. HDAC inhibition has been shown to limit fungal development, virulence, biofilm formation and dissemination in the infected host, while also improving the efficacy of existing antifungal drugs towards Candida spp. In this article, we review the functional roles of HDACs and the biological effects of HDAC inhibitors on Candida spp., highlighting the correlations between their pathogenic effects in vitro and in vivo. We focus on how HDAC inhibitors could be used to treat invasive candidiasis while also reviewing recent developments in their clinical evaluation.

  15. Lysine Deacetylases and Regulated Glycolysis in Macrophages.

    Science.gov (United States)

    Shakespear, Melanie R; Iyer, Abishek; Cheng, Catherine Youting; Das Gupta, Kaustav; Singhal, Amit; Fairlie, David P; Sweet, Matthew J

    2018-06-01

    Regulated cellular metabolism has emerged as a fundamental process controlling macrophage functions, but there is still much to uncover about the precise signaling mechanisms involved. Lysine acetylation regulates the activity, stability, and/or localization of metabolic enzymes, as well as inflammatory responses, in macrophages. Two protein families, the classical zinc-dependent histone deacetylases (HDACs) and the NAD-dependent HDACs (sirtuins, SIRTs), mediate lysine deacetylation. We describe here mechanisms by which classical HDACs and SIRTs directly regulate specific glycolytic enzymes, as well as evidence that links these protein deacetylases to the regulation of glycolysis-related genes. In these contexts, we discuss HDACs and SIRTs as key control points for regulating immunometabolism and inflammatory outputs from macrophages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Phase I study of vorinostat in combination with isotretinoin in patients with refractory/recurrent neuroblastoma: A new approaches to Neuroblastoma Therapy (NANT) trial.

    Science.gov (United States)

    Pinto, Navin; DuBois, Steven G; Marachelian, Araz; Diede, Scott J; Taraseviciute, Agne; Glade Bender, Julia L; Tsao-Wei, Denice; Groshen, Susan G; Reid, Joel M; Haas-Kogan, Daphne A; Reynolds, C Patrick; Kang, Min H; Irwin, Meredith S; Macy, Margaret E; Villablanca, Judith G; Matthay, Katherine K; Park, Julie R

    2018-03-30

    Vorinostat combined with retinoids produces additive antitumor effects in preclinical studies of neuroblastoma. Higher systemic exposures of vorinostat than achieved in pediatric phase I trials with continuous daily dosing are necessary for in vivo increased histone acetylation and cytotoxic activity. We conducted a phase I trial in children with relapsed/refractory neuroblastoma to determine the maximum tolerated dose (MTD) of vorinostat on an interrupted schedule, escalating beyond the previously identified pediatric MTD. Isotretinoin (cis-13-retinoic acid) 80 mg/m 2 /dose was administered by mouth twice daily on days 1-14 in combination with escalating doses of daily vorinostat up to 430 mg/m 2 /dose (days 1-4; 8-11) in each 28-day cycle using the standard 3 + 3 design. Vorinostat pharmacokinetic testing and histone acetylation assays were performed. Twenty-nine patients with refractory or relapsed neuroblastoma were enrolled and 28 were evaluable for dose escalation decisions. Median number of cycles completed was two (range 1-15); 11 patients received four or more cycles. Three patients experienced cycle 1 dose-limiting toxicities. A total of 18 patients experienced grade 3/4 toxicities related to study therapy. The maximum intended dose of vorinostat (430 mg/m 2 /day, days 1-4; 8-11) was tolerable and led to increased histone acetylation in surrogate tissues when compared to lower doses of vorinostat (P = 0.009). No objective responses were seen. Increased dose vorinostat (430 mg/m 2 /day) on an interrupted schedule is tolerable in combination with isotretinoin. This dose led to increased vorinostat exposures and demonstrated increased histone acetylation. Prolonged stable disease in patients with minimal residual disease warrants further investigation. © 2018 Wiley Periodicals, Inc.

  17. Total Synthesis and Full Histone Deacetylase Inhibitory Profiling of Azumamides A–E as Well as β2- epi-Azumamide E and β3-epi-Azumamide E

    DEFF Research Database (Denmark)

    Villadsen, Jesper; Stephansen, Helle Marie; Maolanon, Alex

    2013-01-01

    Cyclic tetrapeptide and depsipeptide natural products have proven useful as biological probes and drug candidates due to their potent activities as histone deacetylase (HDAC) inhibitors. Here, we present the syntheses of a class of cyclic tetrapeptide HDAC inhibitors, the azumamides, by a concise...

  18. Functional characterization of Candida albicans Hos2 histone deacetylase [v3; ref status: indexed, http://f1000r.es/3xh

    Directory of Open Access Journals (Sweden)

    G Karthikeyan

    2014-07-01

    Full Text Available Candida albicans is a mucosal commensal organism capable of causing superficial (oral and vaginal thrush infections in immune normal hosts, but is a major pathogen causing systemic and mucosal infections in immunocompromised individuals. Azoles have been very effective anti-fungal agents and the mainstay in treating opportunistic mold and yeast infections. Azole resistant strains have emerged compromising the utility of this class of drugs. It has been shown that azole resistance can be reversed by the co-administration of a histone deacetylase (HDAC inhibitor, suggesting that resistance is mediated by epigenetic mechanisms possibly involving Hos2, a fungal deacetylase. We report here the cloning and functional characterization of HOS2 (HighOsmolarity Sensitive, a gene coding for fungal histone deacetylase from C. albicans. Inhibition studies showed that Hos2 is susceptible to pan inhibitors such as trichostatin A (TSA and suberoylanilide hydroxamic acid (SAHA, but is not inhibited by class I inhibitors such as MS-275. This in vitro enzymatic assay, which is amenable to high throughput could be used for screening potent fungal Hos2 inhibitors that could be a potential anti-fungal adjuvant. Purified Hos2 protein consistently deacetylated tubulins, rather than histones from TSA-treated cells. Hos2 has been reported to be a putative NAD+ dependent histone deacetylase, a feature of sirtuins. We assayed for sirtuin activation with resveratrol and purified Hos2 protein and did not find any sirtuin activity.

  19. Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas

    DEFF Research Database (Denmark)

    Marquard, L.; Poulsen, C.B.; Gjerdrum, L.M.

    2009-01-01

    AIMS: Histone deacetylase (HDAC) inhibitors are novel therapeutics in the treatment of peripheral T-cell lymphoma, unspecified (PTCL) and diffuse large B-cell lymphoma (DLBCL), where, for unknown reasons, T-cell malignancies appear to be more sensitive than B-cell malignancies. The aim was to det......AIMS: Histone deacetylase (HDAC) inhibitors are novel therapeutics in the treatment of peripheral T-cell lymphoma, unspecified (PTCL) and diffuse large B-cell lymphoma (DLBCL), where, for unknown reasons, T-cell malignancies appear to be more sensitive than B-cell malignancies. The aim...... was to determine HDAC expression in DLBCL and PTCL which has not previously been investigated. METHODS AND RESULTS: The expression of HDAC1, HDAC2, HDAC6 and acetylated histone H4 was examined immunohistochemically in 31 DLBCL and 45 PTCL. All four markers showed high expression in both DLBCL and PTCL compared...

  20. Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes.

    Science.gov (United States)

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-03-01

    Thermodynamic studies on ligand-protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer-based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4-7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl-ligand with hexyl spacer. The selectivity in the series of dansyl-ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ΔH(0)/ΔG(0). The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus

    DEFF Research Database (Denmark)

    Christensen, Dan P; Dahllöf, Mattias Salling; Lundh, Morten

    2011-01-01

    Both common forms of diabetes have an inflammatory pathogenesis in which immune and metabolic factors converge on interleukin-1ß as a key mediator of insulin resistance and ß-cell failure. In addition to improving insulin resistance and preventing ß-cell inflammatory damage, there is evidence...... of genetic association between diabetes and histone deacetylases (HDACs); and HDAC inhibitors (HDACi) promote ß-cell development, proliferation, differentiation and function and positively affect late diabetic microvascular complications. Here we review this evidence and propose that there is a strong...... rationale for preclinical studies and clinical trials with the aim of testing the utility of HDACi as a novel therapy for diabetes....

  2. Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats

    DEFF Research Database (Denmark)

    Lundh, Morten; Galbo, Thomas; Poulsen, Steen Seier

    2015-01-01

    Failure of pancreatic β cells to compensate for insulin resistance is a prerequisite for the development of type 2 diabetes. Sustained elevated circulating levels of free fatty acids and glucose contribute to β-cell failure. Selective inhibition of Histone deacetylase (HDAC)-3 protects pancreatic β...... cells against inflammatory and metabolic insults in vitro. Here we tested the ability of a selective HDAC3 inhibitor, BRD3308, to reduce hyperglycemia and increase insulin secretion in an animal model of type 2 diabetes. At diabetes onset, an ambulatory hyperglycemic clamp was performed. HDAC3......3 as a key therapeutic target for β-cell protection in type 2 diabetes....

  3. Histone deacetylase inhibition reduces cardiac Connexin43 expression and gap junction communication

    Directory of Open Access Journals (Sweden)

    Qin eXu

    2013-04-01

    Full Text Available Histone deactylase (HDAC inhibitors are being investigated as novel therapies for cancer, inflammation, neurodegeneration, and heart failure. The effects of HDAC inhibitors on the functional expression of cardiac gap junctions (GJ are essentially unknown. The purpose of this study was to determine the effects of trichostatin A (TSA and vorinostat (VOR on functional GJ expression in ventricular cardiomyocytes. The effects of HDAC inhibition on connexin43 (Cx43 expression and functional GJ assembly were examined in primary cultured neonatal mouse ventricular myocytes. TSA and VOR reduced Cx43 mRNA, protein expression, and immunolocalized Cx43 GJ plaque area within ventricular myocyte monolayer cultures in a dose-dependent manner. Chromatin-immunoprecipitation experiments revealed altered protein interactions with the Cx43 promoter. VOR also altered the phosphorylation state of several key regulatory Cx43 phospho-serine sites. Patch clamp analysis revealed reduced electrical coupling between isolated ventricular myocyte pairs, altered transjunctional voltage-dependent inactivation kinetics, and steady state junctional conductance inactivation and recovery relationships. Single GJ channel conductance was reduced to 54 pS only by maximum inhibitory doses of TSA (>= 100 nM. These two hydroxamate pan-HDAC inhibitors exert multiple levels of regulation on ventricular GJ communication by altering Cx43 expression, GJ area, post-translational modifications (e.g. phosphorylation, acetylation, gating, and channel conductance. Although a 50% downregulation of Cx43 GJ communication alone may not be sufficient to slow ventricular conduction or induce arrhythmias, the development of class-selective HDAC inhibitors may help avoid the potential negative cardiovascular effects of pan-HDACI.

  4. Modulation of radiation response by histone deacetylase inhibition

    International Nuclear Information System (INIS)

    Chinnaiyan, Prakash; Vallabhaneni, Geetha; Armstrong, Eric M.S.; Huang, Shyh-Min; Harari, Paul M.

    2005-01-01

    Purpose: Histone deacetylase (HDAC) inhibitors, which modulate chromatin structure and gene expression, represent a class of anticancer agents that hold particular potential as radiation sensitizers. In this study, we examine the capacity of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) to modulate radiation response in human tumor cell lines and explore potential mechanisms underlying these interactions. Methods and materials: Cell proliferation: Exponentially growing tumor cells were incubated in medium containing 0-10 μM of SAHA for 72 h. Cells were fixed/stained with crystal violet to estimate cell viability. Apoptosis: Caspase activity was analyzed by fluorescence spectroscopy using a fluorescein labeled pan-caspase inhibitor. Cells were harvested after 48 h of exposure to SAHA (1.0 μM), radiation (6 Gy), or the combination. Whole cell lysates were evaluated for poly(ADP-ribose) polymerase (PARP) cleavage by western blot analysis. Radiation survival: Cells were exposed to varying doses of radiation ± 3 days pretreatment with SAHA (0.75-1.0 μM). After incubation intervals of 14-21 days, colonies were stained with crystal violet and manually counted. Immunocytochemistry: Cells were grown and treated in chamber slides. At specified times after treatment with SAHA, cells were fixed in paraformaldehyde, permeabilized in methanol, and probed with primary and secondary antibody solutions. Slides were analyzed using an epifluorescent microscope. Results: SAHA induced a dose-dependent inhibition of proliferation in human prostate (DU145) and glioma (U373vIII) cancer cell lines. Exposure to SAHA enhanced radiation-induced apoptosis as measured by caspase activity (p < 0.05) and PARP cleavage. The impact of SAHA on radiation response was further characterized using clonogenic survival analysis, which demonstrated that treatment with SAHA reduced tumor survival after radiation exposure. We identified several oncoproteins and DNA damage repair proteins

  5. Histone deacetylase inhibition and dietary short-chain Fatty acids.

    Science.gov (United States)

    Licciardi, Paul V; Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions such as probiotic supplementation have been investigated for their pleiotropic effects on microbiota composition and immune function. Probiotics may restore intestinal dysbiosis and improve clinical disease through elevated SCFA levels in the intestine. Although the precise mechanisms by which such dietary factors mediate these effects, SCFA metabolites such as butyrate also function as histone deacetylase inhibitors (HDACi), that can act on the epigenome through chromatin remodeling changes. The aim of this review is to provide an overview of HDAC enzymes and to discuss the biological effects of HDACi. Further, we discuss the important relationship between diet and the balance between health and disease and how novel dietary interventions such as probiotics could be alternative approach for the prevention and/or treatment of chronic inflammatory disease through modulation of the intestinal microbiome.

  6. Histone Deacetylase Inhibition Restores Retinal Pigment Epithelium Function in Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Danielle Desjardins

    Full Text Available In diabetic individuals, macular edema is a major cause of vision loss. This condition is refractory to insulin therapy and has been attributed to metabolic memory. The retinal pigment epithelium (RPE is central to maintaining fluid balance in the retina, and this function is compromised by the activation of advanced glycation end-product receptors (RAGE. Here we provide evidence that acute administration of the RAGE agonist, glycated-albumin (gAlb or vascular endothelial growth factor (VEGF, increased histone deacetylase (HDAC activity in RPE cells. The administration of the class I/II HDAC inhibitor, trichostatin-A (TSA, suppressed gAlb-induced reductions in RPE transepithelial resistance (in vitro and fluid transport (in vivo. Systemic TSA also restored normal RPE fluid transport in rats with subchronic hyperglycemia. Both gAlb and VEGF increased HDAC activity and reduced acetyl-α-tubulin levels. Tubastatin-A, a relatively specific antagonist of HDAC6, inhibited gAlb-induced changes in RPE cell resistance. These data are consistent with the idea that RPE dysfunction following exposure to gAlb, VEGF, or hyperglycemia is associated with increased HDAC6 activity and decreased acetyl-α-tubulin. Therefore, we propose inhibiting HDAC6 in the RPE as a potential therapy for preserving normal fluid homeostasis in the hyperglycemic retina.

  7. Radiosensitization by histone deacetylase inhibition in an osteosarcoma mouse model

    International Nuclear Information System (INIS)

    Blattmann, C.; University Children's Hospital of Heidelberg; Thiemann, M.; Stenzinger, A.

    2013-01-01

    Background: Osteosarcomas (OS) are highly malignant and radioresistant tumors. Histone deacetylase inhibitors (HDACi) constitute a novel class of anticancer agents. We sought to investigate the effect of combined treatment with suberoylanilide hydroxamic acid (SAHA) and radiotherapy in OS in vivo. Methods: Clonogenic survival of human OS cell lines as well as tumor growth delay of OS xenografts were tested after treatment with either vehicle, radiotherapy (XRT), SAHA, or XRT and SAHA. Tumor proliferation, necrosis, microvascular density, apoptosis, and p53/p21 were monitored by immunohistochemistry. The CD95 pathway was performed by flow cytometry, caspase (3/7/8) activity measurements, and functional inhibition of CD95 death signaling. Results: Combined treatment with SAHA and XRT markedly reduced the surviving fraction of OS cells as compared to XRT alone. Likewise, dual therapy significantly inhibited OS tumor growth in vivo as compared to XRT alone, reflected by reduced tumor proliferation, impaired angiogenesis, and increased apoptosis. Addition of HDACi to XRT led to elevated p53, p21, CD95, and CD95L expression. Inhibition of CD95 signaling reduced HDACi- and XRT-induced apoptosis. Conclusion: Our data show that HDACi increases the radiosensitivity of osteosarcoma cells at least in part via ligand-induced apoptosis. HDACi thus emerge as potentially useful treatment components of OS. (orig.)

  8. Radiosensitization by histone deacetylase inhibition in an osteosarcoma mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Blattmann, C. [Olgahospital, Stuttgart (Germany). Paediatrie 5; University Children' s Hospital of Heidelberg (Germany). Dept. of Pediatric Oncology, Hematology and Immunology; Thiemann, M. [German Cancer Research Center (DKFZ), Heidelberg (Germany). Dept. of Radiotherapy, Molecular- and Translational Radiation Oncology; Stenzinger, A. [Heidelberg Univ. (Germany). Inst. of Pathology; and others

    2013-11-15

    Background: Osteosarcomas (OS) are highly malignant and radioresistant tumors. Histone deacetylase inhibitors (HDACi) constitute a novel class of anticancer agents. We sought to investigate the effect of combined treatment with suberoylanilide hydroxamic acid (SAHA) and radiotherapy in OS in vivo. Methods: Clonogenic survival of human OS cell lines as well as tumor growth delay of OS xenografts were tested after treatment with either vehicle, radiotherapy (XRT), SAHA, or XRT and SAHA. Tumor proliferation, necrosis, microvascular density, apoptosis, and p53/p21 were monitored by immunohistochemistry. The CD95 pathway was performed by flow cytometry, caspase (3/7/8) activity measurements, and functional inhibition of CD95 death signaling. Results: Combined treatment with SAHA and XRT markedly reduced the surviving fraction of OS cells as compared to XRT alone. Likewise, dual therapy significantly inhibited OS tumor growth in vivo as compared to XRT alone, reflected by reduced tumor proliferation, impaired angiogenesis, and increased apoptosis. Addition of HDACi to XRT led to elevated p53, p21, CD95, and CD95L expression. Inhibition of CD95 signaling reduced HDACi- and XRT-induced apoptosis. Conclusion: Our data show that HDACi increases the radiosensitivity of osteosarcoma cells at least in part via ligand-induced apoptosis. HDACi thus emerge as potentially useful treatment components of OS. (orig.)

  9. Evaluation of the efficacy of valproic acid and suberoylanilide hydroxamic acid (vorinostat in enhancing the effects of first-line tuberculosis drugs against intracellular Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Martin Rao

    2018-04-01

    Full Text Available Background: New tuberculosis (TB drug treatment regimens are urgently needed. This study evaluated the potential of the histone deacetylase inhibitors (HDIs valproic acid (VPA and suberoylanilide hydroxamic acid (SAHA to enhance the effects of first-line anti-TB drugs against intracellular Mycobacterium tuberculosis. Methods: M. tuberculosis H37Rv cultures were exposed to VPA or SAHA over 6 days, in the presence or absence of isoniazid (INH and rifampicin (RIF. The efficacy of VPA and SAHA against intracellular M. tuberculosis with and without INH or RIF was tested by treating infected macrophages. Bactericidal activity was assessed by counting mycobacterial colony-forming units (CFU. Results: VPA treatment exhibited superior bactericidal activity to SAHA (2-log CFU reduction, while both HDIs moderately improved the activity of RIF against extracellular M. tuberculosis. The bactericidal effect of VPA against intracellular M. tuberculosis was greater than that of SAHA (1-log CFU reduction and equalled that of INH (1.5-log CFU reduction. INH/RIF and VPA/SAHA combination treatment inhibited intracellular M. tuberculosis survival in a shorter time span than monotherapy (3 days vs. 6 days. Conclusions: VPA and SAHA have adjunctive potential to World Health Organization-recommended TB treatment regimens. Clinical evaluation of the two drugs with regard to reducing the treatment duration and improving treatment outcomes in TB is warranted. Keywords: Mycobacterium tuberculosis, Adjunct host-directed therapy, Tuberculosis, Histone deacetylase inhibitors, Repurposed drugs

  10. A Phase I Study of Pulse High-Dose Vorinostat (V) plus Rituximab (R), Ifosphamide, Carboplatin, and Etoposide (ICE) in Patients with Relapsed Lymphoma

    Science.gov (United States)

    Budde, Lihua E.; Zhang, Michelle M.; Shustov, Andrei R.; Pagel, John M.; Gooley, Ted A.; Oliveira, George R.; Chen, Tara L.; Knudsen, Nancy L.; Roden, Jennifer E.; Kammerer, Britt E.; Frayo, Shani L.; Warr, Thomas A.; Boyd, Thomas E.; Press, Oliver W.; Gopal, Ajay K.

    2013-01-01

    SUMMARY Given the poor outcomes of relapsed aggressive lymphomas and preclinical data suggesting that ≥2.5 μM concentrations of vorinostat synergize with both etoposide and platinums, we hypothesized that pulse high-dose vorinostat could safely augment the anti-tumour activity of (R)ICE [(rituximab), ifosphamide, carboplatin, etoposide] chemotherapy. We conducted a phase I dose escalation study using a schedule with oral vorinostat ranging from 400 mg/d to 700 mg bid for 5 days in combination with the standard (R)ICE regimen (days 3, 4 and 5). Twenty-nine patients (median age 56 years, median 2 prior therapies, 14 chemoresistant [of 27 evaluable], 2 prior transplants) were enrolled and treated. The maximally tolerated vorinostat dose was defined as 500 mg twice daily × 5 days. Common dose limiting toxicities included infection (n=2), hypokalaemia (n=2), and transaminitis (n=2). Grade 3 related gastrointestinal toxicity was seen in 9 patients. The median vorinostat concentration on day 3 was 4.5 μM (range 4.2–6.0 μM) and in vitro data confirmed the augmented antitumour and histone acetylation activity at these levels. Responses were observed in 19 of 27 evaluable patients (70%) including 8 complete response/unconfirmed complete response. High-dose vorinostat can be delivered safely with (R)ICE, achieves potentially synergistic drug levels, and warrants further study, although adequate gastrointestinal prophylaxis is warranted. PMID:23356514

  11. Comparative Modeling and Benchmarking Data Sets for Human Histone Deacetylases and Sirtuin Families

    Science.gov (United States)

    Xia, Jie; Tilahun, Ermias Lemma; Kebede, Eyob Hailu; Reid, Terry-Elinor; Zhang, Liangren; Wang, Xiang Simon

    2015-01-01

    Histone Deacetylases (HDACs) are an important class of drug targets for the treatment of cancers, neurodegenerative diseases and other types of diseases. Virtual screening (VS) has become fairly effective approaches for drug discovery of novel and highly selective Histone Deacetylases Inhibitors (HDACIs). To facilitate the process, we constructed the Maximal Unbiased Benchmarking Data Sets for HDACs (MUBD-HDACs) using our recently published methods that were originally developed for building unbiased benchmarking sets for ligand-based virtual screening (LBVS). The MUBD-HDACs covers all 4 Classes including Class III (Sirtuins family) and 14 HDACs isoforms, composed of 631 inhibitors and 24,609 unbiased decoys. Its ligand sets have been validated extensively as chemically diverse, while the decoy sets were shown to be property-matching with ligands and maximal unbiased in terms of “artificial enrichment” and “analogue bias”. We also conducted comparative studies with DUD-E and DEKOIS 2.0 sets against HDAC2 and HDAC8 targets, and demonstrate that our MUBD-HDACs is unique in that it can be applied unbiasedly to both LBVS and SBVS approaches. In addition, we defined a novel metric, i.e. NLBScore, to detect the “2D bias” and “LBVS favorable” effect within the benchmarking sets. In summary, MUBD-HDACs is the only comprehensive and maximal-unbiased benchmark data sets for HDACs (including Sirtuins) that is available so far. MUBD-HDACs is freely available at http://www.xswlab.org/. PMID:25633490

  12. Comparative modeling and benchmarking data sets for human histone deacetylases and sirtuin families.

    Science.gov (United States)

    Xia, Jie; Tilahun, Ermias Lemma; Kebede, Eyob Hailu; Reid, Terry-Elinor; Zhang, Liangren; Wang, Xiang Simon

    2015-02-23

    Histone deacetylases (HDACs) are an important class of drug targets for the treatment of cancers, neurodegenerative diseases, and other types of diseases. Virtual screening (VS) has become fairly effective approaches for drug discovery of novel and highly selective histone deacetylase inhibitors (HDACIs). To facilitate the process, we constructed maximal unbiased benchmarking data sets for HDACs (MUBD-HDACs) using our recently published methods that were originally developed for building unbiased benchmarking sets for ligand-based virtual screening (LBVS). The MUBD-HDACs cover all four classes including Class III (Sirtuins family) and 14 HDAC isoforms, composed of 631 inhibitors and 24609 unbiased decoys. Its ligand sets have been validated extensively as chemically diverse, while the decoy sets were shown to be property-matching with ligands and maximal unbiased in terms of "artificial enrichment" and "analogue bias". We also conducted comparative studies with DUD-E and DEKOIS 2.0 sets against HDAC2 and HDAC8 targets and demonstrate that our MUBD-HDACs are unique in that they can be applied unbiasedly to both LBVS and SBVS approaches. In addition, we defined a novel metric, i.e. NLBScore, to detect the "2D bias" and "LBVS favorable" effect within the benchmarking sets. In summary, MUBD-HDACs are the only comprehensive and maximal-unbiased benchmark data sets for HDACs (including Sirtuins) that are available so far. MUBD-HDACs are freely available at http://www.xswlab.org/ .

  13. Thiophene-derivatized Fluorescent Benzamides as Possible Probes for Histone Deacetylases

    International Nuclear Information System (INIS)

    Seo, Young Jun

    2013-01-01

    We have synthesized a series of novel fluorescent benzamides inhibitors possessing intrinsic fluorescence properties. Most of these benzamide fluorophores exhibit high quantum yields, making them suitable for use in imaging studies, with colors ranging from blue to green; a couple of them were also water-soluble. Notably, TB1 and TB2 display a high quantum yield and TB1 exhibits high binding affinity to HDAC enzymes. We believe that these new fluorescent benzamide inhibitors might be useful diagnostic tools for in vitro studies of HDACs. Histone deacetylases (HDACs) are crucial gene regulating enzymes that control the expression of histones-epigenetic targets in research related to developing new therapies for cancer, central nervous system disorders, and heart disease. The deacetylation of histones is a vital repression process in transcriptional gene expression; it also affects apoptosis, cell-cycle arrest, and angiogenesis

  14. Thiophene-derivatized Fluorescent Benzamides as Possible Probes for Histone Deacetylases

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young Jun [Chonbuk National Univ., Jeonju (Korea, Republic of)

    2013-08-15

    We have synthesized a series of novel fluorescent benzamides inhibitors possessing intrinsic fluorescence properties. Most of these benzamide fluorophores exhibit high quantum yields, making them suitable for use in imaging studies, with colors ranging from blue to green; a couple of them were also water-soluble. Notably, TB1 and TB2 display a high quantum yield and TB1 exhibits high binding affinity to HDAC enzymes. We believe that these new fluorescent benzamide inhibitors might be useful diagnostic tools for in vitro studies of HDACs. Histone deacetylases (HDACs) are crucial gene regulating enzymes that control the expression of histones-epigenetic targets in research related to developing new therapies for cancer, central nervous system disorders, and heart disease. The deacetylation of histones is a vital repression process in transcriptional gene expression; it also affects apoptosis, cell-cycle arrest, and angiogenesis.

  15. A phase I trial of vorinostat and alvocidib in patients with relapsed, refractory, or poor prognosis acute leukemia, or refractory anemia with excess blasts-2.

    Science.gov (United States)

    Holkova, Beata; Supko, Jeffrey G; Ames, Matthew M; Reid, Joel M; Shapiro, Geoffrey I; Perkins, Edward Brent; Ramakrishnan, Viswanathan; Tombes, Mary Beth; Honeycutt, Connie; McGovern, Renee M; Kmieciak, Maciej; Shrader, Ellen; Wellons, Martha D; Sankala, Heidi; Doyle, Austin; Wright, John; Roberts, John D; Grant, Steven

    2013-04-01

    This phase I study was conducted to identify the maximum-tolerated dose (MTD) of alvocidib when combined with vorinostat in patients with relapsed, refractory, or poor prognosis acute leukemia, or refractory anemia with excess blasts-2. Secondary objectives included investigating the pharmacokinetic and pharmacodynamic effects of the combination. Patients received vorinostat (200 mg orally, three times a day, for 14 days) on a 21-day cycle, combined with 2 different alvocidib administration schedules: a 1-hour intravenous infusion, daily × 5; or a 30-minute loading infusion followed by a 4-hour maintenance infusion, weekly × 2. The alvocidib dose was escalated using a standard 3+3 design. Twenty-eight patients were enrolled and treated. The alvocidib MTD was 20 mg/m(2) (30-minute loading infusion) followed by 20 mg/m(2) (4-hour maintenance infusion) on days one and eight, in combination with vorinostat. The most frequently encountered toxicities were cytopenias, fatigue, hyperglycemia, hypokalemia, hypophosphatemia, and QT prolongation. Dose-limiting toxicities (DLT) were cardiac arrhythmia-atrial fibrillation and QT prolongation. No objective responses were achieved although 13 of 26 evaluable patients exhibited stable disease. Alvocidib seemed to alter vorinostat pharmacokinetics, whereas alvocidib pharmacokinetics were unaffected by vorinostat. Ex vivo exposure of leukemia cells to plasma obtained from patients after alvocidib treatment blocked vorinostat-mediated p21(CIP1) induction and downregulated Mcl-1 and p-RNA Pol II for some specimens, although parallel in vivo bone marrow responses were infrequent. Alvocidib combined with vorinostat is well tolerated. Although disease stabilization occurred in some heavily pretreated patients, objective responses were not obtained with these schedules. ©2013 AACR.

  16. Negative effect of cyclin D1 overexpression on recurrence-free survival in stage II-IIIA lung adenocarcinoma and its expression mod