WorldWideScience

Sample records for de-fg02-97er45649 theoretical study

  1. Theoretical Advanced Study Institute: 2014

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, Thomas [Univ. of Colorado, Boulder, CO (United States)

    2016-08-17

    The Theoretical Advanced Study Institute was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty one students. Nineteen lecturers gave sixty seventy five minute lectures. A Proceedings was published.

  2. Theoretical Studies of Reaction Surfaces

    Science.gov (United States)

    2007-11-02

    Similar levels of agreement are being found in studies of water clusters12 , the Menshutkin reaction 13 (ion separation reaction ), a prototypical SN2 ...of both reactants and products. These analyses reveal that Bery pseudorotation occurs repeatedly during the side attack, whereas the SN2 reaction H...31 Aug 97 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS AASERT93 THEORETICAL STUDIES OF REACTION SURFACES F49620-93-1-0556 3484/XS 6. AUTHOR(S) 61103D DR

  3. Theoretical Studies of Silicon Chemistry

    Science.gov (United States)

    1990-02-01

    Molecular and Electronic Structure of Silyl Nitrene , M.S. Gordon, Chem. Phys. Lett., 146, 148 (1988). 18. A Theoretical Study of the Three-Membered Rings...phase and crystal structures. Of course, all three possibilities may contribute. B. The Electronic and Molecular Structure of Silyl Nitrene , M.S...a silaimine. An interesting question regarding the primary process is whether the silyl nitrene , R3SiN, is formed as an intermediate. As a first step

  4. Theoretical Advanced Study Institute: 2014

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, Thomas [Univ. of Colorado, Boulder, CO (United States)

    2016-08-17

    The Theoretical Advanced Study Institute (TASI) was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty-one students. Nineteen lecturers gave sixty seventy-five minute lectures. A Proceedings was published. This TASI was unique for its large emphasis on methods for calculating amplitudes. This was embedded in a program describing recent theoretical and phenomenological developments in particle physics. Topics included introductions to the Standard Model, to QCD (both in a collider context and on the lattice), effective field theories, Higgs physics, neutrino interactions, an introduction to experimental techniques, and cosmology.

  5. Theoretical studies of combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  6. THEORETICAL ASPECTS OF FILMMUSIC STUDY

    Directory of Open Access Journals (Sweden)

    Egorova Tatiana K.

    2014-04-01

    Full Text Available In this article, author analyzes the theoretical aspects of the film music study taking into account with modern realities in the development of world film-process and attempts to its scientific understanding. Need for innovation in this area is long overdue, because the existing on this topic nonfiction no longer meets the new aesthetic and art-practical achievements and innovations in the film music development at the XXI century. Related to the phenomenon of music in screen arts a number of new terms and concepts require a certain adjustment as well. Their range of action is not yet fully defined. Author of the article offered her version of their content-semantic interpretation (largely experimental designed to promote new research methods for the film music study.

  7. Theoretical Studies of Proton Radioactivity

    Institute of Scientific and Technical Information of China (English)

    Ldia S Ferreira; Enrico Maglione

    2016-01-01

    In the paper, we will discuss the most recent theoretical approaches developed by our group, to understand the mechanisms of decay by one proton emission, and the structure and shape of exotic nuclei at the limits of stability.

  8. Theoretical Studies of Nanocluster Formation

    Science.gov (United States)

    2016-05-26

    5f. WORK UNIT NUMBER Q188 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NO. Air Force Research...For presentation at AFOSR Molecular Dynamics and Theoretical Chemistry Program Review; Arlington, VA (25 May 2016) PA Case Number: #16215; Clearance...Approved for public release; Distribution Unlimited. PA Clearance No: 16215 This briefing contains information up to: 2 Outline 1. Introduction

  9. Studies in theoretical particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.B.

    1991-07-01

    This proposal focuses on research on three distinct areas of particle physics: (1) Nonperturbative QCD. I tend to continue work on analytic modelling of nonperturbative effects in the strong interactions. I have been investigating the theoretical connection between the nonrelativistic quark model and QCD. The primary motivation has been to understand the experimental observation of nonzero matrix elements involving current strange quarks in ordinary matter -- which in the quark model has no strange quark component. This has led to my present work on understanding constituent (quark model) quarks as collective excitations of QCD degrees of freedom. (2) Weak Scale Baryogenesis. A continuation of work on baryogenesis in the early universe from weak interactions. In particular, an investigation of baryogenesis occurring during the weak phase transition through anomalous baryon violating processes in the standard model of weak interactions. (3) Flavor and Compositeness. Further investigation of a new mechanism that I recently discovered for dynamical mass generation for fermions, which naturally leads to a family hierarchy structure. A discussion of recent past work is found in the next section, followed by an outline of the proposed research. A recent publication from each of these three areas is attached to this proposal.

  10. Theoretical studies of unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Groensleth, Martin Sigurd

    2008-07-01

    This thesis presents four research papers. In the first three papers we have derived analytical results for the transport properties in unconventional superconductors and ferromagnetic systems with multiple broken symmetries. In Paper I and parts of Paper II we have studied tunneling transport between two non-unitary ferromagnetic spin-triplet superconductors, and found a novel interplay between ferromagnetism and superconductivity manifested in the Josephson effect as a spin- and charge-current in the absence of an applied voltage across the junction. The critical amplitudes of these currents can be adjusted by the relative magnetization direction on each side of the junction. Furthermore, in Paper II, we have found a way of controlling a spin-current between two ferromagnets with spin-orbit coupling. Paper III considers a junction consisting of a ferromagnet and a non-unitary ferromagnetic superconductor, and we show that the conductance spectra contains detailed information about the superconducting gaps and pairing symmetry of the Cooper-pairs. In the last paper we present a Monte Carlo study of an effective Hamiltonian describing orbital currents in the CuO2 layers of high-temperature superconductive cuprates. The model features two intrinsically anisotropic Ising models, coupled through an anisotropic next-nearest neighbor interaction, and an Ashkin-Teller nearest neighbor fourth order coupling. We have studied the specific heat anomaly, as well as the anomaly in the staggered magnetization associated with the orbital currents and its susceptibility. We have found that in a limited parameter regime, the specific heat anomaly is substantially suppressed, while the susceptibility has a non-analytical peak across the order-disorder transition. The model is therefore a candidate for describing the breakup of hidden order when crossing the pseudo-gap line on the under-doped side in the phase diagram of high-temperature superconductors. (Author) 64 refs., figs

  11. Theoretical Study of Dinoflagellate Bioluminescence.

    Science.gov (United States)

    Wang, Ming-Yu; Liu, Ya-Jun

    2017-03-01

    Dinoflagellates are the most ubiquitous luminescent protists in the marine environment and have drawn much attention for their crucial roles in marine ecosystems. Dinoflagellate bioluminescence has been applied in underwater target detection. The luminescent system of dinoflagellates is a typical luciferin-luciferase one. However, the excited-state oxyluciferin is not the light emitter of dinoflagellate bioluminescence as in most luciferin-luciferase bioluminescent organisms. The oxyluciferin of bioluminescent dinoflagellates is not fluorescent, whereas its luciferin emits bright fluorescence with similar wavelength of the bioluminescence. What is the light emitter of dinoflagellate bioluminescence and what is the chemical process of the light emission like? These questions have not been answered by the limited experimental evidence so far. In this study, for the first time, the density functional calculation is employed to investigate the geometries and properties of luciferin and oxyluciferin of bioluminescent dinoflagellate. The calculated results agree with the experimental observations and indicate the luciferin or its analogue, rather than oxyluciferin, is the bioluminophore of dinoflagellate bioluminescence. A rough mechanism involving energy transfer is proposed for dinoflagellate bioluminescence.

  12. Theoretical studies of chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, G.C. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  13. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...

  14. Theoretical aspects of studying the migration processes

    Directory of Open Access Journals (Sweden)

    Dilfuza Rasulova

    2010-02-01

    Full Text Available In conditions of continuous growth of population in Uzbekistan the issue of managing the labor migration processes is becoming more important. Effective coordination of migration processes requires comprehensive study of theory and methodology of labour migration, particularly considering cases of transition countries. The paper considers some theoretic concepts that seem important for understanding the mechanism of migration princesses, suggests practical recommendations for the associated decision-making.

  15. Theoretical study on single-molecule spectroscopy

    Institute of Scientific and Technical Information of China (English)

    SHAN Guang-cun; HUANG Wei

    2006-01-01

    The photon-by-photon approach for single molecule spectroscopy experiments utilizes the information carried by each detected photon and allows the measurements of conformational fluctuation with time resolution on a vast range of time scales,where each photon represents a data point.Here,we theoretically simulate the photon emission dynamics of a single molecule spectroscopy using the kinetic Monte Carlo algorithm to understand the underlying complex photon dynamic process of a single molecule.In addition,by following the molecular process in real time,the mechanism of complex biochemical reactions can be revealed.We hope that this theoretical study will serve as an introduction and a guideline into this exciting new field.

  16. Theoretical study on a water muffler

    Science.gov (United States)

    Du, T.; Chen, Y. W.; Miao, T. C.; Wu, D. Z.

    2016-05-01

    Theoretical computation on a previously studied water muffler is carried out in this article. Structure of the water muffler is composed of two main parts, namely, the Kevlar- reinforced rubber tube and the inner-noise-reduction structure. Rubber wall of the rubber tube is assumed to function as rigid wall lined with sound absorption material and is described by a complex radial wave number. Comparison among the results obtained from theoretical computation, FEM (finite element method) simulation and experiment of the rubber tube and that of the water muffler has been made. The theoretical results show a good accordance in general tendency with the FEM simulated and the measured results. After that, parametric study on the diameter of the inner structure and that of the rubber tube is conducted. Results show that the diameter of the left inner structure has the most significant effect on the SPL of the water muffler due to its location and its effect on the diameter ratio D2/D1.

  17. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  18. Theoretical pluralism in psychoanalytic case studies.

    Science.gov (United States)

    Willemsen, Jochem; Cornelis, Shana; Geerardyn, Filip M; Desmet, Mattias; Meganck, Reitske; Inslegers, Ruth; Cauwe, Joachim M B D

    2015-01-01

    The aim of this study is to provide an overview of the scientific activity of different psychoanalytic schools of thought in terms of the content and production of case studies published on ISI Web of Knowledge. Between March 2013 and November 2013, we contacted all case study authors included in the online archive of psychoanalytic and psychodynamic case studies (www.singlecasearchive.com) to inquire about their psychoanalytic orientation during their work with the patient. The response rate for this study was 45%. It appears that the two oldest psychoanalytic schools, Object-relations psychoanalysis and Ego psychology or "Classical psychoanalysis" dominate the literature of published case studies. However, most authors stated that they feel attached to two or more psychoanalytic schools of thought. This confirms that the theoretical pluralism in psychoanalysis stretches to the field of single case studies. The single case studies of each psychoanalytic school are described separately in terms of methodology, patient, therapist, or treatment features. We conclude that published case studies features are fairly similar across different psychoanalytic schools. The results of this study are not representative of all psychoanalytic schools, as some do not publish their work in ISI ranked journals.

  19. Theoretical Study on Standing Wave Thermoacoustic Engine

    Science.gov (United States)

    Kalra, S.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    Applications of thermoacoustic engines are not limited to driving pulse tube cryocoolers. The performance of a thermoacoustic engine is governed by various design parameters like type of resonator, stack geometry, frequency, type of working gas etc. and various operating parameters like heat input, charging pressure etc. It is very important to arrive at an optimum configuration of the engine for which a theoretical model is required. In the present work, a theoretical analysis, based on linear acoustic theory of a standing wave type half wavelength thermoacoustic engine is carried out using DeltaEC software. The system dimensions like length of resonator, stack, hot and cold heat exchangers are fixed with a helium-argon mixture as the working gas and a parallel plate type stack. Later on, two plate spacings, corresponding to helium-argon mixture and nitrogen gas, are used for carrying out analysis with helium, argon, nitrogen, carbon dioxide and helium-argon mixture as working gases of the system. The effect of charging pressure on the performance of the system is studied in terms of resonating frequency, onset temperature, pressure amplitude, acoustic power and efficiency. The conclusions derived from the analysis are reported in the paper.

  20. Theoretical study of rock mass investigation efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, Johan G.; Outters, Nils [Golder Associates, Uppsala (Sweden)

    2002-05-01

    The study concerns a mathematical modelling of a fractured rock mass and its investigations by use of theoretical boreholes and rock surfaces, with the purpose of analysing the efficiency (precision) of such investigations and determine the amount of investigations necessary to obtain reliable estimations of the structural-geological parameters of the studied rock mass. The study is not about estimating suitable sample sizes to be used in site investigations.The purpose of the study is to analyse the amount of information necessary for deriving estimates of the geological parameters studied, within defined confidence intervals and confidence level In other words, how the confidence in models of the rock mass (considering a selected number of parameters) will change with amount of information collected form boreholes and surfaces. The study is limited to a selected number of geometrical structural-geological parameters: Fracture orientation: mean direction and dispersion (Fisher Kappa and SRI). Different measures of fracture density (P10, P21 and P32). Fracture trace-length and strike distributions as seen on horizontal windows. A numerical Discrete Fracture Network (DFN) was used for representation of a fractured rock mass. The DFN-model was primarily based on the properties of an actual fracture network investigated at the Aespoe Hard Rock Laboratory. The rock mass studied (DFN-model) contained three different fracture sets with different orientations and fracture densities. The rock unit studied was statistically homogeneous. The study includes a limited sensitivity analysis of the properties of the DFN-model. The study is a theoretical and computer-based comparison between samples of fracture properties of a theoretical rock unit and the known true properties of the same unit. The samples are derived from numerically generated boreholes and surfaces that intersect the DFN-network. Two different boreholes are analysed; a vertical borehole and a borehole that is

  1. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K.E.J. [VTT Energy, Espoo (Finland). Energy Use

    1997-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  2. Studies In Theoretical High Energy Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  3. Theoretical Study of a Spherical Plasma Focus

    Science.gov (United States)

    Ay, Yasar

    A theoretical model is developed for two concentric electrodes spherical plasma focus device in order to investigate the plasma sheath dynamics, radiative emission, and the ion properties. The work focuses on the model development of the plasma sheath dynamics and its validation, followed by studying of the radiation effects and the beam-ion properties in such unique geometry as a pulsed source for neutrons, soft and hard x-rays, and electron and ion beams. Chapter 1 is an introduction on fusion systems including plasma focus. Chapter 2 is an extensive literature survey on plasma focus modeling and experiments including the various radiations and their mechanism. Chapter 3 details modeling and validation of the plasma sheath dynamics model with comparison between hydrogen, deuterium, tritium and deuterium-tritium mixture for the production of pulsed neutrons. Chapter 4 is a study of the radiative phase, in which neutron yield is investigated, as well as the predicted beam-ion properties. Chapter 5 summarizes and discusses the results. Chapter 6 provides concluding remarks and proposed future works. The phases of the developed model are the rundown phase I, rundown phase II, the reflected phase and a radiative phase. The rundown phase I starts immediately after the completion of the gas breakdown and ends when the current sheath reaches the equator point of the spherical shape. Then immediately followed by rundown phase II to start and it ends when the shock front hits the axis, which is the beginning of the reflected shock phase. Reflected shock front moves towards the incoming current sheath and meets it which is both the end of the reflected shock phase and the beginning of the radiative phase. After the reflected shock front and the current sheath meet, the current sheath continues to move radially inward by compressing the produced plasma column until it reaches the axis. Since the discharge current contains important information about the plasma dynamic

  4. Theoretical Studies in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Collins, John C.; Roiban, Radu S

    2013-04-01

    This final report summarizes work at Penn State University from June 1, 1990 to April 30, 2012. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.

  5. Voltammetry at porous electrodes: A theoretical study

    CERN Document Server

    Barnes, Edward O; Li, Peilin; Compton, Richard G

    2014-01-01

    Theory is presented to simulate both chronoamperometry and cyclic voltammetry at porous electrodes fabricated by means of electro-deposition around spherical templates. A theoretical method to extract heterogeneous rate constants for quasireversible and irreversible systems is proposed by the approximation of decoupling of the diffusion within the porous electrode and of bulk diffusion to the electrode surface.

  6. Theoretic Study of CⅡ Recombination Line

    Institute of Scientific and Technical Information of China (English)

    彭永伦; 王民盛; 韩小英; 李家明

    2004-01-01

    Using the R-matrix method, we carry out theoretical calculations for recombination line λ 8794 A(3d'-3p') of CⅡ, which is important to estimate the abundances of carbon in planetary nebulae. Our calculations are based on three sets of target orbital basis, through which we elucidate the electron correlation and static polarization effects in the dielectronic recombination processes.

  7. Vapor Sensing Theoretical Study on Optical Microcavities

    Institute of Scientific and Technical Information of China (English)

    ZHANG Le-xin; ZHANG Ran; LI Zhi-quan

    2007-01-01

    When the organic vapors absorbed to the surface of porous silicon(PS), capillary condensation takes place due to the porous structure of the PS layer, accordingly resulting in the effective refractive index changing. For PS multi-layer microcavities, the different resonant peaks shift in the reflectivity spectrum of porous silicon microcavities(PSMs). The optical sensing model is set up by applying Bruggeman effective medium approximation theory, capillary condensation process and transfer matrix theoretically analytical method of one-dimensional photonic crystals. At the same time, comprehensively researched on are the sensing characteristics of PSMs which are exposed to give concentration organic vapors. At last, made is the theoretical simulation for sensing model of the PSMs in case of saturation by using computer numerical calculation, and found is the linearity relation between the refractive index of organic solvent and the peak-shift. At the same time deduced is the peak-shift as a function of the concentration of ethanol vapors.

  8. Theoretical study of conjugated porphyrin polymers

    DEFF Research Database (Denmark)

    Pedersen, T.G.; Lynge, T.B.; Kristensen, P.K.

    2005-01-01

    The optical gap of conjugated triply linked porphyrin chains is exceptionally low (similar to 0.5 eV). Hence, such chains are candidates for organic infrared detectors and solar cells harvesting the infrared part of the solar spectrum. However, a low exciton binding energy is required for these a......The optical gap of conjugated triply linked porphyrin chains is exceptionally low (similar to 0.5 eV). Hence, such chains are candidates for organic infrared detectors and solar cells harvesting the infrared part of the solar spectrum. However, a low exciton binding energy is required...... for these applications. From a theoretical analysis of excitons in long metalloporphyrin chains, we demonstrate that the binding energy is much lower than in usual conjugated polymers. Our calculated absorption spectra are in good agreement with measurements. (c) 2004 Elsevier B.V. All rights reserved....

  9. Theoretical study of the NO beta system

    Science.gov (United States)

    Langhoff, Stephen R.; Partridge, Harry; Bauschlicher, Charles W., Jr.; Komornicki, Andrew

    1991-01-01

    A theoretical determination of the transition moment functions (TMFs) for the beta system of NO is presented. High levels of correlation treatment are required to show the changing degree of Rydberg character in the B2II with decreasing r values. The state-averaged complete-active-space self-consistent-field multireference configuration-interaction method is used for the determination. Previous lifetime measurements made with laser-induced fluorescence, varying between 2 and 0.85 microns, are discussed in terms of the calculated lifetimes for v-prime values 0-6, which vary from 2.12-1.17 microns. When larger r values are used for the transition moment function, the calculated lifetimes correlate with experimental lifetimes. The Einstein coefficients agree with experimental results, although limitations in the calibration of the spectrometer can account for systematic differences. The correlation with earlier experimental results suggests that radiative lifetimes are in the range of 1-2 microns.

  10. Theoretical study on spherical proton emission

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The proton radioactivity half-lives of spherical proton emitters are investigated within a generalized liquid drop model(GLDM),including the proximity effects between nuclei in a neck and the mass and charge asymmetry.The penetrability is calculated in the WKB approximation and the assault frequency is estimated by the quantum mechanism method considering the structure of the parent nucleus.The spectroscopic factor is taken into account in half-life calculation,which is obtained by employing the relativistic mean field(RMF) theory.The half-lives within the GLDM are compared with the experimental data and other theoretical values.The results show that the GLDM works quite well for spherical proton emitters when the assault frequency is estimated by the quantum mechanical method and the spectroscopic factor is considered.

  11. Theoretical study on spherical proton emission

    Institute of Scientific and Technical Information of China (English)

    ZHANG HongFei; WANG YongJia; DONG JianMin; LI JunQing

    2009-01-01

    The proton radioactivity half-lives of spherical proton emitters are investigated within a generalized liquid drop model (GLDM),including the proximity effects between nuclei in a neck and the mass and charge asymmetry.The penetrability is calculated in the WKB approximation and the assault frequency is estimated by the quantum mechanism method considering the structure of the parent nucleus.The spectroscopic factor is taken into account in half-life calculation,which is obtained by employing the relativistic mean field (RMF) theory.The half-lives within the GLDM are compared with the experimental data and other theoretical values.The results show that the GLDM works quite well for spherical proton emitters when the assault frequency is estimated by the quantum mechanical method and the spectroscopic factor is considered.

  12. Theoretical & Experimental Studies of Elementary Particles

    Energy Technology Data Exchange (ETDEWEB)

    McFarland, Kevin

    2012-10-04

    Abstract High energy physics has been one of the signature research programs at the University of Rochester for over 60 years. The group has made leading contributions to experimental discoveries at accelerators and in cosmic rays and has played major roles in developing the theoretical framework that gives us our ``standard model'' of fundamental interactions today. This award from the Department of Energy funded a major portion of that research for more than 20 years. During this time, highlights of the supported work included the discovery of the top quark at the Fermilab Tevatron, the completion of a broad program of physics measurements that verified the electroweak unified theory, the measurement of three generations of neutrino flavor oscillations, and the first observation of a ``Higgs like'' boson at the Large Hadron Collider. The work has resulted in more than 2000 publications over the period of the grant. The principal investigators supported on this grant have been recognized as leaders in the field of elementary particle physics by their peers through numerous awards and leadership positions. Most notable among them is the APS W.K.H. Panofsky Prize awarded to Arie Bodek in 2004, the J.J. Sakurai Prizes awarded to Susumu Okubo and C. Richard Hagen in 2005 and 2010, respectively, the Wigner medal awarded to Susumu Okubo in 2006, and five principal investigators (Das, Demina, McFarland, Orr, Tipton) who received Department of Energy Outstanding Junior Investigator awards during the period of this grant. The University of Rochester Department of Physics and Astronomy, which houses the research group, provides primary salary support for the faculty and has waived most tuition costs for graduate students during the period of this grant. The group also benefits significantly from technical support and infrastructure available at the University which supports the work. The research work of the group has provided educational opportunities

  13. Theoretical Studies of Hydrogen Storage Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Hannes

    2012-03-22

    Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into the metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys of magnesium with various other transition metals were carried out and systematic trends in stability, hydrogen binding energy and diffusivity established. Some calculations of ternary alloys and their hydrides were also carried out, for example of Mg{sub 6}AlTiH{sub 16}. It was found that the binding energy reduction due to the addition of aluminum and increased diffusivity due to the addition of a transition metal are both effective at the same time. This material would in principle work well for hydrogen storage but it is, unfortunately, unstable with respect to phase separation. A search was made for a ternary alloy of this type where both the alloy and the corresponding hydride are stable. Promising results were obtained by including Zn in the alloy.

  14. A Theoretical Study of Subsurface Drainage Model Simulation of ...

    African Journals Online (AJOL)

    A Theoretical Study of Subsurface Drainage Model Simulation of Drainage Flow and ... of subsurface drain spacing, evapotranspiration and irrigation water quality on ... The study was carried out on a conceptual uniform homogenous irrigated ...

  15. Theoretical Studies Of Small Boson Clusters

    CERN Document Server

    Chen, Y

    2005-01-01

    This work uses the DVR method to study the vibrational states of small boson clusters. With the adiabatic hyperspherical approximation, the lower and upper bounds of the bound states of the helium trimer are calculated. The first fully converged 3-dimensional basis set variational calculation for this system is carried out using Pekeris coordinates and the Laguerre basis functions. Two bound states are found for the system, as well as a third state which might be an Efimov state. The same method is used to study the bound states and resonance states of the neon trimer using a realistic potential, and proved to be efficient and accurate.

  16. Theoretical Studies of Long Lived Plasma Structures

    CERN Document Server

    Dvornikov, Maxim

    2010-01-01

    We construct the model of a long lived plasma structure based on spherically symmetric oscillations of electrons in plasma. Oscillations of electrons are studied in frames of both classical and quantum approaches. We obtain the density profile of electrons and the dispersion relations for these oscillations. The differences between classical and quantum approaches are discussed. Then we study the interaction between electrons participating in spherically symmetric oscillations. We find that this interaction can be attractive and electrons can form bound states. The applications of the obtained results to the theory of natural plasmoids are considered.

  17. A Theoretical Study of Leading Edge Noise

    Science.gov (United States)

    2008-05-01

    measurements of the noise radiated from a number of different airfoils made as -part of a companion study at Virginia lech . It was concluded that the...vectors in the direction normal to the local flow velocity and in the spanwise direction respectively. The transport equation for the vorticity is

  18. Theoretical and Experimental Studies in Reactive Scattering.

    Science.gov (United States)

    1986-08-11

    containing He and the neutral beam formed, cleansed of ions by appropriate electrostatic deflection plates, is reionized in a second charge exchange...H3 (having D3h symmetry) which could therefore support bound states. The technique of neutralization and reionization of H’ in order to study H 3 was...technique has been used again recently by Gaillard and co-workers 7 . By placing an electric field between the neutralization and reionization gas cells they

  19. Theoretical study on stability of hybrid bilayers

    Science.gov (United States)

    Silva, Thiago S.; de Lima Bernardo, Bertúlio; Azevedo, Sèrgio

    2015-04-01

    Motivated by the recent experimental realization of the hybrid nanostructure of graphene and boron nitride (h-BN) sheet, and studies of gap modulation by strain, we use first principles calculations based on density functional theory to investigate the effects of strain in hybrid bilayers composed of two monolayers of graphene with a nanodomain of {{B}3}{{N}3}. The calculations were made with two different approximations for the functional exchange-correlation, GGA and VDW-DF. We investigate the modification in the electronic structure and structural properties of various configurations of the hybrid bilayers. Among the configurations, those with Bernal stacking are found to be more stable when compared to the others. Studies of the compressive strain influence were made only in the structure that has been shown to be the most stable. We have found that the two approximations used in the calculations exhibit the same results for the electronic properties of all structures. The opening of the energy gap due to strain was possible in the calculations by using the GGA approximation, but the same does not happen in the calculations using the VDW-DF approximation. Our analysis shows that the VDW-DF approximation is better suited for studies involving surfaces.

  20. Theoretical study of pair density wave superconductors

    Science.gov (United States)

    Zheng, Zhichao

    In conventional superconductors, the Cooper pairs are formed from quasiparticles. We explore another type of superconducting state, a pair density wave (PDW) order, which spontaneously breaks some of the translational and point group symmetries. In a PDW superconductor, the order parameter is a periodic function of the center-of-mass coordinate, and the spatial average value of the superconducting order parameter vanishes. In the early 1960s, following the success of the BCS theory of superconductivity, Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) developed theories of inhomogeneous superconducting states. Because of this Zeeman splitting in a magnetic field, the Cooper pairs having a nonzero center-of-mass momentum are more stable than the normal pairing, leading to the FFLO state. Experiments suggest possible occurrence of the FFLO state in the heavy-fermion compound CeCoIn5, and in quasi-low-dimensional organic superconductors. FFLO phases have also been argued to be of importance in understanding ultracold atomic Fermi gases and in the formation of color superconductivity in high density quark matter. In all Fermi superfluids known at the present time, Cooper pairs are composed of particles with spin 1/2. The spin component of a pair wave function can be characterized by its total spin S = 0 (singlet) and S = 1 (triplet). In the discovered broken inversion superconductors CePt3Si, Li2Pt3B, and Li2Pd3B, the magnetic field leads to novel inhomogeneous superconducting states, namely the helical phase and the multiple-q phase. Its order parameter exhibits periodicity similar to FFLO phase, and the consequences of both phases are same: the enhancement of transition temperature as a function of magnetic field. We have studied the PDW phases in broken parity superconductors with vortices included. By studying PDW vortex states, we find the usual Abrikosov vortex solution is unstable against a new solution with fractional vortex pairs. We have also studied the

  1. Theoretical Studies of Solids under Extreme Conditions.

    Science.gov (United States)

    1983-12-01

    C. Pattnaik, Phys. Rev. 1327, 3987 (1983). 9. M. E. Schabes , J. L. Fry and P. C. Pattnaik, Bull. 4I. Phys. Soc. 29, 76 (1984). 10. C. M. Varma et al...phonon interactions in transition metals," P. C. Pattnaik, M. E. Schabes and J. L. Fry,to be submitted to The Physical Review. 10. "A Study of the linear...C. Pattnaik, J. L. Fry and M. E. Schabes . 13. "Positron work functions in metallic alloys," P. C. Pattnaik and G. Fletcher (to be submitted to The

  2. Theoretical studies on nitrogen rich energetic azoles.

    Science.gov (United States)

    Ghule, Vikas Dasharath; Sarangapani, Radhakrishnan; Jadhav, Pandurang M; Tewari, Surya P

    2011-06-01

    Different nitro azole isomers based on five membered heterocyclics were designed and investigated using computational techniques in order to find out the comprehensive relationships between structure and performances of these high nitrogen compounds. Electronic structure of the molecules have been calculated using density functional theory (DFT) and the heat of formation has been calculated using the isodesmic reaction approach at B3LYP/6-31G* level. All designed compounds show high positive heat of formation due to the high nitrogen content and energetic nitro groups. The crystal densities of these energetic azoles have been predicted with different force fields. All the energetic azoles show densities higher than 1.87 g/cm(3). Detonation properties of energetic azoles are evaluated by using Kamlet-Jacobs equation based on the calculated densities and heat of formations. It is found that energetic azoles show detonation velocity about 9.0 km/s, and detonation pressure of 40GPa. Stability of the designed compounds has been predicted by evaluating the bond dissociation energy of the weakest C-NO(2) bond. The aromaticity using nucleus independent chemical shift (NICS) is also explored to predict the stability via delocalization of the π-electrons. Charge on the nitro group is used to assess the impact sensitivity in the present study. Overall, the study implies that all energetic azoles are found to be stable and expected to be the novel candidates of high energy density materials (HEDMs).

  3. Experimental and theoretical study of reflux condensation

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, Knut

    1997-12-31

    This thesis studies the separation of gas mixtures in a reflux condenser. also called a dephlegmator. Reflux condensation is separation of a gas mixture, in reflux flow with condensing liquid, under continuous heat removal. A numerical model of a dephlegmator for binary mixtures was developed. The model may readily be extended to multi-component mixtures, as the solution method is based on a matrix solver. Separation of a binary mixture in a reflux condenser test rig is demonstrated. The test facility contains a single-tube test section that was designed and built as part of the project. Test mixtures of propane and n-butane were used, and a total of 15 experiments are reported. Limited degree of separation was achieved due to limited heat transfer area and narrow boiling point range of the test mixture. The numerical model reproduces the experimental data within reasonable accuracy. Deviation between calculated and measured properties is less than 6% of the measured temperature and less than 5% of the measured flow rate. The model is based on mechanistic models of physical processes and is not calibrated or tuned to fit the experimental data. The numerical model is applied to a number of separation processes. These case studies show that the required heat transfer area increases rapidly with increments in top product composition (light component). Flooding limits the amount of reflux liquid. The dephlegmator is suitable for separation of feed mixtures that are rich in light components. The gliding temperature in the dephlegmation process enables utilization of top product as refrigerant, with subsequent energy saving as a result. 61 refs., 50 figs., 34 tabs.

  4. Theoretical Studies in Percolation and Polymer Theory

    Science.gov (United States)

    Wu, Kang

    We study the theta points for the self-avoiding walk (SAW) and the self-avoiding trail (SAT). In a small cell real space renormalization group study on a model that includes self-attracting SAW's (SASAW) and self-attracting SAT's (SASAT) as special cases, we find distinct fixed points for the SASAW and SASAT collapse transitions, and so conclude that these transitions are in different universality classes. A percolation model, which we call bond percolation on antipercolation clusters (BPAPC), is introduced. A mapping between BPAPC and the diluted alternating Potts model (DAPM) is established. We solve the DAPM in the Bethe cluster approximation and obtain the static critical exponents beta = 1 and gamma = 1. The approximate phase diagram for arbitrary coordination number z is also constructed. In our Monte Carlo simulations of kinetic antipercolation, we observe growth oscillations that have no analog in regular percolation. A mean field theory that explains the existence of these oscillations is presented. The result of our simulations suggests that kinetic antipercolation may be in the same universality class as kinetic percolation. We introduce a dynamic fuse model for the damage done to a current-carrying polycrystalline metal thin film by electromigration. We determine the exact scaling behavior of the crack tip velocity for a single crack oriented perpendicularly to the direction of the ambient current. For any value of the initial density of defects, the mean failure time is to an excellent approximation proportional to the average length of the shortest path across the film in a certain metric. This conclusion is supported by our simulations and by analytical work based on a variational formulation of our problem. The Green's function formulation (GFF) is obtained for a random resistor network. The GFF yields a linear system equivalent to Kirchhoff's laws but with a smaller number of variables. We present the technical details of solving the GFF linear

  5. Theoretical Studies of Homogeneous Catalysts Mimicking Nitrogenase

    Directory of Open Access Journals (Sweden)

    Alessandra Magistrato

    2011-01-01

    Full Text Available The conversion of molecular nitrogen to ammonia is a key biological and chemical process and represents one of the most challenging topics in chemistry and biology. In Nature the Mo-containing nitrogenase enzymes perform nitrogen ‘fixation’ via an iron molybdenum cofactor (FeMo-co under ambient conditions. In contrast, industrially, the Haber-Bosch process reduces molecular nitrogen and hydrogen to ammonia with a heterogeneous iron catalyst under drastic conditions of temperature and pressure. This process accounts for the production of millions of tons of nitrogen compounds used for agricultural and industrial purposes, but the high temperature and pressure required result in a large energy loss, leading to several economic and environmental issues. During the last 40 years many attempts have been made to synthesize simple homogeneous catalysts that can activate dinitrogen under the same mild conditions of the nitrogenase enzymes. Several compounds, almost all containing transition metals, have been shown to bind and activate N2 to various degrees. However, to date Mo(N2(HIPTN3N with (HIPTN3N= hexaisopropyl-terphenyl-triamidoamine is the only compound performing this process catalytically. In this review we describe how Density Functional Theory calculations have been of help in elucidating the reaction mechanisms of the inorganic compounds that activate or fix N2. These studies provided important insights that rationalize and complement the experimental findings about the reaction mechanisms of known catalysts, predicting the reactivity of new potential catalysts and helping in tailoring new efficient catalytic compounds.

  6. Theoretical study of cisplatin adsorption on silica

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Departamento de Fisica and IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Departamentos de Ciencias Basicas e Ingenieria Mecanica, Universidad Tecnologica Nacional, 11 de Abril 461, 8000 Bahia Blanca (Argentina); Company, A. Diaz; Brizuela, G.; Juan, A. [Departamento de Fisica and IFISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2011-11-15

    The adsorption of cisplatin and its complexes, cis-[PtCl(NH{sub 3}){sub 2}]{sup +} and cis-[Pt(NH{sub 3}){sub 2}]{sup 2+}, on a SiO{sub 2}(1 1 1) hydrated surface has been studied by the Atom Superposition and Electron Delocalization method. The adiabatic energy curves for the adsorption of the drug and its products on the delivery system were considered. The electronic structure and bonding analysis were also performed. The molecule-surface interactions are formed at expenses of the OH surface bonds. The more important interactions are the Cl-H bond for cis-[PtCl{sub 2}(NH{sub 3}){sub 2}] and cis-[PtCl(NH{sub 3}){sub 2}]{sup +} adsorptions, and the Pt-O interaction for cis-[Pt(NH{sub 3}){sub 2}]{sup 2+} adsorption. The Cl p orbitals and Pt s, p y d orbitals of the molecule and its complexes, and the s H orbital and, the s and p orbitals of the O atoms of the hydrated surface are the main contribution to the surface bonds.

  7. Theoretical and Experimental Studies in Accelerator Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, James [Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy

    2017-03-08

    . We note also that PBPL graduates remain as close elaborators for the program after leaving UCLA. The UCLA PBPL program is a foremost developer of on-campus facilities, such as the Neptune and Pegasus Laboratories, providing a uniquely strong environment for student-based research. In addition, the PBPL is a strong user of off-campus national lab facilities, such as SLAC FACET and NLCTA, and the BNL ATF. UCLA has also vigorously participated in the development of these facilities. The dual emphases on off- and on-campus opportunities permit the PBPL to address in an agile way a wide selection of cutting-edge research topics. The topics embraced by this proposal illustrate this program aspect well. These include: GV/m dielectric wakefield acceleration/coherent Cerenkov radiation experiments at FACET (E-201) and the ATF; synergistic laser-excited dielectric accelerator and light source development; plasma wakefield (PWFA) experiments on “Trojan horse” ionization injection (FACET E-210), quasi-nonlinear PWFA at BNL and the production at Neptune high transformer ratio plasma wakes; the inauguration of a new type of RF photoinjector termed “hybrid” at UCLA, and application to PWFA; space-charge dominated beam and cathode/near cathode physics; the study of advanced IFEL systems, for very high energy gain and utilization of novel OAM modes; the physcis of inverse Compton scattering (ICS), with applications to e+ production and γγ colliders; electron diffraction; and advanced beam diagnostics using coherent imaging techniques. These subjects are addressed under the leadership of PBPL director Prof. James Rosenzweig in Task A, and Prof. Pietro Musumeci in Task J, which was initiated following his OHEP Outstanding Junior Investigator award.

  8. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Wesley D. [Univ. of Georgia, Athens, GA (United States). Dept. of Chemistry. Center for Computational Quantum Chemistry; Schaefer, III, Henry F. [Univ. of Georgia, Athens, GA (United States). Dept. of Chemistry. Center for Computational Quantum Chemistry

    2015-11-14

    This is the final report of the theoretical studies of elementary hydrocarbon species and their reactions. Part A has a bibliography of publications supported by DOE from 2010 to 2016 and Part B goes into recent research highlights.

  9. EXPERIMENTAL AND THEORETICAL NMR STUDY OF 4-(1 ...

    African Journals Online (AJOL)

    Preferred Customer

    3 Department of Physics, Arts and Science Faculty, Dumlupınar University, Kütahya, Turkey. 4 Department ... been studied experimentally and theoretically using nuclear magnetic resonance (NMR) spectroscopy. 1H, 13C, ... INTRODUCTION.

  10. Experimental and theoretical study on hollow-cone spray

    Science.gov (United States)

    Chang, Keh-Chin; Wang, Muh-Rong; Wu, Wen-Jing; Hong, Chia-Hong

    1993-02-01

    A theoretical and experimental investigation has been conducted to study the two-phase turbulent structure in an isothermal hollow-cone spray. Mean and fluctuating velocity components, drop number density, as well as drop-size distribution were measured with a nonintrusive diagnostic tool, a two-component phase Doppler particle analyzer. Complete initial conditions required for theoretical calculations were also provided with measurements. Theoretical calculations were made with an Eulerian-Lagrangian formulism. Turbulent dispersion effects were numerically simulated using a Monte Carlo method. Turbulence modulation effects were also taken into account in the modeling. The well-defined experimental data were used to assess the accuracy of the resultant Eulerian-Lagrangian model. Comparisons showed that the theoretical predictions, based upon the Eulerian-Lagrangian model, yielded reasonable agreement with the experimental data. The improvements made by inclusion of the selected turbulence modulation model were insignificant in this work.

  11. Piezoelectricity in quasicrystals: A group-theoretical study

    Indian Academy of Sciences (India)

    K Rama Rao; P Hemagiri Rao; B S K Chaitanya

    2007-03-01

    Group-theoretical methods have been accepted as exact and reliable tools in studying the physical properties of crystals and quasicrystalline materials. By group representation theory, the maximum number of non-vanishing and independent second- order piezoelectric coefficients required by the seven pentagonal and two icosahedral point groups - that describe the quasicrystal symmetry groups in two and three dimensions - is determined. The schemes of non-vanishing and independent second-order piezoelectric tensor components needed by the nine point groups with five-fold rotations are identified and tabulated employing a compact notation. The results of this group-theoretical study are briefly discussed.

  12. Diffusion in liquids a theoretical and experimental study

    CERN Document Server

    Tyrrell, H J V

    1984-01-01

    Diffusion in Liquids: A Theoretical and Experimental Study aims to discuss the principles, applications, and advances in the field of diffusion, thermal diffusion, and thermal conduction in liquid systems. The book covers topics such as the principles of non-equilibrium thermodynamics; diffusion in binary and multicompetent systems; and experimental methods of studying diffusion processes in liquids. Also covered in the book are topics such as the theoretical interpretations of diffusion coefficients; hydrodynamic and kinetic theories; and diffusion in electrolyte systems. The text is recommen

  13. Theoretical and Methodological Perspectives on Designing Video Studies of Interaction

    Directory of Open Access Journals (Sweden)

    Anna-Lena Rostvall

    2005-12-01

    Full Text Available In this article the authors discuss the theoretical basis for the methodological decisions made during the course of a Swedish research project on interaction and learning. The purpose is to discuss how different theories are applied at separate levels of the study. The study is structured on three levels, with separate sets of research questions and theoretical concepts. The levels reflect a close-up description, a systematic analysis, and an interpretation of how teachers and students act and interact. The data consist of 12 hours of video-recorded and transcribed music lessons from high school and college. Through a multidisciplinary theoretical framework, the general understanding of teaching and learning in terms of interaction can be widened. The authors also present a software tool developed to facilitate the processes of transcription and analysis of the video data.

  14. A theoretical model for smoking prevention studies in preteen children.

    Science.gov (United States)

    McGahee, T W; Kemp, V; Tingen, M

    2000-01-01

    The age of the onset of smoking is on a continual decline, with the prime age of tobacco use initiation being 12-14 years. A weakness of the limited research conducted on smoking prevention programs designed for preteen children (ages 10-12) is a well-defined theoretical basis. A theoretical perspective is needed in order to make a meaningful transition from empirical analysis to application of knowledge. Bandura's Social Cognitive Theory (1977, 1986), the Theory of Reasoned Action (Ajzen & Fishbein, 1980), and other literature linking various concepts to smoking behaviors in preteens were used to develop a model that may be useful for smoking prevention studies in preteen children.

  15. Theoretical and Experimental Study of Time Reversal in Cubic Crystals

    Institute of Scientific and Technical Information of China (English)

    陆铭慧; 张碧星; 汪承灏

    2004-01-01

    The self-adaptive focusing of the time reversal in anisotropic media is studied theoretically and experimentally. It is conducted for the compressional wave field in the cubic crystal silicon. The experimental result is in agreement with our theoretical analysis. The focusing gain and the displacement distributions of the time reversal field are analysed in detail. It is shown that the waves from different elements of the transducer array arrive at the original place of the source simultaneously after the time reversal operation. The waveform distortions caused by the velocity anisotropy can automatically be compensated for after the time reversal processing.

  16. Theoretical studies on kinetics of singlet oxygen in nonthermal plasma

    Science.gov (United States)

    Frolov, Mikhail P.; Ionin, Andrei A.; Kotkov, Andrei A.; Kochetov, Igor V.; Napartovich, Anatolii P.; Podmarkov, Yurii P.; Seleznev, Leonid V.; Sinitsyn, Dmitrii V.; Vagin, Nikolai P.; Yuryshev, Nikolay N.

    2004-09-01

    An idea to replace singlet delta oxygen (SDO) generator working with wet chemistry by electric discharge generator has got much attention last years. Different kinds of discharge were examined for this purpose, but without a great success. The existing theoretical models are not validated by well-characterized experimental data. To describe complicated kinetics in gas discharge with oxygen one needs to know in detail processes involving numerous electronic excited oxygen molecules and atoms. To gain new knowledge about these processes experimental studies were made on electric discharge properties in gas mixture flow with independent control of inlet SDO concentration. The theoretical model extended to include minor additives like oxygen atoms, water molecules, ozone was developed. Comparison with careful experimental measurements of electric characteristics along with gas composition allows us to verify the model and make theoretical predictions more reliable. Results of numerical simulations using this model for an electron-beam sustained discharge are reported and compared with the experimental data.

  17. Theoretical study of n-alkane adsorption on metal surfaces

    DEFF Research Database (Denmark)

    Morikawa, Yoshitada; Ishii, Hisao; Seki, Kazuhiko

    2004-01-01

    The interaction between n-alkane and metal surfaces has been studied by means of density-functional theoretical calculations within a generalized gradient approximation (GGA). We demonstrate that although the GGA cannot reproduce the physisorption energy well, our calculations can reproduce the e...

  18. Dimerization of Indanedioneketene to Spiro-oextanone: A Theoretical Study

    Energy Technology Data Exchange (ETDEWEB)

    Bakalbassis, Evangelos G; Malamidou-Xenikaki, Elizabeth; Spyroudis, Spyros; Xantheas, Sotiris S

    2010-08-20

    Indanedioneketene, a compound resulting from the thermal degradation of the phenyliodonium ylide of lawsone, dimerises quantitatively to a spiro-oxetanone derivative, a key compound for further transformations. A theoretical DFT study of this unusual for α-oxoketenes [2+2] cyclization reaction both in the gas phase and in dichloromethane solution, provides support for a) a single-step, transitionstate (involving a four-membered cyclic ring) charge controlled, concerted mechanism, and b) a [4+2] cyclization reaction, not observed but studied theoretically in this study. A parallel study of an open chain α,α'-dioxoketene dimerization explains the difference in the stability and reactivity observed experimentally between the cyclic and open chain products.

  19. Theoretical Studies on Photoionization Cross Sections of Solid Gold

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-Guang; SUN Wei-Guo; CHENG Yah-Song

    2005-01-01

    Accurate expression for photoabsorption (photoionization) cross sections of high density system proposed recently is used to study the photoionization of solid gold. The results show that the present theoretical photoionization cross sections have good agreement both in structure and in magnitude with the experimental results of gold crystal.The studies also indicate that both the real part ε'and the imaginary part ε" of the complex dielectric constant ε,and the dielectric influence function of a nonideal system have rich structures in low energy side with a range about 50 eV, and suggest that the influence of particle interactions of surrounding particles with the photoionized particle on the photoionization cross sections can be easily investigated using the dielectric influence function. The electron overlap effects are suggested to be implemented in the future studies to improve the accuracy of theoretical photoionization cross sections of a solid system.

  20. Experimental and theoretical studies of interactions between Si{7} clusters

    Science.gov (United States)

    Gynz-Rekowski, F. V.; Quester, W.; Dietsche, R.; Lim, D. C.; Bertram, N.; Fischer, T.; Ganteför, G.; Schach, M.; Nielaba, P.; Kim, Y. D.

    2007-12-01

    The possibility of using magic Si7 clusters to form a cluster material was studied experimentally and theoretically. In experiments Si7 clusters were deposited on carbon surfaces, and the electronic structure and chemical properties of the deposited clusters were measured using X-ray photoelectron spectroscopy (XPS). A non bulk-like electronic structure of Si7 was found in the Si 2p core level spectra. Si7 is suggested to form a more stable structure than the non-magic Si8 cluster and Si atoms upon deposition on carbon surfaces. Theoretically it was possible to study the interaction between the clusters without the effect of a surface. Density functional theory (DFT) calculations of potential curves of two free Si7 clusters approaching each other in various orientations hint at the formation of cluster materials rather than the fusion of clusters forming bulk-like structures.

  1. Theoretical and material studies on thin-film electroluminescent devices

    Science.gov (United States)

    Summers, C. J.; Goldman, J. A.; Brennan, K.

    1988-01-01

    During this report period work was performed on the modeling of High Field Electronic Transport in Bulk ZnS and ZnSe, and also on the surface cleaning of Si for MBE growth. Some MBE growth runs have also been performed in the Varian GEN II System. A brief outline of the experimental work is given. A complete summary will be done at the end of the next reporting period at the completion of the investigation. The theoretical studies are included.

  2. Experimental and theoretical study on the electrospinning nanoporous fibers process

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jianghui; Si, Na [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou (China); Xu, Lan, E-mail: lanxu@suda.edu.cn [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou (China); Nantong Textile Institute of Soochow University, Nantong (China); Tang, Xiaopeng; Song, Yanhua; Sun, Zhaoyang [National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou (China)

    2016-02-15

    Porous materials can be prepared by sol–gel method, hydrothermal synthesis method, electrospinning and other methods. In this paper, electrospun porous nanofibers were prepared by adjusting electrospinning parameters. And the properties of obtained porous nanofiber mats were investigated. Theoretical analysis and experiment research were carried out to research mechanical mechanism of electrospun porous nanofibers, and could be used to optimize and control the porous structure. The theoretical analysis results were further verified according to the experimental data. In addition, Bernoulli equation was used to study the electrospinning “splaying” process. We found the ratio of pore width to pore length was varied along with the variation of the internal pressure of the jet, and the internal pressure of the jet increases with the velocity of the charged jet decreases. - Highlights: • Mechanical mechanism of electrospun porous nanofibers process was studied. • A simplifying gas–liquid two-phase flow model was established. • Bernoulli equation was used to study the electrospinning “splaying” process. • The theoretical results were in good agreement with the experimental data. • The electrospinning parameters affected the surface morphology of charged jet.

  3. Sociomateriality: a theoretical framework for studying distributed medical education.

    Science.gov (United States)

    MacLeod, Anna; Kits, Olga; Whelan, Emma; Fournier, Cathy; Wilson, Keith; Power, Gregory; Mann, Karen; Tummons, Jonathan; Brown, Peggy Alexiadis

    2015-11-01

    Distributed medical education (DME) is a type of distance learning in which students participate in medical education from diverse geographic locations using Web conferencing, videoconferencing, e-learning, and similar tools. DME is becoming increasingly widespread in North America and around the world.Although relatively new to medical education, distance learning has a long history in the broader field of education and a related body of literature that speaks to the importance of engaging in rigorous and theoretically informed studies of distance learning. The existing DME literature is helpful, but it has been largely descriptive and lacks a critical "lens"-that is, a theoretical perspective from which to rigorously conceptualize and interrogate DME's social (relationships, people) and material (technologies, tools) aspects.The authors describe DME and theories about distance learning and show that such theories focus on social, pedagogical, and cognitive considerations without adequately taking into account material factors. They address this gap by proposing sociomateriality as a theoretical framework allowing researchers and educators to study DME and (1) understand and consider previously obscured actors, infrastructure, and other factors that, on the surface, seem unrelated and even unimportant; (2) see clearly how the social and material components of learning are intertwined in fluid, messy, and often uncertain ways; and (3) perhaps think differently, even in ways that disrupt traditional approaches, as they explore DME. The authors conclude that DME brings with it substantial investments of social and material resources, and therefore needs careful study, using approaches that embrace its complexity.

  4. Sustainable Nanotechnology: Opportunities and Challenges for Theoretical/Computational Studies.

    Science.gov (United States)

    Cui, Qiang; Hernandez, Rigoberto; Mason, Sara E; Frauenheim, Thomas; Pedersen, Joel A; Geiger, Franz

    2016-08-04

    For assistance in the design of the next generation of nanomaterials that are functional and have minimal health and safety concerns, it is imperative to establish causality, rather than correlations, in how properties of nanomaterials determine biological and environmental outcomes. Due to the vast design space available and the complexity of nano/bio interfaces, theoretical and computational studies are expected to play a major role in this context. In this minireview, we highlight opportunities and pressing challenges for theoretical and computational chemistry approaches to explore the relevant physicochemical processes that span broad length and time scales. We focus discussions on a bottom-up framework that relies on the determination of correct intermolecular forces, accurate molecular dynamics, and coarse-graining procedures to systematically bridge the scales, although top-down approaches are also effective at providing insights for many problems such as the effects of nanoparticles on biological membranes.

  5. Theoretical and Experimental Study of Plasmonic Polymer Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Adam, Jost; Madsen, Morten

    The organic bulk hetero-junction solar cell has remarkable advantages such as low cost, mechanical flexibility and simple process techniques. Recently, low-band gap photoactive materials have obtained a significant attention due to their potential to absorb a wider range of the solar spectrum...... other approaches, be achieved by using nano- or micro-structures that trap light at specific wavelengths [2], or by using the localized surface plasmon resonance effect of metal nanoparticles in the devices. In this work, we theoretically studied planar polymer solar cell based on finite-difference time......-domain approach. Also, we have optimized reference polymer solar cells with PTB7:PC70BM as active layer, using two different electron transport layers. The aim is to integrate Gold nanoparticles in the reference devices, and support the integration theoretically....

  6. Statistical and theoretical studies of flares from Sagittarius A*

    Science.gov (United States)

    Li, Ya-Ping; Yuan, Qiang; Wang, Q. Daniel; Chen, P. F.; Neilsen, Joseph; Fang, Taotao; Zhang, Shuo; Dexter, Jason

    2017-01-01

    Multi-wavelength flares have routinely been observed from the supermassive black hole, Sagittarius A* (Sgr A*), at our Galactic center. The nature of these flares remains largely unclear, despite many theoretical models. We study the statistical properties of the Sgr A* X-ray flares and find that they are consistent with the theoretical prediction of the self-organized criticality system with the spatial dimension S = 3. We suggest that the X-ray flares represent plasmoid ejections driven by magnetic reconnection (similar to solar flares) in the accretion flow onto the black hole. Motivated by the statistical results, we further develop a time-dependent magnetohydrodynamic (MHD) model for the multi-band flares from Sgr A* by analogy with models of solar flares/coronal mass ejections (CMEs). We calculate the X-ray, infrared flare light curves, and the spectra, and find that our model can explain the main features of the flares.

  7. THEORETICAL STUDY OF THREE-DIMENSIONAL NUMERICAL MANIFOLD METHOD

    Institute of Scientific and Technical Information of China (English)

    LUO Shao-ming; ZHANG Xiang-wei; L(U) Wen-ge; JIANG Dong-ru

    2005-01-01

    The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Hammer integral method of three-dimensional numerical manifold method are put forward. The stiffness matrix of three-dimensional manifold element is derived and the dissection rules are given. The theoretical system and the numerical realizing method of three-dimensional numerical manifold method are systematically studied. As an example, the cantilever with load on the end is calculated, and the results show that the precision and efficiency are agreeable.

  8. THEORETICAL AND EXPERIMENTAL STUDY OF STRUCTURES SUBJECTED TO EARTHQUAKES

    Energy Technology Data Exchange (ETDEWEB)

    Soubirou, A.

    1967-12-31

    The object of the study was the investigation of the behaviour of structures subject to earthquakes. After .describing and analysing seismic movements, useful concepts for earthquake-proofing structures are lintroduced. Then, the dynamic behaviour of systems with n degrees of freedom was studied in order to evolve the theoretical computation of seismic behaviour, a typical application being reticulated structures. The next stage was showing the computational procedure for seismic spectra and the natural frequencies of buildings, an attempt being made to define earthquake-proofing criteria for a special type of reinforced-concrete construction. . The last matter dealt with is elastoplastic behaviour of structures, a study of increasingly growing importance.

  9. Theoretical study for solar air pretreatment collector/regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Peng Donggen; Zhang Xiaosong; Yin Yonggao [School of Energy and Environment, Southeast Univ., Nanjing (China)

    2008-07-01

    A new liquid regeneration equipment - solar air pretreatment collector/regenerator for liquid desiccant cooling system is put forward in this paper, which is preferable to solution regeneration in hot and moist climate in South China. The equipment can achieve liquid regeneration in lower temperature. When the solution and the air are in ''match'' state in collector/ regenerator, a match air to salt mass ratio ASMR* is found by theoretical study in which there is the largest theoretical storage capacity SC{sub max}. After two new concepts of the effective solution proportion (EPS) and the effective storage capacity (ESC) are defined, it is found by theoretical calculation that when ESP drops from 100% to 67%, ESC raises lowly, not drops and liquid outlet concentration C{sub str} {sub sol} increases from 40% to 49% in which its increment totals to 90%. All these data explain fully that air pretreatment liquid regeneration equipment enables to improve the performance of liquid desiccant cooling system. (orig.)

  10. Theoretical study of fractal growth and stability on surface

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2009-01-01

    We perform a theoretical study of the fractal growing process on surface by using the deposition, diffusion, aggregation method. We present a detailed analysis of the post-growth processes occurring in a nanofractal on surface. For this study we developed a method which describes the internal...... dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate that these kinetic processes are responsible for the formation of the final shape of the islands on surface after the post-growth relaxation....

  11. Complex coacervation: A field theoretic simulation study of polyelectrolyte complexation

    Science.gov (United States)

    Lee, Jonghoon; Popov, Yuri O.; Fredrickson, Glenn H.

    2008-06-01

    Using the complex Langevin sampling strategy, field theoretic simulations are performed to study the equilibrium phase behavior and structure of symmetric polycation-polyanion mixtures without salt in good solvents. Static structure factors for the segment density and charge density are calculated and used to study the role of fluctuations in the electrostatic and chemical potential fields beyond the random phase approximation. We specifically focus on the role of charge density and molecular weight on the structure and complexation behavior of polycation-polyanion solutions. A demixing phase transition to form a ``complex coacervate'' is observed in strongly charged systems, and the corresponding spinodal and binodal boundaries of the phase diagram are investigated.

  12. Theoretical study of fractal growth and stability on surface

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2009-01-01

    We perform a theoretical study of the fractal growing process on surface by using the deposition, diffusion, aggregation method. We present a detailed analysis of the post-growth processes occurring in a nanofractal on surface. For this study we developed a method which describes the internal...... dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate that these kinetic processes are responsible for the formation of the final shape of the islands on surface after the post-growth relaxation....

  13. Theoretical studies of ionic conductivity of crosslinked chitosan membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Ernesto Lopez [Programa de Ingenieria Molecular y Nuevos Materiales, Universidad Autonoma de la Ciudad de Mexico, Fray Servando Teresa de Mier 92, 1er. Piso, Col Centro, Mexico D.F. CP 06080 (Mexico); Oviedo-Roa, R.; Contreras-Perez, Gustavo; Martinez-Magadan, Jose Manuel [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, CP 07730 Mexico D.F. (Mexico); Castillo-Alvarado, F.L. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Edificio 9 de la UPALM, Colonia Lindavista, Mexico D.F. CP 07738 (Mexico)

    2010-11-15

    Ionic conductivity of crosslinked chitosan membranes was studied using techniques of molecular modeling and simulation. The COMPASS force field was used. The simulation allows the description of the mechanism of ionic conductivity along the polymer matrix. The theoretical results obtained are compared with experimental results for chitosan membranes. The analysis suggests that the conduction mechanism is portrayed by the overlapping large Polaron tunneling model. In addition, when the chitosan membrane was crosslinked with an appropriate degree of crosslinking its ionic conductivity, at room temperature, was increased by about one order of magnitude. The chitosan membranes can be used as electrolytes in solid state batteries, electric double layer capacitors and fuel cells. (author)

  14. Theoretical Studies of Substitutionally Doped Single-Walled Nanotubes

    Directory of Open Access Journals (Sweden)

    Charles See Yeung

    2010-01-01

    Full Text Available The rich chemistry of single-walled carbon nanotubes (SWCNTs is enhanced by substitutional doping, a process in which a single atom of the nanotube sidewall is replaced by a heteroatom. These so-called heteroatom-substituted SWCNTs (HSWCNTs exhibit unique chemical and physical properties not observed in their corresponding undoped congeners. Herein, we present theoretical studies of both main group element and transition metal-doped HSWCNTs. Within density functional theory (DFT, we discuss mechanistic details of their proposed synthesis from vacancy-defected SWCNTs and describe their geometric and electronic properties. Additionally, we propose applications for these nanomaterials in nanosensing, nanoelectronics, and nanocatalysis.

  15. Theoretical Study of 1,8-Diaminonaphthalene Polymerization

    Science.gov (United States)

    Nateghi, Mohammad R.; Kalantari, F.

    2007-12-01

    The polymerization of 1,8-diaminonaphthalene (1,8-DAN) was studied by a theoretical approach based on Hartree-Fock calculations. Investigation of relative stability of most possible dimers, trimers and tetramers yields very useful data concerning the regioselectivity of the coupling reaction as well as the final structures of the polymeric chains. The mechanism is more likely to occur via a radical-radical pathway and leads to mixture of compounds through ortho-C-C and para-C-N linkages.

  16. Theoretical Study of the Diastereofacial Isomers of Aldrin and Dieldrin

    Directory of Open Access Journals (Sweden)

    Zoran Zdravkovski

    2006-02-01

    Full Text Available The Diels-Alder reaction of hexachlorocyclopentadiene with norbornadiene givesaldrin but theoretically three other diastereofacial isomers are possible. On oxidation theseisomers can generate eight adducts one of which is known as dieldrin. All these, as well asthe corresponding reactions with hexafluorocyclopenadiene were studied by semiempirical(AM1 and PM3 and hybrid density functional (B3LYP methods. Besides the energy levels,the transition states were calculated for the reactions leading to the diastereofacial isomers ofaldrin, which indicate that aldrin is the favored product of the reaction both fromthermodynamic and kinetic point of view.

  17. Experimental and Theoretical Study on Pyrolysis of Isopsoralen

    Institute of Scientific and Technical Information of China (English)

    Jiu-zhong Yang; Feng Zhang; Liang-yuan Jia; Li-dong Zhang; Fei Qi; Hai-yan Fan; Ji-bao Cai

    2012-01-01

    The pyrolysis of isopsoralen was studied by synchrotron vacuum ultraviolet photoionization mass spectrometry at low pressure.The pyrolysis products were detected at different photon energies,the ratios of products to precursor were measured at various pyrolysis temperatures.The experimental results demonstrate that the main pyrolysis products are primary CO and sequential CO elimination products (C10H6O2 and C9H6O).The decomposition channels of isopsoralen were also studied by the density functional theory,then rate constants for competing pathways were calculated by the transition state theory.The dominant decomposition channels of isopsoralen and the molecular structures for corresponding products were identified bv combined experimental and theoretical studies.

  18. THEORETICAL ANALYSIS STUDY OF FORMATION OF FUTURE LEGAL LAWYERS

    Directory of Open Access Journals (Sweden)

    Eugene Stepanovich Shevlakov

    2015-09-01

    Full Text Available The article deals with topical issues of formation of legal consciousness of future lawyers in high school. Obtained kinds of legal consciousness of future lawyers, determined its structure. Dedicated components of justice are mutually reinforcing, and provide an opportunity for further development of the personality of the future specialist, their personal growth.The purpose: to carry out theoretical analysis of the problem of formation of legal consciousness of future lawyers.The novelty is based. On the analysis of theoretical appro-aches of pedagogy, psychology, law, the notion of «lawfulness of the future of the law student», which is regarded as a form of social consciousness, which is a set of legal views and feelings, expressing the attitude to the law and legal phenomena that have regulatory in character and which includes know-ledge of legal phenomena and their evaluation from the point of view of fairness and justice, formed in the process of studying in the University.Results: this article analyzes different approaches to understanding the content and essence of the concept of legal consciousness of the legal profession. Define the types and structure of legal consciousness of future lawyers.

  19. Phototransformations of quinaldic acid: Theoretical and experimental study

    Science.gov (United States)

    Shterev, Ivan G.; Delchev, Vassil B.

    2017-01-01

    A combined theoretical and experimental study was performed in order to clarify the mechanisms of phototransformations of a quinaldic acid solution in acetonitrile when exposed to UV radiation. The theoretical calculations were performed at the BLYP/aug-cc-pVDZ level. It was established that the most stable isomer of the compound in the solution is the one with an intramolecular H-bond between the H atom from the carboxylic group and the N atom from the quinoline ring. The major photoprocess is the breaking of the intramolecular H-bond, i.e. the rotation around the Csbnd OH bond of the carboxylic group through the specroscopically active 1ππ* excited state. Rietveld method was applied to refine the crystal structure of the compound. The refinement lead to the following unit cell parameters: a = 9.76754 Å, b = 6.02724 Å, c = 28.11714 Å, β = 90.495°; and a space Group of P 2/c (Z = 4). The cell volume is 1655.23 Å3.

  20. Experimental and theoretical study of Rayleigh-Lamb wave propagation

    Science.gov (United States)

    Rogers, Wayne P.; Datta, Subhendu K.; Ju, T. H.

    1990-01-01

    Many space structures, such as the Space Station Freedom, contain critical thin-walled components. The structural integrity of thin-walled plates and shells can be monitored effectively using acoustic emission and ultrasonic testing in the Rayleigh-Lamb wave frequency range. A new PVDF piezoelectric sensor has been developed that is well suited to remote, inservice nondestructive evaluation of space structures. In the present study the new sensor was used to investigate Rayleigh-Lamb wave propagation in a plate. The experimental apparatus consisted of a glass plate (2.3 m x 25.4 mm x 5.6 mm) with PVDF sensor (3 mm diam.) mounted at various positions along its length. A steel ball impact served as a simulated acoustic emission source, producing surface waves, shear waves and longitudinal waves with dominant frequencies between 1 kHz and 200 kHz. The experimental time domain wave-forms were compared with theoretical predictions of the wave propagation in the plate. The model uses an analytical solution for the Green's function and the measured response at a single position to predict response at any other position in the plate. Close agreement was found between the experimental and theoretical results.

  1. Theoretical study of ionization potentials of N-heterocyclic compounds

    Directory of Open Access Journals (Sweden)

    Liudmyla K. Sviatenko

    2014-12-01

    Full Text Available The ability to predict the redox properties is an important tool for study electron transfer processes occurring in the gas-phase (atmospheric chemistry or in the condensed phase (electrochemistry, biochemistry. MPWB1K/6-31+G(d and MPWB1K/tzvp theoretical models were found to provide reasonable accuracy of the prediction of ionization potentials for mono- and polycyclic azacompounds. The root mean square errors of the methods are 0.19 and 0.20, respectively. While the mean absolute deviation for both methods is the same and equals to 0.15 eV. These theoretical models were applied to predict ionization potentials for compounds not evaluated experimentally. Influence of substitutes and a number of nitrogen atoms on value of ionization potential was analyzed. Methyl-, and phenyl- groups, and fused benzo cycle decrease ionization potentials of N-heterocycles. Increase of amount of nitrogen atoms in five-membered cycles leads to significant enlargement of ionization potentials.

  2. Theoretical Study on Sulfur Dioxide Absorption with Citrate Solution

    Institute of Scientific and Technical Information of China (English)

    薛娟琴; 洪涛; 王召启; 李林波

    2006-01-01

    The citrate absorption of SO2 is currently one of the most successful and economic methods to harness sulfur dioxide pollution.In order to theoretically elucidate the mechanism of SO2 absorption by citrate solution and provide theoretical instruction for experiments and industrial process, the theory of multi-buffer solution, combined with computer numerical calculation methods, was applied to study the distribution parameters of the components of the citrate solution in the process of SO2 absorption and the following results were obtained: (1) HCi2- and H2Ci- in the citrate solution played the dominant role in the absorption and desorption processes; (2) Through the calculation for the buffer capacity of citrate solution, it was found that the pH of the absorption and desorption solution should be in the range of 2~8, while at pH=4.5 the buffer capacity reached its maximum. Some valuable parameters were obtained, which are instructive to the ensuing experiments and industrial design.

  3. Frequencies Shift in Relativistic Binary System (Theoretical Study)

    Science.gov (United States)

    El Fady Morcos, Abd

    2016-07-01

    A generalized formula for Kermack, McCrea and Whittaker (KMW), has been derived by the author and et al., to study the limb effect of massive rapidly rotating stars. In this work a modified Curzon exact solution for Einstein's field equations has been used to study the variation in the frequencies of signals' carriers from a relativistic binary system. The primary star is assumed to be massive with respect to the secondary one. The center of mass is considered to be coincident to the center of rotating polar coordinate system. The rotation of the secondary star around the primary star and Earth's observer rotates with the Earth are considered in our calculation. A general theoretical formula for the variation in the frequencies of the signals' carriers from a binary system is obtained

  4. A Combined Theoretical and Experimental Study for Silver Electroplating

    Science.gov (United States)

    Liu, Anmin; Ren, Xuefeng; An, Maozhong; Zhang, Jinqiu; Yang, Peixia; Wang, Bo; Zhu, Yongming; Wang, Chong

    2014-01-01

    A novel method combined theoretical and experimental study for environmental friendly silver electroplating was introduced. Quantum chemical calculations and molecular dynamic (MD) simulations were employed for predicting the behaviour and function of the complexing agents. Electronic properties, orbital information, and single point energies of the 5,5-dimethylhydantoin (DMH), nicotinic acid (NA), as well as their silver(I)-complexes were provided by quantum chemical calculations based on density functional theory (DFT). Adsorption behaviors of the agents on copper and silver surfaces were investigated using MD simulations. Basing on the data of quantum chemical calculations and MD simulations, we believed that DMH and NA could be the promising complexing agents for silver electroplating. The experimental results, including of electrochemical measurement and silver electroplating, further confirmed the above prediction. This efficient and versatile method thus opens a new window to study or design complexing agents for generalized metal electroplating and will vigorously promote the level of this research region.

  5. Theoretical study of the thermal decomposition of dimethyl disulfide.

    Science.gov (United States)

    Vandeputte, Aäron G; Reyniers, Marie-Françoise; Marin, Guy B

    2010-10-07

    Despite its use in a wide variety of industrially important thermochemical processes, little is known about the thermal decomposition mechanism of dimethyl disulfide (DMDS). To obtain more insight, the radical decomposition mechanism of DMDS is studied theoretically and a kinetic model is developed accounting for the formation of all the decomposition products observed in the experimental studies available in literature. Thermochemical data and rate coefficients are obtained using the high-level CBS-QB3 composite method. Among five methods tested (BMK/6-311G(2d,d,p), MPW1PW91/6-311G(2d,d,p), G3, G3B3, and CBS-QB3), the CBS-QB3 method was found to reproduce most accurately the experimental standard enthalpies of formation for a set of 17 small organosulfur compounds and the bond dissociation energies for a set of 10 sulfur bonds. Enthalpies of formation were predicted within 4 kJ mol(-1) while the mean absolute deviation on the bond dissociation enthalpies amounts to 7 kJ mol(-1). From the theoretical study, a new reaction path is identified for the formation of carbon disulfide via dithiirane (CH(2)S(2)). A reaction mechanism was constructed containing 36 reactions among 25 species accounting for the formation of all the decomposition products reported in literature. High-pressure limit rate coefficients for the 36 reactions in the reaction mechanism are presented. The kinetic model is able to grasp the experimental observations. With the recombination of thiyl radicals treated as being in the low-pressure limit, the experimentally reported first-order rate coefficients for the decomposition of DMDS are reproduced within 1 order of magnitude, while the observed product selectivities of most compounds are reproduced satisfactory. Simulations indicate that at high conversions most of the carbon disulfide forms according to the newly identified reaction path involving the formation of dithiirane.

  6. Experimental and theoretical study of metal combustion in oxygen flows

    CERN Document Server

    El-Rabii, Hazem; Muller, Maryse

    2016-01-01

    The effects of oxygen flow speed and pressure on the iron and mild steel combustion are investigated experimentally and theoretically. The studied specimens are vertical cylindrical rods subjected to an axial oxygen flow and ignited at the upper end by laser irradiation. Three main stages of the combustion process have been identified experimentally: (1) Induction period, during which the rod is heated until an intensive metal oxidation begins at its upper end; (2) Static combustion, during which a laminar liquid "cap" slowly grows on the upper rod end; and, after the liquid cap detachment from the sample, (3) Dynamic combustion, which is characterized by a rapid metal consumption and turbulent liquid motions. An analytical description of these stages is given. In particular, a model of the dynamic combustion is constructed based on the turbulent oxygen transport through the liquid metal-oxide flow. This model yields a simple expression for the fraction of metal burned in the process, and allows one to calcul...

  7. Theoretical study on alkaline hydrolysis of trinitrotoluene: later steps

    Directory of Open Access Journals (Sweden)

    Liudmyla K. Sviatenko

    2015-10-01

    Full Text Available Alkaline hydrolysis is an effective method to destroy such the pollutant as 2,4,6-trinitrotoluene (TNT in solution and in well-mixed soil. The mechanism of hydrolytic transformation of polynegative complex, which is one of the products of early stages of TNT hydrolysis, was theoretically investigated at the SMD(Pauling/M06-2X/6-31+G(d,p level under alkali condition. The studied process consists of more than twenty steps and includes a six-membered cycle cleavage and sequenced [1,3]-hydrogen migration and C-C bond rupture. The highest energy barrier is observed for interaction of nitromethanide with hydroxide. The most exothermic steps are C–C bonds breaking. As a result final products such as formate, acetate, ammonium, and nitrogen are formed.

  8. Theoretical study of disorder induced magnetoresistance in graphene

    Science.gov (United States)

    Adam, Shaffique; Ping, Jinglei; Yudhistira, Indra; Ramakrishnan, Navneeth; Cho, Sungjae; Fuhrer, Michael S.

    2014-03-01

    In this work we predict theoretically that carrier density inhomogeneity provides a new mechanism for classical magnetoresistance. For concreteness, we study the case of graphene where density inhomogeneity and carrier scattering is dominated by charged impurities, although the mechanism itself is quite general and applies to other systems in which there are large spatial fluctuations of the carrier density. Calculations using an effective medium approximation show that low-field magnetoresistance becomes a universal function of the ratio between the average carrier density and the fluctuations of the carrier density, and scales as a power-law when this ratio is large. Our finding is in excellent agreement with recent experimental results. This work is supported by the Singapore National Research Foundation NRF-NRFF2012-01.

  9. Field-Theoretic Studies of Nanostructured Triblock Polyelectrolyte Gels

    Science.gov (United States)

    Audus, Debra; Fredrickson, Glenn

    2012-02-01

    Recently, experimentalists have developed nanostructured, reversible gels formed from triblock polyelectrolytes (Hunt et al. 2011, Lemmers et al. 2010, 2011). These gels have fascinating and tunable properties that reflect a heterogeneous morphology with domains on the order of tens of nanometers. The complex coacervate domains, aggregated oppositely charged end-blocks, are embedded in a continuous aqueous matrix and are bridged by uncharged, hydrophilic polymer mid-blocks. We report on simulation studies that employ statistical field theory models of triblock polyelectrolytes, and we explore the equilibrium self-assembly of these remarkable systems. As the charge complexation responsible for the formation of coacervate domains is driven by electrostatic correlations, we have found it necessary to pursue full ``field-theoretic simulations'' of the models, as opposed to the familiar self-consistent field theory approach. Our investigations have focused on morphological trends with mid- and end-block lengths, polymer concentration, salt concentration and charge density.

  10. Theoretical Study on Reaction Mechanism of Aluminum-Water System

    Institute of Scientific and Technical Information of China (English)

    Yun-lan Sun; Yan Tian; Shu-fen Li

    2008-01-01

    A theoretical study on the reaction of aluminum with water in the gas phase was performed using the hybrid density functional B3LYP and QCISD(T) methods with the 6-311+G(d,p) and the 6-311++G(d,p) basis sets. The results show that there are three possible reaction pathways that involve four isomers, seven transition structures, and two possible products for the reaction of aluminum with water. The two most favorable reaction pathways were found, whose intermediates and products agreed quite well with experimental results. The enthalpy and Gibbs free energy change of the reaction between AI and H2O at 298 and 2000 K were calculated. Some results are also in good agreement with the previous calculations or experimental results.

  11. Theoretical study of pulsed microwave discharge in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bonaventura, Z; Trunec, D; Mesko, M; Vasina, P; Kudrle, V [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2005-11-15

    A pulsed microwave discharge burning in pure nitrogen was studied theoretically. The time-dependent Boltzmann equation for electrons was solved numerically in multi-term approximation. It was assumed that the discharge was ignited by a 100 kW microwave (f = 9.4 GHz) pulses with 2.5 {mu}s duration; the repetition frequency was 400 Hz. It was shown that the electron distribution function approaches very quickly the steady state distribution function after a change of the amplitude of electric field intensity. The steady state time averaged values of electron mean energy, diffusion and rate coefficients and drift velocity were calculated for different values of electric field intensity. With these values the actual values of electric field intensity from a previous experiment were determined from the measured time dependence of electron concentration. The calculated values were compared with previous experimental results.

  12. Theoretical study of irradiation effects in close binaries

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao M.

    2009-01-01

    Full Text Available The effect of irradiation is studied in a close binary system assuming that the secondary component is a point source, moving in a circular orbit. The irradiation effects are calculated on the atmosphere of the primary component in a 3-dimensional Cartesian coordinate geometry. In treating the reflection effect theoretically, the total radiation (ST is obtained as the sum of the radiation of 1 the effect of irradiation on the primary component which is calculated by using one dimensional rod model (Sr and 2 the self radiation of the primary component which is calculated by using the solution of radiative transfer equation in spherical symmetry (Ss. The radiation field is estimated along the line of sight of the observer at infinity. It is shown how the radiation field changes depending on the position of the secondary component.

  13. Theoretical Study of Irradiation Effects in Close Binaries

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao, M.

    2009-06-01

    Full Text Available The effect of irradiation is studied in a close binary systemassuming that the secondary component is a point source, moving in a circularorbit. The irradiation effects are calculatedon the atmosphere of the primary component in a 3-dimensional Cartesiancoordinate geometry. In treating the reflection effect theoretically, the totalradiation $(S_mathrm{T}$ is obtained as the sum of the radiation of 1 the effect ofirradiation on the primary component which is calculated by using onedimensional rod model $(S_mathrm{r}$ and 2 the self radiation of the primarycomponent which is calculated by using the solution of radiative transferequation in spherical symmetry $(S_mathrm{s}$. The radiation field is estimated alongthe line of sight of the observer at infinity. It is shown how the radiationfield changes depending on the position of the secondary component.

  14. Electrochemistry of chlorogenic acid: experimental and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Namazian, Mansoor [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)]. E-mail: namazian@yazduni.ac.ir; Zare, Hamid R. [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2005-08-10

    Cyclic voltammetry, chronoamperometry and rotating disk electrode voltammetry as well as quantum chemical methods, are used for electrochemical study of chlorogenic acid, as an important biological molecule. The standard formal potential, diffusion coefficient, and heterogeneous electron transfer rate constant of chlorogenic acid in aqueous solution are investigated. Acidic dissociation constant of chlorogenic acid is also obtained. Quantum mechanical calculations on oxidation of chlorogenic acid in aqueous solution, using density functional theory are presented. The change of Gibbs free energy and entropy of oxidation of chlorogenic acid are calculated using thermochemistry calculations. The calculations in aqueous solution are carried out with the use of polarizable continuum solvation method. Theoretical standard electrode potential of chlorogenic acid is achieved to be 0.580 V versus standard calomel electrode (SCE) which is in agreement with the experimental value of 0.617 V obtained experimentally in this work. The difference is consistent with the values we previously reported for other quinone derivatives.

  15. Theoretical studies on Santilli's intermediate nuclear fusions without radiations

    Science.gov (United States)

    Cai, Wei

    2012-09-01

    Experiments of intermediate controlled nuclear fusion are strongly supported by theoretical study. First, current investigation based on quantum mechanics has proved that under super-strong magnetic field, which can be produced by a sudden large current of arc, the wave function of electron cloud changes from a spherical shape to a toroidal shape, which explores nuclear of atom. Second, hadronic mechanics shows that when a trigger, for example, a sudden change of arc, pushes two explored nucleus into a distance of 10-13 cm, a non-unitary, non-linear and nonpotential interaction, introduced by Santilli, leads two nucleus strongly attract each other, while the effective mass of nucleus being renormalized and becomes larger, which leads to a new view of structure of nucleus and results to new types of nuclear fusion.

  16. Theoretical and Numerical Study of Nonlinear Phononic Crystals

    Science.gov (United States)

    Guerder, Pierre-Yves

    This work is dedicated to the theoretical and numerical study of nonlinear phononic crystals. The studied nonlinearities are those due to the second (quadratic) and third (cubic) order elastic constants of the materials that constitute the crystals. Nonlinear effects are studied by the means of finite element methods, used to simulate the propagation of an elastic wave through the crystals. A first research project concerns the study of a bone structure, namely the dispersion of elastic waves in a structure composed of collagen and hydroxy apatite alternate constituent layers. Simulations showed that it exists a strong link between bones hydration and their ability to dissipate the energy. The second study relates to an elastic resonator. A structure composed of steel inclusions in a silica matrix shows a switch behavior when the cubic nonlinearities of steel are taken into account. This strong nonlinear effect appears when the amplitude of the incident wave reaches a threshold. A full analytical model is provided. The last study demonstrates the design of composite materials with both strong cubic nonlinearities and weak quadratic nonlinearities. The derivation of the mixing laws of the elastic parameters of a nonlinear material inside a linear one is performed up to order three. Equations show a strong amplification of the nonlinear parameters of the material for some concentrations. Numerical simulations allow to conclude that the above mentioned resonator can be produced.

  17. Studies of Chinese speakers with dysarthria: informing theoretical models.

    Science.gov (United States)

    Whitehill, Tara L

    2010-01-01

    Most theoretical models of dysarthria have been developed based on research using individuals speaking English or other Indo-European languages. Studies of individuals with dysarthria speaking other languages can allow investigation into the universality of such models, and the interplay between language-specific and language-universal aspects of dysarthria. In this article, studies of Cantonese- and Mandarin-Chinese speakers with dysarthria are reviewed. The studies focused on 2 groups of speakers: those with cerebral palsy and those with Parkinson's disease. Key findings are compared with similar studies of English speakers. Since Chinese is tonal in nature, the impact of dysarthria on lexical tone has received considerable attention in the literature. The relationship between tone [which involves fundamental frequency (F(0)) control at the syllable level] and intonation (involving F(0) control at the sentential level) has received more recent attention. Many findings for Chinese speakers with dysarthria support earlier findings for English speakers, thus affirming the language-universal aspect of dysarthria. However, certain differences, which can be attributed to the distinct phonologies of Cantonese and Mandarin, highlight the language-specific aspects of the condition.

  18. Theoretical Study on the Mechanism of Sonogashira Coupling Reaction

    Institute of Scientific and Technical Information of China (English)

    CHEN Li-Ping; HONG San-Guo; HOU Hao-Qing

    2008-01-01

    The mechanism of palladium-catalyzed Sonogashira cross-coupling reaction has been studied theoretically by DFT (density functional theory) calculations. The model system studied consists of Pd(PH3)2 as the starting catalyst complex, phenyl bromide as the substrate and acetylene as the terminal alkyne, without regarding to the co-catalyst and base. Mechanistically and energetically plausible catalytic cycles for the cross-coupling have been identified. The DFT analysis shows that the catalytic cycle occurs in three stages: oxidative addition of phenyl bromide to the palladium center, alkynylation of palladium(II) intermediate, and reductive elimination to phenylacetylene. In the oxidative addition, the neutral and anionic pathways have been investigated, which could both give rise to cis-configured palladium(II) diphosphine intermediate. Starting from the palladium(II) diphosphine intermediate, the only identifiable pathway in alkynylation involves the dissociation of Br group and the formation of square-planar palladium(II) intermediate, in which the phenyl and alkynyl groups are oriented cis to each other. Due to the close proximity of phenyl and alkynyl groups, the reductive elimination of phenylacetylene proceeds smoothly.

  19. Theoretical spectroscopic study of protonated and deuteronated PAHs

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit

    The study of Polycyclic Aromatic Hydrocarbon (PAH) plays a key role to understand astrophysical environments as they are ubiquitous in the Interstellar Medium (ISM). They account for about 5-10% of carbon budget in the universe and are responsible for the strong IR emission features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7mum seen towards most of the interstellar objects including HII regions, reflection nebulae, planetary nebulae, late-type stars, as well as active star-forming regions. These IR features result from the relaxation of vibrationally excited PAHs. As PAHs are stable enough to survive the interstellar conditions, they could possibly be responsible for the enigmatic Diffuse Interstellar Bands (DIBs) which are optical absorption features on the interstellar extinction curve. The fact that interstellar PAHs are more likely to be ions has motivated the study of radical PAHs. Protonated PAHs formed by H(+) addition to neutral parent molecules, denoted as HPAH(+) , are an important form of closed shell PAH cation. Protonated forms show electronic transitions in the visible part of the spectrum where most DIBs are present, whereas neutral forms generally show their strongest electronic transitions in the UV region. We also report quantum chemical calculations on HPAH(+) and DPAH(+) (D(+) attached to PAH) to get the electronic and IR spectra to understand the IR emission and DIB features. A comparison of theoretical spectra with the available experimental spectra has also been carried out.

  20. a correlational study of students 'theoretical and practical ...

    African Journals Online (AJOL)

    Galadanci & Mukhtar

    Moment Correlation Coefficient, the Coefficients of Correlation obtained are ... students' understanding of subjects/courses that have been taught to ... Literature Review ... the theoretical and practical scores of students in some basic science ...

  1. Three theoretical studies of ferroelectric materials in different geometries

    Science.gov (United States)

    Palova, Lucia

    Using a combination of numerical and analytical techniques, I present characterizations of ferroelectric materials in bulk, thin-film and nanostructure geometries. My results have impact on ongoing research and on design for nanodevices. Size-dependent effects in ferroelectrics are important due to their long-range electrostatic interactions; thus their dielectric properties depend on electromechanical boundary conditions. In my first study, I address the effects of strain on the measured properties of thin-film (TF) ferroelectrics. It has been suggested that the observed suppression of many TF dielectric characteristics implies underlying strain gradients in the film. I show that the same effects can be explained by a simpler model with homogeneous strain, and I suggest a "smoking gun" benchtop probe. The quantum paraelectric-ferroelectric transition (QPFT) is the topic of my second study. Using methods including finite-size scaling and self-consistent Gaussian theory, I calculate the classical-quantum crossover in the dielectric susceptbility and the resulting temperature-pressure phase diagram; comparison with current experiment is excellent and predictions are made for future measurements. Here, temperature can be considered a "finite-size effet" in time, and previous results on the QPFT using diagrammatic techniques are recovered and extended using this approach. Recent synthesis of artificially structured oxides with "checkerboard" patterning at the nanoscale has been reported, and this serves as motivation for my third study. Here, I use first-principles methods to characterize an atomic-scale BiFeO3-BiMnO3 nanocheckerboard, and find that it has properties that are distinctive from those of either parent compound. More specifically, it has both a spontaneous polarization and magnetization, and also displays a magnetostructural effect. My work on this prototypical multiferroic nanocheckerboard motivates further theoretical and experimental studies of new

  2. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  3. Theoretical study of the adsorption of benzene on coinage metals

    Directory of Open Access Journals (Sweden)

    Werner Reckien

    2014-08-01

    Full Text Available The adsorption of benzene on the M(111, M(100 and M(110 surfaces of the coinage metals copper (M = Cu, silver (M = Ag and gold (M = Au is studied on the basis of density functional theory (DFT calculations with an empirical dispersion correction (D3. Variants of the Perdew–Burke–Ernzerhof functionals (PBE, RPBE and RevPBE in combination with different versions of the dispersion correction (D3 and D3(BJ are compared. PBE-D3, PBE-D3(BJ and RPBE-D3 give similar results which exhibit a good agreement with experimental data. RevPBE-D3 and RevPBE-D3(BJ tend to overestimate adsorption energies. The inclusion of three-center terms (PBE-D3(ABC leads to a slightly better agreement with the experiment in most cases. Vertical adsorbate–substrate distances are calculated and compared to previous theoretical results. The observed trends for the surfaces and metals are consistent with the calculated adsorption energies.

  4. Experimental and Theoretical Studies on Biologically Active Lanthanide (III) Complexes

    Science.gov (United States)

    Kostova, I.; Trendafilova, N.; Georgieva, I.; Rastogi, V. K.; Kiefer, W.

    2008-11-01

    The complexation ability and the binding mode of the ligand coumarin-3-carboxylic acid (HCCA) to La(III), Ce(III), Nd(III), Sm(III), Gd(III) and Dy(III) lanthanide ions (Ln(III)) are elucidated at experimental and theoretical level. The complexes were characterized using elemental analysis, DTA and TGA data as well as 1H NMR and 13C NMR spectra. FTIR and Raman spectroscopic techniques as well as DFT quantum chemical calculations were used for characterization of the binding mode and the structures of lanthanide(III) complexes of HCCA. The metal—ligand binding mode is predicted through molecular modeling and energy estimation of different Ln—CCA structures using B3LYP/6-31G(d) method combined with a large quasi-relativistic effective core potential for lanthanide ion. The energies obtained predict bidentate coordination of CCA- to Ln(III) ions through the carbonylic oxygen and the carboxylic oxygen. Detailed vibrational analysis of HCCA, CCA- and Ln(III) complexes based on both calculated and experimental frequencies confirms the suggested metal—ligand binding mode. The natural bonding analysis predicts strongly ionic character of the Ln(III)-CCA bonding in the- complexes studied. With the relatively resistant tumor cell line K-562 we obtained very interesting in-vitro results which are in accordance with our previously published data concerning the activity of lanthanide(III) complexes with other coumarin derivatives.

  5. Experimental and Theoretical Studies of Volatile Metal Hydroxides

    Science.gov (United States)

    Myers, Dwight L.; Jacobson, Nathan S.

    2015-01-01

    Modern superalloys used in the construction of turbomachinery contain a wide range of metals in trace quantities. In addition, metal oxides and silicon dioxide are used to form Thermal Barrier Coatings (TBC) to protect the underlying metal in turbine blades. Formation of volatile hydroxides at elevated temperatures is an important mechanism for corrosion of metal alloys or oxides in combustion environments (N. Jacobson, D. Myers, E. Opila, and E. Copland, J. Phys. Chem. Solids 66, 471-478, 2005). Thermodynamic data is essential to proper design of components of modern gas turbines. It is necessary to first establish the identity of volatile hydroxides formed from the reaction of a given system with high temperature water vapor, and then to determine the equilibrium pressures of the species under operating conditions. Theoretical calculations of reaction energies are an important check of experimental results. This presentation reports results for several important systems: Si-O-H, Cr-O-H, Al-O-H, Ti-O-H, and ongoing studies of Ta-O-H.

  6. A theoretical and spectroscopic study of conformational structures of piroxicam

    Science.gov (United States)

    Souza, Kely Ferreira de; Martins, José A.; Pessine, Francisco B. T.; Custodio, Rogério

    2010-02-01

    Piroxicam (PRX) has been widely studied in an attempt to elucidate the causes and mechanisms of its side effects, mainly the photo-toxicity. In this paper fluorescence spectra in non-protic solvents and different polarities were carried out along with theoretical calculations. Preliminary potential surfaces of the keto and enol forms were obtained at AM1 level of theory providing the most stable conformers, which had their structure re-optimized through the B3LYP/CEP-31G(d,p) method. From the optimized structures, the electronic spectra were calculated using the TD-DFT method in vacuum and including the solvent effect through the PCM method and a single water molecule near PRX. A new potential surface was constructed to the enol tautomer at DFT level and the most stable conformers were submitted to the QST2 calculations. The experimental data showed that in apolar media, the solution fluorescence is raised. Based on conformational analysis for the two tautomers, keto and enol, the results indicated that the PRX-enol is the main tautomer related to the drug fluorescence, which is reinforced by the spectra results, as well as the interconvertion barrier obtained from the QST2 calculations. The results suggest that the PRX one of the enol conformers presents great possibility of involvement in the photo-toxicity mechanisms.

  7. THE THEORETICAL STUDY OF ADSORPTION OF METAL IONS ON CHITOSAN

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The interactions between metal ions such as Zn2+, Pb2+, Mn2+, Hg2+, Cd2+, Ni2+ and chitosan have been investigated using the model cluster model method and density functional method. Full optimization and frequency analysis of all cluster models have been performed employing B3LYP hybrid method at 3-21G basis set level except metal ions which were invoked to use effective core potential (ECP) method. The energy changes, and the main structural parameters have been obtained during the theoretical study of the adsorption of metal ions on the chitosan. The calculations showed that the coordination modes of metal ions with chitosan models were different, the geometries of Mn2+, Zn2+, Cd2+, Hg2+, Pb2+ ions coordinated with two nitrogen atoms and two oxygen atoms were distorted tetrahedral, while the square planar structure of Ni2+ coordinated two nitrogen atoms and two oxygen atoms was observed. The heat of reaction between six metal ions and chitosan models showed the order: Mn2+ >Ni2+ >Zn2+ >Pb2+ >Hg2+ >Cd2+, this suggested that the coordination strength of Mn2+ >Ni2+ >Zn2+ >Pb2+ >Hg2+ >Cd2+.

  8. Theoretical Study of Small (NaI)n Clusters

    CERN Document Server

    Aguado, A; López, J M; Alonso, J A

    1997-01-01

    A systematic theoretical study of stoichiometric clusters (NaI)n up to n=15 is performed using the ab initio Perturbed-Ion (PI) model. The structures obtained are compared to previous pair potential results, and observed differences between (NaI)n clusters and previous ab initio results for other alkali halide clusters are discussed. (NaI)n clusters with n up to 15 do not show yet a marked preference for geometries which are fragments of the bulk lattice. Instead, stacks of hexagonal rings or more open structures are obtained as ground structures in clusters with n=3, 6, 7, 9, 10, 12, 13 and 15, indicating that convergence to bulk structure is not achieved yet at this size range. Low lying isomers which are fragments of the crystal lattice exist, nevertheless, for those cases. The binding energies show that clusters with n=(4), 6, 9 and 12 molecules are specially stable. The binding energy has been decomposed in contributions which allow for an intuitive interpretation. Some electronic properties like ionizat...

  9. Theoretical Study of the Proton Transfer in Enaminones

    Directory of Open Access Journals (Sweden)

    Rita S. Elias

    2012-01-01

    Full Text Available Problem statement: Hydrogen bonding has a vital rule to unrevealed the nature of many different interactions both in gas phase and condensed media thus it is one of the most important concepts in chemistry. Enaminoes with their ability to form intrahydrogen bonded cheated rings represent one of the suitable compounds to study such concept. Approach: The three possible tautomers of eneminones were fully optimized at several theoretical levels including B3LYP with the 6-31+G(d,p, 6-311++G(d,p and aug-cc-pVDZ basis sets as well as MP2/6-311++G(d,p level of theory. Then a search for the possible transition state between the two most stable tautomers; the ketamine and the enolimine was done at the B3LYP/6-311++G(d,p level of theory. Results: The ketamine is the most stable while the diketo is the less stable within the tautomeric mixture and the proton transfer occurs through a transition state that is energetically resemble the enolimine tautomer. Conclusion: The interconversion of the tautomers is preferable in the enolimine ketamine direction.

  10. Experimental, theoretical, and numerical studies of small scale combustion

    Science.gov (United States)

    Xu, Bo

    Recently, the demand increased for the development of microdevices such as microsatellites, microaerial vehicles, micro reactors, and micro power generators. To meet those demands the biggest challenge is obtaining stable and complete combustion at relatively small scale. To gain a fundamental understanding of small scale combustion in this thesis, thermal and kinetic coupling between the gas phase and the structure at meso and micro scales were theoretically, experimentally, and numerically studied; new stabilization and instability phenomena were identified; and new theories for the dynamic mechanisms of small scale combustion were developed. The reduction of thermal inertia at small scale significantly reduces the response time of the wall and leads to a strong flame-wall coupling and extension of burning limits. Mesoscale flame propagation and extinction in small quartz tubes were theoretically, experimentally and numerically studied. It was found that wall-flame interaction in mesoscale combustion led to two different flame regimes, a heat-loss dominant fast flame regime and a wall-flame coupling slow flame regime. The nonlinear transition between the two flame regimes was strongly dependent on the channel width and flow velocity. It is concluded that the existence of multiple flame regimes is an inherent phenomenon in mesoscale combustion. In addition, all practical combustors have variable channel width in the direction of flame propagation. Quasi-steady and unsteady propagations of methane and propane-air premixed flames in a mesoscale divergent channel were investigated experimentally and theoretically. The emphasis was the impact of variable cross-section area and the flame-wall coupling on the flame transition between different regimes and the onset of flame instability. For the first time, spinning flames were experimentally observed for both lean and rich methane and propane-air mixtures in a broad range of equivalence ratios. An effective Lewis number

  11. Theoretical study of the unimolecular dissociation of HCO

    Science.gov (United States)

    Whittier, Gregory Scott

    This thesis offers a detailed theoretical study of the unimolecular dissociation of formyl radical, HCO, which is an important intermediate in combustion chemistry. A quantum mechanical treatment of the dissociation of isolated HCO is presented along with a mixed quantum/classical study of the excitation and deexcitation of HCO in collisions of HCO with the bath gas Ar. The results are then used to model the kinetics of the collision-induced dissociation of HCO by Ar. Resonance states of HCO are calculated for total angular momentum J = 0, 1, and 3 using the artificial boundary inhomogeneity (ABI) method of Jang and Light [J. Chem. Phys. 102, 3262 (1995)]. Resonance energies and widths are determined by analyzing the Smith lifetime matrix. A resonance search algorithm and a method for resolving overlapping resonances are described. The accurate prediction of J = 3 resonances from J = 0 and 1 data is tested with good results for excited stretch resonance and less accurate results for bending resonances, demonstrating the degree of separability of vibration from overall rotation for these quasi-bound states. A quantum/classical time-dependent self-consistent field (Q/C TDSCF) approach is used to simulate the dynamics of collisions of Ar with HCO. State-to-state cross sections and thermal rate constants for vibrational transitions are presented. Using this model together with assumptions about the rotational energy transfer and a master equation treatment of the kinetics, the low-pressure thermal rate of collision-induced dissociation was calculated over the 300-4000 K temperature range. Comparison with experiment shows good agreement at high temperatures and poor agreement at low temperatures. The high temperature results were sufficient to obtain an Arrhenius expression for the rate that agrees with all experimental results of which we are aware.

  12. The theoretical studies of piezoresistive effect in diamond films

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the Fuchs and Sondheimer thin film theory (F-S film theory) and a revised valence band split-off model, considering a mixed scattering by lattice vibrations, ionized impurities and surfaces, a theoretical description of the piezoresistive effect (PR effect) in p-type heteroepitaxial diamond films was presented by solving the Boltzmann transport equation in the relaxation time approximation and using the parallel connection resistance model. A calculating expression of the PR effect was given. The main characteristics that were identical with the experiment were obtained by theoretical calculation. Giving out a model to show that the energy level interval between the split-off band and the heavy-hole band was changed by strain, a reasonable explanation was presented for the error between experimental results and theoretical values of saturated PR effect under big strain.

  13. Theoretical Study of the Compound Parabolic Trough Solar Collector

    Directory of Open Access Journals (Sweden)

    Dr. Subhi S. Mahammed

    2012-06-01

    Full Text Available Theoretical design of compound parabolic trough solar collector (CPC without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67% at mass flow rate between (0.02-0.03 kg/s at concentration ratio of (3.8 without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.

  14. THEORETICAL STUDY (AB INITIO AND DFT METHODS) ON ...

    African Journals Online (AJOL)

    3Division of Computational Physics, Institute for Computational Science, Ton ... 4Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, ... a complex of Al(III) with xylenol orange as an ultra-sensitive colored reagent ..... Husain, A. Pharmaceutical Analysis, Theoretical Basis of Analysis: Complexometric.

  15. A theoretical study of Favorskii reaction stereochemistry. Lessons in torquoselectivity.

    Science.gov (United States)

    Hamblin, Graham D; Jimenez, Raphael P; Sorensen, Ted S

    2007-10-12

    The mechanisms of the chloroenolate-->cyclopropanone step of the "normal" Favorskii rearrangement have been investigated in detail using high-level ab initio calculations. A series of simple alpha-chloroenolates, based on chloroacetone (6), all monomethyl derivatives (7-9), a dimethyl analogue (10), and 1-acetyl-1-chlorocyclohexane (11) was first used to explore and define the basic features of the mechanism, which include the finding of both an "inversion" and a "retention" transition state and that in most cases these arise from separate ground-state conformations of the chloroenolate. These theoretical studies were then extended to an isomeric pair of chloroenolates 1 and 2, the cis- and trans-2-methyl derivatives of 11, which are the reactive intermediates involved in a well-known experimental study carried out by Stork and Borowitz (S-B). Finally, three alpha-chlorocyclohexanone enolate systems 12-14 were studied, since these intermediates have a more restricted enolate geometry. The "inversion" mechanism has been described as an SN2 process but the present results, while supporting a concerted process, is better described as an oxyallyl structure undergoing concerted ring closure. The "retention" mechanism has been described as SN1-like, but the calculations show that this process is also concerted, although much less so, and again involves oxyallyl-like transition-states. The model systems 6-8, 10, and 11 with a potential plane of symmetry have two enantiomeric transition states for inversion and another two for retention of configuration (at the C-Cl center). With 9 and the S-B models 1 and 2, with no symmetry plane, there are a calculated total of four diastereomeric transition states for cyclopropanone ring closure in each case, two for inversion and two for retention. While the transition-state energies calculated for simple chloroenolates favor the inversion process, the S-B models 1 and 2 have almost equal inversion-retention transition-state energies

  16. The physics of neutrino cross sections: theoretical studies

    CERN Document Server

    Alvarez-Ruso, Luis

    2016-01-01

    The present status of neutrino cross section physics is reviewed focusing on the recent theoretical developments in quasielastic scattering, multi-nucleon contributions to the inclusive scattering and pion production on nucleons and nuclei. A good understanding of these processes is crucial to meet the precision needs of neutrino oscillation experiments. Some of the challenges that arise in the consistent description of MiniBooNE and MINERvA recent data are discussed.

  17. Theoretical Study of Electronic Properties of Carbon Allotropes

    OpenAIRE

    Dral, Pavlo

    2013-01-01

    This doctoral thesis describes theoretical investigations of the different physicochemical and above all electronic properties of numerous already discovered and yet to be synthesized modern carbon allotropes, their model compounds and derivatives. In the last century it was ascertained that carbon is not only the most important chemical element for the existence of living beings, but is also becoming increasingly more important for electronics and especially in recent decades for molecula...

  18. Theoretical study of a melting curve for tin

    Institute of Scientific and Technical Information of China (English)

    Xi Feng; Cai Ling-Cang

    2009-01-01

    The melting curve of Sn has been calculated using the dislocation-mediated melting model with the 'zone-linking method'. The results are in good agreement with the experimental data. According to our calculation, the melting temperature of γ-Sn at zero pressure is about 436 K obtained by the extrapolation of the method from the triple point of Sn. The results show that this calculation method is better than other theoretical methods for predicting the meltingcurve of polymorphic material Sn.

  19. [Theoretical studies in weak, electromagnetic and strong interactions. Attachments

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, S.

    1999-09-01

    The project covered a wide area of current research in theoretical high-energy physics. This included Standard Model (SM) as well as physics beyond the Standard Model. Specific topics included supersymmetry (SUSY), perturbative quantum chromodynamics (QCD), a new weak interaction for the third family (called topflavor), neutrino masses and mixings, topcolor model, Pade approximation, and its application to perturbative QCD and other physical processes.

  20. Theoretical Study of First Language Transfer in Second Language Learning

    Institute of Scientific and Technical Information of China (English)

    邱达希

    2015-01-01

    The role and impact offirst language knowledge and how it affects Chinese learners' learning process are significant issues in second language learning.In discussing the role of first language transfer in second language learning,the theoretical understanding of first language transfer will be considered.The next section will go into further detail in the implications and suggestions for teaching and learning English writing and finally conclusions will be drawn from the reading and discussions within this paper.

  1. Theoretical Study of First Language Transfer in Second Language Learning

    Institute of Scientific and Technical Information of China (English)

    邱达希

    2015-01-01

    The role and impact of first language knowledge and how it affects Chinese learners’ learning process are significant issues in second language learning.In discussing the role of first language transfer in second language learning,the theoretical understanding of first language transfer will be considered.The next section will go into further detail in the implications and suggestions for teaching and learning English writing and finally conclusions will be drawn from the reading and discussions within this paper.

  2. Theoretical study on the flow about Savonius rotor

    Science.gov (United States)

    Ogawa, T.

    1984-03-01

    A method for the two-dimensional analysis of the separated flow about Savonius rotors is presented. Calculations are performed by combining the singularity method and the discrete vortex method. The method is applied to the simulation of flows about a stationary rotor and a rotating rotor. Moreover, torque and power coefficients are computed and compared with the experimental results presented by Sheldahl et al. Theoretical and experimental results agree well qualitatively.

  3. Theoretical studies of lipid bilayer electroporation using molecular dynamics simulations

    Science.gov (United States)

    Levine, Zachary Alan

    system where lipids can become damaged or severely impacted from interacting with reactive oxygen species, and these events become more frequent with age. The results are then compared to experiments where we show agreement between our simulations, theoretical models, and experiments with peroxidized cells in our lab. In Chapter 3 I outline a set of unique metrics which can be used to quantitatively measure the life cycle of a discrete electropore for the first time, across multiple lipid species, and I compare these results to analytical models where we find good agreement with theory. In Chapter 4 I use the life cycle of an electropore as a tool to measure the effects of electrolyte and lipid headgroup charge on electroporation compared to electrolyte-free and zwitterionic systems, in addition to presenting ion binding isotherms to determine the validity of our simulated electrolyte models. Chapters 5 and 6 focus on the roles of water and lipid respectively on electroporation using simplified water:vacuum systems, osmotic swelling simulations, systems at varying temperature, and systems where we successfully modulated the electropore radius using customized time-dependent electric fields. I conclude this dissertation with a brief summary of these studies followed by a short outlook on the future of electroporation simulations as a whole.

  4. Theoretical studies of permeability inversion from seismoelectric logs

    Science.gov (United States)

    Hu, H.; Guan, W.; Zhao, W.

    2012-04-01

    Permeability is one of the most important parameters for evaluating the level of difficulty in oil and gas exploitation. A quick, continuous and accurate in-situ estimate of reservoir permeability is highly significant. Stoneley wave logs have been used to determine formation permeability (Tang and Cheng, 1996). However, the inversion errors of this method are too big in low-permeability formations, especially in high-porosity and low-permeability formations resulting from the high clay content in pores. In this study, we propose to invert permeability by using the full waveforms of seismoelectric logs with low frequencies. This method is based on the relationship of permeability with the ratio of the electric excitation intensity to the pressure field's (REP) with respect to the Stoneley wave in seismoelectric logs. By solving the governing equations for electrokinetic coupled wavefields in homogeneous fluid-saturated porous media (Pride, 1994), we calculate the full waveforms of the borehole seismoelectric wavefields excited by a point pressure source and investigate frequency-dependent excitation intensities of the mode waves and excitation intensities of the real branch points in seismoelectric logs. It is found that the REP's phase, which reflects the phase discrepancy between the Stoneley-wave-induced electric field and the acoustic pressure, is sensitive to formation permeability. To check the relation between permeability and REP's phase qualitatively, an approximate expression of the tangent of the REP's argument is derived theoretically as tan(θEP) ≈-ωc/ω = -φη/ (2πfα ∞ρfκ0), where θEPdenotes the arguments of the REP and their principal value is the REP's phase,ω is the angular frequency,ωc is a critical angular frequency that separates the low-frequency viscous flow from the high-frequency inertial flow, φ is the porosity, α∞ is the tortuosity, κ0 is the Darcy permeability, ρf and η are the density and the viscosity of the pore

  5. Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy

    DEFF Research Database (Denmark)

    Phatak, C.; Petford-Long, A. K.; Beleggia, Marco

    2014-01-01

    Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present...... a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift...

  6. Theoretical study of the dipole moment of oxygen monofluoride (OF)

    Science.gov (United States)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1983-01-01

    The ground-state potential curve and dipole-moment function of OF are calculated theoretically using the complete active-space self-consistent-field levels, externally contracted configuration-interaction levels, or multireference (singles plus doubles) configuration-interaction levels. Both an extended Gaussian basis set and a double-zeta-plus-polarization basis set were applied. The results are presented in extensive tables and graphs. Best results are achieved using a large Gaussian basis set and taking the valence-correlation energy into account. It is suggested that OF may best be detected by its laser-magnetic-resonance spectrum in the IR.

  7. Theoretical study of the thermochemistry of chlorine oxyfluorides

    Science.gov (United States)

    Sánchez, Hernán R.; Del Pla, Julián

    2016-10-01

    There is a lack of experimental thermochemical values for most chlorine oxyfluorides. Previous high level theoretical, CCSD(T), results showed uncommonly large errors in the standard heats of formation calculated through the atomization method. We propose that the differences are due to unusually large contributions to energy from higher excitations within the coupled cluster framework, and we tackle the problem by using a calculation scheme based on isodesmic reactions. Our suspicions are supported by results of static correlation diagnostics. Our final recommended values are in better agreement with the experimental data available. Other thermodynamic properties are also calculated.

  8. Experimental and theoretical study on rapid transient nucleated boiling

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A laser heater has been used to impose a pulsed high power laser beam on a metal film inunersed in liquid to generate a very high rate of temperature rise up to 9.3 × 106K/s in the metal film. The rapid transient boiling phenomena have been observed and the temperature variations in the metal film have been measured. Theoretical calculations have been carried out with the fluctuation nucleation theory and the heat conduction theory to compare with the experimental results, and some results are reported.

  9. Theoretical study of magnetoelectric effects in noncentrosymmetric and cuprate superconductors

    Science.gov (United States)

    Kashyap, Manoj K.

    A century after the discovery of superconductivity at the lab of Kamerlingh Onnes in 1911, it is noticeable that the phenomenon is quite ubiquitous in nature. In addition to a long list of superconducting alloys and compounds, almost half the elements in the periodic table superconduct. By the late seventies, superconductivity was thought to be well understood. This turned out to be a myth, with the discovery of unconventional superconductors that defied Bardeen-Cooper-Schrieffer (BCS) theory. Cuprates have been the most prominent example among them ever since their discovery in 1986 by Bednorz and Muller. Another example of non-compliance with BCS theory lie among noncentrosymmetric superconductors. In this dissertation, magnetoelectric (ME) effects in these two classes of superconductors have been studied from different perspectives, utilizing Ginzburg-Landau (GL) theory. Even though GL theory was proposed before the BCS theory, it was not given much importance due to its phenomenological nature until Gor'kov proved that it is a limiting form of the microscopic BCS theory. However today, in the absence of any complete microscopic theory to explain superconductivity in unconventional superconductors, Ginzburg-Landau theory is an important tool to move ahead and qualitatively understand the behavior of varied superconducting systems. Noncentrosymmetric superconductors have generated much theoretical interest since 2004 despite been known for long. The absence of inversion symmetry in non- centrosymmetric superconductors allows for extra terms called Lifshitz invariants in the Ginzburg-Landau functional. This leads to magnetoelectric effects that do not exist in centrosymmetric superconductors. One manifestation of this is in the vortex structure in materials with a cubic point group O. In particular, a current is predicted to flow parallel to the applied magnetic field in such a vortex in addition to the usual vortex supercurrents. In this work, we present both

  10. Theoretical Study on Inner Shell Electron Impact Excitation of Lithium

    Institute of Scientific and Technical Information of China (English)

    YANG Ning-Xuan; DONG Chen-Zhong; JIANG Jun

    2009-01-01

    Cross sections for electron impact excitation of lithium from the ground state ls22s to the excited states 1s2s2,1s2p2,1s2snp (n = 2-5),1s2sns (n = 3-5),1s2pns (n = 3-5),and 1s2pnp (n=3-5) are calculated by using a full relativistic distorted wave method.The latest experimental electron energy loss spectra for inner-shell electron excitations of lithium at a given incident electron energy of 2500 eV[Chin.Phys.Lett.25 (2008) 3649]have been reproduced by the present theoretical investigation excellently.At the same time,the structures of electron energy loss spectra of lithium at low incident electron energy are also predicted theoretically,it is found that the electron energy loss spectra in the energy region of 55-57eV show two-peak structures.

  11. Protonation of caffeine: A theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Hamed [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Tabrizchi, Mahmoud, E-mail: m-tabriz@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Farrokhpour, Hossein [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2013-03-29

    Highlights: ► Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources. ► Experimental and theoretical evidence was collected to assign the observed peaks to caffeine related ionic species. ► A new concept of “internal proton affinity”, the protonation tendency for each atom in a molecule, was defined. - Abstract: Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources, corona discharge (CD) and UV photoionization. Three peaks were observed in ion mobility spectrum by simultaneously running the two ionization sources. Experimental and theoretical evidence was collected to link the observed peaks to caffeine related ionic species. One peak was attributed to the M{sup +} ion while the other two were assigned to different protonated isomers of caffeine. In the case of CD ionization source, it was observed that different sites of caffeine compete for protonation and their relative intensities, depends on the sample concentration as well as the nature of the reactant ions. The new concept of “internal proton affinity” (IPA) was defined to express the tendency of holding the added proton for each atom in a molecule.

  12. Theoretical and numerical studies on morphological transitions in crack growth

    CERN Document Server

    Mühle, V

    1999-01-01

    This paper investigates the formation of crack patterns in stationary and transient temperature fields analytically with linear elastic fracture mechanics and numerically with the finite elements method (FEM). In particular, we consider the experimental situation of a narrow thin strip of hot glass slowly lowered into cold water, with temperature difference and velocity as variable parameters. The parameter regions of no crack, one straight crack and one oscillating crack are determined. The type of phase transition related to the borderline between straight and oscillating crack is characterized. The theoretical results are compared with those of other Similar investigations and comparisons are done for the propagation of multiple cracks. Quenching of a wide thin strip leads to a hierarchy of cracks whose scaling properties are analyzed. Without any fitting, theory and experiment agree surprisingly well.

  13. Protonation of caffeine: A theoretical and experimental study

    Science.gov (United States)

    Bahrami, Hamed; Tabrizchi, Mahmoud; Farrokhpour, Hossein

    2013-03-01

    Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources, corona discharge (CD) and UV photoionization. Three peaks were observed in ion mobility spectrum by simultaneously running the two ionization sources. Experimental and theoretical evidence was collected to link the observed peaks to caffeine related ionic species. One peak was attributed to the M+ ion while the other two were assigned to different protonated isomers of caffeine. In the case of CD ionization source, it was observed that different sites of caffeine compete for protonation and their relative intensities, depends on the sample concentration as well as the nature of the reactant ions. The new concept of "internal proton affinity" (IPA) was defined to express the tendency of holding the added proton for each atom in a molecule.

  14. Theoretical study on a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon;

    2010-01-01

    A mathematical model simulating the stagnation behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed. Based on the pre-pressure of the expansion vessel, the system filling pressure of the solar collector loop and the design of the solar...... collector loop, the mass of the fluid flowing into the pressurized expansion vessel and the pressures at the top part and at the bottom part of the solar collector loop during stagnation for the solar collector loop are calculated. The theoretically calculated results are compared with experimental results....... There is a good agreement between calculations and measurements. The developed simulation model is therefore suitable to determine the behavior of solar collector loops during stagnation....

  15. Theoretical study on a solar collector loop during stagnation

    DEFF Research Database (Denmark)

    Chen, Ziqian; Dragsted, Janne; Furbo, Simon;

    A mathematical model simulating the stagnation behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed. Based on the pre-pressure of the expansion vessel, the system filling pressure of the solar collector loop and the design of the solar...... collector loop, the mass of the fluid flowing into the pressurized expansion vessel and the pressures at the top part and at the bottom part of the solar collector loop during stagnation for the solar collector loop are calculated. The theoretically calculated results are compared with experimental results....... There is a good agreement between calculations and measurements. The developed simulation model is therefore suitable to determine the behavior of solar collector loops during stagnation....

  16. Theoretical Advanced Study Institute in Elementary Particle Physics

    CERN Document Server

    2017-01-01

    The program will consist of a pedagogical series of lectures and seminars. Lectures will be given over a four-week period, three or four lectures per day, Monday through Friday. The audience will be composed primarily of advanced theoretical graduate students. Experimentalists with a strong background in theory are also encouraged to apply. Some post-doctoral fellows will be admitted, but preference will be given to applicants who will not have received their Ph.D. before 2017. The minimum background needed to get full benefit of TASI is a knowledge of quantum field theory (including RGEs) and familiarity with the Standard Model. Some familiarity with SUSY would be helpful. We hope to provide some subsidy, but students will need partial support from other sources. Rooms, meals, and access to all facilities will be provided at reasonable rates in beautifully located dormitories at the University of Colorado.

  17. We need theoretical physics approaches to study living systems

    Science.gov (United States)

    Blagoev, Krastan B.; Shukla, Kamal; affil="3" >Herbert Levine,

    2013-08-01

    Living systems, as created initially by the transition from assemblies of large molecules to self-reproducing information-rich cells, have for centuries been studied via the empirical toolkit of biology. This has been a highly successful enterprise, bringing us from the vague non-scientific notions of vitalism to the modern appreciation of the biophysical and biochemical bases of life. Yet, the truly mind-boggling complexity of even the simplest self-sufficient cells, let alone the emergence of multicellular organisms, of brain and consciousness, and to ecological communities and human civilizations, calls out for a complementary approach. In this editorial, we propose that theoretical physics can play an essential role in making sense of living matter. When faced with a highly complex system, a physicist builds simplified models. Quoting Philip W Anderson's Nobel prize address, 'the art of model-building is the exclusion of real but irrelevant parts of the problem and entails hazards for the builder and the reader. The builder may leave out something genuinely relevant and the reader, armed with too sophisticated an experimental probe, may take literally a schematized model. Very often such a simplified model throws more light on the real working of nature....' In his formulation, the job of a theorist is to get at the crux of the system by ignoring details and yet to find a testable consequence of the resulting simple picture. This is rather different than the predilection of the applied mathematician who wants to include all the known details in the hope of a quantitative simulacrum of reality. These efforts may be practically useful, but do not usually lead to increased understanding. To illustrate how this works, we can look at a non-living example of complex behavior that was afforded by spatiotemporal patterning in the Belousov-Zhabotinsky reaction [1]. Physicists who worked on this system did not attempt to determine all the relevant chemical intermediates

  18. Theoretical study on primary reaction of photosynthetic bacteria

    Institute of Scientific and Technical Information of China (English)

    张纯喜; 樊红军; 李良璧; 匡廷云

    1999-01-01

    Theoretical calculation was carried out on the primary electron donor P870 of photosynthetic bacteria. The results show that: (ⅰ) the bimolecular structure of the primary electron donor is more advantageous in energy than monomolecular structure; (ⅱ) the initial configuration of primary electron donor is no longer stable and changes to the configuration with lower energy and chemical reactivity after the charge separation. In the P870, such structural change is completed through the rotation of C3 acetyl, so the oxygen atom of acetyl interacts with the magnesium atom of another bacterio-chlorophyll molecule, and the total energy and chemical reactivity are reduced evidently. It is suggested that the structural change of the primary electron donor is important in preventing the occurrence of charge recombination during the primary reaction and maintaining the high efficiency of the conversion of sun-light to chemical energy. A new mechanism of primary reaction has been proposed, which can give r

  19. Solvothermal synthesis and theoretical study of a polypyridium trimesylate adduct

    Indian Academy of Sciences (India)

    Yulan Zhu; Feng Ma; Kuirong Ma; Li Cao; Lianhua Zhao

    2011-09-01

    The title compound (C9H3O6·C20H17N4)4·0.5H2O 1 was isolated from solvothermal synthesis of 4'-(4-pyridyl)-2,2':6',2'-terpyridine (pytpy) and trimesic acid (1,3,5-benzenetricarboxylic acid, H3BTC). It was characterized by element analysis, IR, TGA, XRD, X-ray single-crystal diffraction, and spectroscopy properties, together with quantum chemistry calculation of spectrum (UV-vis spectra) through the method b3lyp/6-31 t g (d,p) are also investigated. Single-crystal X-ray diffraction shows 1 possesses a 3-D supramolecular network with 1-D six-fold helical double chains built from protonated (H3pytpy)$^{3+}_{n}$ cations and deprotonated (BTC)$^{3−}_{n}$ anions. The maximum of the fluorescent emission bands of 1 is located at 427 nm (ex = 266 nm), with a shoulder at about 390 nm. The result of theoretic calculations confirms that 1 has small HOMO-LUMO energy gap (1.24 eV) and high chemical reactivity.

  20. Theoretical and Experimental Studies of Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Harold G [Indiana University; Kostelecky, V Alan [Indiana University; Musser, James A [Indiana University

    2013-07-29

    The elementary particle physics research program at Indiana University spans a broad range of the most interesting topics in this fundamental field, including important contributions to each of the frontiers identified in the recent report of HEPAP's Particle Physics Prioritization Panel: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Experimentally, we contribute to knowledge at the Energy Frontier through our work on the D0 and ATLAS collaborations. We work at the Intensity Frontier on the MINOS and NOvA experiments and participate in R&D for LBNE. We are also very active on the theoretical side of each of these areas with internationally recognized efforts in phenomenology both in and beyond the Standard Model and in lattice QCD. Finally, although not part of this grant, members of the Indiana University particle physics group have strong involvement in several astrophysics projects at the Cosmic Frontier. Our research efforts are divided into three task areas. The Task A group works on D0 and ATLAS; Task B is our theory group; and Task C contains our MINOS, NOvA, and LBNE (LArTPC) research. Each task includes contributions from faculty, senior scientists, postdocs, graduate and undergraduate students, engineers, technicians, and administrative personnel. This work was supported by DOE Grant DE-FG02-91ER40661. In the following, we describe progress made in the research of each task during the final period of the grant, from November 1, 2009 to April 30, 2013.

  1. SAR image autofocus by sharpness optimization: a theoretical study.

    Science.gov (United States)

    Morrison, Robert L; Do, Minh N; Munson, David C

    2007-09-01

    Synthetic aperture radar (SAR) autofocus techniques that optimize sharpness metrics can produce excellent restorations in comparison with conventional autofocus approaches. To help formalize the understanding of metric-based SAR autofocus methods, and to gain more insight into their performance, we present a theoretical analysis of these techniques using simple image models. Specifically, we consider the intensity-squared metric, and a dominant point-targets image model, and derive expressions for the resulting objective function. We examine the conditions under which the perfectly focused image models correspond to stationary points of the objective function. A key contribution is that we demonstrate formally, for the specific case of intensity-squared minimization autofocus, the mechanism by which metric-based methods utilize the multichannel defocusing model of SAR autofocus to enforce the stationary point property for multiple image columns. Furthermore, our analysis shows that the objective function has a special separble property through which it can be well approximated locally by a sum of 1-D functions of each phase error component. This allows fast performance through solving a sequence of 1-D optimization problems for each phase component simultaneously. Simulation results using the proposed models and actual SAR imagery confirm that the analysis extends well to realistic situations.

  2. Studies in theoretical particle physics. Progress report, 1990--1991

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.B.

    1991-07-01

    This proposal focuses on research on three distinct areas of particle physics: (1) Nonperturbative QCD. I tend to continue work on analytic modelling of nonperturbative effects in the strong interactions. I have been investigating the theoretical connection between the nonrelativistic quark model and QCD. The primary motivation has been to understand the experimental observation of nonzero matrix elements involving current strange quarks in ordinary matter -- which in the quark model has no strange quark component. This has led to my present work on understanding constituent (quark model) quarks as collective excitations of QCD degrees of freedom. (2) Weak Scale Baryogenesis. A continuation of work on baryogenesis in the early universe from weak interactions. In particular, an investigation of baryogenesis occurring during the weak phase transition through anomalous baryon violating processes in the standard model of weak interactions. (3) Flavor and Compositeness. Further investigation of a new mechanism that I recently discovered for dynamical mass generation for fermions, which naturally leads to a family hierarchy structure. A discussion of recent past work is found in the next section, followed by an outline of the proposed research. A recent publication from each of these three areas is attached to this proposal.

  3. Structural, vibrational and theoretical studies of L-histidine bromide

    Science.gov (United States)

    Ahmed, A. Ben; Feki, H.; Abid, Y.; Boughzala, H.; Mlayah, A.

    2008-10-01

    This paper presents the results of our calculations of the geometric parameters, vibrational spectra and hyperpolarizability of a non linear optical material, L-histidine bromide. Due to the lack of sufficiently precise information on the geometric structure available in literature, theoretical calculations were preceded by re-determination of the crystal X-ray structure. Single crystals of L-histidine bromide have been grown by slow evaporation of an aqueous solution at room temperature. The compound crystallizes in the non-Centro symmetric space group P2 12 12 1 of the orthorhombic system. Raman spectra have been recorded in the range [200-3500 cm -1]. All observed vibrational bands have been discussed and assigned to normal mode or to combinations and overtones on the basis of our calculations. The optimized geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP and BLYP) show good agreement with the experimental data. Comparison between the measured and the calculated vibrational frequencies indicate that B3LYP is superior to the scaled HF approach for molecular vibrational problems. To investigate microscopic second order non linear optical properties of L-histidine bromide, the electric dipole μ, the polarizability α and the hyperpolarizability β were computed using DFT//B3LYP/6-31G(d) method. According to our calculations, the title compound exhibits non-zero β value revealing microscopic second order NLO behaviour.

  4. Theoretical study of excitation energy transfer in DNA photolyase.

    Science.gov (United States)

    Zheng, Xuehe; Garcia, Jorge; Stuchebrukhov, Alexei A

    2008-07-24

    Photolyase (PL) is a DNA repair enzyme which splits UV light-induced thymine dimers on DNA by an electron transfer reaction occurring between the photoactivated FADH(-) cofactor and the DNA dimer in the DNA/PL complex. The crystal structure of the DNA/photolyase complex from Anacystis nidulans has been solved. Here, using the experimental crystal structure, we re-examine the details of the repair electron transfer reaction and address the question of energy transfer from the antenna HDF to the redox active FADH(-) cofactor. The photoactivation of FADH(-) immediately preceding the electron transfer is a key step in the repair mechanism that is largely left unexamined theoretically. An important butterfly thermal motion of flavin is identified in ab initio calculations; we propose its role in the back electron transfer from DNA to photolyase. Molecular dynamics simulation of the whole protein/DNA complex is carried out to obtain relevant cofactor conformations for ZINDO/S spectroscopic absorption and fluorescence calculations. We find that significant thermal broadening of the spectral lines, due to protein dynamics, as well as the alignment of the donor HDF and the acceptor FADH(-) transition dipole moments both contribute to the efficiency of energy transfer. The geometric factor of Förster's dipolar coupling is calculated to be 1.82, a large increase from the experimentally estimated 0.67. Using Förster's mechanism, we find that the energy transfer occurs with remarkable efficiency, comparable with the experimentally determined value of 98%.

  5. A Theoretical Study on Reductive Debromination of Polybrominated Diphenyl Ethers

    Directory of Open Access Journals (Sweden)

    Xian-Fei Huang

    2012-07-01

    Full Text Available Recent progress has been made in the reductive debromination of polybrominated diphenyl ethers (PBDEs by nanoscale zero-valent iron (nZVI. To better understand the mechanism of this reaction, seven selected BDE congeners and their anions were investigated at the density functional theory (DFT level using four different methods, including B3LYP/6-31G(d, B3LYP/6-31+G(d, B3LYP/6-31G(d,p and B3LYP/6-311G(d,p. The cleaved C–Br bonds observed in the equilibrium structures of anionic PBDEs were adopted as the probe of the susceptible debromination position of PBDEs in the presence of nZVI, and the proposed major reaction pathways based on our calculations can satisfactorily conform to the reported experimental results. The debromination preference is theoretically evaluated as meta-Br > ortho-Br > para-Br. In addition, both the calculated frontier orbital energies and adiabatic electronic affinities were found to be highly related to their experimental reductive debromination rate constants. The highest linear regression coefficient was observed in the case using the energy of lowest unoccupied molecular orbital as the molecular descriptor obtained from B3LYP/6-31G(d (R2 = 0.961, n = 7 or B3LYP/6-31G(d,p (R2 = 0.961, n = 7. The results clearly showed the evidence of an electron transfer mechanism associated with this reductive debromination reaction.

  6. Theoretical Studies of Dielectronic Recombination of Aluminum-Like Ions

    Science.gov (United States)

    Gorczyca, Tom; Abdel Naby, S. A.; Nikolic, D.; Badnell, N. R.; Savin, D. W.

    2008-05-01

    Dielectronic recombination (DR) is an important process occurring in astrophysical plasmas. DR is responsible for the charge state balance as well as the cooling of astrophysical plasmas, and it is the dominant electron-ion recombination process in both photoionized and collisionally-ionized plasmas. Accurate and reliable calculations for DR rate coefficients are needed to analyze the spectra obtained from astrophysical observations. Over the past few years, our group has computed reliable DR data for all isoelectronic sequences up through Mg-like ions using a state-of-the-art multiconfiguration Breit-Pauli (MCBP) distorted wave method. Recently, we have focused our work on the complex third-row M-shell isoelectronic sequences, especially Al-like. Although there exist some DR calculations for S IV, those were performed only within a non-relativistic LS-coupling approximation and for higher temperatures more suitable for collisionally-ionized plasmas but not for the lower temperatures appropriate for photoionized plasmas. Fe XIV DR calculations have been completed and tested against the Heidelberg heavy-ion Test Storage Ring facility measurements. MCBP cross sections and rate coefficients of a wide range of Al-like ions, computed using the AUTOSTRUCTURE suite of atomic structure and collision codes, will be presented. The effect of fine structure splitting in the ground state will be discussed, and comparisons against all available data, theoretical as well as experimental, will be shown. Our results are fitted into a simple formula for easier implementation into modeling codes used by the astrophysics community. This work was funded in part by NASA (APRA), NASA (SHP) SR&T, and UK PPARC grants.

  7. Theoretical studies on the reaction pathways of electronically excited DAAF

    Energy Technology Data Exchange (ETDEWEB)

    Quenneville, Jason M [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2009-01-01

    an explosive compound. Here we describe high level quantum chemistry calculations aimed at mapping the electronic states involved in excitation of 3,3{prime}-Diamino-4,4{prime}-azoxyfurazan (DAAF) with 400-nm light. DAAF is a high-nitrogen high explosive that is of interest for its relative insensitivity to shock compression. The goal of the theoretical work described here is to determine the competing pathways for radiative and non-radiative electronic state quenching in an effort to help guide spectroscopic experiments being conducted in tandem.

  8. Theoretical Studies of the Relaxation Matrix for Molecular Systems

    Science.gov (United States)

    Ma, Qiancheng; Boulet, C.

    2016-06-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements resulting from applying the isolated line approximation. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the energy corrected sudden (ECS) and the infinite order sudden (IOS) models are commonly used. Recently, we have found that in developing this semi-classical line shape theory, to rely on the isolated line approximation is not necessary. By eliminating this unjustified assumption, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism that enables one not only to reduce uncertainties for calculated half-widths and shifts, but also to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on interaction potentials between molecular absorber and molecular perturber. We have applied this formalism for Raman and infrared spectra of linear and asymmetric-top molecules. Recently, the method has been extended into symmetric-tops with inverse symmetry such as the NH3 molecule. Our calculated half-widths of NH3 lines in the νb{1} and the pure

  9. Theoretical Studies of Spectroscopic Line Mixing in Remote Sensing Applications

    Science.gov (United States)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2015-01-01

    The phenomenon of collisional transfer of intensity due to line mixing has an increasing importance for atmospheric monitoring. From a theoretical point of view, all relevant information about the collisional processes is contained in the relaxation matrix where the diagonal elements give half-widths and shifts, and the off-diagonal elements correspond to line interferences. For simple systems such as those consisting of diatom-atom or diatom-diatom, accurate fully quantum calculations based on interaction potentials are feasible. However, fully quantum calculations become unrealistic for more complex systems. On the other hand, the semi-classical Robert-Bonamy (RB) formalism, which has been widely used to calculate half-widths and shifts for decades, fails in calculating the off-diagonal matrix elements. As a result, in order to simulate atmospheric spectra where the effects from line mixing are important, semi-empirical fitting or scaling laws such as the ECS (Energy-Corrected Sudden) and IOS (Infinite-Order Sudden) models are commonly used. Recently, while scrutinizing the development of the RB formalism, we have found that these authors applied the isolated line approximation in their evaluating matrix elements of the Liouville scattering operator given in exponential form. Since the criterion of this assumption is so stringent, it is not valid for many systems of interest in atmospheric applications. Furthermore, it is this assumption that blocks the possibility to calculate the whole relaxation matrix at all. By eliminating this unjustified application, and accurately evaluating matrix elements of the exponential operators, we have developed a more capable formalism. With this new formalism, we are now able not only to reduce uncertainties for calculated half-widths and shifts, but also to remove a once insurmountable obstacle to calculate the whole relaxation matrix. This implies that we can address the line mixing with the semi-classical theory based on

  10. Bending of the calmodulin central helix : A theoretical study

    NARCIS (Netherlands)

    VanderSpoel, D; DeGroot, BL; Hayward, S; Berendsen, HJC; Vogel, HJ

    1996-01-01

    The crystal structure of calcium-calmodulin (CaM) reveals a protein with a typical dumbbell structure. Various spectroscopic studies have suggested that the central linker region of CaM, which is alpha-helical in the crystal structure, is flexible in solution. In particular, NMR studies have indicat

  11. Theoretical studies of non inductive current drive in compact toroids

    NARCIS (Netherlands)

    Farengo, R; Lifschitz, AF; Caputi, KI; Arista, NR; Clemente, RA

    2002-01-01

    Three non inductive current drive methods that can be applied to compact toroids axe studied. The use of neutral beams to drive current in field reversed configurations and spheromaks is studied using a Monte Carlo code that includes a complete ionization package and follows the exact particle orbit

  12. Freezing of bentonite. Experimental studies and theoretical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2010-01-15

    During its lifetime, a KBS-3 repository will be subject to various ambient temperatures. Backfilled tunnels, shafts and investigation bore holes closest to ground level will experience periods of temperature below 0 deg C. From a safety assessment perspective, it is therefore essential to understand the behavior of compacted bentonite below 0 deg C. A theoretical framework for predicting the pressure response in compacted water saturated bentonite due to temperature changes has been developed based on thermodynamics and a single pore-type. This model predicts an approximately linear temperature dependence of swelling pressure P{sub s}(w,DELTAT) = P{sub s}(w,0 deg C) + DELTAs(w)DELTAT/nu{sub clay}(w) where DELTAT denotes a temperature difference from 0 deg C, DELTAs(w) is the difference in partial molar entropy between clay water and bulk water, nu{sub clay} (w) is the partial molar volume of the clay water and w denotes the water/solid mass ratio of the clay. As bulk water changes phase at 0 deg C, DELTAs(w) has a different value dependent on whether DELTAT is negative or positive. Above 0 deg C DELTAs(w) is a small value for all relevant densities which means that the pressure response due to temperature changes is small. A further consequence of this fact is that DELTAs(w) is a large positive number below 0 deg C when the external water phase is transformed to ice. Consequently, the model predicts a large drop of swelling pressure with temperature below 0 deg C, in the order of 1.2 MPa/deg C. Specifically, the swelling pressure is zero at a certain (negative) temperature T{sub C}. T{sub C} also quantifies the freezing point of the bentonite sample under consideration, as ice formation in the bentonite does not occur until swelling pressure is lost. A large set of laboratory tests have been performed where fully water saturated samples of bentonites have been exposed to temperatures in the range -10 deg C to +25 deg C. The swelling pressure response has been

  13. Freezing of bentonite. Experimental studies and theoretical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2010-01-15

    During its lifetime, a KBS-3 repository will be subject to various ambient temperatures. Backfilled tunnels, shafts and investigation bore holes closest to ground level will experience periods of temperature below 0 deg C. From a safety assessment perspective, it is therefore essential to understand the behavior of compacted bentonite below 0 deg C. A theoretical framework for predicting the pressure response in compacted water saturated bentonite due to temperature changes has been developed based on thermodynamics and a single pore-type. This model predicts an approximately linear temperature dependence of swelling pressure P{sub s}(w,DELTAT) = P{sub s}(w,0 deg C) + DELTAs(w)DELTAT/nu{sub clay}(w) where DELTAT denotes a temperature difference from 0 deg C, DELTAs(w) is the difference in partial molar entropy between clay water and bulk water, nu{sub clay} (w) is the partial molar volume of the clay water and w denotes the water/solid mass ratio of the clay. As bulk water changes phase at 0 deg C, DELTAs(w) has a different value dependent on whether DELTAT is negative or positive. Above 0 deg C DELTAs(w) is a small value for all relevant densities which means that the pressure response due to temperature changes is small. A further consequence of this fact is that DELTAs(w) is a large positive number below 0 deg C when the external water phase is transformed to ice. Consequently, the model predicts a large drop of swelling pressure with temperature below 0 deg C, in the order of 1.2 MPa/deg C. Specifically, the swelling pressure is zero at a certain (negative) temperature T{sub C}. T{sub C} also quantifies the freezing point of the bentonite sample under consideration, as ice formation in the bentonite does not occur until swelling pressure is lost. A large set of laboratory tests have been performed where fully water saturated samples of bentonites have been exposed to temperatures in the range -10 deg C to +25 deg C. The swelling pressure response has been

  14. Theoretical study of adsorption of tabun on calcium oxide clusters

    Science.gov (United States)

    Michalkova, A.; Paukku, Y.; Majumdar, D.; Leszczynski, J.

    2007-04-01

    Interactions of tabun (GA) with non-hydroxylated and hydroxylated CaO clusters have been studied using density functional (DFT) and Møller-Plesset second order perturbation (MP2) levels of theory. The nature of interactions has been further investigated from the topology of charge distribution (using Atoms in Molecules formalism) and molecular electrostatic potential (MEP) surfaces. These adsorption studies indicate that GA adsorbs strongly on the non-hydroxylated CaO cluster through its P dbnd O bond, while interactions of GA on the hydroxylated cluster are weak. These model studies could thus be useful to characterize inorganic oxides for efficient detection and disposal of GA.

  15. Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Yue Ying [University of Michigan, Ann Arbor, MI (United States); Gilgenbach, Ronald [University of Michigan, Ann Arbor, MI (United States)

    2013-07-07

    Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed.

  16. Experimental and Theoretical Studies of Pressure Broadened Alkali-Metal Atom Resonance Lines

    Science.gov (United States)

    Shindo, F.; Zhu, C.; Kirby, K.; Babb, J. F.

    2006-01-01

    We are carrying out a joint theoretical and experimental research program to study the broadening of alkali atom resonance lines due to collisions with helium and molecular hydrogen for applications to spectroscopic studies of brown dwarfs and extrasolar giant planets.

  17. theoretical study of physiochemical properties of insulin-like growth ...

    African Journals Online (AJOL)

    dell

    Monte Carlo, Molecular Dynamics and Langevin simulation methods by MM+, AMBER and. OPLS force fields of ... This study has demonstrated that the simple model, which includes an ...... solubility of perfluorobenzene in the supercritical ...

  18. Experimental and Theoretical Studies in Hydrogen-Bonding Organocatalysis

    Directory of Open Access Journals (Sweden)

    Matej Žabka

    2015-08-01

    Full Text Available Chiral thioureas and squaramides are among the most prominent hydrogen-bond bifunctional organocatalysts now extensively used for various transformations, including aldol, Michael, Mannich and Diels-Alder reactions. More importantly, the experimental and computational study of the mode of activation has begun to attract considerable attention. Various experimental, spectroscopic and calculation methods are now frequently used, often as an integrated approach, to establish the reaction mechanism, the mode of activation or explain the stereochemical outcome of the reaction. This article comprises several case studies, sorted according to the method used in their study. The aim of this review is to give the investigators an overview of the methods currently utilized for mechanistic investigations in hydrogen-bonding organocatalysis.

  19. Theoretical Studies on N2H+O Reaction

    Institute of Scientific and Technical Information of China (English)

    L(U) Ying-wen; L(U) Wen-cai; SU Zhong-min

    2008-01-01

    The N2H+O potential energy profile was studied at the CCSD(T)/6-311G++(dfp)//MP2/6-311G(d,p) level.Reactions associated with four intermediates(cis-HNNO, trans-HNNO, NNHO, and NNOH) were investigated. The results indicate that N2H+O reaction toward H+N2O is more favored than that toward N2+OH, consistent with previous experimental studies. The pathways for the two reactions are found to go through cis-HNNO, transition state, and finally to the products. The N2H+O→NH+NO reaction was studied in detail. Product NO in such a reaction is likely to occur via cis-HNNO, followed by trans-HNNO, and finally dissociates into NH+NO. These results suggest that N2H+O→NH+NO is an important channel in NO production.

  20. TEBPP: Theoretical and Experimental study of Beam-Plasma-Physics

    Science.gov (United States)

    Anderson, H. R.; Bernstein, W.; Linson, L. M.; Papadopoulos, K.; Kellogg, P. J.; Szuszczewicz, E. P.; Hallinan, T. J.; Leinbach, H.

    1980-01-01

    The interaction of an electron beam (0 to 10 keV, 0 to 1.5 Amp) with the plasma and neutral atmospheres at 200 to 400 km altitude is studied with emphasis on applications to near Earth and cosmical plasmas. The interaction occurs in four space time regions: (1) near electron gun, beam coming into equilibrium with medium; (2) equilibrium propagation in ionosphere; (3) ahead of beam pulse, temporal and spatial precursors; (4) behind a beam pulse. While region 2 is of the greatest interest, it is essential to study Region 1 because it determines the characteristics of the beam as it enters 2 through 4.

  1. Theoretical study of reaction mechanism for NCO + HCNO

    Science.gov (United States)

    Zhang, Weichao; Du, Benni; Feng, Changjun

    2007-07-01

    A detailed quantum chemical study is performed on the mechanism of the NCO + HCNO reaction, which has never been studied by theory. The potential energy surface for this reaction is characterized at the B3LYP/6-311++G(d,p) level of theory, combined with high-level CBS-QB3 single point energy calculation. Four possible product channels have been investigated. From the calculations it can be seen that the formation of HCN + NO + CO is the dominant product channel, while the pathway to products of HCNN + CO 2 is expected to be minor one, and these conclusions are in good agreement with the experimental results.

  2. Generation, structure and reactivity of arynes: A theoretical study

    Indian Academy of Sciences (India)

    Peter G S Dkhar; R H Duncan Lyngdoh

    2000-04-01

    The semiempirical AM1 SCF-MO method is used to study the benzyne mechanism for aromatic nucleophilic substitution of various -substituted chlorobenzenes and 3-chloropyridine. The calculations predict that most of the fixed substituents studied here would induce the formation of 2,3-arynes through their electron-withdrawing resonance or inductive effects. The geometry and electronic structure of the 2,3- and 3,4-arynes investigated here, confirm the generally accepted -benzyne structure postulated for arynes. The sites of nucleophilic addition to arynes as predicted here are in fair agreement with expectation and experimental findings.

  3. Is it really theoretical? A review of sampling in grounded theory studies in nursing journals.

    Science.gov (United States)

    McCrae, Niall; Purssell, Edward

    2016-10-01

    Grounded theory is a distinct method of qualitative research, where core features are theoretical sampling and constant comparative analysis. However, inconsistent application of these activities has been observed in published studies. This review assessed the use of theoretical sampling in grounded theory studies in nursing journals. An adapted systematic review was conducted. Three leading nursing journals (2010-2014) were searched for studies stating grounded theory as the method. Sampling was assessed using a concise rating tool. A high proportion (86%) of the 134 articles described an iterative process of data collection and analysis. However, half of the studies did not demonstrate theoretical sampling, with many studies declaring or indicating a purposive sampling approach throughout. Specific reporting guidelines for grounded theory studies should be developed to ensure that study reports describe an iterative process of fieldwork and theoretical development. © 2016 John Wiley & Sons Ltd.

  4. Comparative theoretical and experimental study on novel tri-quinoline system and its anticancer studies

    Science.gov (United States)

    Gayathri, Kasirajan; Radhika, Ramachandran; Shankar, Ramasamy; Malathi, Mahalingam; Savithiri, Krishnaswamy; Sparkes, Hazel A.; Howard, Judith A. K.; Mohan, Palathurai Subramaniam

    2017-04-01

    A novel compound 2-chloro-3,6-bis-(quinolin-8-yloxymethyl)-quinoline 3 bearing a tri-quinoline moiety has been synthesized from 2-chloro-3,6-dimethyl quinoline 1 and 8-hydroxy quinoline 2 using dry acetone and K2CO3 as a base. 3 has been characterized by using FT-IR, FT-Raman, UV-Vis, 1H NMR, 13C NMR spectra and single crystal X-ray diffraction methods. We have also made a combined experimental and theoretical study on the molecular structure, vibrational spectra, NMR, FT-IR, FT-Raman and UV-Vis spectra of 2-chloro-3,6-bis-(quinolin-8-yloxymethyl)-quinoline. The theoretical studies of the title compound have been evaluated by using density functional theory calculations using B3LYP/6-31+G(d,p) and M06-2X/6-31+G(d,p) level of theories. The calculated theoretical values were found to be in good agreement with the experimental findings. The single crystal structure 3 crystallized in the orthorhombic space group Pna21. The compound 3 exhibits higher cytotoxicity in human cervical cancer cell lines (HeLa) than human breast cancer cell lines (MCF7).

  5. Understanding the equatorial ocean : theoretical and observational studies

    NARCIS (Netherlands)

    Rabitti, A.

    2016-01-01

    By means of a variety of approaches, the present study points out the challenges in understanding equatorial ocean dynamics (±2.5º). Standard theory, in fact, fails in accurately describing such a big portion of our ocean. This is mainly because at the equator rotation and density stratification com

  6. Theoretical studies of the dynamics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A.F. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Recent research effort has focussed on several reactions pertinent to combustion. The formation of the formyl radical from atomic hydrogen and carbon monoxide, recombination of alkyl radicals and halo-alkyl radicals with halogen atoms, and the thermal dissociation of hydrogen cyanide and acetylene have been studied by modeling. In addition, the inelastic collisions of NCO with helium have been investigated.

  7. Theoretical Studies in Chemical Kinetics - Annual Report, 1970.

    Science.gov (United States)

    Karplus, Martin

    1970-10-01

    The research performed includes (a) Alkali-Halide, Alkali-Halide (MX, M’X’) Exchange Reactions; (b) Inversion Problem; (c) Quantum Mechanics of Scattering Processes, (d) Transition State Analysis of Classical Trajectories, (e) Differential Cross Sections from Classical Trajectories; and (f) Other Studies.

  8. Theoretical studies of gene substitution, geographic variation, and speciation

    Energy Technology Data Exchange (ETDEWEB)

    Felsenstein, J.

    1977-07-31

    Brief comments are given on the results of a research program dealing with population genetics of evolutionary processes. The various subjects studied included genetic variation in clines; speciation and disruptive selection; parapatric speciation in clines; macroevolutionary laws in a model ecosystem; migration matrices; lethal allelism; estimation of number of loci in quantitative inheritance; numerical taxonomy methods; and new mutants in Lesch-Nyhan disease.

  9. Theoretical Study of Spin Crossover in 30 Iron Complexes

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2016-01-01

    Spin crossover was studied in 30 iron complexes using density functional theory to quantify the direction and magnitude of dispersion, relativistic effects, zero-point energies, and vibrational entropy. Remarkably consistent entropy−enthalpy compensation was identified. Zero-point energies favor ...

  10. Cognition in Orienteering: Theoretical Perspectives and Methods of Study.

    Science.gov (United States)

    Ottosson, Torgny

    1996-01-01

    Almost without exception, published studies on cognition in orienteering have adopted an information processing perspective involving dualism between objective and subjective worlds. An alternative, experiential framework focuses on the orienteer's conception of (or way of experiencing) the task to be accomplished, and on "affordances" (lines of…

  11. Theoretical study of bone sialoprotein in bone biomineralization

    CSIR Research Space (South Africa)

    Yang, Y

    2011-05-01

    Full Text Available , highly conserved across several vertebrates, are the proposed active sites. We selected one of these sites, i.e. (Sp) 2 E 8 , where Sp represents a phosphoserine as a model peptide to study the role of BSP. We used molecular dynamics simulations...

  12. Experimental and theoretical studies of nanoparticles of antiferromagnetic materials

    DEFF Research Database (Denmark)

    Mørup, Steen; Madsen, Daniel Esmarch; Frandsen, Cathrine

    2007-01-01

    The magnetic properties of nanoparticles of antiferromagnetic materials are reviewed. The magnetic structure is often similar to the bulk structure, but there are several examples of size-dependent magnetic structures. Owing to the small magnetic moments of antiferromagnetic nanoparticles......, the commonly used analysis of magnetization curves above the superparamagnetic blocking temperature may give erroneous results, because the distribution in magnetic moments and the magnetic anisotropy are not taken into account. We discuss how the magnetic dynamics can be studied by use of magnetization...... nanoparticles is usually negligible, and therefore such particles present a unique possibility to study exchange interactions between magnetic particles. The interactions can have a significant influence on both the magnetic dynamics and the magnetic structure. Nanoparticles can be attached with a common...

  13. Using Defects in Materials to Store Energy: a Theoretical Study

    Science.gov (United States)

    Lu, I.-Te; Bernardi, Marco

    We study the energy stored by defects in materials using density functional theory (DFT) calculations. Leveraging experimental data to estimate the energy density of defects, expressed as the defect formation energy per unit volume (units of MJ/L) or weight (units of MJ/kg), we identify candidates for high energy density storage, including tungsten, diamond, graphite, silicon, and graphene. DFT calculations are applied to these materials to study the formation energy of vacancies, interstitials, and Frenkel pairs. Our results indicate that the energy density stored by defects in these materials, with experimentally accessible non-equilibrium defect concentrations, can be higher than that of common energy storage technologies such as lithium batteries and supercapacitors. We discuss storage of solar energy and electrical energy (through ion bombardment) using defects.

  14. Theoretical study on a Miniature Joule-Thomson & Bernoulli Cryocooler

    Science.gov (United States)

    Xiong, L. Y.; Kaiser, G.; Binneberg, A.

    2004-11-01

    In this paper, a microchannel-based cryocooler consisting of a compressor, a recuperator and a cold heat exchanger has been developed to study the feasibility of cryogenic cooling by the use of Joule-Thomson effect and Bernoulli effect. A set of governing equations including Bernoulli equations and energy equations are introduced and the performance of the cooler is calculated. The influences of some working conditions and structure parameters on the performance of coolers are discussed in details.

  15. The Case Study Approach: Some Theoretical, Methodological and Applied Considerations

    Science.gov (United States)

    2013-06-01

    a large manufacturing organisation in Malaysia . An in- depth case study process (specifically a qualitative approach) was used to illustrate the...researcher closely examined four leaders from generally diverse organisations, who had embraced the learning-organisation concept in order to improve...The researchers focused on the context of learning in the workplace , and they investigated the nature of learning and development opportunities that

  16. Relativistic Multichannel Theory: Theoretical Study of C+ Autoionization States

    Institute of Scientific and Technical Information of China (English)

    XIA Dan; ZHANG Shi-Zhong; PENG Yong-Lun; LI Jia-Ming

    2003-01-01

    Based on relativistic multichannel theory, the autoionization states of C+ are studied. We calculate all the autoionization states in the energy region of 193900 ~ 231700cm"1, and the results are in good agreement with the experimental data. The energy structure we obtain will be important in the dielectronic recombination processes, which plays a key role in determining the abundance of carbon in a nebula.

  17. Theoretical study of plasma confinement by magnetic multicusp field

    Science.gov (United States)

    Khalzov, Ivan; Forest, Cary

    2014-10-01

    Plasma confinement in a magnetic multicusp field is studied numerically using both collisional particle-in-cell and isothermal two-fluid MHD codes and tested against the empirical model. The simulation domain is two-dimensional, periodic in one direction and bounded by absorbing boundaries with multicups field in other direction. First, we study the dependence of plasma loss width on plasma parameters and field strength and compare the results with the well-known empirical formula w = 2√{ρeρi } (two hybrid gyro-radius). Our results show that the loss width has the same scaling with magnetic field w ~ 1 / B , but dependence on other plasma parameters does not agree with this formula. Second, we study the plasma flow drive in the cusp region due to electric field applied by discrete electrodes. The electrode positions are optimized for achieving the highest plasma flow. Comparison with available experimental data from Madison Plasma Dynamo Experiment (MPDX) is made. The work is supported by NSF and DoE.

  18. A theoretical study on ascorbic acid dissociation in water clusters.

    Science.gov (United States)

    Demianenko, Eugeniy; Ilchenko, Mykola; Grebenyuk, Anatoliy; Lobanov, Victor; Tsendra, Oksana

    2014-03-01

    Dissociation of ascorbic acid in water has been studied by using a cluster model. It was examined by density functional theory (DFT) with the В3LYP, M06, and wB97XD functionals and a 6-311++G(d,p) basis set. The thermodynamic and kinetic characteristics of proton transfer from ascorbic acid molecule to water clusters were calculated as well as the equilibrium constants (pK a ) for the related processes. The used functionals in the DFT method together with continuum solvent models provided results close to the experimental data for the dissociation constant of ascorbic acid in aqueous solution.

  19. Role of hot electron transport in scintillators: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Huihui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Univ. (China); Li, Qi [Physical Sciences Division, IBM TJ Watson Research Center, Yorktown Heights, NY (United States); Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Lu, Xinfu; Williams, R.T. [Department of Physics, Wake Forest University, Winston Salem, NC (United States); Qian, Yiyang [College of Engineering and Applied Science, Nanjing University (China); Wu, Yuntao [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States)

    2016-10-15

    Despite recent intensive study on scintillators, several fundamental questions on scintillator properties are still unknown. In this work, we use ab-initio calculations to determine the energy dependent group velocity of the hot electrons from the electronic structures of several typical scintillators. Based on the calculated group velocities and optical phonon frequencies, a Monte-Carlo simulation of hot electron transport in scintillators is carried out to calculate the thermalization time and diffusion range in selected scintillators. Our simulations provide physical insights on a recent trend of improved proportionality and light yield from mixed halide scintillators. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Theoretical Study on Catalyst Activation of Palladacycles in Heck Reaction

    Institute of Scientific and Technical Information of China (English)

    WANG Chen; FU Yao; LI Zhe; GUO Qing-Xiang

    2008-01-01

    A computational study with the B3PW91 density functional theory was carried out on the activation process of palladacycles as catalysts in the Heck reaction.Two possible pathways (i.e.anion reductive cleavage of the Pd-C bond,and olefin insertion into the Pd-C bond followed by β-H elimination)were taken into consideration.Computational results indicate that the palladacycles are activated via olefin insertion into the Pd-C bond followed by β-H elimination in the reaction conditions.

  1. Theoretical studies of the reaction e+ e- --> K+ K- gamma

    CERN Document Server

    Lesniak, Leonard

    2016-01-01

    We present studies of the e+ e- --> K+ K- gamma reaction for the e+e- center-of-mass energies close to the phi(1020) meson mass. Different mechanisms leading to the final state are considered. The strong interaction amplitudes of the K+K- pairs in the S-wave are taken into account. In addition, the photon emission in the initial state, the final state radiation effects and all the possible interference terms are included in the transition matrix elements. The K+K- effective mass distributions and the angular dependence of the reaction cross-section are calculated.

  2. THEORETICAL STUDY OF PODOPHYLLOTOXIN AND QUINOLONE ANALOGUES AS ANTITUMOR DRUGS

    Institute of Scientific and Technical Information of China (English)

    何峰; 戴颖仪; 朱孝峰; 黄爱东; 张翎; 颜少平; 刘宗潮

    2002-01-01

    Objective: To study the active sites of podophyllotoxin derivatives. Methods: Some podophyllotoxin derivatives were analyzed by quantum and mechanics method. Results: Some information was given according to the calculation results about HOMO and LUMO electron density. The C-4 position is the position for effective modification. The B ring and E ring are important active centers. Conclusion: The hole of positive charge in B ring easily combines with an acceptor within the molecular. Some quinolones with similar electronic construction to podophyllotoxin may have antitumor activity.

  3. Exergy performance of different space heating systems: A theoretical study

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems......, the effects of floor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans. The low temperature floor heating system...

  4. Keto-enol tautomerism in estrogen hormone. A theoretical study

    Science.gov (United States)

    Jameh-Bozorghi, Saeed; Shirani, Hossein; Ghaempanah, Aram; Ghapanvari, Hamed

    2015-01-01

    The HF/6-311+G** calculation was used to investigate Keto-Enol tautomerism of Estrogen Hormone. Molecular geometries of keto, enol and transition state of this reaction were optimized and NBO calculations were performed. These calculation results showed that activation energy (Ea) of Keto-Enol tautomerization of Estrogen is 118.65 Kcal mol-1. Energetic study at B3LYP/6-311+G** level of theory revealed that keto tautomer is more stable structure. NBO analysis results have a good agreements with optimized geometries and experimental data.

  5. A theoretical study on interaction of proline with gold cluster

    Indian Academy of Sciences (India)

    Sandhya Rai; N V Suresh Kumar; Harjinder Singh

    2012-06-01

    Interaction of proline with gold cluster was studied using density functional theory (DFT). Two types of mixed basis sets UB3LYP/6-311++G ∪ LANL2MB and UB3LYP/6-311++G ∪ LANL2DZ were used for optimization of complex structures. Proline interacts with gold cluster either through one anchor bond, N–Au or an anchor bond O–Au associated with a non-conventional O–H…Au hydrogen bond. Among these interactions, higher tendency for interaction is seen with Au cluster through amide terminal. Natural bond orbital analysis (NBO) is used to substantiate the results.

  6. Theoretical and methodological studies of continuous microbial bioreactors.

    Science.gov (United States)

    Toda, Kiyoshi

    2003-08-01

    This article reviews most of the author's studies on process development and reactor design for continuous microbial reactions. (1) Enzyme reactions of growing and non-growing microbial cells immobilized in agar gel beads were analyzed pertaining to the effects of external and internal diffusion of substrate on reaction kinetics. (2) Experimental correlations of production rates of beta-fructosidase and acid phosphatase with dilution rate of continuous culture were simulated based on an operon model for enzyme regulation. (3) Population dynamics of an amylase-producing bacteria and their mutant were discussed in relation to enzyme productivity in a continuous culture of spore-forming bacteria. (4) Plasmid mobilization in a mixed population of donor, recipient, and helper cells was investigated in a continuous culture as a model study of accidental release of a genetically modified plasmid into a natural environment. (5) A production rate increase of up to 100-fold was achieved by cell-recycle culturing of continuous acetic acid fermentation using a filter module with a hollow fiber membrane. (6) The feasibility of a continuous surface culture for the biooxidation of organic substances was ascribed to an enhanced oxygen absorption rate in the presence of a microbial film on a liquid surface. (7) Simultaneous separation of inhibitory products using an electrodialysis module during some organic acid fermentations was effective for increasing production in a continuous culture.

  7. Singlet oxygen reactions with flavonoids. A theoretical-experimental study.

    Directory of Open Access Journals (Sweden)

    Javier Morales

    Full Text Available Detection of singlet oxygen emission, λ(max = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T, and the reactive reaction rate constant, k(r, for the reaction between singlet oxygen and several flavonoids. Values of k(T determined in deuterated water, ranging from 2.4×10(7 M(-1 s(-1 to 13.4×10(7 M(-1 s(-1, for rutin and morin, respectively, and the values measured for k(r, ranging from 2.8×10(5 M(-1 s(-1 to 65.7×10(5 M(-1 s(-1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.

  8. Singlet Oxygen Reactions with Flavonoids. A Theoretical – Experimental Study

    Science.gov (United States)

    Morales, Javier; Günther, Germán; Zanocco, Antonio L.; Lemp, Else

    2012-01-01

    Detection of singlet oxygen emission, λmax = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, kT, and the reactive reaction rate constant, kr, for the reaction between singlet oxygen and several flavonoids. Values of kT determined in deuterated water, ranging from 2.4×107 M−1s−1 to 13.4×107 M−1s−1, for rutin and morin, respectively, and the values measured for kr, ranging from 2.8×105 M−1s−1 to 65.7×105 M−1s−1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid. PMID:22802966

  9. A theoretical study of mechanical stability of arteries.

    Science.gov (United States)

    Rachev, Alexander

    2009-05-01

    This study proposes a mathematical model for studying stability of arteries subjected to a longitudinal extension and a periodic pressure. An artery was considered as a straight composite beam comprised of an external thick-walled tube and a fluid core. The dynamic criterion for stability was used, based on analyzing the small transverse vibrations superposed on the finite deformation of the vessel under static load. In contrast to the case of a static pressurization, in which buckling is only possible if the load produces a critical axial compressive force, a loss of stability of arteries under periodic pressure occurs under many combinations of load parameters. Instability occurs as a parametric resonance characterized by an exponential increase in the amplitude of transverse vibrations over several bands of pressure frequencies. The effects of load parameters were analyzed on the basis of the results for a dynamic and static stability of a rabbit thoracic aorta. Under normal physiological loads the artery is in a stable configuration. Static instability occurs under high distending pressures and low longitudinal stretch ratios. When the artery is subjected to periodic pressure, an independent increase in the mean pressure, amplitude of the periodic pressure, or frequency, most often, but not always, increases the risk of stability loss. In contrary, an increase in longitudinal stretch ratio most likely, but not certain, stabilizes the vessel. It was shown that adaptive geometrical remodeling due to an increase in mean pressure and flow does not affect artery stability.

  10. Theoretical Study of Interplay Between Superconductivity and Itinerant Ferromagnetism

    Directory of Open Access Journals (Sweden)

    Subhra Kakani

    2014-08-01

    Full Text Available Following Green’s function technique and equation of motion method, the coexistence of superconductivity (SC and itinerant ferromagnetism (FM is investigated in a single band homogenous system. Self consistent equations for SC and FM order parameters, Δ and m or I respectively are derived. It is shown that there generally exists a coexistent (Δ ≠ 0, and m or I ≠ 0 solutions to the coupled equations of the order parameter in the, temperature range 0 < T < min(TC, TFM, where TC and TFM are respectively the superconducting and ferromagnetic transition temperatures. Expressions for specific heat, density of states, free energy and critical field are derived. The specific heat has linear temperature dependence as opposed to the exponential decrease in the BCS theory. The density of states for a finite m increases as opposed to that of a ferromagnetic metal. Free energy study reveals that FMSC state has lowest energy than the normal FM state and therefore realized at low enough temperature .Effect of small external field is also studied. The theory is applied to explain the observations in uranium based intermetallics systems UCoGe and UIr. The agreement between theory and experiments is quite encouraging.

  11. Theoretical study about L-arginine complexes formation with thiotriazolin

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2017-02-01

    Full Text Available Brain vascular diseases are one of the leading causes of morbidity, mortality and disability of population in the industrialized countries of the world. An important element of this problem’s solution is the creation of new highly effective and safe drugs, which would lead to mortality reduction, to increase in life expectancy and quality of life. Therefore it is interesting to create a new combined drug based on L-arginine and thiotriazolin. Purpose of the study: to consider the possible structure and energy characteristics of complexes formed by L-arginine, 3-methyl-1,2,4-triazolyl-5-thioacetate (MTTA and morpholine. Calculation method. The initial approximation to the complex geometry was obtained using molecular docking with the help of AutoDock Vina program. The obtained ternary complexes were pre-optimized by semi-empirical PM7 method with modeling the impact of the environment by COSMO method. The calculations were carried out using MOPAC2012 program. Then they were optimized by B97-D3/SVP + COSMO (Water dispersion-corrected DFT-D with geometrical spreading correction on insufficiency of gCP basis set. A more accurate calculation of the solvation energy was conducted by SMD. The calculations by density functional method were carried out using the ORCA 3.0.3 software. Energy complex formation in solution was calculated as the difference of the Gibbs free energy of the solvated complex and its individual components. Results. Quantum chemical calculations show, that thiotriazolin and L-arginine are able to form ternary complexes, where molecules are linked by multiple hydrogen bonds. The calculation data suggest, that studied complexes are thermodynamically unstable in solution. The energies of them are positive, but rather low despite charge gain of a number of intermolecular hydrogen bonds. Finding. Based on the results of the conducted quantum-chemical study of a three components system (MTTA, morpholine, and L-arginine it is possible

  12. Theoretical Study of Ion Transport in the Gramicidin a Channel

    Science.gov (United States)

    Roux, Benoi T.

    Modern techniques are used to study the permeation process of ions through the gramicidin A channel. The conformation of the gramicidin molecule is investigated experimentally in dimethylsulfoxide/acetone using the techniques of two-dimensional NMR spectroscopy. An empirical energy function is developed from ab initio calculations to represent the interaction of Li^{+}, Na^{+} and K^ {+} ions with the backbone of polypeptides; the parameters are tested in dense systems with free energy simulations. The dynamics of the gramicidin A channel dimer in the absence of water and ions is studied in the harmonic approximation by a vibrational analysis of the atomic motions relative to their equilibrium positions. The behavior of the water molecules in the channel is studied with a molecular dynamics simulation of a fully solvated Gramicidin A dimer embedded in a model membrane. the potential of mean force and the mobility of Na^{+ }, K^{+} and water are calculated in the interior of a gramicidin-like periodic poly (L,D)-alanine beta -helix. The potential of mean force of Na^ {+} ion along the axis of the gramicidin A channel is calculated with a molecular dynamics simulation of a fully solvated Gramicidin A dimer embedded in a model membrane; the gramicidin channel is modeled as a right -handed head-to-head beta-helix dimer. Binding sites are found at the extremities of the channel; no large activation energy barrier is caused by the dehydration process at the entrance of the channel. In the appendices, Statistical Mechanical theories are used to investigate the equilibrium and dynamical properties of the liquid state. A theory of aqueous solutions is used to provide an interpretation for the Born model of ion hydration at the molecular level; the Born radius of hydration is interpreted in terms of the first peak in the solute-solvent radial distribution function. We show that some proposed closures for the RISM equation of Chandler and Andersen possess no solution because

  13. An in-depth analysis of theoretical frameworks for the study of care coordination1

    OpenAIRE

    Van Houdt, Sabine; Heyrman, Jan; Vanhaecht, Kris; Sermeus, Walter; De Lepeleire, Jan

    2013-01-01

    Introduction Complex chronic conditions often require long-term care from various healthcare professionals. Thus, maintaining quality care requires care coordination. Concepts for the study of care coordination require clarification to develop, study and evaluate coordination strategies. In 2007, the Agency for Healthcare Research and Quality defined care coordination and proposed five theoretical frameworks for exploring care coordination. This study aimed to update current theoretical frame...

  14. An in-depth analysis of theoretical frameworks for the study of care coordination

    OpenAIRE

    Sabine Van Houdt; Jan Heyrman; Kris Vanhaecht; Walter Sermeus; Jan De Lepeleire

    2013-01-01

    Introduction: Complex chronic conditions often require long-term care from various healthcare professionals. Thus, maintaining quality care requires care coordination. Concepts for the study of care coordination require clarification to develop, study and evaluate coordination strategies. In 2007, the Agency for Healthcare Research and Quality defined care coordination and proposed five theoretical frameworks for exploring care coordination. This study aimed to update current theoretical fram...

  15. Theoretical Study of Sodium-Water Surface Reaction Mechanism

    Science.gov (United States)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki; Hashimoto, Kenro

    Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using the ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule on the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. It was found that the estimated rate constant of the former was much larger than the latter. The results are the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by Japan Atomic Energy Agency (JAEA) toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR).

  16. Theoretical Studies on Defects of Kaolinite in Clays

    Institute of Scientific and Technical Information of China (English)

    HE Man-Chao; FANG Zhi-Jie; ZHANG Ping

    2009-01-01

    Using the first-principles methods, we study the formation energetics and charge doping properties of the extrinsic substitutional defects in kaolinite. Especially, we choose Be, Mg, Ca, Fe, Cr, Mn, Cu, Zn as extrinsic defects to substitute for AI atoms. By systematically calculating the impurity formation energies and transition energy levels, we find that all group-Ⅱ defects introduce the relative shallow transition energy levels in kaolinite. Among them, MgAI has the shallowest transition energy leve! at 0.08 eV above the valence band maximum. The transitionelemental defects ReAl, CrAl and MnAl are found to have relative low formation energies, suggesting their easy formation in kaolinite under natural surrounding conditions. Our calculations show that the defects CuAl and ZnAl have the high formation energies and deep transition energy levels, which exclude the possibility of their formation in natural kaolinite.

  17. Exergy performance of different space heating systems: A theoretical study

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems......, the effects of floor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans. The low temperature floor heating system...... performed better than other systems in terms of exergy demand. The use of boiler as a heat source for a low-exergy floor heating system creates a mismatch in the exergy supply and demand. Although an air-source heat pump could be a better heat source, this depends on the origin of the electricity supplied...

  18. Experiment and Theoretical Analysis Study of ETFE Inflatable Tubes

    Directory of Open Access Journals (Sweden)

    YanLi He

    2014-01-01

    Full Text Available The load bearing capacity of an ETFE (ethylene-tetra-fluoro-ethylene inflatable tube is tested in this paper, and a comparative study of two wrinkling theories, the bifurcation theory and the tension field theory, is carried out for wrinkling analysis of the ETFE inflatable tube. Results obtained from the bifurcation theory and experiment reveal the limitations of tension field theory on the wrinkling analysis. The load-displacement curves of inflatable beams under bending load are obtained and compared with the experimental results; curves obtained using the bifurcation theory show coincidence with experimental curves, but the curves obtained using the tension field theory have noticeable deviations between calculated and experimental results.

  19. Theoretical Study on Ion Escape in Martian Atmosphere

    Institute of Scientific and Technical Information of China (English)

    SHI Jian-Kui; LIU Zhen-Xing; Klaus TORKAR; Tielong ZHANG

    2007-01-01

    @@ Based on the observation that Martian magnetic moment is gradually reducing from the ancient to the present,we investigate the O+ ion flux distribution along magnetic field lines and the ion escaping flux in Martian tail with different assumed Martian magnetic moments. The results show that the O+ ion flux along magnetic field lines decreases with distance from Mars; the ion flux along the field line decreases more quickly if the magnetic moment is larger; the larger the magnetic moment, the smaller the ion escaping flux in the Martian tail. The ion escaping flux depends on Z-coordinate in the Martian tail. With decrease of the magnetic moment, the ion escaping flux in the Martian tail increases. The results are significant for studying the water loss from Mars surface.

  20. THEORETICAL STUDY OF THE ABSORPTION SPECTRA OF TRIAMTERENE

    Directory of Open Access Journals (Sweden)

    M. Ramegowda

    2013-03-01

    Full Text Available ABSTRACT: Time dependent density functional theory (TDDFT calculations have been carried out to study the electronic structure and the UV absorption spectra of Triamterene. The UV spectra have been investigated with inclusion of solvent effect. The B3LYP functional with a 6-31G(d, p basis sets have been used to compute absorption energies. The solvent effects have been described within the polarizable continuum model (PCM. The geometries are optimized using density functional theory (DFT with B3LYP functional combined with 6-31G(d, p basis sets. The vertical absorption energies both in gas phase and in polar solvents such as ethanol, methanol and water were computed. Red-shift of the absorption maximum in the polar solvents is discussed in terms of electrostatic interaction energy, oscillator strength and dipole moment.

  1. Study of nonplanarity of peptide bond using theoretical calculations.

    Science.gov (United States)

    Selvarengan, P; Kolandaivel, P

    2005-08-01

    The conformational dependence of nonplanarity of the peptide bond of formylglycinamide has been studied using ab initio and density functional theory methods. Hartree-Fock self-consistent field theory (HF), Møller-Plesset perturbation theory (MP2) of ab initio and B3LYP level of theory of dft method have been used employing 6-31++G** basis set. The MP2 method predicts better results than HF and B3LYP levels of theory for conformational stability dependence of nonplanarity. Systematic dependence of planarity deviation has been observed in MP2 theory. The chemical hardness values successfully predict the conformational region, but fail to obey maximum hardness principle. It is concluded that the most reliable dft method could not successfully predict the planarity of peptide bond in comparison with electron correlated method of ab initio method.

  2. Experimental and theoretical studies on visible light attenuation in water

    CERN Document Server

    Simpson, A; Cho, H J; Liu, H

    2014-01-01

    In this study we describe lab experiments on determining the above water reflectance Rrs coefficient, and the water attenuation coefficient Kd for fresh water. Different types of screens (totally absorbent, gray, etc.) were submerged in water (0-0.6 m) and illuminated from outside. The spectral density of the water leaving radiance was measured for different depths. The results were ran by a code which took into account the geometry of the incident irradiation, the geometry of the screen under water, and boundary conditions at the water surface provided by the radiation transfer theory. From the experimental data and our model we obtain the spectral distribution of the attenuation coefficient for fresh water and compared it with other data in literature. These experiments, performed in the Nonlinear Wave Lab at ERAU# represent just a preliminary calibration of the experimental protocol. More tests with water of different degrees of turbidity, and possibly wave filed at the water surface are in progress and wi...

  3. Polymers' surface interactions with molten iron: A theoretical study

    Science.gov (United States)

    Assadi, M. Hussein N.; Sahajwalla, Veena

    2014-10-01

    Environmental concerns are the chief drive for more innovative recycling techniques for end-of-life polymeric products. One attractive option is taking advantage of C and H content of polymeric waste in steelmaking industry. In this work, we examined the interaction of two high production polymers i.e. polyurethane and polysulfide with molten iron using ab initio molecular dynamics simulation. We demonstrate that both polymers can be used as carburizers for molten iron. Additionally, we found that light weight H2 and CHx molecules were released as by-products of the polymer-molten iron interaction. The outcomes of this study will have applications in the carburization of molten iron during ladle metallurgy and waste plastic injection in electric arc furnace.

  4. Theoretical studies of the transport property of oligosilane

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The transport mechanisms of four-conjugated systems were comparatively studied by combining ATK and Gaussian 03 calculations.It was found that the charge-doped oligosilane behaved in a different way from the boron doped and phosphorus doped oligosilanes in terms of the transmission property.The charge-doped oligosilane showed almost no conductivity owing to the damage of the electron transfer path by charge-doping.By contrast,the boron doped and phosphorus doped oligosilanes were demonstrated to be good semiconductors and NDR behavior was observed for them.This is a reasonable result after the analysis of the transmission spectra,MPSH states,energy gap,conjugation effect,and scattering effect.

  5. Hydroxyl radical induced transformation of phenylurea herbicides: A theoretical study

    Science.gov (United States)

    Mile, Viktória; Harsányi, Ildikó; Kovács, Krisztina; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László

    2017-03-01

    Aromatic ring hydroxylation reactions occurring during radiolysis of aqueous solutions are studied on the example of phenylurea herbicides by Density Functional Theory calculations. The effect of the aqueous media is taken into account by using the Solvation Model Based on Density model. Hydroxyl radical adds to the ring because the activation free energies (0.4-47.2 kJ mol-1) are low and also the Gibbs free energies have high negative values ((-27.4) to (-5.9) kJ mol-1). According to the calculations in most of cases the ortho- and para-addition is preferred in agreement with the experimental results. In these reactions hydroxycyclohexadienyl type radicals form. In a second type reaction, when loss of chlorine atom takes place, OH/Cl substitution occurs without cyclohexadienyl type intermediate.

  6. Theoretical Study of Elastic Properties of Tungsten Disilicide

    Institute of Scientific and Technical Information of China (English)

    XU Guo-Liang; ZHANG Dong-Ling; XIA Yao-Zheng; LIU Xue-Feng; LIU Yu-Fang; ZHANG Xian-Zhou

    2009-01-01

    @@ The plane-wave pseudopotential method using the generalized gradient approximation within the framework of density functional theory is applied to analyse the lattice parameters, elastic constants, bulk moduli, shear moduli and Young's moduli of WSi2. The quasi-harmonic Debye model, using a set of total energy versus cell volume obtained with the plane-wave pseudopotential method, is applied to the study of the elastic properties and vibrational effects. The athermal elastic constants of WSi2 are calculated as a function of pressure up to 35 GPa. The relationship between bulk modulus and temperature up to 1200K is also obtained. Moreover, the Debye temperature is determined from the non-equilibrium Gibbs function. The calculated results are in good agreement with the experimental data.

  7. Homogenisation of linear electromagnetic materials. Theoretical and numerical studies

    CERN Document Server

    MacKay, T G

    2001-01-01

    of the real and imaginary parts of the constitutive dyadics do not coincide, is demonstrated. Additionally, orthorhombic biaxial structures are presented which can arise even though the distinguished axes of the component phases are non-orthogonal. Secondly, the strong-property-fluctuation theory (SPFT) is developed for bianisotropic materials, under the bilocal approximation. The SPFT represents a major advance over traditional approaches to homogenisation, such as provided by the Maxwell Garnett and Bruggeman formalisms, by accommodating a more comprehensive description of the distributional statistics of the component phases. In particular, the SPFT takes account of scattering losses and in its zero-order implementation the SPFT reduces to the Bruggeman homogenisation formalism. Detailed numerical studies are presented which highlight the role of the correlation length, as well as the component phase topology and orientation diversity. Also, the choice of covariance function is demonstrated to exert only a...

  8. A theoretical study of radon measurement with activated charcoal

    Science.gov (United States)

    Nikezić, Dragoslav; Urošević, Vlade

    1998-02-01

    Diffusion of radon in a bed of activated charcoal is described by diffusion equations. An analytical solution of these equations is presented for the case of constant radon concentration in the atmosphere. The solutions are given separately for short term and long term exposure. An analytical form of the calibration constant f for long term exposure and constant radon concentration in air, was found to be f=kp {D}/{λ}S {sinh{λ}/{D}l }/{cosh{λ}/{D}l } A numerical method and computer code based on the method of finite elements is developed for the case of variable radon concentration in air. This program simulates radon adsorption by the activated charcoal bed, enabling determination of sensitivity. The dependence of sensitivity on different parameters, such as temperature, thickness of the charcoal, etc. was studied using this program.

  9. The theoretical studies of piezoresistive effect in diamond films

    Institute of Scientific and Technical Information of China (English)

    KONG; Chunyang

    2002-01-01

    [1]Jiang, X., Schiffmann, K., Klages, C. P., Nucleation and initial growth phase of diamond thin films on(100)silicon, Phys. Rev., 1994, B50(12): 8402-8410.[2]Jiang, X., Klages, C. P., Zachai, R. et al., Epitaxial diamond thin films on(100)silicon substrate, Appl. Phys. Lett., 1993, 62(26): 3438-3440.[3]Deguchi, M., Kitabatake, M., Hirao, T. et al., PR properties of chemical-vapor-deposited p-type diamond strain-gauges fabricared on diaphragm structure, Diamond Relat. Mater., 1996,5: 728-731.[4]Wang, W. L., Liao, K. J., Feng, B. et al., PR of p-type heteroepitaxial diamond films on Si(100), Diamond Relat. Matet., 1998, 7: 528-532.[5]Wang, W. L., Jiang, X., Taube, K. et al., PR of polycrystalline p-type diamond films of various doping levels at different temperatures, J. Appl. Phys., 1997, 82(2): 729-732.[6]Fang, L., Wang, W. L., Ding, P. D. et al., Study on the PR effect of crystalline and polycrystalline diamond under uniaxial strains, J. Appl. Phys., 1999, 86(9): 5185-5193.[7]Fang, L., Wang, W. L., Ding, P. D. et al., Study on the PR effect in p-type polycrystalline diamond, Science in China, 1999, 42(7): 769-778.[8]Aslam, M., Taher, I., Masood, A., Piezoresistivity invapor deposited diamond films, Appl. Phys. Lett., 1992, 60: 2923-2925.[9]Sondheimer, E. H., The mean free path of electrons in metals, Advan. Phys., 1952, 1: 1-42.[10]Fuchs, K., The conductivity of thin metallic films according to the electron theory of metals, Proc. Cambridge Phil. Soc., 1938, 34: 100-108.[11]Xue, Z. Q., Wu, Q. D., Li, J., Physics of Thin Films(in Chinese), 2nd ed., Beijing: Publishing House of Electronics Industry, 1991, 282-284.[12]Beer, A. C., Willardson, R. K., Hall and transverse magnetoresistance effects for warped bands and mixed scattering, Phys. Rev., 1958, 110: 1286-1294.[13]Kenneth, J. R., William, J. L., High-field magnetoresistance of semiconducting diamond, Phys. Rev., 1972, B6: 4588-4592.

  10. Theoretical studies of excited state 1,3 dipolar cycloadditions

    Science.gov (United States)

    Belluccci, Michael A.

    The 1,3 dipolar photocycloaddition reaction between 3-hydroxy-4',5,7-trimethoxyflavone (3-HTMF) and methyl cinnamate is investigated in this work. Since its inception in 2004 [JACS, 124, 13260 (2004)], this reaction remains at the forefront in the synthetic design of the rocaglamide natural products. The reaction is multi-faceted in that it involves multiple excited states and is contingent upon excited state intramolecular proton transfer (ESIPT) in 3-HTMF. Given the complexity of the reaction, there remain many questions regarding the underlying mechanism. Consequently, throughout this work we investigate the mechanism of the reaction along with a number of other properties that directly influence it. To investigate the photocycloaddition reaction, we began by studying the effects of different solvent environments on the ESIPT reaction in 3-hydroxyflavone since this underlying reaction is sensitive to the solvent environment and directly influences the cycloaddition. To study the ESIPT reaction, we developed a parallel multi-level genetic program to fit accurate empirical valence bond (EVB) potentials to ab initio data. We found that simulations with our EVB potentials accurately reproduced experimentally determined reaction rates, fluorescence spectra, and vibrational frequency spectra in all solvents. Furthermore, we found that the ultrafast ESIPT process results from a combination of ballistic transfer and intramolecular vibrational redistribution. To investigate the cycloaddition reaction mechanism, we utilized the string method to obtain minimum energy paths on the ab initio potential. These calculations demonstrated that the reaction can proceed through formation of an exciplex in the S1 state, followed by a non-adiabatic transition to the ground state. In addition, we investigated the enantioselective catalysis of the reaction using alpha,alpha,alpha',alpha'-tetraaryl-1,3-dioxolan-4,5-dimethanol alcohol (TADDOL). We found that TADDOL lowered the energy

  11. Theoretical study on the reactivity of sulfate species with hydrocarbons

    Science.gov (United States)

    Ma, Q.; Ellis, G.S.; Amrani, A.; Zhang, T.; Tang, Y.

    2008-01-01

    The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions SO42 - are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of SO42 - is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions (HSO4-) and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive. Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of HSO4- relative to SO42 -. However, in formation waters typically encountered in petroleum reservoirs, the concentration of HSO4- is likely to be significantly lower than the levels

  12. Theoretical study of the relativistic molecular rotational g-tensor

    Energy Technology Data Exchange (ETDEWEB)

    Aucar, I. Agustín, E-mail: agustin.aucar@conicet.gov.ar; Gomez, Sergio S., E-mail: ssgomez@exa.unne.edu.ar [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  13. REGIONAL INNOVATION SYSTEM: THEORETICAL APPROACH AND EMPIRICAL STUDY OF CHINA

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-guang; CHEN Cai

    2003-01-01

    Regional innovation system (RIS) is the new research field of modern economic geography in the age of knowledge economy. Based on the researches of regional economic geography, the authors of the paper consider RIS as the integrated and interactive systems with innovation milieu, elements, units, structure and functions. Five aspects of evaluation indicators including innovation input scale and output scale, innovation milieu transition, innovation in-ner operation, as well as innovation outer impact are worked out for final indicators of RIS scale and quality. Accord-ing to different RIS situations, three patterns of independent, imitative and cooperative development are put forward for choosing. At the latter part of the paper, we select 12 provincial regions (including three municipalities and one au-tonomous region) of China for empirical study. The results show that there exists great difference among each region from the aspects of innovation scale and quality mainly owning to the diversification of RIS social and economic mi-lieu, the major innovative units of enterprises, universities and R&D institutes. Finally, the paper points out the innova-tion development decisions for each region.

  14. Study of microbial adhesion on some wood species: theoretical prediction.

    Science.gov (United States)

    Soumya, El abed; Mohamed, Mostakim; Fatimazahra, Berguadi; Hassan, Latrache; Abdellah, Houari; Fatima, Hamadi; Saad, Ibnsouda koraichi

    2011-01-01

    The initial interaction between microorganisms and substrata is mediated by physicochemical forces, which in turn originate from the physicochemical surface properties of both interacting phases. In this context, we have determined the physicochemical proprieties of all microorganisms isolated from cedar wood decay in an old monument at the Medina of Fez-Morocco. The cedar wood was also assayed in terms of hydrophobicity and electron dono-r-electron acceptor (acid-base) properties. Investigations of these two aspects were performed by contact angles measurements via sessile drop technique. Except Bacillus subtilis strain (deltaGiwi 0) and can therefore be considered as hydrophilic while cedar wood revealed a hydrophobic character (deltaGiwi = -58.81 mi m(-2)). All microbial strains were predominantly electron donor. The results show also that all strains were weak electron acceptors. Cedar wood exhibits a weak electron donor/acceptor character. Based on the thermodynamic approach, the Lifshitz-van der Waals interaction free energy, the acid-basic interactions free energy, the total interaction free energy between the microbial cells and six different wood species (cedar, oak, beech, ash, pine and teak) in aqueous media was calculated and used to predict which microbial strains have a higher ability to adhere to wooden surfaces. Except of weak wood, for all the situations studied, generalizations concerning the adhesion of the microbiata on wood species cannot be made and the microbial adhesion on wooden substrata was dependent on wood species and microorganismstested.

  15. A theoretical study on vomitoxin and its tautomers

    Energy Technology Data Exchange (ETDEWEB)

    Tuerker, Lemi [Middle East Technical University, Department of Chemistry, 06531 Ankara (Turkey)], E-mail: lturker@metu.edu.tr; Guemues, Selcuk [Middle East Technical University, Department of Chemistry, 06531 Ankara (Turkey); Yuezuencue Yil Universitesi, Kimya Boeluemue, 65080 Kampues, Van (Turkey)

    2009-04-15

    In the present work, the structural and electronic properties of vomitoxin (deoxynivalenol, a mycotoxin) and all of its possible tautomers have been investigated by the application of B3LYP/6-31G(d,p) type quantum chemical calculations. According to the results of the calculations, tautomer V{sub 4} has been found to be the most stable one among all the structures both in the gas and aqueous phases. The calculations also indicated that, vomitoxin and V{sub 2} possess the deepest and the highest lying HOMO levels, respectively. Hence, V{sub 2} is to be more susceptible to oxidations than the others. On the other hand, V{sub 5}(S) and vomitoxin have the lowest and the next lowest LUMO energies, respectively. Whereas, V{sub 1} and V{sub 2} possess quite highly lying (within the group) LUMO energy levels which result in comparatively unfavorable reduction potentials. Some important geometrical and physicochemical properties and the calculated IR spectra of the systems have also been reported in the study.

  16. Theoretical study for the interlamellar aminoalcohol functionalization of kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xin-Juan [Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Li, Huiquan, E-mail: hqli@home.ipe.ac.cn [Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Qinfu; Cheng, Hongfei [School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 (China); He, Peng; Li, Shaopeng [Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-08-30

    Graphical abstract: - Highlights: • The results indicated that aminoalcohols exist with a mixing of intercalation and grafting. • Aminoalcohols can form strong hydrogen bonds with Al octahedral sheet. • The interaction between aminoalcohols and Si tetrahedral sheet are mainly attributed by vdW force. • Aminoalcohols grafting or intercalating on kaolinite have strong reactivity as electron donors. - Abstract: Fundamental problems related to aminoalcohols intercalating on kaolinite were investigated by using density functional theory method. This study examines the adsorption modes of diethanolamine and triethanolamine on kaolinite, the role of hydrogen bonds and van der Waals (vdW) forces between aminoalcohols and interlayer of kaolinite, and the change of molecular orbital occupancies of functionalized kaolinite. Results show that functionalized kaolinite is physically intercalated and covalently grafted by aminoalcohols. Non-covalent interaction analysis provides a visualized description that intercalated aminoalcohols form strong hydrogen bonds with Al octahedral sheet, and the interaction between aminoalcohols and Si tetrahedral sheet is mainly attributed to weak vdW force. The analysis of molecular orbital occupancies for kaolinite complex showed that the functionalized kaolinite has strong chemical reactivity as electron donors on the sites of grafted or intercalated aminoalcohols for further chemical reaction with other materials.

  17. Graphene to fluorographene and fluorographane: a theoretical study.

    Science.gov (United States)

    Paupitz, R; Autreto, P A S; Legoas, S B; Srinivasan, S Goverapet; van Duin, A C T; Galvão, D S

    2013-01-25

    We report here a fully reactive molecular dynamics study on the structural and dynamical aspects of the fluorination of graphene membranes (fluorographene). Our results show that fluorination tends to produce defective areas on the graphene membranes with significant distortions of carbon-carbon bonds. Depending on the amount of incorporated fluorine atoms, large membrane holes were observed due to carbon atom losses. These results may explain the broad distribution of the structural lattice parameter values experimentally observed. We have also investigated the effects of mixing hydrogen and fluorine atoms on the graphene functionalization. Our results show that, when in small amounts, the presence of hydrogen atoms produces a significant decrease in the rate of fluorine incorporation onto the membrane. On the other hand, when fluorine is the minority element, it produces a significant catalytic effect on the rate of hydrogen incorporation. We have also observed the spontaneous formation of new hybrid structures with different stable configurations (chair-like, zigzag-like and boat-like) which we named fluorographane.

  18. Theoretical studies on energetic materials bearing pentaflurosulphyl (SF5) groups

    Indian Academy of Sciences (India)

    Li Xiao-Hong; Cui Hong-Ling; Ju Wei-Wei; Li Tong-Wei; Zhang Rui-Zhou; Yong Yong-Liang

    2014-07-01

    Heats of formation (HOF) for a series of energetic materials containing SF5 group were studied by density functional theory. Results show that HOFs increase with the augmention of field effects of substituted groups. Addition of furazan or furoxan ring increases HOF of the energetic materials. All the SF5-containing compounds have densities which are ∼0.19 g/cm3 higher than those containing -NH2 group. S-F bond is the trigger bond for the thermolysis process in the title compounds and bond dissociation energies of the weakest bonds range from 351.1 to 388.3 kJ/mol. Detonation velocities (D) and pressures (P) are evaluated by Kamlet-Jacobs equations with the calculated densities and HOFs. Results show that increasing the amount of furazan rings results in a larger D and P. Considering the detonation performance and thermal stability, eight compounds may be considered as potential candidates for high-energy density materials.

  19. Theoretical study of nonlinear optical properties of some azoic dyes

    Directory of Open Access Journals (Sweden)

    Hadji Djebar

    2015-07-01

    Full Text Available In this paper we presented semi-empirical PM3, ab-initio (HF, MP2 and DFT (B3LYP, B3PW91 calculation of the dipole moment, polarizability, and first hyperpolarizability of some azoics dyes derivatives which have electron donor and electron acceptor groups on either sides. The first hyperpolarizability of these molecules was calculated with PM3 method, HF/6-31G**, HF/6-31+G**, HF/6-31++G**, DFT with B3LYP and B3PW91 functional, and MP2/6-31++G** based on finite field approach using GAUSSIAN03 program. The effects of the intramolecular charge transfer (ICT from the donor to the acceptor groups on the molecular geometry and atomic charge distribution of these NLO chromophores are derived from its HF, MP2 and DFT calculations. The variation of this property has also been correlated to E (HOMO-LUMO gap and to the nature of the highest occupied molecular orbital HOMO and the lowest unoccupied molecular orbital HOMO. The study reveals that the azoics dyes derivatives have large hyperpolarizability values; hence they may be used in the development of nonlinear optical materials.

  20. Theoretical kinetic study of the low temperature oxidation of ethanol

    CERN Document Server

    Fournet, René; Bounaceur, Roda; Molière, Michel

    2009-01-01

    In order to improve the understanding of the low temperature combustion of ethanol, high-level ab initio calculations were performed for elementary reactions involving hydroxyethylperoxy radicals. These radicals come from the addition of hydroxethyl radicals (?CH3CHOH and ?CH2CH2OH) on oxygen molecule. Unimolecular reactions involving hydroxyethylperoxy radicals and their radical products were studied at the CBS-QB3 level of theory. The results allowed to highlight the principal ways of decomposition of these radicals. Calculations of potential energy surfaces showed that the principal channels lead to the formation of HO2 radicals which can be considered, at low temperature, as slightly reactive. However, in the case of CH3CH(OOH)O? radicals, a route of decomposition yields H atom and formic peracid, which is a branching agent that can strongly enhance the reactivity of ethanol in low temperature oxidation. In addition to these analyses, high-pressure limit rate constants were derived in the temperature rang...

  1. Theoretical Study on the High Energy Density Compound Hexanitrohexaazatricyclotetradecanedifuroxan

    Institute of Scientific and Technical Information of China (English)

    QIU Ling; XIAO He-Ming; ZHU Wei-Hua; JU Xue-Hai; GONG Xue-Dong

    2006-01-01

    Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures,infrared (IR) spectra, and thermodynamic properties of the high energy density compound hexanitrohexaazatricyclotetradecanedifuroxan (HHTTD) at the B3LYP/6-31G** level of theory. The calculated results showthattherearefourconformationalisomers (a, β, γ and δ) for HHTTD, and the relative stabilities of four conformers were assessed based on the calculated total energies and the energy-gaps between the frontier molecular orbitals. The computed harmonic vibrational frequencies are in reasonable agreement with the available experimental data. Thermodynamic properties derived from the IR spectra on the basis of statistical thermodynamic principles are linearly correlated with the temperature. Detonation performances were evaluated by using the Kamlet-Jacobsequationsbasedonthecalculated densities and heats of formation. It was found that four HHTTD isomers with the predicted densities of ca. 2 g·cm-3, detonation velocities near 10 km·s-1, and detonation pressures over 45 Gpa, may be novel potential candidates of high energy density materials (HEDM). These results may provide basic information for the molecular designof HEDM.

  2. Theoretical study on the constricted flow phenomena in arteries

    Science.gov (United States)

    Sen, S.; Chakravarty, S.

    2012-12-01

    The present study is dealt with the constricted flow characteristics of blood in arteries by making use of an appropriate mathematical model. The constricted artery experiences the generated wall shear stress due to flow disturbances in the presence of constriction. The disturbed flow in the stenosed arterial segment causes malfunction of the cardiovascular system leading to serious health problems in the form of heart attack and stroke. The flowing blood contained in the stenosed artery is considered to be non-Newtonian while the flow is treated to be two-dimensional. The present pursuit also accounts for the motion of the arterial wall and its effect on local fluid mechanics. The flow analysis applies the time-dependent, two-dimensional incompressible nonlinear Navier-Stokes equations for non-Newtonian fluid representing blood. An extensive quantitative analysis presented at the end of the paper based on large scale numerical computations of the quantities of major physiological significance enables one to estimate the constricted flow characteristics in the arterial system under consideration which deviates significantly from that of normal physiological flow conditions.

  3. Theoretical study of trans-cis photoisomerism in polymethine cyanines

    Science.gov (United States)

    Momicchioli, Fabio; Baraldi, Ivan; Berthier, Gaston

    1988-06-01

    The trans-cis photoisomerism of polymethine dyes has been interpreted so far using different and rather inconsistent models of the potential energy surfaces. In order to search for a unified electronic model, we tackled the problem again from an intramolecular point of view. Our study consisted in qualitative MO considerations followed by explicit (CS INDO) calculations of the S 0, T 1 and S 1 potential energy curves for a proper model system: pentamethine cyanine isomerizing around the 2-3 and 3-4 bonds. Torsional energy levels for the calculated potential curves were also obtained. The main conclusions are: (i) the photoreaction proceeds through a "non-spectroscopic" (perp) S 1 minimum which exists also in the isolated molecule, (ii) this twisted excited species has charge transfer character (TICT), as opposed to the biradicaloid character of the "non-spectroscopic" S 1 minimum involved in the trans→cis photoisomerization of olefines (e.g., stilbene). The possible consequences on the dynamics of the excited state relaxation in non-polar solvents are envisaged.

  4. Theoretical study of selective methylation in the synthesis of azithromycin

    Science.gov (United States)

    Duran, Dilek; Aviyente, Viktorya; Baysal, Canan

    2004-01-01

    Azithromycin is a 15-membered macrolide antibiotic which is active in vitro against clinically important gram-negative bacteria. In this study, the selectivity of the methylation mechanism was analyzed computationally on the 2'- OCbz-3'- NMeCbz derivative of azithromycin in vacuum and in DMF. We have shown that the methylation of the hydroxy group on C-6 is energetically unfavorable compared to the other hydroxy groups in vacuum; the softness values further showed that the C-6 anion is not reactive towards CH3I in the methylation mechanism. To understand the effect of the solvent on the methylation process, detailed molecular dynamics simulations were performed in DMF using the anions at the C-4'', C-6, C-11 and C-12 positions. We find the conformations of the anions not to be affected by the presence of the solvent. The radial distribution functions of the solvent molecules around the O- of the anions demonstrate that DMF molecules cluster around the C-6 anion. The relative strength of the anion-solvent interactions reveal that the solvent molecules provide the largest stabilization to the C-6 anion and prevent the methylation at this position. The latter descriptor was found to be an important factor in explaining the experimentally observed selectivity towards the methylation of the C-4'', C-6, C-11 and C-12 anions.

  5. Chemical functionalization of graphene via aryne cycloaddition: a theoretical study.

    Science.gov (United States)

    Zhao, Jing-xiang; Wang, Hong-xia; Gao, Bo; Wang, Xiao-guang; Cai, Qing-hai; Wang, Xuan-zhang

    2012-06-01

    Chemical functionalization of graphene provides a promising route to improve its solubility in water and organic solvents as well as modify its electronic properties, thus significantly expanding its potential applications. In this article, by using density functional theory (DFT) methods, we have studied the effects of the chemical functionalization of graphenes via aryne cycloaddition on its properties. We found that the adsorption of an isolated aryne group on the graphene sheet is very weak with the adsorption energy of -0.204 eV, even though two new single C-C interactions are formed between the aryne group and the graphene. However, the interaction of graphene with the aryne group can be greatly strengthened by (i) substituting the H-atoms in aryne group with F-, Cl-, -NO(2) (electron-withdrawing capability), or CH(3)-group (electron-donating capability), and (ii) increasing the coverage of the adsorbed aryne groups on the graphene sheet. As expected, the strongest bonding is found on the graphene edges, in which the adsorbed aryne groups prefer to be far away from each other. Interestingly, chemical functionalization with aryne groups leads to an opening of the band gap of graphene, which is dependent on the coverage of the adsorbed aryne groups. The present work provides an insight into the modifications of graphene with aryne groups in experiment.

  6. Theoretical design study of the MSFC wind-wheel turbine

    Science.gov (United States)

    Frost, W.; Kessel, P. A.

    1982-01-01

    A wind wheel turbine (WWT) is studied. Evaluation of the probable performance, possible practical applications, and economic viability as compared to other conventional wind energy systems is discussed. The WWT apparatus is essentially a bladed wheel which is directly exposed to the wind on the upper half and exposed to wind through multiple ducting on the lower half. The multiple ducts consist of a forward duct (front concentrator) and two side ducts (side concentrators). The forced rotation of the wheel is then converted to power through appropriate subsystems. Test results on two simple models, a paper model and a stainless steel model, are reported. Measured values of power coefficients over wind speeds ranging from 4 to 16 m/s are given. An analytical model of a four bladed wheel is also developed. Overall design features of the wind turbine are evaluated and discussed. Turbine sizing is specified for a 5 and 25 kW machine. Suggested improvements to the original design to increase performance and performance predictions for an improved WWT design are given.

  7. Theoretical and experimental studies of a magnetically actuated valveless micropump

    Science.gov (United States)

    Ashouri, Majid; Behshad Shafii, Mohammad; Moosavi, Ali

    2017-01-01

    This paper presents the prototype design, fabrication, and characterization of a magnetically actuated micropump. The pump body consists of three nozzle/diffuser elements and two pumping chambers connected to the ends of a flat-wall pumping cylinder. A cylindrical permanent magnet placed inside the pumping cylinder acts as a piston which reciprocates by using an external magnetic actuator driven by a motor. The magnetic piston is covered by a ferrofluid to provide self-sealing capability. A prototype composed of three bonded layers of polymethyl-methacrylate (PMMA) has been fabricated. Water has been successfully pumped at pressures of up to 750 Pa and flow rates of up to 700 µl min-1 while working at the piston actuation frequency of 4 and 5 Hz, respectively. 3D numerical simulations are also carried out to study the performance of the pump. The best experimental and numerical volumetric efficiency of the pump are about 7 and 8%, respectively, at the piston speed of 0.03 m s-1. The contactless external actuation feature of the design enables integration of the pump with other PMMA-based microfluidic systems with low cost and disposability.

  8. Theoretical Studies of the Optoelectronic Properties of Semiconductor Quantum Wells.

    Science.gov (United States)

    Chao, Calvin Yi-Ping

    The valence-band structure of a semiconductor quantum well is calculated based on the multiband effective -mass theory. A unitary transformation is found to diagonalize the six-by-six Luttinger-Kohn Hamiltonian into two three -by-three blocks, making the computation more efficient. With this new formulation, the effect of strain on the band structure is studied systematically for both the compressional and tensile strain. The importance of the coupling between the heavy-hole, light-hole bands and the spin-orbit split -off bands is especially pointed out. The resonant tunneling of holes through a double -barrier structure is investigated using a transfer-matrix technique. It is shown that the strong mixing between the heavy holes and the light holes results in a totally different I-V characteristic from that predicted previously by the parabolic-band model. The exciton equation in momentum space is solved by using a modified Gaussian quadrature method. The exact solutions for a pure-two-dimensional exciton are derived by means of the Mehler-Fock transform, and the accuracy of the quadrature method is checked by comparing the numerical solutions against the exact solutions. A complete theory for quantum-well excitons is developed taking into account the effects of the valence -band mixing and the intersubband Coulomb interaction. Optical absorption spectra are calculated and compared to experimental data. The comparison demonstrates that the theory explains very well the quantum-confined Stark effect, the polarization selection rule, the coupling between the interwell and intrawell excitons in a multiwell structure, and the anticrossing between the ground state of a light-hole exciton and the excited state of a heavy-hole exciton observed experimentally.

  9. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  10. Theoretical studies in nuclear reactions and nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  11. Theoretical and experimental studies on emissions from wood combustion

    Energy Technology Data Exchange (ETDEWEB)

    Skreiberg, Oeyvind

    1997-12-31

    This thesis discusses experiments on emissions from wood log combustion and single wood particle combustion, both caused by incomplete combustion and emissions of nitric and nitrous oxide, together with empirical and kinetic NO{sub x} modelling. Experiments were performed in three different wood stoves: a traditional stove, a staged air stove and a stove equipped with a catalytic afterburner. Ideally, biomass fuel does not give a net contribution to the greenhouse effect. However, incomplete combustion was found to result in significant greenhouse gas emissions. Empirical modelling showed the excess air ratio and the combustion chamber temperature to be the most important input variables controlling the total fuel-N to NO{sub x} conversion factor. As the result of an international round robin test of a wood stove equipped with a catalytic afterburner, particle emission measurements were found to be the best method to evaluate the environmental acceptability of the tested stove, since the particle emission level was least dependent of the national standards, test procedures and calculation procedures used. In batch single wood particle combustion experiments on an electrically heated small-scale fixed bed reactor the fuel-N to NO conversion factor varied between 0.11-0.86 depending on wood species and operating conditions. A parameter study and homogeneous kinetic modelling on a plug flow reactor showed that, depending on the combustion compliance in question, there is an optimum combination of primary excess air ratio, temperature and residence time that gives a maximum conversion of fuel-N to N{sub 2}. 70 refs., 100 figs., 26 tabs.

  12. Theoretical Study of Amplitude Modulation Application during Radio Frequency Electrocoagulation

    Directory of Open Access Journals (Sweden)

    V. A. Karpuhin

    2015-01-01

    Full Text Available This article concerns the investigation results of influence of the amplitude-modulated acting signal parameters on the thermoelectric characteristics of biological tissues for a specified geometry of the working electrode section during RF mono-polar electrocoagulation. The geometric model ‘electrode - a biological tissue’ was suggested to study the distribution of power and temperature fields in biological tissue during mono-polar coagulation. The model of biological tissue is represented as a cylinder and the needle electrode is an ellipsoid immersed in the biological tissue. The heat and quasi-electrostatics equations are used as a mathematical model. These equations are solved in Comsol Multiphysics environment.As a result, we have got the following findings: the technique of calculating parameters of the PAM acting signal which has a fixed carrier frequency for the needle electrode of a specified geometry and the immersion depth in biological tissues is suggested. Parameters of PAM signal are determined for this electrode geometry. These parameters provide a 60 ... 80°C heating range of biological tissues near the working part of the tool for different amplitudes of acting signal during RF coagulation. It has been found out that both the temperature and the relaxation frequency of biological tissue depend on exposure time for the needle electrode of a specified geometry and immersion depth of the working part of tool into biological tissue.It is shown that the relaxation frequency of the biological tissue, subjected to the radiofrequency pulses, linearly depends on its heating temperature and can be used as a numerical criterion for maintaining the specified temperature conditions. It is found that the relaxation frequency of the biological tissue depends on the contact area of the tool working part and biological tissues. To reduce this dependence it is necessary to provide automatic current control of the output action.

  13. Theoretical and computational studies of small jammed systems

    Science.gov (United States)

    Gao, Guo-Jie Jason

    We focus on static and slowly driven granular materials modeled as frictionless, spherical grains that interact via soft, purely repulsive contact forces. This thesis will be organized into three related projects. First, we employ simulations to generate MS disk packings using an algorithm where we successively grow or shrink the particles isotropically and minimize the total energy at each step until particles are just at contact. We focus on small systems and are able to enumerate nearly all of the possible MS packings. We found several remarkable features of the frequency distribution. For example, the frequency grows exponentially with increasing packing fraction. In addition, distinct mechanically stable packings within do occur with frequencies that differ by orders of magnitude, which contradicts the equal-probability assumption of Edwards' and other statistical mechanical descriptions. In the second project, we enumerate and classify nearly all of the possible mechanically stable (MS) packings of bidipserse mixtures of frictionless disks in small sheared systems. We find that MS packings form continuous geometrical families, where each family is defined by its particular network of particle contacts. We also monitor the dynamics of MS packings along geometrical families by applying quasistatic simple shear strain at zero pressure. For small numbers of particles, we find that the dynamics is deterministic and highly contracting. In studies with N > 16, we observe an increase in the period and random splittings of the trajectories caused by bifurcations in configuration space. We argue that the ratio of the splitting and contraction rates in large systems will determine the distribution of MS-packing geometrical families visited in steady-state. Finally, we perform simulations of sedimenting frictionless disks to generate mechanically stable (MS) packings in small 2D systems and compare these results to similarly designed experiments. In both experiments and

  14. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tatsuhiro; Ohta, Ayumi; Suzuki, Tomoya; Ikeda, Kumiko [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Danielache, Sebastian O. [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Earth-Life Science Institute (ELSI), Tokyo Institute of Technology (Japan); Department of Environmental Science and Techonology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yoohama 226-8502 (Japan); Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2015-05-01

    Highlights: • Photodissociation dynamics of H{sub 2}SO{sub 4} at low-lying electronically excited states were investigated. • Photochemical processes were simulated by on-the-fly ab initio MD. • Sulfuric acid after the excitation to the S{sub 1} state dissociated to HSO{sub 4}(1{sup 2}A″) + H({sup 2}S). • Sulfuric acid after the excitation to the S{sub 2} state dissociated to HSO{sub 4}(2{sup 2}A″) + H({sup 2}S). • The energy region of the UV spectra where NMD fractionation may occur is predicted. - Abstract: Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S{sub 1} and S{sub 2}) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu–Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning’s augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO{sub 4}(1{sup 2}A″) + H({sup 2}S) by S{sub 1}-excitation, and (ii) HSO{sub 4}(2{sup 2}A″) + H({sup 2}S) by S{sub 2}-excitation. The direct dissociation dynamics yield products different from the SO{sub 2} + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO{sub 4} fragment{sub .} The trajectories running on S{sub 2} do not hop with S{sub 0} and a nonadiabatic transition happens at the S{sub 2}–S{sub 1} conical intersection located at a longer OH bond-length than the S{sub 1}–S{sub 0} intersection producing an electronic excited state (2{sup 2}A″) of HSO{sub 4} product.

  15. Hydrogen motion in proton sponge cations: a theoretical study.

    Science.gov (United States)

    Horbatenko, Yevhen; Vyboishchikov, Sergei F

    2011-04-18

    This work presents a study of intramolecular NHN hydrogen bonds in cations of the following proton sponges: 2,7-bis(trimethylsilyl)-1,8-bis(dimethylamino)naphthalene (1), 1,6-diazabicyclo[4.4.4.]tetradecane (2), 1,9-bis(dimethylamino)dibenzoselenophene (3), 1,9-bis(dimethylamino)dibenzothiophene (4), 4,5-bis(dimethylamino)fluorene (5), quino[7,8-h]quinoline (6) 1,2-bis(dimethylamino)benzene (7), and 1,12-bis(dimethylamino)benzo[c]phenantrene (8). Three different patterns were found for proton motion: systems with a single-well potential (cations 1-2), systems with a double-well potential and low proton transfer barrier, ΔEe (cations 3-5), and those with a double-well potential and a high barrier (cations 6-8). Tests of several density functionals indicate that the PBEPBE functional reproduces the potential-energy surface (PES) obtained at the MP2 level well, whereas the B3LYP, MPWB1K, and MPW1B95 functionals overestimate the barrier. Three-dimensional PESs were constructed and the vibrational Schrödinger equation was solved for selected cases of cation 1 (with a single-well potential), cation 4 (with a ΔEe value of 0.1 kcal mol(-1) at the MP2 level), and cations 6 (ΔEe = 2.4 kcal mol(-1)) and 7 (ΔEe=3.4 kcal mol(-1)). The PES is highly anharmonic in all of these cases. The analysis of the three-dimensional ground-state vibrational wave function shows that the proton is delocalized in cations 1 and 4, but is rather localized around the energy minima for cation 7. Cation 6 is an intermediate case, with two weakly pronounced maxima and substantial tunneling. This allows for classification of proton sponge cations into those with localized and those with delocalized proton behavior, with the borderline between them at ΔEe values of about 1.5 kcal mol(-1). The excited vibrational states of proton sponge cations with a low barrier can be described within the framework of a simple particle-in-a-box model. Each cation can be assigned an effective box width.

  16. Centrifugation. A theoretical study of oxygen enrichment by centrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Kierkegaard, P.; Raetz, E.

    1998-12-01

    In the present paper we first investigate what happens if we fill a cylinder with air, close it and rotate it. The results show that no matter which peripheral speed is used, it is not possible by means of the radial separation effect alone, to enrich the oxygen concentration from the previous 21% to more then 23.3%, which is of no practical value. In case of a too low enrichment in one centrifuge, the wanted material from this centrifuge can be used as an input for a second centrifuge and so on, in this way forming a cascade of centrifuges. Oxygen will be enriched in each step, until the desired concentration is reached. Cascading was the technology in the very beginning by enrichment plants for uraniumhexaflouride, used for atomic weapons and nuclear power plants. In this study we try to avoid cascading by aiming for higher separation factors. Therefore, we next investigate the possibilities of using a countercurrent centrifuge where in principle the enriched gas is subjected to several centrifugation in the same centrifuge. The calculations show, that in this way it is possible to produce nearly a 100% pure oxygen (polluted with some heavier molecules like argon) in one machine. Our third step was to calculate the amount of oxygen produced per hour. Using a countercurrent centrifuge of the Zippe type, 100 cm high and 20 cm in diameter, it is or will be possible in the near future to produce 17 g enriched air per hour enriched to 50% oxygen. That corresponds to processing 1 m{sup 3} atmospherical air in the period of approximately 24 hours. This is not very impressive. Our fourth step was to estimate the amount of power used for producing this amount of oxygen. A rough, but complicated, estimate shows that the power consumption at the production level will be about the double of the consumption used today. The overall conclusion is, that centrifugation as a production method for oxygen (or nitrogen) will not be competitive with the currently used method in the

  17. A Theoretical and Experimental Study of DNA Self-assembly

    Science.gov (United States)

    Chandran, Harish

    The control of matter and phenomena at the nanoscale is fast becoming one of the most important challenges of the 21st century with wide-ranging applications from energy and health care to computing and material science. Conventional top-down approaches to nanotechnology, having served us well for long, are reaching their inherent limitations. Meanwhile, bottom-up methods such as self-assembly are emerging as viable alternatives for nanoscale fabrication and manipulation. A particularly successful bottom up technique is DNA self-assembly where a set of carefully designed DNA strands form a nanoscale object as a consequence of specific, local interactions among the different components, without external direction. The final product of the self-assembly process might be a static nanostructure or a dynamic nanodevice that performs a specific function. Over the past two decades, DNA self-assembly has produced stunning nanoscale objects such as 2D and 3D lattices, polyhedra and addressable arbitrary shaped substrates, and a myriad of nanoscale devices such as molecular tweezers, computational circuits, biosensors and molecular assembly lines. In this dissertation we study multiple problems in the theory, simulations and experiments of DNA self-assembly. We extend the Turing-universal mathematical framework of self-assembly known as the Tile Assembly Model by incorporating randomization during the assembly process. This allows us to reduce the tile complexity of linear assemblies. We develop multiple techniques to build linear assemblies of expected length N using far fewer tile types than previously possible. We abstract the fundamental properties of DNA and develop a biochemical system, which we call meta-DNA, based entirely on strands of DNA as the only component molecule. We further develop various enzyme-free protocols to manipulate meta-DNA systems and provide strand level details along with abstract notations for these mechanisms. We simulate DNA circuits by

  18. Theoretical Studies of Gas Phase Elementary and Carbon Nanostructure Growth Reactions

    Science.gov (United States)

    2013-09-19

    DOI: 10.1021/ct1000268. 26. A. J. Midey, T. M. Miller, A. A. Viggiano, N. C. Bera, S. Maeda, and K. Morokuma, Chemistry of VX Surrogates and Ion...THEORETICAL STUDIES OF GAS PHASE ELEMENTARY AND CARBON NANOSTRUCTURE GROWTH REACTIONS KEIJI MOROKUMA EMORY UNIVERSITY 09/19/2013 Final Report...Z39.18 30-09-2013 Final Performance Report 1 July 2010 - 30 June 2013 Theoretical Studies of Gas Phase Elementary and Carbon Nanostructure Growth

  19. An in-depth analysis of theoretical frameworks for the study of care coordination

    Directory of Open Access Journals (Sweden)

    Sabine Van Houdt

    2013-06-01

    Full Text Available Introduction: Complex chronic conditions often require long-term care from various healthcare professionals. Thus, maintaining quality care requires care coordination. Concepts for the study of care coordination require clarification to develop, study and evaluate coordination strategies. In 2007, the Agency for Healthcare Research and Quality defined care coordination and proposed five theoretical frameworks for exploring care coordination. This study aimed to update current theoretical frameworks and clarify key concepts related to care coordination. Methods: We performed a literature review to update existing theoretical frameworks. An in-depth analysis of these theoretical frameworks was conducted to formulate key concepts related to care coordination.Results: Our literature review found seven previously unidentified theoretical frameworks for studying care coordination. The in-depth analysis identified fourteen key concepts that the theoretical frameworks addressed. These were ‘external factors’, ‘structure’, ‘tasks characteristics’, ‘cultural factors’, ‘knowledge and technology’, ‘need for coordination’, ‘administrative operational processes’, ‘exchange of information’, ‘goals’, ‘roles’, ‘quality of relationship’, ‘patient outcome’, ‘team outcome’, and ‘(interorganizational outcome’.Conclusion: These 14 interrelated key concepts provide a base to develop or choose a framework for studying care coordination. The relational coordination theory and the multi-level framework are interesting as these are the most comprehensive.

  20. An in-depth analysis of theoretical frameworks for the study of care coordination

    Directory of Open Access Journals (Sweden)

    Sabine Van Houdt

    2013-06-01

    Full Text Available Introduction: Complex chronic conditions often require long-term care from various healthcare professionals. Thus, maintaining quality care requires care coordination. Concepts for the study of care coordination require clarification to develop, study and evaluate coordination strategies. In 2007, the Agency for Healthcare Research and Quality defined care coordination and proposed five theoretical frameworks for exploring care coordination. This study aimed to update current theoretical frameworks and clarify key concepts related to care coordination. Methods: We performed a literature review to update existing theoretical frameworks. An in-depth analysis of these theoretical frameworks was conducted to formulate key concepts related to care coordination. Results: Our literature review found seven previously unidentified theoretical frameworks for studying care coordination. The in-depth analysis identified fourteen key concepts that the theoretical frameworks addressed. These were ‘external factors’, ‘structure’, ‘tasks characteristics’, ‘cultural factors’, ‘knowledge and technology’, ‘need for coordination’, ‘administrative operational processes’, ‘exchange of information’, ‘goals’, ‘roles’, ‘quality of relationship’, ‘patient outcome’, ‘team outcome’, and ‘(interorganizational outcome’. Conclusion: These 14 interrelated key concepts provide a base to develop or choose a framework for studying care coordination. The relational coordination theory and the multi-level framework are interesting as these are the most comprehensive.

  1. Theoretical study of the C-H bond dissociation energy of acetylene

    Science.gov (United States)

    Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1990-01-01

    The authors present a theoretical study of the convergence of the C-H bond dissociation energy (D sub o) of acetylene with respect to both the one- and n-particle spaces. Their best estimate for D sub o of 130.1 plus or minus 1.0 kcal/mole is slightly below previous theoretical estimates, but substantially above the value determined using Stark anticrossing spectroscopy that is asserted to be an upper bound.

  2. Validation of a Theoretical Model of Diagnostic Classroom Assessment: A Mixed Methods Study

    Science.gov (United States)

    Koh, Nancy

    2012-01-01

    The purpose of the study was to validate a theoretical model of diagnostic, formative classroom assessment called, "Proximal Assessment for Learner Diagnosis" (PALD). To achieve its purpose, the study employed a two-stage, mixed-methods design. The study utilized multiple data sources from 11 elementary level mathematics teachers who…

  3. Medication competency of nurses according to theoretical and drug calculation online exams: A descriptive correlational study.

    Science.gov (United States)

    Sneck, Sami; Saarnio, Reetta; Isola, Arja; Boigu, Risto

    2016-01-01

    Medication administration is an important task of registered nurses. According to previous studies, nurses lack theoretical knowledge and drug calculation skills and knowledge-based mistakes do occur in clinical practice. Finnish health care organizations started to develop a systematic verification processes for medication competence at the end of the last decade. No studies have yet been made of nurses' theoretical knowledge and drug calculation skills according to these online exams. The aim of this study was to describe the medication competence of Finnish nurses according to theoretical and drug calculation exams. A descriptive correlation design was adopted. Participants and settings All nurses who participated in the online exam in three Finnish hospitals between 1.1.2009 and 31.05.2014 were selected to the study (n=2479). Quantitative methods like Pearson's chi-squared tests, analysis of variance (ANOVA) with post hoc Tukey tests and Pearson's correlation coefficient were used to test the existence of relationships between dependent and independent variables. The majority of nurses mastered the theoretical knowledge needed in medication administration, but 5% of the nurses struggled with passing the drug calculation exam. Theoretical knowledge and drug calculation skills were better in acute care units than in the other units and younger nurses achieved better results in both exams than their older colleagues. The differences found in this study were statistically significant, but not high. Nevertheless, even the tiniest deficiency in theoretical knowledge and drug calculation skills should be focused on. It is important to identify the nurses who struggle in the exams and to plan targeted educational interventions for supporting them. The next step is to study if verification of medication competence has an effect on patient safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Curriculum, Curriculum Development, Curriculum Studies? Problematising Theoretical Ambiguities in Doctoral Theses in the Education Field

    Science.gov (United States)

    du Preez, Petro; Simmonds, Shan

    2014-01-01

    Theoretical ambiguities in curriculum studies result in conceptual mayhem. Accordingly, they hinder the development of the complicated conversation on curriculum as a verb. This article aims to contribute to reconceptualizing curriculum studies as a dynamic social practice that aspires to thinking and acting with intelligences and sensitivity so…

  5. Deaf Studies: A Critique of the Predominant U.S. Theoretical Direction

    Science.gov (United States)

    Myers, Shirley Shultz; Fernandes, Jane K.

    2010-01-01

    The focus and concerns establishing Deaf Studies in the 1970s have rigidified into a reactive stance toward changing historical conditions and the variety of deaf lives today. This critique analyzes the theoretical foundation of this stance: a tendency to downplay established research in the field of Deaf Studies and linguistics, the employment of…

  6. Theoretical study of loss compensation in long-range dielectric loaded surface plasmon polariton waveguides

    NARCIS (Netherlands)

    García Blanco, Sonia Maria; Pollnau, Markus; Bozhevolnyi, Sergey I.

    In this paper, a theoretical study of loss compensation in long-range dielectric loaded surface plasmon waveguides (LR-DLSPPs) is presented. Although extendable to other gain materials, rare-earth doped double tungstates are used as gain material in this work. Two different structures are studied

  7. Experimental and theoretical study of rapid flows of cohesionless granular materials down inclined chutes

    NARCIS (Netherlands)

    Kruyt, N.P.; Verel, W.J.Th.

    1992-01-01

    A theoretical and experimental study is performed of rapid, fully developed flows of cohesionless granular materials down inclined chutes with a rough base. Two flow types are studied in detail: (1) immature sliding flow, where a stagnant zone forms on the base of the chute, and (2) fully developed

  8. Theoretical study of the dual harmonic system and its application on the CSNS/RCS

    CERN Document Server

    Yuan, Yao-Shuo; Xu, Shou-Yan; Yuan, Yue; Wang, Sheng

    2015-01-01

    The dual harmonic system has been widely used in high intensity proton synchrotrons to suppress the space charge effect, as well as reduce the beam loss. To investigate the longitudinal beam dynamics in the dual rf system, the potential well, the sub-buckets in the bunch and the multi-solutions of the phase equation have been studied theoretically. Based on these theoretical studis, the optimization of bunching factor and rf voltage waveform are made for the dual harmonic rf system in the upgrade phase of the CSNS/RCS. In the optimization process, the simulation with space charge effect is done by using a newly developed code C-SCSIM.

  9. Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism

    Science.gov (United States)

    2016-06-09

    AFRL-AFOSR-VA-TR-2016-0204 Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism Jose Rodriguez CALIFORNIA...TITLE AND SUBTITLE Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism 5a.  CONTRACT NUMBER 5b.  GRANT...SUBJECT TERMS quantum magnetism, HTS, superconductivity 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF       ABSTRACT UU 18.  NUMBER        OF

  10. Theoretical and experimental study of kinetics of photoexcited carriers in wide band gap semiconductors

    Science.gov (United States)

    Shishehchi, Sara; Rudin, Sergey; Garrett, Gregory; Wraback, Michael; Bellotti, Enrico

    2013-03-01

    We present a theoretical and experimental study of the subpicosecond kinetics of photo-excited carriers in the wide band gap semiconductors GaN and ZnO. In the theoretical model, interaction with a photo-excitation laser pulse is treated coherently and a generalized Monte Carlo simulation is used to account for scattering and dephasing. The scattering mechanisms included are carrier interactions with polar optical phonons and acoustic phonons, and carrier-carrier Coulomb interactions. For comparison, experimental time-resolved photoluminescence studies on GaN and ZnO samples are performed over a range of temperatures and excitation powers.

  11. EFFICIENCY OF ISO 9001 IN PORTUGAL: A QUALITATIVE STUDY FROM A HOLISTIC THEORETICAL PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Alcina Dias

    2013-03-01

    Full Text Available The purpose of this paper is to analy se the efficiency of ISO 9001 from a holistic theoretical approach where the Contingency theory, the Institutional theory and the Resources-Based View are integrated. The study was carried out in companies of different sectors of activity in Portugal, based on a qualitative methodology (interviews. The fact of the interviews having been undertaken under an ISO 9001 structure made it easier for companies to grasp the issues under investigation. An ISO 9001 characterisation was carried out on a theoretical framework approach and findings point out efficiency gains and revealed that the absence of ISO 9001 would work as a competitive disadvantage. The contribution of this research aims to reinforce the state of art as concerns the theoretical scope of analysis of these issues enriched by the case study achievement.

  12. Theoretical study of phenyl-substituted indacenodithiophene copolymers for high performance organic photovoltaics.

    Science.gov (United States)

    Chochos, Christos L; Avgeropoulos, Apostolos; Lidorikis, Elefterios

    2013-02-14

    The theoretical estimation of energy levels and energy gaps of conjugated polymers for organic photovoltaics (OPVs) represents in principle a useful tool for the prescreening of new donor systems as a suitable pair for the fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM). In this study, ten tetraphenyl-substituted indacenodithiophene (IDT) copolymers (eight in the form of donor-acceptor), whose energy gaps vary in the range of 1.48-2.11 eV have been selected and their highest occupied molecular orbitals (HOMOs), lowest unoccupied molecular orbitals (LUMOs), and gap energies have been calculated by applying density functional theory (DFT) and/or time-dependent density functional theory (TD-DFT) methods. In spite of the examined molecular structure variety, nice correlations (theoretical models) between experimental and theoretical electronic parameters were found. It is shown that the theoretical band gap estimated by the TD-DFT using dimer model compounds and DFT using tetramer model compounds provide in good agreement the optical band gap of these polymers. Finally, the optimum theoretical limits of the LUMO offset between the fullerene and the IDT tetramer model compounds, for which high performance OPVs (efficiency > 6%) are obtained, is presented for the first time.

  13. Coarse grained molecular dynamics and theoretical studies of carbon nanotubes entering cell membrane

    Institute of Scientific and Technical Information of China (English)

    Xinghua Shi; Yong Kong; Huajian Gao

    2008-01-01

    Motivated by recent experimental observations that carbon nanotubes (CNT) can enter animal cells, here we conduct coarse grained molecular dynamics and theore-tical studies of the intrinsic interaction mechanisms between CNT's and lipid bilayer. The results indicate that CNT-cell interaction is dominated by van der Waals and hydropho-bic forces, and that CNT's with sufficiently small radii can directly pierce through cell membrane while larger tubes tend to enter cell via a wrapping mechanism. Theoretical models are proposed to explain the observed size effect in transition of entry mechanisms.

  14. Theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency

    Science.gov (United States)

    Liu, Yang; Li, Shu-qing; Feng, Zhong-ying; Liu, Xiao-fei; Gao, Jin-yue

    2016-12-01

    To obtain the weak signal light detection from the high background noise, we present a theoretical study on the ultra-narrow bandwidth tunable atomic filter with electromagnetically induced transparency. In a three-level Λ -type atomic system in the rubidium D1 line, the bandwidth of the EIT atomic filter is narrowed to ~6.5 \\text{MHz} . And the single peak transmission of the filter can be up to 86% . Moreover, the transmission wavelength can be tuned by changing the coupling light frequency. This theoretical scheme can also be applied to other alkali atomic systems.

  15. Theoretical and experimental study of the normal modes in a coupled two-dimensional system

    CERN Document Server

    Giménez, Marcos H; Gómez-Tejedor, José Antonio; Velazquez, Luisberis; Monsoriu, Juan A

    2016-01-01

    In this work, the normal modes of a two-dimensional oscillating system have been studied from a theoretical and experimental point of view. The normal frequencies predicted by the Hessian matrix for a coupled two-dimensional particle system are compared to those obtained for a real system consisting of two oscillating smartphones coupled one to the other by springs. Experiments are performed on an air table in order to remove the friction forces. The oscillation data are captured by the acceleration sensor of the smartphones and exported to file for further analysis. The experimental frequencies compare reasonably well with the theoretical predictions, namely, within 1.7 % of discrepancy.

  16. Red/blue shifting hydrogen bonds in acetonitrile-dimethyl sulphoxide solutions: FTIR and theoretical studies

    Science.gov (United States)

    Kannan, P. P.; Karthick, N. K.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-07-01

    FTIR spectra of neat acetonitrile (AN), dimethyl sulphoxide (DMSO) and their binary solutions at various mole fractions have been recorded at room temperature. Theoretical calculations have also been carried out on acetonitrile (monomer, dimer), dimethyl sulphoxide (monomer, dimer) and AN - DMSO complex molecules. 1:2 (AN:DMSO) and 2:1 complexation through the red shifting (AN) C - H ⋯ O = S(DMSO) and blue shifting (DMSO) C - H ⋯ N ≡ C(AN) hydrogen bonds has been identified. The experimental and theoretical studies favour the presence of both the monomer and dimer in liquid AN, but only closed dimers in DMSO. The dipole-dipole interactions existed in AN and DMSO dimers disappear in the complex molecules. Partial π bond between S and O atoms, and three lone pair of electrons on oxygen atom of DMSO have been noticed theoretically.

  17. THEORETICAL STUDY OF HEAT TRANSFER ENHANCEMENT IN PIPE WITH POROUS BODY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A theoretical investigation of the fluid flow and heat transferin a pipe with porous body of high porosity twis ted by metal wire was carried out. A theoretical model of a circular pipe with porous matrix attached at the channel wall and extended inward the centerline was set up. Through ana lyzing the flow in the porous matrix by the Brinkman-extend ed-Darcy equation and through including the effect of disper sion by adding the dispersion coefficient into the energy equa tion, the theoretical solutions of velocity distribution and temperature fields were obtained. Finally the effect of the properties of the porous matrix on the flow and heat transfer in the porous body was studied, which indicates that dispersion can really enhance the heat transfer in pipe.

  18. Theoretical studies of Q1D organic conductors:a personal view

    OpenAIRE

    Celebonovic, V.

    2004-01-01

    This is a review of some aspects of theoretical studies of the Bechgaard salts,which also retraces the evolution of the author's interest in the field.It discusses the calculation of the condutivity,attempts at gaining some knowledge on the EOS and thermal properties of these materials,as well as some ideas on the possible future developement of the field.

  19. Review of The Theoretical and Empirical Study on the Interest Conflict Between City Groups

    Institute of Scientific and Technical Information of China (English)

    Guo; Zeguang; Qian; Fang

    2016-01-01

    The Theoretical and Empirical Study on the Interest Conflict Between City Groups Author:Miao Jianjun Year:2014Publisher:Economy&Management Publishing House ISBN:9787509629482(240 pages,in Chinese)Since the application of the strategy"Rising of Central China,"provinces in China’s central region consecutively released their development

  20. Electronic structure of copper phthalocyanine : An experimental and theoretical study of occupied and unoccupied levels

    NARCIS (Netherlands)

    Evangelista, Fabrizio; Carravetta, Vincenzo; Stefani, Giovanni; Jansik, Branislav; Alagia, Michele; Stranges, Stefano; Ruocco, Alessandro

    2007-01-01

    An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with self-

  1. Theoretical study of the electromechanical efficiency of a loaded tubular dielectric elastomer actuator

    DEFF Research Database (Denmark)

    Rechenbach, Björn; Willatzen, Morten; Lassen, Benny

    2016-01-01

    The electromechanical efficiency of a loaded tubular dielectric elastomer actuator (DEA) is investigated theoretically. In previous studies, the external system, on which the DEA performs mechanical work, is implemented implicitly by prescribing the stroke of the DEA in a closed operation cycle...

  2. Studying Activities That Take Place in Speech Interactions: A Theoretical and Methodological Framework

    Science.gov (United States)

    Saint-Dizier de Almeida, Valérie; Colletta, Jean-Marc; Auriac-Slusarczyk, Emmanuelle; Specogna, Antonietta; Simon, Jean-Pascal; Fiema, Gabriela; Luxembourger, Christophe

    2016-01-01

    The paper proposes a theoretical and methodological framework based on a pluralistic, concerted approach to the study of activities that take place in and through speech interactions. The framework has a general scope, applying to any collective activity taking form through language interactions. It contributes to a fuller understanding of the…

  3. Theoretical Studies of Laws Nanostructuring and Heterogeneous Hardening of Steel Samples by Wave Intensive Plastic Deformation

    Directory of Open Access Journals (Sweden)

    A.V. Kirichek

    2015-12-01

    Full Text Available Theoretical studies and calculations, allowing to define the required parameters of the wave deformation hardening, are performed in order to obtain heterogeneous hardened surface layer in steel samples. The conditions for the effective use of impact energy for elastic-plastic deformation of the processed material and the establishment of a deep hardened surface layer are revealed.

  4. Liquid phase demixing in ferroelectric/semiconducting polymer blends: an experimental and theoretical study

    NARCIS (Netherlands)

    Michels, J.J.; Breemen, A.J.J.M. van; Usman, K.; Gelinck, G.H.

    2011-01-01

    This article describes a combined experimental and theoretical study on nanophase structure development as a result of liquid phase demixing in solution-cast blends of the organic semiconductor poly(9,9'-dioctyl fluorene) (PFO) and the ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethyl

  5. Mems Q-Factor Enhancement Using Parametric Amplification: Theoretical Study and Design of a Parametric Device

    CERN Document Server

    Grasser, L; Parrain, F; Roux, X Le; Gilles, J -P

    2008-01-01

    Parametric amplification is an interesting way of artificially increasing a MEMS Quality factor and could be helpful in many kinds of applications. This paper presents a theoretical study of this principle, based on Matlab/Simulink simulations, and proposes design guidelines for parametric structures. A new device designed with this approach is presented together with the corresponding FEM simulation results.

  6. Electronic structure of copper phthalocyanine : An experimental and theoretical study of occupied and unoccupied levels

    NARCIS (Netherlands)

    Evangelista, Fabrizio; Carravetta, Vincenzo; Stefani, Giovanni; Jansik, Branislav; Alagia, Michele; Stranges, Stefano; Ruocco, Alessandro

    2007-01-01

    An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with

  7. A theoretical framework to study variations in workplace violence experienced by emergency responders

    NARCIS (Netherlands)

    L. van Reemst (Lisa)

    2016-01-01

    markdownabstractEmergency responders are often sent to the front line and are often confronted with aggression and violence in interaction with citizens. According to previous studies, some professionals experience more workplace violence than others. In this article, the theoretical framework to st

  8. A Theoretical Framework to Study Variations in Workplace Violence Experienced by Emergency Responders

    NARCIS (Netherlands)

    L. van Reemst (Lisa)

    2016-01-01

    textabstractEmergency responders are often sent to the front line and are often confronted with aggression and violence in inter- action with citizens. According to previous studies, some professionals experience more workplace violence than others. In this article, the theoretical framework to stud

  9. Electronic structure of copper phthalocyanine : An experimental and theoretical study of occupied and unoccupied levels

    NARCIS (Netherlands)

    Evangelista, Fabrizio; Carravetta, Vincenzo; Stefani, Giovanni; Jansik, Branislav; Alagia, Michele; Stranges, Stefano; Ruocco, Alessandro

    2007-01-01

    An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with self-

  10. Theoretical and Experimental Study of Scattering of a Plane Wave by an Inhomogeneous Plasma Sphere

    Institute of Scientific and Technical Information of China (English)

    SONG Fa-Lun; CAO Jin-Xiang; WANG Ge; WANG Yan; ZHU Ying; ZHU Jian; WANG Liang; NIU Tian-Ye

    2006-01-01

    @@ Scattering of electromagnetic waves by an inhomogeneous plasma sphere has been studied theoretically and experimentally. The offset angles of electromagnetic waves caused by the plasma sphere have been observed experimentally. The effects of the electromagnetic wave frequency and plasma density on the offset angle are discussed. The plasma density is estimated with the offset angle.

  11. A theoretical framework to study variations in workplace violence experienced by emergency responders

    NARCIS (Netherlands)

    L. van Reemst (Lisa)

    2016-01-01

    markdownabstractEmergency responders are often sent to the front line and are often confronted with aggression and violence in interaction with citizens. According to previous studies, some professionals experience more workplace violence than others. In this article, the theoretical framework to

  12. A Theoretical Framework to Study Variations in Workplace Violence Experienced by Emergency Responders

    NARCIS (Netherlands)

    L. van Reemst (Lisa)

    2016-01-01

    textabstractEmergency responders are often sent to the front line and are often confronted with aggression and violence in inter- action with citizens. According to previous studies, some professionals experience more workplace violence than others. In this article, the theoretical framework to

  13. Theoretical study of the ground state of (EDO-TTF)(2)PF6

    NARCIS (Netherlands)

    Linker, Gerrit-Jan; van Duijnen, Piet Th.; van Loosdrecht, Paul H.M.; Broer, Ria

    2015-01-01

    In this paper we present a theoretical study of the nature of the ground state of the (EDO-TTF)(2)PF6 charge transfer salt by using ab initio quantum chemical theory for clusters in vacuum, for embedded clusters and for the periodic system. Exemplary for other organic charge transfer systems, we sho

  14. A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2013-01-01

    Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  15. [Habermas and Paulo Freire: theoretical referrals for the study on communication in nursing].

    Science.gov (United States)

    Larocca, Liliana Muller; Mazza, Verônica de Azevedo

    2003-08-01

    The present work has the objective of introducing the ideas of Jürgen Habermas and Paulo Freire about the dialogue as a fundamental human phenomenon, data on their trajectories of life, ideological approaches when locating the human being through history and their relevance as theoretical referrals for the study on communication in the process of the nurse's work.

  16. Theoretical and experimental study of the vibrational excitations in ethane monolayers adsorbed on graphite (0001) surfaces

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1987-01-01

    The collective vibrational excitations of two different crystalline monolayer phases of ethane (C2H6) adsorbed on the graphite (0001) surface have been investigated theoretically and experimentally. The monolayer phases studied are the commensurate 7/8 ×4 structure in which the ethane molecules lie...

  17. A theoretical and experimental study on geometric nonlinearity of initially curved cantilever beams

    Directory of Open Access Journals (Sweden)

    Sushanta Ghuku

    2016-03-01

    Full Text Available This paper presents a theoretical and experimental study on large deflection behavior of initially curved cantilever beams subjected to various types of loadings. The physical system as a straight cantilever beam subjected to a tip concentrated load is considered in this study. Nonlinear differential equations are obtained for large deflection analysis of such a straight cantilever beam, and this problem is known to involve geometrical nonlinearity. The equations are solved numerically with the help of MATLAB® computational platform to get deflection profiles of the concerned problem. These results are imposed subsequently on the center line of an initially curved beam to get theoretical load-deflection behavior of curved beam problems. To verify the theoretical model, experiment is carried out with the master leaf of a leaf spring bundle by modeling it as an initially curved cantilever beam. The effects of initial clamping and geometry variations in the eye-region are observed from experimental investigation which is commonly neglected in the mathematical formulation. Comparisons of the theoretical results with the experimental results are quite good, but the avenues for further improvement are also reported. The proposed approach is further extended to study large deflection behavior of an initially curved cantilever beam subjected to distributed and combined load. These results are successfully validated with existing results for straight beams and some new results are furnished for initially curved cantilever beams.

  18. Theoretical Study of the Radical Scavenging Activity of Shikonin and Its Derivatives%Theoretical Study of the Radical Scavenging Activity of Shikonin and Its Derivatives

    Institute of Scientific and Technical Information of China (English)

    靳瑞岌; 李杰

    2012-01-01

    A series of shikonin derivatives have been designed and their radical scavenging activity has been characterized by the B3LYP/6-31 +G(d) approach. The hydrogen bond properties of the studied structures were investigated using the atoms in molecules (AIM) theory. The calculated results reveal that the hydrogen bond is important for good scavenging activity. The introduction of electron-drawing (electron-donating) groups increases (decreases) the scavenging activities of radical and radical cations of shikonin derivatives. Shikonin derivatives appear to be good candidates for the single-electron-transfer mechanism, particularly for -N(CH3)2 derivative. Taking this system as an example, we present an efficient method for the investigation of radical scavenging activity from theoretical point of view. With the current work, we hope to highlight the radical scavenging activity of hydroxynaphtho- quinones derivatives and stimulate the interest for further studies and exploitation in pharmaceutical industry.

  19. Theoretical spectroscopic study of the conjugate microcystin-LR-europium cryptate

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Julio G.; Dutra, Jose Diogo L.; Costa Junior, Nivan B. da; Freire, Ricardo O., E-mail: rfreire@ufs.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Quimica; Alves Junior, Severino; Sa, Gilberto F. de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Quimica Fundamental

    2013-02-15

    In this work, theoretical tools were used to study spectroscopic properties of the conjugate microcystin-LR-europium cryptate. The Sparkle/AM1 model was applied to predict the geometry of the system and the INDO/S-CIS model was used to calculate the excited state energies. Based on the Judd-Ofelt theory, the intensity parameters were predicted and a theoretical model based on the theory of the 4f-4f transitions was applied to calculate energy transfer and backtransfer rates, radiative and non-radiative decay rates, quantum efficiency and quantum yield. A detailed study of the luminescent properties of the conjugate Microcystin-LR-europium cryptate was carried out. The results show that the theoretical quantum yield of luminescence of 23% is in good agreement with the experimental value published. This fact suggests that this theoretical protocol can be used to design new systems in order to improve their luminescence properties. The results suggest that this luminescent system may be a good conjugate for using in assay ELISA for detection by luminescence of the Microcystin-LR in water. (author)

  20. Studying Scale-Up and Spread as Social Practice: Theoretical Introduction and Empirical Case Study.

    Science.gov (United States)

    Shaw, James; Shaw, Sara; Wherton, Joseph; Hughes, Gemma; Greenhalgh, Trisha

    2017-07-07

    Health and care technologies often succeed on a small scale but fail to achieve widespread use (scale-up) or become routine practice in other settings (spread). One reason for this is under-theorization of the process of scale-up and spread, for which a potentially fruitful theoretical approach is to consider the adoption and use of technologies as social practices. This study aimed to use an in-depth case study of assisted living to explore the feasibility and usefulness of a social practice approach to explaining the scale-up of an assisted-living technology across a local system of health and social care. This was an individual case study of the implementation of a Global Positioning System (GPS) "geo-fence" for a person living with dementia, nested in a much wider program of ethnographic research and organizational case study of technology implementation across health and social care (Studies in Co-creating Assisted Living Solutions [SCALS] in the United Kingdom). A layered sociological analysis included micro-level data on the index case, meso-level data on the organization, and macro-level data on the wider social, technological, economic, and political context. Data (interviews, ethnographic notes, and documents) were analyzed and synthesized using structuration theory. A social practice lens enabled the uptake of the GPS technology to be studied in the context of what human actors found salient, meaningful, ethical, legal, materially possible, and professionally or culturally appropriate in particular social situations. Data extracts were used to illustrate three exemplar findings. First, professional practice is (and probably always will be) oriented not to "implementing technologies" but to providing excellent, ethical care to sick and vulnerable individuals. Second, in order to "work," health and care technologies rely heavily on human relationships and situated knowledge. Third, such technologies do not just need to be adopted by individuals; they need

  1. Experimental and Theoretical Study for Performance Enhancement of Air Solar Collectors by Using Different Absorbers

    Directory of Open Access Journals (Sweden)

    Ahmed A. Mohammad Saleh

    2016-09-01

    Full Text Available An experimental and theoretical study has been done to investigate the thermal performance of different types of air solar collectors, In this work air solar collector with a dimensions of (120 cm x90 cm x12 cm , was tested under climate condition of Baghdad city with a (43° tilt angel by using the absorber plate (1.45 mm thickness, 115 cm height x 84 cm width, which was manufactured from iron painted with a black matt. The experimental test deals with five types of absorber:- Conventional smooth flat plate absorber , Finned absorber , Corrugated absorber plate, Iron wire mesh on absorber And matrix of porous media on absorber . The hourly and average efficiency of the collectors were investigated for three values of mass flow rates (0.016 kg/s to 0.027 kg/s for each type of collector and then the porosity for the last collector type was tested by changing the porosity of porous media. A typical air solar collector has been studied Theoretically to build a standard software for testing any type of air solar collectors with local weather data . From the experimental study it can be seen by using some obstacle material to the air flow (fins, corrugated absorber plate, iron wire mesh porous media on the absorber could be enhanced the efficiencies not less than 4 % for finned type and 8 % for corrugated and 25 % for mesh and 30 % for porous media comparing with flat plate (smooth collector . Theoretically, the results showed that the collector with high convention heat transfer coefficient porous media has high hourly efficiency about (η = 56 % and iron wire mesh on absorber ( η = 52 % , on the other side the minimum performance occurred in the flat plate absorber (η = 28 %. Comparison of results reveals that the theoretical predictions agree reasonably well with experimental results. And the difference between the theoretical and experimental efficiency in general was between (1─ 15 %.

  2. Theoretical Study of the Effects of Di-Muonic Molecules on Muon-Catalyzed Fusion

    Science.gov (United States)

    2012-03-01

    MOLECULES ON MUON -CATALYZED FUSION DISSERTATION Eugene V. Sheely, Lieutenant Colonel, USA DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY...THEORETICAL STUDY OF THE EFFECTS OF DI-MUONIC MOLECULES ON MUON -CATALYZED FUSION DISSERTATION Presented to the Faculty...potential of enhancing the muon -catalyzed fusion reaction rate. In order to study these di-muonic molecules a method of non-adiabatic quantum mechanics

  3. Theoretical and experimental studies of space-related plasma wave propagation and resonance phenomena

    Science.gov (United States)

    Crawford, F. W.

    1975-01-01

    A ten year summary was given of university research on the nature and characteristics of space related plasma resonance phenomena, whistler propagation in laboratory plasmas, and theoretical and experimental studies of plasma wave propagation. Data are also given on long delayed echoes, low frequency instabilities, ionospheric heating, and backscatter, and pulse propagation. A list is included of all conference papers, publications, and reports resulting from the study.

  4. Spectroscopy and Photochemistry of Europium atoms in low temperature solids - an experimental and theoretical study

    OpenAIRE

    Byrne, Owen

    2010-01-01

    This thesis presents an experimental and theoretical study of the luminescence, reactivity and ionisation of atomic europium isolated in cryogenic thin films of rare gases argon, krypton and xenon. Many studies are available concerning the spectroscopy of matrix-isolated main group metal atoms, however, the lanthanide series remains relatively undocumented. A thorough investigation of matrix-isolated europium is performed in this thesis in an effort to develop the spectroscopy ...

  5. A theoretical justification for the study of skin sensitivity in patients with bell's palsy

    OpenAIRE

    Cárdenas Palacios, Carlos Andrés; Universidad de la Sabana-Bogotá,Colombia

    2015-01-01

    The purpose of this review is to highlight the importance of conducting studies to estimate the level of association between measures of skin sensitivity, facial region, facial paralysis level, and time of evolution, in patients with Bells palsy; the above stems from the theoretical review of various studies that have found differences in measures of pressure threshold, two-point discrimination and appreciation of the vibration between different facial regions, both in patients with this kind...

  6. A Theoretical Study of the Two-Dimensional Point Focusing by Two Multilayer Laue Lenses.

    Energy Technology Data Exchange (ETDEWEB)

    Yan,H.; Maser, J.; Kang, H.C.; Macrader, A.; Stephenson, B.

    2008-08-10

    Hard x-ray point focusing by two crossed multilayer Laue lenses is studied using a full-wave modeling approach. This study shows that for a small numerical aperture, the two consecutive diffraction processes can be decoupled into two independent ones in respective directions. Using this theoretical tool, we investigated adverse effects of various misalignments on the 2D focus profile and discussed the tolerance to them. We also derived simple expressions that described the required alignment accuracy.

  7. THEORETICAL AND EXPERIMENTAL STUDIES ON FRACTURE PLANE CONTROL BLAST WITH NOTCHED BOREHOLES

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The results of theoretical studies and field tests on fracture plane control blast with notched boreholes have been introduced. In these studies, the single symmetrical notched borehole was simplified to a pressurized hole with two symmetrical cracks under the state of plane strain. In analyzing the growth and termination of the notch, only quasi-static pressure was considered. In the mean time, the rock to be blasted was considered to be isotropic. Based on the principles of fracture mechanics, the stress components near the tip of the notch were calculated, and the criteria for growth and termination of the notch were established. The growth direction of the notch was also predicted on the basis of strain energy density factor. An approach for estimating the amount of explosive for each hole and the spacing of holes was suggested. Furthermore, field tests were conducted to check the results from the theoretical studies.

  8. Theoretical Study of Wave Breaking for Nonlinear Water Waves Propagating on a Sloping Bottom

    Science.gov (United States)

    Chen, Y. Y.; Hsu, H. C.; Li, M. S.

    2012-04-01

    In this paper, a third-order asymptotic solution in a Lagrangian framework describing nonlinear water wave propagation on the surface of a uniform sloping bottom is presented. A two-parameter perturbation method is used to develop a new mathematical derivation. The particle trajectories, wave pressure and Lagrangian velocity potential are obtained as a function of the nonlinear wave steepness and the bottom slope perturbed to third order. This theoretical solution in Lagrangian form satisfies state of the normal pressure at the free surface. The condition of the conservation of mass flux is examined in detail for the first time. The two important properties in Lagrangian coordinates, Lagrangian wave frequency and Lagrangian mean level, are included in the third-order solution. The solution can also be used to estimate the mean return current for waves progressing over the sloping bottom. The Lagrangian solution untangle the description of the features of wave shoaling in the direction of wave propagation from deep to shallow water, as well as the process of successive deformation of a wave profile and water particle trajectories leading to wave breaking. A series of experiment was conducted to validate the obtained theoretical solution. The proposed solution will be used to determine the wave shoaling and breaking process and the comparisons between the experimental and theoretical results are excellent. For example, the variations of phase velocity on sloping bottom are obtained by 7 set of two close wave gauges and the theoretical result could accurately predict the measured phase velocity. The theoretical wave breaking index can be derived by use of the kinematic stability parameter (K.P.S). The comparisons between the theory, experiment (present study, Iwagali et al.(1974), Deo et al.(2003) and Tsai et al.(2005)) and empirical formula of Goda (2004) for the breaking index(u/C) versus the relative water depth(d/L) under two different bottom slopes shows that the

  9. Electronic properties of diphenyl-s-tetrazine and some related oligomers. An spectroscopic and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Moral, Monica; Garcia, Gregorio [Departamento de Quimica Fisica y Analitica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Penas, Antonio [Departamento de Quimica Inorganica y Organica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Garzon, Andres; Granadino-Roldan, Jose M. [Departamento de Quimica Fisica y Analitica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Melguizo, Manuel [Departamento de Quimica Inorganica y Organica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Fernandez-Gomez, Manuel, E-mail: mfg@ujaen.es [Departamento de Quimica Fisica y Analitica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer We study properties of Ph{sub 2}Tz and (PhTz){sub n}Ph as candidates for organic electronics. Black-Right-Pointing-Pointer The synthesis of Ph{sub 2}Tz was performed through a modified Pinner-type reaction. Black-Right-Pointing-Pointer IR/Raman spectra allowed to conclude that Ph{sub 2}Tz is nearly planar in liquid phase. Black-Right-Pointing-Pointer Electronic structure was studied by UV-Vis/TD-DFT methods in different solvents. Black-Right-Pointing-Pointer Bandgap, E{sub LUMO}, electron mobility predict some n-type character for limit polymer. -- Abstract: This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph{sub 2}Tz) and some oligomeric derivatives. Ph{sub 2}Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.

  10. Theoretical study and calculation of the response of a fast neutron dosemeter based on track detection

    Energy Technology Data Exchange (ETDEWEB)

    Decossas, J.L.; Vareille, J.C.; Moliton, J.P.; Teyssier, J.L. (Limoges Univ., 87 (France). Lab. d' Electronique des Polymeres sous Faisceaux Ioniques)

    1983-01-01

    A fast neutron dosemeter is generally composed of a radiator in which n-p elastic scattering occurs and a detector which registers protons. A theoretical study, and the calculation (FORTRAN program) of the response of such a dosemeter is presented involving two steps: 1) The proton flux emerging from a thick radiator on which monoenergetic neutrons are normally incident is studied. This is characterised by its energy spectrum depending on the neutron energy and on the radiator thickness. 2) Proton detection being achieved with a solid state nuclear track detector whose performance is known, the number of registered tracks are calculated. The dosemeter sensitivity (tracks cm/sup -2/. Sv/sup -1/) is deduced. Then, the calculations show that it is possible to optimise the radiator thickness to obtain the smallest variation in sensitivity with neutron energy. The theoretical results are in good agreement with the experimental ones found in the literature.

  11. Theoretical & Experimental Studies on Vibration & Damping of Fibre-Reinforced Cantilever Laminates.

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    2000-07-01

    Full Text Available In this paper, vibration and damping analyses  of glass fibre-reinforced laminated composite cantilever beams and plates are studied using C1 finite element using shear deformation theory and alsothrough experiments. The formulation in the theoretical model includes in-plane and rotary inertiaterms. The governing equations for the complex eigenvalue problem based on complex elastic moduliare formulated. The solutions are obtained using QR algorithm. Parametric study is carried out tohighlight; the effects of lay-up and ply-angle of the laminates. A limited number of experimentalinvestigafions on cantilever laminates are conducted for obtaining the natural frequenciqs, dampingfactor and frequency responses. The comparison between the theoretical and the experimfntal resultsshows good agreement.

  12. Generation of pulsed Bessel-Gauss beams using passive axicon-theoretical and experimental studies.

    Science.gov (United States)

    Parsa, Shahrzad; Fallah, Hamid Reza; Ramezani, Mohsen; Soltanolkotabi, Mahmood

    2012-10-20

    We studied the conditions for generating passive Bessel-Gauss beams by using an axicon. We designed an appropriate Gaussian resonator and extracted a quasi-fundamental Gaussian mode from a pulsed Nd:YAG laser pumped by a Xenon flash lamp and measured its parameters, such as propagation factor, divergence angle, and Rayleigh range. Then we generated passive Bessel-Gauss beams using an axicon and investigated their propagation properties, theoretically and experimentally. For example, for the axicon of 1°, the output energy and the Rayleigh range of the generated Bessel-Gauss beams were measured to be 58 mJ and 229.3 mm, respectively. We compared these properties with our results of the Gaussian mode. Finally, by using axicons with different apex angles, and also by changing the beam spot size on the axicon, we generated Bessel-Gauss beams and studied their properties theoretically and experimentally.

  13. Theoretical study of a dual harmonic system and its application to the CSNS/RCS

    Science.gov (United States)

    Yuan, Yao-Shuo; Wang, Na; Xu, Shou-Yan; Yuan, Yue; Wang, Sheng

    2015-12-01

    Dual harmonic systems have been widely used in high intensity proton synchrotrons to suppress the space charge effect, as well as reduce the beam loss. To investigate the longitudinal beam dynamics in a dual rf system, the potential well, the sub-buckets in the bunch and the multi-solutions of the phase equation are studied theoretically in this paper. Based on these theoretical studies, optimization of bunching factor and rf voltage waveform are made for the dual harmonic rf system in the upgrade phase of the China Spallation Neutron Source Rapid Cycling Synchrotron (CSNS/RCS). In the optimization process, the simulation with space charge effect is done using a newly developed code, C-SCSIM. Supported by National Natural Science Foundation of China (11175193)

  14. Conformational equilibrium of phenylacetic acid and its halogenated analogues through theoretical studies, NMR and IR spectroscopy

    Science.gov (United States)

    Levandowski, Mariana N.; Rozada, Thiago C.; Melo, Ulisses Z.; Basso, Ernani A.; Fiorin, Barbara C.

    2017-03-01

    This paper presents a study on the conformational preferences of phenylacetic acid (PA) and its halogenated analogues (FPA, CPA, BPA). To clarify the effects that rule these molecules' behaviour, theoretical calculations were used, for both the isolated phase and solution, combined with nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. Most conformations of phenylacetic acid and its halogenated derivatives are stabilized through the hyperconjugative effect, which rules the conformational preference. NMR analyses showed that even with the variation in medium polarity, there was no significant change in the conformation population. Infrared spectroscopy showed similar results for all compounds under study. In most spectra, two bands were found through the carbonyl deconvolution, which is in accordance with the theoretical data. It was possible to prove that variation in the nature of the substituent in the ortho position had no significant influence on the conformational equilibrium.

  15. New theoretical methods for studies on electrons and positrons scattering involving multichannel processes

    CERN Document Server

    Lara, O

    1995-01-01

    continued fractions are now in progress. It is well known that multichannel effects strongly influence the low-energy electron scattering by atoms and molecules. Nevertheless, the inclusion of such effects on the calculations of scattering cross sections remains a considerable task for the area researches due to the complexity of the problem. In the present study we aim to develop a new theoretical method which can be efficiently applied to the multichannel scattering studies. Two new theoretical formalisms namely the Multichannel sup - C-Functional Method have been proposed. Both methods were developed on the base of well-known distorted-wave method combined with Schwinger variational principle. In addition, an integrative method proposed by Horacek and Sasakawa in 1983, the method of continued fractions is adapted by the first time to multichannel scatterings. Numerical test of these three methods were carried out through applications to solve the multichannel scattering problems involving the interaction o...

  16. The guanidine and maleic acid (1:1) complex. The additional theoretical and experimental studies

    Science.gov (United States)

    Drozd, Marek; Dudzic, Damian

    2012-04-01

    On the basis of experimental literature data the theoretical studies for guanidinium and maleic acid complex with using DFT method are performed. In these studies the experimental X-ray data for two different forms of investigated crystal were used. During the geometry optimization process one equilibrium structure was found, only. According to this result the infrared spectrum for one theoretical molecule was calculated. On the basis of potential energy distribution (PED) analysis the clear-cut assignments of observed bands were performed. For the calculated molecule with energy minimum the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were obtained and graphically illustrated. The energy difference (GAP) between HOMO and LUMO was analyzed. Additionally, the nonlinear properties of this molecule were calculated. The α and β (first and second order) hyperpolarizability values are obtained. On the basis of these results the title crystal was classified as new second order NLO generator.

  17. Theoretical and Computational Studies of Rare Earth Substitutes: A Test-bed for Accelerated Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Lorin X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Hard permanent magnets in wide use typically involve expensive Rare Earth elements. In this effort, we investigated candidate permanent magnet materials which contain no Rare Earths, while simultaneously exploring improvements in theoretical methodology which enable the better prediction of magnetic properties relevant for the future design and optimization of permanent magnets. This included a detailed study of magnetocrystalline anisotropy energies, and the use of advanced simulation tools to better describe magnetic properties at elevated temperatures.

  18. Theoretical and Experimental Study of Hopf Bifurcation and Limit Cycles of Railway Vehicle Hunting

    Institute of Scientific and Technical Information of China (English)

    Zeng Jing; Zhang Weihua; Shen Zhiyun

    1996-01-01

    The nonlinear hunting stability of railway vehicles is studied theoretically and experimentally in this paper. The Hopf bifurcation point is determined through calculating the eigenvalues of the system linearization equations incorporating with the golden cut method. The bifurcated limit cycles are computed by use of the shooting method to solve the boundary value problem of the system differential equations. Experimental validation to the numerical results is carricd out by utilizing the full scale roller test rig.

  19. Theoretical studies on electronic structure and x-ray spectroscopies of 2D materials

    OpenAIRE

    2016-01-01

    Extraordinary chemical and physical properties have been discovered from the studies of two-dimensional (2D) materials, ever since the successful exfoliation of graphene, the first 2D material. Theoretical investigations of electronic structure and spectroscopies of these materials play a fundamental role in deep understanding the various properties. In particular, the band structure and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy can provide critical information near the ...

  20. Design factors for “linear” ball valve: theoretical and experimental studies

    OpenAIRE

    Thananchai Leephakpreeda

    2005-01-01

    Generic non-linear flow characteristics of the conventional ball valve limit the applications of flow modulation in fluid processes. This work presents the flow characteristics of fluid flowing through the conventional and modified ball valves for feasibility of a “linear” ball valve. Theoretical studies are discussed for determining explicit and implicit factors on the valve coefficient, which modulates the flow rate of fluid when the ball valve is operated in flow control processes. In expe...

  1. Theoretical study of quasi-phase-matching fourth harmonic generation in periodically poled lithium tantalate

    Institute of Scientific and Technical Information of China (English)

    Wei Xie(谢威); Xianfeng Chen(陈险峰); Like He(何利科); Yuping Chen(陈玉萍); Yuxing Xia(夏宇兴)

    2004-01-01

    The direct fourth harmonic generation (FHG) is theoretically demonstrated based on quasi-phase-matching (QPM) configuration in periodically poled lithium tantalate (PPLT). The wavelength dependence of the period of FHG QPM gratings is calculated. Bandwidths of fundamental wavelength, temperature, and incident angle are also studied. A very wide bandwidth, as large as 119.5 nm, of fundamental wavelength near 3699 nm is found with the QPM period of 9.442 μm and the crystal length of 1 cm.

  2. Synthesis, characterization, investigation of biological activity and theoretical studies of hydrazone compounds containing choloroacetyl group

    Science.gov (United States)

    Cukurovali, Alaaddin; Yilmaz, Engin

    2014-10-01

    In this study, three new hydrazide-hydrazone derivative compounds which contain choloroacetyl group have been synthesized and characterized. In the characterization, spectral techniques such as IR, 1H NMR, 13C NMR and UV-Vis spectroscopy techniques were used. Antibacterial effects of the synthesized compounds were investigated against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. In the theoretical calculations Gaussian 09 software was used with the DFT/6-311+(d,p) basis set. Experimental X-ray analysis of compounds has not been studied. Theoretical bond lengths of synthesized compounds were compared with experimental bond lengths of a similar compound. Theoretical and experimental bond lengths are in good agreement with R2: 0.896, 0.899 and 0.900 for compounds 1, 2, and 3, respectively. For antibacterial activity, the most effective one was found to be N‧-(4-bromobenzylidene)-2-chloro-N-(4-(3-methyl-3-phenylcyclobutyl)-thiazol-2-yl) acetohydrazide against P.aeroginaosa ATTC 27853, among the studied compounds.

  3. Theoretical Study of Compact Objects: Pulsars, Thermally Emitting Neutron Stars and Magnetars

    Science.gov (United States)

    Lai, Dong

    This proposal focuses on understanding the various observational manifestations of magnetized neutron stars (NSs), including pulsars, radio-quiet thermally emitting NSs and magnetars. This is motivated by the recent and ongoing observational progress in the study of isolated NSs, made possible by space telescopes such as Chandra and XMM-Newton, and the prospect of near-future observations by NASA's Gravity and Extreme Magnetism SMEX (GEMS) mission (to be launched in 2014). Recent observations have raised a number of puzzles/questions that beg for theoretical understanding and modeling. The proposed research projects are grouped into two parts: (1) Theoretical modeling of surface (or near surface) X-ray emission from magnetized NSs, including the study of the physics of electron/ion cyclotron lines, radiative transfer during magnetar bursts, dense plasma refractive effect, partially ionized atmospheres, and calculations of X-ray polarization signatures of isolated and accreting magnetic NSs, in anticipation of their detections by GEMS. (2) Theoretical study and observational constraint on the internal structure and evolution of magnetic fields in young neutron stars in supernova remnants. The proposed research will improve our understanding of different populations of NSs and their underlying physical processes (including the extreme physics of strong-field quantum electrodynamics) and enhance the scientific return from the current and future NASA astrophysics missions. It is relevant to NASA's objective, ``Discover the origin, structure, evolution, and destiny of the universe''.

  4. Theoretical Studies of Structure, Spectroscopy, and Properties of a New Hydrazine Derivative

    Directory of Open Access Journals (Sweden)

    Hajar Sahebalzamani

    2013-01-01

    Full Text Available We will report a combined experimental and theoretical study on molecular structure, vibrational spectra, and energies of (E-1-(2,4-dinitrophenyl-2-[(4-methylphenylmethylidene]hydrazine (1. The molecular geometry and vibrational frequencies and energies in the ground state are calculated by using HF and DFT levels of theory with 6-311G basis sets. The calculated HOMO and LUMO energies also confirm that charge transfer occurs within the molecule. The harmonic vibrational frequencies were calculated, and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar-type spectrograms.

  5. Molecular orbital ab initio and density functional theoretical study on reaction between PH2 and NO

    Institute of Scientific and Technical Information of China (English)

    HU; Zhengfa(胡正发); WANG; Zhenya(王振亚); LI; Haiyang(李海洋); ZHOU; Shikang(周士康)

    2002-01-01

    The theoretical study of reaction between PH2 and NO on the ground state potential energy surface is reported by using molecular orbital ab initio calculation and density function theory (DFT). Equilibrium structural parameters, harmonic vibrational frequencies, total energies and zero point energies of all species during reaction are computed by HF, MP2 (full) and B3LYP theory levels with the medium basis set 6-31G*. Theoretical results indicate that intermediate IM1(H2PNO) is firstly formed by overcoming a small energy barrier TS1, and then two four-membered ring transient states TS2 and TS5, with energy barriers 103.3 and 102.6 kJ/mol respectively,then H-migration and isomerization are completed and the products PN and H2O are formed. The reaction is exothermic one with -189.6 k J/mol released.

  6. Experimental and theoretical study of an atmospheric air plasma-jet

    Science.gov (United States)

    Xaubet, M.; Giuliani, L.; Grondona, D.; Minotti, F.

    2017-01-01

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in air. Voltage-current characteristics and spectroscopic data were experimentally obtained, and a theoretical model developed to gain information of different aspects of the discharge. The discharge is modeled as a cathode layer with different mechanisms of electron emission and a main discharge channel that includes the most important kinetic reactions and species. From the electric measurements, it is determined that high electric field magnitudes are attained in the main channel, depending on the gas flow rate. Using the voltage-current characteristics as an input, the model allows to determine the plasma state in the discharge, including electron, gas, and molecular nitrogen vibrational temperatures. The model also allows to infer the mechanisms of secondary electron emission that sustain the discharge.

  7. Theoretical and experimental study of solar water heater with internal exchanger using thermosiphon system

    Energy Technology Data Exchange (ETDEWEB)

    Koffi, P.M.E.; Andoh, H.Y.; Gbaha, P. [Laboratoire d' Energies Nouvelles et Renouvelables, Institut National Polytechnique Felix Houphoeuet-Boigny, B.P. 1526 Yamoussoukro (Ivory Coast); Toure, S. [Laboratoire d' Energie Solaire, Universite de Cocody, 22 B.P. 582, Abidjan 22 (Ivory Coast); Ado, G. [Laboratoire des Procedes, Industriels de Syntheses de l' Environnement et de l' Energie Nouvelle, INP-HB 22, B.P. 1093 Yamoussoukro (Ivory Coast)

    2008-08-15

    This study presents a theoretical and experimental analysis of the thermal performance of a solar water heater prototype with an internal exchanger using a thermosiphon system. The heat exchanger made of a rolled copper tube is placed diagonally in the storage tank so that the hot fluid crosses a significant mass of stored water. The results focus mainly on the levels of the heat fluxes, temperatures recorded, mass flow rate and efficiency of the collector. During the main insulation period, one obtains satisfactory qualitative and quantitative agreement between the experimental and theoretical results of mass flow rate and temperatures. Those indicate heat fluxes whose peak reaches 989 W/m{sup 2}, collector outlet water temperature levels of more than 85.5 C and a collector thermal effectiveness around 58%. (author)

  8. A theoretical study of improved front-illuminated avalanche drift detectors

    Science.gov (United States)

    Liang, K.; Yuan, J.; Li, H. R.; Yang, R.; Han, D. J.

    2013-06-01

    In this study, two avalanche drift detector (ADD) concepts were theoretically examined. One was an improved detector with an avalanche photodiode (APD) collecting and double pn-junction drift configuration, and the other was a combination of an APD collecting and metal oxide semiconductor (MOS) drift structure. The feasibility of the devices was theoretically investigated by the ISE-TCAD program. ADD can be operated in either Geiger mode or linear mode. In the former case, the detector was found to be appropriate for a single photon avalanche detector with a large collection area. In the latter case, the detector was observed to be well suited to be coupled to a scintillator for gamma-ray detection. The improved ADDs are considered to have good performances in the short wavelength optical detection and in matching common scintillation crystals with more flexibility.

  9. Theoretical and experimental study on shear lag effect of partially cable-stayed bridge

    Institute of Scientific and Technical Information of China (English)

    WU Gao-feng; XU Hong

    2005-01-01

    In order to resolve the traffic congestion problem, many cable-stayed bridges are designed with a large width to span ratio. This results in significant shear lag effect to cause nonuniform stress distribution along the flanges of the beam of bridge.This paper reports study on the shear lag effect of the Lanzhou Xiaoxihu Yellow River Bridge. A 3D finite element model of the bridge was developed and finite element analysis (FEA) was done to obtain the theoretical results. To evaluate the theoretical results, a scaled model was made to conduct static test in laboratory. The experiment results accorded with the results obtained by FEA. It is proved that FEA is an effective method to predict shear lag effect of bridges of this type.

  10. Theoretical study of the alkaline-earth (LiBe)+ ion: structure, spectroscopy and dipole moments

    Science.gov (United States)

    Ghanmi, C.; Farjallah, M.; Berriche, H.

    2017-03-01

    We study theoretically the structure and spectroscopic properties of the alkali alkaline-earth (LiBe)+ ion. The potential energy curves and their spectroscopic parameters, permanent and transition dipole moments are determined with a quantum chemistry approach. The (LiBe)+ ion is modelled as two valence electron system moving in the field of Be2+ and Li+ cores, which are described by pseudopotentials. In addition, effective core-polarization potentials are included to correct the energy. The molecular calculations are performed using a standard quantum chemistry approach based on the pseudopotential model, Gaussian basis sets, effective core polarization potentials, and full configuration interaction (CI) calculations. The precision of our spectroscopic parameters are discussed by comparison with currently available theoretical results. A rather good agreement is observed for the ground and first excited states. The permanent dipole moments reveal many abrupt changes, which are localized at particular distances corresponding to the positions of the avoided crossings.

  11. A review of recent theoretical studies in nonlinear crystals: towards the design of new materials

    Science.gov (United States)

    Luppi, Eleonora; Véniard, Valérie

    2016-12-01

    Nonlinear optics is an important and exciting field of fundamental and applied research, with applications in many different disciplines such as physics chemistry, material science and biology. In the recent years, nonlinear optical phenomena started to be also widely used in technological applications for optoelectronics and photovoltaics. This coincided with an important experimental and theoretical search for new materials with an efficient and exploitable nonlinear optical response. Here, starting from the discovery of nonlinear optics, we review the most important theoretical formalisms developed to understand, interpret and predict the nonlinear optical phenomena. We show the different level of approximation of the many-electrons interactions that these formalisms can describe which are fundamental in the interpretation of the experiments. The impact of the theory is then analyzed on different classes of new materials particularly studied in these years: silicon bulk to nano, compound semiconductors, graphene, transition metal dichalcogenide, hexagonal boron nitride and borate crystals.

  12. Theoretical studies of 2-quinolinol: Geometries, vibrational frequencies, isomerization, tautomerism, and excited states

    Science.gov (United States)

    Pan, Yi; Lau, Kai-Chung; Al-Mogren, Muneerah Mogren; Mahjoub, Ahmed; Hochlaf, Majdi

    2014-10-01

    We treat theoretically 2-quinolinol(lactam), an analog of carbostyril and DNA bases. We characterized the ground state structure of 2-quinolinol and its isomer(lactim) using density functional theory(DFT). The reaction profile and energetics for lactam-lactim tautomerization and cis-lactim to trans-lactim isomerization predicted with explicitly correlated methods. We explored the pattern of the lowest singlet and triplet manifolds of states and electronic S1 ← S0 transitions using multiconfigurational methodologies. The theoretical results are compared with available experimental data and used to interpret the on-going photoelectron study of 2-quinolinol. Our analysis should help to understand the effect of tautomerism and aromaticity on the DNA bases.

  13. Application of matching liquid on the refractive index measurement of biotissue: A theoretical and experimental study

    Science.gov (United States)

    Wang, Jin; Ye, Qing; Deng, Zhichao; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo

    2014-05-01

    The application of matching liquid on the measurement of the refractive index (RI) of biotissue using total internal reflection (TIR) method is investigated in detail. A theoretical model describing samples with different absorbing and scattering ability is given based on Fresnel formula. The theoretical calculation is verified by experimental results of three simulation samples (transparent plexiglass, white plexiglass and ZB3 glass) and cedar wood oil as the matching liquid. Reflectance curves of porcine tissue samples were recorded and systematically studied using two kinds of matching liquid (cedar wood oil and adipose oil) at the incident of TE and TM wave, respectively. Method for proper selection of matching liquid under different conditions is discussed.

  14. Theoretical and experimental studies of 3β-acetoxy-5α-cholestan-6-one oxime

    Science.gov (United States)

    Khan, Azhar U.; Avecillia, Fernando; Malik, Nazia; Khan, Md. Shahzad; Khan, Mohd Shahid; Mushtaque, Md.

    2016-10-01

    Steroidal oxime (3β-acetoxy-5α-cholestan- 6-one oxime) has been synthesized using microwave-induced reaction in 3.5 min using saturated steroidal ketone and aqueous hydroxylamine hydrochloride in ethanol. The structure of the compound was elucidated by UV, IR, 1H NMR and X-ray single crystal structure. The computational quantum chemical studies like, IR, UV analysis were performed by density functional theory (DFT) at Becke-3-Lee-Yang-Parr(B3LYP) exchange-correlation functional in combination with 6-31++G(d,p) basis sets. The harmonic vibrational frequencies, the optimized geometric parameters have been interpreted and compared with experimental values. Theoretical wavelength at 214.88 cm-1 correspond to the experimental value 214.0 cm-1. The nature of this transition is n → π*. The theoretical results are in good agreement with experiment results.

  15. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    Science.gov (United States)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  16. Theoretical and Experimental Study on Electromechanical Coupling Properties of Multihammer Synchronous Vibration System

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2016-01-01

    Full Text Available Industrial simulation of real external load using multiple exciting points or increasing exciting force by synchronizing multiple exciting forces requires multiple vibration hammers to be coordinated and work together. Multihammer vibration system which consists of several hammers is a complex electromechanical system with complex electromechanical coupling. In this paper, electromechanical coupling properties of such a multihammer vibration system were studied in detail using theoretical derivation, numerical simulation, and experiment. A kinetic model of multihammer synchronous vibration system was established, and approximate expressions for electromechanical coupling strength were solved using a small parameter periodic averaging method. Basic coupling rules and reasons were obtained. Self-synchronization and frequency hopping phenomenon were also analyzed. Subsequently, numerical simulations were carried out and electromechanical coupling process was obtained for different parameters. Simulation results verify correctness of the proposed model and results. Finally, experiments were carried out, self-synchronization and frequency hopping phenomenon were both observed, and results agree well with theoretical deduction and simulation results. These results provide theoretical foundations for multihammer synchronous vibration system and its synchronous control.

  17. Experiences of using the Theoretical Domains Framework across diverse clinical environments: a qualitative study.

    Science.gov (United States)

    Phillips, Cameron J; Marshall, Andrea P; Chaves, Nadia J; Jankelowitz, Stacey K; Lin, Ivan B; Loy, Clement T; Rees, Gwyneth; Sakzewski, Leanne; Thomas, Susie; To, The-Phung; Wilkinson, Shelley A; Michie, Susan

    2015-01-01

    The Theoretical Domains Framework (TDF) is an integrative framework developed from a synthesis of psychological theories as a vehicle to help apply theoretical approaches to interventions aimed at behavior change. This study explores experiences of TDF use by professionals from multiple disciplines across diverse clinical settings. Mixed methods were used to examine experiences, attitudes, and perspectives of health professionals in using the TDF in health care implementation projects. Individual interviews were conducted with ten health care professionals from six disciplines who used the TDF in implementation projects. Deductive content and thematic analysis were used. Three main themes and associated subthemes were identified including: 1) reasons for use of the TDF (increased confidence, broader perspective, and theoretical underpinnings); 2) challenges using the TDF (time and resources, operationalization of the TDF) and; 3) future use of the TDF. The TDF provided a useful, flexible framework for a diverse group of health professionals working across different clinical settings for the assessment of barriers and targeting resources to influence behavior change for implementation projects. The development of practical tools and training or support is likely to aid the utility of TDF.

  18. Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles.

    Science.gov (United States)

    Wang, Shaohua; Tao, Chao; Yang, Yiqun; Wang, Xueding; Liu, Xiaojun

    2015-07-01

    Photoacoustic imaging is an emerging technique which inherits the merits of optical imaging and ultrasonic imaging. However, classical photoacoustic imaging mainly makes use of the time-domain parameters of signals. In contrast to previous studies, we theoretically investigate the spectral characteristics of the photoacoustic signal from stochastic distributed particles. The spectral slope is extracted and used for describing the spectral characteristics of the photoacoustic signal. Both Gaussian and spherical distributions of optical absorption in particles are considered. For both situations, the spectral slope is monotonically decreased with the increase of particle size. In addition, the quantitative relationship between the spectral slope and the imaging system factors, including the laser pulse envelope, directivity of ultrasound transducer, and signal bandwidth, are theoretically analyzed. Finally, an idealized phantom experiment is performed to validate the analyses and examine the instrument independent of the spectral slope. This work provides a theoretical framework and new experimental evidence for spectrum analysis of the photoacoustic signal. This could be helpful for quantitative tissue evaluation and imaging based on the spectral parameters of the photoacoustic signal.

  19. Shear Behavior of 3D Woven Hollow Integrated Sandwich Composites: Experimental, Theoretical and Numerical Study

    Science.gov (United States)

    Zhou, Guangming; Liu, Chang; Cai, Deng'an; Li, Wenlong; Wang, Xiaopei

    2016-11-01

    An experimental, theoretical and numerical investigation on the shear behavior of 3D woven hollow integrated sandwich composites was presented in this paper. The microstructure of the composites was studied, then the shear modulus and load-deflection curves were obtained by double lap shear tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results showed that the shear modulus of the warp was higher than that of the weft and the failure occurred in the roots of piles. A finite element model was established to predict the shear behavior of the composites. The simulated results agreed well with the experimental data. Simultaneously, a theoretical method was developed to predict the shear modulus. By comparing with the experimental data, the accuracy of the theoretical method was verified. The influence of structural parameters on shear modulus was also discussed. The higher yarn number, yarn density and dip angle of the piles could all improve the shear modulus of 3D woven hollow integrated sandwich composites at different levels, while the increasing height would decrease the shear modulus.

  20. Theoretical study of the dipole moment function of OH(X2Pi)

    Science.gov (United States)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1989-01-01

    A theoretical study of the sensitivity of the dipole moment function (DMF) of the X2Pi ground state of OH to basis-set saturation and to refinements in the correlation treatment is presented. Emphasis is placed on determining the slope of the DMF at r(e) and the r value at which the maximum occurs. Consideration is given to the effect of oxygen polarization functions up through h type, expansion of the active orbital space to include the O 3d-delta orbital, the effect of higher excitations using the averaged coupled-pair functional method, and the effect of evaluating the dipole moment as an energy derivative rather than as an expectation value. The theoretical DMFs obtained here, which should be the most accurate to date, differ markedly from an empirical DMF of Turnbull and Lowe that is based on experimentally derived intensity ratios. The theoretical DMFs agree better with a recently published DMF of Nelson et al., but suggest that this empirical DMF is also inaccurate for r greater than 2.3 a0.

  1. Theoretical and experimental studies on dynamics of double-helical gear system supported by journal bearings

    Directory of Open Access Journals (Sweden)

    Minghu Yin

    2016-05-01

    Full Text Available The dynamic behaviour of a double-helical gear system supported by journal bearings is theoretically and experimentally investigated in this study. A bending–torsional–axial coupling model for dynamic analysis of double-helical gear system is developed. Influence of the time-varying mesh stiffness and damping is considered. Oil film stiffness and damping of the supporting journal bearing are supposed to be time-varying, and the time-varying oil film stiffness and damping are predicted by a back propagation neural network, which is optimized by genetic algorithm. A double-helical gear–rotor–journal bearing system test rig is also established to carry out the experimental investigations, such as the dynamic transmission errors of gear pairs. The comparisons between theoretical and experimental results show that the time-varying oil film dynamic coefficients of journal bearings are an important internal excitation. The theoretical model with time-varying oil film stiffness and damping can predict the gear dynamics more accurate than the model with time-invariant oil film stiffness and damping, and the neural network optimized by genetic algorithm can obtain the time-varying oil film stiffness and damping efficiently and accurately for the dynamic analysis of double-helical gear system.

  2. An Experimental and Theoretical Study of Ti-6Al-4V to Multi-mbar Pressures

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, S G; Tegner, B E; Cynn, H; Evans, W J; Proctor, J; McMahon, M I; Ackland, G J

    2012-03-14

    We report results from an experimental and theoretical study of the ternary alloy Ti-6Al-4V to 221 GPa. We observe a phase transition to the hexagonal {omega}-phase at approximately 30 GPa, and then a further transition to the cubic {beta}-phase starting at 94-99 GPa. We do not observe the orthorhombic {gamma} and {delta} phases reported previously in pure Ti. Computational studies show that this sequence is possible only if there is significant local atomic ordering during the compression process, yet insufficient atomic diffusion to reach the phase separated thermodynamic equilibrium state.

  3. Spectral and refractive effects in non-stationary radiative transfer: a theoretical study in dense media

    Energy Technology Data Exchange (ETDEWEB)

    Fumeron, S. [Departement des Sciences Appliquees, Groupe de Recherche en Ingenierie des Procedes et Systemes, Universite du Quebec a Chicoutimi, P4-3240, CURAL, Chicoutimi, 555 Boulevard de l' Universite, Chicoutimi, Quebec, G7H 2B1 (Canada); Charette, A. [Departement des Sciences Appliquees, Groupe de Recherche en Ingenierie des Procedes et Systemes, Universite du Quebec a Chicoutimi, P4-3240, CURAL, Chicoutimi, 555 Boulevard de l' Universite, Chicoutimi, Quebec, G7H 2B1 (Canada)]. E-mail: andre_charette@uqac.ca; Ben-Abdallah, P. [Laboratoire de Thermocinetique, UMR CNRS 6607, Ecole Polytechnique, Site de la Chantrerie, 44 306 Nantes cedex (France)

    2005-09-15

    A theoretical study of unsteady radiative heat transfer inside refractive heterogeneous participating media is presented. In the approximation of space-time geometrical optics, some new properties for propagating waves are exhibited. Physically, it is shown that the time dependency of refractive index can give rise to an effect of spectral bounce, whereas space dependency is responsible for the existence of confined trajectories for light. Then, the problem of energy transport is studied: from the shape of Clausius Invariant in unsteady processes, the transient radiative transfer equation is built and the existence of amplification effects for specific intensity is presented.

  4. Experimental and theoretical study of Ti-6Al-4V to 220 GPa

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, S.G.; Tegner, B.E.; Cynn, H.; Evans, W.J.; Proctor, J.E.; McMahon, M.I.; Ackland, G.J. (Edinburgh); (LLNL); (ICL)

    2012-07-25

    We report results from an experimental and theoretical study of the ternary alloy Ti-6Al-4V to 221 GPa. We observe a phase transition to the hexagonal {omega} phase at approximately 30 GPa, and then a further transition to the cubic {beta} phase starting at 94-99 GPa. We do not observe the orthorhombic {gamma} and {delta} phases reported previously in pure Ti. Computational studies show that this sequence is possible only if there is significant local atomic ordering during the compression process, yet insufficient atomic diffusion to reach the phase-separated thermodynamic equilibrium state.

  5. Exploring Occupational and Behavioral Risk Factors for Obesity in Firefighters: A Theoretical Framework and Study Design

    Directory of Open Access Journals (Sweden)

    BongKyoo Choi

    2011-12-01

    Full Text Available Firefighters and police officers have the third highest prevalence of obesity among 41 male occupational groups in the United States (US. However, few studies have examined the relationship of firefighter working conditions and health behaviors with obesity. This paper presents a theoretical framework describing the relationship between working conditions, health behaviors, and obesity in firefighters. In addition, the paper describes a detailed study plan for exploring the role of occupational and behavioral risk factors in the development of obesity in firefighters enrolled in the Orange County Fire Authority Wellness Fitness Program. The study plan will be described with emphasis on its methodological merits: adopting a participatory action research approach, developing a firefighter-specific work and health questionnaire, conducting both a cross-sectional epidemiological study using the questionnaire and a sub-study to assess the validity of the questionnaire with dietary intake and physical activity measures, and evaluating the strengths and weaknesses of the body mass index as an obesity measure in comparison to skinfold-based percent body fat. The study plan based on a theoretical framework can be an essential first step for establishing effective intervention programs for obesity among professional and voluntary firefighters.

  6. Exploring occupational and behavioral risk factors for obesity in firefighters: a theoretical framework and study design.

    Science.gov (United States)

    Choi, Bongkyoo; Schnall, Peter; Dobson, Marnie; Israel, Leslie; Landsbergis, Paul; Galassetti, Pietro; Pontello, Andria; Kojaku, Stacey; Baker, Dean

    2011-12-01

    Firefighters and police officers have the third highest prevalence of obesity among 41 male occupational groups in the United States (US). However, few studies have examined the relationship of firefighter working conditions and health behaviors with obesity. This paper presents a theoretical framework describing the relationship between working conditions, health behaviors, and obesity in firefighters. In addition, the paper describes a detailed study plan for exploring the role of occupational and behavioral risk factors in the development of obesity in firefighters enrolled in the Orange County Fire Authority Wellness Fitness Program. The study plan will be described with emphasis on its methodological merits: adopting a participatory action research approach, developing a firefighter-specific work and health questionnaire, conducting both a cross-sectional epidemiological study using the questionnaire and a sub-study to assess the validity of the questionnaire with dietary intake and physical activity measures, and evaluating the strengths and weaknesses of the body mass index as an obesity measure in comparison to skinfold-based percent body fat. The study plan based on a theoretical framework can be an essential first step for establishing effective intervention programs for obesity among professional and voluntary firefighters.

  7. Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Mahr, Christoph, E-mail: mahr@ifp.uni-bremen.de; Müller-Caspary, Knut; Grieb, Tim; Schowalter, Marco; Mehrtens, Thorsten; Krause, Florian F.; Zillmann, Dennis; Rosenauer, Andreas

    2015-11-15

    Measurement of lattice strain is important to characterize semiconductor nanostructures. As strain has large influence on the electronic band structure, methods for the measurement of strain with high precision, accuracy and spatial resolution in a large field of view are mandatory. In this paper we present a theoretical study of precision and accuracy of measurement of strain by convergent nano-beam electron diffraction. It is found that the accuracy of the evaluation suffers from halos in the diffraction pattern caused by a variation of strain within the area covered by the focussed electron beam. This effect, which is expected to be strong at sharp interfaces between materials with different lattice plane distances, will be discussed for convergent-beam electron diffraction patterns using a conventional probe and for patterns formed by a precessing electron beam. Furthermore, we discuss approaches to optimize the accuracy of strain measured at interfaces. The study is based on the evaluation of diffraction patterns simulated for different realistic structures that have been investigated experimentally in former publications. These simulations account for thermal diffuse scattering using the frozen-lattice approach and the modulation-transfer function of the image-recording system. The influence of Poisson noise is also investigated. - Highlights: • Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction. • Evaluation of simulations for exact knowledge of the actual strain. • Improvement of precision using electron beam precession. • Explanation of artefacts in the measurement close to interfaces. • Theoretical solution for the improvement of the accuracy at interfaces.

  8. Theoretical study of the porosity and temperature effects on the shock response of graphitic materials

    Science.gov (United States)

    Bourasseau, Emeric; Pineau, Nicolas; Hebert, David; Soulard, Laurent

    2015-06-01

    The response of graphite, and graphite-like materials, to shock compression have been the subject of numerous experimental studies over a few decades, showing a substantial dependence of the shock properties (Hugoniot curves, transition to diamond, ...) on the initial porosity and granularity of the polycrystalline samples. Theoretical studies of these processes have been enabled only recently, thanks to the development of computationally efficient empirical potentials such as LCBOPII which reproduce accurately the various phases of carbon (graphene, graphite, diamond, liquid carbon) and the few available ab initio data for shock compression of graphite. These studies are restricted to monocrystalline samples which, in the case of graphite, represent a serious approximation to the actual experimental set-ups and may explain the large over-estimation of the graphite/diamond transition pressure (~ 60 GPa vs. 15-25 GPa). In this paper we present a theoretical study on the shock compression of porous graphite by means of Molecular Dynamics and Monte Carlo simulations using the LCBOPII potential. The results are compared to the available experimental data and the role of porosity and temperature on the shock properties and graphite/diamond transition is discussed.

  9. Three dimensional elastoplastic response of compliant fault zones to nearby earthquakes: A theoretic study

    Science.gov (United States)

    Kang, J.; Duan, B.

    2012-12-01

    Response of compliant fault zone to the nearby dynamic rupture is detected by seismic and InSAR observations. Seismic observations of damage to the Landers fault zone by the Hector Mine earthquake suggest that response of fault zones can be inelastic. Recent two dimensional theoretical studies reveal that inelastic response of fault zones results in distinguished features in the surface residual displacement field that can be detected by InSAR images. In this study, we extend the recent theoretical studies to three dimensions, so that we may compare modeling results with InSAR observations in the future. We use a Drucker-Prager criterion to characterize elastoplastic response of rocks to nearby spontaneous dynamic rupture in an inhomogeneous medium that contains a compliant fault zone. A finite element method is used to simulate dynamic rupture and seismic wave propagations in the model. Preliminary results show that 1) depth dependence of plastic strain within the fault zone may have important effects on the surface deformation field, 2) plastic strain near the Earth's surface within the fault zone can occur in both extensional and compressive quadrants of the rupture, which is different from previous two dimensional studies, and 3) the vertical surface residual displacement is enhanced within the fault zone, while is reduced outside of the fault zone.

  10. Theoretical studies on the photoionization cross-sections of solid silver

    Institute of Scientific and Technical Information of China (English)

    Ma Xiao-Guang; Sun Wei-Guo

    2005-01-01

    An alternative expression for photoionization cross-section of atoms or molecules and a dielectric influence function (DIF) in a high-density system proposed recently are used to study the photoionization cross-sections of solid silver. It is suggested that a density turning point (DTP) of a photoionized system may be viewed as the critical point where the photoionization properties of atoms in a real system may have a notable change. The results show that the present theoretical photoionization cross-sections are in good agreement with the experimental results of a silver crystal both in structure and in magnitude.

  11. Antioxidant properties of xanthones extracted from the pericarp of Garcinia mangostana (Mangosteen): A theoretical study

    Science.gov (United States)

    Thong, Nguyen Minh; Quang, Duong Tuan; Bui, Ngoc Hoa Thi; Dao, Duy Quang; Nam, Pham Cam

    2015-04-01

    A theoretical study on antioxidant properties of fourteen xanthones extracted from the pericarp of G. Mangostana has been performed. Three main reaction mechanisms are investigated: hydrogen atom transfer (HAT), single electron transfer-proton transfer (SETPT) and sequential proton loss electron transfer (SPLET). The Osbnd H bond dissociation enthalpy (BDE), ionization energy (IE), proton affinity (PA) and electron transfer energy (ETE) parameters were computed in gas phase and water. The results show that HAT would be the most favorable mechanism for explaining antioxidant activity of xanthones in gas phase, whereas the SPLET mechanism is thermodynamically favored in water.

  12. A theoretical study of the spheroidal droplet evaporation in forced convection

    Science.gov (United States)

    Li, Jie; Zhang, Jian

    2014-11-01

    In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time.

  13. Institutions,policies and soil degradation:theoretical examinations and case studies in Southeast China

    Institute of Scientific and Technical Information of China (English)

    Tan Shuhao; Qu Futian; Huang Xanjin; Nico Heerink

    2004-01-01

    Southeast China is one of the severe soil degradation areas in China. This paper theoretically examines the impact of some important institutional arrangements and policies, like land management pattern, the rural off-farm employment, land property change and changes in prices of agricultural products,on soil degradation in this area. It further conducts some case studies to confirm the potential relationship between the institutions & policies and soil degradation, applying the surveyed and the second hand data, The paper at last makes some conclusions and proposes some suggestions on how to promote soil conservation by improving the ways of policy decision-making and the effects of policies on land use.

  14. Theoretical Study on the Reaction Mechanism between Dichlorocarbene and Armchair Single-walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    LI Rui-Fang; SHANG Zhen-Feng; XU Xiu-Fang; WANG Gui-Chang

    2006-01-01

    The reaction mechanism between CCl2 and armchair single-walled carbon nanotubes (ASWCNTs) (3,3) and (4,4) has been studied by semiempirical AM1 and ab initio methods. The activation barriers of CCl2 adding to ASWCNT (3,3) and (4,4) are computed and compared. The lower barrier of CCl2 forms cycloaddition isomer on (3,3) maybe because the strain energy of (3,3) is larger than that of (4,4). Our theoretical results are consistent with the experimental results.

  15. Theoretical model study of dynamic ferromagnetic susceptibility in mono-layer graphene

    Science.gov (United States)

    Sahu, Sivabrata; Parashar, S. K. S.; Rout, G. C.

    2016-04-01

    We report here a microscopic theoretical study of dynamic ferromagnetic spin susceptibility of electrons for graphene systems, which deal with a tight-binding model Hamiltonian consisting of the hopping of electrons up to third-nearest-neighbors, impurity and substrate effects besides Coulomb interaction of electrons at A-and B- sub- lattices. The spin susceptibility involves four two-particle Green's functions, which are calculated by Zubarev's Green's function technique. The up and down electron occupancies at A and B sub-lattices are computed numerically and self-consistently. The temperature dependent susceptibility shows a pronounced peak at Curie temperature for critical Coulomb interaction Uc = 2.2t1.

  16. Microscopic theoretical model study of band gap opening in AA-stacked bi-layer graphene

    Science.gov (United States)

    Sahu, Sivabrata; Parashar, S. K. S.; Rout, G. C.

    2016-05-01

    We address here a tight-binding theoretical model calculation for AA-stacked bi-layer graphene taking into account of a biased potential between two layers to study the density of states and the band dispersion within the total Brillouin zone. We have calculated the electronic Green's function for electron operator corresponding to A and B sub lattices by Zubarev's Green's function technique from which the electronic density of states and the electron band energy dispersion are calculated. The numerically computed density of states and band energy dispersions are investigated by tuning the biased potential to exhibit the band gap by varying the different physical parameters.

  17. Synthesis, conformational and theoretical studies of 1,n-di(2-formyl-4-phenylazophenoxy)alkanes

    Science.gov (United States)

    Balachander, R.; Manimekalai, A.

    2016-01-01

    1,n-di(2-Formyl-4-phenylazophenoxy)alkanes 1 and 2 and 1,3-di(2-formyl-4-phenylazophenoxymethyl)benzene 3 were synthesis and characterized by FT-IR, UV-Vis, 1H, 13C NMR and mass spectral studies. The stable conformations of 1-3 were predicted theoretically and selected geometrical parameters were derived from optimized structures. The molecular parameters of HOMO-LUMO energies, polarizability, hyperpolarizability, natural bond orbital (NBO), atom in molecule (AIM) analysis and molecular electrostatic potential (MEP) surfaces were determined by the density functional theory (DFT) method and analysed.

  18. Fluoride Anion Recognition by a Multifunctional Urea Derivative: An Experimental and Theoretical Study

    Science.gov (United States)

    Schiller, Jana; Pérez-Ruiz, Raúl; Sampedro, Diego; Marqués-López, Eugenia; Herrera, Raquel P.; Díaz Díaz, David

    2016-01-01

    In this work we demonstrate the ability of a multifaceted N,N′-disubstituted urea to selectively recognize fluoride anion (F−) among other halides. This additional function is now added to its already reported organocatalytic and organogelator properties. The signaling mechanism relies on the formation of a charge-transfer (CT) complex between the urea-based sensor and F¯ in the ground state with a high association constant as demonstrated by absorption and fluorescence spectroscopy. The nature of the hydrogen bonding interaction between the sensor and F¯ was established by 1H-NMR studies and theoretical calculations. Moreover, the recovery of the sensor was achieved by addition of methanol. PMID:27171087

  19. Theoretical study on the band structure and optical properties of 4H-SiC

    Institute of Scientific and Technical Information of China (English)

    Xu Peng-Shou; Xie Chang-Kun; Pan Hai-Bin; Xu Fa-Qiang

    2004-01-01

    We have studied the band structure and optical properties of 4H-SiC by using a full potential linearized augmented plane waves (FPLAPW) method. The density of states (DOS) and band structure are presented. The imaginary part of the dielectric function has been obtained directly from the band structure calculation. With band gap correction, the real part of the dielectric function has been derived from the imaginary part by the Kramers-Kronig (KK) dispersion relationship. The values of reflectivity for normal incidence as a function of photon energy have also been calculated.We found the theoretical results are in good agreement with the experimental data.

  20. Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study

    Science.gov (United States)

    Dai, Jiayu; Yuan, Jianmin; Giannozzi, Paolo

    2009-12-01

    The adsorption of several common gas molecules over boron-, nitrogen-, aluminum-, and sulfur-doped graphene was theoretically studied using density-functional theory. B- and N-doped graphene retain a planar form, while Al and S atoms protrude out of the graphene layer. We find that only NO and NO2 bind to B-doped graphene, while only NO2 binds to S-doped graphene. Al-doped graphene is much more reactive and binds many more gases, including O2. We suggest that B- and S-doped graphene could be a good sensor for polluting gases such as NO and NO2.

  1. Theoretical Study of the Opacity for Mixture Materials at High Temperatures

    Institute of Scientific and Technical Information of China (English)

    颜君; 吴泽清; 逄锦桥; 邱玉波

    2002-01-01

    Using a detailed configuration accounting model with term structures treated by the unresolved transition array model, we have extensively investigated the opacities of mixt ure materials. For plasmas at the temperat ure of 250eV and density of 1 g/cm3, our calculated Rosseland mean opacities are in good agreement with other theoretical results. A high increase in the Rosseland mean opacity to 2944 cm2/g is achieved for a multi-element mixture compared to the value of 1729 cm2/g for pure gold. Various mixtures at other plasma conditions are also studied.

  2. Theoretical and experimental study of electroporation of red blood cells using MEMS technology

    KAUST Repository

    Deng, Peigang

    2010-01-01

    A theoretical and experimental study of electroporation (EP) of red blood cells (RBCs) was presented in this paper. With additional strain energy, an energy-based model of an electropore induced on a RBC\\'s membrane at different electric fields was proposed to predict the critical EP electric field strength. In addition, EP experiments with red blood cells at single-cell level was carried out on a micro EP chip. The measured critical EP electric field strengths are in agreement with the numerical predictions. ©2010 IEEE.

  3. A theoretical study on the inhibition efficiencies of some amino acids as corrosion inhibitors of nickel

    Energy Technology Data Exchange (ETDEWEB)

    Gece, Goekhan, E-mail: gokhangc@gmail.co [Department of Physical Chemistry, Faculty of Science, Ankara University, Besevler, 06100 Ankara (Turkey); Bilgic, Semra [Department of Physical Chemistry, Faculty of Science, Ankara University, Besevler, 06100 Ankara (Turkey)

    2010-10-15

    To clarify the inhibition efficiencies of a total of 12 amino acids for the corrosion of nickel in acidic medium, a density functional theory (DFT) study was carried out using the B3LYP/LANL2DZ method. Quantum chemical descriptors such as the energy of highest occupied molecular orbital (E{sub HOMO}), energy of lowest unoccupied molecular orbital (E{sub LUMO}), and the energy gap ({Delta}E) were calculated. Equations were proposed using linear regression analysis to determine the most effective parameter on inhibition efficiency. The theoretically obtained results were found to be consistent with the experimental data reported.

  4. Theoretical Study on the Interaction of o-Tetrafluorophenylene Mercury with Ethylene and Acetylene

    Directory of Open Access Journals (Sweden)

    Eduardo A. Castro

    2003-05-01

    Full Text Available The results of a theoretical study on the interaction of o-tetrafluorophenylene mercury with ethylene and acetylene are reported. The AM1 molecular orbital semiempirical method is applied through a complete optimization procedure without any restrictions to find the optimal equilibrium geometries. The comparative capabilities of ethylene and acetylene molecules to form stable complexes with o-tetrafluorophenylene mercury are analyzed and their corresponding bonding features are discussed. Ethylene seems to be capable of forming a molecular complex while acetylene is predicted to be incapable of doing so.

  5. Fluoride Anion Recognition by a Multifunctional Urea Derivative: An Experimental and Theoretical Study.

    Science.gov (United States)

    Schiller, Jana; Pérez-Ruiz, Raúl; Sampedro, Diego; Marqués-López, Eugenia; Herrera, Raquel P; Díaz Díaz, David

    2016-05-09

    In this work we demonstrate the ability of a multifaceted N,N'-disubstituted urea to selectively recognize fluoride anion (F(-)) among other halides. This additional function is now added to its already reported organocatalytic and organogelator properties. The signaling mechanism relies on the formation of a charge-transfer (CT) complex between the urea-based sensor and F¯ in the ground state with a high association constant as demonstrated by absorption and fluorescence spectroscopy. The nature of the hydrogen bonding interaction between the sensor and F¯ was established by ¹H-NMR studies and theoretical calculations. Moreover, the recovery of the sensor was achieved by addition of methanol.

  6. Exploratory experimental and theoretical studies of cyclone gasification of wood powder

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, Christian

    1999-11-01

    This thesis describes an exploratory experimental and theoretical study of gasification of wood powder in a cyclone gasifier. The generated gas could be used to operate a gas turbine in a combined cycle power plant. The objective has been to develop the understanding of cyclone gasification by experimental studies of the performance of a cyclone designed in principle as a separation cyclone and by comparisons between the experimental results and theoretical predictions. The experiments were carried out with commercial Swedish wood powder fuels, injected with air or steam/air mixture through two diametrically opposite tangential inlets and gasified at atmospheric pressure in cyclones of two different configurations with a volume of about 0.034 m{sup 3}. The studies show that stable gasification of this fuel can be obtained for a specific fuel feeding rate of about 5 MW/m{sup 3} cyclone volume for equivalence ratios above 0.15 and that the equivalence ratio had to be kept below about 0.4 in order to avoid material temperatures above 950 deg C. A cyclone with a short outlet pipe, designed as a conventional separation cyclone was found to give lower char conversion than a modified cyclone with a long outlet pipe. The heating value of the gas was found to be approximately 4.5 MJ/kg. The dust load in the product gas was measured to between 1000 and 2500 mg/Nm{sup 3}. It was possible to separate at least 40-60% of the potassium and 60-90% of the sodium supplied with the wood. The alkali that left the cyclone with the product gas appear to be in solid or melted phase in the unseparated char particles and consequently not vaporised during gasification. As the K and Na were assumed to remain within the particles during gasification, it was concluded that to reduce the amount of alkali metals in the product gas it would be necessary to improve the particle separation efficiency. The results of the theoretical modelling, using the existing models in the commercial software CFX

  7. Theoretical and experimental study of dynamics of photoexcited carriers in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Shishehchi, Sara; Bellotti, Enrico, E-mail: bellotti@bu.edu [ECE Department, Boston University, 8 Saint Mary' s Street, Boston, Massachusetts 02215 (United States); Rudin, Sergey; Garrett, Gregory A.; Wraback, Michael [Sensors and Electron Devices Directorate, US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, Maryland 20783 (United States)

    2013-12-21

    We present a theoretical and experimental study of the sub-picosecond dynamics of photo-excited carriers in GaN. In the theoretical model, interaction with an external ultrafast laser pulse is treated coherently and to account for the scattering mechanisms and dephasing processes, a generalized Monte-Carlo simulation is used. The scattering mechanisms included are carrier interactions with polar optical phonons and acoustic phonons, and carrier-carrier Coulomb interactions. We study the effect of different scattering mechanisms on the carrier densities. In the case that the excitation energy satisfies the threshold for polar optical scattering, phonon contribution is the dominant process in relaxing the system, otherwise, carrier-carrier mechanism is dominant. Furthermore, we present the temperature and pulse power dependent normalized luminescence intensity. The results are presented over a range of temperatures, electric field, and excitation energy of the laser pulse. For comparison, we also report the experimental time-resolved photoluminescence studies on GaN samples. There is a good agreement between the simulation and experiment in normalized luminescence intensity results. Therefore, we show that we can explain the dynamics of the photo-excited carriers in GaN by including only carrier-carrier and carrier-phonon interactions and a relatively simple two-band electronic structure model.

  8. Theoretical and experimental study of dynamics of photoexcited carriers in GaN

    Science.gov (United States)

    Shishehchi, Sara; Rudin, Sergey; Garrett, Gregory A.; Wraback, Michael; Bellotti, Enrico

    2013-12-01

    We present a theoretical and experimental study of the sub-picosecond dynamics of photo-excited carriers in GaN. In the theoretical model, interaction with an external ultrafast laser pulse is treated coherently and to account for the scattering mechanisms and dephasing processes, a generalized Monte-Carlo simulation is used. The scattering mechanisms included are carrier interactions with polar optical phonons and acoustic phonons, and carrier-carrier Coulomb interactions. We study the effect of different scattering mechanisms on the carrier densities. In the case that the excitation energy satisfies the threshold for polar optical scattering, phonon contribution is the dominant process in relaxing the system, otherwise, carrier-carrier mechanism is dominant. Furthermore, we present the temperature and pulse power dependent normalized luminescence intensity. The results are presented over a range of temperatures, electric field, and excitation energy of the laser pulse. For comparison, we also report the experimental time-resolved photoluminescence studies on GaN samples. There is a good agreement between the simulation and experiment in normalized luminescence intensity results. Therefore, we show that we can explain the dynamics of the photo-excited carriers in GaN by including only carrier-carrier and carrier-phonon interactions and a relatively simple two-band electronic structure model.

  9. Theoretical foundations of international migration process studies: analysis of key migration theories development

    Directory of Open Access Journals (Sweden)

    Shymanska K.V.

    2017-03-01

    Full Text Available The need for transformation of Ukraine's migration policy based on globalized world development trends and in response to the challenges of European integration transformations causes the need of researching the theoretical and methodological basis of migration studies, and the regulations of existing theories of international migration. The bibliometric analysis of scientific publications on international migration in cites indexes found that the recent researches on these problems acquire interdisciplinary character. It necessitates the transformation of migration study approaches basing on economic, social, institutional theories and concepts synthesis. The article is devoted to the study of theoretical regulations of existing international migration theories in the context of the evolution of scientists’ views on this phenomenon. The author found that the existing theories of international migration should be divided into three categories (microeconomic, macroeconomic, globalizational that contributes to their understanding in the context of implementation possibilities in migrational public administration practice. It allows to determine the theories which should be used for Ukrainian state migration policy constructing and eliminating or reducing the external migration negative effects.

  10. The social embeddedness of media use: Action theoretical contributions to the study of TV use in everyday life

    NARCIS (Netherlands)

    Westerik, H.

    2009-01-01

    Scholars in the field of communication research have extensively studied television viewing in general and watching television news in particular. The book looks at the subject from an integrative theoretical perspective. Based on Schutzean sociology and action theoretical approaches to media use, t

  11. Insights into the coordination mode of quercetin with the Al(III) ion from a combined experimental and theoretical study.

    Science.gov (United States)

    Furia, Emilia; Marino, Tiziana; Russo, Nino

    2014-05-21

    Combining potentiometric, spectroscopic and theoretical DFT computations we have studied the formation of the Al(iii)-quercetin complex in ethanol solution. The possible complexation sites have been considered on the basis of all the experimental and theoretical tools used. Results supported proposing a 1 : 1 neutral complex and the possibility to have different isomers in solution.

  12. Theoretical Study on the Allosteric Regulation of an Oligomeric Protease from Pyrococcus horikoshii by Cl− Ion

    Directory of Open Access Journals (Sweden)

    Dongling Zhan

    2014-02-01

    Full Text Available The thermophilic intracellular protease (PH1704 from Pyrococcus horikoshii that functions as an oligomer (hexamer or higher forms has proteolytic activity and remarkable stability. PH1704 is classified as a member of the C56 family of peptidases. This study is the first to observe that the use of Cl− as an allosteric inhibitor causes appreciable changes in the catalytic activity of the protease. Theoretical methods were used for further study. Quantum mechanical calculations indicated the binding mode of Cl− with Arg113. A molecular dynamics simulation explained how Cl− stabilized distinct contact species and how it controls the enzyme activity. The new structural insights obtained from this study are expected to stimulate further biochemical studies on the structures and mechanisms of allosteric proteases. It is clear that the discovery of new allosteric sites of the C56 family of peptidases may generate opportunities for pharmaceutical development and increases our understanding of the basic biological processes of this peptidase family.

  13. Electronic and optical response of functionalized Ru(II) complexes: joint theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kilina, Svetlana [Los Alamos National Laboratory; Tretiak, Sergei [Los Alamos National Laboratory; Sykora, Milan [Los Alamos National Laboratory; Albert, Victor [UNIV OF FLORIDA; Badaeva, Ekaterina [UNIV OF WASHINGTON; Koposov, Alexey [UNIV OF WASHINGTON

    2008-01-01

    New photovoltaic and photocatalysis applications have been recently proposed based on the hybrid Ru(II)-bipyridine-complex/semiconductor quantum dot systems. In order to attach the Ru(II) complex to the surface of a semiconductor, a linking bridge -- a carboxyl group -- needs to be added to one or two of the 2,2'-bipyridine (bpy) ligands. Such changes in the ligand structure affect electronic and optical properties and, consequently, the charge transfer reactivity of Ru(II)-systems. In this study, we analyze the effects brought by functionalization of bipyridine ligands with the methyl, carboxyl, and carboxilate groups on the electronic structure and optical response of the [Ru(bpy){sub 3}]{sup 2+} complex. First principle calculations based on density functional theory (DFT) and time dependent DFT (TDDFT) are used to simulate the ground and excited-state properties, respectively, of functionalized Ru-complexes in the gas phase and acetonitrile solution. In addition, an effective Frenkel exciton model is used to explain the optical activity and splitting patterns of the low-energy excited states in all molecules. All theoretical results nicely complement and allow for detailed interpretation of experimental absorption spectra of Ru-complexes that have been done in parallel with our theoretical investigations. We found that the carboxyl group breaks the degeneracy of two low-energy optically bright excited states and red-shifts the absorption spectrum, while leaves ionization and affinity energies of complexes almost unchanged. Experimental studies show that deprotonation of the carboxyl group in the Ru-complexes results in a slight blue shift and decrease of oscillator strengths of the low energy absorption peaks. Comparison of experimental and theoretical linear response spectra of deprotonated complexes demonstrate strong agreement if the theoretical calculations are performed with the addition of a dielectric continuum model. A polar solvent is found to

  14. Theoretical study of the binding nature of glassy carbon with nickel(II) phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Luis [Laboratorio de Quimica Teorica, Facultad de Quimica y Biologia, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago (Chile); Berrios, Cristhian [Laboratorio de Electrocatalisis, Facultad de Quimica y Biologia, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago (Chile); Yanez, Mauricio [Laboratorio de Recursos Renovables, Centro de Biotecnologia, Universidad de Concepcion, Casilla-160 C, Concepcion (Chile); Cardenas-Jiron, Gloria I., E-mail: gloria.cardenas@usach.cl [Laboratorio de Quimica Teorica, Facultad de Quimica y Biologia, Universidad de Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago (Chile)

    2009-11-26

    A theoretical study at the semiempirical RHF/PM3(tm) level (tm: transition metal) of the binding nature between a glassy carbon (GC) cluster and a nickel(II) complex (nickel(II) phthalocyanine NiPc, nickel(II) tetrasulphophthalocyanine NiTSPc) was performed. Three types of interactions for GC...NiPc (NiTSPc) were studied: (a) through an oxo (O) bridge, (b) through an hydroxo (OH) bridge, and (c) non-bridge. One layer (NiPc, NiTSPc) and two layers (NiPc...NiPc) of complex were considered. The binding energy calculated showed that in both cases NiPc and NiTSPc, the oxo structures are more stable than the hydroxo ones, and than the non-bridge systems. Charge analysis (NAO) predicted that GC gained more electrons in an oxo structure than in the analogues hydroxo. The theoretical results showed an agreement with the experimental data available, an oxo binding between GC and a nickel complex (NiPc, NiTSPc) in aqueous alkaline solutions is formed.

  15. Morphological control of zinc tricarbohydrazide perchlorate crystals:Theoretical and experimental study

    Institute of Scientific and Technical Information of China (English)

    LIU Rui; QI ShuYuan; ZHANG TongLai; ZHOU ZunNing; YANG Li; ZHANG JianGuo

    2013-01-01

    The theoretical crystal-morphology of zinc tricarbohydrazide perchlorate (ZnCP) was studied using the morphology simulation software.The growth trends and surface characteristics were calculated using the Bravais-Friedel-Donnay-Harker (BFDH),Growth Morphology,and Equilibrium Morphology methods; these provide theoretical guidance for the choice of crystal-control reagents.On the basis of the simulations,experiments were carried out to study the effects of five different crystal-control reagents,including carboxymethylcellulose (A),polyacrylamide (B),dextrin (C),Tween 40 (D),and Tween 60 (E),in the control of the crystal-morphology of ZnCP.Mixtures of two reagents and higher temperatures were used to further optimize the ZnCP crystals.The results show that ZnCP crystals are well dispersed,and have a large apparent density and regular crystal-morphology under the control of a mixture of reagents A and E in a mass ratio of 1 ∶ 4 at 80℃.

  16. A study of brain networks associated with swallowing using graph-theoretical approaches.

    Directory of Open Access Journals (Sweden)

    Bo Luan

    Full Text Available Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, [Formula: see text] years of age. To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia.

  17. Theoretical Study of One-Intermediate Band Quantum Dot Solar Cell

    Directory of Open Access Journals (Sweden)

    Abou El-Maaty Aly

    2014-01-01

    Full Text Available The intermediate bands (IBs between the valence and conduction bands play an important role in solar cells. Because the smaller energy photons than the bandgap energy can be used to promote charge carriers transfer to the conduction band and thereby the total output current increases while maintaining a large open circuit voltage. In this paper, the influence of the new band on the power conversion efficiency for the structure of the quantum dots intermediate band solar cell (QDIBSC is theoretically investigated and studied. The time-independent Schrödinger equation is used to determine the optimum width and location of the intermediate band. Accordingly, achievement of maximum efficiency by changing the width of quantum dots and barrier distances is studied. Theoretical determination of the power conversion efficiency under the two different ranges of QD width is presented. From the obtained results, the maximum power conversion efficiency is about 70.42% for simple cubic quantum dot crystal under full concentration light. It is strongly dependent on the width of quantum dots and barrier distances.

  18. Experimental and theoretical studies of the effects of nonuniformities in equilibrium MHD generators

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, M.; Shamma, S.E.; Louis, J.F.

    1980-01-01

    An experimental study of the effects of thermal and velocity nonuniformities is performed in an equilibrium plasma for a range of Hall parameters. An electrodeless MHD disk generator with radial flow is chosen as the ideal geometry for these experiments. By introducing equally spaced cold blades in the flow, it is possible to create well defined two-dimensional wake nonuniformities with strong variations of the plasma properties in the direction normal to the magnetic field and the flow. This type of nonuniformity is predicted to provide the strongest reduction of Hall coefficient and effective conductivity for high values of Hall parameter. This degradation is controlled by both the level of nonuniformities and the value of the ideal Hall parameter. The former is dependent upon the number of blades (root mean square deviation of the conductivity), and the latter is dependent upon the values of the magnetic field intensities. The results provide basic quantitative information about the effects of conductivity and velocity nonuniformities on the performance of equilibrium MHD generators over a wide range of Hall coefficients, between 2 and 7. Reduction formulae are established between the effective and ideal Hall parameters for different levels of nonuniformities intensities. Theoretical predictions are derived from a detailed two-dimensional electrodynamic analysis and a simplified engineering model based on a generalization of Rosa's layer model. These experiments validate the analytical studies and support the use of the theoretical layer models in describing the effect of boundary layers on the performance of linear generators.

  19. Theoretical studies of GaInNAs for optoelectronic device applications

    CERN Document Server

    Alexandropoulos, D

    2003-01-01

    This thesis focuses on the theoretical analysis of GalnNAs alloys for use in optoelectronic devices. We develop reliable theoretical models that describe the properties of GaInNAs alloys and apply these to establish design rules. We develop a k centre dot p model for the band structure of GaInNAs-based Quantum Wells (QW) that accounts for valence band mixing effects, strain effects and the N induced coupling of the conduction band states of GaInNAs alloys. We implement the model to study the effect of N on the conduction and valence bands. The optical properties of GaInNAs structures are studied and design rules that ensure optimal performance are derived for 1.3 mu m emission. It is established that high N content decreases the differential gain and the Momentum Matrix Element (MME) for TE polarisation while it increases the transparency concentration and the MME for TM polarisation. The material gain and linewidth enhancement factor are found to have comparable values to InGaAsP structures. The effect of al...

  20. Theoretical study and practical application of the capillary film solar distiller

    Energy Technology Data Exchange (ETDEWEB)

    Bouchekima, Bachir [Universite de Blida, Inst. de Chimie Industrielle, Blida (Algeria); Gros, Bernard [I.U.T. Paul Sabatier, Dept. Genie Chimique, Toulouse, 31 (France); Ouahes, Ramdane [U.S.T.H.B., Lab. de Chimie Solaire, El Alia (Algeria); Diboun, Mostefa [U.S.T.H.B., Inst. de Chimie Industrielle, El Alia (Algeria)

    1999-01-01

    In the south of Algeria, to supply sufficient fresh water for the population, desalination is necessary because water resources (underground and geothermal) are brackish. This paper presents the theoretical study and the results of experiments carried out with a capillary film multi-effect distiller installed in the south of Algeria (in a village near Touggourt, where the temperature of the groundwater is about 65degC at the source). The name of this device is DIFICAP (DIstiller with a FIlm in CAPillary motion). The aim of our study is to improve the efficiency of this distiller. The research and development of this desalination process is carried out under the following aspects: modelisation of heat and mass transfer, experimentation under direct solar radiation in South Algeria and technical development to aim to optimise the efficiency of this distiller. The theoretical and experimental results show that the efficiency of this distiller increases when the temperature of the brackish water, the intensity of the solar radiation and the number of stages increase. (Author)

  1. Theoretical study, and infrared and Raman spectra of copper(II) chelated complex with dibenzoylmethane.

    Science.gov (United States)

    Nekoei, A-R; Vakili, M; Hakimi-Tabar, M; Tayyari, S F; Afzali, R; Kjaergaard, H G

    2014-07-15

    There are some discrepancies in both the vibrational assignments and in the metal-ligand (M-L) bond strengths predicted in the previous studies on the copper (II) chelated complex of dibenzoylmethane, Cu(dbm)2. Also, there is a lack of theoretical structure, Raman spectrum and full vibrational assignment for Cu(dbm)2 in the literatures. Density functional theory (DFT) at the B3LYP level and also MP2 calculations using different basis sets, besides Natural Bond Orbital (NBO) and Atoms-in-Molecules (AIM) analyses, have been employed to investigate the effect of methyl substitution with the phenyl group on the stabilities of bis(acetylacetonate) copper (II), Cu(acac)2, and Cu(dbm)2 complexes and the electron delocalization in their chelated rings. Measured solid phase infrared and Raman bands for Cu(dbm)2 complex have been interpreted in terms of the calculated vibrational modes and detailed assignment has been presented. We concluded that, theoretically, the results of charge transfer studies, and experimentally, in-phase symmetric O-Cu-O stretching mode of these complexes are very useful measures for M-L bond strength. The electron delocalization in the chelated rings and the M-L bond strength in Cu(dbm)2 are concluded to be higher than those in Cu(acac)2. The calculated geometries and vibrational results are in good agreement with the experimental data.

  2. Adsorption mechanism of malachite green onto activated phosphate rock: a kinetics and theoretical study

    Directory of Open Access Journals (Sweden)

    Nouar Sofiane Labidi

    2016-07-01

    Full Text Available Original Research Adsorption mechanism of malachite green onto activated phosphate rock: a kinetics and theoretical study Nouar Sofiane Labidi* , Nour Elhouda Kacemi AuthorAffiliations Department of Materials Sciences, Institute of Science and Technologies. University Centre of Tamanrasset, Algeria GrantInformation Get PDF Get XML Export Share Abstract Adsorption kinetics of malachite green onto the Algerian activated phosphate rock was studied for better removal of the dye from wastewater. The prepared sorbent displayed à good surface area of 42.2 m²/g. The adsorption process appeared to be of physisorption nature and it took less than 60 min to get equilibrium whereas the kinetics indicated that the adsorption is likely a second order reaction, which is further proved with the high R2 value. The intraparticle diffusion model confirms an adsorption mechanism limited on two steps, i.e., (1 surface adsorption, and (2 pore diffusion with a diffusion parameter of Di=10-18 cm2 /s. Besides, semi-empirical theoretical calculations provide a new insight into adsorption mechanism as a principle of hydrogen bonding and ionic interaction.

  3. Experimental and theoretical studies of the structure and optical properties of nickel phthalocyanine nanowires

    Science.gov (United States)

    Wang, Xiaoyan; Wu, Wei; Ju, Haidong; Zou, Taoyu; Qiao, Zhenfang; Gong, Hao; Wang, Hai

    2016-12-01

    By using organic vapor phase deposition method, nickel phthalocyanines (NiPc) nanowires were successfully prepared, and the effects of heating temperature on the structural and optical properties of NiPc nanowires were investigated. Both the crystal structures of NiPc powders and nanowires are studied by x-ray diffraction patterns (XRD) and Fourier transform infrared spectra (FTIR). The lattice constants of NiPc nanowires from the fitting of XRD patterns are a = 13.04 Å, b = 3.75 Å, c = 24.32 Å, β = 94.10°, belonging to the space group of monoclinic (P21/c). X-ray photo-electron spectroscopy (XPS) suggests main peaks at 284.82 eV and 286.18 eV for C-C and C-N bonds and two peaks at 397.8 eV and 398.8 eV for N-C and the N-Ni bonds, respectively, in NiPc nanowires. FTIR spectra show a structural transition from powder to nanowire. The optical properties of NiPc nanowires have been investigated via a comparison between theoretical and experimental approaches. The most significant absorption peaks of NiPc nanowires in the visible region are located at 626 nm and 672 nm, showing a blue shift comparing with the β-NiPc. We have also theoretically revealed the excitation energies in NiPc single molecule and dimer in the form of α and β phases using time-dependent density-functional theory. These theoretical results are in qualitative agreement with the measurements of optical properties. Moreover, no noticeable change in crystalline form is shown when tuning the heating temperature from 420 °C to 450 °C, suggesting a wide synthesis temperature window. The reduced Ni-Ni distance indicated a clear advantage over powder in terms of potential applications in organic electronics.

  4. Theoretical study of tautomers and photoisomers of avobenzone by DFT methods.

    Science.gov (United States)

    Trossini, Gustavo H G; Maltarollo, Vinicius G; Garcia, Ricardo D'A; Pinto, Claudinéia A S O; Velasco, Maria V R; Honorio, Kathia M; Baby, André R

    2015-12-01

    Organic ultraviolet (UV) filters such as cinnamates, benzophenones, p-aminobenzoic derivatives, and avobenzone (which have well-established and recognized UV-filtering efficacies) are employed in cosmetic/pharmaceutical products to minimize the harm caused by exposure of the skin to sunlight. In this study, a detailed investigation of the photostability and tautomerism mechanisms of avobenzone was performed utilizing DFT methods. The UV spectral profile of avobenzone was also simulated, and the results showed good agreement with experimental data. Furthermore, the calculations were able to distinguish tautomers and photoisomers of the studied organic filter based on their properties, thus showing the potential to develop new organic UV filters. Graphical Abstract Theoretical studies of avobenzone and its tautomers by TD-DFT.

  5. Study of cognitive sphere in children and adolescents with congenital myopathy (theoretical review

    Directory of Open Access Journals (Sweden)

    V. A. Erokhina

    2013-08-01

    Full Text Available This paper presents an analysis of current approaches to the study of states of higher mental functions in children and adolescents suffering from various forms of hereditary myopathies. The aim of this work is to study the theoretical rationale and the possibility of specific disorders of mental function in children and adolescents with congenital myopathies. To achieve this objective during the study it was necessary to solve the following problems: give a description of the various groups and forms of congenital myopathies, their clinical characteristics; justify the possibility of considering the hereditary myopathies as a factor in the formation of changes in visual-spatial activities and thinking; evaluate the possibility to use complex neuropsychological psycho-diagnostic techniques for investigating the state of the higher mental functions of children with congenital myopathies. The possibility of neuropsychological correction for this category of patients is discussed also.

  6. Experimental and theoretical studies of a pyrazole-thiazolidin-2,4-di-one hybrid

    Science.gov (United States)

    Mushtaque, Md.; Avecilla, Fernando; Haque, Ashanul; Perwez, Ahmad; Khan, Md. Shahzad; Rizvi, M. Moshahid Alam

    2017-08-01

    The present work describes synthesis, characterization and biological evaluations of a hybrid compound 10 composed of two intriguing scaffolds pyrazole and thiazolidin-2,4-di-one. The title compound was obtained via multi-step reaction and characterized by a number of techniques (viz. IR, UV-Visible, 1H-NMR, 13C-NMR and MS) including X-ray crystallography. The structural and photophysical data of compound 10 were well supported by theoretical calculations performed at density functional (DFT) level. In-vitro anticancer studies on different human cancer cell lines indicated moderate to low activity of the compounds. The molecular target of the compound was predicted through in-silico studies. Finding of the studies are presented herein.

  7. Theoretical Studies of Low Frequency Instabilities in the Ionosphere. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dimant, Y. S.

    2003-08-20

    The objective of the current project is to provide a theoretical basis for better understanding of numerous radar and rocket observations of density irregularities and related effects in the lower equatorial and high-latitude ionospheres. The research focused on: (1) continuing efforts to develop a theory of nonlinear saturation of the Farley-Buneman instability; (2) revision of the kinetic theory of electron-thermal instability at low altitudes; (3) studying the effects of strong anomalous electron heating in the high-latitude electrojet; (4) analytical and numerical studies of the combined Farley-Bunemadion-thermal instabilities in the E-region ionosphere; (5) studying the effect of dust charging in Polar Mesospheric Clouds. Revision of the kinetic theory of electron thermal instability at low altitudes.

  8. An experimental and theoretical study of reaction steps relevant to the methanol-to-hydrocarbons reaction

    Energy Technology Data Exchange (ETDEWEB)

    Svelle, Stian

    2004-07-01

    The primary objective of the present work is to obtain new insight into the reaction mechanism of the zeolite catalyzed methanol-to-hydrocarbons (MTH) reaction. It was decided to use both experimental and computational techniques to reach this goal. An investigation of the n-butene + methanol system was therefore initiated. Over time, it became apparent that it was possible to determine the rate for the methylation of n-butene by methanol. The ethene and propene systems were therefore reexamined in order to collect kinetic information also for those cases. With the development of user-friendly quantum chemistry programs such as the Gaussian suite of programs, the possibility of applying quantum chemical methods to many types of problems has become readily available even for non-experts. When performing mechanistic studies, there is quite often a considerable synergy effect when combining experimental and computational approaches. The methylation reactions mentioned above turned out to be an issue well suited for quantum chemical investigations. The incentive for examining the halomethane reactivity was the clear analogy to the MTH reaction system. Alkene dimerization was also a reaction readily examined with quantum chemistry. As discussed in the introduction of this thesis, polymethylbenzenes, or their cationic counterparts, are suspected to be key intermediates in the MTH reaction. It was therefore decided to investigate the intrinsic reactivity of these species in the gas-phase by employing sophisticated mass spectrometric (MS) techniques in collaboration with the MS group at the Department of Chemistry, University of Oslo The data thus obtained will also be compared with results from an ongoing computational study on gas phase polymethylbenzenium reactivity. 6 papers presenting various studies are included. The titles are: 1) A Theoretical Investigation of the Methylation of Alkenes with Methanol over Acidic Zeolites. 2) A Theoretical Investigation of the

  9. Theoretical study on optical storage of the transmitted-aperture type super-RENS

    Science.gov (United States)

    Shen, Quanhong; Xu, Duanyi; Ma, Jianshe; Liu, Rong; Qi, Guosheng

    2005-09-01

    In this paper, theoretical work on the transmitted-aperture (TA) type super-RENS was introduced. Firstly, the forming of transmitted-aperture in the mask layer was studied based on laser-induced thermal model with Gauss assumption. A numerical simulation was carried out by FEMLAB. The simulation results showed that transmitted aperture would not be formed until the exposure power exceeded a threshold within a certain pulse time and vice versa. Secondly, a calculation model of electromagnetic field of TA type super-RENS disk was presented based on the three-dimensional finite-difference time-domain method (3D-FDTD) together with a vector method of Gaussian beam. Lorenz dispersive model was employed for mask layer and reflective layer. The distributions of electric field for TA type super-RENS were theoretically analyzed. Lastly, the static writing experiment for TA type Super-RENS was carried out with different power and pulse time, as well as for conventional CD-R/W. The experiment results well satisfied the simulation.

  10. A quantum theoretical study of reactions of methyldiazonium ion with DNA base pairs

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P.K. [Department of Physics, Assam University, Silchar 788 011 (India); Ganapathy, Vinay [Department of Physics, Banaras Hindu University, Varanasi 221 005 (India); Mishra, P.C., E-mail: pcmishra_in@yahoo.com [Department of Physics, Banaras Hindu University, Varanasi 221 005 (India)

    2011-09-22

    Graphical abstract: Reactions of methyldiazonium ion at the different sites of the DNA bases in the Watson-Crick GC and AT base pairs were investigated employing density functional and second order Moller-Plesset (MP2) perturbation theories. Display Omitted Highlights: {yields} Methylation of the DNA bases is important as it can cause mutation and cancer. {yields} Methylation reactions of the GC and AT base pairs with CH{sub 3}N{sub 2}{sup +} were not studied earlier theoretically. {yields} Experimental observations have been explained using theoretical methods. - Abstract: Methylation of the DNA bases in the Watson-Crick GC and AT base pairs by the methyldiazonium ion was investigated employing density functional and second order Moller-Plesset (MP2) perturbation theories. Methylation at the N3, N7 and O6 sites of guanine, N1, N3 and N7 sites of adenine, O2 and N3 sites of cytosine and the O2 and O4 sites of thymine were considered. The computed reactivities for methylation follow the order N7(guanine) > N3(adenine) > O6(guanine) which is in agreement with experiment. The base pairing in DNA is found to play a significant role with regard to reactivities of the different sites.

  11. THEORETICAL AND METHODOLOGICAL BASIS OF THE STUDY OF ENVIRONMENTAL AUDIT IN KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    V. Berezuyuk

    2014-12-01

    Full Text Available Practical problems of modern economic development of the country are associated with unresolved major theoretical issues in the field of auditing. One of them, in our opinion, is to determine the status of the audit as a form of scientific knowledge. This, in turn, requires a clear definition of the subject of audit, missing not only in domestic but also foreign economic literature. Theoretical study of the content and scope of the audit showed that there are different interpretations of this concept in the countries with developed market economies (US, UK and the Kazakhstan legislation. Analysis of multiple interpretations and definitions revealed a narrow view of the audit activities in Kazakhstan legislation. In order to improve the efficiency of the audit work is recommended management of large and medium-sized organizations use simulation methods, structural analysis and design based on the Conditional Split of the company business processes, sub-processes, procedures, functions, etc., which, ultimately, will allow Sort already performed the action and determine the need for the implementation of new procedures or functions aimed at improving the quality of the audit. Each audit organization yourself looking for ways to improve the quality of solutions using a variety of techniques, using the experience and creating in-house auditing standards, in particular, for the effective planning of the audit.

  12. Theoretical study of radiative electron attachment to CN, C2H, and C4H radicals

    CERN Document Server

    Douguet, Nicolas; Raoult, Maurice; Dulieu, Olivier; Orel, Ann E; Kokoouline, Viatcheslav

    2015-01-01

    A first-principle theoretical approach to study the process of radiative electron attachment is developed and applied to the negative molecular ions CN$^-$, C$_4$H$^-$, and C$_2$H$^-$. Among these anions, the first two have already been observed in the interstellar space. Cross sections and rate coefficients for formation of these ions by radiative electron attachment to the corresponding neutral radicals are calculated. For completeness of the theoretical approach, two pathways for the process have been considered: (i) A direct pathway, in which the electron in collision with the molecule spontaneously emits a photon and forms a negative ion in one of the lowest vibrational levels, and (ii) an indirect, or two-step pathway, in which the electron is initially captured through non-Born-Oppenheimer coupling into a vibrationally resonant excited state of the anion, which then stabilizes by radiative decay. We develop a general model to describe the second pathway and show that its contribution to the formation o...

  13. Adsorption of CO on Co(0001) and Pt Co(0001) surfaces: an experimental and theoretical study

    Science.gov (United States)

    Cabeza, G. F.; Légaré, P.; Castellani, N. J.

    2000-10-01

    CO adsorption on Co(0001) and Pt submonolayer deposits on Co(0001) at room temperature have been investigated by combining the surface techniques of low-energy electron diffraction and X-ray and UV photoelectron spectroscopy. The influence of bimetallic system formation on the CO adsorption was studied. CO is molecularly adsorbed on both surfaces. The saturation coverage under ultrahigh vacuum conditions corresponds to a well-ordered ( 3× 3)R30° structure in the presence of Pt. The CO uptake on Pt-Co(0001) was found to be lowered in comparison with Co(0001) as the platinum coverage increased between 0 to 0.6 ML. However, CO is adsorbed both on the Pt and Co areas. It is shown that CO is located in the top Pt sites, with an adsorption energy reduced by 38% with respect to the pure Pt(111) surface. This result is in good agreement with our theoretical results of CO chemisorption energy on a pseudomorphic Pt overlayer supported by Co(0001). A decreased Pt density of states at the Fermi level and a high binding energy shift of the d-band center in comparison with the pure metal was observed both experimentally and theoretically.

  14. An experimental and theoretical study of reaction mechanisms between nitriles and hydroxylamine.

    Science.gov (United States)

    Vörös, Attila; Mucsi, Zoltán; Baán, Zoltán; Timári, Géza; Hermecz, István; Mizsey, Péter; Finta, Zoltán

    2014-10-28

    The industrially relevant reaction between nitriles and hydroxylamine yielding amidoximes was studied in different molecular solvents and in ionic liquids. In industry, this procedure is carried out on the ton scale in alcohol solutions and the above transformation produces a significant amount of unexpected amide by-product, depending on the nature of the nitrile, which can cause further analytical and purification issues. Although there were earlier attempts to propose mechanisms for this transformation, the real reaction pathway is still under discussion. A new detailed reaction mechanistic explanation, based on theoretical and experimental proof, is given to augment the former mechanisms, which allowed us to find a more efficient, side-product free procedure. Interpreting the theoretical results obtained, it was shown that the application of specific imidazolium, phosphonium and quaternary ammonium based ionic liquids could decrease simultaneously the reaction time while eliminating the amide side-product, leading to the targeted product selectively. This robust and economic procedure now affords a fast, selective amide free synthesis of amidoximes.

  15. Theoretical analysis and experimental study on the influence of electric double layer on thin film lubrication

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-jie; BAI Shao-xian; HUANG Ping

    2006-01-01

    A new mathematical model for thin film lubrication is established by taking into account the effect of an electric double layer.In the present paper,experiments are carried out on a self-made tester.With a composite block and a rotating disk,influence of electric double layer on thin film lubrication is studied.Two different methods are used to reconstruct the field of electric double layer so as to change its effect.One is to change the ionic concentration of lubricants by adding additives,and the other is to apply an external electric field on friction pairs.According theoretical analysis,both the methods will apparently change the electro-viscosity of the lubricant film so as to change the lubrication performances.After theoretical calculation of electro-viscosity is amended according to the experimental results,the equations of electro-viscosity are presented.The results show that the equivalent viscosity of fluid induced by the effect of electric double layer apparently increases with the decrease of thickness of the film while the lubrication film is thin enough.The effect of electro-viscosity is weakened as the thickness of the film increases.Moreover,the effect of electro-viscosity increases with the increase of external electric field at first.When the voltage reaches a certain value,the electro-viscosity begins to decrease.

  16. An experimental, theoretical and event-driven computational study of narrow vibrofluidised granular materials

    Science.gov (United States)

    Thornton, Anthony; Windows-Yule, Kit; Parker, David; Luding, Stefan

    2017-06-01

    We review simulations, experiments and a theoretical treatment of vertically vibrated granular media. The systems considered are confined in narrow quasi-two-dimensional and quasi-one-dimensional (column) geometries, where the vertical extension of the container is much larger than one or both horizontal lengths. The additional geometric constraint present in the column setup frustrates the convection state that is normally observed in wider geometries. We start by showing that the Event Driven (ED) simulation method is able to accurately reproduce the previously experimentally determined phase-diagram for vibrofludised granular materials. We then review two papers that used ED simulations to study narrow quasi-one-dimensional systems revealing a new phenomenon: collective oscillations of the grains with a characteristic frequency that is much lower than the frequency of energy injection. Theoretical work was then undertaken that is able to accurately predict the frequency of such an oscillation and Positron Emission Particle Tracking (PEPT) experiments were undertaken to provide the first experimental evidence of this new phenomenon. Finally, we briefly discuss ongoing work to create an open-source version of this ED via its integration in the existing open-source package MercuryDPM (http://MercuryDPM.org); which has many advanced features that are not found in other codes.

  17. An experimental and theoretical study of the aeroacoustics of external-Coanda gas flares

    Science.gov (United States)

    Parsons, Caroline

    Experimental and theoretical means have been used to investigate the fluid dynamics and aeroacoustics of both stepped and unstepped external Coanda flares. Flow visualization techniques have been used to observe the one-eight scale model flare flow fields whilst simultaneously carrying out various sound measurements in the hope of being able to relate observed flow features to specific types of aerodynamic noise. Particular attention has been paid to the stepped model flare in the present work, for comparison with previous work on the unstepped model flare. Test have been carried out on two full-scale flares of different sizes which confirm that the previously assumed inverse-length scaling law does indeed hold in the case of flare noise frequency. Comparisons can therefore be made between the results of model and full-size flare tests, and these indicate that although the full-size flare also emits discrete tones, the nature of these tones are very different from those emitted by the model flares. Several possible reasons for the differences in the two sets of results are discussed. A theoretical study of the high-frequency turbulent mixing noise associated with a model Indair flare jet has been carried out. Because of the complicated nature of such a curved radial wall-jet, the theory has first been developed for a plane two-dimensional wall-jet.

  18. Opto-electronic properties of Ta3N5: a joint experimental and theoretical study

    Science.gov (United States)

    Morbec, Juliana; Rocca, Dario; Pinaud, Blaise; Jaramillo, Thomas; Galli, Giulia

    2014-03-01

    Tantalum nitride (Ta3N5) is considered a promising material for use in photoelectrochemical cells, due to its suitable band gap for visible light absorption and favorable band-edge positions for water splitting. However, Ta3N5 films have been recently shown to exhibit low photocurrent (i.e. less than 50% of the theoretical limit). We report a joint experimental and ab initio theoretical study of the opto-electronic properties of Ta3N5, aimed at understanding possible reasons for the limited photocurrent. Our experimental optical spectra of films with different thicknesses show two absorption edges at 2.1 and 2.5 eV. To provide an interpretation of these features, we performed ab initio calculations, at several levels of theory, of the electronic band structure and optical absorption spectra of Ta3N5. We employed density functional theory with semi-local (PBE/LDA) and hybrid (PBE0/HSE06) functionals and many body perturbation theory at the G0W0 level, and we obtained optical spectra by solving the Bethe-Salpeter equation within density matrix perturbation theory. Work supported by DOE/BES DE-FG02-06ER46262 and NSF-CHE-1305124. Computing resources are partially provided by NERSC.

  19. Further theoretical studies of modified cyclone separator as a diesel soot particulate emission arrester.

    Science.gov (United States)

    Mukhopadhyay, N; Bose, P K

    2009-10-01

    Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.

  20. The gas-phase hydrogen bond complexes between formic acid with hydroxyl radical: a theoretical study.

    Science.gov (United States)

    Torrent-Sucarrat, Miquel; Anglada, Josep M

    2004-02-20

    We report a theoretical study on seven radical hydrogen bond complexes between syn-HCOOH and OH and eight radical hydrogen bond complexes between anti-HCOOH and OH, that have been carried out by using the B3LYP, MP2, QCISD, and CCSD(T) theoretical approaches with the 6-311 + G(2df,2p) basis set. In all cases, the bonding features were analysed using the atoms in molecules (AIM) theory by Bader and the natural bond orbital (NBO) partition scheme by Weinhold et al. We have found twelve complexes having a single hydrogen bond and three complexes presenting a cyclic structure with multiple bonds, pointing out the existence of a cooperative effect. One of them presents a bound O...O interaction producing a stabilisation effect. The stability of these complexes has been calculated to be in the -0.81 and -5.96 kcal mol-1 range and their possible implication in the HCOOH plus OH reaction is also discussed. Finally, we also report the computed harmonic vibrational frequencies of the two O-H stretching modes and the HOC out-of-plane wagging mode, along with the frequency red-shifts originated by the complex formation and the corresponding computed intensity ratio relative to the monomers.

  1. Theoretical Investigation of Dissolution Test Criteria for Waiver of Clinical Bioequivalence Study.

    Science.gov (United States)

    Sugano, Kiyohiko

    2016-06-01

    The purpose of the present study was to provide a theoretical basis for the dissolution test criteria of a biowaiver scheme. The critical dissolution number (Dncrit) was defined as a value to show bioequivalence of AUC and Cmax against infinitely rapid dissolution (Dn = ∞). The gastrointestinal tract was represented by the one-compartment model. The dissolution of a drug was expressed by the Noyes-Whitney equation. The permeation of a drug was expressed by the first-order equation. The approximate analytical solutions of Dncrit were derived from the analytical solution for the fraction of a dose absorbed [Fa = 1 - exp(-1/(1/Dn + Do/Pn)]; Do, the dose number; Pn, the permeation number). Numerical integration was also performed to calculate Dncrit more accurately. Dncrit was found to become smaller as Pn and Do became smaller. Dncrit for Cmax was found to be dependent on the elimination half-life of a drug as well as Pn and Do. The Fa equation can be an appropriate theoretical basis for a biowaiver scheme.

  2. Theoretical study of solar combisystems based on bikini tanks and tank-in-tank stores

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2012-01-01

    Purpose - Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems have been studied theoretically. The aim of the paper is to study which of these two solar combisystem designs is suitable for different houses. The thermal performance of solar combisystems based on the two...... different heat storage types is compared. Design/methodology/approach - The thermal performance of Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems is calculated with the simulation program TRNSYS. Two different TRNSYS models based on measurements were developed and used....... Findings - Based on the calculations it is concluded that low flow solar combisystems based on bikini tanks are promising for low energy buildings, while solar combisystems based on tank-in-tank stores are attractive for the houses with medium heating demand and old houses with high heating demand...

  3. Dynamic capabilities-based strategy innovation: a theoretical framework and empirical studies in Chinese firms

    Institute of Scientific and Technical Information of China (English)

    刘景江; 陈劲; 许庆瑞

    2002-01-01

    Based on investigations of 112 Chinese firms and studies on foreign leading eorporafiorm, a theo-retical framework of dynamic capabilities-based strategy innovation (SI) is put forward. Several large firms in China winning through SI were studied empirically. This paper complements previous publications on the theories of innovation and strategy. This work' s findings will be useful for managers interested in our approach,which highlights the importance of SI and focuses on and points out the major pitfalls in the innovation processes. Implementing the dynamic capabilities-based strategy innovation can effectively cultivate and develop core eompetences of eorporations. It is eoncluded that implementing SI is the only path for Chinese enterprise growth in the intensified competition in the knowledge economy.

  4. A theoretical study of the elastic and thermal properties of ScRu compound under pressure

    Science.gov (United States)

    Huang, Shuo; Li, Rui-Zi; Qi, San-Tao; Chen, Bao; Shen, Jiang

    2014-06-01

    The elastic and thermal properties of ScRu under pressure are studied using a first-principles pseudopotential method within the generalized gradient approximation. The calculated lattice parameter and formation enthalpy are in good agreement with the previous experimental and theoretical results. From the static finite strain technique, we obtained three independent elastic constants (C 11, C 12 and C 44) and various secondary elasticity parameters such as shear modulus, Young’s modulus and elastic anisotropy, as functions of pressure. This study also provided the pressure and temperature variations of the bulk modulus, Debye temperature, thermal expansion coefficient and heat capacity in wide pressure (0-60 GPa) and temperature (0-1800 K) ranges.

  5. A theoretical study on the B3 phases of ZnSe: Structural and electronic properties

    Indian Academy of Sciences (India)

    KHOIROM KABITA; B INDRAJIT SHARMA

    2017-07-01

    A theoretical study on the structural stability and electronic properties of ZnSe is performed using the localized density approximation (LDA), generalized gradient approximation (GGA) and modified Becke– Johnson (mBJ)with Purdew–Burke–Ernzerhof (PBE-GGA) as the exchange correlation potential using full potentiallinearized augmented plane-wave method of density functional theory (DFT). The electronic structure calculation using the three approximations show that the LDA and the GGA methods underestimated the band gap while the band gap predicted by the mBJ is closer to the experimental result. The mBJ-GGA calculation shows a direct band-gap semiconductor of 2.5 eV. The total and partial densities of states of ZnSe are determined to study the energy band diagram.

  6. Theoretical Study of Haloacetonitrile Anions: CH2XCN- (X=F, CI)

    Institute of Scientific and Technical Information of China (English)

    Xin-wen Zhang; Mei Li; Shan-xi Tian

    2008-01-01

    Haloacetonitrile anions CH2XCN- (X=F, CI) were studied by HF-SCF, Becke3-LYP, and MP2 meth- ods together with the Dunning's basis sot aug-cc-PVTZ. The vertical electron attachments to the neu- tral are endothermic. The geometrically optimized CH2FCN- is mainly a valence-bounded anion and CH2FCN-→CH2CN+F- is a nonadiabatic dissociation. This theoretical study in good agreement with the experimental results shows that the Becke3-LYP method is reasonable in describing the electronic structures of anions and dissociative attachment dynamics, while significant differences between MP2 and Becke3-LYP results are shown for the dissociation potential curves of CH2ClCN-→CH2CN+Cl-.

  7. A theoretical study on the B3 phases of ZnSe: Structural and electronic properties

    Science.gov (United States)

    Kabita, Khoirom; Sharma, B. Indrajit

    2017-07-01

    A theoretical study on the structural stability and electronic properties of ZnSe is performed using the localized density approximation (LDA), generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) with Purdew-Burke-Ernzerhof (PBE-GGA) as the exchange correlation potential using full potential linearized augmented plane-wave method of density functional theory (DFT). The electronic structure calculation using the three approximations show that the LDA and the GGA methods underestimated the band gap while the band gap predicted by the mBJ is closer to the experimental result. The mBJ-GGA calculation shows a direct band-gap semiconductor of 2.5 eV. The total and partial densities of states of ZnSe are determined to study the energy band diagram.

  8. Activity systems modeling as a theoretical lens for social exchange studies

    Directory of Open Access Journals (Sweden)

    Ernest Jones

    2016-01-01

    Full Text Available The social exchange perspective seeks to acknowledge, understand and predict the dynamics of social interactions. Empirical research involving social exchange constructs have grown to be highly technical including confirmatory factor analysis to assess construct distinctiveness and structural equation modeling to assess construct causality. Each study seemingly strives to assess how underlying social exchange theoretic constructs interrelate. Yet despite this methodological depth and resultant explanatory and predictive power, a significant number of studies report findings that, once synthesized, suggest an underlying persistent threat of conceptual or construct validity brought about by a search for epistemological parsimony. Further, it is argued that a methodological approach that embraces inherent complexity such as activity systems modeling facilitates the search for simplified models while not ignoring contextual factors.

  9. Overview of theoretical studies of Rashba effect in polar perovskite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Shanavas, K.V., E-mail: kavungalvees@ornl.gov [Department of Physics, University of Missouri, Columbia, MO 65211 (United States); Oak Ridge National Laboratory, 1 Bethel Valley Road, TN 37831 (United States)

    2015-05-15

    Theoretical studies with the help of first-principles electronic structure calculations and tight-binding based Hamiltonian models aimed to understand the Rashba effect in the 2D electron gas at the surfaces and interfaces of polar perovskite oxides are discussed. First-principles calculations on a slab of KTaO{sub 3} show that the spin-splitting is orbital dependent and is greatly suppressed by the lattice relaxation close to the surface. However, the electron gas is amenable to tuning by external potentials perpendicular to the surface and can be used to control Rashba splitting. Construction of a minimal model Hamiltonian to study d orbitals under uniform electric field is explained. The potential introduces new matrix elements between orbitals by breaking the symmetry and distorting the lattice. When coupled with spin–orbit interaction, this results in lifting the spin degeneracy.

  10. Theoretical and Experimental Study of Time- and Temperature-Dependent Photoluminescence in ZnO

    Science.gov (United States)

    Shishehchi, Sara; Garrett, Gregory A.; Rudin, Sergey; Wraback, Michael; Bellotti, Enrico

    2014-08-01

    In this work, we investigate the dynamics of photo-excited carriers in ZnO. Specifically, we study the luminescence spectrum and the effect of temperature on the luminescence rise time. For comparison, experimental time- resolved photo-luminescence studies on ZnO samples are performed. In the theoretical model, interaction with a laser pulse is treated coherently and a generalized Monte Carlo simulation is used to account for scattering processes. The scattering mechanisms included are carrier interactions with polar optical phonons and acoustic phonons, and carrier-carrier Coulomb interactions. We observed a good agreement between the experimental and simulation results for the photo-luminescence spectrum. Furthermore, as the temperature increases, the luminescence rise time decreases, mostly due to the weaker effect of polar optical scattering at lower temperature.

  11. Mechanism for the gas-phase reaction between OH and 3-methylfuran: A theoretical study

    Science.gov (United States)

    Zhang, Weichao; Du, Benni; Mu, Lailong; Feng, Changjun

    The mechanism for the OH + 3-methylfuran reaction has been studied via ab initio calculations to investigate various reaction pathways on the doublet potential energy surface. Optimizations of the reactants, products, intermediates, and transition structures are conducted using the MP2 level of theory with the 6-311G(d,p) basis set. The single-point electronic energy of each optimized geometry is refined with G3MP2 and G3MP2B3 calculations. The theoretical study suggests that the OH + 3-methylfuran reaction is dominated by the formation of HC(O)CH dbond C(CH3)CHOH (P7) and CH(OH)CH dbond C(CH3)C(O)H (P9), formed from two low-lying adducts, IM1 and IM2. The direct hydrogen abstraction pathways and the SN2 reaction may play a minor or negligible role in the overall reaction of OH with 3-methylfuran.

  12. Theoretical and Experimental Study of LiBH4-LiCl Solid Solution

    Directory of Open Access Journals (Sweden)

    Torben R. Jensen

    2012-03-01

    Full Text Available Anion substitution is at present one of the pathways to destabilize metal borohydrides for solid state hydrogen storage. In this work, a solid solution of LiBH4 and LiCl is studied by density functional theory (DFT calculations, thermodynamic modeling, X-ray diffraction, and infrared spectroscopy. It is shown that Cl substitution has minor effects on thermodynamic stability of either the orthorhombic or the hexagonal phase of LiBH4. The transformation into the orthorhombic phase in LiBH4 shortly after annealing with LiCl is for the first time followed by infrared measurements. Our findings are in a good agreement with an experimental study of the LiBH4-LiCl solid solution structure and dynamics. This demonstrates the validity of the adopted combined theoretical (DFT calculations and experimental (vibrational spectroscopy approach, to investigate the solid solution formation of complex hydrides.

  13. Adsorption of uranium composites onto saltrock oxides - experimental and theoretical study.

    Science.gov (United States)

    Ivanova, Bojidarka; Spiteller, Michael

    2014-09-01

    The study encompassed experimental mass spectrometric and theoretical quantum chemical studies on adsorption of uranium species in different oxidation states of the metal ion, and oxides of UxOy(n+) type, where x = 1 or 3, y = 2 or 8, and n = 0, 1 or 2 onto nanosize-particles of saltrock oxides MO (M = Mg(II), Ca(II), Ni(II), Co(II), Sr(II) or Ba(II)), M2Oy (M = Au(III) or Ag(I), y = 3 or 1) silicates 3Al2O3.2SiO2, natural kaolinite (Al2O2·2SiO2·2H2O), illite (K0.78Ca0.02Na0.02(Mg0.34Al1.69Fe(III)0.02)[Si3.35Al0.65]O10(OH)2·nH2O), CaSiO3, 3MgO·4SiO2,H2O, and M(1)M(2)(SiO4)X2 (M(1) = M(2) = Al or M(1) = K, M(2) = Al, X = F or Cl), respectively. The UV-MALDI-Orbitrap mass spectrometry was utilized in solid-state and semi-liquid colloidal state, involving the laser ablation at λex = 337.2 nm. The theoretical modeling and experimental design was based on chemical-, physico-chemical, physical and biological processes involving uranium species under environmental conditions. Therefore, the results reported are crucial for quality control and monitoring programs for assessment of radionuclide migration. They impact significantly the methodology for evaluation of human health risk from radioactive contamination. The study has importance for understanding the coordination and red-ox chemistry of uranium compounds as well. Due to the double nature of uranium between rare element and superconductivity like materials as well as variety of oxidation states ∈ (+1)-(+6), the there remain challenging areas for theoretical and experimental research, which are of significant importance for management of nuclear fuel cycles and waste storage.

  14. Theoretical study of hafnium oxide as a gate-material for CMOS devices

    Science.gov (United States)

    Sharia, Onise

    The continual downscaling of the thickness of the SiO 2 layer in the complementary metal oxide semiconductor (CMOS) transistors has been one of the main driving forces behind the growth of the semiconductor industry for past 20-30 years. The gate dielectric works as a capacitor and therefore the reduction in thickness results in increase of capacitance and the speed of the device. However, this process has reached the limit when the further reduction of the SiO2 thickness will result in a leakage current above the acceptable limit, especially for mobile devices. This problem can be resolved by replacing SiO2 with materials which have higher dielectric constants (high-k). The leading candidates to replace SiO 2 as a gate material are hafnium dioxide and hafnium silicate. However, several problems arise when using these materials in the device. One of them is to find p and n type gate metals to match with the valence and conduction band edges of silicon. This problem can be rooted in lack of our understanding of the band alignment and its controlling mechanisms between the materials in the gate stack. Theoretical simulations using density functional theory can be very useful to address such problems. In this dissertation present a theoretical study of the band alignment between HfO2 and SiO 2 interface. We identify oxygen coordination as a governing factor for the band alignment. Next, we discuss effects of Al incorporation on the band alignment at the SiO2/HfO2 interface. We find that one can tune the band alignment by controlling the concentration of Al atoms in the stack. We also perform a theoretical study of HfO2/Metal interface in case of Rh. We identify Rh as a good candidate for a p-type gate metal due to its large work-function and the low oxidation energy. Finally, we report a study of the stability of oxygen vacancies across the gate stack. We model a gate stack composed of n-Si/SiO2/HO2/Rh. We find that oxygen vacancies are easier to create in SiO2 than

  15. Theoretical Near-IR Spectra for Surface Abundance Studies of Massive Stars

    Science.gov (United States)

    Sonneborn, George; Bouret, J.

    2011-01-01

    We present initial results of a study of abundance and mass loss properties of O-type stars based on theoretical near-IR spectra computed with state-of-the-art stellar atmosphere models. The James Webb Space Telescope (JWST) will be a powerful tool to obtain high signal-to-noise ratio near-IR (1-5 micron) spectra of massive stars in different environments of local galaxies. Our goal is to analyze model near-IR spectra corresponding to those expected from NIRspec on JWST in order to map the wind properties and surface composition across the parameter range of 0 stars and to determine projected rotational velocities. As a massive star evolves, internal coupling, related mixing, and mass loss impact its intrinsic rotation rate. These three parameters form an intricate loop, where enhanced rotation leads to more mixing which in turn changes the mass loss rate, the latter thus affecting the rotation rate. Since the effects of rotation are expected to be much more pronounced at low metallicity, we pay special attention to models for massive stars in the the Small Magellanic Cloud. This galaxy provides a unique opportunity to probe stellar evolution, and the feedback of massive stars on galactic evol.ution in conditions similar to the epoch of maximal star formation. Plain-Language Abstract: We present initial results of a study of abundance and mass loss properties of massive stars based on theoretical near-infrared (1-5 micron) spectra computed with state-of-the-art stellar atmosphere models. This study is to prepare for observations by the James Webb Space Telescope.

  16. Correction: Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.

    Science.gov (United States)

    Zhang, Teng; Zhu, Zonglong; Chen, Haining; Bai, Yang; Xiao, Shuang; Zheng, Xiaoli; Xue, Qingzhong; Yang, Shihe

    2015-09-07

    Correction for 'Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study' by Teng Zhang et al., Nanoscale, 2015, 7, 2933-2940.

  17. Experimental and Theoretical Studies of Pulsating Turbulent Flow. Ph.D. Thesis

    Science.gov (United States)

    Kingston, G. C.

    1975-01-01

    The objective of this investigation was to study the effects of small amplitude sinusoidal pulsations on fully developed turbulent flow in a tube from both experimental and theoretical viewpoints. Theoretical models for the macroscopic behavior of pulsating turbulent tube flow were developed for the two cases of very low and very high pulsation frequencies. The models are based on assumptions of quasi-steady and frozen eddy viscosity flow behavior, respectively. The models successfully predict unsteady velocity profiles, thereby supporting the currently proposed definitions of frequency regimes in pulsating turbulent flow. Experimental measurements were made of the time-dependent pressure drop and velocity profiles over the range of frequency-to-Reynolds number ratios from 0.0095 to 0.24. The two macroscopic models developed in this study predict unsteady velocity profiles which are in moderately good agreement with the experiments in their respective frequency regimes, and a previously developed quasi-steady model is found to predict experimental velocity profiles well in both the quasisteady and the frozen eddy viscosity frequency regimes. The effect of flow pulsations on the dissipation of turbulence energy in the vicinity of the wall was measured in the lower transition frequency regime. The long-time averaged dissipation was observed to be unchanged from the steady flow dissipation, within the accuracy of the experiment. A theoretical model of the periodic viscous sublayer was also developed and applied to pulsating flow in a tube, in order to investigate the effects of flow pulsations on the rate of production of turbulence in the region of the wall. The periodic viscous sublayer model predicts sublayer growth periods in steady flow which agree with the published experimental data. When the model is applied to pulsating flow, the response of the sublayer growth period falls into three frequency regimes, the parameters of which are in approximate agreement

  18. CONTENT ANALYSIS, DISCOURSE ANALYSIS, AND CONVERSATION ANALYSIS: PRELIMINARY STUDY ON CONCEPTUAL AND THEORETICAL METHODOLOGICAL DIFFERENCES

    Directory of Open Access Journals (Sweden)

    Anderson Tiago Peixoto Gonçalves

    2016-08-01

    Full Text Available This theoretical essay aims to reflect on three models of text interpretation used in qualitative research, which is often confused in its concepts and methodologies (Content Analysis, Discourse Analysis, and Conversation Analysis. After the presentation of the concepts, the essay proposes a preliminary discussion on conceptual and theoretical methodological differences perceived between them. A review of the literature was performed to support the conceptual and theoretical methodological discussion. It could be verified that the models have differences related to the type of strategy used in the treatment of texts, the type of approach, and the appropriate theoretical position.

  19. Experimental and theoretical studies on concrete structures with special-shaped shear walls

    Directory of Open Access Journals (Sweden)

    LIU Jianxin

    2014-06-01

    Full Text Available On the basis of concept design and staggered shear panels structure,this paper puts forward a new reinforced concrete high rise biuding structure with special-shaped shear walls and presents an experimental study of the seismic performance of the new special-shaped shear walls structure under low reversed cyclic loading using MTS electro hydraulic servo system.Compared with experimental results,a finite element analysis on this special-shaped shear wall structure,which considers the nonlinearity of concrete structure,is found suitable.It shows that the experimental results fairly confirms to the calculated values,which indicates that this new structure has advantages as good architecture function,big effective space,high overall lateral stiffness,fine ductility,advanced seismic behavior,etc..That is,the close r agreement between the theoretical and experimental results indicates the proposed shear wall structure has wide applications.

  20. Studies of Credit and Equity Markets with Concepts of Theoretical Physics

    CERN Document Server

    Münnix, Michael C

    2011-01-01

    Financial markets are becoming increasingly complex. The financial crisis of 2008 to 2009 has demonstrated that an improved understanding of the mechanisms embedded in the market is a key requirement for the estimation of financial risk. Recently, concepts of theoretical physics, in particular concepts of complex systems, have proven to be very useful in this regard. Michael C. Münnix analyses the statistical dependencies in financial markets and develops mathematical models using concepts and methods from physics. The author focuses on aspects that played a key role in the emergence of the recent financial crisis: estimation of credit risk, dynamics of statistical dependencies, and correlations on small time-scales. He visualizes the findings for various large-scale empirical studies of market data. The results give novel insights into the mechanisms of financial markets and allow conclusions on how to reduce financial risk significantly.

  1. Recent theoretical studies of slow collisions between plasma impurity ions and H or He atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, W. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Theoretische Physik; Tawara, H.

    1997-01-01

    We review recent progress in theoretical studies of slow collisions between light plasma impurity ions and atomic hydrogen or helium. We start with a brief overview of theory work that has been done by various groups in the past. We then proceed to discuss work that is published in the last two years. For the systems of Be{sup 2+}-He, Be{sup 4+}-He and C{sup 5+}-He we present yet unpublished work of our own. All of this work broadens our knowledge about systems that are of interest for the fusion community. Some of the new information is found to be at variance with what is known from other sources and hence needs further analysis. (author)

  2. Theoretical study of the porosity effects on the shock response of graphitic materials

    Directory of Open Access Journals (Sweden)

    Pineau Nicolas

    2015-01-01

    Full Text Available In this paper we present a theoretical study of the shock compression of porous graphite by means of combined Monte Carlo and molecular dynamics simulations using the LCBOPII potential. The results show that the Hugoniostat methods can be used with “pole” properties calculated from porous models to reproduce the experimental Hugoniot of pure graphite and diamond with good accuracy. The computed shock temperatures show a sharp increase for weak shocks which we analyze as the heating associated with the closure of the initial porosity. After this initial phase, the temperature increases with shock intensity at a rate comparable to monocrystalline graphite and diamond. These simulations data can be exploited in view to build a full equation of state for use in hydrodynamic simulations.

  3. Theoretical Chemistry Study of the Hydrogen-bonded Interaction between Acylamine and Chloromethane Compounds

    Institute of Scientific and Technical Information of China (English)

    GE Qing-Yu; WANG Hai-Jun; CHEN Jian-Hua

    2005-01-01

    The hydrogen-bonded interaction between acylamine and chloromethane was studied using theoretical calculation methods. Looking the interaction system as a hydrogen-bonded complex, the geometric optimization of the interaction system was performed with HF and B3LYP methods at 6-311++G** level. Stable structures of these complexes were obtained. Binding energies and some other physical chemistry parameters of them were computed and compared. According to the calculation results, it can be identified that DMA (DMF or DEF) can form stable complex with chloromethane by the hydrogen-bonded interaction between them. The stable orders of these hydrogen-bonded complexes were obtained and described as: DMF-CHCl3>DMF-CH2Cl2>DMF-CH3Cl, DEF-CHCl3>DEF-CH2Cl2>DEF-CH3Cl, DMA-CHCl3>DMA-CH2Cl2>DMA-CH3Cl, respectively.

  4. Theoretical structural and vibrational study of 5-trifluoromethyluracil. A comparison with uracil

    Energy Technology Data Exchange (ETDEWEB)

    Rudyk, Roxana; Ramos, María E.; Checa, María A.; Brandán, Silvia A. [Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471,(4000), San Miguel de Tucumán, Tucum and #x00E1 (Argentina); Chamorro, Eduardo E. [Facultad de Ciencias Exactas, Universidad Andrés Bello, Avda. República 275, 8370146, Santiago (Chile)

    2014-10-06

    In the present work, a comparative study on the structural and vibrational properties of the 5-trifluoromethyluracil (TFMU) derivative with those corresponding to uracil in gas and aqueous solution phases was performed combining the available H{sup 1}-NMR, C{sup 13}-NMR, F{sup 19}-NMR and FTIR spectra with Density Functional Theory (DFT) calculations. Three stable conformers were theoretically determined in both media by using the hybrid B3LYP/6-31G* method. The solvent effects were simulated by means of the self-consistent reaction field (SCRF) method employing the integral equation formalism variant (IEFPCM). Complete assignments of the vibrational spectra in both phases were performed combining the internal coordinates analysis and the DFT calculations with the Scaled Quantum Mechanics Force Field (SQMFF) methodology. The atomic charges, bond orders, solvation energies, dipole moments, molecular electrostatic potentials and force constants parameters were calculated for the three conformers of TFMU in gas phase and aqueous solution.

  5. Theoretical study, and infrared and Raman spectra of copper(II) chelated complex with dibenzoylmethane

    DEFF Research Database (Denmark)

    Nekoei, A.-R.; Vakili, M.; Hakimi-Tabar, M.

    2014-01-01

    There are some discrepancies in both the vibrational assignments and in the metal-ligand (M-L) bond strengths predicted in the previous studies on the copper (II) chelated complex of dibenzoylmethane, Cu(dbm)2. Also, there is a lack of theoretical structure, Raman spectrum and full vibrational...... assignment for Cu(dbm)2 in the literatures. Density functional theory (DFT) at the B3LYP level and also MP2 calculations using different basis sets, besides Natural Bond Orbital (NBO) and Atoms-in-Molecules (AIM) analyses, have been employed to investigate the effect of methyl substitution with the phenyl...... group on the stabilities of bis(acetylacetonate) copper (II), Cu(acac)2, and Cu(dbm)2 complexes and the electron delocalization in their chelated rings. Measured solid phase infrared and Raman bands for Cu(dbm)2 complex have been interpreted in terms of the calculated vibrational modes and detailed...

  6. Theoretical description of mixed-field orientation of asymmetric top molecules: a time-dependent study

    CERN Document Server

    Omiste, Juan J

    2016-01-01

    We present a theoretical study of the mixed-field-orientation of asymmetric top molecules in tilted static electric field and non-resonant linearly polarized laser pulse by solving the time-dependent Schr\\"odinger equation. Within this framework, we compute the mixed-field orientation of a state selected molecular beam of benzonitrile (C$_7$H$_5$N) and compare with the experimental observations [J. L. Hansen et al., Phys. Rev. A 83, 023406 (2011)], and with our previous time-independent descriptions [J. J. Omiste et al., Phys. Chem. Chem. Phys. 13, 18815 (2011)]. For an excited rotational state, we investigate the field-dressed dynamics for several field configurations as those used in the mixed-field experiments. The non-adiabatic phenomena and their consequences on the rotational dynamics are analyzed in detail.

  7. Fluoride Anion Recognition by a Multifunctional Urea Derivative: An Experimental and Theoretical Study

    Directory of Open Access Journals (Sweden)

    Jana Schiller

    2016-05-01

    Full Text Available In this work we demonstrate the ability of a multifaceted N,N′-disubstituted urea to selectively recognize fluoride anion (F− among other halides. This additional function is now added to its already reported organocatalytic and organogelator properties. The signaling mechanism relies on the formation of a charge-transfer (CT complex between the urea-based sensor and F¯ in the ground state with a high association constant as demonstrated by absorption and fluorescence spectroscopy. The nature of the hydrogen bonding interaction between the sensor and F¯ was established by 1H-NMR studies and theoretical calculations. Moreover, the recovery of the sensor was achieved by addition of methanol.

  8. Problematics of Time and Timing in the Longitudinal Study of Human Development: Theoretical and Methodological Issues.

    Science.gov (United States)

    Lerner, Richard M; Schwartz, Seth J; Phelps, Erin

    2009-02-01

    Studying human development involves describing, explaining, and optimizing intraindividual change and interindividual differences in such change and, as such, requires longitudinal research. The selection of the appropriate type of longitudinal design requires selecting the option that best addresses the theoretical questions asked about developmental process and the use of appropriate statistical procedures to best exploit data derived from theory-predicated longitudinal research. This paper focuses on several interrelated problematics involving the treatment of time and the timing of observations that developmental scientists face in creating theory-design fit and in charting in change-sensitive ways developmental processes across life. We discuss ways in which these problematics may be addressed to advance theory-predicated understanding of the role of time in processes of individual development.

  9. Design factors for “linear” ball valve: theoretical and experimental studies

    Directory of Open Access Journals (Sweden)

    Thananchai Leephakpreeda

    2005-03-01

    Full Text Available Generic non-linear flow characteristics of the conventional ball valve limit the applications of flow modulation in fluid processes. This work presents the flow characteristics of fluid flowing through the conventional and modified ball valves for feasibility of a “linear” ball valve. Theoretical studies are discussed for determining explicit and implicit factors on the valve coefficient, which modulates the flow rate of fluid when the ball valve is operated in flow control processes. In experiment, the cross- sectional opening area at various opening degrees, the shape, and the location of the hole passage in valve ball are examined for complicated relations dependent to the flow rate of fluid. It can be concluded that those factors cause the modulation of flow rate when the ball is turned at different opening degree. In extended design of flow characteristics for linearity, they are to be taken into account.

  10. Fatigue study on the actuation performance of macro fiber composite (MFC): theoretical and experimental approach

    Science.gov (United States)

    Pandey, Akash; Arockiarajan, A.

    2017-03-01

    Macro fiber composite (MFC) is extensively used in vibration control and actuation applications due to its high flexibility and enhanced coupling coefficients. During these applications, MFCs are subjected to the continuous cyclic electrical loading, which may lead to the degradation in its actuation performance. In order to predict the life cycle of MFCs, an experimental setup has been devised and experiments are performed under cyclic loading condition. Efforts involved in the experiments are huge in terms of time and cost. Hence, an attempt has been made to develop a theoretical model to predict the fatigue behavior of MFCs. A nonlinear finite element method has been formulated based on Kirchhoff plate theory wherein the fatigue failure criterion based on strain energy is embedded. Simulated results based on the proposed model is compared with experimental observation and are in good agreement with each other. Variation in the life cycle of MFCs are also studied for different operating temperatures as well as structural/geometric configurations.

  11. Theoretical study of optical conductivity of graphene with magnetic and nonmagnetic adatoms

    Science.gov (United States)

    Majidi, Muhammad Aziz; Siregar, Syahril; Rusydi, Andrivo

    2014-11-01

    We present a theoretical study of the optical conductivity of graphene with magnetic and nonmagnetic adatoms. First, by introducing an alternating potential in a pure graphene, we demonstrate a gap formation in the density of states and the corresponding optical conductivity. We highlight the distinction between such a gap formation and the so-called Pauli blocking effect. Next, we apply this idea to graphene with adatoms by introducing magnetic interactions between the carrier spins and the spins of the adatoms. Exploring various possible ground-state spin configurations of the adatoms, we find that the antiferromagnetic configuration yields the lowest total electronic energy and is the only configuration that forms a gap. Furthermore, we analyze four different circumstances leading to similar gaplike structures and propose a means to interpret the magneticity and the possible orderings of the adatoms on graphene solely from the optical conductivity data. We apply this analysis to the recently reported experimental data of oxygenated graphene.

  12. Theoretical studies on mid-infrared amplification in Ho{sup 3+}-doped chalcogenide glass fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shulin [Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211 (China); College of Information Science and Engineering, Ningbo University, Ningbo 315211 (China); Xu, Yinsheng [Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211 (China); The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Dai, Shixun, E-mail: daishixun@nbu.edu.cn [Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211 (China); College of Information Science and Engineering, Ningbo University, Ningbo 315211 (China); Zhou, Yaxun [Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211 (China); College of Information Science and Engineering, Ningbo University, Ningbo 315211 (China); Lin, Changgui [Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211 (China); The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Zhang, Peiqing [Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211 (China); College of Information Science and Engineering, Ningbo University, Ningbo 315211 (China)

    2013-05-01

    This paper investigated the MIR emission of Ho{sup 3+}-doped Ge{sub 20}Ga{sub 5}Sb{sub 10}S{sub 65} chalcogenide glasses upon excitation of 900 nm laser diode. The spontaneous emission probability, absorption cross-section, and emission cross-section were calculated using the Judd-Ofelt theory and the Fuchbauer–Ladenburg equation. Theoretical studies of the Ho{sup 3+}-doped chalcogenide glass fiber amplifier operating in the MIR wavelength range, specifically around the 2.86 μm wavelength, were performed based on the rate and light propagation equations. The results indicate that the chalcogenide glass fiber presented a larger signal MIR gain and wider MIR gain spectrum. The maximum signal gain was 36 dB and the gain width was 20 dB.

  13. A theoretical study of the spheroidal droplet evaporation in forced convection

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie, E-mail: leejay1986@163.com; Zhang, Jian

    2014-11-07

    In many applications, the shape of a droplet may be assumed to be an oblate spheroid. A theoretical study is conducted on the evaporation of an oblate spheroidal droplet under forced convection conditions. Closed-form analytical expressions of the mass evaporation rate for an oblate spheroid are derived, in the regime of controlled mass-transfer and heat-transfer, respectively. The variation of droplet size during the evaporation process is presented in the regime of shrinking dynamic model. Comparing with the droplets having the same surface area, an increase in the aspect ratio enhances the mass evaporation rate and prolongs the burnout time. - Highlights: • Fully algebraic solutions for the spheroidal droplet evaporation rate is obtained. • We examine the effect of aspect ratio on the droplet evaporation. • We propose a calculation method of Nusselt number for spheroidal droplet.

  14. Chemistry of carbonization - I. A theoretical study of free radical formation from starting materials

    Energy Technology Data Exchange (ETDEWEB)

    Ruette, F.; Sierraalta, A.; Castells, V.; Laya, M. (Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Laboratorio de Quimica Computacional)

    1993-01-01

    The effect of size, shape, and aromaticity in the formation of radicals from model polyaromatic hydrocarbons (PAH) was theoretically studied using the MINDO/3 method. The results were interpreted in terms of hydrogen transfer on carbonization and liquefaction processes of coal-related compounds. Additives that donate or withdraw electrons were modeled by calculating negatively or positively charged systems. The results show that the hydrogen donating properties of PAHs increase with the increase of their molecular weights. The formation of anionic [pi]-radicals is thermodynamically favoured, contrary to cationic [pi]-radicals. Negative charge favoured the formation of low molecular weight radicals, and therefore, the hydrogen transfer from light to heavy PAHs. Positive charges, in general, do not facilitate the hydrogen transfer. 42 refs., 2 figs., 4 tabs.

  15. Theoretical studies on nonlinear optical properties of two newly synthesized compounds: EPVPC and OPVPC

    Institute of Scientific and Technical Information of China (English)

    孙元红; 赵珂; 王传奎; 罗毅; 延云兴; 陶绪堂; 蒋民华

    2005-01-01

    The nonlinear optical properties of two newly synthesized molecules 9-Ethyl-3-{2-[4-(2-Pyridin-4-yl-vinyl)-phenyl]-vinyl}-9H-carbazole (EPVPC) and 9-Octadecyl-3-{2-[4-(2-Pyridin-4-yl-vinyl)-phenyl]-vinyl}-9H-carbazole (OPVPC)have been studied with hybrid density functional theory (DFT/B3LYP). The generalized few-state model is employed to calculate the two-photon absorption cross sections of the compounds. The theoretical results are in good agreement with the available experimental measurements. It is found that the maximal two-photon absorption (TPA) cross sections of the compounds can be well described by a three-state model. The numerical simulation shows that both compounds have large two-photon absorption (TPA) cross sections and, furthermore, OPVPC displays a little stronger TPA activity than EPVPC in a lower frequency region.

  16. Dimetallaheteroborane clusters containing group 16 elements: A combined experimental and theoretical study

    Indian Academy of Sciences (India)

    Kiran Kumarvarma Chakrahari; Rongala Ramalakshmi; Dudekula Sharmila; Sundargopal Ghosh

    2014-09-01

    Recently we described the synthesis and structural characterization of various dimetallaherteroborane clusters, namely nido-[(Cp∗Mo)2B4EClH6−], 1-3; (1: E = S, x = 0; 2: E = Se, x = 0; 3: E = Te, x = 1). A combined theoretical and experimental study was also performed, which demonstrated that the clusters 1-3 with their open face are excellent precursors for cluster growth reaction. In this investigation process on the reactivity of dimetallaheteroboranes with metal carbonyls, in addition to [(Cp∗Mo)2B4H6EFe(CO)3] (4: E = S, 6: E = Te) reported earlier, reaction of 2 with [Fe2(CO)9] yielded mixed-metallaselenaborane [(Cp∗Mo)2B4H6SeFe(CO)3], 5 in good yield. The quantum chemical calculation using DFT method has been carried out to probe the bonding, NMR chemical shifts and electronic properties of dimolybdaheteroborane clusters 4-6.

  17. A Theoretical and Empirical Study of Corporate Lobbying in the European Parliament

    Directory of Open Access Journals (Sweden)

    Pieter Bouwen

    2003-12-01

    Full Text Available This paper is an attempt to empirically test a theory of access that investigates the logic behind the apparent ad hoc lobbying behavior of business interests in the European Parliament. The theoretical framework tries to explain the degree of access of different organizational forms of business interest representation (companies, associations and consultants to the European Parliament in terms of a theory of the supply and demand of "access goods". The generated hypotheses are analyzed in an empirical study of the EU financial services sector. On the basis of 14 exploratory and 27 semi-structured interviews the hypotheses are checked in the Committee on Economic and Monetary Affairs of the European Parliament.

  18. A theoretical study of the stress relaxation in HMX on the picosecond time scale

    Science.gov (United States)

    Long, Yao; Chen, Jun

    2015-12-01

    The stress relaxation model of β-HMX on the picosecond time scale is studied by a theoretical approach. The relaxation of normal stress is contributed by lattice vibration, and the relaxation of shear stress is contributed by molecular rotation. Based on this model, the energy dissipation rule of the elastic wave and the profile of the shock wave are investigated. We find at low frequency the dissipation rate of the elastic wave is proportional to the power function of frequency, and under high speed shock loading the width of the stress relaxation zone is less than 0.3 μm there is a pressure peak with a height of 14 GPa near the wave front.

  19. Fragmentation dynamics of ionized neon trimer inside helium nanodroplets: a theoretical study.

    Science.gov (United States)

    Bonhommeau, David; Viel, Alexandra; Halberstadt, Nadine

    2004-06-22

    We report a theoretical study of the fragmentation dynamics of Ne(3) (+) inside helium nanodroplets, following vertical ionization of the neutral neon trimer. The motion of the neon atoms is treated classically, while transitions between the electronic states of the ionic cluster are treated quantum mechanically. A diatomics-in-molecules description of the potential energy surfaces is used, in a minimal basis set consisting of three effective p orbitals on each neon atom for the missing electron. The helium environment is modeled by a friction force acting on the neon atoms when their speed exceeds the Landau velocity. A reasonable range of values for the corresponding friction coefficient is obtained by comparison with existing experimental measurements.

  20. Bringing light into the dark side of identity: theoretical and clinical applications: a case study.

    Science.gov (United States)

    Weymeis, Henk

    2016-02-01

    In the final part, a clinical reflection is presented on the dark side of identity formation and the empirical papers of this special issue. It is important that both researchers and clinicians ask themselves how theory and evidence about identity development can be used in clinical practice. Therefore, a relevant case study is presented about an emerging adult struggling with identity formation, Tim. Various facets of Tim's struggling are illustrated based on findings from this special issue. Starting from identity diffusion, Tim's transition to moratorium and achievement was examined from three complementary theoretical frameworks and related research on these topics as outlined in this special issue. Finally, change processes throughout therapy were discussed from various clinical frameworks.

  1. Theoretical study on charge injection and transport properties of six emitters with push-pull structure

    Science.gov (United States)

    Lin, Tao; Liu, Xiaojun; Lou, Zhidong; Hou, Yanbing; Teng, Feng

    2014-08-01

    The charge injection and transport properties of six organic light-emitting molecules with push-pull structures were studied by theoretical calculations. The ground-state geometries for the neutral, cationic and anionic states were optimized using density functional theory. Subsequently, the ionization potentials and electron affinities were calculated. We computed the reorganization energies and the transfer integrals based on the Marcus electron transfer theory. It was found that in addition to being emitters the six compounds are multifunctional materials being capable of transport for both holes and electrons. Moreover, the double-branched compound DCDPC2 was found to have higher charge injection ability and better balanced charge transport properties than single-branched compounds.

  2. Semiempirical Theoretical Studies of 1,3-Benzodioxole Derivatives as Corrosion Inhibitors

    Directory of Open Access Journals (Sweden)

    Omnia A. A. El-Shamy

    2017-01-01

    Full Text Available The efficiency of 1,3-benzodioxole derivatives as corrosion inhibitors is theoretically studied using quantum chemical calculation and Quantitative Structure Activity Relationship (QSAR. Different semiempirical methods (AM1, PM3, MNDO, MINDO/3, and INDO are applied in order to determine the relationship between molecular structure and their corrosion protection efficiencies. Different quantum parameters are obtained as the energy of highest occupied molecular orbital EHOMO, the energy of the lowest unoccupied molecular orbital ELUMO, energy gap ΔEg, dipole moment μ, and Mulliken charge on the atom. QSAR approach is applied to elucidate some important parameters as the hydrophobicity (Log P, surface area (S.A, polarization (P, and hydration energy (EHyd.

  3. Spectroscopic and theoretical study of the o-vanillin hydrazone of the mycobactericidal drug isoniazid

    Science.gov (United States)

    González-Baró, Ana C.; Pis-Diez, Reinaldo; Parajón-Costa, Beatriz S.; Rey, Nicolás A.

    2012-01-01

    A complete and detailed study of the hydrazone obtained from condensation of antituberculous isoniazid (hydrazide of the isonicotinic acid, INH) and o-vanillin (2-hydroxy-3-methoxybenzaldehyde, o-HVa) is performed. It includes structural and spectroscopic analyses, comparing experimental and theoretical results. The compound was obtained as a chloride of the pyridinic salt (INHOVA +Cl -) but it will be referred as INHOVA for the sake of simplicity. The conformational space was searched and optimized geometries were determined both in gas phase and including solvent effects. Vibrational (IR and Raman), electronic and NMR spectra were registered and assigned with the help of computational methods based on the Density Functional Theory. Isoniazid hydrazones are good candidates for therapeutic agents against tuberculosis with conserved efficiency and lower toxicity and resistance than parent INH.

  4. Experimental and theoretical study of 3p photoionization and subsequent Auger decay in atomic chromium

    Science.gov (United States)

    Keskinen, J.; Huttula, S.-M.; Mäkinen, A.; Patanen, M.; Huttula, M.

    2015-12-01

    3p photoionization and subsequent low kinetic energy Coster-Kronig and super Coster-Kronig Auger decay have been studied in atomic chromium. The binding energies, line widths, and relative intensities for the transitions seen in the synchrotron radiation excited 3p photoelectron spectrum are determined. The high resolution M2,3 M4,5 M4,5 and M2,3 M4,5 N1 Auger electron spectra following the electron impact excited 3p ionization are presented and the kinetic energies, relative intensities, and identifications are given for the main lines. The experimental findings are compared with the theoretical predictions obtained from Hartree-Fock and multiconfiguration Dirac-Fock approaches.

  5. Theoretical Study on the Mechanism Properties of a Novel Trans-platinum Antitumor Drug

    Institute of Scientific and Technical Information of China (English)

    HE Qin; ZHOU Li-Xin; ZHANG Zhi-Qiang

    2005-01-01

    The mechanism properties of a novel trans-platinum (with one or two of the normal ammine ligands replaced by the planar nitrogen ligand) antitumor drug were explored by using the B3LYP method in the present paper, and the interaction for the monofunctional adduct on DNA trans-[Pt(NH3)(QUIN)GCl] (QUIN = quinoline, G = guanine) with N-containing ligands has been theoretically studied and compared with that of S-containing ligands. The results show that the N-containing ligands are more preferred in the gas phase. Environment effect has been investigated systematically using the PCM model with a series of dielectric constants ε (4.9, 9.0 and 78.4) and compared to the gas phase result with a similar trend.

  6. Theoretical study of miscibility and glass-forming trends in mixtures of polystyrene spheres

    Science.gov (United States)

    Shih, W.-H.; Stroud, D.

    1984-01-01

    A theoretical study of glass-forming trends and miscibility in mixtures of polystyrene spheres (polyballs) of different diameters, suspended in an aqueous solution, is presented. The polyballs are assumed to be charged and to interact via a Debye-Hueckel screened Coulomb potential. The Helmholtz free energy is calculated from a variational principle based on the Gibbs-Bogoliubov inequality, in which a mixture of hard spheres of different diameters is chosen as the reference system. It is found that when the charges of the two types of polyballs are sufficiently different, the variationally determined ratio of hard-sphere diameters differs substantially, leading to packing difficulties characteristic of glass formation. The experimentally observed range of glass formation corresponds to a ratio of hard-sphere diameters of 0.8 or less. Calculations of the free energy as a function of concentration indicate that the liquid polyball mixture is stable against the phase separation, even for widely different polyball charges.

  7. Toward an Enhancement of the Photoactivity of Multiphotochromic Dimers Using Plasmon Resonance: A Theoretical Study.

    Science.gov (United States)

    Fihey, Arnaud; Le Guennic, Boris; Jacquemin, Denis

    2015-08-06

    Building dimers of organic photochromic compounds paves the way to multifunctional switches, but such architectures often undergo partial photoreactivity only. Combining photochromism of molecules and plasmon resonance of gold nanoparticles (NPs) is known to affect the photochromism of monomers, yet the impact on multimers remains unknown. Here we propose a theoretical study of dimers of dithienylethenes by the mean of a hybrid calculation scheme (discrete-interaction model/quantum mechanics). We aim to assess how the optical properties of multiphotochromes are tuned by the influence of the plasmon resonances. We show that, for a typical chemisorption orientation on the NP, the absorption bands responsible for the photochromism are significantly enhanced for both the doubly open and mixed closed-open isomers of the dyad, hinting that plasmon resonance could be used to boost the generally poor photoactivity of dithienylethene dyads.

  8. Experimental and theoretical study of the onset of the growth of an irregular metal electrodeposit

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Graciela [Laboratoire de Physique de la Matiere Condensee, CNRS-Ecole Polytechnique, F91128 Palaiseau Cedex (France); Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Rosso, Michel; Chazalviel, Jean-Noel [Laboratoire de Physique de la Matiere Condensee, CNRS-Ecole Polytechnique, F91128 Palaiseau Cedex (France); Chassaing, Elisabeth [IRDEP, EDF R and D, 6 Quai Watier, 78401 Chatou (France)

    2007-11-20

    Electrodeposition of a metal can produce aggregates with very irregular morphologies, in particular dendrites. In order to better understand these phenomena, we studied the preliminary stage of copper growth from copper sulfate by in situ optical experiments and impedance spectroscopy. Experiments were performed in a thin layer cell put in a vertical position, with cathode on top. Using a vertical cell instead of a horizontal one tends to stabilize the electrochemical system. The concentration measured by optical absorption is in agreement with theoretical prediction at the onset of polarization. Close to the limiting current density, oscillations were observed in the cell voltage. Impedance spectra could be fitted either using a simple equivalent circuit at low current density, or more complex calculations at high current density. (author)

  9. Theoretical study of charge transfer dynamics in collisions of C6+ carbon ions with pyrimidine nucleobases

    Science.gov (United States)

    Bacchus-Montabonel, M. C.

    2012-07-01

    A theoretical approach of the charge transfer dynamics induced by collision of C6+ ions with biological targets has been performed in a wide collision energy range by means of ab-initio quantum chemistry molecular methods. The process has been investigated for the target series thymine, uracil and 5-halouracil corresponding to similar molecules with different substituent on carbon C5. Such a study may be related to hadrontherapy treatments by C6+carbon ions and may provide, in particular, information on the radio-sensitivity of the different bases with regard to ion-induced radiation damage. The results have been compared to a previous analysis concerning the collision of C4+ carbon ions with the same biomolecular targets and significant charge effects have been pointed out.

  10. Theoretical Study on Cyclopeptides as the Nanocarriers for Li+, Na+, K+ and F−, Cl−, Br−

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2015-01-01

    Full Text Available The interaction process between a series of cyclopeptide compounds cyclo(Glyn  (n=4,6,8 and monovalent ions (Li+, Na+, K+, F−, Cl−, and Br− was studied using theoretical calculation. The mechanism of combination between the cyclo(Glyn and ions was discussed through binding energy, Mulliken electron population, and hydrogen bond. It was found that for the same cyclopeptide the binding energy has the order of cyclo(Glyn–Li+ > cyclo(Glyn–Na+ > cyclo(Glyn–K+ and cyclo(Glyn–F− > cyclo(Glyn–Br− > cyclo(Glyn–Cl−. The binding energy manifests the stable complex of cyclo(Glyn and ions can be formed, and the different energy shows the potential use of cyclo(Glyn as nanocarriers for metal ions or the extractant for ions separation.

  11. Photoelectron Spectroscopy,Photoionization Mass Spectroscopy,and Theoretical Study on CCI3SSCN

    Institute of Scientific and Technical Information of China (English)

    Lin Du; Li Yao; Mao-fa Ge

    2008-01-01

    Trichloromethanesulfenyl thiocyanate,CCI3SSCN,was generated and studied by photoelectron spectroscoy (PES),photoionization mass spectroscopy(PIMS),and theoretical calculations.This molecule exhibits a gaucho conformation,and the torsional angle around S-S bond is 91.4° due to the sulfur-sulfur lone pair interactions.After ionization,the ground-state cationic-radical form of CC13SSCN+ adopts a trans planar main-atom structure with Cs symmetry.The highest occupied molecular orbital (HOMO) of CCI3SSCN corresponds to the electrons mainly localized on the sulfur 3p lone pair MO.The first ionization energy is determined to be 10.40 eV.

  12. Theoretical study on decay of the 4d core-excited states of Cs Ⅲ

    Institute of Scientific and Technical Information of China (English)

    Ding Xiao-Bin; Dong Chen-Zhong; Stephan Fritzsche

    2008-01-01

    In a recent XUV photoabsorption spectrum of Cs Ⅲ ions by Cummings and O'Sullivan [2001 J. Phys. B 34 199], rather large linewidths were found for the 4d 95s25p6 - 4d 105s25p5 transition which are quite in disagreement with corresponding quasi-relativistic multiconfiguration Hartree-Fock (MCHF) calculation. In the present work, a detailed multiconfiguration Dirac-Fock study has been carried out to explore this discrepancy. Owing to the detailed consid- eration of electron correlation effects, some 'forbidden' Auger decay channels, such as 4d 105s25p35d and 4d105s05p6, would become 'open'. As a result, remarkable improvement of the linewidths has been obtained in our calculation. Furthermore, the theoretical Auger spectrum of the 4d 95s25p6 core-excited states of Cs Ⅲ ions is given in the present work.

  13. Experimental and theoretical studies of perceptible color fading of decorative paints consisting of mixed pigments

    Science.gov (United States)

    Auger, Jean-Claude; McLoughlin, Daragh

    2017-01-01

    We study the color fading of paints films composed of mixtures of white rutile titanium dioxide and yellow arylide pigments dispersed in two polymer binders at different volume concentrations. The samples were exposed to ultraviolet radiations in an accelerated weathering tester during three weeks. The measured patterns in color variations appeared to be independent of the chemistry of the binders. We then developed a theoretical framework, based on the Radiative transfer Equation of light and the One Particle T-Matrix formalism to simulate the color fading process. The loss of color is correlated to the progressive decrease of the original colored pigment volume-filling fraction as the destructive UV radiations penetrate deeper into the films. The calculated patterns of color variations of paints film composed by mixtures of white pigments with yellow Cadmium Sulfate (CdS) and red Cerium Sulfide (Ce2S3) pigments showed the same trend as that seen experimentally.

  14. Experimental and Theoretical Study of Young Modulus in Micromachined Polysilicon Films

    Institute of Scientific and Technical Information of China (English)

    丁建宁; 孟永钢; 温诗铸

    2002-01-01

    The elastic modulus is a very important mechanical property in micromachined structures. Several design issues such as resonant frequencies and stiffness in the micromachined structures are related to the elastic modulus. In addition, the accuracy of results from finite element models is highly dependent upon the elastic modulus. In this study, the Young modulus of micromachined thin polysilicon films has been investigated with a new tensile test machine using a magnetic-solenoid force actuator with linear response, low hysteresis, no friction and direct electrical control. The tensile test results show that the measured average value of Young modulus for a typical sample, (164±1.2) GPa, falls within the theoretical bounds of the texture model. These results will provide more reliable design of polysilicon microelectromechanical systems (MEMS).

  15. THEORETICAL AND EXPERIMENTAL STUDY ON THE PRESSURE AND VACUUM CONTINUOUS CONTROL SYSTEM BASED ON HYBRID PUMP

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel pressure and vacuum continuous control system, which adopts a hybrid pump as pressure and vacuum source, is presented. The mathematical model of the system is developed. The theoretical simulation and analysis on the system are implemented in order to study the relationships among the characteristics, parameters and working points of the system. The experimental investigations on the system characteristics are presented with the adoption of a fuzzy-PID controller. The simulation and experimental results indicate that the pressure and vacuum continuous control system based on hybrid pump has good dynamic and static performance, strong robustness and satisfactory adaptability to various system parameters. According to the results, system can successfully gain high accuracy and fast response signal. Also, the mathematical model of system is also testified by the experimental results.

  16. Adsorption mechanism of malachite green onto activated phosphate rock: a kinetics and theoretical study

    Directory of Open Access Journals (Sweden)

    LABIDI Nouar Sofiane

    2016-08-01

    Full Text Available Adsorption kinetics of malachite green onto Algerian activated phosphate rock was studied for better removal of the dye from wastewater. The prepared sorbent displayed à good surface area of 42.2 m²/g. The adsorption process appeared to be of physisorption nature and it took less than 60 min to get equilibrium whereas the kinetics indicated that the adsorption is likely a second order reaction which is further proved with the high R2 value. The intraparticle diffusion model confirms an adsorption mechanism limited on two steps, i.e., (1 surface adsorption, and (2 pore diffusion with a diffusion parameter of Di=10-18 cm2 s-1. Besides, semi-empirical theoretical calculations provide a new insight into adsorption mechanism as a principle of hydrogen bonding and ionic interaction.

  17. Spaced education activates students in a theoretical radiological science course: a pilot study

    Directory of Open Access Journals (Sweden)

    Nkenke Emeka

    2012-05-01

    Full Text Available Abstract Background The present study aimed at determining if the addition of spaced education to traditional face-to-face lectures increased the time students kept busy with the learning content of a theoretical radiological science course. Methods The study comprised two groups of 21 third-year dental students. The students were randomly assigned to a “traditional group” and a “spaced education group”. Both groups followed a traditional face-to-face course. The intervention in the spaced education group was performed in way that these students received e-mails with a delay of 14 days to each face-to-face lecture. These e-mails contained multiple choice questions on the learning content of the lectures. The students returned their answers to the questions also by e-mail. On return they received an additional e-mail that included the correct answers and additional explanatory material. All students of both groups documented the time they worked on the learning content of the different lectures before a multiple choice exam was held after the completion of the course. All students of both groups completed the TRIL questionnaire (Trierer Inventar zur Lehrevaluation for the evaluation of courses at university after the completion of the course. The results for the time invested in the learning content and the results of the questionnaire for the two groups were compared using the Mann–Whitney-U test. Results The spaced education group spent significantly more time (216.2 ± 123.9 min on keeping busy with the learning content compared to the traditional group (58.4 ± 94.8 min, p  Conclusions Adding spaced education to a face-to-face theoretical radiological science course activates students in a way that they spend significantly more time on keeping busy with the learning content.

  18. Experimental and theoretical study of molecular structure of beryllium, magnesium, calcium, strontium and barium 4-nitrobenzoates

    Science.gov (United States)

    Samsonowicz, M.; Regulska, E.; Świsłocka, R.; Lewandowski, W.

    2013-02-01

    The influence of alkaline earth metal ions on the electronic system of 4-nitrobenzoic acid was studied in this paper. The vibrational (FT-IR) and NMR (1H and 13C) spectra were recorded for 4-nitrobenzoic acid (4-nba) and its salts (4-nb). The assignment of vibrational spectra was done. Some shifts of band wavenumbers in alkaline earth metal 4-nitrobenzoates spectra were observed in the series from magnesium to barium salts. Good correlations between wavenumbers of the vibrational bands in the IR spectra of studied salts and ionic potential, electronegativity, inverse of atomic mass, ionic radius and ionization energy of studied metals were found. The regular changes in the chemical shifts of protons (1H NMR) and carbons (13C NMR) in the series of studied salts were also observed. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G** as well as LANL2DZ basis sets. Theoretical wavenumbers and intensities in IR and chemical shifts in NMR spectra were also obtained. The calculated parameters were compared with experimental data of studied compounds.

  19. Methodological and theoretical improvements in the study of superstitious beliefs and behaviour.

    Science.gov (United States)

    Fluke, Scott M; Webster, Russell J; Saucier, Donald A

    2014-02-01

    Via four studies (N = 901), we developed an improved Belief in Superstition Scale (BSS) composed of three distinct components (belief in bad luck, belief in good luck, and the belief that luck can be changed), whose structure was supported through exploratory (Study 1) and confirmatory (Studies 2 and 3) factor analyses using divergent samples. We found that among theoretical predictors, higher 'chance' locus of control (i.e., the belief that chance/fate controls one's life) best predicted all three BSS subscales (Studies 2-3). In Study 3, we found that BSS subscale scores were reliable, but largely invariant across age and education with a non-general psychology sample. In Study 4, the BSS subscales best predicted participants' superstitious attitudes and behaviour in a new lottery drawing paradigm among other commonly used superstition scales. Taken together, our results indicate that the BSS is a valuable addition to the burgeoning research on superstitious attitudes and behaviour. © 2012 The British Psychological Society.

  20. Experimental and theoretical study of molecular structure of beryllium, magnesium, calcium, strontium and barium 4-nitrobenzoates.

    Science.gov (United States)

    Samsonowicz, M; Regulska, E; Świsłocka, R; Lewandowski, W

    2013-02-15

    The influence of alkaline earth metal ions on the electronic system of 4-nitrobenzoic acid was studied in this paper. The vibrational (FT-IR) and NMR ((1)H and (13)C) spectra were recorded for 4-nitrobenzoic acid (4-nba) and its salts (4-nb). The assignment of vibrational spectra was done. Some shifts of band wavenumbers in alkaline earth metal 4-nitrobenzoates spectra were observed in the series from magnesium to barium salts. Good correlations between wavenumbers of the vibrational bands in the IR spectra of studied salts and ionic potential, electronegativity, inverse of atomic mass, ionic radius and ionization energy of studied metals were found. The regular changes in the chemical shifts of protons ((1)H NMR) and carbons ((13)C NMR) in the series of studied salts were also observed. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G(**) as well as LANL2DZ basis sets. Theoretical wavenumbers and intensities in IR and chemical shifts in NMR spectra were also obtained. The calculated parameters were compared with experimental data of studied compounds.

  1. A theoretical framework for early human studies: uncertainty, intervention ensembles, and boundaries

    Directory of Open Access Journals (Sweden)

    Kimmelman Jonathan

    2012-09-01

    Full Text Available Abstract Clinical development of novel therapeutics begins with a coordinated sequence of early phase clinical trials. Such early human studies confront a series of methodological and ethical challenges. In what follows, I propose a theoretical framework for early human studies aimed at informing the negotiation of these challenges. At the outset of clinical development, researchers confront a virtually undifferentiated landscape of uncertainty with respect to three variables: outcomes, their probability of occurrence, and operation dimensions needed to effectuate favorable outcomes. Early human trials transform this uncertain landscape into one where there are grounds for belief about risk and benefit for various combined operation dimensions. To accomplish this, studies set out with two aims. First, they identify a set of operation dimensions that, when combined as a package (intervention ensemble, elicits a reasonable probability of a target outcome. Second, they define the boundaries of dimension values within an intervention ensemble. This latter aim entails exposing at least some volunteers in early studies to treatments that are inactive or excessive. I provide examples that illustrate the way early human studies discover and delimit intervention ensembles, and close by offering some implications of this framework for ethics, methodology, and efficiency in clinical development of new interventions.

  2. An experimental and theoretical study of decentralized gas fired liquid heating

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Rolf

    1996-12-01

    The effects on the energy situation in industry when gas fired liquid heaters replace steam have been determined by energy surveys performed in a brewery and a slaughterhouse, measurements of the performance and emissions from liquid heaters installed in these industries, and theoretical analyses of the potential energy. The theoretical study in the first part of the project provides information that allows assessment of the effects on the energy situation, of a part or complete conversion to decentralized heating, under the conditions prevailing in the industries concerned. The second part of the project focused on increasing the liquid heater efficiency and reducing emissions of carbon monoxide and hydrocarbons. Heat transfer and pressure drop for a corrugated tube was investigated experimentally. Empirical correlations for heat transfer and pressure drop for a corrugated tube were developed. These correlations were used in the design model that was developed within this project. The design model was validated against experimental data and data from an industrial application, where a section of the smooth heat exchanger tube was replaced with a corrugated tube. The results show that the design model predicts the outlet flue gas temperature and the heater efficiency quite accurately. The wall temperature at the first corrugation is also predicted with reasonable accuracy. These results make it possible to calculate the location where a corrugated tube can be inserted without causing subcooled boiling or severe fouling. It is shown that emissions of carbon monoxide and hydrocarbons can be held at low levels, even when conventional industrial burners are used. The use of nozzles that produce long soft flames increase the risk for large emissions of hydrocarbons and carbon monoxide. 125 refs, 89 figs, 16 tabs

  3. Pathways in coal thermolysis: a theoretical and experimental study with model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ekpenyong, I.A.; Virk, P.S.

    1982-01-01

    Fundamental aspects of coal thermolysis were investigated, including how the chemical structures of aromatics, hydroaromatics, and alcohols affect their reactivities as hydrogen donors and acceptors in coal processing. The susceptibilities of substructural entities in coals to fragmentation via a number of thermal pericyclic and free radical mechanisms were probed, as were the factors governing relative reactivities within series of such coal model compounds. The theoretical part of the work applied perturbation molecular orbital (PMO) and frontier orbital theories, in conjunction with ..pi..- and pseudo-..pi.. MO's, to the study of model compound reactivity. This enabled prediction of reactivity patterns of H-donors, H-acceptors and coal-like structures as functions of their ..pi..- and sigma-bond configurations, including heteroatomic effects. Experimentally, the liquid phase reactions of the coal model compound PhOCH/sub 2/Ph (Benzyl phenyl ether, BPE) were detailed for the first time in each of four hydronaphthalene H-donor solvents in the temperature range 220/sup 0/ to 300/sup 0/C. The thermolysis of BPE exhibited a pronounced dependence on solvent structure, both with respect to product selectivities and reaction kinetics. BPE thermolysis pathways were delineated as involving (a) rearrangement, leading to isomerization, (b) hydrogenations, leading ultimately to PhOH and PhCH/sub 3/ products, and (c) addition reactions, engendering heavy products. Pathways (b) and (c) are competitive and, in each, self-reactions of BPE-derivatives vie against reactions between these and the donor solvent. Of the detailed free radical and pericyclic reaction mechanisms postulated, the latter rationalized many more facets of the BPE results than the former. The theoretical and experimental results were appraised against previous coal thermolysis literature.

  4. Theoretical and experimental IR, Raman and NMR spectra in studying the electronic structure of 2-nitrobenzoates

    Science.gov (United States)

    Świsłocka, R.; Samsonowicz, M.; Regulska, E.; Lewandowski, W.

    2007-05-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-nitrobenzoic acid (2-NBA) was studied. Optimized geometrical structures of studied compounds were calculated by HF, B3PW91, B3LYP methods using 6-311++G ∗∗ basis set. The theoretical IR and NMR spectra were obtained. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-nitrobenzoic acid salts of alkali metals were also recorded. The assignment of vibrational spectra was done. Characteristic shifts of band wavenumbers and changes in band intensities along the metal series were observed. Good correlation between the wavenumbers of the vibrational bands in the IR and Raman spectra for 2-nitrobenzoates (2-NB) and ionic potential, electronegativity, atomic mass and affinity of metals were found. The chemical shifts of protons and carbons ( 1H, 13C NMR) in the series of studied alkali metal 2-nitrobenzoates were observed too. The calculated parameters were compared to experimental characteristic of studied compounds.

  5. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, Alla [Univ. of Nevada, Reno, NV (United States)

    2014-03-14

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, the aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are needed for

  6. Experiences of using the Theoretical Domains Framework across diverse clinical environments: a qualitative study

    Directory of Open Access Journals (Sweden)

    Phillips CJ

    2015-03-01

    Framework (TDF is an integrative framework developed from a synthesis of psychological theories as a vehicle to help apply theoretical approaches to interventions aimed at behavior change. Purpose: This study explores experiences of TDF use by professionals from multiple disciplines across diverse clinical settings. Methods: Mixed methods were used to examine experiences, attitudes, and perspectives of health professionals in using the TDF in health care implementation projects. Individual interviews were conducted with ten health care professionals from six disciplines who used the TDF in implementation projects. Deductive content and thematic analysis were used. Results: Three main themes and associated subthemes were identified including: 1 reasons for use of the TDF (increased confidence, broader perspective, and theoretical underpinnings; 2 challenges using the TDF (time and resources, operationalization of the TDF and; 3 future use of the TDF. Conclusion: The TDF provided a useful, flexible framework for a diverse group of health professionals working across different clinical settings for the assessment of barriers and targeting resources to influence behavior change for implementation projects. The development of practical tools and training or support is likely to aid the utility of TDF. Keywords: barriers and enablers, behavioral change, evidence-based practice, implementation, health care, Theoretical Domains Framework

  7. Collisions of energetic particles with atoms, molecules & solids: A theoretical study

    Science.gov (United States)

    Quashie, Edwin Exam

    The detailed knowledge of the accurate ion-solid interaction is at the heart of many technological applications such as nuclear safety, applied material science, medical physics and fusion and fission applications. Its accurate evaluation poses an enormous challenge due to the need of incorporating electronic structure, bound states, size effects, basis sets, and the quantum classical aspects of the problem. Most recent approaches relying on the fitting to experimental data or phenomenological model, fail to describe the ion-solid interaction properly (see [S. N. Markin, D. Primetzhofer, M. Spitz, and P. Bauer, Phys. Rev. B 80 (2009)]) for slow ions. A general Time-Dependent Density Functional Theory (TDDFT) is used in this thesis to evaluate electron-dynamics easily. For the first time a unified theory is proposed to describe the ion-solid interaction accurately over several orders of magnitude in the ion velocities, unveiling different regimes that before were only partially seen by separate experiments and rarely by any level of existing theory. We identified an electronic stopping which in the band-regime produces a quantum friction that is nonlinear with a power-law with an exponent ˜1.5. At low velocity this nonlinear effect will provide a new impetus for experimental investigations and an improve microscopic models of electron-ion dissipative dynamics. Our study will potentially impact both the experimental and theoretical research in condensed matter. We have applied our developed theory to study stopping of H+ in Cu. The target Cu comprises complicated band structure and this system will help to understand radiation of matter, both in its experimental understanding and also in the modeling of the process, for example in the context of damped molecular dynamics for the simulation of radiation cascades. At this present stage in the field of ion-solid interactions and quantum dissipative dynamics, our findings remain very significant. The same techniques are

  8. Host-guest interaction of ZnBDC-MOF + doxorubicin: A theoretical and experimental study

    Science.gov (United States)

    Vasconcelos, Iane B.; Wanderley, Kaline A.; Rodrigues, Nailton M.; da Costa, Nivan B.; Freire, Ricardo O.; Junior, Severino A.

    2017-03-01

    The incorporation of drugs in biodegradable polymeric particles is one of many processes that controllably and significantly increase their release and action. In this paper, we describe the synthesis and physicochemical characterization of ZnBDC-MOF + doxorubicin (DOXO@ZnBDC) and the system's effectiveness in the sustained release of the drug doxorubicin. An experimental and theoretical study is presented of the interaction between the [Zn(BDC)(H2O)2]n MOF and the drug doxorubicin (DOXO). The synthesis was characterized by elemental analysis and X-ray powder diffraction (XRPD). The experimental incorporation was accomplished and analyzed by Fourier transform infrared spectroscopy (FTIR), XRPD and UV-Vis (ultraviolet-visible) spectrophotometry. Based on an analysis of the doxorubicin release profile, our results suggest that the drug delivery system showed slower release than other systems under development. Studies of cytotoxicity by the MTT method showed good results for the system developed with antineoplastic doxorubicin, and together with the other results of this study, suggest the successful development of a MOF-based drug delivery system.

  9. Anion-π interactions involving [MX(n)](m-) anions: a comprehensive theoretical study.

    Science.gov (United States)

    Estarellas, Carolina; Quiñonero, David; Deyà, Pere M; Frontera, Antonio

    2013-01-14

    In this manuscript we perform a systematic study on the geometric and energetic features of anion-π complexes, wherein the anion is a metal complex of variable shapes and charges. Such a study is lacking in the literature. For the calculations we used the ab initio RI-MP2/def2-TZVPP level of theory. A search in the Cambridge Structural Database (CSD) provides the experimental starting point that inspired the subsequent theoretical study. The influence of [MX(n)](m-) on the anion-π interaction was analyzed in terms of energetic, geometric, and charge transfer properties and Bader's theory of "atom-in-molecules" (AIM). The binding energy depends on the coordination index, geometric features and different orientations adopted by the metallic anion. The binding mode resembling a stacking interaction for linear, trigonal planar and square-planar anions is the most favorable. For tetrahedral and octahedral anions the most favorable orientation is the one with three halogen atoms pointing to the ring.

  10. A theoretical study on threshold conditions of modulation instability in oppositely directed couplers

    Science.gov (United States)

    Porsezian, K.; Shafeeque Ali, A. K.; Nithyanandan, K.

    2016-12-01

    We theoretically investigate threshold conditions to observe modulation instability (MI) in a two-core nonlinear oppositely directed coupler (ODC) with a negative-index material (NIM) channel. Using linear stability analysis, we obtain an expression for the instability gain. The analysis shows, with two discrete instability regions, that the band at lower values of f (ratio of the backward to forward-propagating waves amplitude) is a result of the nonlinear positive index material (PIM) channel while the broader range band is a consequence of the nonlinear NIM channel. Both bands are highly sensitive to system parameters. We demonstrate that MI has a threshold-like condition in the normal dispersion regime. This study also shows that gain increases proportionally to power increases and the two instability regions approach each other, thereby narrowing the stability region. Furthermore, we report that the effect of pump power and the coupling coefficient on instability gain have an opposite relationship. Similarly, study of the influence of the nonlinear coefficient on critical power (P c ) shows that P c gradually decreases as the nonlinear coefficient increases. Thus, a comprehensive study on the influence of various physical effects on MI is reported in this paper.

  11. THEORETICAL STUDY OF CO2:N2 ADSORPTION IN FAUJASITE IMPREGNATED WITH MONOETHANOLAMINE

    Directory of Open Access Journals (Sweden)

    A. E. O. Lima

    2015-09-01

    Full Text Available AbstractMany efforts have been made to develop amine-based solid adsorbents for capture of CO2 by adsorption. Compared with the traditional process of absorption in aqueous solutions of amines, the adsorbents with amine immobilized in solids generally result in processes with lower capital and energy costs. The literature contains some experimental studies of CO2 adsorption in impregnated materials; however, few studies are devoted to the theoretical interpretation of this system in terms of CO2 capture for post-combustion (N2 mixture with a low partial pressure of CO2. Therefore, this study investigates the adsorption of a CO2:N2 mixture on zeolite NaX impregnated with monoethanolamine (MEA, using molecular simulation. A model of NaX impregnated with MEA was proposed and the adsorption of a 15:85 (CO2:N2 mixture was investigated based on the Monte Carlo method. The simulation of the MEA impregnated zeolite at 25 ˚C predicted higher CO2 selectivity and significant improvement in the heat of adsorption. Unfortunately, the adsorption heat improvement did not translate into corresponding increases in the amount of adsorbed CO2. Moreover, MEA concentrations higher than 12 wt% hindered the adsorption of CO2molecules. An explanation for the results in terms of occupied volumes and interaction energies is presented.

  12. RETAIL STORE IMAGE: A COMPARISON AMONG THEORETICAL AND EMPIRICAL DIMENSIONS IN A BRAZILIAN STUDY

    Directory of Open Access Journals (Sweden)

    Janaina de Moura Engracia Giraldi

    2008-01-01

    Full Text Available The retail store can be the key success factor, the competitive advantage of a retail company. An important element to the retail strategy is the store image; the total sum of customers’ perceptions about a store. The present paper compares the theoretical and empirical dimensions of retail store’s image in a Brazilian study. The type of research used was the quantitative study, and the data collected was analyzed by use of the factor analysis technique, in order to identify the underlying factors to retail store image. In conclusion, it was observed that the form by which the respondents evaluate the image of a specific supermarket in Brazil is simpler than what was foreseen by theory, with nine factors representing the following store image dimensions: quality,price, after sales service, advertising, clientele, assortment, convenience, atmosphere and services. An important practical contribution of the present study refers to the development of a simpler scale, that can be used by retailers in a viable form to obtain data on their perceived image.

  13. EXPERIMENTAL AND THEORETICAL STUDY OF THE NONLINEAR RESPONSE OF A GIANT MAGNETOSTRICTIVE ROD

    Institute of Scientific and Technical Information of China (English)

    万永平; 方岱宁; 苏爱嘉; 黄克智

    2003-01-01

    In this paper, a magnetomechanical coupling constitutive relation of the giant magnetostrictive material was investigated experimentally and theoretically. A grain-oriented magnetostrictive rod of iron and rare earth was tested under a combined magnetomechanical loading. Two types of experimental curves were obtained, i.e., the magnetostrictive curve of the extensional strain vs the magnetic field, and the curve of the magnetic polarization intensity vs the pre-stress. A new theoretical constitutive model, based on the density of domain switching, is developed. Comparison of the theoretical predictions with the experimental results indicates that this model can capture the main characteristics of the magnetoelastic coupling deformation of a giant magnetostrictive rod.

  14. Theoretical Study of Wood Microwave Pretreatment in Rectangular Cavity for Fabricating Wood-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available Modifying wood by high intensive microwave pretreatment method is widely researched for the fabrication of wood-based nanocomposites, but the temperature uniformity and energy efficiency of microwave pretreatment have not reached the ideal state. In this study, the pretreated wood in rectangular cavity by high intensive microwave is theoretically studied by the finite element method based on the Maxwell electromagnetic field equations and the heat and mass transfer theory. The results show that the temperature uniformity and energy efficiency are related to the microwave feeding modes. Compared with the single-port and the two-port feeding mode, the four-port feeding mode is the best case on temperature uniformity and energy efficiency. The optimized parameters of cavity to pretreatment wood are achieved, which are that the height of cavities is between 0.08 m and 0.11 m in the four-port feeding mode when the thickness of wood is 0.06 m.

  15. Theoretical studies of the paramagnetic perovskites MTaO{sub 3} (M = Ca, Sr and Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Zahid, E-mail: zahidf82@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara, Dir (Lower) (Pakistan); Khan, Imad; Ahmad, Iftikhar; Khan, M. Salman [Center for Computational Materials Science, University of Malakand, Chakdara, Dir (Lower) (Pakistan); Asadabadi, S. Jalali [Department of Physics, Faculty of Science, University of Isfahan, Hezar Gerib Avenue, Isfahan, 81744 (Iran, Islamic Republic of)

    2015-07-15

    In the present density functional studies, structural, mechanical and magneto-electronic properties of CaTaO{sub 3,} SrTaO{sub 3} and BaTaO{sub 3} perovskites have been investigated. The calculated structural parameters by DFT and analytical methods are found consistent with the experiments. The analytically calculated tolerance factors of these compounds as well as their mechanical properties show that they are stable in the cubic phase. Furthermore elastic properties show that these materials are ductile in nature and confirm that BaTaO{sub 3} is harder than the rest compounds. The calculated spin dependent magneto-electronic properties reveal the paramagnetic metallic nature of these compounds. The electrical conductivity curve demonstrates significant conductivity above room temperature. On the basis of the presented properties it is expected that these compounds could be efficient electrode materials and need experimental investigations. - Highlights: • MTaO{sub 3} (M = Ca, Sr and Ba) perovskites are investigated theoretically in the frame work of density functional theory. • Mechanical properties explain the stability of these compounds and show that BaTaO{sub 3} is more ductile. • The magneto-electronic studies reveal the paramagnetic metallic nature of these compounds. • Significant electrical conductivity is observed above room temperature.

  16. Glycolate adsorption at gold and platinum electrodes: A theoretical and in situ spectroelectrochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Jose Manuel; Blanco, Raquel; Orts, Jose Manuel; Perez, Juan Manuel [Departamento de Quimica Fisica e Instituto Universitario de Electroquimica, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Rodes, Antonio, E-mail: Antonio.Rodes@ua.e [Departamento de Quimica Fisica e Instituto Universitario de Electroquimica, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2010-02-15

    The adsorption of glycolate anions at sputtered gold thin-film electrodes was studied in perchloric acid solutions by cyclic voltammetry experiments combined with in situ Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Infrared Reflection Absorption Spectroscopy under attenuated total reflection conditions (ATR-SEIRAS). Theoretical harmonic vibrational frequencies and band intensities obtained from B3LYP/LANL2DZ,6-31+G(d) calculations for glycolate species adsorbed on Au clusters with (1 1 1) orientation were used to interpret the experimental spectra. Vibrational data confirm the bidentate bonding of glycolate anions through the oxygen atoms of the carboxylate group, in a bridge configuration with the OCO plane perpendicular to the metal surface. The DFT calculations show no significant effect of the total charge of the metal cluster-adsorbate adduct on the vibrational frequencies of adsorbed glycolate species. The infrared experimental study is extended to platinum films electrochemically deposited onto sputtered gold thin-film electrodes showing the potential-dependent formation of adsorbed CO upon dissociative adsorption of glycolate anions. As in the case of gold, the reversible adsorption of glycolate anions takes place in a bidentate configuration as predicted by DFT calculations for glycolate adsorbed on Pt(1 1 1) clusters. At low glycolic acid concentration, the in situ ATR-SEIRA spectra evidence the formation of adsorbed oxalate as reaction intermediate.

  17. Theoretical studies of carbon-based nanostructured materials with applications in hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Kuc, Agnieszka

    2008-07-01

    The main goal of this work is to search for new stable porous carbon-based materials, which have the ability to accommodate and store hydrogen gas. Theoretical and experimental studies suggest a close relation between the nano-scale structure of the material and its storage capacity. In order to design materials with a high storage capacity, a compromise between the size and the shape of the nanopores must be considered. Therefore, a number of different carbon-based materials have been investigated: carbon foams, dislocated graphite, graphite intercalated by C60 molecules, and metal-organic frameworks. The structures of interest include experimentally well-known as well as hypothetical systems. The studies were focused on the determination of important properties and special features, which may result in high storage capacities. Although the variety of possible pure carbon structures and metal-organic frameworks is almost infinite, the materials described in this work possess the main structural characteristics, which are important for gas storage. (orig.)

  18. Theoretical study of the adsorption of histidine amino acid on graphene

    Science.gov (United States)

    Rodríguez, S. J.; Makinistian, L.; Albanesi, E.

    2016-04-01

    Previous studies have demonstrated how the interactions between biomolecules and graphene play a crucial role in the characterization and functionalization of biosensors. In this paper we present a theoretical study of the adsorption of histidine on graphene using density functional theory (DFT). In order to evaluate the relevance of including the carboxyl (-COOH) and amino (-NH2) groups in the calculations, we considered i) the histidine complete (i.e., with its carboxyl and its amino groups included), and ii) the histidine’s imidazole ring alone. We calculated the density of states for the two systems before and after adsorption. Furthermore, we compared the results of three approximations of the exchange and correlation interactions: local density (LDA), the generalized gradients by Perdew, Burke and Ernzerhof (GGA-PBE), and one including van der Waals forces (DFT-D2). We found that the adsorption energy calculated by DFT-D2 is higher than the other two: Eads-DFT-D2 >E ads-LDA >E ads-GGA . We report the existence of charge transfer from graphene to the molecule when the adsorption occurs; this charge transfer turns up to be greater for the complete histidine than for the imidazole ring alone. Our results revealed that including the carboxyl and amino groups generates a shift in the states of imidazole ring towards EF .

  19. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ebata, Takayuki; Kusaka, Ryoji [Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526 (Japan); Xantheas, Sotiris S. [Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, WA 99352 (United States)

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  20. Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers

    Science.gov (United States)

    Moaied, Mohammed; Moreno, J. A.; Caturla, M. J.; Ynduráin, Félix; Palacios, J. J.

    2015-04-01

    We present a theoretical study of the dynamics of H atoms adsorbed on graphene bilayers with Bernal stacking. First, through extensive density functional theory calculations, including van der Waals interactions, we obtain the activation barriers involved in the desorption and migration processes of a single H atom. These barriers, along with attempt rates and the energetics of H pairs, are used as input parameters in kinetic Monte Carlo simulations to study the time evolution of an initial random distribution of adsorbed H atoms. The simulations reveal that, at room temperature, H atoms occupy only one sublattice before they completely desorb or form clusters. This sublattice selectivity in the distribution of H atoms may last for sufficiently long periods of time upon lowering the temperature down to 0 ∘C . The final fate of the H atoms, namely, desorption or cluster formation, depends on the actual relative values of the activation barriers which can be tuned by doping. In some cases, a sublattice selectivity can be obtained for periods of time experimentally relevant even at room temperature. This result shows the possibility for observation and applications of the ferromagnetic state associated with such distribution.

  1. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges

    Science.gov (United States)

    Fujita, N.; Hasnip, P. J.; Probert, M. I. J.; Yuan, J.

    2015-08-01

    A systematic study of simulated atomic-resolution electronic energy-loss spectroscopy (EELS) for different graphene nanoribbons (GNRs) is presented. The results of ab initio studies of carbon 1s core-loss EELS on GNRs with different ribbon edge structures and different hydrogen terminations show that theoretical core-loss EELS can distinguish key structural features at the atomic scale. In addition, the combination of polarized core-loss EELS with symmetry resolved electronic partial density of states calculations can be used to identify the origins of all the primary features in the spectra. For example, the nature of the GNR edge structure (armchair, zigzag, etc) can be identified, along with the degree of hydrogenation. Hence it is possible to use the combination of ab initio calculations with high resolution, high energy transmission core-loss EELS experiments to determine the local atomic arrangement and chemical bonding states (i.e. a structural fingerprint) in GNRs, which is essential for future practical applications of graphene.

  2. A theoretical and experimental study of the thermal degradation of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Groenli, Morten G.

    1996-12-31

    This thesis relates to the thermal degradation of biomass covering a theoretical and experimental study in two parts. In the first part, there is presented an experimental and modeling work on the pyrolysis of biomass under regimes controlled by chemical kinetics, and the second part presents an experimental and modeling work on the pyrolysis of biomass under regimes controlled by heat and mass transfer. Five different celluloses, and hemicellulose and lignin isolated from birch and spruce have been studied by thermogravimetry. The thermo grams of wood species revealed different weight loss characteristics which can be attributed to their different chemical composition. The kinetic analysis gave activation energies between 210 and 280 kJ/mole for all the celluloses, and a model of independent parallel reactions was successfully used to describe the thermal degradation. In the second part of the thesis there is presented experimental and modeling work on the pyrolysis of biomass under regimes controlled by heat and mass transfer. The effect of heating conditions on the product yields distribution and reacted fraction was investigated. The experiments show that heat flux alters the pyrolysis products as well as the intra particle temperatures to the greatest extent. A comprehensive mathematical model which can simulate drying and pyrolysis of moist wood is presented. The simulation of thermal degradation and heat transport processes agreed well with experimental results. 198 refs., 139 figs., 68 abs.

  3. Structures of Pt clusters on graphene doped with nitrogen, boron, and silicon: a theoretical study

    Institute of Scientific and Technical Information of China (English)

    Dai Xian-Qi; Tang Ya-Nan; Dai Ya-Wei; Li Yan-Hui; Zhao Jian-Hua; Zhao Bao; Yang Zong-Xian

    2011-01-01

    The structures of Pt clusters on nitrogen-, boron-, silicon- doped graphenes are theoretically studied using densityfunctional theory. These dopants (nitrogen, boron and silicon) each do not induce a local curvature in the graphene and the doped graphenes all retain their planar form. The formation energy of the silicon-graphene system is lower than those of the nitrogen-, boron-doped graphenes, indicating that the silicon atom is easier to incorporate into the graphene.All the substitutional impurities enhance the interaction between the Pt atom and the graphene. The adsorption energy of a Pt adsorbed on the silicon-doped graphene is much higher than those on the nitrogen- and boron-doped graphenes.The doped silicon atom can provide more charges to enhance the Pt-graphene interaction and the formation of Pt clusters each with a large size. The stable structures of Pt clusters on the doped-graphenes are dimeric, triangle and tetrahedron with the increase of the Pt coverage. Of all the studied structures, the tetrahedron is the most stable cluster which has the least influence on the planar surface of doped-graphene.

  4. Theoretical and experimental study of foaming process with chain extended recycled PET

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available The theoretical and experimental study of a thermoplastic polymer foaming process is presented. Industrial scraps of PET were used for the production of foamed sheets. The process was performed by making use of a chemical blowing agent (CBA in the extrusion process. Due to the low intrinsic viscosity of the recycled PET, a chain extender was also used in order to increase the molecular weight of the polymer matrix. Pyromellitic dianhydride (PMDA and Hydrocerol CT 534 were chosen as chain extender and CBA, respectively. The reactive extrusion and foaming were performed in a two step process. Rheological characterization was carried out on PET samples previously treated with PMDA, as well as the morphological study was performed to define the cellular structure of the foams produced. Moreover, in order to predict the morphology of the foam, a non isothermal model was developed by taking into account both mass transfer phenomenon and viscous forces effect. Model results were compared with experimental data obtained analyzing the foamed samples. The model was validated in relation to working conditions, chemical blowing agent percentage and initial rheological properties of recycled polymer. A pretty good agreement between experimental and calculated data was achieved.

  5. MIP models for connected facility location: A theoretical and computational study.

    Science.gov (United States)

    Gollowitzer, Stefan; Ljubić, Ivana

    2011-02-01

    This article comprises the first theoretical and computational study on mixed integer programming (MIP) models for the connected facility location problem (ConFL). ConFL combines facility location and Steiner trees: given a set of customers, a set of potential facility locations and some inter-connection nodes, ConFL searches for the minimum-cost way of assigning each customer to exactly one open facility, and connecting the open facilities via a Steiner tree. The costs needed for building the Steiner tree, facility opening costs and the assignment costs need to be minimized. We model ConFL using seven compact and three mixed integer programming formulations of exponential size. We also show how to transform ConFL into the Steiner arborescence problem. A full hierarchy between the models is provided. For two exponential size models we develop a branch-and-cut algorithm. An extensive computational study is based on two benchmark sets of randomly generated instances with up to 1300 nodes and 115,000 edges. We empirically compare the presented models with respect to the quality of obtained bounds and the corresponding running time. We report optimal values for all but 16 instances for which the obtained gaps are below 0.6%.

  6. Orlistat interaction with sibutramine and carnitine. A physicochemical and theoretical study

    Science.gov (United States)

    Nicolás-Vázquez, Inés; Hinojosa Torres, Jaime; Cruz Borbolla, Julián; Miranda Ruvalcaba, René; Aceves-Hernández, Juan Manuel

    2014-03-01

    Chemical degradation of orlistat, (ORT) after melting and reaction of decomposition byproducts with sibutramine, SIB was studied. Interactions between the active pharmaceutical ingredients by using thermal analysis, TA, methods and other experimental techniques such as PXRD, IR and UV-vis spectroscopies were carried out to investigate chemical reactions between components. It was found that orlistat melts with decomposition and byproducts quickly affect sibutramine molecule and then reacting also with carnitine, CRN when the three active pharmaceutical ingredients (API's) are mixed. However ORT byproducts do not react when ORT is mixed only with carnitine. It was found that compounds containing chlorine atoms react easily with orlistat when the temperature increases up to its melting point. Some reaction mechanisms of orlistat decomposition are proposed, the fragments in the mechanisms were found in the corresponding mass spectra. Results obtained indicate that special studies should be carried out in the formulation stage before the final composition of a poly-pill could be established. Similar results are commonly found for compounds very prone to react in presence of water, light and/or temperature. In order to explain the reactivity of orlistat with sibutramine and carnitine, theoretical calculations were carried out and the results are in agreement with the experimental results.

  7. On gel electrophoresis of dielectric charged particles with hydrophobic surface: A combined theoretical and numerical study.

    Science.gov (United States)

    Majee, Partha Sarathi; Bhattacharyya, Somnath; Gopmandal, Partha Pratim; Ohshima, Hiroyuki

    2017-09-21

    A theoretical study on the gel electrophoresis of a charged particle incorporating the effects of dielectric polarization and surface hydrophobicity at the particle-liquid interface is made. A simplified model based on the weak applied field and low charge density assumption is also presented and compared with the full numerical model for a nonpolarizable particle to elucidate the nonlinear effects such as double layer polarization and relaxation as well as surface conduction. The main motivation of this study is to analyze the electrophoresis of the surface functionalized nanoparticle with tunable hydrophobicity or charged fluid drop in gel medium by considering the electrokinetic effects and hydrodynamic interactions between the particle and the gel medium. An effective medium approach, in which the transport in the electrolyte saturated hydrogel medium is governed by the Brinkman equation, is adopted in the present analysis. The governing electrokinetic equations based on the conservation principles is solved numerically. The Navier-slip boundary condition along with the continuity condition of dielectric displacement are imposed on the surface of the hydrophobic polarizable particle. The impact of the slip length on the electrophoresis is profound for a thinner Debye layer, however, surface conduction effect also becomes significant for a hydrophobic particle. Impact of hydrophobicity and relaxation effects are higher for a larger particle. Dielectric polarization creates a reduction in its electrophoretic propulsion and has negligible impact at the thinner Debye length as well as lower gel screening length. This article is protected by copyright. All rights reserved.

  8. Theoretical investigation of loratadine reactivity in order to understand its degradation properties: DFT and MD study.

    Science.gov (United States)

    Armaković, Stevan; Armaković, Sanja J; Abramović, Biljana F

    2016-10-01

    Antihistamines are frequently used pharmaceuticals that treat the symptoms of allergic reactions. Loratadine (LOR) is an active component of the second generation of selective antihistaminic pharmaceutical usually known as Claritin. Frequent usage of this type of pharmaceuticals imposes the need for understanding their fundamental reactive properties. In this study we have theoretically investigated reactive properties of LOR using both density functional theory (DFT) calculations and molecular dynamics (MD) simulations. DFT study is used for collecting information related to the molecule stability, structure, frontier molecular orbitals, quantum molecular descriptors, charge distribution, molecular electrostatic potential surfaces, charge polarization, and local reactivity properties according to average local ionization energy surfaces. Based on these results, N24 atom of pyridine ring and oxygen atom O1 were identified with nucleophilic nature. In order to collect the information necessary for the proposition of degradation compounds we also calculated bond dissociation energies (BDE) for hydrogen abstraction and single acyclic bonds as well. According to BDE, the oxidation is likely to occur in the piperidine and cycloheptane rings. MD simulations were used in order to understand the interactions with water through radial distribution functions (RDF). Based on RDFs the most important interactions with solvent are determined for carbon atom C5, chlorine atom Cl15, and oxygen atom O1. Collected results based on DFT calculations and MD simulations provided information important for suggestion of possible degradation compounds. Covalent and noncovalent interactions between LOR and (•)OH have also been investigated.

  9. THEORETICAL STUDY ON CORROSION INHIBITION PROPERTIES OF 2-ISOPROPYL-5-METHYLPHENOL

    Directory of Open Access Journals (Sweden)

    Saprizal Hadisaputra

    2016-08-01

    Full Text Available Corrosion inhibitors of 2-isopropyl-5-methylphenol and its derivatives has been elucidated by means of density functional theory at B3LYP/6-31G(d level of theory. Effect of electron donating and withdrawing groups such as NH2, SH, CHCH2, CH3, OH, CHO, COOH, F and NO2 on the corrosion inhibitor of 2-isopropyl-5-methylphenol derivatives also have been studied. The quantum chemical parameters such as the frontier orbital energies (EHOMO, ionization potential (I, electron affinity (A and electronegativity (χ are closely related to the corrosion inhibition efficiency (IE % of 2-isopropyl-5-methylphenol derivatives. The presence of electron donating groups increase IE % values meanwhile electron with drawing groups reduce IE % values. The enhancement of IE % follows NO2 < CHO < COOH < SH < F < CH3 < CHCH2 < OH < NH2. Electron donating NH2 group gives 96.38 % of IE %, pure 2-isopropyl-5-methylphenol IE % = 82.70 %. In contrast, electron withdrawing NO2 group gives IE % only 68.66 %. This theoretical study would have a significantly contribution for accelerating corrosion inhibitor experimental to gain optimum results.

  10. Platinum adsorption on ceria: A comparative theoretical study of different surfaces

    Science.gov (United States)

    Ma, Dongwei; Li, Tingxian; Wang, Qinggao; Yang, Gui; He, Chaozheng; He, Bingling; Lu, Zhansheng; Yang, Zongxian

    2017-02-01

    A comparative study, based on the density functional theory, on the adsorption of single Pt atoms on the CeO2(111), (110), and (100) surfaces has been performed. According to the calculated adsorption energies, it is suggested that the deposited Pt atoms on the CeO2(111) surface are easy to aggregate and form nanoparticles compared with those on the CeO2(110) and (100) surfaces. Further, the interaction strength between Pt and the three CeO2 surfaces follows the order of (100) > (110) > (111). It is also found that there is a correlation between the formal oxidation state of the adsorbed Pt and its coordination number with respect to O. The Pt atom coordinated by one O atom on the CeO2 surfaces is only slightly charged and almost neutral, and that coordinately by four O atoms exclusively has the formal oxidation state of Pt2+. The possible reasons for these findings have been discussed. And the present theoretical results have been compared with the available experimental reports. It is expected that our studies will give useful insights into the shape-dependent interaction between Pt with CeO2 nanocrystals and the shape-dependent oxidation state of the deposited Pt.

  11. Theoretical studies on the heats of formation, detonation properties, and pyrolysis mechanisms of energetic cyclic nitramines.

    Science.gov (United States)

    Wang, Fang; Wang, Guixiang; Du, Hongchen; Zhang, Jianying; Gong, Xuedong

    2011-12-01

    Density functional theory calculations were performed to find comprehensive relationships between the structures and performance of a series of highly energetic cyclic nitramines. The isodesmic reaction method was employed to estimate the heat of formation. The detonation properties were evaluated by using the Kamlet-Jacobs equations based on the theoretical densities and HOFs. Results indicate the N-NO(2) group and aza N atom are effective substituents for enhancing the detonation performance. All cyclic nitramines except C11 and C21 exhibit better detonation performance than HMX. The decomposition mechanism and thermal stability of these cyclic nitramines were analyzed via the bond dissociation energies. For most of these nitramines, the homolysis of N-NO(2) is the initial step in the thermolysis, and the species with the bridged N-N bond are more sensitive than others. Considering the detonation performance and thermal stability, twelve derivatives may be the promising candidates of high energy density materials (HEDMs). The results of this study may provide basic information for the further study of this kind of compounds and molecular design of novel HEDMs.

  12. Molecular design, synthesis and physical properties of novel Cytisine-derivatives - Experimental and theoretical study

    Science.gov (United States)

    Ivanova, Bojidarka; Spiteller, Michael

    2013-02-01

    The paper presented a comprehensive theoretical and experimental study on the molecular drugs-design, synthesis, isolation, physical spectroscopic and mass spectrometric elucidation of novel functionalization derivatives of Cytisine (Cyt), using nucleosidic residues. Since these alkaloids have established biochemical profile, related the binding affinity of the nicotinic acetylcholine receptors (nAChRs), particularly α7 sub-type, the presented correlation between the molecular structure and properties allowed to evaluated the highlights of the biochemical hypothesises related the Schizophrenia. The anticancer activity of α7 subtype agonists and the crucial role of the nucleoside-based medications in the cancer therapy provided opportunity for further study on the biochemical relationship between Schizophrenia and few kinds of cancers, which has been hypothesized recently. The physical electronic absorptions (EAs), circular dichroic (CD) and Raman spectroscopic (RS) properties as well as mass spectrometric (MS) data, obtained using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) methods under the positive single (MS) and tandem (MS/MS) modes of operation are discussed. Taking into account reports on a fatal intoxication of Cyt, the presented data would be of interest in the field of forensic chemistry, through development of highly selective and sensitive analytical protocols. Quantum chemical method is used to predict the physical properties of the isolated alkaloids, their affinity to the receptor loop and gas-phase stabilized species, observed mass spectrometrically.

  13. Theoretical study on setup of expanded-base pile considering cavity contraction

    Institute of Scientific and Technical Information of China (English)

    齐昌广; 刘干斌; 王艳; 邓岳保

    2015-01-01

    When an expanded-base pile is installed into ground, the cavity expansion associated with penetration of the enlarged pile base is followed by cavity contraction along the smaller-diameter pile shaft. In order to account for the influence of cavity contraction on the change of bearing capacity of expanded-base pile, a theoretical calculation methodology, predicting the setup of expanded-base pile, was established by employing the cavity contraction theory to estimate the shaft resistance of expanded-base pile, and horizontal consolidation theory to predict the dissipation of excess pore pressure. Finally, the numerical solutions for the setup of expanded-base pile were obtained. The parametric study about the influence of cavity contraction on setup of expanded-base pile was carried out, while a field test was introduced. The parametric study shows that the decrements in radial pressure and the maximum pore water pressure after considering cavity contraction are increased as the expanded ratio (base diameter/shaft diameter) and rigidity index of soil are raised. The comparison between calculated and measured values shows that the calculated results of ultimate bearing capacity for expanded-base pile considering cavity contraction agree well with the measured values; however, the computations ignoring cavity contraction are 2.5−3.0 times the measured values.

  14. Theoretical study on setup of expanded-base pile considering cavity contraction

    Institute of Scientific and Technical Information of China (English)

    齐昌广; 刘干斌; 王艳; 邓岳保

    2015-01-01

    When an expanded-base pile is installed into ground, the cavity expansion associated with penetration of the enlarged pile base is followed by cavity contraction along the smaller-diameter pile shaft. In order to account for the influence of cavity contraction on the change of bearing capacity of expanded-base pile, a theoretical calculation methodology, predicting the setup of expanded-base pile, was established by employing the cavity contraction theory to estimate the shaft resistance of expanded-base pile, and horizontal consolidation theory to predict the dissipation of excess pore pressure. Finally, the numerical solutions for the setup of expanded-base pile were obtained. The parametric study about the influence of cavity contraction on setup of expanded-base pile was carried out, while a field test was introduced. The parametric study shows that the decrements in radial pressure and the maximum pore water pressure after considering cavity contraction are increased as the expanded ratio(base diameter/shaft diameter) and rigidity index of soil are raised. The comparison between calculated and measured values shows that the calculated results of ultimate bearing capacity for expanded-base pile considering cavity contraction agree well with the measured values; however, the computations ignoring cavity contraction are 2.5-3.0 times the measured values.

  15. Theoretical and experimental study of energy transportation and accumulation in femtosecond laser ablation on metals

    Institute of Scientific and Technical Information of China (English)

    TAN Xin-yu; ZHANG Duan-ming; MAO Feng; LI Zhi-hua; YI DI; ZHANG Xiao-zhong

    2009-01-01

    The energy transportation and accumulation effect for femtosecond (fs) laser ablation on metal targets were studied using both theoretical and experimental methods.Using finite difference method,numerical simulation of energy transportation characteristics on copper target ablated by femtosecond laser was performed.Energy accumulation effects on metals of silver and copper ablated by an amplified Ti: sapphire femtosecond laser system were then studied experimentally.The simulated results show that the electrons and lattices have different temperature evolvement characteristics in the ablation stage.The electron temperature increases sharply and reaches the maximum in several femtoseconds while it needs thousands of femtoseconds for lattice to reach the maximum temperature.The experimental results show that uniform laser-induced periodic surface structures (PSS) can be formed with the appropriate pulsed numbers and laser energy density.Electron-phonon coupling coefficient plays an important role in PSS formation in different metals.Surface ripples of Cu are more pronounced than those of Au under the same laser energy density.

  16. Quantification and classification of substituent effects in organic chemistry: a theoretical molecular electrostatic potential study.

    Science.gov (United States)

    Remya, Geetha S; Suresh, Cherumuttathu H

    2016-07-27

    Substituent effects in organic chemistry are generally described in terms of experimentally derived Hammett parameters whereas a convenient theoretical tool to study these effects in π-conjugated molecular systems is molecular electrostatic potential (MESP) analysis. The present study shows that the difference between MESP at the nucleus of the para carbon of substituted benzene and a carbon atom in benzene, designated as ΔVC, is very useful to quantify and classify substituent effects. On the basis of positive and negative ΔVC values, a broad classification of around 381 substituents into electron withdrawing and donating categories is made. Each category is again sorted based on the magnitude of ΔVC into subcategories such as very strong, strong, medium, and weak electron donating/withdrawing. Furthermore, the data are used to show the transferability and additivity of substituent effects in π-conjugated organic molecules such as condensed aromatic, olefinic, acetylenic, and heterocyclic systems. The transferability properties hold good for ΔVC in all these molecular systems. The additive properties of substituent effects are strongly reflected on ΔVC and the predictive power of the data to assign the total substituent effects of multi-substituted systems is verified. The ΔVC data and the present classification of substituents are very useful to design π-conjugated organic molecular systems with desired electron rich/poor character.

  17. Theoretical study on the role of Ca(2+) at the S2 state in photosystem II.

    Science.gov (United States)

    Yang, Jingxiu; Hatakeyama, Makoto; Ogata, Koji; Nakamura, Shinichiro; Li, Can

    2014-12-11

    In photosynthesis, calcium is crucial for oxygen evolution. In the absence of Ca(2+), the Kok cycle has been proven to stop at S2 with Yz•. To explore the reason, photosystem II (PSII) S2 models (in total 32452 atoms) with different metal ions (Ca(2+), Sr(2+), and K(+)) or without Ca(2+) involved in the oxygen evolution complex (OEC) have been theoretically studied based on the previous dynamic study of PSII. It is found that the portion of the Mn1 d-orbital decreases in the highest occupied molecular orbitals for Ca(2+)-depleted PSII. This feature is unfavorable for the electron transfer from the OEC to the Yz•. Furthermore, the proton donor-acceptor distance was found elongated by the alternation of the binding water in the absence of Ca(2+). The isolated vibrational modes of the key water molecules along the path and their high frequency of the OH stretching modes also suggested the difficulty of the proton transfer from the OEC toward the proton exit channel. This work provides one mechanistic explanation for the inactivity of Ca(2+)-depleted PSII.

  18. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges.

    Science.gov (United States)

    Fujita, N; Hasnip, P J; Probert, M I J; Yuan, J

    2015-08-01

    A systematic study of simulated atomic-resolution electronic energy-loss spectroscopy (EELS) for different graphene nanoribbons (GNRs) is presented. The results of ab initio studies of carbon [Formula: see text] core-loss EELS on GNRs with different ribbon edge structures and different hydrogen terminations show that theoretical core-loss EELS can distinguish key structural features at the atomic scale. In addition, the combination of polarized core-loss EELS with symmetry resolved electronic partial density of states calculations can be used to identify the origins of all the primary features in the spectra. For example, the nature of the GNR edge structure (armchair, zigzag, etc) can be identified, along with the degree of hydrogenation. Hence it is possible to use the combination of ab initio calculations with high resolution, high energy transmission core-loss EELS experiments to determine the local atomic arrangement and chemical bonding states (i.e. a structural fingerprint) in GNRs, which is essential for future practical applications of graphene.

  19. Theoretical study of electromagnetic electron cyclotron waves in the presence of AC field in Uranian magnetosphere

    Science.gov (United States)

    Pandey, R. S.; Kaur, Rajbir

    2015-10-01

    Electromagnetic electron cyclotron (EMEC) waves with temperature anisotropy in the magnetosphere of Uranus have been studied in present work. EMEC waves are investigated using method of characteristic solution by kinetic approach, in presence of AC field. In 1986, Voyager 2 encounter with Uranus revealed that magnetosphere of Uranus exhibit non-Maxwellian high-energy tail distribution. So, the dispersion relation, real frequency and growth rate are evaluated using Lorentzian Kappa distribution function. Effect of temperature anisotropy, AC frequency and number density of particles is found. The study is also extended to oblique propagation of EMEC waves in presence and absence of AC field. Through comprehensive mathematical analysis it is found that when EMEC wave propagates parallel to intrinsic magnetic field of Uranus, its growth is more enhanced than in case of oblique propagation. Results are also discussed in context to magnetosphere of Earth and also gives theoretical explanation to existence of high energetic particles observed by Voyager 2 in the magnetosphere of Uranus. The results can present a further insight into the nature of electron-cyclotron instability condition for the whistler mode waves in the outer radiation belts of Uranus or other space plasmas.

  20. Theoretical study of protons damage in materials used in airspace equipment

    Energy Technology Data Exchange (ETDEWEB)

    Stenico, Gabriela V.; Buschini, Renata L.; Inocente, Guilherme F.; Mesa, Joe [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Inst. de Biociencias de Botucatu. Dept. de Fisica e Biofisica; Pazianotto, Mauricio T. [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados

    2011-07-01

    Full text: There is a great ongoing effort to understanding the effect of dose levels of ionizing radiation from cosmic rays (CR) received by pilots, aircraft crew and sensitive equipment (avionics). A large part of Brazil and South America are subject to the South Atlantic Magnetic Anomaly. Differently to other places in the world, few measurements exist in this region of the radiation distribution due to cosmic ray penetration as a function of altitude, which is an important ingredient in the study of protons interactions with the materials that constitute the aircraft as well as for other spacecraft and satellites components, mainly the electronic sensitive equipment. In this sense, it is relevant to know the processes of interaction of protons with Si (semiconductor material) and Ta (metal), which are widely used with this purpose. Also with the objective to decrease the damage from the interactions of protons with these materials, it is commonly used Al slice like shield. The aim of this work is to study by Monte Carlo simulation the behavior of these materials as targets with protons of energies between 300 and 400 MeV, mainly by calculating the energy deposition, the most likely path of the protons in the target, and also the ionizing process. In this sense we used two codes: the first code was the SRIM 2008 and the MCNPX v.2.5. The theoretical results will be compared with some preliminary experimental ones obtained by IEAv (Instituto de Estudos Avancados) - ITA (Instituto Tecnologico de Aeronautica). (author)

  1. Spectral investigation and theoretical study of zwitterionic and neutral forms of quinolinic acid

    Science.gov (United States)

    Karabacak, M.; Sinha, L.; Prasad, O.; Bilgili, S.; Sachan, Alok K.; Asiri, A. M.; Atac, A.

    2015-09-01

    In this study, molecular structure and vibrational analysis of quinolinic acid (2,3-pyridinedicarboxylic acid), in zwitterionic and neutral forms, were presented using FT-IR, FT-Raman, NMR, UV experimental techniques and quantum chemical calculations. FT-IR and FT-Raman spectra of 2,3-pyridinedicarboxylic acid (2,3-PDCA) in the solid phase were recorded in the region 4000-400 cm-1 and 3500-0 cm-1, respectively. The geometrical parameters and energies were obtained for zwitter and neutral forms by using density functional theory (DFT) at B3LYP/6-311++G(d,p) level of theory. 3D potential energy scan was performed by varying the selected dihedral angles using M06-2X and B3LYP functionals at 6-31G(d) level of theory and thus the most stable conformer of the title compound was determined. The most stable conformer was further optimized at higher level and vibrational wavenumbers were calculated. Theoretical vibrational assignment of 2,3-PDCA, using percentage potential energy distribution (PED) was done with MOLVIB program. 13C and 1H NMR spectra were recorded in DMSO. Chemical shifts were calculated at the same level of theory. The UV absorption spectra of the studied compound in ethanol and water were recorded in the range of 200-400 nm. The optimized geometric parameters were compared with experimental data.

  2. Theoretical Study on Sers of Wagging Vibrations of Benzyl Radical Adsorbed on Silver Electrodes

    Science.gov (United States)

    Wu, De-Yin; Chen, Yan-Li; Tian, Zhong-Qun

    2016-06-01

    Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) has been used to characterize adsorbed species widely but reaction intermediates rarely on electrodes. In previous studies, the observed SERS signals were proposed from surface benzyl species due to the electrochemical reduction of benzyl chloride on silver electrode surfaces. In this work, we reinvestigated the vibrational assignments of benzyl chloride and benzyl radical as the reaction intermediate. On the basis of density functional theoretical (DFT) calculations and normal mode analysis, our systematical results provide more reasonable new assignments for both surface species. Further, we investigated adsorption configurations, binding energies, and vibrational frequency shifts of benzyl radical interacting with silver. Our calculated results show that the wagging vibration displays significant vibrational frequency shift, strong coupling with some intramolecular modes in the phenyl ring, and significant changes in intensity of Raman signals. The study also provides absolute Raman intensity in benzyl halides and discuss the enhancement effect mainly due to the binding interaction with respect to free benzyl radical.

  3. Theoretical Study of Palladium Membrane Reactor Performance During Propane Dehydrogenation Using CFD Method

    Directory of Open Access Journals (Sweden)

    Kamran Ghasemzadeh

    2017-04-01

    Full Text Available This study presents a 2D-axisymmetric computational fluid dynamic (CFD model to investigate the performance Pd membrane reactor (MR during propane dehydrogenation process for hydrogen production. The proposed CFD model provided the local information of temperature and component concentration for the driving force analysis. After investigation of mesh independency of CFD model, the validation of CFD model results was carried out by other modeling data and a good agreement between CFD model results and theoretical data was achieved. Indeed, in the present model, a tubular reactor with length of 150 mm was considered, in which the Pt-Sn-K/Al2O3 as catalyst were filled in reaction zone. Hence, the effects of the important operating parameter (reaction temperature on the performances of membrane reactor (MR were studied in terms of propane conversion and hydrogen yield. The CFD results showed that the suggested MR system during propane dehydrogenation reaction presents higher performance with respect to once obtained in the conventional reactor (CR. In particular, by applying Pd membrane, was found that propane conversion can be increased from 41% to 49%. Moreover, the highest value of propane conversion (X = 91% was reached in case of Pd-Ag MR. It was also established that the feed flow rate of the MR is to be the one of the most important factors defining efficiency of the propane dehydrogenation process.

  4. Spaced education activates students in a theoretical radiological science course: a pilot study.

    Science.gov (United States)

    Nkenke, Emeka; Vairaktaris, Elefterios; Bauersachs, Anne; Eitner, Stephan; Budach, Alexander; Knipfer, Christian; Stelzle, Florian

    2012-05-23

    The present study aimed at determining if the addition of spaced education to traditional face-to-face lectures increased the time students kept busy with the learning content of a theoretical radiological science course. The study comprised two groups of 21 third-year dental students. The students were randomly assigned to a "traditional group" and a "spaced education group". Both groups followed a traditional face-to-face course. The intervention in the spaced education group was performed in way that these students received e-mails with a delay of 14 days to each face-to-face lecture. These e-mails contained multiple choice questions on the learning content of the lectures. The students returned their answers to the questions also by e-mail. On return they received an additional e-mail that included the correct answers and additional explanatory material.All students of both groups documented the time they worked on the learning content of the different lectures before a multiple choice exam was held after the completion of the course. All students of both groups completed the TRIL questionnaire (Trierer Inventar zur Lehrevaluation) for the evaluation of courses at university after the completion of the course. The results for the time invested in the learning content and the results of the questionnaire for the two groups were compared using the Mann-Whitney-U test. The spaced education group spent significantly more time (216.2 ± 123.9 min) on keeping busy with the learning content compared to the traditional group (58.4 ± 94.8 min, p didactics of the course significantly better than the traditional group (p = .034). The students of the spaced education group also felt that their needs were fulfilled significantly better compared to the traditional group as far as communication with the teacher was concerned (p = .022). Adding spaced education to a face-to-face theoretical radiological science course activates students in a way that

  5. Theoretical study of Kondo effect and related transport properties in topological insulator systems

    Science.gov (United States)

    Xin, Xianhao

    This thesis presents theoretical studies of the Kondo effect and related transport properties in topological insulator systems. The thesis mainly covers two topics: the Kondo effect on the surface of a bulk topological insulator material and the Kondo effect in a topological insulator quantum dot. Other relevant background knowledge and theoretical techniques for the transport calculations are also discussed in the thesis. For the first topic, we investigate the role of magnetic impurities in the transport properties of a three-dimensional topological insulator's surface states. First, we combine the second-order perturbation theory and the Boltzmann transport equation to calculate the magnetically induced resistivity in a topological insulator. Our result shows a non-perturbative behavior when conduction electrons and magnetic impurities' spins are antiferromagnetically coupled. The surface resistivity is found to display an oscillatory rather than isotropic behavior compared to the conventional Kondo effect. Both the variational method and renormalization group (RG) analysis are employed to compute the Kondo temperature, through which the non-perturbative behavior is confirmed. We further study the RG flows and demonstrate that the RG trajectories eventually flow into a strong coupling regime if the coupling is antiferromagnetic. This work is motivated by the recent transport experiments, in which surface currents were detected in topological insulators. The calculation is shown to be qualitatively consistent with the low temperature dip observed in the experimental R - T curve, and it might be one of the possible origins of the dip. For the second main topic, we investigate theoretically the nonequilibrium transport properties of a topological insulator quantum dot (TIQD) in the Coulomb blockade and Kondo regime. An Anderson impurity model is applied to a TIQD system coupled to two external leads, and we show that the model realizes the spin-orbital Kondo effect

  6. Anomalous carrier dynamics in bilayer graphene in presence of mechanical strain: A theoretical study

    Science.gov (United States)

    Enamullah

    2016-05-01

    One of the optical response of charge carriers in bilayer graphene, anomalous Rabi oscillation is investigated theoretically in presence of mechanical strain. Rabi oscillation in extreme non-resonance regime is known as anomalous Rabi oscillation, has been predicted theoretically in single layer graphene by new technique known as asymptotic rotating wave approximation. In this article, we have shown a strong dependence of anomalous Rabi oscillations of charge carriers on the mechanical strain near the vanishing point of conduction and valance band.

  7. Theoretical Studies on Structures, Properties and Dominant Debromination Pathways for Selected Polybrominated Diphenyl Ethers

    Directory of Open Access Journals (Sweden)

    Lingyun Li

    2016-06-01

    Full Text Available The B3LYP/6-311+G(d-SDD method, which considers the relativistic effect of bromine, was adopted for the calculations of the selected polybrominated diphenyl ethers (PBDEs in the present study, in which the B3LYP/6-311+G(d method was also applied. The calculated values and experimental data for structural parameters of the selected PBDEs were compared to find the suitable theoretical methods for their structural optimization. The results show that the B3LYP/6-311+G(d method can give the better results (with the root mean square errors (RMSEs of 0.0268 for the C–Br bond and 0.0161 for the C–O bond than the B3LYP/6-311+G(d-SDD method. Then, the B3LYP/6-311+G(d method was applied to predict the structures for the other selected PBDEs (both neutral and anionic species. The lowest unoccupied molecular orbital (LUMO and the electron affinity are of a close relationship. The electron affinities (vertical electron affinity and adiabatic electron affinity were discussed to study their electron capture abilities. To better estimate the conversion of configuration for PBDEs, the configuration transition states for BDE-5, BDE-22 and BDE-47 were calculated at the B3LYP/ 6-311+G(d level in both gas phase and solution. The possible debromination pathway for BDE-22 were also studied, which have bromine substituents on two phenyl rings and the bromine on meta-position prefers to depart from the phenyl ring. The reaction profile of the electron-induced reductive debromination for BDE-22 were also shown in order to study its degradation mechanism.

  8. Theoretical study of Al{sub n}V{sup +} clusters and their interaction with Ar

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Eva María, E-mail: emfernandez@fisfun.uned.es [Departamento de Física Fundamental, Facultad de Ciencias, UNED, 28040 Madrid (Spain); Vega, Andrés; Balbás, Luis Carlos [Departamento de Física Teórica, Universidad de Valladolid, 47011 Valladolid (Spain)

    2013-12-07

    Recently, it has been experimentally elucidated whether a V impurity in Al{sub n}V{sup +} clusters occupies an external or an internal site by studying their interaction with argon as a function of cluster size [S. M. Lang, P. Claes, S. Neukermans, and E. Janssens, J. Am. Soc. Mass Spectrom. 22, 1508 (2011)]. In the work presented here we studied, by means of density functional theoretic calculations, the structural and electronic properties of Al{sub n}V{sup +} clusters with n = 14–21 atoms, as well as the adsorption of a single Ar atom on them. For n < 17 the lowest energy structure of Al{sub n}V{sup +} is related to that of the pure Al {sub n+1}{sup +} cluster with the V atom substituting a surface Al atom. For n ⩾ 17 the V impurity becomes embedded in the cluster, in agreement with the experimental results, and the clusters adopt a fcc-like structure instead of the icosahedral-like skeleton of pure Al {sub n+1}{sup +}. We have studied the binding energy per atom, the second energy difference, and the V and Al atom separation energies, in comparison with those of pure Al {sub n+1}{sup +}. We also studied the adsorption of atomic Ar on endohedral and exohedral V doped clusters. The optimized Ar adsorption geometries are formed with Ar on top of a surface atom (V for n < 17, and Al for n ⩾ 17) without noticeable structural distortion of the host cluster. At the critical size (n = 17) of the exohedral-endohedral transition, the calculated Ar adsorption energy exhibits a drop and the Ar-cluster distance increases drastically, indicating that Ar becomes physisorbed rather than chemisorbed. All these results confirm the assumptions made by the experimentalists when interpreting their measurements.

  9. Theoretical geology

    Science.gov (United States)

    Mikeš, Daniel

    2010-05-01

    Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same

  10. Theoretical study of the influence of cation vacancies on the catalytic properties of vanadium antimonate

    Energy Technology Data Exchange (ETDEWEB)

    Messina, S. [Laboratorio de Procesos Cataliticos, Departamento de Ingenieria Quimica, FIUBA, Pabellon de Industrias, Ciudad Universitaria, (1428) Capital Federal (Argentina); Juan, A. [Departamento de Fisica, UNS, Av. Alem 1253, (8000) Bahia Blanca (Argentina)], E-mail: cajuan@uns.edu.ar; Larrondo, S.; Irigoyen, B.; Amadeo, N. [Laboratorio de Procesos Cataliticos, Departamento de Ingenieria Quimica, FIUBA, Pabellon de Industrias, Ciudad Universitaria, (1428) Capital Federal (Argentina)

    2008-07-15

    We have theoretically studied the influence of antimony and vanadium cation vacancies in the electronic structure and reactivity of vanadium antimonate, using molecular orbital methods. From the analysis of the electronic properties of the VSbO{sub 4} crystal structure, we can infer that both antimony and vanadium vacancies increase the oxidation state of closer V cations. This would indicate that, in the rutile-type VSbO{sub 4} phase the Sb and V cations defects stabilize the V in a higher oxidation state (V{sup 4+}). Calculations of the adsorption energy for different toluene adsorption geometries on the VSbO{sub 4}(1 1 0) surface have also been performed. The oxidation state of Sb, V and O atoms and the overlap population of metal-oxygen bonds have been evaluated. Our results indicate that the cation defects influence in the toluene adsorption reactions is slight. We have computed different alternatives for the reoxidation of the VSbO{sub 4}(1 1 0) surface active sites which were reduced during the oxygenated products formation. These calculations indicate that the V cations in higher oxidation state (V{sup 4+}) are the species, which preferentially incorporate lattice oxygen to the reduced Sb cations. Thus, the cation defects would stabilize the V{sup 4+} species in the VSbO{sub 4} structure, determining its ability to provide lattice oxygen as a reactant.

  11. Theoretical Study on Mechanism of Reaction of OH with HO2NO2

    Institute of Scientific and Technical Information of China (English)

    Yan Tian; Tian-jing He; Li He; Fan-chen Liu; Dong-ming Chen

    2008-01-01

    The reaction of HO2NO2(peroxynitric acid,PNA) with OH was studied by the hybrid density functional B3LYP and CBS-QB3 methods.Based on the calculated potential energy surface,five reaction channels,H2O+NO2+O2,HOOH+NO3,NO2+HO3H,HO2+HONO2 and HO2+HOONO,were examined in detail.The major reaction channel is PNA+OH→M1→TS1→H2O+NO2+O2.Taking a pre-equilibrium approximation and using the CBS-QB3 energies,the theoretical rate constant of this channel was calculated as 1.13x10-12 cm3/(molecule s) at 300 K,in agreement with the experimental result.Comparison between reactions of HOONO2+OH and HONO2+OH was carried out. For HOR+OH reactions,the total rate constants increase from R=NO2 to R=ONO2,which is consistent with experimental measurements.

  12. Theoretical Study on Mechanism of Reaction of OH with HO2NO2

    Science.gov (United States)

    Tian, Yan; He, Tian-jing; He, Li; Liu, Fan-chen; Chen, Dong-ming

    2008-02-01

    The reaction of HO2NO2 (peroxynitric acid, PNA) with OH was studied by the hybrid density functional B3LYP and CBS-QB3 methods. Based on the calculated potential energy surface, five reaction channels, H2O+NO2+O2, HOOH+NO3, NO2+HO3H, HO2+HONO2 and HO2+HOONO, were examined in detail. The major reaction channel is PNA+OH→M1→TS1→H2O+NO2+O2. Taking a pre-equilibrium approximation and using the CBS-QB3 energies, the theoretical rate constant of this channel was calculated as 1.13 × 10-12 cm3/(molecule s) at 300 K, in agreement with the experimental result. Comparison between reactions of HOONO2+OH and HONO2+OH was carried out. For HOR+OH reactions, the total rate constants increase from R=NO2 to R=ONO2, which is consistent with experimental measurements.

  13. Theoretical Study of Hydrated Cd~(2+) Interactions with Guanine

    Institute of Scientific and Technical Information of China (English)

    王敏; 洒荣建; 吴克琛; 李巧红; 韦永勤

    2012-01-01

    Theoretical study was performed to investigate how the hydration of cadmium ca-tion influences the structure and properties of guanine.The aqueous environment was simulated by both explicit solvent(1-5 water molecules) model and implicit solvent model.For complexes in which Cd2+ attached to the N(7) and O(6) sites of guanine,energy analysis together with the Natural Bonding Orbital(NBO) analysis were performed to elucidate the bonding characteristics in detail.The most stable structures are penta-coordinate complexes without aqua ligand located at the guanine site.Higher number of water ligands corresponds to higher stabilization energies.Average bonding energies of G-Cd increase with the number of water molecules.Bonding energies of water ligands depend on its position in the complexes.The charge distribution of guanine changed with increasing the number of water ligands,which may also influence the base-pairing pattern of guanine.There is positive charge transfer from guanine to aqua ligand as the number of the hydration waters increases.IEFPCM optimization has results comparable to the [CdG(H2O)5]2+ structure 5a.

  14. Theoretical Study of Intramolecular Interactions in Peri-Substituted Naphthalenes: Chalcogen and Hydrogen Bonds

    Directory of Open Access Journals (Sweden)

    Goar Sánchez–Sanz

    2017-02-01

    Full Text Available A theoretical study of the peri interactions, both intramolecular hydrogen (HB and chalcogen bonds (YB, in 1-hydroxy-8YH-naphthalene, 1,4-dihydroxy-5,8-di-YH-naphthalene, and 1,5-dihydroxy-4,8-di-YH-naphthalene, with Y = O, S, and Se was carried out. The systems with a OH:Y hydrogen bond are the most stable ones followed by those with a chalcogen O:Y interaction, those with a YH:O hydrogen bond (Y = S and Se being the least stable ones. The electron density values at the hydrogen bond critical points indicate that they have partial covalent character. Natural Bond Orbital (NBO analysis shows stabilization due to the charge transfer between lone pair orbitals towards empty Y-H that correlate with the interatomic distances. The electron density shift maps and non-covalent indexes in the different systems are consistent with the relative strength of the interactions. The structures found on the CSD were used to compare the experimental and calculated results.

  15. Experimental and theoretical study of AC electrical conduction mechanisms of Bis (4-acetylanilinium) tetrachloridozincate

    Energy Technology Data Exchange (ETDEWEB)

    Amine Fersi, M., E-mail: fersi_amine@yahoo.fr; Chaabane, I.; Gargouri, M.

    2014-07-01

    The Bis (4-acetylanilinium) tetrachloridozincate [C{sub 8}H{sub 10}NO]{sub 2}[ZnCl{sub 4}] compound was obtained by slow evaporation at room temperature and characterized by XRD. It is crystallized in an orthorhombic system (Cmca space group). The material was characterized by impedance spectroscopy technique measured in the 209 Hz–5 MHz frequency range from 423 to 498 K. Besides, the Cole–Cole (Z″ versus Z′) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). Furthermore, the AC conductivity was investigated as a function of temperature and frequency in the same range. The experimental results indicated that AC conductivity (σ{sub ac}) was proportional to Aω{sup S1}+Bω{sup S2}(0theoretical results suggests that the AC conductivity behavior of [C{sub 8}H{sub 10}NO]{sub 2}[ZnCl{sub 4}] can be explained by CBH model. The contribution of single polaron hopping to AC conductivity in a present alloy was also studied.

  16. Theoretical study on the reaction mechanism of CN radical with ketene

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The bimolecular single collision reaction potential energy surface of CN radical with ketene (CH2CO) was investigated by means of B3LYP and QCISD(T) methods. The calculated results indicate that there are three possible channels in the reaction. The first is an attack reaction by the carbon atom of CN at the carbon atom of the methylene of CH2CO to form the intermediate NCCH2CO followed by a rupture reaction of the C-C bond combined with -CO group to the products CH2CN+CO. The second is a direct addition reaction between CN and CH2CO to form the intermediate CH2C(O)CN followed by its isomerization into NCCH2CO via a CN-shift reaction, and subsequently, NCCH2CO dissociates into CH2CN+CO through a CO-loss reaction. The last is a direct hydrogen abstraction reaction of CH2CO by CN radical. Because of the existence of a 15.44 kJ/mol reaction barrier and higher energy of reaction products, the path can be ruled out as an important channel in the reaction kinetics. The present theoretical computation results, which give an available suggestion on the reaction mechanism, are in good agreement with previous experimental studies.

  17. Theoretical and experimental study of a new method for prediction of profile drag of airfoil sections

    Science.gov (United States)

    Goradia, S. H.; Lilley, D. E.

    1975-01-01

    Theoretical and experimental studies are described which were conducted for the purpose of developing a new generalized method for the prediction of profile drag of single component airfoil sections with sharp trailing edges. This method aims at solution for the flow in the wake from the airfoil trailing edge to the large distance in the downstream direction; the profile drag of the given airfoil section can then easily be obtained from the momentum balance once the shape of velocity profile at a large distance from the airfoil trailing edge has been computed. Computer program subroutines have been developed for the computation of the profile drag and flow in the airfoil wake on CDC6600 computer. The required inputs to the computer program consist of free stream conditions and the characteristics of the boundary layers at the airfoil trailing edge or at the point of incipient separation in the neighborhood of airfoil trailing edge. The method described is quite generalized and hence can be extended to the solution of the profile drag for multi-component airfoil sections.

  18. Theoretical study of the pressure dependent rate constants of the thermal decomposition of β-propiolactone

    Directory of Open Access Journals (Sweden)

    Abolfazl Shiroudi

    2015-09-01

    Full Text Available A theoretical study of the thermal decomposition of β-propiolactone is carried out using ab initio molecular orbital (MO methods at the MP2/6-311+G∗∗ level and Rice–Ramsperger–Kassel–Marcus (RRKM theory. The reported experimental results showed that decomposition of β-propiolactone occurred by three competing homogeneous and first order reactions. For the three reactions, the calculation was also performed at the MP2/6-311+G∗∗ level of theory, as well as by single-point calculations at the B3LYP/6-311+G∗∗//MP2/6-311+G∗∗, and MP4/6-311+G∗∗//MP2/6-311+G∗∗ levels of theory. The fall-off pressures for the decomposition in these reactions are found to be 2.415, 9.423 × 10−2 and 3.676 × 10−3 mmHg, respectively.

  19. A theoretical study on C-COOH homolytic bond dissociation enthalpies.

    Science.gov (United States)

    Shi, Jing; Huang, Xiong-Yi; Wang, Jun-Peng; Li, Run

    2010-06-01

    The knowledge of C-COOH homolytic bond dissociation enthalpies (BDEs) is of great importance in understanding various chemical and biochemical processes involving the decarboxylation reaction. In the present study, the density functional theory (DFT method), B3P86/6-311++G(2df,2p)//B3LYP/6-31+G(d), is found to be reliable to predict the C-COOH BDE of various structurally unrelated carboxylic acids. The mean absolute deviation (MAD) and root-mean-square deviation (rmsd) of this optimal method are equal to 2.0 and 2.5 kcal/mol, respectively. With the authorized theoretical protocol in hand, an extensive C-COOH BDE scale containing over 100 carboxylic acids has been established. The availability of this body of data enabled a detailed investigation of remote substituent effect on four types of carboxylic acids, including para-substituted benzoic acid, beta-substituted cis-propenoic acid, beta-substituted trans-propenoic acid, and substituted propiolic acid. Also with the C-COOH BDE data obtained in this work, an excellent linear relationship has been found between the C-COOH BDE of carboxylic acids and the C-H BDE of their hydrocarbon analogues. After comparing the energy barrier of the Pd-catalyzed decarboxylation reaction (DeltaG(decarboxylation)++) with the related C-COOH BDE, a negative correlation between the DeltaG(decarboxylation)++ and the C-COOH BDE was found.

  20. Longitudinal, transverse, and single-particle dynamics in liquid Zn: Ab initio study and theoretical analysis

    Science.gov (United States)

    del Rio, B. G.; González, L. E.

    2017-06-01

    We perform ab initio molecular dynamics simulations of liquid Zn near the melting point in order to study the longitudinal and transverse dynamic properties of the system. We find two propagating excitations in both of them in a wide range of wave vectors. This is in agreement with some experimental observations of the dynamic structure factor in the region around half the position of the main peak. Moreover, the two-mode structure in the transverse and longitudinal current correlation functions had also been previously observed in high pressure liquid metallic systems. We perform a theoretical analysis in order to investigate the possible origin of such two components by resorting to mode-coupling theories. They are found to describe qualitatively the appearance of two modes in the dynamics, but their relative intensities are not quantitatively reproduced. We suggest some possible improvements of the theory through the analysis of the structure of the memory functions. We also analyze the single-particle dynamics embedded in the velocity autocorrelation function, and explain its characteristics through mode-coupling concepts.