WorldWideScience

Sample records for dcs reduce liver

  1. Motor/Prefrontal Transcranial Direct Current Stimulation (tDCS) Following Lumbar Surgery Reduces Postoperative Analgesia Use.

    Science.gov (United States)

    Glaser, John; Reeves, Scott T; Stoll, William David; Epperson, Thomas I; Hilbert, Megan; Madan, Alok; George, Mark S; Borckardt, Jeffrey J

    2016-05-01

    Randomized, controlled pilot trial. The present study is the first randomized, double-blind, sham-controlled pilot clinical trial of transcranial direct current stimulation (tDCS) for pain and patient-controlled analgesia (PCA) opioid usage among patients receiving spine surgery. Lumbar spinal surgeries are common, and while pain is often a complaint that precedes surgical intervention, the procedures themselves are associated with considerable postoperative pain lasting days to weeks. Adequate postoperative pain control is an important factor in determining recovery and new analgesic strategies are needed that can be used adjunctively to existing strategies potentially to reduce reliance on opioid analgesia. Several novel brain stimulation technologies including tDCS are beginning to demonstrate promise as treatments for a variety of pain conditions. Twenty-seven patients undergoing lumbar spine procedures at Medical University of South Carolina were randomly assigned to receive four 20-minute sessions of real or sham tDCS during their postsurgical hospital stay. Patient-administered hydromorphone usage was tracked along with numeric rating scale pain ratings. The effect of tDCS on the slope of the cumulative PCA curve was significant (P tDCS was associated with a 23% reduction in PCA usage. In the real tDCS group a 31% reduction was observed in pain-at-its-least ratings from admission to discharge (P = 0.027), but no other changes in numeric rating scale pain ratings were significant in either group. The present pilot trial is the first study to demonstrate an opioid sparing effect of tDCS after spine surgical procedures. Although this was a small pilot trial in a heterogeneous sample of spinal surgery patients, a moderate effect-size was observed for tDCS, suggesting that future work in this area is warranted. 2.

  2. Reducing transfusion requirements in liver transplantation.

    Science.gov (United States)

    Donohue, Ciara I; Mallett, Susan V

    2015-12-24

    Liver transplantation (LT) was historically associated with massive blood loss and transfusion. Over the past two decades transfusion requirements have reduced dramatically and increasingly transfusion-free transplantation is a reality. Both bleeding and transfusion are associated with adverse outcomes in LT. Minimising bleeding and reducing unnecessary transfusions are therefore key goals in the perioperative period. As the understanding of the causes of bleeding has evolved so too have techniques to minimize or reduce the impact of blood loss. Surgical "piggyback" techniques, anaesthetic low central venous pressure and haemodilution strategies and the use of autologous cell salvage, point of care monitoring and targeted correction of coagulopathy, particularly through use of factor concentrates, have all contributed to declining reliance on allogenic blood products. Pre-emptive management of preoperative anaemia and adoption of more restrictive transfusion thresholds is increasingly common as patient blood management (PBM) gains momentum. Despite progress, increasing use of marginal grafts and transplantation of sicker recipients will continue to present new challenges in bleeding and transfusion management. Variation in practice across different centres and within the literature demonstrates the current lack of clear transfusion guidance. In this article we summarise the causes and predictors of bleeding and present the evidence for a variety of PBM strategies in LT.

  3. tDCS combined with optokinetic drift reduces egocentric neglect in severely impaired post-acute patients.

    Science.gov (United States)

    Turgut, Nergiz; Miranda, Marcela; Kastrup, Andreas; Eling, Paul; Hildebrandt, Helmut

    2018-06-01

    Visuospatial neglect is a disabling syndrome resulting in impaired activities of daily living and in longer durations of inpatient rehabilitation. Effective interventions to remediate neglect are still needed. The combination of tDCS and an optokinetic task might qualify as a treatment method. A total of 32 post-acute patients with left (n = 20) or right-sided neglect were allotted to an intervention or a control group (both groups n = 16). The intervention group received eight sessions of 1.5-2.0 mA parietal transcranial direct current stimulation (tDCS) during the performance of an optokinetic task distributed over two weeks. Additionally they received standard therapy for five hours per day. The control group received only the standard therapy. Patients were examined twice before (with 3-4 days between examinations) and twice after treatment (5-6 days between examinations). Compared to the control group and controlling for spontaneous remission, the intervention group improved on spontaneous body orientation and the Clock Drawing Test. Intragroup comparisons showed broad improvements on egocentric but not on allocentric symptoms only for the intervention group. A short additional application of tDCS during an optokinetic task led to improvements of severe neglect compared to a standard neurological early rehabilitation treatment. Improvements seem to concern primarily egocentric rather than allocentric neglect.

  4. Antigen Loading (e.g., Glutamic Acid Decarboxylase 65 of Tolerogenic DCs (tolDCs Reduces Their Capacity to Prevent Diabetes in the Non-Obese Diabetes (NOD-Severe Combined Immunodeficiency Model of Adoptive Cotransfer of Diabetes As Well As in NOD Mice

    Directory of Open Access Journals (Sweden)

    David P. Funda

    2018-02-01

    Full Text Available Tolerogenic DCs (tolDCs are being researched as a promising intervention strategy also in autoimmune diseases including type 1 diabetes (T1D. T1D is a T-cell-mediated, organ-specific disease with several well-defined and rather specific autoantigens, i.e., proinsulin, insulin, glutamic acid decarboxylase 65 (GAD65, that have been used in animal as well as human intervention trials in attempts to achieve a more efficient, specific immunotherapy. In this study, we have tested tolerogenic DCs for their effectiveness to prevent adoptive transfer of diabetes by diabetogenic splenocytes into non-obese diabetes (NOD-severe combined immunodeficiency (NOD-SCID recipients. While i.p. application of tolDCs prepared from bone marrow of prediabetic NOD mice by vitamin D2 and dexamethasone significantly reduced diabetes transfer into the NOD-SCID females, this effect was completely abolished when tolDCs were loaded with the mouse recombinant GAD65, but also with a control protein—ovalbumin (OVA. The effect was not dependent on the presence of serum in the tolDC culture. Similar results were observed in NOD mice. Removal of possible bystander antigen-presenting cells within the diabetogenic splenocytes by negative magnetic sorting of T cells did not alter this surprising effect. Tolerogenic DCs loaded with an immunodominant mouse GAD65 peptide also displayed diminished diabetes-preventive effect. Tolerogenic DCs were characterized by surface maturation markers (CD40, CD80, CD86, MHC II and the lipopolysaccharide stability test. Data from alloreactive T cell proliferation and cytokine induction assays (IFN-γ did not reveal the differences observed in the diabetes incidence. Migration of tolDCs, tolDCs-GAD65 and tolDCs-OVA to spleen, mesenteric- and pancreatic lymph nodes displayed similar, mucosal pattern with highest accumulation in pancreatic lymph nodes present up to 9 days after the i.p. application. These data document that mechanisms by which tolDCs

  5. DCS Budget Tracking System

    Data.gov (United States)

    Social Security Administration — DCS Budget Tracking System database contains budget information for the Information Technology budget and the 'Other Objects' budget. This data allows for monitoring...

  6. Normothermic machine perfusion reduces bile duct injury and improves biliary epithelial function in rat donor livers.

    Science.gov (United States)

    Op den Dries, Sanna; Karimian, Negin; Westerkamp, Andrie C; Sutton, Michael E; Kuipers, Michiel; Wiersema-Buist, Janneke; Ottens, Petra J; Kuipers, Jeroen; Giepmans, Ben N; Leuvenink, Henri G D; Lisman, Ton; Porte, Robert J

    2016-07-01

    Bile duct injury may occur during liver procurement and transplantation, especially in livers from donation after circulatory death (DCD) donors. Normothermic machine perfusion (NMP) has been shown to reduce hepatic injury compared to static cold storage (SCS). However, it is unknown whether NMP provides better preservation of bile ducts. The aim of this study was to determine the impact of NMP on bile duct preservation in both DCD and non-DCD livers. DCD and non-DCD livers obtained from Lewis rats were preserved for 3 hours using either SCS or NMP, followed by 2 hours ex vivo reperfusion. Biomarkers of bile duct injury (gamma-glutamyltransferase and lactate dehydrogenase in bile) were lower in NMP-preserved livers compared to SCS-preserved livers. Biliary bicarbonate concentration, reflecting biliary epithelial function, was 2-fold higher in NMP-preserved livers (P bile was significantly higher in NMP-preserved livers (7.63 ± 0.02 and 7.74 ± 0.05 for non-DCD and DCD livers, respectively) compared with SCS-preserved livers (7.46 ± 0.02 and 7.49 ± 0.04 for non-DCD and DCD livers, respectively). Scanning and transmission electron microscopy of donor extrahepatic bile ducts demonstrated significantly decreased injury of the biliary epithelium of NMP-preserved donor livers (including the loss of lateral interdigitations and mitochondrial injury). Differences between NMP and SCS were most prominent in DCD livers. Compared to conventional SCS, NMP provides superior preservation of bile duct epithelial cell function and morphology, especially in DCD donor livers. By reducing biliary injury, NMP could have an important impact on the utilization of DCD livers and outcome after transplantation. Liver Transplantation 22 994-1005 2016 AASLD. © 2016 American Association for the Study of Liver Diseases.

  7. Reducing liver fluke transmission in northeastern Thailand | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-04-29

    Apr 29, 2016 ... ... leaders, local health officials, school teachers—were agents of change. ... visited 186 households and organized liver fluke campaigns in local schools, ... The Lawa Model has since gained national and international ...

  8. Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model.

    Science.gov (United States)

    Rigo, Federica; De Stefano, Nicola; Navarro-Tableros, Victor; David, Ezio; Rizza, Giorgia; Catalano, Giorgia; Gilbo, Nicholas; Maione, Francesca; Gonella, Federica; Roggio, Dorotea; Martini, Silvia; Patrono, Damiano; Salizzoni, Mauro; Camussi, Giovanni; Romagnoli, Renato

    2018-05-01

    The gold standard for organ preservation before transplantation is static cold storage, which is unable to fully protect suboptimal livers from ischemia/reperfusion injury. An emerging alternative is normothermic machine perfusion (NMP), which permits organ reconditioning. Here, we aimed to explore the feasibility of a pharmacological intervention on isolated rat livers by using a combination of NMP and human liver stem cells-derived extracellular vesicles (HLSC-EV). We established an ex vivo murine model of NMP capable to maintain liver function despite an ongoing hypoxic injury induced by hemodilution. Livers were perfused for 4 hours without (control group, n = 10) or with HLSC-EV (treated group, n = 9). Bile production was quantified; perfusate samples were collected hourly to measure metabolic (pH, pO2, pCO2) and cytolysis parameters (AST, alanine aminotransferase, lactate dehydrogenase). At the end of perfusion, we assessed HLSC-EV engraftment by immunofluorescence, tissue injury by histology, apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, tissue hypoxia-inducible factor 1-α, and transforming growth factor-beta 1 RNA expression by quantitative reverse transcription-polymerase chain reaction. During hypoxic NMP, livers were able to maintain homeostasis and produce bile. In the treated group, AST (P = 0.018) and lactate dehydrogenase (P = 0.032) levels were significantly lower than those of the control group at 3 hours of perfusion, and AST levels persisted lower at 4 hours (P = 0.003). By the end of NMP, HLSC-EV had been uptaken by hepatocytes, and EV treatment significantly reduced histological damage (P = 0.030), apoptosis (P = 0.049), and RNA overexpression of hypoxia-inducible factor 1-α (P < 0.0001) and transforming growth factor-beta 1 (P = 0.014). HLSC-EV treatment, even in a short-duration model, was feasible and effectively reduced liver injury during hypoxic NMP.

  9. Melatonin reduces dimethylnitrosamine-induced liver fibrosis in rats.

    Science.gov (United States)

    Tahan, Veysel; Ozaras, Resat; Canbakan, Billur; Uzun, Hafize; Aydin, Seval; Yildirim, Beytullah; Aytekin, Huseyin; Ozbay, Gulsen; Mert, Ali; Senturk, Hakan

    2004-09-01

    Increased deposition of the extracellular matrix components, particularly collagen, is a central phenomenon in liver fibrosis. Stellate cells, the central mediators in the pathogenesis of fibrosis are activated by free radicals, and synthesize collagen. Melatonin is a potent physiological scavenger of hydroxyl radicals. Melatonin has also been shown to be involved in the inhibitory regulation of collagen content in tissues. At present, no effective treatment of liver fibrosis is available for clinical use. We aimed to test the effects of melatonin on dimethylnitrosamine (DMN)-induced liver damage in rats. Wistar albino rats were injected with DMN intraperitoneally. Following a single dose of 40 mg/kg DMN, either saline (DMN) or 100 mg/kg daily melatonin was administered for 14 days. In other rats, physiologic saline or melatonin were injected for 14 days, following a single injection of saline as control. Hepatic fibrotic changes were evaluated biochemically by measuring tissue hydroxyproline levels and histopathogical examination. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione (GSH) and superoxide dismutase (SOD) levels were evaluated in blood and tissue homogenates. DMN caused hepatic fibrotic changes, whereas melatonin suppressed these changes in five of 14 rats (P < 0.05). DMN administration resulted in increased hydroxyproline and MDA levels, and decreased GSH and SOD levels, whereas melatonin reversed these effects. When melatonin was administered alone, no significant changes in biochemical parameters were noted. In conclusion, the present study suggests that melatonin functions as a potent fibrosuppressant and antioxidant, and may be a therapeutic choice.

  10. Subnormothermic ex vivo liver perfusion reduces endothelial cell and bile duct injury after donation after cardiac death pig liver transplantation.

    Science.gov (United States)

    Knaak, Jan M; Spetzler, Vinzent N; Goldaracena, Nicolas; Boehnert, Markus U; Bazerbachi, Fateh; Louis, Kristine S; Adeyi, Oyedele A; Minkovich, Leonid; Yip, Paul M; Keshavjee, Shaf; Levy, Gary A; Grant, David R; Selzner, Nazia; Selzner, Markus

    2014-11-01

    An ischemic-type biliary stricture (ITBS) is a common feature after liver transplantation using donation after cardiac death (DCD) grafts. We compared sequential subnormothermic ex vivo liver perfusion (SNEVLP; 33°C) with cold storage (CS) for the prevention of ITBS in DCD liver grafts in pig liver transplantation (n = 5 for each group). Liver grafts were stored for 10 hours at 4°C (CS) or preserved with combined 7-hour CS and 3-hour SNEVLP. Parameters of hepatocyte [aspartate aminotransferase (AST), international normalized ratio (INR), factor V, and caspase 3 immunohistochemistry], endothelial cell (EC; CD31 immunohistochemistry and hyaluronic acid), and biliary injury and function [alkaline phosphatase (ALP), total bilirubin, and bile lactate dehydrogenase (LDH)] were determined. Long-term survival (7 days) after transplantation was similar between the SNEVLP and CS groups (60% versus 40%, P = 0.13). No difference was observed between SNEVLP- and CS-treated animals with respect to the peak of serum INR, factor V, or AST levels within 24 hours. CD31 staining 8 hours after transplantation demonstrated intact EC lining in SNEVLP-treated livers (7.3 × 10(-4) ± 2.6 × 10(-4) cells/μm(2)) but not in CS-treated livers (3.7 × 10(-4) ± 1.3 × 10(-4) cells/μm(2) , P = 0.03). Posttransplant SNEVLP animals had decreased serum ALP and serum bilirubin levels in comparison with CS animals. In addition, LDH in bile fluid was lower in SNEVLP pigs versus CS pigs (14 ± 10 versus 60 ± 18 μmol/L, P = 0.02). Bile duct histology revealed severe bile duct necrosis in 3 of 5 animals in the CS group but none in the SNEVLP group (P = 0.03). Sequential SNEVLP preservation of DCD grafts reduces bile duct and EC injury after liver transplantation. © 2014 American Association for the Study of Liver Diseases.

  11. Rationale and design of the RESOLVE trial: lanreotide as a volume reducing treatment for polycystic livers in patients with autosomal dominant polycystic kidney disease.

    NARCIS (Netherlands)

    Gevers, T.J.G.; Chrispijn, M.; Wetzels, J.F.M.; Drenth, J.P.H.

    2012-01-01

    BACKGROUND: A large proportion of patients with autosomal dominant polycystic kidney disease (ADPKD) suffers from polycystic liver disease. Symptoms arise when liver volume increases. The somatostatin analogue lanreotide has proven to reduce liver volume in patients with polycystic liver disease.

  12. Fermented Citrus Lemon Reduces Liver Injury Induced by Carbon Tetrachloride in Rats

    Directory of Open Access Journals (Sweden)

    Yi Jinn Lillian Chen

    2018-01-01

    Full Text Available Fermented lemon juice displays a variety of important biological activities, including anti-inflammatory and antioxidant capabilities. The aim of the present study is to investigate hepatic-protective effects of no-sugar-added fermented lemon juice (FLJ for liver inflammation caused by carbon tetrachloride (CCl4 in rats. Rats are divided into six groups: H2O, CCl4 + H2O, CCl4 + silymarin, and CCl4 plus three different FLJ doses by oral administration, respectively. The results show that the contents of plasma ALT and AST, hepatic lipid peroxidation, splenomegaly, and liver water are reduced significantly in rats under FLJ treatment, and pathological examination of liver fibrosis is improved. The reduced hepatic injury by increasing liver soluble protein and glutathione and albumin is observed in FLJ treated groups, and FLJ has comparable efficacies to medicine silymarin in liver therapies. The no-sugar-added FLJ differs from traditional fermentation by adding lots of sugar and prevents any hidden sugar intake while taking it as a complimentary treatment for liver inflammation. The green color and the taste of sourness are both associated with treating and healing the liver based on the five-element theory in traditional Chinese medicine, and the green and sour FLJ may be applied to the ancient theory in preventing hepatic injury accordingly.

  13. Mangosteen peel extract reduces formalin-induced liver cell death in rats

    Directory of Open Access Journals (Sweden)

    Afiana Rohmani

    2014-08-01

    Full Text Available Background Formalin is a xenobiotic that is now commonly used as a preservative in the food industry. The liver is an organ that has the highest metabolic capacity as compared to other organs. Mangosteen or Garcinia mangostana Linn (GML peel contains xanthones, which are a source of natural antioxidants. The purpose of this study was to evaluate the effect of mangosteen peel extract on formalin-induced liver cell mortality rate and p53 protein expression in Wistar rats. Methods Eighteen rats received formalin orally for 2 weeks, and were subsequently divided into 3 groups, consisting of the formalin-control group receiving a placebo and treatment groups 1 and 2, which were treated with mangosteen peel extract at doses of 200 and 400 mg/kgBW/day, respectively. The treatment was carried out for 1 week, and finally the rats were terminated. The differences in liver cell mortality rate and p53 protein expression were analyzed. Results One-way ANOVA analysis showed significant differences in liver cell mortality rate among the three groups (p=0.004. The liver cell mortality rate in the treatment group receiving 400 mg/kgBW/day extract was lower than that in the formalin-control group. There was no p53 expression in all groups. Conclusions Garcinia mangostana Linn peel extract reduced the mortality rate of liver cells in rats receiving oral formalin. Involvement of p53 expression in liver cell mortality in rats exposed to oral formalin is presumably negligible.

  14. In situ targeting of dendritic cells sets tolerogenic environment and ameliorates CD4+ T-cell response in the postischemic liver.

    Science.gov (United States)

    Funken, Dominik; Ishikawa-Ankerhold, Hellen; Uhl, Bernd; Lerchenberger, Maximilian; Rentsch, Markus; Mayr, Doris; Massberg, Steffen; Werner, Jens; Khandoga, Andrej

    2017-11-01

    CD4 + T cells recruited to the liver play a key role in the pathogenesis of ischemia/reperfusion (I/R) injury. The mechanism of their activation during alloantigen-independent I/R is not completely understood. We hypothesized that liver-resident dendritic cells (DCs) interact with CD4 + T cells in the postischemic liver and that modulation of DCs or T-cell-DC interactions attenuates liver inflammation. In mice, warm hepatic I/R (90/120-240 min) was induced. Tolerogenic DCs were generated in situ by pretreatment of animals with the vitamin D analog paricalcitol. A mAb-CD44 was used for blockade of CD4 + T-cell-DC interactions. As shown by 2-photon in vivo microscopy as well as confocal microscopy, CD4 + T cells were closely colocalized with DCs in the postischemic liver. Pretreatment with paricalcitol attenuated I/R-induced maturation of DCs (flow cytometry), CD4 + T-cell recruitment into the liver (intravital microscopy), and hepatocellular/microvascular damage (intravital microscopy, alanine aminotransferase/aspartate aminotransferase, histology). However, interruption of T-cell-DC interaction increased proinflammatory DC maturation and even enhanced tissue damage. Simultaneous treatment with an anti-CD44mAb completely abolished the beneficial effect of paricalcitol on T-cell migration and tissue injury. Our study demonstrates for the first time that hepatic DCs interact with CD4 + T cells in the postischemic liver in vivo ; modulation of DCs and/or generation of tolerogenic DCs attenuates intrahepatic CD4 + T-cell recruitment and reduces I/R injury; and interruption of CD44-dependent CD4 + T-cell-DC interactions enhances tissue injury by preventing the modulatory effect of hepatic DCs on T cells, especially type 1 T helper effector cells. Thus, hepatic DCs are strongly involved in the promotion of CD4 + T-cell-dependent postischemic liver inflammation.-Funken, D., Ishikawa-Ankerhold, H., Uhl, B., Lerchenberger, M., Rentsch, M., Mayr, D., Massberg, S., Werner, J

  15. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines.

    Science.gov (United States)

    Zong, L; Yu, Q H; Du, Y X; Deng, X M

    2014-02-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  16. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Zong, L. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China); No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Yu, Q. H. [Second Military Medical University, Changhai Hospital, Department of Gastroenterology, Shanghai, China, Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai (China); Du, Y. X. [No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Deng, X. M. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2014-03-03

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  17. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Directory of Open Access Journals (Sweden)

    L. Zong

    2014-03-01

    Full Text Available Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN and lipopolysaccharide (LPS in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST and alanine aminotransferase (ALT. Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  18. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    International Nuclear Information System (INIS)

    Zong, L.; Yu, Q.H.; Du, Y.X.; Deng, X.M.

    2014-01-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis

  19. Using Transcranial Direct Current Stimulation (tDCS to study and treat aphasia

    Directory of Open Access Journals (Sweden)

    Nazbanou Nozari

    2014-04-01

    - What are the challenges of using tDCS for hypothesis testing and how can I reduce the risk of misinterpreting my results? In summary, the symposium is designed to (a promote the theoretical understanding of the basic science of tDCS, and (b to tackle several pragmatic issues when designing tDCS studies, with the ultimate goal of cultivating higher standards for using a potentially invaluable technique for both clinical and research purposes. Given the growing interest in the aphasia community for using tDCS and the sophistication of the audience, we believe that the Academy’s annual meeting is the ideal venue for this symposium.

  20. Efficacy of transcranial direct current stimulation (tDCS) in reducing consumption in patients with alcohol use disorders: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Trojak, Benoit; Soudry-Faure, Agnès; Abello, Nicolas; Carpentier, Maud; Jonval, Lysiane; Allard, Coralie; Sabsevari, Foroogh; Blaise, Emilie; Ponavoy, Eddy; Bonin, Bernard; Meille, Vincent; Chauvet-Gelinier, Jean-Christophe

    2016-05-17

    effects of transcranial direct current stimulation on tobacco consumption. Several studies have reported a beneficial effect of transcranial direct current stimulation on substance use disorders by reducing craving, impulsivity, and risk-taking behavior, and suggest that transcranial direct current stimulation may be a promising treatment in addiction. However, to date, no studies have included sufficiently large samples and sufficient follow-up to confirm the hypothesis. Results from this large randomized controlled trial will give a better overview of the therapeutic potential of transcranial direct current stimulation in alcohol use disorders. Clinical Trials Gov, NCT02505126 (registration date: July 15 2015).

  1. Riboflavin (vitamin B-2) reduces hepatocellular injury following liver ischaemia and reperfusion in mice.

    Science.gov (United States)

    Sanches, Sheila Cristina; Ramalho, Leandra Naira Z; Mendes-Braz, Mariana; Terra, Vânia Aparecida; Cecchini, Rubens; Augusto, Marlei Josiele; Ramalho, Fernando Silva

    2014-05-01

    Riboflavin has been shown to exhibit anti-inflammatory and antioxidant properties in the settings of experimental sepsis and ischaemia/reperfusion (I/R) injury. We investigated the effect of riboflavin on normothermic liver I/R injury. Mice were submitted to 60 min of ischaemia plus saline or riboflavin treatment (30 μmoles/kg BW) followed by 6 h of reperfusion. Hepatocellular injury was evaluated by aminotransferase levels, reduced glutathione (GSH) content and the histological damage score. Hepatic neutrophil accumulation was assessed using the naphthol method and by measuring myeloperoxidase activity. Hepatic oxidative/nitrosative stress was estimated by immunohistochemistry. Liver endothelial and inducible nitric oxide synthase (eNOS/iNOS) and nitric oxide (NO) amounts were assessed by immunoblotting and a chemiluminescence assay. Riboflavin significantly reduced serum and histological parameters of hepatocellular damage, neutrophil infiltration and oxidative/nitrosative stress. Furthermore, riboflavin infusion partially recovered hepatic GSH reserves and decreased the liver contents of eNOS/iNOS and NO. These data indicate that riboflavin exerts antioxidant and anti-inflammatory effects in the ischaemic liver, protecting hepatocytes against I/R injury. The mechanism of these effects appears to be related to the intrinsic antioxidant potential of riboflavin/dihydroriboflavin and to reduced hepatic expression of eNOS/iNOS and reduced NO levels, culminating in attenuation of oxidative/nitrosative stress and the acute inflammatory response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Reduced size liver transplantation from a donor supported by a Berlin Heart.

    Science.gov (United States)

    Misra, M V; Smithers, C J; Krawczuk, L E; Jenkins, R L; Linden, B C; Weldon, C B; Kim, H B

    2009-11-01

    Patients on cardiac assist devices are often considered to be high-risk solid organ donors. We report the first case of a reduced size liver transplant performed using the left lateral segment of a pediatric donor whose cardiac function was supported by a Berlin Heart. The recipient was a 22-day-old boy with neonatal hemochromatosis who developed fulminant liver failure shortly after birth. The transplant was complicated by mild delayed graft function, which required delayed biliary reconstruction and abdominal wall closure, as well as a bile leak. However, the graft function improved quickly over the first week and the patient was discharged home with normal liver function 8 weeks after transplant. The presence of a cardiac assist device should not be considered an absolute contraindication for abdominal organ donation. Normal organ procurement procedures may require alteration due to the unusual technical obstacles that are encountered when the donor has a cardiac assist device.

  3. TileDCS web system

    International Nuclear Information System (INIS)

    Maidantchik, C; Ferreira, F; Grael, F

    2010-01-01

    The web system described here provides features to monitor the ATLAS Detector Control System (DCS) acquired data. The DCS is responsible for overseeing the coherent and safe operation of the ATLAS experiment hardware. In the context of the Hadronic Tile Calorimeter Detector (TileCal), it controls the power supplies of the readout electronics acquiring voltages, currents, temperatures and coolant pressure measurements. The physics data taking requires the stable operation of the power sources. The TileDCS Web System retrieves automatically data and extracts the statistics for given periods of time. The mean and standard deviation outcomes are stored as XML files and are compared to preset thresholds. Further, a graphical representation of the TileCal cylinders indicates the state of the supply system of each detector drawer. Colors are designated for each kind of state. In this way problems are easier to find and the collaboration members can focus on them. The user selects a module and the system presents detailed information. It is possible to verify the statistics and generate charts of the parameters over the time. The TileDCS Web System also presents information about the power supplies latest status. One wedge is colored green whenever the system is on. Otherwise it is colored red. Furthermore, it is possible to perform customized analysis. It provides search interfaces where the user can set the module, parameters, and the time period of interest. The system also produces the output of the retrieved data as charts, XML files, CSV and ROOT files according to the user's choice.

  4. Apoptotic Effects of Reduced Brain Derived Neurotrophic Factor (BDNF on Mouse Liver and Kidney

    Directory of Open Access Journals (Sweden)

    Berna Tezcan

    2017-12-01

    Full Text Available Objective: Brainderived neurotrophic factor (BDNF promotes the development and differentiation of neurons and synapses, as well as neuronal survival, by acting on specific neuronal groups in the central and peripheral nervous systems. However, the direct effect of BDNF on apoptosis in peripheral tissues is not known. The aim of this study was to investigate the relationship between BDNF and apoptosis, and the density and distribution of BDNF receptors in liver and kidney tissues by histological and immunehistochemical methods. Methods: Seven wild-type and 7 BDNF heterozygous (reduced BDNF levels male mice were used in the study. Caspase-3 and TUNEL immunehistochemical stainings were performed in order to investigate the presence of apoptosis in the liver and kidney tissues of the studied groups. Apoptosis-entering cells were counted and the groups were compared. Concentration and distribution of BDNF receptors, tropomyosin-related kinase B (TrkB and nerve growth factor receptor p75 (NGFR p75, in liver and kidney tissues were also examined by immunehistochemical analyzes. Results: As a result of Caspase-3 and TUNEL immune histochemical staining, more cells were counted to enter the apoptotic process in sections of BDNF heterozygous group compared to control group (p<0.0001. In both groups TrkB and NGFR p75 receptors in liver and kidney tissues were determined in trace amounts, but there was no difference in intensity and distribution between the studied groups. Conclusion: According to our histological and immune histochemical stainings and statistical analysis of cell count between groups, it was found that BDNF is protect ive against apoptosis in liver and kidney. The lack of difference between the studied groups in terms of intensity and distribution of BDNF receptors, suggests that BDNF receptor distribution in the liver and kidney tissues may be different from the nervous system or that BDNF may differ in affinity for these receptors.

  5. Liver

    International Nuclear Information System (INIS)

    Bernardino, M.E.; Sones, P.J. Jr.; Barton Price, R.; Berkman, W.A.

    1984-01-01

    Evaluation of the liver for focal lesions is extremely important because the liver is one of the most common sites for metastatic disease. Most patients with metastatic deposits to the liver have a survival rate of about 6 months. Thus, metastatic disease to the liver has an extremely grave prognosis. In the past patients with hepatic lesions had no therapeutic recourse. However, with recent aggressive surgical advances (such as partial hepatectomies) and hepatic artery embolization, survival of patients with hepatic metastases has increased. Thus it is important for noninvasive imaging not only to detect lesions early in their course, but also to give their true hepatic involvement and the extent of the neoplastic process elsewhere in the body. Recent advances in imaging have been rapidly changing over the past 5 years. These changes have been more rapid in computed tomography (CT) and ultrasound than in radionuclide imaging. Thus, the question addressed in this chapter is: What is the relationship of hepatic ultrasound to the other current diagnostic modalities in detecting metastatic liver disease and other focal liver lesions? Also, what is its possible future relationship to nuclear magnetic resonance?

  6. Chocolate intake may reduce liver count in 99m-Tc-tetrofosmin myocardial SPECT

    International Nuclear Information System (INIS)

    Tsunekawa, Akikazu; Yasuda, Eisuke; Okuda, Seiji

    2005-01-01

    The accumulation of 99m-Tc-Tetrofosmin (TF) in the liver and intestine may often interfere the image quality of myocardial TF SPECT. Although milk intake before acquisition is recommended to reduce its accumulation by enhancing biliary excretion of TF, some patients cannot accept milk. To elucidate the efficacy of chocolate intake as a substitute for milk, we investigated 72 patients with coronary heart disease who underwent TF SPECT (stress imaging; n=36, rest imaging; n=36). Following injection of TF, the patients were randomly treated either with milk (n=24), or chocolate (n=24). The images were acquired before treatment, at 15 min, at 30 min, and 45 min after treatment. The ratio of liver to heart count (LHR) was calculated and was compared between the two groups. LHR in the stress imaging was not significantly different between the milk-treated and chocolate-treated groups: 1.86 vs 1.87 before treatment, 1.39 vs 1.39 at 30 min, and 1.02 vs 1.03 at 45 min. LHR in the rest imaging was also the same between the two groups: 1.43 vs 1.42 before treatment, 1.22 vs 1.21 at 15 min, and 0.95 vs. 0.95 at 30 min. Chocolate intake may be equally effective to milk intake in reducing the liver accumulation of TF. (author)

  7. Modulation of selective attention by polarity-specific tDCS effects.

    Science.gov (United States)

    Pecchinenda, Anna; Ferlazzo, Fabio; Lavidor, Michal

    2015-02-01

    Selective attention relies on working memory to maintain an attention set of task priorities. Consequently, selective attention is more efficient when working memory resources are not depleted. However, there is some evidence that distractors are processed even when working memory load is low. We used tDCS to assess whether boosting the activity of the Dorsolateral Prefrontal Cortex (DLPFC), involved in selective attention and working memory, would reduce interference from emotional distractors. Findings showed that anodal tDCS over the DLPFC was not sufficient to reduce interference from angry distractors. In contrast, cathodal tDCS over the DLPFC reduced interference from happy distractors. These findings show that altering the DLPFC activity is not sufficient to establish top-down control and increase selective attention efficiency. Although, when the neural signal in the DLPFC is altered by cathodal tDCS, interference from emotional distractors is reduced, leading to an improved performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hypothermic oxygenated machine perfusion reduces bile duct reperfusion injury after transplantation of donation after circulatory death livers

    Science.gov (United States)

    van Rijn, Rianne; van Leeuwen, Otto B.; Matton, Alix P. M.; Burlage, Laura C.; Wiersema‐Buist, Janneke; van den Heuvel, Marius C.; de Kleine, Ruben H. J.; de Boer, Marieke T.; Gouw, Annette S. H.

    2018-01-01

    Dual hypothermic oxygenated machine perfusion (DHOPE) of the liver has been advocated as a method to reduce ischemia/reperfusion injury (IRI). This study aimed to determine whether DHOPE reduces IRI of the bile ducts in donation after circulatory death (DCD) liver transplantation. In a recently performed phase 1 trial, 10 DCD livers were preserved with DHOPE after static cold storage (SCS; http://www.trialregister.nl NTR4493). Bile duct biopsies were obtained at the end of SCS (before DHOPE; baseline) and after graft reperfusion in the recipient. Histological severity of biliary injury was graded according to an established semiquantitative grading system. Twenty liver transplantations using DCD livers not preserved with DHOPE served as controls. Baseline characteristics and the degree of bile duct injury at baseline (end of SCS) were similar between both groups. In controls, the degree of stroma necrosis (P = 0.002) and injury of the deep peribiliary glands (PBG; P = 0.02) increased after reperfusion compared with baseline. In contrast, in DHOPE‐preserved livers, the degree of bile duct injury did not increase after reperfusion. Moreover, there was less injury of deep PBG (P = 0.04) after reperfusion in the DHOPE group compared with controls. In conclusion, this study suggests that DHOPE reduces IRI of bile ducts after DCD liver transplantation. Liver Transplantation 24 655–664 2018 AASLD. PMID:29369470

  9. Molecular and elemental effects underlying the biochemical action of transcranial direct current stimulation (tDCS) in appetite control

    Science.gov (United States)

    Surowka, Artur D.; Ziomber, Agata; Czyzycki, Mateusz; Migliori, Alessandro; Kasper, Kaja; Szczerbowska-Boruchowska, Magdalena

    2018-04-01

    Recent studies highlight that obesity may alter the electric activity in brain areas triggering appetite and craving. Transcranial direct current brain stimulation (tDCS) has recently emerged as a safe alternative for treating food addiction via modulating cortical excitability without any high-risk surgical procedure to be utilized. As for anodal-type tDCS (atDCS), we observe increased excitability and spontaneous firing of the cortical neurons, whilst for the cathodal-type tDCS (ctDCS) a significant decrease is induced. Unfortunately, for the method to be fully used in a clinical setting, its biochemical action mechanism must be precisely defined, although it is proposed that molecular remodelling processes play in concert with brain activity changes involving the ions of: Na, Cl, K and Ca. Herein, we proposed for the first time Fourier transform infrared (FTIR) and synchrotron X-ray fluorescence (SRXRF) microprobes for a combined molecular and elemental analysis in the brain areas implicated appetite control, upon experimental treatment by either atDCS or ctDCS. The study, although preliminary, shows that by stimulating the prefrontal cortex in the rats fed high-caloric nutrients, the feeding behavior can be significantly changed, resulting in significantly inhibited appetite. Both, atDCS and ctDCS produced significant molecular changes involving qualitative and structural properties of lipids, whereas atDCS was found with a somewhat more significant effect on protein secondary structure in all the brain areas investigated. Also, tDCS was reported to reduce surface masses of Na, Cl, K, and Ca in almost all brain areas investigated, although the atDCS deemed to have a stronger neuro-modulating effect. Taken together, one can report that tDCS is an effective treatment technique, and its action mechanism in the appetite control seems to involve a variety of lipid-, protein- and metal/non-metal-ion-driven biochemical changes, regardless the current polarization.

  10. Influence of Concurrent Finger Movements on Transcranial Direct Current Stimulation (tDCS)-Induced Aftereffects.

    Science.gov (United States)

    Shirota, Yuichiro; Terney, Daniella; Antal, Andrea; Paulus, Walter

    2017-01-01

    Transcranial direct current stimulation (tDCS) has been reported to have bidirectional influence on the amplitude of motor-evoked potentials (MEPs) in resting participants in a polarity-specific manner: anodal tDCS increased and cathodal tDCS decreased them. More recently, the effects of tDCS have been shown to depend on a number of additional factors. We investigated whether a small variety of movements involving target and non-target muscles could differentially modify the efficacy of tDCS. MEPs were elicited from the right first dorsal interosseous muscle, defined as the target muscle, by single pulse transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). During M1 tDCS, which lasted for 10 min applying anodal, cathodal, or sham condition, the participants were instructed to squeeze a ball with their right hand (Task 1), to move their right index finger only in the medial (Task 2), in the lateral direction (Task 3), or in medial and lateral direction alternatively (Task 4). Anodal tDCS reduced MEP amplitudes measured in Task 1 and Task 2, but to a lesser extent in the latter. In Task 3, anodal tDCS led to greater MEP amplitudes than cathodal stimulation. Alternating movements resulted in no effect of tDCS on MEP amplitude (Task 4). The results are congruent with the current notion that the aftereffects of tDCS are highly variable relying on a number of factors including the type of movements executed during stimulation.

  11. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice.

    Science.gov (United States)

    Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal

    2017-03-23

    It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.

  12. Trichloroethylene Exposure Reduces Liver Injury in a Mouse Model of Primary Biliary Cholangitis.

    Science.gov (United States)

    Ray, Jessica L; Kopec, Anna K; Joshi, Nikita; Cline-Fedewa, Holly; Lash, Lawrence H; Williams, Kurt J; Leung, Patrick S; Gershwin, M Eric; Luyendyk, James P

    2017-04-01

    Trichloroethylene (TCE) is a persistent environmental contaminant proposed to contribute to autoimmune disease. Experimental studies in lupus-prone MRL+/+ mice have suggested that TCE exposure can trigger autoimmune hepatitis. The vast majority of studies examining the connection between TCE and autoimmunity utilize this model, and the impact of TCE exposure in other established models of autoimmune liver disease is not known. We tested the hypothesis that TCE exposure exacerbates experimental hepatic autoimmunity in dominant negative transforming growth factor beta receptor type II (dnTGFBRII) mice, which develop serological and histological features resembling human primary biliary cholangitis. Female 8-week-old wild-type and dnTGFBRII mice were exposed to TCE (0.5 mg/ml) or vehicle (1% ethoxylated castor oil) in the drinking water for 12 or 22 weeks. Liver histopathology in 20- and 30-week-old wild-type mice was unremarkable irrespective of treatment. Mild portal inflammation was observed in vehicle-exposed 20-week-old dnTGFBRII mice and was not exacerbated by TCE exposure. Vehicle-exposed 30-week-old dnTGFBRII mice developed anti-mitochondrial antibodies, marked hepatic inflammation with necrosis, and hepatic accumulation of both B and T lymphocytes. To our surprise, TCE exposure dramatically reduced hepatic parenchymal inflammation and injury in 30-week-old dnTGFBRII mice, reflected by changes in hepatic proinflammatory gene expression, serum chemistry, and histopathology. Interestingly, TCE did not affect hepatic B cell accumulation or induction of the anti-inflammatory cytokine IL10. These data indicate that TCE exposure reduces autoimmune liver injury in female dnTGFBRII mice and suggests that the precise effect of environmental chemicals in autoimmunity depends on the experimental model. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Simultaneous Administration of ADSCs-Based Therapy and Gene Therapy Using Ad-huPA Reduces Experimental Liver Fibrosis.

    Science.gov (United States)

    Meza-Ríos, Alejandra; García-Benavides, Leonel; García-Bañuelos, Jesus; Salazar-Montes, Adriana; Armendáriz-Borunda, Juan; Sandoval-Rodríguez, Ana

    2016-01-01

    hADSCs transplantation in cirrhosis models improves liver function and reduces fibrosis. In addition, Ad-huPA gene therapy diminished fibrosis and increased hepatocyte regeneration. In this study, we evaluate the combination of these therapies in an advanced liver fibrosis experimental model. hADSCs were expanded and characterized before transplantation. Ad-huPA was simultaneously administrated via the ileac vein. Animals were immunosuppressed by CsA 24 h before treatment and until sacrifice at 10 days post-treatment. huPA liver expression and hADSCs biodistribution were evaluated, as well as the percentage of fibrotic tissue, hepatic mRNA levels of Col-αI, TGF-β1, CTGF, α-SMA, PAI-I, MMP2 and serum levels of ALT, AST and albumin. hADSCs homed mainly in liver, whereas huPA expression was similar in Ad-huPA and hADSCs/Ad-huPA groups. hADSCs, Ad-huPA and hADSCs/Ad-huPA treatment improves albumin levels, reduces liver fibrosis and diminishes Collagen α1, CTGF and α-SMA mRNA liver levels. ALT and AST serum levels showed a significant decrease exclusively in the hADSCs group. These results showed that combinatorial effect of cell and gene-therapy does not improve the antifibrogenic effects of individual treatments, whereas hADSCs transplantation seems to reduce liver fibrosis in a greater proportion.

  14. Project managing your simulator DCS upgrade

    International Nuclear Information System (INIS)

    Carr, S.

    2006-01-01

    The intention of this paper is to provide helpful information and tips for the purchaser with regard to the project management of a DCS upgrade for an existing nuclear power station operator-training simulator. This paper was written shortly after STS Powergen completed two nuclear power station simulator DCS projects in the USA. Areas covered by this paper are: - Contractual documents and arrangements; - Licence and Escrow agreements; - Liquidated damages; - Project management; - Project schedules and resources; - Monitoring progress; - Defect reporting; - DCS automation code; - Access to proprietary information; - Tips for project meetings; - Testing; - Cultural issues; - Training

  15. ATLAS DAQ/HLT rack DCS

    International Nuclear Information System (INIS)

    Ermoline, Yuri; Burckhart, Helfried; Francis, David; Wickens, Frederick J.

    2007-01-01

    The ATLAS Detector Control System (DCS) group provides a set of standard tools, used by subsystems to implement their local control systems. The ATLAS Data Acquisition and High Level Trigger (DAQ/HLT) rack DCS provides monitoring of the environmental parameters (air temperatures, humidity, etc.). The DAQ/HLT racks are located in the underground counting room (20 racks) and in the surface building (100 racks). The rack DCS is based on standard ATLAS tools and integrated into overall operation of the experiment. The implementation is based on the commercial control package and additional components, developed by CERN Joint Controls Project Framework. The prototype implementation and measurements are presented

  16. Reduced impact of renal failure on the outcome of patients with alcoholic liver disease undergoing liver transplantation.

    Science.gov (United States)

    Cheong, Jaeyoun; Galanko, Joseph A; Arora, Sumant; Cabezas, Joaquin; Ndugga, Nambi J; Lucey, Michael R; Hayashi, Paul H; Barritt, Alfred Sidney; Bataller, Ramon

    2017-02-01

    Pretransplant renal failure is commonly reported to be a poor prognostic indicator affecting survival after liver transplantation (LT). However, whether the impact of renal failure on patient outcome varies according to the aetiology of the underlying liver disease is largely unknown. We investigated the association between renal failure at the time of LT and patient outcome in patients with alcoholic liver disease (ALD) (n = 6920), non-alcoholic steatohepatitis (NASH) (n = 2956) and hepatitis C (HCV) (n = 14 922) using the United Network for Organ Sharing (UNOS) database between February 2002 and December 2013. A total of 24 798 transplant recipients were included. The presence of renal failure was more frequently seen in patients with ALD (23.95%) and NASH (23.27%) compared to patients with HCV (19.38%) (P renal failure was an independent predictor of poor survival. Renal failure showed detrimental effect on patient survival in the overall series (HR = 1.466, P renal failure was less marked in patients with ALD (HR = 1.31, P renal failure had better long-term prognosis than non-ALD patients. Renal failure at the time of LT conferred a lower patient and graft survival post-LT. However, renal failure has less impact on the outcome of patients with ALD than that of patients with non-alcoholic liver disease after LT. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. GSK-3β Inhibition Attenuates CLP-Induced Liver Injury by Reducing Inflammation and Hepatic Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2014-01-01

    Full Text Available Liver dysfunction has been known to occur frequently in cases of sepsis. Excessive inflammation and apoptosis are pathological features of acute liver failure. Recent studies suggest that activation of glycogen synthase kinase- (GSK- 3β is involved in inflammation and apoptosis. We aimed to investigate the protective effects of GSK-3β inhibition on polymicrobial sepsis-induced liver injury and to explore the possible mechanisms. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP, and SB216763 was used to inhibit GSK-3β in C57BL/6 mice. GSK-3β was activated following CLP. Administration of SB216763 decreased mortality, ameliorated liver injury, and reduced hepatic apoptosis. The inhibition of GSK-3β also reduced leukocyte infiltration and hepatic inflammatory cytokine expression and release. Moreover, GSK-3β inhibition suppressed the transcriptional activity of nuclear factor-kappa B (NF-κB but enhanced the transcriptional activity of cAMP response element binding protein (CREB in the liver. In in vitro studies, GSK-3β inhibition reduced inflammatory cytokine production via modulation of NF-κB and CREB signaling pathways in lipopolysaccharide-stimulated macrophages. In conclusion, these findings suggest that GSK-3β blockade protects against CLP-induced liver via inhibition of inflammation by modulating NF-κB and CREB activity and suppression of hepatic apoptosis.

  18. A Randomized Controlled Trial of Lorazepam to Reduce Liver Motion in Patients Receiving Upper Abdominal Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Derek S.; Voncken, Francine E.M.; Tse, Regina V. [Princess Margaret Cancer Centre, University Health Network, Department of Radiation Oncology, University of Toronto, Toronto (Canada); Sykes, Jenna [Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto (Canada); Wong, Rebecca K.S.; Dinniwell, Rob E.; Kim, John; Ringash, Jolie; Brierley, James D.; Cummings, Bernard J.; Brade, Anthony [Princess Margaret Cancer Centre, University Health Network, Department of Radiation Oncology, University of Toronto, Toronto (Canada); Dawson, Laura A., E-mail: laura.dawson@rmp.uhn.on.ca [Princess Margaret Cancer Centre, University Health Network, Department of Radiation Oncology, University of Toronto, Toronto (Canada)

    2013-12-01

    Purpose: Reduction of respiratory motion is desirable to reduce the volume of normal tissues irradiated, to improve concordance of planned and delivered doses, and to improve image guided radiation therapy (IGRT). We hypothesized that pretreatment lorazepam would lead to a measurable reduction of liver motion. Methods and Materials: Thirty-three patients receiving upper abdominal IGRT were recruited to a double-blinded randomized controlled crossover trial. Patients were randomized to 1 of 2 study arms: arm 1 received lorazepam 2 mg by mouth on day 1, followed by placebo 4 to 8 days later; arm 2 received placebo on day 1, followed by lorazepam 4 to 8 days later. After tablet ingestion and daily radiation therapy, amplitude of liver motion was measured on both study days. The primary outcomes were reduction in craniocaudal (CC) liver motion using 4-dimensional kV cone beam computed tomography (CBCT) and the proportion of patients with liver motion ≤5 mm. Secondary endpoints included motion measured with cine magnetic resonance imaging and kV fluoroscopy. Results: Mean relative and absolute reduction in CC amplitude with lorazepam was 21% and 2.5 mm respectively (95% confidence interval [CI] 1.1-3.9, P=.001), as assessed with CBCT. Reduction in CC amplitude to ≤5 mm residual liver motion was seen in 13% (95% CI 1%-25%) of patients receiving lorazepam (vs 10% receiving placebo, P=NS); 65% (95% CI 48%-81%) had reduction in residual CC liver motion to ≤10 mm (vs 52% with placebo, P=NS). Patients with large respiratory movement and patients who took lorazepam ≥60 minutes before imaging had greater reductions in liver CC motion. Mean reductions in liver CC amplitude on magnetic resonance imaging and fluoroscopy were nonsignificant. Conclusions: Lorazepam reduces liver motion in the CC direction; however, average magnitude of reduction is small, and most patients have residual motion >5 mm.

  19. Is Motor Learning Mediated by tDCS Intensity?

    OpenAIRE

    Cuypers, Koen; Leenus, Daphnie J. F.; van den Berg, Femke E.; Nitsche, Michael A.; Thijs, Herbert; Wenderoth, Nicole; Meesen, Raf L. J.

    2013-01-01

    Although tDCS has been shown to improve motor learning, previous studies reported rather small effects. Since physiological effects of tDCS depend on intensity, the present study evaluated this parameter in order to enhance the effect of tDCS on skill acquisition. The effect of different stimulation intensities of anodal tDCS (atDCS) was investigated in a double blind, sham controlled crossover design. In each condition, thirteen healthy subjects were instructed to perform a unimanual motor (...

  20. The antifibrinolytic drug tranexamic acid reduces liver injury and fibrosis in a mouse model of chronic bile duct injury.

    Science.gov (United States)

    Joshi, Nikita; Kopec, Anna K; Towery, Keara; Williams, Kurt J; Luyendyk, James P

    2014-06-01

    Hepatic fibrin deposition has been shown to inhibit hepatocellular injury in mice exposed to the bile duct toxicant α-naphthylisothiocyanate (ANIT). Degradation of fibrin clots by fibrinolysis controls the duration and extent of tissue fibrin deposition. Thus, we sought to determine the effect of treatment with the antifibrinolytic drug tranexamic acid (TA) and plasminogen activator inhibitor-1 (PAI-1) deficiency on ANIT-induced liver injury and fibrosis in mice. Plasmin-dependent lysis of fibrin clots was impaired in plasma from mice treated with TA (1200 mg/kg i.p., administered twice daily). Prophylactic TA administration reduced hepatic inflammation and hepatocellular necrosis in mice fed a diet containing 0.025% ANIT for 2 weeks. Hepatic type 1 collagen mRNA expression and deposition increased markedly in livers of mice fed ANIT diet for 4 weeks. To determine whether TA treatment could inhibit this progression of liver fibrosis, mice were fed ANIT diet for 4 weeks and treated with TA for the last 2 weeks. Interestingly, TA treatment largely prevented increased deposition of type 1 collagen in livers of mice fed ANIT diet for 4 weeks. In contrast, biliary hyperplasia/inflammation and liver fibrosis were significantly increased in PAI-1(-/-) mice fed ANIT diet for 4 weeks. Overall, the results indicate that fibrinolytic activity contributes to ANIT diet-induced liver injury and fibrosis in mice. In addition, these proof-of-principle studies suggest the possibility that therapeutic intervention with an antifibrinolytic drug could form a novel strategy to prevent or reduce liver injury and fibrosis in patients with liver disease.

  1. Transcranial direct current stimulation (tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test.

    Science.gov (United States)

    Sellers, Kristin K; Mellin, Juliann M; Lustenberger, Caroline M; Boyle, Michael R; Lee, Won Hee; Peterchev, Angel V; Fröhlich, Flavio

    2015-09-01

    Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants were included in the final analysis. These participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2 mA at each anode for 20 min) or active sham tDCS (2 mA for 40 s), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2 mA for 20 min). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Liver glycogen reduces food intake and attenuates obesity in a high-fat diet-fed mouse model.

    Science.gov (United States)

    López-Soldado, Iliana; Zafra, Delia; Duran, Jordi; Adrover, Anna; Calbó, Joaquim; Guinovart, Joan J

    2015-03-01

    We generated mice that overexpress protein targeting to glycogen (PTG) in the liver (PTG(OE)), which results in an increase in liver glycogen. When fed a high-fat diet (HFD), these animals reduced their food intake. The resulting effect was a lower body weight, decreased fat mass, and reduced leptin levels. Furthermore, PTG overexpression reversed the glucose intolerance and hyperinsulinemia caused by the HFD and protected against HFD-induced hepatic steatosis. Of note, when fed an HFD, PTG(OE) mice did not show the decrease in hepatic ATP content observed in control animals and had lower expression of neuropeptide Y and higher expression of proopiomelanocortin in the hypothalamus. Additionally, after an overnight fast, PTG(OE) animals presented high liver glycogen content, lower liver triacylglycerol content, and lower serum concentrations of fatty acids and β-hydroxybutyrate than control mice, regardless of whether they were fed an HFD or a standard diet. In conclusion, liver glycogen accumulation caused a reduced food intake, protected against the deleterious effects of an HFD, and diminished the metabolic impact of fasting. Therefore, we propose that hepatic glycogen content be considered a potential target for the pharmacological manipulation of diabetes and obesity. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. The use of ice-cream to reduce inferior and liver uptake of 99mTc Sestamibi

    International Nuclear Information System (INIS)

    Williams, R.C.; Jost, G.M.

    2002-01-01

    Aim: To determine if ice-cream has any role in reducing the main drawback of sestamibi imaging namely inferior and liver uptake of sestamibi in myocardial imaging. This inferior uptake from, Stomach, Loops of Bowel and Left Lobe of liver can make interpretation difficult Can obscure a defect in the inferior margin of the heart and Hot inferior uptake can produce false adjacent cold defect when using a Fourier kernel. Material and Methods: To remove the confounding factor of various 'stress' regimes adenosine exercise and Dobutamine, only resting Sestamibi scans were examined. Patients where Given ice cream on a stick (ice covered) just prior to injection Imaged at 90 mins post injection of 500 Mbq Tc99m Sestamibi with > 90% purity, using eccentric non-elliptical non circular orbit to maximise resolution, for 18 mins with 2 heads. Processing: Reconstruct (for this purpose) with a butterworth filter of 0.4 and a power factor of 2. Sum all coronal views: Make a rectangular ROI covering the inferior 1/2 or the myocardium. Duplicate this ROI and place at same vertical position over highest activity region of liver. Duplicate region and place immediately underneath cardiac region. Create a BGD region of interest between heart and liver. Data: Ratios of heart to liver and inferior to heart are created with and without background correction. Results: Summary: Ice cream reduces the inferior uptake of Sestamibi by 30%. Ice cream reduces the liver uptake by 14%. Conclusion: Given: The low risk of an ice cream intervention. The high acceptance by patients. The low cost. The effect on inferior uptake. The possible effect on liver uptake. I would recommend the use of Ice Cream for all Myocardial Sestamibi Imaging

  4. Basic science of tDCS

    Directory of Open Access Journals (Sweden)

    Michael A. Nitsche

    2014-04-01

    Full Text Available Neuroplasticity, and functional connectivity are important physiological derivates of cognition, and behaviour. Recently introduced non-invasive brain stimulation techniques are suited to induce, and modulate respective physiological alterations. One of these techniques is transcranial direct current stimulation (tDCS. Its primary mechanism of action is a polarity-dependent subthreshold shift of resting membrane potentials, the after-effects of stimulation depend on the glutamatergic system. Beyond these regional effects, tDCS has been shown recently to alter cortical, as well as cortico-subcortical functional network connectivity. This talk will give an overview about the physiological effects of tDCS, including animal data, and will cover functional consequences of tDCS. Furthermore, new developments with regard to optimization strategies, and the complex interaction of physiological and cognitive processes, will be presented and it will be discussed how tDCS relates to other non-invasive brain stimulation techniques, like transcranial magnetic stimulation (TMS, transcranial alternating current stimulation (tACS, and paired associative stimulation (PAS.

  5. Technical Support for the development of DCS

    International Nuclear Information System (INIS)

    Oh, In Seok; Lee, Cheol Kwon; Kim, Dong Hoon; Kim, Jung Taek; Hwang, In Koo; Park, Jae Chang; Lee, Dong Young; Park, Won Man

    2008-05-01

    The objective of this project is to provide a technical support to Woori Tech Co. in its design and manufacture process of the DCS as a part of KNICS development program to promote the technology self-reliance for non-safety equipment for NPPs(Nuclear Power Plants). We support Woori Tech Co. to develop a DCS which satisfies the requirements for Shinkori 3 and 4 NPPs in the aspects of reliability, applicability and technical competitiveness. As the results of this project the following items were developed and/or implemented; · Design basis and requirements for a DCS system · Design requirements for control communication networks · Architecture of control networks · Design requirements of EWS(Engineering Workstation) · Plan of software verification and validation · Operation display design · Soft control functions · Application development tools of DCS · Analysis and V/V activities on DCS control network protocols · Software verification and validation and documentation guidelines · User manual documents

  6. Technical Support for the development of DCS

    Energy Technology Data Exchange (ETDEWEB)

    Oh, In Seok; Lee, Cheol Kwon; Kim, Dong Hoon; Kim, Jung Taek; Hwang, In Koo; Park, Jae Chang; Lee, Dong Young; Park, Won Man

    2008-05-15

    The objective of this project is to provide a technical support to Woori Tech Co. in its design and manufacture process of the DCS as a part of KNICS development program to promote the technology self-reliance for non-safety equipment for NPPs(Nuclear Power Plants). We support Woori Tech Co. to develop a DCS which satisfies the requirements for Shinkori 3 and 4 NPPs in the aspects of reliability, applicability and technical competitiveness. As the results of this project the following items were developed and/or implemented; {center_dot} Design basis and requirements for a DCS system {center_dot} Design requirements for control communication networks {center_dot} Architecture of control networks {center_dot} Design requirements of EWS(Engineering Workstation) {center_dot} Plan of software verification and validation {center_dot} Operation display design {center_dot} Soft control functions {center_dot} Application development tools of DCS {center_dot} Analysis and V/V activities on DCS control network protocols {center_dot} Software verification and validation and documentation guidelines {center_dot} User manual documents.

  7. The effects of tDCS upon sustained visual attention are dependent on cognitive load.

    Science.gov (United States)

    Roe, James M; Nesheim, Mathias; Mathiesen, Nina C; Moberget, Torgeir; Alnæs, Dag; Sneve, Markus H

    2016-01-08

    Transcranial Direct Current Stimulation (tDCS) modulates the excitability of neuronal responses and consequently can affect performance on a variety of cognitive tasks. However, the interaction between cognitive load and the effects of tDCS is currently not well-understood. We recorded the performance accuracy of participants on a bilateral multiple object tracking task while undergoing bilateral stimulation assumed to enhance (anodal) and decrease (cathodal) neuronal excitability. Stimulation was applied to the posterior parietal cortex (PPC), a region inferred to be at the centre of an attentional tracking network that shows load-dependent activation. 34 participants underwent three separate stimulation conditions across three days. Each subject received (1) left cathodal / right anodal PPC tDCS, (2) left anodal / right cathodal PPC tDCS, and (3) sham tDCS. The number of targets-to-be-tracked was also manipulated, giving a low (one target per visual field), medium (two targets per visual field) or high (three targets per visual field) tracking load condition. It was found that tracking performance at high attentional loads was significantly reduced in both stimulation conditions relative to sham, and this was apparent in both visual fields, regardless of the direction of polarity upon the brain's hemispheres. We interpret this as an interaction between cognitive load and tDCS, and suggest that tDCS may degrade attentional performance when cognitive networks become overtaxed and unable to compensate as a result. Systematically varying cognitive load may therefore be a fruitful direction to elucidate the effects of tDCS upon cognitive functions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Cryopreservation of adenovirus-transfected dendritic cells (DCs) for clinical use.

    Science.gov (United States)

    Gülen, D; Maas, S; Julius, H; Warkentin, P; Britton, H; Younos, I; Senesac, J; Pirruccello, Samuel M; Talmadge, J E

    2012-05-01

    In this study, we examined the effects of cryoprotectant, freezing and thawing, and adenovirus (Adv) transduction on the viability, transgene expression, phenotype, and function of human dendritic cells (DCs). DCs were differentiated from cultured peripheral blood (PB) monocytes following Elutra isolation using granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) for 6 days and then transduced using an Adv vector with an IL-12 transgene. Fresh, cryopreserved, and thawed transduced immature DCs were examined for their: 1) cellular concentration and viability; 2) antigenicity using an allogeneic mixed lymphocyte reaction (MLR); 3) phenotype (HLA-DR and CD11c) and activation (CD83); and 4) transgene expression based on IL-12 secretion. Stability studies revealed that transduced DCs could be held in cryoprotectant for as long as 75 min at 2-8°C prior to freezing with little effect on their viability and cellularity. Further, cryopreservation, storage, and thawing reduced the viability of the transduced DCs by an average of 7.7%; and had no significant impact on DC phenotype and activation. In summary, cryopreservation, storage, and thawing had no significant effect on DC viability, function, and transgene expression by Adv-transduced DCs. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Acrolein scavengers, cysteamine and N-benzylhydroxylamine, reduces the mouse liver damage after acetaminophen overdose.

    Science.gov (United States)

    Koyama, Ryo; Mizuta, Ryushin

    2017-01-10

    Our previous study suggested that the highly toxic α,β-unsaturated aldehyde acrolein, a byproduct of oxidative stress, plays a major role in acetaminophen-induced liver injury. In this study, to determine the involvement of acrolein in the liver injury and to identify novel therapeutic options for the liver damage, we examined two putative acrolein scavengers, a thiol compound cysteamine and a hydroxylamine N-benzylhydroxylamine, in cell culture and in mice. Our results showed that cysteamine and N-benzylhydroxylamine effectively prevented the cell toxicity of acrolein in vitro and acetaminophen-induced liver injury in vivo, which suggested that acrolein is involved in the liver damage, and these two drugs can be potential therapeutic options for this condition.

  10. Posttraumatic levels of liver enzymes can reduce the need for CT in children

    DEFF Research Database (Denmark)

    Bruhn, Peter James; Østerballe, Lene; Hillingsø, Jens

    2016-01-01

    alternative diagnostic modalities. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) are hepatic enzymes, which are elevated in peripheral blood in relation to liver injury. The aim of the present study was to investigate a potential role of normal liver transaminase levels in the decision......BACKGROUND: Computed tomography (CT) is the gold standard in the initial evaluation of the hemodynamically stable patient with suspected liver trauma. However, the adverse effects of radiation exposure are of specific concern in the pediatric population. It is therefore desirable to explore...... algorithm in suspected pediatric blunt liver trauma. METHODS: Retrospective analysis of consecutively collected data from children (0-17 years) with blunt liver trauma, admitted to a single trauma centre in Denmark, between 2000 and 2013. Patients underwent abdominal CT during initial evaluation...

  11. Safety of reduced dose of mycophenolate mofetil combined with tacrolimus in living-donor liver transplantation

    Directory of Open Access Journals (Sweden)

    Hyeyoung Kim

    2014-09-01

    Full Text Available Background/AimsThe dose of mycophenolate mofetil (MMF has been reduced in Asia due to side effects associated with the conventional fixed dose of 2-3 g/day. We aimed to determine the pharmacokinetics of a reduced dose of MMF and to validate its feasibility in combination with tacrolimus in living-donor liver transplantation (LDLT.MethodsTwo sequential studies were performed in adult LDLT between October 2009 and 2011. First, we performed a prospective pharmacokinetic study in 15 recipients. We measured the area under the curve from 0 to 12 hours (AUC0-12 for mycophenolic acid at postoperative days 7 and 14, and we performed a protocol biopsy before discharge. Second, among 215 recipients, we reviewed 74 patients who were initially administered a reduced dose of MMF (1.0 g/day with tacrolimus (trough, 8-12 ng/mL during the first month, and 5-8 ng/mL thereafter, with a 1-year follow-up. We performed protocol biopsies at 2 weeks and 1 year post-LDLT.ResultsIn the first part of study, AUC0-12 was less than 30 mgh/L in 93.3% of cases. In the second, validating study, 41.9% of the recipients needed dose reduction or cessation due to side effects within the first year after LDLT. At 12 months post-LDLT, 17.6% of the recipients were administered a lower dose of MMF (0.5 g/day, and 16.2% needed permanent cessation due to side effects. The 1- and 12-month rejection-free survival rates were 98.6% and 97.3%, respectively.ConclusionsA reduced dose of MMF was associated with low blood levels compared to the existing recommended therapeutic range. However, reducing the dose of MMF combined with a low level of tacrolimus was feasible clinically, with an excellent short-term outcome in LDLT.

  12. Decreased prothrombin conversion and reduced thrombin inactivation explain rebalanced thrombin generation in liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Romy M W Kremers

    Full Text Available Impaired coagulation factor synthesis in cirrhosis causes a reduction of most pro- and anticoagulant factors. Cirrhosis patients show no clear bleeding or thrombotic phenotype, although they are at risk for both types of hemostatic event. Thrombin generation (TG is a global coagulation test and its outcome depends on underlying pro- and anticoagulant processes (prothrombin conversion and thrombin inactivation. We quantified the prothrombin conversion and thrombin inactivation during TG in 30 healthy subjects and 52 Child-Pugh (CP- A, 15 CP-B and 6 CP-C cirrhosis patients to test the hypothesis that coagulation is rebalanced in liver cirrhosis patients. Both prothrombin conversion and thrombin inactivation are reduced in cirrhosis patients. The effect on pro- and anticoagulant processes partially cancel each other out and as a result TG is comparable at 5 pM tissue factor between healthy subjects and patients. This supports the hypothesis of rebalanced hemostasis, as TG in cirrhosis patients remains within the normal range, despite large changes in prothrombin conversion and thrombin inactivation. Nevertheless, in silico analysis shows that normalization of either prothrombin conversion or thrombin inactivation to physiological levels, by for example the administration of prothrombin complex concentrates would cause an elevation of TG, whereas the normalization of both simultaneously maintains a balanced TG. Therefore, cirrhosis patients might require adapted hemostatic treatment.

  13. Reduced cadmium-induced cytotoxicity in cultured liver cells following 5-azacytidine pretreatment

    International Nuclear Information System (INIS)

    Waalkes, M.P.; Wilson, M.J.; Poirier, L.A.

    1985-01-01

    Recent work indicated that administration of the pyrimidine analog 5-azacytidine (AZA), either to cells in culture or to rats, results in an enhancement of expression of the metallothionein (MT) gene. Since MT is thought to play a central role in the detoxification of cadmium, the present study was designed to assess the effect of AZA pretreatment on cadmium cytotoxicity. Cultured rat liver cells in log phase of growth were first exposed to AZA (8 microM). Forty-eight hours later, cadmium was added. A modest increase in MT amounts over control was detected after AZA treatment alone. Cadmium alone resulted in a 10-fold increase in MT concentrations. The combination of AZA pretreatment followed by cadmium exposure caused a 23-fold increase in MT concentrations over control. Treatment with the DNA synthesis inhibitor hydroxyurea (HU) eliminated the enhancing effect of AZA pretreatment on cadmium induction of MT, indicating that cell division is required. AZA-pretreated cells were also harvested and incubated in suspension with cadmium for 0 to 90 min. AZA-pretreated cells showed marked reductions in cadmium-induced cytotoxicity as reflected by reduced intracellular potassium loss, glutamic-oxaloacetic transaminase loss, and lipid peroxidation following cadmium exposure. Results suggest that AZA pretreatment induces tolerance to cadmium cytotoxicity which appears to be due to an increased capacity to synthesize MT rather than high quantities of preexisting MT at the time of cadmium exposure

  14. TileCal TDAQ/DCS communication

    CERN Document Server

    Solans, C; Arabidze, G; Carneiro Ferreira, B; Sotto-Maior Peralva, B

    2007-01-01

    This document describes the communication between the TDAQ and DCS systems of the Hadronic Tile Calorimeter detector of the ATLAS experiment, currently under commissioning phase at CERN. It is a further step on the TDAQ and DCS communication for TileCal operation. The aim of the implementation is to increase the robustness and understanding of the detector from the two systems involved. The basic principle observed is that the two systems operate independently in parallel. Hence, the knowledge of the status of the whole detector from each of the two systems is required for further analysis of the archived data.

  15. Avidin chase can reduce myelotoxicity associated with radioimmunotherapy of experimental liver micrometastases in mice

    International Nuclear Information System (INIS)

    Sato, Noriko; Saga, Tsuneo; Sakahara, Harumi; Nakamoto, Yuji; Zhao, Songji; Iida, Yasuhiko; Konishi, Junji; Kuroki, Masahide; Endo, Keigo

    2000-01-01

    Myelotoxicity is the main factor which decides the maximum tolerated dose (MTD) in radioimmunotherapy (RIT). Since bone marrow is mostly irradiated from blood radioactivity, enhancing the clearance of unbound circulating radiolabeled antibody is important to reduce myelotoxicity and to increase the MTD. We applied the avidin chase method, which was devised to obtain high tumor-to-background ratios in tumor-targeting, to RIT of experimental liver micrometastases and evaluated its influence on the side effects and therapeutic outcome. Seven days after intrasplenic injection of human colon cancer LS174T cells, nude mice were intravenously injected with biotinylated 131 I-labeled anti-CEA monoclonal antibody (MAb) (24-38 μg, 11.1 MBq). Mice of the chase group then received an intravenous injection of avidin twice (24 and 30 h, 72-115 μg each). Biodistribution, side effects (white blood cell counts and body weight change), and short- and long-term therapeutic effects were determined. Avidin chase markedly accelerated the clearance of radiolabeled MAb from the blood (P<0.0001) and normal tissues, resulting in milder leukocytopenia and body weight loss, both of which recovered earlier than in the non-chase group (P<0.01). The tumor uptake of radiolabeled MAb was also decreased by avidin chase, but the metastases-to-background ratios were increased. Avidin chase gave the therapeutic gain ratio of 1.89. Treated groups with and without avidin chase showed significant therapeutic effects compared to the non-treated group. There was no significant difference in the therapeutic effects between the two treated groups. Avidin chase effectively reduced the side effects of RIT and should increase the MTD. (author)

  16. Atorvastatin reduces lipid accumulation in the liver by activating protein kinase A-mediated phosphorylation of perilipin 5.

    Science.gov (United States)

    Gao, Xing; Nan, Yang; Zhao, Yuanlin; Yuan, Yuan; Ren, Bincheng; Sun, Chao; Cao, Kaiyu; Yu, Ming; Feng, Xuyang; Ye, Jing

    2017-12-01

    Statins have been proven to be effective in treating non-alcoholic fatty liver disease (NAFLD). Recently, it was reported that statins decreased the hepatic expression of perilipin 5 (Plin5), a lipid droplet (LD)-associated protein, which plays critical roles in regulating lipid accumulation and lipolysis in liver. However, the function and regulation mechanism of Plin5 have not yet been well-established in NAFLD treatment with statins. In this study, we observed that atorvastatin moderately reduced the expression of Plin5 in livers without changing the protein level of Plin5 in the hepatic LD fraction of mice fed with high-fat diet (HFD). Intriguingly, atorvastatin stimulated the PKA-mediated phosphorylation of Plin5 and reduced the triglyceride (TG) accumulation in hepatocytes with overexpression of wide type (Plin5-WT) compared to serine-155 mutant Plin5 (Plin5-S155A). Moreover, PKA-stimulated FA release of purified LDs carrying Plin5-WT but not Plin5-S155A. Glucagon, a PKA activator, stimulated the phosphorylation of Plin5-WT and inhibited its interaction with CGI-58. The results indicated that atorvastatin promoted lipolysis and reduced TG accumulation in the liver by increasing PKA-mediated phosphorylation of Plin5. This new mechanism of lipid-lowering effects of atorvastatin might provide a new strategy for NAFLD treatment. Copyright © 2017. Published by Elsevier B.V.

  17. Foxa1 reduces lipid accumulation in human hepatocytes and is down-regulated in nonalcoholic fatty liver.

    Directory of Open Access Journals (Sweden)

    Marta Moya

    Full Text Available Triglyceride accumulation in nonalcoholic fatty liver (NAFL results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB. Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.

  18. Users` demands narrow PLC-DCS gap

    Energy Technology Data Exchange (ETDEWEB)

    La Fauci, J.

    1997-02-01

    Supervisory control and data acquisition (SCADA) operator interface (OI) software has propelled programmable logic controllers (PLCs) into areas where they can successfully compete with distributed control systems (DCSs) for many control applications. As a result, automation engineers are struggling to develop guidelines to help determine which is best for batch operations and other applications. There is no clear answer to this issue. There are, however, decision tools such as Kepner-Tregoe (K-T) that can be applied by engineers as a structured approach to decision analysis and system selection. Other factors such as business environment, pressure to reduce project cost, validation, and predicting new technology direction all play a critical role for engineers in choosing between a PLC- or DCS-based control system. Higher-level business issues, however, are seldom considered by engineers during control system selection. Engineers should try to better understand their company`s business objectives and mission statement and how company business direction may affect control system selection. For instance, the pharmaceutical industry can be broken up into the following five basic application groups: bulk chemicals, finishing, biotech, pilot plant, and utilities. Each has a unique set of functional and process-control requirements. Understanding needs and differences of these five basic application groups and applying the optimum control system solution will place the company in a more competitive position. A financial analysis should be one of the first steps in the control system evaluation process. This may include early agreement of contractual terms and conditions as well as a nondisclosure agreement. Other financial considerations may include requesting a financial report on the control system manufacturer or systems integrator that will be performing the work to determine its financial stability. 3 figs.

  19. Long-Term Effects of Repeated Prefrontal Cortex Transcranial Direct Current Stimulation (tDCS) on Food Craving in Normal and Overweight Young Adults.

    Science.gov (United States)

    Ljubisavljevic, M; Maxood, K; Bjekic, J; Oommen, J; Nagelkerke, N

    The dorsolateral prefrontal cortex (DLPFC) plays an important role in the regulation of food intake. Several previous studies demonstrated that a single session of transcranial direct current stimulation (tDCS) of the DLPFC reduces food craving and caloric intake. We hypothesized that repeated tDCS of the right DLPFC cortex may exert long-term changes in food craving in young, healthy adults and that these changes may differ between normal and overweight subjects. Thirty healthy individuals who reported frequent food cravings without a prior history of eating disorders were initially recruited. Subjects were randomized into an ACTIVE group who received 5 days of real tDCS (20 minutes, anode right-cathode left montage, 2 mA with current density kept at 0.06 mA/cm2, 1 min ramp-up/ramp-down), and a SHAM group, who received one day of real tDCS, on the first day (same parameters), followed by 4 days of sham tDCS. Food craving intensity was examined by Food Craving Questionnaires State and Trait and Food Craving Inventory before, during, (5-days) and one month (30-days) after tDCS. Single session of tDCS significantly reduced the intensity of current food craving (FCQ-S). Five days of active tDCS significantly reduced habitual experiences of food craving (FCQ-T), when compared to baseline pre-stimulation levels. Furthermore, both current (FCQ-S) and habitual craving (FCQ-T) were significantly reduced 30 days after active tDCS, while sham tDCS, i.e. a single tDCS session did not have significant effects. Also, active tDCS significantly decreased craving for fast food and sweets, and to a lesser degree for fat, while it did not have significant effects on craving for carbohydrates (FCI). There were no significant differences between individual FCQ-T subscales (craving dimensions) after 5 or 30 days of either sham or active tDCS. Changes in craving were not significantly associated with the initial weight, or with weight changes 30 days after the stimulation in the

  20. Branched-Chain Amino Acid Supplementation Reduces Oxidative Stress and Prolongs Survival in Rats with Advanced Liver Cirrhosis

    Science.gov (United States)

    Mifuji-Moroka, Rumi; Hara, Nagisa; Miyachi, Hirohide; Sugimoto, Ryosuke; Tanaka, Hideaki; Fujita, Naoki; Gabazza, Esteban C.; Takei, Yoshiyuki

    2013-01-01

    Long-term supplementation with branched-chain amino acids (BCAA) is associated with prolonged survival and decreased frequency of development of hepatocellular carcinoma (HCC) in patients with liver cirrhosis. However, the pharmaceutical mechanism underlying this association is still unclear. We investigated whether continuous BCAA supplementation increases survival rate of rats exposed to a fibrogenic agent and influences the iron accumulation, oxidative stress, fibrosis, and gluconeogenesis in the liver. Further, the effects of BCAA on gluconeogenesis in cultured cells were also investigated. A significant improvement in cumulative survival was observed in BCAA-supplemented rats with advanced cirrhosis compared to untreated rats with cirrhosis (PBCAA supplementation was associated with reduction of iron contents, reactive oxygen species production and attenuated fibrosis in the liver. In addition, BCAA ameliorated glucose metabolism by forkhead box protein O1 pathway in the liver. BCAA prolongs survival in cirrhotic rats and this was likely the consequences of reduced iron accumulation, oxidative stress and fibrosis and improved glucose metabolism in the liver. PMID:23936183

  1. Branched-chain amino acid supplementation reduces oxidative stress and prolongs survival in rats with advanced liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Motoh Iwasa

    Full Text Available Long-term supplementation with branched-chain amino acids (BCAA is associated with prolonged survival and decreased frequency of development of hepatocellular carcinoma (HCC in patients with liver cirrhosis. However, the pharmaceutical mechanism underlying this association is still unclear. We investigated whether continuous BCAA supplementation increases survival rate of rats exposed to a fibrogenic agent and influences the iron accumulation, oxidative stress, fibrosis, and gluconeogenesis in the liver. Further, the effects of BCAA on gluconeogenesis in cultured cells were also investigated. A significant improvement in cumulative survival was observed in BCAA-supplemented rats with advanced cirrhosis compared to untreated rats with cirrhosis (P<0.05. The prolonged survival due to BCAA supplementation was associated with reduction of iron contents, reactive oxygen species production and attenuated fibrosis in the liver. In addition, BCAA ameliorated glucose metabolism by forkhead box protein O1 pathway in the liver. BCAA prolongs survival in cirrhotic rats and this was likely the consequences of reduced iron accumulation, oxidative stress and fibrosis and improved glucose metabolism in the liver.

  2. 76 FR 2691 - Prescription Drug Products Containing Acetaminophen; Actions To Reduce Liver Injury From...

    Science.gov (United States)

    2011-01-14

    ..., chronic alcoholism, acute excess alcohol use, and use of anticonvulsant or antituberculosis medications... individuals who, for a variety of reasons (e.g., existing liver disease, chronic alcohol use) are particularly...

  3. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    Science.gov (United States)

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  4. Reducing liver transplant length of stay: a Lean Six Sigma approach.

    Science.gov (United States)

    Toledo, Alexander H; Carroll, Tracy; Arnold, Emily; Tulu, Zeynep; Caffey, Tom; Kearns, Lauren E; Gerber, David A

    2013-12-01

    Organ transplant centers are under increasing scrutiny to maintain outcomes while controlling cost in a challenging population of patients. Throughout health care and transplant specifically, length of stay is used as a benchmark for both quality and resource utilization. To decrease our length of stay for liver transplant by using Lean Six Sigma methods. The Six Sigma DMAIC (Define, Measure, Analyze, Improve, Control) method was used to systematically analyze our process from transplant listing to hospital discharge after transplant, identifying many factors affecting length of stay. Adult, single-organ, primary liver transplant recipients between July 2008 and June 2012 were included in the study. Recipients with living donors or fulminant liver failure were excluded. Multiple interventions, including a clinical pathway and enhanced communication, were implemented. Length of stay after liver transplant and readmission after liver transplant.R ESULTS: Median length of stay decreased significantly from 11 days before the intervention to 8 days after the intervention. Readmission rate did not change throughout the study. The improved length of stay was maintained for 24 months after the study. Using a Lean Six Sigma approach, we were able to significantly decrease the length of stay of liver transplant patients. These results brought our center's outcomes in accordance with our goal and industry benchmark of 8 days. Clear expectations, improved teamwork, and a multidisciplinary clinical pathway were key elements in achieving and maintaining these gains.

  5. Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure.

    Science.gov (United States)

    Rama Rao, Kakulavarapu V; Verkman, A S; Curtis, Kevin M; Norenberg, Michael D

    2014-03-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6% ± 0.3 and 2.3 ± 0.4%, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. Published by Elsevier Inc.

  6. EEG Driven tDCS Versus Bifrontal tDCS for Tinnitus

    OpenAIRE

    De Ridder, Dirk; Vanneste, Sven

    2012-01-01

    Tinnitus is the perception of a sound in the absence of any objective physical sound source. Transcranial Direct Current Stimulation (tDCS) induces shifts in membrane resting potentials depending on the polarity of the stimulation: under the anode gamma band activity increases, whereas under the cathode the opposite occurs. Both single and multiple sessions of tDCS over the dorsolateral prefrontal cortex (DLPFC; anode over right DLPFC) yield a transient improvement in tinnitus intensity and t...

  7. Betel Nut Chewing Is Associated With Reduced Tacrolimus Concentration in Taiwanese Liver Transplant Recipients.

    Science.gov (United States)

    Chen, W-Y; Lee, C-Y; Lin, P-Y; Hsieh, C-E; Ko, C-J; Lin, K-H; Lin, C-C; Ming, Y-Z; Chen, Y-L

    2017-03-01

    Studies have shown that arecoline, the major alkaloid component of betel nuts, alters the activity of enzymes in the cytochrome P450 (CYP-450) family. Tacrolimus, an immunosuppressant that protects against organ rejection in transplant recipients, not only is mainly metabolized by CYP3A enzymes but also has a narrow therapeutic range. We aimed to investigate whether dose-adjusted blood trough levels of tacrolimus differed over time between betel nut-chewing and non-betel nut-chewing liver transplant recipients. In this retrospective case-control study, 14 active betel nut-using liver recipients were matched at a 1:2 ratio to 28 non-betel nut-using liver recipients by sex, age, graft source, duration of follow-up after liver transplantation, and estimated glomerular filtration rate. Differences in liver function index, renal function index, and dose-adjusted blood trough levels of tacrolimus over an 18-month period were compared between the 2 groups by using the Generalized Estimating Equation approach. Dose-adjusted blood trough levels of tacrolimus tended to be significantly (P = .04) lower in betel nut chewers (mean = 0.81, medium = 0.7, 95% confidence interval [CI] = 0.73 to 0.90) than in nonchewers (mean = 1.12, medium = 0.88, 95% CI = 1.03 to 1.22) during the 18-month study period. However, there was no significant difference in renal and liver function index between the 2 groups. Liver transplant recipients receiving tacrolimus tend to have lower blood trough levels of the drug over time if they chew betel nuts. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Noninvasive transcranial direct current stimulation (tDCS) for the treatment of orofacial pain.

    Science.gov (United States)

    Fricova, Jitka; Englerova, Katerina; Rokyta, Richard

    2016-10-01

    tDCS is a promising method for the treatment of chronic pain. Electrode placement locations must be chosen in accordance with the density and the time course of the current in order to prevent pathological changes in the underlying tissue. In order to reduce current spatial variability, more electrodes of the same polarity are placed in a circle around the second electrode of the opposite polarity. The applied current produced the greatest changes directly beneath the electrodes: the cathode reduces the excitability of cortical neurons, while the anode has the opposite effect. Based on inclusion criteria, 10 patients with chronic orofacial pain, secondary trigeminal neuralgia after oral surgery, were enrolled and underwent both anode and cathode stimulation. Before the first session we measured pain intensity on a numeric pain rating scale and tactile and thermal stimulation were used to assess somatosensory status. tDCS was applied for five consecutive days. At the end of tDCS application, somatosensory status was assessed again. From our results we can conclude that the application of tDCS improves the perception of some types of pain. When we increase our sample size, we would expect confirmation not only on our positive results, but also some additional findings for explaining the pathophysiology of orofacial pain. These pathophysiological findings and explanations are very important for the application of tDCS in the treatment of orofacial pain and also for other types of neuropathic pain.

  9. Receipt of a pediatric liver offer as the first offer reduces waitlist mortality for adult women.

    Science.gov (United States)

    Ge, Jin; Gilroy, Richard; Lai, Jennifer C

    2018-03-31

    In liver transplantation, adults with small stature have a greater susceptibility to waitlist mortality. This may explain the persistent waitlist mortality disparity that exists for women. We hypothesized that women who receive early offers of pediatric donor livers have improved waitlist survival, and that preferentially offering these organs to women mitigates this sex-based disparity. We analyzed donor liver offers from 2010 to 2014. Adult candidates who received a first offer that ranked within the first three match run positions from the donors' perspective were classified based on gender and whether they received a pediatric versus adult offer. We used competing risks regression to associate first offer type and waitlist mortality. 8,101 waitlist candidates received a first offer that was ranked within the first three match run positions: 5.6% (293/5,202) men and 6.2% (179/2,899) women received a pediatric donor liver as their first offer. In multivariable analyses, compared to adult-first men, adult-first women (sHR1.33, 95%CI 1.17-1.51, p offer had a lower risk of waitlist mortality compared to those who receive adult offers. Our data provides a simple approach to mitigating the increased waitlist mortality experienced by women by incorporating donor and recipient size, as variables, into organ allocation. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  10. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    International Nuclear Information System (INIS)

    Lazarus, Kyren A.; Zhao, Zhe; Knower, Kevin C.; To, Sarah Q.; Chand, Ashwini L.; Clyne, Colin D.

    2013-01-01

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E 2 ), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E 2 , showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E 2 treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer

  11. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, Kyren A. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122 (Australia); Zhao, Zhe; Knower, Kevin C. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); To, Sarah Q. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia); Chand, Ashwini L. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Clyne, Colin D., E-mail: Colin.clyne@princehenrys.org [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia)

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.

  12. Liver X receptor activation restores memory in aged AD mice without reducing amyloid

    NARCIS (Netherlands)

    Vanmierlo, Tim; Rutten, Kris; Dederen, Jos; Bloks, Vincent W.; van Vark-van der Zee, Leonie C.; Kuipers, Folkert; Kiliaan, Amanda; Blokland, Arjan; Sijbrands, Eric J. G.; Steinbusch, Harry; Prickaerts, Jos; Luetjohann, Dieter; Mulder, Monique

    Alterations in cerebral cholesterol metabolism are thought to play a role in the progression of Alzheimer's disease (AD). Liver X receptors (LXRs) are key regulators of cholesterol metabolism. The synthetic LXR activator, T0901317 has been reported to improve memory functions in animal models for AD

  13. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Directory of Open Access Journals (Sweden)

    Z.G. Zhao

    2014-02-01

    Full Text Available The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL on lipopolysaccharide (LPS-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1, myeloperoxidase (MPO, and Na+-K+-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na+-K+-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na+-K+-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  14. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    International Nuclear Information System (INIS)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J.

    2014-01-01

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na + -K + -ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na + -K + -ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na + -K + -ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis

  15. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J. [Institute of Microcirculation, Hebei North University, Zhangjiakou, China, Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei (China)

    2014-02-17

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na{sup +}-K{sup +}-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na{sup +}-K{sup +}-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na{sup +}-K{sup +}-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  16. A retinoic acid receptor β2 agonist reduces hepatic stellate cell activation in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Trasino, Steven E; Tang, Xiao-Han; Jessurun, Jose; Gudas, Lorraine J

    2016-10-01

    Hepatic stellate cells (HSCs) are an important cellular target for the development of novel pharmacological therapies to prevent and treat nonalcoholic fatty liver diseases (NAFLD). Using a high fat diet (HFD) model of NAFLD, we sought to determine if synthetic selective agonists for retinoic acid receptor β2 (RARβ2) and RARγ can mitigate HSC activation and HSC relevant signaling pathways during early stages of NAFLD, before the onset of liver injury. We demonstrate that the highly selective RARβ2 agonist, AC261066, can reduce the activation of HSCs, marked by decreased HSC expression of α-smooth muscle actin (α-SMA), in mice with HFD-induced NAFLD. Livers of HFD-fed mice treated with AC261066 exhibited reduced steatosis, oxidative stress, and expression of pro-inflammatory mediators, such as tumor necrosis factor-alpha (TNFα), interleukin 1β (IL-1β), and monocyte chemotactic protein-1 (MCP-1). Kupffer cell (macrophage) expression of transforming growth factor-β1 (TGF-β1), which plays a critical role in early HSC activation, was markedly reduced in AC261066-treated, HFD-fed mice. In contrast, HFD-fed mice treated with an RARγ agonist (CD1530) showed no decreases in steatosis, HSC activation, or Kupffer cell TGF-β1 levels. In conclusion, our data demonstrate that RARβ2 is an attractive target for development of NAFLD therapies. • Hepatic stellate cells (HSCs) are an important pharmacological target for the prevention of nonalcoholic fatty liver diseases (NAFLD). • Retinoids and retinoic acid receptors (RARs) possess favorable metabolic modulating properties. • We show that an agonist for retinoic acid receptor-β2 (RARβ2), but not RARγ, mitigates HSC activation and NAFLD.

  17. Reduced 99mTc labelled NCA-95/CEA-antibody uptake in liver due to gentle antibody reconstitution

    International Nuclear Information System (INIS)

    Reske, S.N.; Buell, U.

    1990-01-01

    The influence of reconstituting a murine monoclonal IgG 1 antibody kit with pertechnetate Tc99m on antibody distribution in the liver, spleen and sternal bone marrow of patients was examined. The 99m Tc-labelled antibody used is directed against non-specific cross-reacting antigen (NCA-95) and carcinoembryonic antigen (CEA) and has been successfully applied for imaging tissue inflammation and bone marrow scanning. Radioactivity uptake was determined in the liver, spleen, bone marrow and a precordial background region in a consecutive series of 25 patients, examined with an antibody preparation, routinely radiolabelled according to the manufacturer's recommendations and in 14 patients, in whom the antibody was reconstituted with special care, avoiding bubble formation and dropping of buffer into the antibody-containing vial. Gentle compared with routine antibody reconstitution caused a highly significant reduction of the antibody uptake in the liver, as determined by count densities, normalized to injected dose and acquisition time (13.2±5.5 vs 20.1±6.0 cpm per pixel, anti x±SD, P=0.008). The liver to background ratio was reduced from 3.4±1.4 to 1.9±0.5 (P<0.001). Spleen, sternal bone marrow and precordial background count rates were not significantly affected. These results clearly demonstrate that gentle antibody reconstitution can decrease non-specific antibody uptake in the liver by 34%±6.4% (anti x±SEM). Thus, scan quality is improved, and the potential deleterious camouflage of underlying structures is avoided. (orig.)

  18. ATLAS Muon DCS Upgrades and Optimizations

    CERN Document Server

    Bakalis, Christos; The ATLAS collaboration

    2017-01-01

    The Muon subsystem is comprised of four detector types: Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC) for trigger purposes, and Cathode Strip Chambers (CSC) and Muon Drift Tubes (MDT) for muon track reconstruction. The MDTs cover a large area at the outer part of the detector. In total, there are over a 1’000 MDT chambers, which are made of about 350’000 tubes. The luminosity upgrade of the HL-LHC is expected to pose a serious challenge to the MDTs. The expected increase of particle flux will set new, higher standards regarding the operation and control of the chambers. A step towards optimizing the ATLAS Muon Detector Control System (DCS) was to develop several DCS tools, namely a High Luminosity vs Trip Limit panel with its accompanying scripts and managers. The ultimate goal of this tool is to protect the MDT chambers from the rising particle flux and its associated increase in chamber current. In addition to optimizing the ATLAS Muon DCS, several tasks to accommodate the newly installed B...

  19. Leptin receptor blockade reduces intrahepatic vascular resistance and portal pressure in an experimental model of rat liver cirrhosis.

    Science.gov (United States)

    Delgado, María Gabriela; Gracia-Sancho, Jordi; Marrone, Giusi; Rodríguez-Vilarrupla, Aina; Deulofeu, Ramon; Abraldes, Juan G; Bosch, Jaume; García-Pagán, Juan Carlos

    2013-10-01

    Increased hepatic vascular resistance mainly due to elevated vascular tone and to fibrosis is the primary factor in the development of portal hypertension in cirrhosis. Leptin, a hormone associated with reduction in nitric oxide bioavailability, vascular dysfunction, and liver fibrosis, is increased in patients with cirrhosis. We aimed at evaluating whether leptin influences the increased hepatic resistance in portal hypertension. CCl4-cirrhotic rats received the leptin receptor-blocker ObR antibody, or its vehicle, every other day for 1 wk. Hepatic and systemic hemodynamics were measured in both groups. Hepatic nitric oxide production and bioavailability, together with oxidative stress, nitrotyrosinated proteins, and liver fibrosis, were evaluated. In cirrhotic rats, leptin-receptor blockade significantly reduced portal pressure without modifying portal blood flow, suggesting a reduction in the intrahepatic resistance. Portal pressure reduction was associated with increased nitric oxide bioavailability and with decreased O2(-) levels and nitrotyrosinated proteins. No changes in systemic hemodynamics and liver fibrosis were observed. In conclusion, the present study shows that blockade of the leptin signaling pathway in cirrhosis significantly reduces portal pressure. This effect is probably due to a nitric oxide-mediated reduction in the hepatic vascular tone.

  20. Comparative analysis on the effect of Lycopersicon esculentum (tomato) in reducing cadmium, mercury and lead accumulation in liver.

    Science.gov (United States)

    Nwokocha, Chukwuemeka R; Nwokocha, Magdalene I; Aneto, Imaria; Obi, Joshua; Udekweleze, Damian C; Olatunde, Bukola; Owu, Daniel U; Iwuala, Moses O

    2012-06-01

    L. esculentum (tomato) contain compounds with anti-oxidant and anti-inflammatory properties, able to synthesize metal chelating proteins. We examined the ability of fruit extract to protect against mercury (Hg), lead (Pb) and cadmium (Cd) accumulation in the liver. Rats were fed on tomato mixed with rat chow (10% w/w), while Hg (10 ppm), Cd (200 ppm) and Pb (100 ppm) was given in drinking water. Tomato was administered together with the metals (group 2), a week after exposure (group 3) or a week before metal exposure (group 4) for a period of six weeks. The metal accumulations in the liver were determined using AAS. There was a significant (Ptomato to Cd and Hg accumulation but not to Pb (PTomato reduces uptake while enhancing the elimination of these metals in a time dependent manner. The highest hepatoprotective effect was to Cd followed by Hg and least to Pb. Its administration is beneficial in reducing heavy metal accumulation in the liver. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Everolimus immunosuppression reduces the serum expression of fibrosis markers in liver transplant recipients.

    Science.gov (United States)

    Fernández-Yunquera, Ainhoa; Ripoll, Cristina; Bañares, Rafael; Puerto, Marta; Rincón, Diego; Yepes, Ismael; Catalina, Vega; Salcedo, Magdalena

    2014-06-24

    To evaluate the expression of serum fibrosis markers in liver transplantation (LT) recipients on everolimus monotherapy compared to patients on an anti-calcineurin regimen. This cross-sectional case-control study included LT patients on everolimus monotherapy (cases) (E) (n = 30) and matched controls on an anti-calcineurin regimen (calcineurin inhibitors, CNI), paired by etiology of liver disease and time since LT (n = 30). Clinical characteristics, blood tests and elastography were collected. Serum levels of transforming growth factor-β (TGF-β), angiopoietin-1, tumor necrosis factor (TNF), platelet derived growth factor, amino-terminal propeptide of type III procollagen (PIIINP), hyaluronic acid (HA), VCM-1 (ng/mL), interleukin (IL)-10, interferon-inducible protein 10 (IP-10), vascular endothelial growth factor and hepatocyte growth factor (HGF) (pg/mL) were determined by enzyme-linked immunosorbent assay. Expression of these markers between E and CNI was compared. Stratified analysis was done according to factors that may influence liver fibrosis. Variables are described with medians (interquartillic range) or percentages. A total of 60 patients [age: 59 (49-64), hepatitis C virus (HCV): n = 21 (35%), time from LT: 73 mo (16-105)] were included. Patients had been on everolimus for a median of 15 mo. No differences in inflammatory activity, APRI test or liver elastography were found between the groups. No significant differences were observed between the groups in serum levels of PIIINP, metalloproteinase type = 1, angiopoietin, HGF, IP-10, TNF-α, IL-10 and vascular cell adhesion molecule. Patients on E had a lower expression of TGF-β [E: 12.7 (3.7-133.6), CNI: 152.5 (14.4-333.2), P = 0.009] and HA [E: 702.89 (329.4-838.2), CNI: 1513.6 (691.9-1951.4), P = 0.001] than those on CNI. This difference was maintained in the stratified analysis when recipient age is more than 50 years (TFG-β1: P = 0.06; HA: P = 0.005), in patients without active neoplasia (TFG-β1

  2. Association of sustained virologic response with reduced progression to liver cirrhosis in elderly patients with chronic hepatitis C

    Directory of Open Access Journals (Sweden)

    Tseng CW

    2016-03-01

    difference in 3-year cumulative incidence of liver cirrhosis was 24.8% greater for patients without SVR (35.2%, 95% CI: 13.0–57.5, P=0.012 compared with those with SVR (10.4%, 95% CI: 3.1–17.7. There was a trend of a higher baseline aspartate aminotransferase-to-platelet ratio index score in patients who progressed to liver cirrhosis compared with those who did not progress (2.1±1.2 vs 1.6±1.3, P=0.055, but the difference failed to reach significance by Cox regression (adjusted HR: 1.285, 95% CI: 0.921–1.791, P=0.14. Conclusion: An SVR following PEG-IFN combination treatment can reduce the risk of liver cirrhosis in elderly CHC patients. Keywords: hepatitis C, sustained virologic response, pegylated interferon, ribavirin, liver cirrhosis

  3. The closely related CD103+ dendritic cells (DCs and lymphoid-resident CD8+ DCs differ in their inflammatory functions.

    Directory of Open Access Journals (Sweden)

    Zhijun Jiao

    Full Text Available Migratory CD103+ and lymphoid-resident CD8+ dendritic cells (DCs share many attributes, such as dependence on the same transcription factors, cross-presenting ability and expression of certain surface molecules, such that it has been proposed they belong to a common sub-lineage. The functional diversity of the two DC types is nevertheless incompletely understood. Here we reveal that upon skin infection with herpes simplex virus, migratory CD103+ DCs from draining lymph nodes were more potent at inducing Th17 cytokine production by CD4+ T cells than CD8+ DCs. This superior capacity to drive Th17 responses was also evident in CD103+ DCs from uninfected mice. Their differential potency to induce Th17 differentiation was reflected by higher production of IL-1β and IL-6 by CD103+ DCs compared with CD8+ DCs upon stimulation. The two types of DCs from isolated lymph nodes also differ in expression of certain pattern recognition receptors. Furthermore, elevated levels of GM-CSF, typical of those found in inflammation, substantially increased the pool size of CD103+ DCs in lymph nodes and skin. We argue that varied levels of GM-CSF may explain the contrasting reports regarding the positive role of GM-CSF in regulating development of CD103+ DCs. Together, we find that these two developmentally closely-related DC subsets display functional differences and that GM-CSF has differential effect on the two types of DCs.

  4. Restrictive blood transfusion protocol in liver resection patients reduces blood transfusions with no increase in patient morbidity.

    Science.gov (United States)

    Wehry, John; Cannon, Robert; Scoggins, Charles R; Puffer, Lisa; McMasters, Kelly M; Martin, Robert C G

    2015-02-01

    Management of anemia in surgical oncology patients remains one of the key quality components in overall care and cost. Continued reports demonstrate the effects of hospital transfusion, which has been demonstrated to lead to a longer length of stay, more complications, and possibly worse overall oncologic outcomes. The hypothesis for this study was that a dedicated restrictive transfusion protocol in patients undergoing hepatectomy would lead to less overall blood transfusion with no increase in overall morbidity. A cohort study was performed using our prospective database from January 2000 to June 2013. September 2011 served as the separation point for the date of operation criteria because this marked the implementation of more restrictive blood transfusion guidelines. A total of 186 patients undergoing liver resection were reviewed. The restrictive blood transfusion guidelines reduced the percentage of patients that received blood from 31.0% before January 9, 2011 to 23.3% after this date (P = .03). The liver procedure that was most consistently associated with higher levels of transfusion was a right lobectomy (16%). Prior surgery and endoscopic stent were the 2 preoperative interventions associated with receiving blood. Patients who received blood before and after the restrictive period had similar predictive factors: major hepatectomies, higher intraoperative blood loss, lower preoperative hemoglobin level, older age, prior systemic chemotherapy, and lower preoperative nutritional parameters (all P blood did not have worse overall progression-free survival or overall survival. A restrictive blood transfusion protocol reduces the incidence of blood transfusions and the number of packed red blood cells transfused. Patients who require blood have similar preoperative and intraoperative factors that cannot be mitigated in oncology patients. Restrictive use of blood transfusions can reduce cost and does adversely affect patients undergoing liver resection

  5. At-Home Transcranial Direct Current Stimulation (tDCS With Telehealth Support for Symptom Control in Chronically-Ill Patients With Multiple Symptoms

    Directory of Open Access Journals (Sweden)

    Alexa Riggs

    2018-05-01

    Full Text Available Transcranial direct current stimulation (tDCS delivered in multiple sessions can reduce symptom burden, but access of chronically ill patients to tDCS studies is constrained by the burden of office-based tDCS administration. Expanded access to this therapy can be accomplished through the development of interventions that allow at-home tDCS applications.Objective: We describe the development and initial feasibility assessment of a novel intervention for the chronically ill that combines at-home tDCS with telehealth support.Methods: In the developmental phase, the tDCS procedure was adjusted for easy application by patients or their informal caregivers at home, and a tDCS protocol with specific elements for enhanced safety and remote adherence monitoring was created. Lay language instructional materials were written and revised based on expert feedback. The materials were loaded onto a tablet allowing for secure video-conferencing. The telehealth tablet was paired with an at-home tDCS device that allowed for remote dose control via electronic codes dispensed to patients prior to each session. tDCS was delivered in two phases: once daily on 10 consecutive days, followed by an as needed regimen for 20 days. Initial feasibility of this tDCS-telehealth system was evaluated in four patients with advanced chronic illness and multiple symptoms. Change in symptom burden and patient satisfaction were assessed with the Condensed Memorial Symptom Assessment Scale (CMSAS and a tDCS user survey.Results: The telehealth-tDCS protocol includes one home visit and has seven patient-tailored elements and six elements enhancing safety monitoring. Replicable electrode placement at home without 10–20 EEG measurement is achieved via a headband that holds electrodes in a pre-determined position. There were no difficulties with patients’ training, protocol adherence, or tolerability. A total of 60 tDCS sessions were applied. No session required discontinuation, and

  6. At-Home Transcranial Direct Current Stimulation (tDCS) With Telehealth Support for Symptom Control in Chronically-Ill Patients With Multiple Symptoms.

    Science.gov (United States)

    Riggs, Alexa; Patel, Vaishali; Paneri, Bhaskar; Portenoy, Russell K; Bikson, Marom; Knotkova, Helena

    2018-01-01

    Transcranial direct current stimulation (tDCS) delivered in multiple sessions can reduce symptom burden, but access of chronically ill patients to tDCS studies is constrained by the burden of office-based tDCS administration. Expanded access to this therapy can be accomplished through the development of interventions that allow at-home tDCS applications. Objective: We describe the development and initial feasibility assessment of a novel intervention for the chronically ill that combines at-home tDCS with telehealth support. Methods: In the developmental phase, the tDCS procedure was adjusted for easy application by patients or their informal caregivers at home, and a tDCS protocol with specific elements for enhanced safety and remote adherence monitoring was created. Lay language instructional materials were written and revised based on expert feedback. The materials were loaded onto a tablet allowing for secure video-conferencing. The telehealth tablet was paired with an at-home tDCS device that allowed for remote dose control via electronic codes dispensed to patients prior to each session. tDCS was delivered in two phases: once daily on 10 consecutive days, followed by an as needed regimen for 20 days. Initial feasibility of this tDCS-telehealth system was evaluated in four patients with advanced chronic illness and multiple symptoms. Change in symptom burden and patient satisfaction were assessed with the Condensed Memorial Symptom Assessment Scale (CMSAS) and a tDCS user survey. Results: The telehealth-tDCS protocol includes one home visit and has seven patient-tailored elements and six elements enhancing safety monitoring. Replicable electrode placement at home without 10-20 EEG measurement is achieved via a headband that holds electrodes in a pre-determined position. There were no difficulties with patients' training, protocol adherence, or tolerability. A total of 60 tDCS sessions were applied. No session required discontinuation, and there were no adverse

  7. Rationale and design of the RESOLVE trial: lanreotide as a volume reducing treatment for polycystic livers in patients with autosomal dominant polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Gevers Tom JG

    2012-04-01

    Full Text Available Abstract Background A large proportion of patients with autosomal dominant polycystic kidney disease (ADPKD suffers from polycystic liver disease. Symptoms arise when liver volume increases. The somatostatin analogue lanreotide has proven to reduce liver volume in patients with polycystic liver disease. However, this study also included patients with isolated polycystic liver disease (PCLD. The RESOLVE trial aims to assess the efficacy of lanreotide treatment in ADPKD patients with symptomatic polycystic livers. In this study we present the design of the RESOLVE trial. Methods/design This open-label clinical trial evaluates the effect of 6 months of lanreotide in ADPKD patients with symptomatic polycystic livers. Primary outcome is change in liver volume determined by computerised tomography-volumetry. Secondary outcomes are changes in total kidney volume, kidney intermediate volume and renal function. Furthermore, urinary (NGAL, α1-microglobulin, KIM-1, H-FABP, MCP-1 and serum (fibroblast growth factor 23 biomarkers associated with ADPKD disease severity are assessed to investigate whether these biomarkers predict treatment responses to lanreotide. Moreover, safety and tolerability of the drug in ADPKD patients will be assessed. Discussion We anticipate that lanreotide is an effective therapeutic option for ADPKD patients with symptomatic polycystic livers and that this trial aids in the identification of patient related factors that predict treatment response. Trial registration number Clinical trials.gov NCT01354405

  8. DCS emulator development for the ACR-1000 simulator

    International Nuclear Information System (INIS)

    Nakashima, Y.; Trueman, R.; Ishii, K.

    2010-01-01

    Nuclear Power Plant (NPP) simulators are the main means for operator training and as such are a crucial part of the NPP operation life-cycle. Hitachi, Ltd., Information and Control Systems Company (henceforth 'Hitachi') is the preferred DCS and DCS emulator developer and supplier for the ACR-1000 NPP control system. Hitachi's concept for the DCS (distributed control system) portion of the ACR-1000 simulator is 'total emulation of the DCS' by software. This paper will review the current status of the technical development and the major project milestones. (author)

  9. Transcutaneous Spinal Direct Current Stimulation (tsDCS

    Directory of Open Access Journals (Sweden)

    Filippo eCogiamanian

    2012-07-01

    Full Text Available In the past ten years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability (brain polarization or transcranial direct current stimulation, tDCS. Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation.Aiming at developing a new, non invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC stimulation (tsDCS on somatosensory potentials (SEPs evoked in healthy subjects by posterior tibial nerve (PTN stimulation. Our findings showed that thoracic anodal tsDCS depresses the cervico-medullary PTN-SEP component (P30 without eliciting adverse effects. tsDCS also modulates post-activation H-reflex dynamics. Later works further confirmed that transcutaneous electric fields modulate spinal cord function. Subsequent studies in our laboratory showed that tsDCS modulates the flexion reflex in the human lower limb. Besides influencing the laser evoked potentials, tsDCS increases pain tolerance in healthy subjects. Hence, though the underlying mechanisms remain speculative, tsDCS modulates activity in lemniscal, spinothalamic and segmental motor systems.Here we review currently available experimental evidence that non-invasive spinal cord stimulation influences spinal function in humans and argue that, by focally modulating spinal excitability, tsDCS could provide a novel therapeutic tool complementary to drugs and invasive spinal cord stimulation in managing various pathologic conditions, including pain.

  10. The impact of cerebellar transcranial direct current stimulation (tDCS) on learning fine-motor sequences.

    Science.gov (United States)

    Shimizu, Renee E; Wu, Allan D; Samra, Jasmine K; Knowlton, Barbara J

    2017-01-05

    The cerebellum has been shown to be important for skill learning, including the learning of motor sequences. We investigated whether cerebellar transcranial direct current stimulation (tDCS) would enhance learning of fine motor sequences. Because the ability to generalize or transfer to novel task variations or circumstances is a crucial goal of real world training, we also examined the effect of tDCS on performance of novel sequences after training. In Study 1, participants received either anodal, cathodal or sham stimulation while simultaneously practising three eight-element key press sequences in a non-repeating, interleaved order. Immediately after sequence practice with concurrent tDCS, a transfer session was given in which participants practised three interleaved novel sequences. No stimulation was given during transfer. An inhibitory effect of cathodal tDCS was found during practice, such that the rate of learning was slowed in comparison to the anodal and sham groups. In Study 2, participants received anodal or sham stimulation and a 24 h delay was added between the practice and transfer sessions to reduce mental fatigue. Although this consolidation period benefitted subsequent transfer for both tDCS groups, anodal tDCS enhanced transfer performance. Together, these studies demonstrate polarity-specific effects on fine motor sequence learning and generalization.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  11. Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort.

    Science.gov (United States)

    Setiawan, Veronica Wendy; Wilkens, Lynne R; Lu, Shelly C; Hernandez, Brenda Y; Le Marchand, Loïc; Henderson, Brian E

    2015-01-01

    Coffee consumption has been proposed to reduce risk for hepatocellular carcinoma (HCC) and chronic liver disease (CLD), but few data are available from prospective, US multiethnic populations. We evaluated the association of coffee intake with HCC and CLD in 162,022 African Americans, Native Hawaiians, Japanese Americans, Latinos, and whites in the US Multiethnic Cohort (MEC). We collected data from the MEC, a population-based prospective cohort study of >215,000 men and women from Hawaii and California, assembled in 1993-1996. Participants reported coffee consumption and other dietary and lifestyle factors when they joined the study. During an 18-year follow-up period, there were 451 incident cases of HCC and 654 deaths from CLD. Hazard rate ratios (RRs) and 95% confidence intervals (CIs) were calculated using Cox regression, adjusting for known HCC risk factors. High levels of coffee consumption were associated with reduced risk of incident HCC and CLD mortality (Ptrend ≤ .0002). Compared with non-coffee drinkers, those who drank 2-3 cups per day had a 38% reduction in risk for HCC (RR = 0.62; 95% CI: 0.46-0.84); those who drank ≥4 cups per day had a 41% reduction in HCC risk (RR = 0.59; 95% CI: 0.35-0.99). Compared with non-coffee drinkers, participants who consumed 2-3 cups coffee per day had a 46% reduction in risk of death from CLD (RR = 0.54; 95% CI: 0.42-0.69) and those who drank ≥4 cups per day had a 71% reduction (RR = 0.29; 95% CI: 0.17-0.50). The inverse associations were similar regardless of the participants' ethnicity, sex, body mass index, smoking status, alcohol intake, or diabetes status. Increased coffee consumption reduces the risk of HCC and CLD in multiethnic US populations. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Molecular Adsorbent Recirculating System Can Reduce Short-Term Mortality Among Patients With Acute-on-Chronic Liver Failure-A Retrospective Analysis.

    Science.gov (United States)

    Gerth, Hans U; Pohlen, Michele; Thölking, Gerold; Pavenstädt, Hermann; Brand, Marcus; Hüsing-Kabar, Anna; Wilms, Christian; Maschmeier, Miriam; Kabar, Iyad; Torner, Josep; Pavesi, Marco; Arroyo, Vicente; Banares, Rafael; Schmidt, Hartmut H J

    2017-10-01

    Acute-on-chronic liver failure is associated with numerous consecutive organ failures and a high short-term mortality rate. Molecular adsorbent recirculating system therapy has demonstrated beneficial effects on the distinct symptoms, but the associated mortality data remain controversial. Retrospective analysis of acute-on-chronic liver failure patients receiving either standard medical treatment or standard medical treatment and molecular adsorbent recirculating system. Secondary analysis of data from the prospective randomized Recompensation of Exacerbated Liver Insufficiency with Hyperbilirubinemia and/or Encephalopathy and/or Renal Failure trial by applying the recently introduced Chronic Liver Failure-criteria. Medical Departments of University Hospital Muenster (Germany). This analysis was conducted in two parts. First, 101 patients with acute-on-chronic liver failure grades 1-3 and Chronic Liver Failure-C-Organ Failure liver subscore equals to 3 but stable pulmonary function were identified and received either standard medical treatment (standard medical treatment, n = 54) or standard medical treatment and molecular adsorbent recirculating system (n = 47) at the University Hospital Muenster. Second, the results of this retrospective analysis were tested against the Recompensation of Exacerbated Liver Insufficiency with Hyperbilirubinemia and/or Encephalopathy and/or Renal Failure trial. Standard medical treatment and molecular adsorbent recirculating system. Additionally to improved laboratory variables (bilirubin and creatinine), the short-term mortality (up to day 14) of the molecular adsorbent recirculating system group was significantly reduced compared with standard medical treatment. A reduced 14-day mortality rate was observed in the molecular adsorbent recirculating system group (9.5% vs 50.0% with standard medical treatment; p = 0.004), especially in patients with multiple organ failure (acute-on-chronic liver failure grade 2-3). Concerning the

  13. Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo.

    Science.gov (United States)

    Chuang, Cheng-Hung; Tsai, Cheng-Chih; Lin, En-Shyh; Huang, Chin-Shiu; Lin, Yun-Yu; Lan, Chuan-Ching; Huang, Chun-Chih

    2016-10-31

    The aim of the present study was to determine whether Lactobacillus salivarius (LS) and Lactobacillus johnsonii (LJ) prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (γ-GT), lipid peroxidation, triglyceride (TG) and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA) levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.

  14. Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Chuang

    2016-10-01

    Full Text Available The aim of the present study was to determine whether Lactobacillus salivarius (LS and Lactobacillus johnsonii (LJ prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST, alanine transaminase (ALT, gamma-glutamyl transferase (γ-GT, lipid peroxidation, triglyceride (TG and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.

  15. Chronic alcohol binging injures the liver and other organs by reducing NAD⁺ levels required for sirtuin's deacetylase activity.

    Science.gov (United States)

    French, Samuel W

    2016-04-01

    NAD(+) levels are markedly reduced when blood alcohol levels are high during binge drinking. This causes liver injury to occur because the enzymes that require NAD(+) as a cofactor such as the sirtuin de-acetylases cannot de-acetylate acetylated proteins such as acetylated histones. This prevents the epigenetic changes that regulate metabolic processes and which prevent organ injury such as fatty liver in response to alcohol abuse. Hyper acetylation of numerous regulatory proteins develops. Systemic multi-organ injury occurs when NAD(+) is reduced. For instance the Circadian clock is altered if NAD(+) is not available. Cell cycle arrest occurs due to up regulation of cell cycle inhibitors leading to DNA damage, mutations, apoptosis and tumorigenesis. NAD(+) is linked to aging in the regulation of telomere stability. NAD(+) is required for mitochondrial renewal. Alcohol dehydrogenase is present in every visceral organ in the body so that there is a systemic reduction of NAD(+) levels in all of these organs during binge drinking. Copyright © 2016. Published by Elsevier Inc.

  16. Effects of transcranial direct current stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults.

    Science.gov (United States)

    Zhou, Diange; Zhou, Junhong; Chen, Hu; Manor, Brad; Lin, Jianhao; Zhang, Jue

    2015-08-01

    Transcranial direct current stimulation (tDCS) targeting the prefrontal cortex reduces the size and speed of standing postural sway in younger adults, particularly when performing a cognitive dual task. Here, we hypothesized that tDCS would alter the complex dynamics of postural sway as quantified by multiscale entropy (MSE). Twenty healthy older adults completed two study visits. Center-of-pressure (COP) fluctuations were recorded during single-task (i.e., quiet standing) and dual-task (i.e., standing while performing serial subtractions) conditions, both before and after a 20-min session of real or sham tDCS. MSE was used to estimate COP complexity within each condition. The percentage change in complexity from single- to dual-task conditions (i.e., dual-task cost) was also calculated. Before tDCS, COP complexity was lower (p = 0.04) in the dual-task condition as compared to the single-task condition. Neither real nor sham tDCS altered complexity in the single-task condition. As compared to sham tDCS, real tDCS increased complexity in the dual-task condition (p = 0.02) and induced a trend toward improved serial subtraction performance (p = 0.09). Moreover, those subjects with lower dual-task COP complexity at baseline exhibited greater percentage increases in complexity following real tDCS (R = -0.39, p = 0.05). Real tDCS also reduced the dual-task cost to complexity (p = 0.02), while sham stimulation had no effect. A single session of tDCS targeting the prefrontal cortex increased standing postural sway complexity with concurrent non-postural cognitive task. This form of noninvasive brain stimulation may be a safe strategy to acutely improve postural control by enhancing the system's capacity to adapt to stressors.

  17. Increased Expression of Cytotoxic T-Lymphocyte-Associated Protein 4 by T Cells, Induced by B7 in Sera, Reduces Adaptive Immunity in Patients With Acute Liver Failure

    DEFF Research Database (Denmark)

    Khamri, Wafa; Abeles, Robin D; Hou, Tie Zheng

    2017-01-01

    , hepatic sinusoidal endothelial cells, and biliary epithelial cells from healthy or diseased liver tissues. We also measured levels of soluble B7 serum samples from patients and controls, and mice with acetaminophen-induced liver injury using enzyme-linked immunosorbent assays. RESULTS: Peripheral blood...... mice with acetaminophen-induced liver injury contained high levels of soluble B7 compared to sera from mice without liver injury. Plasma exchange reduced circulating levels of soluble B7 in patients with ALF and expression of CTLA4 on T cells. CONCLUSIONS: Peripheral CD4+ T cells from patients with ALF......BACKGROUND & AIMS: Patients with acute liver failure (ALF) have defects in innate immune responses to microbes (immune paresis) and are susceptible to sepsis. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4), which interacts with the membrane receptor B7 (also called CD80 and CD86...

  18. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury.

    Science.gov (United States)

    Jiao, Shu-Fan; Sun, Kai; Chen, Xiao-Jing; Zhao, Xue; Cai, Ning; Liu, Yan-Jun; Xu, Long-Mei; Kong, Xian-Ming; Wei, Li-Xin

    2014-01-08

    Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci.

  19. Isoliquiritigenin protects against sepsis-induced lung and liver injury by reducing inflammatory responses.

    Science.gov (United States)

    Chen, Xiong; Cai, Xueding; Le, Rongrong; Zhang, Man; Gu, Xuemei; Shen, Feixia; Hong, Guangliang; Chen, Zimiao

    2018-02-05

    Sepsis, one of the most fatal diseases worldwide, often leads to multiple organ failure, mainly due to uncontrolled inflammatory responses. Despite accumulating knowledge obtained in recent years, effective drugs to treat sepsis in the clinic are still urgently needed. Isoliquiritigenin (ISL), a chalcone compound, has been reported to exert anti-inflammatory properties. However, little is known about the effects of ISL on sepsis and its related complications. In this study, we investigated the potential protective effects of ISL on lipopolysaccharide (LPS)-induced injuries and identified the mechanisms underlying these effects. ISL inhibited inflammatory cytokine expression in mouse primary peritoneal macrophages (MPMs) exposed to LPS. In an acute lung injury (ALI) mouse model, ISL prevented LPS-induced structural damage and inflammatory cell infiltration. Additionally, pretreatment with ISL attenuated sepsis-induced lung and liver injury, accompanied by a reduction in inflammatory responses. Moreover, these protective effects were mediated by the nuclear factor kappa B (NF-κB) pathway-mediated inhibition of inflammatory responses in vitro and in vivo. Our study suggests that ISL may be a potential therapeutic agent for sepsis-induced injuries. Copyright © 2017. Published by Elsevier Inc.

  20. Everolimus and long acting octreotide as a volume reducing treatment of polycystic livers (ELATE: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Chrispijn Melissa

    2011-11-01

    Full Text Available Abstract Background Polycystic liver disease (PLD is defined as having more than 20 liver cysts and can present as a severe and disabling condition. Most symptoms are caused by the mass effect of the liver size and include abdominal pain and distension. The somatostatin analogues octreotide and lanreotide have proven to reduce polycystic liver volume. mTOR inhibitors such as everolimus inhibit cell proliferation and might thereby reduce growth of liver cysts. This trial aims to assess the benefit of combination therapy of everolimus and octreotide compared to octreotide monotherapy. In this study we present the structure of the trial and the characteristics of the included patients. Methods/design This is a randomized open-label clinical trial comparing the effect of 12 months of everolimus and octreotide to octreotide monotherapy in PLD patients. Primary outcome is change in liver volume determined by CT-volumetry. Secondary outcomes are changes in abdominal symptoms and quality of life. Moreover, safety and tolerability of the drugs will be assessed. Discussion This trial will compare the relative efficacy of combination therapy with octreotide and everolimus to octreotide monotherapy. Since they apply to different pathways of cystogenesis we expect that combining octreotide and everolimus will result in a cumulative reduction of polycystic liver volume. Trial registration number ClinicalTrials.gov: NCT01157858

  1. Reduced SHARPIN and LUBAC Formation May Contribute to CCl4- or Acetaminophen-Induced Liver Cirrhosis in Mice

    Directory of Open Access Journals (Sweden)

    Takeshi Yamamotoya

    2017-02-01

    Full Text Available Linear ubiquitin chain assembly complex (LUBAC, composed of SHARPIN (SHANK-associated RH domain-interacting protein, HOIL-1L (longer isoform of heme-oxidized iron-regulatory protein 2 ubiquitin ligase-1, and HOIP (HOIL-1L interacting protein, forms linear ubiquitin on nuclear factor-κB (NF-κB essential modulator (NEMO and induces NF-κB pathway activation. SHARPIN expression and LUBAC formation were significantly reduced in the livers of mice 24 h after the injection of either carbon tetrachloride (CCl4 or acetaminophen (APAP, both of which produced the fulminant hepatitis phenotype. To elucidate its pathological significance, hepatic SHARPIN expression was suppressed in mice by injecting shRNA adenovirus via the tail vein. Seven days after this transduction, without additional inflammatory stimuli, substantial inflammation and fibrosis with enhanced hepatocyte apoptosis occurred in the livers. A similar but more severe phenotype was observed with suppression of HOIP, which is responsible for the E3 ligase activity of LUBAC. Furthermore, in good agreement with these in vivo results, transduction of Hepa1-6 hepatoma cells with SHARPIN, HOIL-1L, or HOIP shRNA adenovirus induced apoptosis of these cells in response to tumor necrosis factor-α (TNFα stimulation. Thus, LUBAC is essential for the survival of hepatocytes, and it is likely that reduction of LUBAC is a factor promoting hepatocyte death in addition to the direct effect of drug toxicity.

  2. Schistosoma mansoni infection suppresses the growth of Plasmodium yoelii parasites in the liver and reduces gametocyte infectivity to mosquitoes.

    Directory of Open Access Journals (Sweden)

    Taeko Moriyasu

    2018-01-01

    Full Text Available Malaria and schistosomiasis are major parasitic diseases causing morbidity and mortality in the tropics. Epidemiological surveys have revealed coinfection rates of up to 30% among children in Sub-Saharan Africa. To investigate the impact of coinfection of these two parasites on disease epidemiology and pathology, we carried out coinfection studies using Plasmodium yoelii and Schistosoma mansoni in mice. Malaria parasite growth in the liver following sporozoite inoculation is significantly inhibited in mice infected with S. mansoni, so that when low numbers of sporozoites are inoculated, there is a large reduction in the percentage of mice that go on to develop blood stage malaria. Furthermore, gametocyte infectivity is much reduced in mice with S. mansoni infections. These results have profound implications for understanding the interactions between Plasmodium and Schistosoma species, and have implications for the control of malaria in schistosome endemic areas.

  3. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie

    2016-04-21

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  4. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie; Steullet, Pascal; Kulak, Anita; Preitner, Frederic; Do, Kim Q.; Magistretti, Pierre J.

    2016-01-01

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  5. Increased Expression of Cytotoxic T-Lymphocyte-Associated Protein 4 by T Cells, Induced by B7 in Sera, Reduces Adaptive Immunity in Patients With Acute Liver Failure

    DEFF Research Database (Denmark)

    Khamri, Wafa; Abeles, Robin D; Hou, Tie Zheng

    2017-01-01

    , hepatic sinusoidal endothelial cells, and biliary epithelial cells from healthy or diseased liver tissues. We also measured levels of soluble B7 serum samples from patients and controls, and mice with acetaminophen-induced liver injury using enzyme-linked immunosorbent assays. RESULTS: Peripheral blood...... were found to have increased concentrations of soluble B7 compared to sera from controls. Necrotic human primary hepatocytes exposed to acetaminophen, but not hepatic sinusoidal endothelial cells and biliary epithelial cells from patients with ALF, secreted high levels of soluble B7. Sera from mice...... with acetaminophen-induced liver injury contained high levels of soluble B7 compared to sera from mice without liver injury. Plasma exchange reduced circulating levels of soluble B7 in patients with ALF and expression of CTLA4 on T cells. CONCLUSIONS: Peripheral CD4+T cells from patients with ALF have increased...

  6. Short-term exercise reduces markers of hepatocyte apoptosis in nonalcoholic fatty liver disease

    DEFF Research Database (Denmark)

    Fealy, Ciaran E; Haus, Jacob M; Solomon, Thomas

    2012-01-01

    and after the exercise intervention. The Matsuda index was used to assess insulin sensitivity. We observed significant decreases in CK18 fragments (558.4 ± 106.8 vs. 323.4 ± 72.5 U/l, P vs. 24.3 ± 4.8 U/l, P vs. 69...... changes in fat oxidation and circulating sFasL (rho = -0.65, P vs. 17.5 ± 2.1%, NS). We conclude that short-term exercise reduces a circulatory marker of hepatocyte apoptosis in obese individuals with NAFLD and propose that changes....... We therefore examined the effect of a short-term exercise program on markers of apoptosis-plasma cytokeratin 18 (CK18) fragments, alanine aminotransferase (ALT), aspartate aminotransferase (AST), soluble Fas (sFas), and sFas ligand (sFasL)-in 13 obese individuals with NAFLD [body mass index 35.2 ± 1...

  7. The effects of prefrontal cortex transcranial direct current stimulation (tDCS) on food craving and temporal discounting in women with frequent food cravings.

    Science.gov (United States)

    Kekic, Maria; McClelland, Jessica; Campbell, Iain; Nestler, Steffen; Rubia, Katya; David, Anthony S; Schmidt, Ulrike

    2014-07-01

    Bulimia nervosa, binge-eating disorder, and some forms of obesity are characterised by compulsive overeating that is often precipitated by food craving. Transcranial direct current stimulation (tDCS) has been used to suppress food cravings, but there is insufficient evidence to support its application in clinical practice. Furthermore, the potential moderating role of impulsivity has not been considered. This study used a randomised within-subjects crossover design to examine whether a 20-minute session of sham-controlled bilateral tDCS to the dorsolateral prefrontal cortex (anode right/cathode left) would transiently modify food cravings and temporal discounting (TD; a measure of choice impulsivity) in 17 healthy women with frequent food cravings. Whether the effects of tDCS on food craving were moderated by individual differences in TD behaviour was also explored. Participants were exposed to food and a film of people eating, and food cravings and TD were assessed before and after active and sham stimulation. Craving for sweet but not savoury foods was reduced following real tDCS. Participants that exhibited more reflective choice behaviour were more susceptible to the anti-craving effects of tDCS than those that displayed more impulsive choice behaviour. No differences were seen in TD or food consumption after real versus sham tDCS. These findings support the efficacy of tDCS in temporarily lowering food cravings and identify the moderating role of TD behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats.

    Science.gov (United States)

    Liu, Yixuan; Song, An; Zang, Shasha; Wang, Chao; Song, Guangyao; Li, Xiaoling; Zhu, Yajun; Yu, Xian; Li, Ling; Wang, Yun; Duan, Liyuan

    2015-03-13

    Jinlida (JLD) is a compound preparation formulated on the basis of traditional Chinese medicine and is officially approved for the treatment of type 2 diabetes (T2DM) in China. We aimed to elucidate the mechanism of JLD treatment, in comparison to metformin treatment, on ameliorating insulin sensitivity in insulin resistant rats and to reveal its anti-oxidant properties. Rats were fed with standard or high-fat diet for 6 weeks. After 6 weeks, the high-fat fed rats were subdivided into five groups and orally fed with JLD or metformin for 8 weeks. Fasting blood glucose (FBG), fasting blood insulin, blood lipid and antioxidant enzymes were measured. Intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic euglycemic clamp technique were carried out to measure insulin sensitivity. Gene expression of the major signaling pathway molecules that regulate glucose uptake, including insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT), and glucose transporter type 2 (GLUT2), were assessed by quantitative RT-PCR. The totle and phosphorylation expression of IRS-1, AKT, JNK and p38MAPK were determined by Western blot. Treatment with JLD effectively ameliorated the high-fat induced hyperglycemia, hyperinsulinemia and hyperlipidemia. Similar to metformin, the high insulin resistance in high-fat fed rats was significantly decreased by JLD treatment. JLD displayed anti-oxidant effects, coupled with up-regulation of the insulin signaling pathway. The attenuation of hepatic oxidative stress by JLD treatment was associated with reduced phosphorylation protein levels of JNK and p38MAPK. Treatment with JLD could moderate glucose and lipid metabolism as well as reduce hepatic oxidative stress, most likely through the JNK and p38MAPK pathways. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Evaluation for nuclear safety-critical software reliability of DCS

    International Nuclear Information System (INIS)

    Liu Ying

    2015-01-01

    With the development of control and information technology at NPPs, software reliability is important because software failure is usually considered as one form of common cause failures in Digital I and C Systems (DCS). The reliability analysis of DCS, particularly qualitative and quantitative evaluation on the nuclear safety-critical software reliability belongs to a great challenge. To solve this problem, not only comprehensive evaluation model and stage evaluation models are built in this paper, but also prediction and sensibility analysis are given to the models. It can make besement for evaluating the reliability and safety of DCS. (author)

  10. New cooling regulation technology of secondary cooling station in DCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Yan, Jun-wei; Zhu, Dong-sheng; Liu, Fei-long; Lei, Jun-xi [The Key Lab of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510641 (China); Liang, Lie-quan [The Key Lab of E-Commerce Market Application Technology of Guangdong Province, Guangdong University of Business Studies, Guangzhou 510320 (China)

    2008-07-01

    In this paper, a kind of new control technology of secondary cooling station (constant flow rate/variable temperature difference) in district cooling system (DCS) is proposed in view of serial consequences including low efficiency and high operating cost caused by low temperature of supply water in DCS. This technology has been applied in DCS of Guangzhou University City. The result has already indicated that such technology can increase the supply and return temperatures of buildings, return water temperature of primary side in the plate heat exchanger unit, moreover, the efficiency of both the chiller and the whole system are improved significantly. (author)

  11. New radiofrequency device to reduce bleeding after core needle biopsy: Experimental study in a porcine liver model

    International Nuclear Information System (INIS)

    Lim, Sang Hyeok; Rhim, Hyun Chul; Lee, Min Woo; Song, Kyoung Doo; Kang, Tae Wook; Kim, Young Sun; Lim, Hyo Keun

    2017-01-01

    To evaluate the in vivo efficiency of the biopsy tract radiofrequency ablation for hemostasis after core biopsy of the liver in a porcine liver model, including situations with bleeding tendency and a larger (16-gauge) core needle. A preliminary study was performed using one pig to determine optimal ablation parameters. For the main experiment, four pigs were assigned to different groups according to heparinization use and biopsy needle caliber. In each pig, 14 control (without tract ablation) and 14 experimental (tract ablation) ultrasound-guided core biopsies were performed using either an 18- or 16-gauge needle. Post-biopsy bleeding amounts were measured by soaking up the blood for five minutes. The results were compared using the Mann-Whitney U test. The optimal parameters for biopsy tract ablation were determined as a 2-cm active tip electrode set at 40-watt with a tip temperature of 70–80℃. The bleeding amounts in all experimental groups were smaller than those in the controls; however they were significant in the non-heparinized pig biopsied with an 18-gauge needle and in two heparinized pigs (p < 0.001). In the heparinized pigs, the mean blood loss in the experimental group was 3.5% and 13.5% of the controls biopsied with an 18- and 16-gauge needle, respectively. Radiofrequency ablation of hepatic core biopsy tract ablation may reduce post-biopsy bleeding even under bleeding tendency and using a larger core needle, according to the result from in vivo porcine model experiments

  12. New radiofrequency device to reduce bleeding after core needle biopsy: Experimental study in a porcine liver model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Hyeok; Rhim, Hyun Chul; Lee, Min Woo; Song, Kyoung Doo; Kang, Tae Wook; Kim, Young Sun; Lim, Hyo Keun [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2017-01-15

    To evaluate the in vivo efficiency of the biopsy tract radiofrequency ablation for hemostasis after core biopsy of the liver in a porcine liver model, including situations with bleeding tendency and a larger (16-gauge) core needle. A preliminary study was performed using one pig to determine optimal ablation parameters. For the main experiment, four pigs were assigned to different groups according to heparinization use and biopsy needle caliber. In each pig, 14 control (without tract ablation) and 14 experimental (tract ablation) ultrasound-guided core biopsies were performed using either an 18- or 16-gauge needle. Post-biopsy bleeding amounts were measured by soaking up the blood for five minutes. The results were compared using the Mann-Whitney U test. The optimal parameters for biopsy tract ablation were determined as a 2-cm active tip electrode set at 40-watt with a tip temperature of 70–80℃. The bleeding amounts in all experimental groups were smaller than those in the controls; however they were significant in the non-heparinized pig biopsied with an 18-gauge needle and in two heparinized pigs (p < 0.001). In the heparinized pigs, the mean blood loss in the experimental group was 3.5% and 13.5% of the controls biopsied with an 18- and 16-gauge needle, respectively. Radiofrequency ablation of hepatic core biopsy tract ablation may reduce post-biopsy bleeding even under bleeding tendency and using a larger core needle, according to the result from in vivo porcine model experiments.

  13. MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Timea Csak

    Full Text Available MicroRNAs (miRs regulate hepatic steatosis, inflammation and fibrosis. Fibrosis is the consequence of chronic tissue damage and inflammation. We hypothesized that deficiency of miR-155, a master regulator of inflammation, attenuates steatohepatitis and fibrosis.Wild type (WT and miR-155-deficient (KO mice were fed methionine-choline-deficient (MCD or -supplemented (MCS control diet for 5 weeks. Liver injury, inflammation, steatosis and fibrosis were assessed.MCD diet resulted in steatohepatitis and increased miR-155 expression in total liver, hepatocytes and Kupffer cells. Steatosis and expression of genes involved in fatty acid metabolism were attenuated in miR-155 KO mice after MCD feeding. In contrast, miR-155 deficiency failed to attenuate inflammatory cell infiltration, nuclear factor κ beta (NF-κB activation and enhanced the expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNFα and monocyte chemoattractant protein-1 (MCP1 in MCD diet-fed mice. We found a significant attenuation of apoptosis (cleaved caspase-3 and reduction in collagen and α smooth muscle actin (αSMA levels in miR-155 KO mice compared to WTs on MCD diet. In addition, we found attenuation of platelet derived growth factor (PDGF, a pro-fibrotic cytokine; SMAD family member 3 (Smad3, a protein involved in transforming growth factor-β (TGFβ signal transduction and vimentin, a mesenchymal marker and indirect indicator of epithelial-to-mesenchymal transition (EMT in miR-155 KO mice. Nuclear binding of CCAAT enhancer binding protein β (C/EBPβ a miR-155 target involved in EMT was significantly increased in miR-155 KO compared to WT mice.Our novel data demonstrate that miR-155 deficiency can reduce steatosis and fibrosis without decreasing inflammation in steatohepatitis.

  14. The combination of blueberry juice and probiotics reduces apoptosis of alcoholic fatty liver of mice by affecting SIRT1 pathway

    Science.gov (United States)

    Zhu, Juanjuan; Ren, Tingting; Zhou, Mingyu; Cheng, Mingliang

    2016-01-01

    Purpose To explore the effects of the combination of blueberry juice and probiotics on the apoptosis of alcoholic fatty liver disease (AFLD). Methods Healthy C57BL/6J mice were used in the control group (CG). AFLD mice models were established with Lieber–DeCarli ethanol diet and evenly assigned to six groups with different treatments: MG (model), SI (SIRT1 [sirtuin type 1] small interfering RNA [siRNA]), BJ (blueberry juice), BJSI (blueberry juice and SIRT1 siRNA), BJP (blueberry juice and probiotics), and BJPSI (blueberry juice, probiotics, and SIRT1 siRNA). Hepatic tissue was observed using hematoxylin and eosin (HE) and Oil Red O (ORO) staining. Biochemical indexes of the blood serum were analyzed. The levels of SIRT1, caspase-3, forkhead box protein O1 (FOXO1), FasL (tumor necrosis factor ligand superfamily member 6), BAX, and Bcl-2 were measured by reverse transcription-polymerase chain reaction and Western blotting. Results HE and ORO staining showed that the hepatocytes were heavily destroyed with large lipid droplets in MG and SI groups, while the severity was reduced in the CG, BJ, and BJP groups (Pjuice and probiotics reduces apoptosis in AFLD by suppressing FOXO1, phosphorylated FOXO1, acetylated FOXO1, FasL, caspase-3, BAX, and Bcl-2 via the upregulation of SIRT1. PMID:27274198

  15. Liver Growth Factor (LGF Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich’s Ataxia Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Lucía Calatrava-Ferreras

    2016-12-01

    Full Text Available Friedreich’s ataxia (FA is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF, which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXNYG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold and heart (1.2-fold. LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA.

  16. Affinity labeling and resonance energy transfer studies of the reduced coenzyme regulatory site of bovine liver glutamate dehydrogenase

    International Nuclear Information System (INIS)

    Lark, R.H.

    1988-01-01

    Bovine liver glutamate dehydrogenase was studied by affinity labeling and resonance energy transfer. The enzyme uses the 2', 3'-dialdehyde derivative of NADPH (oNADPH) in the reductive amination of α-ketoglutarate. A 300 min enzyme incubation with 250 μM oNADPH at pH 8.0 leads to a covalent incorporation of 1 mol oNADPH/mol enzyme subunit. Similar rate constants are measured when assaying the change in inhibition by 600 μM NADH or by 1 μM GTP, suggesting that inhibition loss at the two regulatory sites results from oNADPH reaction at one location. oNADPH-modified enzyme is still 93% inhibited by saturating GTP concentrations. The presence of 5 mM NADS(P)H plus 200 μM GTP prevents the kinetic changes and reduces the incorporation of oNADPH. oNADPH is concluded to modify the reduced coenzyme regulatory site, and GTP affects the binding of ligands to this site. The linkage between glutamate dehydrogenase and [ 14 C]oNADPH proved too labile to allow isolation of a radioactive modified peptide. Three corrections in the amino acid sequence were made after sequencing peptides. Resonance energy transfer was used to measure the distance between sites on the enzyme

  17. The combination of blueberry juice and probiotics reduces apoptosis of alcoholic fatty liver of mice by affecting SIRT1 pathway.

    Science.gov (United States)

    Zhu, Juanjuan; Ren, Tingting; Zhou, Mingyu; Cheng, Mingliang

    2016-01-01

    To explore the effects of the combination of blueberry juice and probiotics on the apoptosis of alcoholic fatty liver disease (AFLD). Healthy C57BL/6J mice were used in the control group (CG). AFLD mice models were established with Lieber-DeCarli ethanol diet and evenly assigned to six groups with different treatments: MG (model), SI (SIRT1 [sirtuin type 1] small interfering RNA [siRNA]), BJ (blueberry juice), BJSI (blueberry juice and SIRT1 siRNA), BJP (blueberry juice and probiotics), and BJPSI (blueberry juice, probiotics, and SIRT1 siRNA). Hepatic tissue was observed using hematoxylin and eosin (HE) and Oil Red O (ORO) staining. Biochemical indexes of the blood serum were analyzed. The levels of SIRT1, caspase-3, forkhead box protein O1 (FOXO1), FasL (tumor necrosis factor ligand superfamily member 6), BAX, and Bcl-2 were measured by reverse transcription-polymerase chain reaction and Western blotting. HE and ORO staining showed that the hepatocytes were heavily destroyed with large lipid droplets in MG and SI groups, while the severity was reduced in the CG, BJ, and BJP groups (Pblueberry juice and probiotics reduces apoptosis in AFLD by suppressing FOXO1, phosphorylated FOXO1, acetylated FOXO1, FasL, caspase-3, BAX, and Bcl-2 via the upregulation of SIRT1.

  18. Macrophages and dendritic cells emerge in the liver during intestinal inflammation and predispose the liver to inflammation.

    Directory of Open Access Journals (Sweden)

    Yohei Mikami

    Full Text Available The liver is a physiological site of immune tolerance, the breakdown of which induces immunity. Liver antigen-presenting cells may be involved in both immune tolerance and activation. Although inflammatory diseases of the liver are frequently associated with inflammatory bowel diseases, the underlying immunological mechanisms remain to be elucidated. Here we report two murine models of inflammatory bowel disease: RAG-2(-/- mice adoptively transferred with CD4(+CD45RB(high T cells; and IL-10(-/- mice, accompanied by the infiltration of mononuclear cells in the liver. Notably, CD11b(-CD11c(lowPDCA-1(+ plasmacytoid dendritic cells (DCs abundantly residing in the liver of normal wild-type mice disappeared in colitic CD4(+CD45RB(high T cell-transferred RAG-2(-/- mice and IL-10(-/- mice in parallel with the emergence of macrophages (Mφs and conventional DCs (cDCs. Furthermore, liver Mφ/cDCs emerging during intestinal inflammation not only promote the proliferation of naïve CD4(+ T cells, but also instruct them to differentiate into IFN-γ-producing Th1 cells in vitro. The emergence of pathological Mφ/cDCs in the liver also occurred in a model of acute dextran sulfate sodium (DSS-induced colitis under specific pathogen-free conditions, but was canceled in germ-free conditions. Last, the Mφ/cDCs that emerged in acute DSS colitis significantly exacerbated Fas-mediated hepatitis. Collectively, intestinal inflammation skews the composition of antigen-presenting cells in the liver through signaling from commensal bacteria and predisposes the liver to inflammation.

  19. Effects of transcranial direct current stimulation (tDCS) on cognition, symptoms, and smoking in schizophrenia: A randomized controlled study.

    Science.gov (United States)

    Smith, Robert C; Boules, Sylvia; Mattiuz, Sanela; Youssef, Mary; Tobe, Russell H; Sershen, Henry; Lajtha, Abel; Nolan, Karen; Amiaz, Revital; Davis, John M

    2015-10-01

    Schizophrenia is characterized by cognitive deficits which persist after acute symptoms have been treated or resolved. Transcranial direct current stimulation (tDCS) has been reported to improve cognition and reduce smoking craving in healthy subjects but has not been as carefully evaluated in a randomized controlled study for these effects in schizophrenia. We conducted a randomized double-blind, sham-controlled study of the effects of 5 sessions of tDCS (2 milliamps for 20minutes) on cognition, psychiatric symptoms, and smoking and cigarette craving in 37 outpatients with schizophrenia or schizoaffective disorder who were current smokers. Thirty subjects provided evaluable data on the MATRICS Consensus Cognitive Battery (MCCB), with the primary outcome measure, the MCCB Composite score. Active compared to sham tDCS subjects showed significant improvements after the fifth tDCS session in MCCB Composite score (p=0.008) and on the MCCB Working Memory (p=0.002) and Attention-Vigilance (p=0.027) domain scores, with large effect sizes. MCCB Composite and Working Memory domain scores remained significant at Benjamini-Hochberg corrected significance levels (α=0.05). There were no statistically significant effects on secondary outcome measures of psychiatric symptoms (PANSS scores), hallucinations, cigarette craving, or cigarettes smoked. The positive effects of tDCS on cognitive performance suggest a potential efficacious treatment for cognitive deficits in partially recovered chronic schizophrenia outpatients that should be further investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Diagnostic performance of reduced-dose CT with a hybrid iterative reconstruction algorithm for the detection of hypervascular liver lesions: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Atsushi; Tanaka, Yoshikazu; Juri, Hiroshi; Nakai, Go; Narumi, Yoshifumi [Osaka Medical College, Department of Radiology, Takatsuki, Osaka (Japan); Yoshikawa, Shushi [Osaka Medical College Hospital, Central Radiology Department, Takatsuki, Osaka (Japan)

    2017-07-15

    To investigate the diagnostic performance of reduced-dose CT with a hybrid iterative reconstruction (IR) algorithm for the detection of hypervascular liver lesions. Thirty liver phantoms with or without simulated hypervascular lesions were scanned with a 320-slice CT scanner with control-dose (40 mAs) and reduced-dose (30 and 20 mAs) settings. Control-dose images were reconstructed with filtered back projection (FBP), and reduced-dose images were reconstructed with FBP and a hybrid IR algorithm. Objective image noise and the lesion to liver contrast-to-noise ratio (CNR) were evaluated quantitatively. Images were interpreted independently by 2 blinded radiologists, and jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis was performed. Hybrid IR images with reduced-dose settings (both 30 and 20 mAs) yielded significantly lower objective image noise and higher CNR than control-dose FBP images (P <.05). However, hybrid IR images with reduced-dose settings had lower JAFROC1 figure of merit than control-dose FBP images, although only the difference between 20 mAs images and control-dose FBP images was significant for both readers (P <.01). An aggressive reduction of the radiation dose would impair the detectability of hypervascular liver lesions, although objective image noise and CNR would be preserved by a hybrid IR algorithm. (orig.)

  1. Heat Killed Lactobacillus reuteri GMNL-263 Reduces Fibrosis Effects on the Liver and Heart in High Fat Diet-Hamsters via TGF-β Suppression

    Directory of Open Access Journals (Sweden)

    Wei-Jen Ting

    2015-10-01

    Full Text Available Obesity is one of the major risk factors for nonalcoholic fatty liver disease (NAFLD, and NAFLD is highly associated with an increased risk of cardiovascular disease (CVD. Scholars have suggested that certain probiotics may significantly impact cardiovascular health, particularly certain Lactobacillus species, such as Lactobacillus reuteri GMNL-263 (Lr263 probiotics, which have been shown to reduce obesity and arteriosclerosis in vivo. In the present study, we examined the potential of heat-killed bacteria to attenuate high fat diet (HFD-induced hepatic and cardiac damages and the possible underlying mechanism of the positive effects of heat-killed Lr263 oral supplements. Heat-killed Lr263 treatments (625 and 3125 mg/kg-hamster/day were provided as a daily supplement by oral gavage to HFD-fed hamsters for eight weeks. The results show that heat-killed Lr263 treatments reduce fatty liver syndrome. Moreover, heat-killed Lactobacillus reuteri GMNL-263 supplementation in HFD hamsters also reduced fibrosis in the liver and heart by reducing transforming growth factor β (TGF-β expression levels. In conclusion, heat-killed Lr263 can reduce lipid metabolic stress in HFD hamsters and decrease the risk of fatty liver and cardiovascular disease.

  2. The HLT, DAQ and DCS TDR

    CERN Multimedia

    Wickens, F. J

    At the end of June the Trigger-DAQ community achieved a major milestone with the submission to the LHCC of the Technical Design Report (TDR) for DAQ, HLT and DCS. The first unbound copies were handed to the LHCC referees on the scheduled date of 30th June, this was followed a few days later by a limited print run which produced the first bound copies (see Figure 1). As had previously been announced both to the LHCC and the ATLAS Collaboration it was not possible on this timescale to give a complete validation of all of the aspects of the architecture in the TDR. So it had been agreed that further work would continue over the summer to provide more complete results for the formal review by the LHCC of the TDR in September. Thus there followed an intense programme of measurements and analysis: especially to provide results for HLT both in testbeds and for the event selection software itself; to provide additional information on scaling of the dataflow aspects; to provide first results on the new prototype ROBin...

  3. Dcs Data Viewer, an Application that Accesses ATLAS DCS Historical Data

    Science.gov (United States)

    Tsarouchas, C.; Schlenker, S.; Dimitrov, G.; Jahn, G.

    2014-06-01

    The ATLAS experiment at CERN is one of the four Large Hadron Collider experiments. The Detector Control System (DCS) of ATLAS is responsible for the supervision of the detector equipment, the reading of operational parameters, the propagation of the alarms and the archiving of important operational data in a relational database (DB). DCS Data Viewer (DDV) is an application that provides access to the ATLAS DCS historical data through a web interface. Its design is structured using a client-server architecture. The pythonic server connects to the DB and fetches the data by using optimized SQL requests. It communicates with the outside world, by accepting HTTP requests and it can be used stand alone. The client is an AJAX (Asynchronous JavaScript and XML) interactive web application developed under the Google Web Toolkit (GWT) framework. Its web interface is user friendly, platform and browser independent. The selection of metadata is done via a column-tree view or with a powerful search engine. The final visualization of the data is done using java applets or java script applications as plugins. The default output is a value-over-time chart, but other types of outputs like tables, ascii or ROOT files are supported too. Excessive access or malicious use of the database is prevented by a dedicated protection mechanism, allowing the exposure of the tool to hundreds of inexperienced users. The current configuration of the client and of the outputs can be saved in an XML file. Protection against web security attacks is foreseen and authentication constrains have been taken into account, allowing the exposure of the tool to hundreds of users world wide. Due to its flexible interface and its generic and modular approach, DDV could be easily used for other experiment control systems.

  4. DCS data viewer, an application that accesses ATLAS DCS historical data

    International Nuclear Information System (INIS)

    Tsarouchas, C; Schlenker, S; Dimitrov, G; Jahn, G

    2014-01-01

    The ATLAS experiment at CERN is one of the four Large Hadron Collider experiments. The Detector Control System (DCS) of ATLAS is responsible for the supervision of the detector equipment, the reading of operational parameters, the propagation of the alarms and the archiving of important operational data in a relational database (DB). DCS Data Viewer (DDV) is an application that provides access to the ATLAS DCS historical data through a web interface. Its design is structured using a client-server architecture. The pythonic server connects to the DB and fetches the data by using optimized SQL requests. It communicates with the outside world, by accepting HTTP requests and it can be used stand alone. The client is an AJAX (Asynchronous JavaScript and XML) interactive web application developed under the Google Web Toolkit (GWT) framework. Its web interface is user friendly, platform and browser independent. The selection of metadata is done via a column-tree view or with a powerful search engine. The final visualization of the data is done using java applets or java script applications as plugins. The default output is a value-over-time chart, but other types of outputs like tables, ascii or ROOT files are supported too. Excessive access or malicious use of the database is prevented by a dedicated protection mechanism, allowing the exposure of the tool to hundreds of inexperienced users. The current configuration of the client and of the outputs can be saved in an XML file. Protection against web security attacks is foreseen and authentication constrains have been taken into account, allowing the exposure of the tool to hundreds of users world wide. Due to its flexible interface and its generic and modular approach, DDV could be easily used for other experiment control systems.

  5. Ethanol extract of Portulaca Oleracea L. reduced the carbon tetrachloride induced liver injury in mice involving enhancement of NF-κB activity

    Science.gov (United States)

    Shi, Hongguang; Liu, Xuefeng; Tang, Gusheng; Liu, Haiyan; Zhang, Yinghui; Zhang, Bo; Zhao, Xuezhi; Wang, Wanyin

    2014-01-01

    Acute hepatic injury causes high morbidity and mortality world-wide. Management of severe acute hepatic failure continues to be one of the most challenging problems in clinical medicine. In present study, carbon tetrachloride (CCl4) was used to induce acute liver damage in mice and the protective effects of ethanol extract of Portulaca Oleracea L. (PO) were examined. The aminotransferase activities were biochemical estimated and the liver damage was tested by morphological histological analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The role of PO on the activity of NF-κB was determined by luciferase reporter gene assay and immunohistochemistry. The level of p-p65 was tested by western blot. Our results showed that PO administration on mice would decrease the serum aminotransferase level and reduced the liver histological damage. We also found that nuclear translocation of p65 was enhanced in liver tissues of mice treated with PO compared with control animals. In addition, in cultured hepatic cells, PO increased the NF-κB luciferase reporter gene activity and upregulated the level of phosphorylation of p65, but had no effects on mice liver SOD activity and MDA level. Collectively, PO attenuated CCl4 induced mice liver damage by enhancement of NF-κB activity. PMID:25628785

  6. Inhibition of Cyclic Adenosine Monophosphate (cAMP-response Element-binding Protein (CREB-binding Protein (CBP/β-Catenin Reduces Liver Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Yosuke Osawa

    2015-11-01

    Full Text Available Wnt/β-catenin is involved in every aspect of embryonic development and in the pathogenesis of many human diseases, and is also implicated in organ fibrosis. However, the role of β-catenin-mediated signaling on liver fibrosis remains unclear. To explore this issue, the effects of PRI-724, a selective inhibitor of the cAMP-response element-binding protein-binding protein (CBP/β-catenin interaction, on liver fibrosis were examined using carbon tetrachloride (CCl4- or bile duct ligation (BDL-induced mouse liver fibrosis models. Following repetitive CCl4 administrations, the nuclear translocation of β-catenin was observed only in the non-parenchymal cells in the liver. PRI-724 treatment reduced the fibrosis induced by CCl4 or BDL. C-82, an active form of PRI-724, inhibited the activation of isolated primary mouse quiescent hepatic stellate cells (HSCs and promoted cell death in culture-activated HSCs. During the fibrosis resolution period, an increase in F4/80+ CD11b+ and Ly6Clow CD11b+ macrophages was induced by CCl4 and was sustained for two weeks thereafter, even after having stopped CCl4 treatment. PRI-724 accelerated the resolution of CCl4-induced liver fibrosis, and this was accompanied by increased matrix metalloproteinase (MMP-9, MMP-2, and MMP-8 expression in intrahepatic leukocytes. In conclusion, targeting the CBP/β-catenin interaction may become a new therapeutic strategy in treating liver fibrosis.

  7. Pre-existing liver cirrhosis reduced the toxic effect of diethylene glycol in a rat model due to the impaired hepatic alcohol dehydrogenase.

    Science.gov (United States)

    Ming Xing Huang; Xiao Mou Peng; Lin Gu; Gui Hua Chen

    2011-09-01

    Hepatic metabolizing enzymes of diethylene glycol (DEG) are impaired in liver diseases. Thus, the purpose of this study was to increase our understandings in metabolism and toxicology of DEG by clarifying the influences of pre-existing liver disease. Forty Sprague-Dawley rats with carbon tetrachloride-induced liver cirrhosis and 20 control rats were intraperitoneally administered a single dose of DEG, and randomly killed 1, 2, 5 or 8 days following exposure. Compared with control rats, the model rats had significantly higher blood CO(2)-combining power, lower blood urine nitrogen, serum creatinine and alanine aminotransferase levels on the second day and a lower mortality rate on the eighth day following DEG exposure. Enlargements of liver and kidneys and degeneration and necrosis of hepatocytes and renal tubules in the model rats was also less serious than in the control rats. Urine DEG levels were significantly higher on the first day in the model rats than the control rats (46.65 ± 8.79 mg vs 18.88 ± 6.18 mg, p activity in the model rats was significantly lower than that in the control rats, which was positively related to renal damage. The toxic effects of DEG in rats with pre-existing liver cirrhosis are significantly reduced, which may be due to the decreased hepatic ADH activity. It suggests that the metabolite of ADH is responsible for DEG poisoning, and this toxic metabolite may mainly originate in the liver.

  8. Reducing radiation dose in liver enhanced CT scan by setting mAs according to plain scan noise

    International Nuclear Information System (INIS)

    Yang Shangwen; He Jian; Yang Xianfeng; Zhou Kefeng; Xin Xiaoyan; Hu Anning; Zhu Bin

    2013-01-01

    Objective: To investigate the feasibility of setting mAs in liver enhanced CT scan according to plain scan noise with fixed mA CT scanner, in order to reduce the radiation dose. Methods: One hundred continuous patients underwent liver enhanced CT scan (group A) prospectively. Two hundred and fifty mAs was used in plain and enhanced CT scans. Noises of plain and venous phase CT images were measured, and the image quality was evaluated. The equation between mAs of enhanced scan and noise of plain scan image was derived. Another 100 continuous patients underwent liver enhanced CT scan (group B). Enhanced scan mAs was calculated from noise on plain scan by using the equation above. Noises on venous phase images were measured and the image quality was measured. Based on body mass index (BMI), patients in groups A and B were divided into three subgroups respectively: BMI < 18.5 kg/m 2 , 18.5 kg/m 2 ≤ BMI < 25.0 kg/m 2 and BMI ≥ 25.0 kg/m 2 . Image quality score was compared with nonparametric rank sum test, CT dose index (CTDI) and effective dose (ED) were measured and compared between each subgroup with 2 independent samples t or t' test. Results: The equation between enhanced scan mAs (mAsX) and plain scan noise (SDp) was as follows: mAsX = mAs1 × [(0.989 × SDp + 1.06) /SDx] 2 , mAs1 = 250 mAs, SDx = 13. In patients with BMI < 18.5 kg/m 2 , ED of group A [(6.86 ± 0.38) mSv, n = 12] was significantly higher than group B [(2.66 ± 0.46) mSv, n = 10)] (t = 18.52, P < 0.01). In patients with 18.5 kg/m 2 ≤ BMI < 25.0 kg/m 2 , ED of group A [(7.08 ± 0.91) mSv, n = 66] was significantly higher than group B [(4.50 ± 1.41) mSv, n = 73] (t' = 10.57, P < 0.01). In patients with BMI ≥ 25.0 kg/m 2 , there was no significant difference between EDs of group A (7.54 ± 0.62 mSv, n = 22) and group B [(8.19 ± 3.16) mSv, n = 17] (t' = 0.89, P = 0.39). Image quality of 5 patients in group A and none in group B did not meet the diagnostic requirement

  9. Adenovirus-Mediated Delivery of Decoy Hyper Binding Sites Targeting Oncogenic HMGA1 Reduces Pancreatic and Liver Cancer Cell Viability.

    Science.gov (United States)

    Hassan, Faizule; Ni, Shuisong; Arnett, Tyler C; McKell, Melanie C; Kennedy, Michael A

    2018-03-30

    High mobility group AT-hook 1 (HMGA1) protein is an oncogenic architectural transcription factor that plays an essential role in early development, but it is also implicated in many human cancers. Elevated levels of HMGA1 in cancer cells cause misregulation of gene expression and are associated with increased cancer cell proliferation and increased chemotherapy resistance. We have devised a strategy of using engineered viruses to deliver decoy hyper binding sites for HMGA1 to the nucleus of cancer cells with the goal of sequestering excess HMGA1 at the decoy hyper binding sites due to binding competition. Sequestration of excess HMGA1 at the decoy binding sites is intended to reduce HMGA1 binding at the naturally occurring genomic HMGA1 binding sites, which should result in normalized gene expression and restored sensitivity to chemotherapy. As proof of principle, we engineered the replication defective adenovirus serotype 5 genome to contain hyper binding sites for HMGA1 composed of six copies of an individual HMGA1 binding site, referred to as HMGA-6. A 70%-80% reduction in cell viability and increased sensitivity to gemcitabine was observed in five different pancreatic and liver cancer cell lines 72 hr after infection with replication defective engineered adenovirus serotype 5 virus containing the HMGA-6 decoy hyper binding sites. The decoy hyper binding site strategy should be general for targeting overexpression of any double-stranded DNA-binding oncogenic transcription factor responsible for cancer cell proliferation.

  10. Liver transplant

    Science.gov (United States)

    Hepatic transplant; Transplant - liver; Orthotopic liver transplant; Liver failure - liver transplant; Cirrhosis - liver transplant ... The donated liver may be from: A donor who has recently died and has not had liver injury. This type of ...

  11. Evaluation of Protective Activity of Curcumin in Reducing Methotrexate Induced Liver Cells Injury: An Experimental Study on Iraqi White Domestic Rabbits

    Directory of Open Access Journals (Sweden)

    Hussain Abady Aljebori

    2018-03-01

    Full Text Available Background: Hepatotoxicity is a common problem in medical practice, most of the commonly used drugs are potentially hepatotoxic. Although Methotrexate is a hepa- toxic drug, it is widely used in the treatment of many cancerous and non-cancerous conditions because of its cytotoxic and immunosuppressant activity. Curcumin con- tains a variety of natural substances with antioxidant properties, it is widely used in  folk medicine.Antioxidant activity of Curcumin can reduce liver cell injury induced by Methotrexate administration. Objective: The research aims to study the methotrexate hepatoxicity on rabbits, and the hepatoprotective activity of Curcumin. Materials and Methods: Thirty white domestic rabbits were bought from animal market and grouped randomly into three groups; control group received intraperitoneal normal saline, methotrexate group received 6.5 mg/Kgm body weight intraperitoneal methotrexate, and curcumin group received oral Curcumin in addition to intraperitoneal methotrexate. Results: The study showed abnormal liver function tests, INR, liver tissues oxida- tive markers, and liver cell injury on histopathology in Methotrexate group, and normal findings in Curcumin groups. Conclusion: It is concluded that the Methotrexate is a hepatotoxic drug. The results also shoe that the concomitant administration of Curcumin reduced hepatotoxicity. Recommendation: It is recommended to use of Curcumin in clinical practice as a food supplement to patient receiving methotrexate to reduce hepatotoxicity.

  12. The combination of blueberry juice and probiotics reduces apoptosis of alcoholic fatty liver of mice by affecting SIRT1 pathway

    Directory of Open Access Journals (Sweden)

    Zhu J

    2016-05-01

    Full Text Available Juanjuan Zhu,1,2,* Tingting Ren,3,* Mingyu Zhou,2 Mingliang Cheng2 1First Hospital Affiliated to Suzhou University, Suzhou, 2Department of Infectious Diseases, 3Biochemistry Department, Affiliated Hospital of Guiyang Medical College, Guiyang, People’s Republic of China *These authors contributed equally to this work Purpose: To explore the effects of the combination of blueberry juice and probiotics on the apoptosis of alcoholic fatty liver disease (AFLD.Methods: Healthy C57BL/6J mice were used in the control group (CG. AFLD mice models were established with Lieber–DeCarli ethanol diet and evenly assigned to six groups with ­different treatments: MG (model, SI (SIRT1 [sirtuin type 1] small interfering RNA [siRNA], BJ (blueberry juice, BJSI (blueberry juice and SIRT1 siRNA, BJP (blueberry juice and probiotics, and BJPSI (blueberry juice, probiotics, and SIRT1 siRNA. Hepatic tissue was observed using hematoxylin and eosin (HE and Oil Red O (ORO staining. Biochemical indexes of the blood serum were analyzed. The levels of SIRT1, caspase-3, forkhead box protein O1 (FOXO1, FasL (tumor necrosis factor ligand superfamily member 6, BAX, and Bcl-2 were measured by reverse transcription-polymerase chain reaction and Western blotting.Results: HE and ORO staining showed that the hepatocytes were heavily destroyed with large lipid droplets in MG and SI groups, while the severity was reduced in the CG, BJ, and BJP groups (P<0.05. The levels of superoxide dismutase (SOD, reduced glutathione (GSH, and high-density lipoprotein-cholesterol (HDL-C were increased in BJ and BJP groups when compared with the model group (P<0.05. In contrast, the levels of aspartate aminotransferase (AST and alanine aminotransferase (ALT, total triglycerides (TGs, total cholesterol, low-density lipoprotein-cholesterol (LDL-C, and malondialdehyde (MDA were lower in BJ and BJP groups than in the model group (P<0.05. The level of SIRT1 was increased, while the levels of FOXO1

  13. Longitudinal tDCS: Consistency across Working Memory Training Studies

    Directory of Open Access Journals (Sweden)

    Marian E. Berryhill

    2017-04-01

    Full Text Available There is great interest in enhancing and maintaining cognitive function. In recent years, advances in noninvasive brain stimulation devices, such as transcranial direct current stimulation (tDCS, have targeted working memory in particular. Despite controversy surrounding outcomes of single-session studies, a growing field of working memory training studies incorporate multiple sessions of tDCS. It is useful to take stock of these findings because there is a diversity of paradigms employed and the outcomes observed between research groups. This will be important in assessing cognitive training programs paired with stimulation techniques and identifying the more useful and less effective approaches. Here, we treat the tDCS+ working memory training field as a case example, but also survey training benefits in other neuromodulatory techniques (e.g., tRNS, tACS. There are challenges associated with the broad parameter space including: individual differences, stimulation intensity, duration, montage, session number, session spacing, training task selection, timing of follow up testing, near and far transfer tasks. In summary, although the field of assisted cognitive training is young, some design choices are more favorable than others. By way of heuristic, the current evidence supports including more training/tDCS sessions (5+, applying anodal tDCS targeting prefrontal regions, including follow up testing on trained and transfer tasks after a period of no contact. What remains unclear, but important for future translational value is continuing work to pinpoint optimal values for the tDCS parameters on a per cognitive task basis. Importantly the emerging literature shows notable consistency in the application of tDCS for WM across various participant populations compared to single session experimental designs.

  14. Repulsive guidance molecule a blockade exerts the immunoregulatory function in DCs stimulated with ABP and LPS.

    Science.gov (United States)

    Xu, Xuxu; Gao, Yan; Zhai, Zhiyong; Zhang, Shuo; Shan, Fengping; Feng, Juan

    2016-08-02

    Repulsive guidance molecule a (RGMa) is an axonal guidance molecule that has recently found to exert function in immune system. This study evaluated the function of RGMa in modulation of dendritic cells (DCs) function stimulated with Achyranthes bidentata polysaccharide (ABP) and lipopolysaccharide (LPS) using a RGMa-neutralizing antibody. Compared with the Control-IgG/ABP and Control-IgG/LPS groups, DCs in the Anti-RGMa/ABP and Anti-RGMa/LPS groups 1) showed small, round cells with a few cell processes and organelles, and many pinocytotic vesicles; 2) had decreased MHC II, CD86, CD80, and CD40 expression; 3) displayed the decreased IL-12p70, IL-1β and TNF-α levels and increased IL-10 secretion; 4) had a high percentage of FITC-dextran uptake; and 5) displayed a reduced ability to drive T cell proliferation and reinforced T cell polarization toward a Th2 cytokine pattern. We conclude that DCs treated with RGMa-neutralizing antibodies present with tolerogenic and immunoregulatory characteristics, which provides new insights into further understanding of the function of RGMa.

  15. The Role of Dendritic Cells in Fibrosis Progression in Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Paloma Almeda-Valdes

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most frequent cause of chronic liver disease. NAFLD encompasses a wide range of pathologies, from simple steatosis to steatosis with inflammation to fibrosis. The pathogenesis of NAFLD progression has not been completely elucidated, and different liver cells could be implicated. This review focuses on the current evidence of the role of liver dendritic cells (DCs in the progression from NAFLD to fibrosis. Liver DCs are a heterogeneous population of hepatic antigen-presenting cells; their main function is to induce T-cell mediated immunity by antigen processing and presentation to T cells. During the steady state liver DCs are immature and tolerogenic. However, in an environment of chronic inflammation, DCs are transformed to potent inducers of immune responses. There is evidence about the role of DC in liver fibrosis, but it is not clearly understood. Interestingly, there might be a link between lipid metabolism and DC function, suggesting that immunogenic DCs are associated with liver lipid storage, representing a possible pathophysiological mechanism in NAFLD development. A better understanding of the interaction between inflammatory pathways and the different cell types and the effect on the progression of NAFLD is of great relevance.

  16. Commensal Lactobacillus Controls Immune Tolerance during Acute Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Nobuhiro Nakamoto

    2017-10-01

    Full Text Available Summary: Gut-derived microbial antigens trigger the innate immune system during acute liver injury. During recovery, regulatory immunity plays a role in suppressing inflammation; however, the precise mechanism underlying this process remains obscure. Here, we find that recruitment of immune-regulatory classical dendritic cells (cDCs is crucial for liver tolerance in concanavalin A-induced acute liver injury. Acute liver injury resulted in enrichment of commensal Lactobacillus in the gut. Notably, Lactobacillus activated IL-22 production by gut innate lymphoid cells and raised systemic IL-22 levels. Gut-derived IL-22 enhanced mucosal barrier function and promoted the recruitment of regulatory cDCs to the liver. These cDCs produced IL-10 and TGF-β through TLR9 activation, preventing further liver inflammation. Collectively, our results indicate that beneficial gut microbes influence tolerogenic immune responses in the liver. Therefore, modulation of the gut microbiota might be a potential option to regulate liver tolerance. : Nakamoto et.al. find that Lactobacillus accumulates in the gut and activates IL-22 production by innate lymphoid cells during acute liver injury. Gut-derived IL-22 contributes to liver tolerance via induction of regulatory DCs. Keywords: immune tolerance, dendritic cell, innate lymphoid cell, acute liver injury, interleukin-10, interleukin-22, microbiota, dysbiosis

  17. The critical role of cognitive-based trait differences in transcranial direct current stimulation (tDCS) suppression of food craving and eating in frank obesity.

    Science.gov (United States)

    Ray, Mary Katherine; Sylvester, Maria D; Osborn, Lauren; Helms, Joel; Turan, Bulent; Burgess, Emilee E; Boggiano, Mary M

    2017-09-01

    Obesity remains a major public health concern and novel treatments are needed. Transcranial direct current stimulation (tDCS) is a neuromodulation technique shown to reduce food craving and consumption, especially when targeting the dorsolateral prefrontal cortex (DLPFC) with a right anode/left cathode electrode montage. Despite the implications to treat frank (non-bingeeating) obesity, no study has tested the right anode/left cathode montage in this population. Additionally, most tDCS appetite studies have not controlled for differences in traits under DLPFC control that may influence how well one responds to tDCS. Hence, N = 18 (10F/8M) adults with frank obesity completed the Dutch Eating Behavior Questionnaire-Restraint and Barratt Impulsiveness Scale, and received 20 min of 2 mA active tDCS and control tDCS session. Craving and eating was assessed at both sessions with a food photo "wanting" test and in-lab measures of total, preferred, and less-preferred kilocalories consumed of three highly palatable snack foods. While main effects of tDCS vs. control were not found, significant differences emerged when trait scores were controlled. tDCS reduced food craving in females with lower attention-type impulsiveness (p = 0.047), reduced preferred-food consumption in males with lower intent to restrict calories (p = 0.024), and reduced total food consumption in males with higher non-planning-type impulsiveness (p = 0.009) compared to control tDCS. This is the first study to find significant reductions in food craving and consumption in a sample with frank obesity using the most popular tDCS montage in appetite studies. The results also highlight the cognitive-based heterogeneity of individuals with obesity and the importance of considering these differences when evaluating the efficacy of DLPFC-targeted tDCS in future studies aimed at treating obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. SB203580 Modulates p38 MAPK Signaling and Dengue Virus-Induced Liver Injury by Reducing MAPKAPK2, HSP27, and ATF2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Gopinathan Pillai Sreekanth

    Full Text Available Dengue virus (DENV infection causes organ injuries, and the liver is one of the most important sites of DENV infection, where viral replication generates a high viral load. The molecular mechanism of DENV-induced liver injury is still under investigation. The mitogen activated protein kinases (MAPKs, including p38 MAPK, have roles in the hepatic cell apoptosis induced by DENV. However, the in vivo role of p38 MAPK in DENV-induced liver injury is not fully understood. In this study, we investigated the role of SB203580, a p38 MAPK inhibitor, in a mouse model of DENV infection. Both the hematological parameters, leucopenia and thrombocytopenia, were improved by SB203580 treatment and liver transaminases and histopathology were also improved. We used a real-time PCR microarray to profile the expression of apoptosis-related genes. Tumor necrosis factor α, caspase 9, caspase 8, and caspase 3 proteins were significantly lower in the SB203580-treated DENV-infected mice than that in the infected control mice. Increased expressions of cytokines including TNF-α, IL-6 and IL-10, and chemokines including RANTES and IP-10 in DENV infection were reduced by SB203580 treatment. DENV infection induced the phosphorylation of p38MAPK, and its downstream signals including MAPKAPK2, HSP27 and ATF-2. SB203580 treatment did not decrease the phosphorylation of p38 MAPK, but it significantly reduced the phosphorylation of MAPKAPK2, HSP27, and ATF2. Therefore, SB203580 modulates the downstream signals to p38 MAPK and reduces DENV-induced liver injury.

  19. Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study.

    Science.gov (United States)

    Weber, Matthew J; Messing, Samuel B; Rao, Hengyi; Detre, John A; Thompson-Schill, Sharon L

    2014-08-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique used both experimentally and therapeutically to modulate regional brain function. However, few studies have directly measured the aftereffects of tDCS on brain activity or examined changes in task-related brain activity consequent to prefrontal tDCS. To investigate the neural effects of tDCS, we collected fMRI data from 22 human subjects, both at rest and while performing the Balloon Analog Risk Task (BART), before and after true or sham transcranial direct current stimulation. TDCS decreased resting blood perfusion in orbitofrontal cortex and the right caudate and increased task-related activity in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) in response to losses but not wins or increasing risk. Network analysis showed that whole-brain connectivity of the right ACC correlated positively with the number of pumps subjects were willing to make on the BART, and that tDCS reduced connectivity between the right ACC and the rest of the brain. Whole-brain connectivity of the right DLPFC also correlated negatively with pumps on the BART, as prior literature would suggest. Our results suggest that tDCS can alter activation and connectivity in regions distal to the electrodes. Copyright © 2014 Wiley Periodicals, Inc.

  20. Transcranial direct current stimulation (tDCS in behavioral and food addiction: A systematic review of efficacy, technical and methodological issues

    Directory of Open Access Journals (Sweden)

    Anne eSauvaget

    2015-10-01

    Full Text Available Objectives.Behavioral addictions (BA are complex disorders for which pharmacological and psychotherapeutic treatments have shown their limits. Non-invasive brain stimulation, among which transcranial direct current stimulation (tDCS, has opened up new perspectives in addiction treatment. The purpose of this work is to conduct a critical and systematic review of tDCS efficacy, and of technical and methodological considerations in the field of BA.Methods.A bibliographic search has been conducted on the Medline and ScienceDirect databases until December 2014, based on the following selection criteria: clinical studies on tDCS and BA (namely eating disorders, compulsive buying, Internet addiction, pathological gambling, sexual addiction, sports addiction, video games addiction. Study selection, data analysis and reporting were conducted according to the PRISMA guidelines.Results.Out of 402 potential articles, seven studies were selected. So far focusing essentially on abnormal eating, these studies suggest that tDCS (right prefrontal anode / left prefrontal cathode reduces food craving induced by visual stimuli.ConclusionsDespite methodological and technical differences between studies, the results are promising. So far, only few studies of tDCS in BA have been conducted. New research is recommended on the use of tDCS in BA, other than eating disorders.

  1. 4D-CT scans reveal reduced magnitude of respiratory liver motion achieved by different abdominal compression plate positions in patients with intrahepatic tumors undergoing helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yong, E-mail: hu.yong@zs-hospital.sh.cn; Zhou, Yong-Kang, E-mail: zhouyk2009@163.com; Chen, Yi-Xing, E-mail: chen.yixing@zs-hospital.sh.cn; Shi, Shi-Ming, E-mail: shiming32@126.com; Zeng, Zhao-Chong, E-mail: zeng.zhaochong@zs-hospital.sh.cn [Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032 (China)

    2016-07-15

    Purpose: While abdominal compression (AC) can be used to reduce respiratory liver motion in patients receiving helical tomotherapy for hepatocellular carcinoma, the nature and extent of this effect is not well described. The purpose of this study was to evaluate the changes in magnitude of three-dimensional liver motion with abdominal compression using four-dimensional (4D) computed tomography (CT) images of several plate positions. Methods: From January 2012 to October 2015, 72 patients with intrahepatic carcinoma and divided into four groups underwent 4D-CT scans to assess respiratory liver motion. Of the 72 patients, 19 underwent abdominal compression of the cephalic area between the subxiphoid and umbilicus (group A), 16 underwent abdominal compression of the caudal region between the subxiphoid area and the umbilicus (group B), 11 patients underwent abdominal compression of the caudal umbilicus (group C), and 26 patients remained free breathing (group D). 4D-CT images were sorted into ten-image series, according to the respiratory phase from the end inspiration to the end expiration, and then transferred to treatment planning software. All liver contours were drawn by a single physician and confirmed by a second physician. Liver relative coordinates were automatically generated to calculate the liver respiratory motion in different axial directions to compile the 10 ten contours into a single composite image. Differences in respiratory liver motion were assessed with a one-way analysis of variance test of significance. Results: The average respiratory liver motion in the Y axial direction was 4.53 ± 1.16, 7.56 ± 1.30, 9.95 ± 2.32, and 9.53 ± 2.62 mm in groups A, B, C, and D, respectively, with a significant change among the four groups (p < 0.001). Abdominal compression was most effective in group A (compression plate on the subxiphoid area), with liver displacement being 2.53 ± 0.93, 4.53 ± 1.16, and 2.14 ± 0.92 mm on the X-, Y-, and Z

  2. Alcohol extract of North American ginseng (Panax quinquefolius) reduces fatty liver, dyslipidemia, and other complications of metabolic syndrome in a mouse model.

    Science.gov (United States)

    Singh, Ratnesh K; Lui, Edmund; Wright, David; Taylor, Adrian; Bakovic, Marica

    2017-09-01

    We investigated whether North American ginseng (Panax quinquefolius) could reduce development of the metabolic syndrome phenotype in a mouse model (ETKO) of the disease. Young ETKO mice have no disease but similar to humans start to develop the fatty liver, hypertriglyceridemia, obesity, and insulin resistance at 25-30 weeks of age, and the disease continues to progress with ageing. ETKO mice were orally given an ethanol extract of ginseng roots at 4 and 32 weeks of age. Treatments with ginseng eliminated the ETKO fatty liver, reduced hepatic and intestinal lipoprotein secretion, and reduced the level of circulating lipids. Improvements by ginseng treatments were manifested as a reduction in the expression of genes involved in the regulation of fatty acid and triglyceride (fat) synthesis and secretion by the lipoproteins on one hand, and the stimulation of fatty acid oxidation and triglyceride degradation by lipolysis on the other hand. These processes altogether improved glucose, fatty acid, and triglyceride metabolism, reduced liver fat load, and reversed the progression of metabolic syndrome. These data confirm that treatments with North American ginseng could alleviate metabolic syndrome through the maintenance of a better balance between glucose and fatty acid metabolism, lipoprotein secretion, and energy homeostasis in disease-prone states.

  3. Changes in the management of liver trauma leading to reduced mortality: 15-year experience in a major trauma centre.

    Science.gov (United States)

    Suen, Kary; Skandarajah, Anita R; Knowles, Brett; Judson, Rodney; Thomson, Benjamin N

    2016-11-01

    Worldwide, the evolution of management of liver injury has resulted in improved outcomes. The aim of this study was to examine the trend in the management and outcomes of patients with liver injury. Primary outcomes were defined as mortality and hospital length of stay. The secondary aim was to identify independent predictors of mortality. This study utilized hospital trauma registry data of all trauma patients with liver injuries admitted from 1999 to 2013. Patients in this 15-year period were divided into three periods of 5 years each and compared in terms of demographics, management and outcomes. A total of 725 patients with hepatic trauma were included. Patient demographics were similar, except for an increase in patient transfers from rural locations. Non-operative management increased significantly. There was a significant increase in the use of damage control surgery with perihepatic packing in high-grade liver injuries managed operatively. Hepatic angioembolization commenced midway through the study period. The overall mortality decreased by approximately threefold (P trauma service has led to an evolution in the management of hepatic trauma, favouring non-operative management, damage control surgery and the use of hepatic angioembolization. We experienced a significantly improved mortality within 24 h of arrival to hospital in patients with liver trauma. © 2015 Royal Australasian College of Surgeons.

  4. Understanding public (misunderstanding of tDCS for enhancement

    Directory of Open Access Journals (Sweden)

    Laura Yenisa Cabrera

    2015-04-01

    Full Text Available In order to gain insight into the public’s perspective on using the minimally invasive technique transcranial direct current stimulation (tDCS as an enhancement tool, we analyzed and compared online comments in key popular press articles from two different periods (pre-commercialization and post-commercialization. The main conclusion drawn from this exploratory investigation is that public perception regarding tDCS has shifted from misunderstanding to cautionary realism. This change in attitude can be explained as moving from a focus on an emergent technology to a focus on its applications, benefits, and risks as the technology becomes more grounded within the public domain. Future governance of tDCS should include the concerns and enthusiasms of the public.Keywords: cognitive enhancement, neuroethics, public understanding, transcranial direct current stimulation, brain stimulation, public policy.

  5. Communication between Trigger/DAQ and DCS in ATLAS

    International Nuclear Information System (INIS)

    Burckhart, H.; Jones, R.; Hart, R.; Khomoutnikov, V.; Ryabov, Y.

    2001-01-01

    Within the ATLAS experiment Trigger/DAQ and DCS are both logically and physically separated. Nevertheless there is a need to communicate. The initial problem definition and analysis suggested three subsystems the Trigger/DAQ DCS Communication (DDC) project should support the ability to: 1. exchange data between Trigger/DAQ and DCS; 2. send alarm messages from DCS to Trigger/DAQ; 3. issue commands to DCS from Trigger/DAQ. Each subsystem is developed and implemented independently using a common software infrastructure. Among the various subsystems of the ATLAS Trigger/DAQ the Online is responsible for the control and configuration. It is the glue connecting the different systems such as data flow, level 1 and high-level triggers. The DDC uses the various Online components as an interface point on the Trigger/DAQ side with the PVSS II SCADA system on the DCS side and addresses issues such as partitioning, time stamps, event numbers, hierarchy, authorization and security. PVSS II is a commercial product chosen by CERN to be the SCADA system for all LHC experiments. Its API provides full access to its database, which is sufficient to implement the 3 subsystems of the DDC software. The DDC project adopted the Online Software Process, which recommends a basic software life-cycle: problem statement, analysis, design, implementation and testing. Each phase results in a corresponding document or in the case of the implementation and testing, a piece of code. Inspection and review take a major role in the Online software process. The DDC documents have been inspected to detect flaws and resulted in a improved quality. A first prototype of the DDC is ready and foreseen to be used at the test-beam during summer 2001

  6. Multidisciplinary care of obese children and adolescents for one year reduces ectopic fat content in liver and skeletal muscle.

    Science.gov (United States)

    Fonvig, Cilius Esmann; Chabanova, Elizaveta; Ohrt, Johanne Dam; Nielsen, Louise Aas; Pedersen, Oluf; Hansen, Torben; Thomsen, Henrik S; Holm, Jens-Christian

    2015-12-30

    Ectopic fat deposition in liver and skeletal muscle tissue is related to cardiovascular disease risk and is a common metabolic complication in obese children. We evaluated the hypotheses of ectopic fat in these organs could be diminished following 1 year of multidisciplinary care specialized in childhood obesity, and whether this reduction would associate with changes in other markers of metabolic function. This observational longitudinal study evaluated 40 overweight children and adolescents enrolled in a multidisciplinary treatment protocol at the Children's Obesity Clinic, Holbæk, Denmark. The participants were assessed by anthropometry, fasting blood samples (HbA1c, glucose, insulin, lipids, and biochemical variables of liver function), and liver and muscle fat content assessed by magnetic resonance spectroscopy at enrollment and following an average of 12.2 months of care. Univariate linear regression models adjusted for age, sex, treatment duration, baseline degree of obesity, and pubertal developmental stage were used for investigating possible associations. The standard deviation score (SDS) of baseline median body mass index (BMI) was 2.80 (range: 1.49-3.85) and the median age was 14 years (10-17). At the end of the observational period, the 40 children and adolescents (21 girls) significantly decreased their BMI SDS, liver fat, muscle fat, and visceral adipose tissue volume. The prevalence of hepatic steatosis changed from 28 to 20 % (p = 0.26) and the prevalence of muscular steatosis decreased from 75 to 45 % (p = 0.007). Changes in liver and muscle fat were independent of changes in BMI SDS, baseline degree of obesity, duration of treatment, age, sex, and pubertal developmental stage. A 1-year multidisciplinary intervention program in the setting of a childhood obesity outpatient clinic confers a biologically important reduction in liver and muscle fat; metabolic improvements that are independent of the magnitude of concurrent weight loss

  7. Multidisciplinary care of obese children and adolescents for one year reduces ectopic fat content in liver and skeletal muscle

    DEFF Research Database (Denmark)

    Fonvig, Cilius Esmann; Chabanova, Elizaveta; Ohrt, Johanne Dam

    2015-01-01

    .49-3.85) and the median age was 14 years (10-17). At the end of the observational period, the 40 children and adolescents (21 girls) significantly decreased their BMI SDS, liver fat, muscle fat, and visceral adipose tissue volume. The prevalence of hepatic steatosis changed from 28 to 20 % (p = 0.26) and the prevalence...... of muscular steatosis decreased from 75 to 45 % (p = 0.007). Changes in liver and muscle fat were independent of changes in BMI SDS, baseline degree of obesity, duration of treatment, age, sex, and pubertal developmental stage. CONCLUSIONS: A 1-year multidisciplinary intervention program in the setting...

  8. Comprehensive evaluation method in application of nuclear DCS product design

    International Nuclear Information System (INIS)

    Wang Weixin; Zhao Zhemin; Shi Yingbin

    2014-01-01

    In order to select the best design proposal in short time, the TOPSIS comprehensive evaluation method in the nuclear power plant DCS product design was introduced. It can intuitively show the different design proposals good or not good by data and shorten the time of the design proposal optimization. The design proposal selected by this method will be more reasonable and has good comprehensive performance indexes. The TOPSIS comprehensive evaluation method achieves good result in one of the nuclear power plant DCS cabinet design proposal optimization. (authors)

  9. New Concept For Alarm Structure And Management In Dcs Systems

    Directory of Open Access Journals (Sweden)

    Mohammed Hegazy

    2015-08-01

    Full Text Available The objective of this paper is to set new standard for good design and best practice to applied when any DCS ManufacturesSuppliers configure process alarm system in any oil refining oil and gas production gas-handling facilities gasification plant or any chemical processing plant and thereby to optimizeminimize unnecessary alarms from reporting to operator workstations CAD Control Alarm Display. These views based on the experience acquired and implemented during involvement with the commissioning and startup of two DCS projects in Mina Al-Ahmadi Refinery Kuwait.

  10. A reliability evaluation method for NPP safety DCS application software

    International Nuclear Information System (INIS)

    Li Yunjian; Zhang Lei; Liu Yuan

    2014-01-01

    In the field of nuclear power plant (NPP) digital i and c application, reliability evaluation for safety DCS application software is a key obstacle to be removed. In order to quantitatively evaluate reliability of NPP safety DCS application software, this paper propose a reliability evaluating method based on software development life cycle every stage's v and v defects density characteristics, by which the operating reliability level of the software can be predicted before its delivery, and helps to improve the reliability of NPP safety important software. (authors)

  11. Temporary Intraoperative Porto-Caval Shunts in Piggy-Back Liver Transplantation Reduce Intraoperative Blood Loss and Improve Postoperative Transaminases and Renal Function: A Meta-Analysis.

    Science.gov (United States)

    Pratschke, Sebastian; Rauch, Alexandra; Albertsmeier, Markus; Rentsch, Markus; Kirschneck, Michaela; Andrassy, Joachim; Thomas, Michael; Hartwig, Werner; Figueras, Joan; Del Rio Martin, Juan; De Ruvo, Nicola; Werner, Jens; Guba, Markus; Weniger, Maximilian; Angele, Martin K

    2016-12-01

    The value of temporary intraoperative porto-caval shunts (TPCS) in cava-sparing liver transplantation is discussed controversially. Aim of this meta-analysis was to analyze the impact of temporary intraoperative porto-caval shunts on liver injury, primary non-function, time of surgery, transfusion of blood products and length of hospital stay in cava-sparing liver transplantation. A systematic search of MEDLINE/PubMed, EMBASE and PsycINFO retrieved a total of 909 articles, of which six articles were included. The combined effect size and 95 % confidence interval were calculated for each outcome by applying the inverse variance weighting method. Tests for heterogeneity (I 2 ) were also utilized. Usage of a TPCS was associated with significantly decreased AST values, significantly fewer transfusions of packed red blood cells and improved postoperative renal function. There were no statistically significant differences in primary graft non-function, length of hospital stay or duration of surgery. This meta-analysis found that temporary intraoperative porto-caval shunts in cava-sparing liver transplantation reduce blood loss as well as hepatic injury and enhance postoperative renal function without prolonging operative time. Randomized controlled trials investigating the use of temporary intraoperative porto-caval shunts are needed to confirm these findings.

  12. Focused transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex modulates specific domains of self-regulation.

    Science.gov (United States)

    Pripfl, Jürgen; Lamm, Claus

    2015-02-01

    Recent neuroscience theories suggest that different kinds of self-regulation may share a common psychobiological mechanism. However, empirical evidence for a domain general self-regulation mechanism is scarce. The aim of this study was to investigate whether focused anodal transcranial direct current stimulation (tDCS), facilitating the activity of the dorsolateral prefrontal cortex (dlPFC), acts on a domain general self-regulation mechanism and thus modulates both affective and appetitive self-regulation. Twenty smokers participated in this within-subject sham controlled study. Effects of anodal left, anodal right and sham tDCS over the dlPFC on affective picture appraisal and nicotine craving-cue appraisal were assessed. Anodal right tDCS over the dlPFC reduced negative affect in emotion appraisal, but neither modulated regulation of positive emotion appraisal nor of craving appraisal. Anodal left stimulation did not induce any significant effects. The results of our study show that domain specific self-regulation networks are at work in the prefrontal cortex. Focused tDCS modulation of this specific self-regulation network could probably be used during the first phase of nicotine abstinence, during which negative affect might easily result in relapse. These findings have implications for neuroscience models of self-regulation and are of relevance for the development of brain stimulation based treatment methods for neuropsychiatric disorders associated with self-regulation deficits. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  13. Promotion of colon cancer metastases in rat liver by fish oil diet is not due to reduced stroma formation

    NARCIS (Netherlands)

    Klieverik, L.; Fehres, O.; Griffini, P.; van Noorden, C. J.; Frederiks, W. M.

    2001-01-01

    Recently, it was demonstrated that dietary omega-3 polyunsaturated fatty acids (PUFAs) induce 10-fold more metastases in number and 1000-fold in volume in an animal model of colon cancer metastasis in rat liver. It was observed that tumors of rats on a fish oil diet lacked peritumoral stroma unlike

  14. Haloperidol-loaded lipid-core polymeric nanocapsules reduce DNA damage in blood and oxidative stress in liver and kidneys of rats

    International Nuclear Information System (INIS)

    Roversi, Katiane; Benvegnú, Dalila M.; Roversi, Karine; Trevizol, Fabíola; Vey, Luciana T.; Elias, Fabiana; Fracasso, Rafael

    2015-01-01

    Haloperidol (HP) nanoencapsulation improves therapeutic efficacy, prolongs the drug action time, and reduces its motor side effects. However, in a view of HP toxicity in organs like liver and kidneys in addition to the lack of knowledge regarding the toxicity of polymeric nanocapsules, our aim was to verify the influence of HP-nanoformulation on toxicity and oxidative stress markers in the liver and kidneys of rats, also observing the damage caused in the blood. For such, 28 adult male Wistar rats were designated in four experimental groups (n = 7) and treated with vehicle (C group), free haloperidol suspension (FH group), blank nanocapsules suspension (B-Nc group), and haloperidol-loaded lipid-core nanocapsules suspension (H-Nc group). The nanocapsules formulation presented the size of approximately 250 nm. All suspensions were administered to the animals (0.5 mg/kg/day-i.p.) for a period of 28 days. Our results showed that FH caused damage in the liver, evidenced by increased lipid peroxidation, plasma levels of aspartate aminotransferase, and alanine aminotransferase, as well as decreased cellular integrity and vitamin C levels. In kidneys, FH treatment caused damage to a lesser extent, observed by decreased activity of δ-aminolevulinate dehydratase (ALA-D) and levels of VIT C. In addition, FH treatment was also related to a higher DNA damage index in blood. On the other hand, animals treated with H-Nc and B-Nc did not show damage in liver, kidneys, and DNA. Our study indicates that the nanoencapsulation of haloperidol was able to prevent the sub-chronic toxicity commonly observed in liver, kidneys, and DNA, thus reflecting a pharmacological superiority in relation to free drug

  15. Haloperidol-loaded lipid-core polymeric nanocapsules reduce DNA damage in blood and oxidative stress in liver and kidneys of rats

    Science.gov (United States)

    Roversi, Katiane; Benvegnú, Dalila M.; Roversi, Karine; Trevizol, Fabíola; Vey, Luciana T.; Elias, Fabiana; Fracasso, Rafael; Motta, Mariana H.; Ribeiro, Roseane F.; dos S. Hausen, Bruna; Moresco, Rafael N.; Garcia, Solange C.; da Silva, Cristiane B.; Burger, Marilise E.

    2015-04-01

    Haloperidol (HP) nanoencapsulation improves therapeutic efficacy, prolongs the drug action time, and reduces its motor side effects. However, in a view of HP toxicity in organs like liver and kidneys in addition to the lack of knowledge regarding the toxicity of polymeric nanocapsules, our aim was to verify the influence of HP-nanoformulation on toxicity and oxidative stress markers in the liver and kidneys of rats, also observing the damage caused in the blood. For such, 28 adult male Wistar rats were designated in four experimental groups ( n = 7) and treated with vehicle (C group), free haloperidol suspension (FH group), blank nanocapsules suspension (B-Nc group), and haloperidol-loaded lipid-core nanocapsules suspension (H-Nc group). The nanocapsules formulation presented the size of approximately 250 nm. All suspensions were administered to the animals (0.5 mg/kg/day-i.p.) for a period of 28 days. Our results showed that FH caused damage in the liver, evidenced by increased lipid peroxidation, plasma levels of aspartate aminotransferase, and alanine aminotransferase, as well as decreased cellular integrity and vitamin C levels. In kidneys, FH treatment caused damage to a lesser extent, observed by decreased activity of δ-aminolevulinate dehydratase (ALA-D) and levels of VIT C. In addition, FH treatment was also related to a higher DNA damage index in blood. On the other hand, animals treated with H-Nc and B-Nc did not show damage in liver, kidneys, and DNA. Our study indicates that the nanoencapsulation of haloperidol was able to prevent the sub-chronic toxicity commonly observed in liver, kidneys, and DNA, thus reflecting a pharmacological superiority in relation to free drug.

  16. Haloperidol-loaded lipid-core polymeric nanocapsules reduce DNA damage in blood and oxidative stress in liver and kidneys of rats

    Energy Technology Data Exchange (ETDEWEB)

    Roversi, Katiane, E-mail: katianeroversi@gmail.com [Universidade Federal de Santa Maria, Programa de Pós-Graduação em Farmacologia (Brazil); Benvegnú, Dalila M., E-mail: dalilabenvegnu@yahoo.com.br [Universidade Federal da Fronteira Sul (UFFS), Bioquímica e Farmacologia (Brazil); Roversi, Karine, E-mail: karineroversi-@hotmail.com [Universidade Federal de Santa Maria (UFSM), Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde (Brazil); Trevizol, Fabíola, E-mail: fatrevizol@yahoo.com.br [Universidade Federal de Santa Maria, Programa de Pós-Graduação em Farmacologia (Brazil); Vey, Luciana T., E-mail: luciana.taschetto@hotmail.com [Universidade Federal de Santa Maria (UFSM), Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde (Brazil); Elias, Fabiana, E-mail: fabiana.elias@uffs.edu.br [Universidade Federal da Fronteira Sul (UFFS), Bioquímica e Farmacologia (Brazil); Fracasso, Rafael, E-mail: rafael.fra@hotmail.com [Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas (Brazil); and others

    2015-04-15

    Haloperidol (HP) nanoencapsulation improves therapeutic efficacy, prolongs the drug action time, and reduces its motor side effects. However, in a view of HP toxicity in organs like liver and kidneys in addition to the lack of knowledge regarding the toxicity of polymeric nanocapsules, our aim was to verify the influence of HP-nanoformulation on toxicity and oxidative stress markers in the liver and kidneys of rats, also observing the damage caused in the blood. For such, 28 adult male Wistar rats were designated in four experimental groups (n = 7) and treated with vehicle (C group), free haloperidol suspension (FH group), blank nanocapsules suspension (B-Nc group), and haloperidol-loaded lipid-core nanocapsules suspension (H-Nc group). The nanocapsules formulation presented the size of approximately 250 nm. All suspensions were administered to the animals (0.5 mg/kg/day-i.p.) for a period of 28 days. Our results showed that FH caused damage in the liver, evidenced by increased lipid peroxidation, plasma levels of aspartate aminotransferase, and alanine aminotransferase, as well as decreased cellular integrity and vitamin C levels. In kidneys, FH treatment caused damage to a lesser extent, observed by decreased activity of δ-aminolevulinate dehydratase (ALA-D) and levels of VIT C. In addition, FH treatment was also related to a higher DNA damage index in blood. On the other hand, animals treated with H-Nc and B-Nc did not show damage in liver, kidneys, and DNA. Our study indicates that the nanoencapsulation of haloperidol was able to prevent the sub-chronic toxicity commonly observed in liver, kidneys, and DNA, thus reflecting a pharmacological superiority in relation to free drug.

  17. The ATLAS Tile Calorimeter DCS for Run 2

    CERN Document Server

    Pedro Martins, Filipe Manuel; The ATLAS collaboration

    2016-01-01

    TileCal is one of the ATLAS sub-detectors operating at the Large Hadron Collider (LHC), which is taking data since 2010. The Detector Control System (DCS) was developed to ensure the coherent and safe operation of the whole ATLAS detector. Seventy thousand (70000) parameters are used for control and monitoring purposes of TileCal, requiring an automated system. The TileCal DCS is mainly responsible for the control and monitoring of the high and low voltage systems but it also supervises the detector infrastructure (cooling and racks), calibration systems, data acquisition and safety. During the first period of data taking (Run 1, 2010-12) the TileCal DCS allowed a smooth detector operation and should continue to do so for the second period (Run 2) that started in 2015. The TileCal DCS was updated in order to cope with the hardware and software requirements for Run 2 operation. These updates followed the general ATLAS guidelines on the software and hardware upgrade but also the new requirements from the TileCa...

  18. The ATLAS Tile Calorimeter DCS for Run 2

    CERN Document Server

    Pedro Martins, Filipe Manuel; The ATLAS collaboration

    2016-01-01

    TileCal is one of the ATLAS subdetectors operating at the Large Hadron Collider (LHC), which is taking data since 2010. Seventy thousand (70000) parameters are used for control and monitoring purposes, requiring an automated system. The Detector Control System (DCS) was developed to ensure the coherent and safe operation of the whole ATLAS detector. The TileCal DCS is mainly responsible for the control and monitoring of the high and low voltage systems but it also supervises the detector infrastructure (cooling and racks), calibration systems, data acquisition and safety. During the first period of data taking (Run 1, 2010-12) the TileCal DCS allowed a smooth detector operation and should continue to do so for the second period (Run 2) that started in 2015. The TileCal DCS was updated in order to cope with the hardware and software requirements for Run 2 operation. These updates followed the general ATLAS guidelines on the software and hardware upgrade but also the new requirements from the TileCal detector. ...

  19. Effects of High-Definition and Conventional tDCS on Response Inhibition.

    Science.gov (United States)

    Hogeveen, J; Grafman, J; Aboseria, M; David, A; Bikson, M; Hauner, K K

    2016-01-01

    Response inhibition is a critical executive function, enabling the adaptive control of behavior in a changing environment. The inferior frontal cortex (IFC) is considered to be critical for response inhibition, leading researchers to develop transcranial direct current stimulation (tDCS) montages attempting to target the IFC and improve inhibitory performance. However, conventional tDCS montages produce diffuse current through the brain, making it difficult to establish causality between stimulation of any one given brain region and resulting behavioral changes. Recently, high-definition tDCS (HD-tDCS) methods have been developed to target brain regions with increased focality relative to conventional tDCS. Remarkably few studies have utilized HD-tDCS to improve cognitive task performance, however, and no study has directly compared the behavioral effects of HD-tDCS to conventional tDCS. In the present study, participants received either HD-tDCS or conventional tDCS to the IFC during performance of a response inhibition task (stop-signal task, SST) or a control task (choice reaction time task, CRT). A third group of participants completed the same behavioral protocols, but received tDCS to a control site (mid-occipital cortex). Post-stimulation improvement in SST performance was analyzed as a function of tDCS group and the task performed during stimulation using both conventional and Bayesian parameter estimation analyses. Bayesian estimation of the effects of HD- and conventional tDCS to IFC relative to control site stimulation demonstrated enhanced response inhibition for both conditions. No improvements were found after control task (CRT) training in any tDCS condition. Results support the use of both HD- and conventional tDCS to the IFC for improving response inhibition, providing empirical evidence that HD-tDCS can be used to facilitate performance on an executive function task. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Configuration-defined control algorithms with the ASDEX Upgrade DCS

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, Wolfgang, E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Cole, Richard [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf Germany (Germany); Gräter, Alexander [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Lüddecke, Klaus [Unlimited Computer Systems, Seeshaupter Str. 15, 82393 Iffeldorf Germany (Germany); Neu, Gregor; Rapson, Christopher; Raupp, Gerhard; Zehetbauer, Thomas [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-11-15

    Highlights: • Control algorithm built from combination of pre-fabricated standard function blocks. • Seamless integration in multi-threaded computation context. • Block composition defined by configuration data, only. - Abstract: The ASDEX Upgrade Discharge Control System (DCS) is a distributed real-time control system executing complex control and monitoring tasks. Up to now, DCS control algorithms have been implemented by coding dedicated application processes with the C++ programming language. Algorithm changes required code modification, compilation and commissioning which only experienced programmers could perform. This was a significant constraint of flexibility for both control system operation and design. The new approach extends DCS with the capability of configuration-defined control algorithms. These are composed of chains of small, configurable standard function blocks providing general purpose functions like algebraic operations, filters, feedback controllers, output limiters and decision logic. In a later phase a graphical editor could help to compose and modify such configuration in a Simulink-like fashion. Building algorithms from standard functions can result in a high number of elements. In order to achieve a similar performance as with C++ coding, it is essential to avoid administrative bottlenecks by design. As a consequence, DCS executes a function block chain in the context of a single real-time thread of an application process. No concurrency issues as in a multi-threaded context need to be considered resulting in strongly simplified signal handling and zero performance overhead for inter-block communication. Instead of signal-driven synchronization, a block scheduler derives the execution sequence automatically from the block dependencies as defined in the configuration. All blocks and connecting signals are instantiated dynamically, based on definitions in a configuration file. Algorithms thus are not defined in the code but only in

  1. Transcranial direct current stimulation (tDCS) for idiopathic Parkinson's disease.

    Science.gov (United States)

    Elsner, Bernhard; Kugler, Joachim; Pohl, Marcus; Mehrholz, Jan

    2016-07-18

    tDCS) plus movement therapy on our secondary outcome, gait speed at the end of the intervention phase, revealing no evidence of an effect (MD 0.05 m/s, 95% CI -0.15 to 0.25; inverse variance method with random-effects model; very low quality evidence). We found no evidence of an effect regarding differences in dropouts and adverse effects between intervention and control groups (RD 0.00, 95% CI -0.21 to 0.21; Mantel-Haenszel method with random-effects model; very low quality evidence). There is insufficient evidence to determine the effects of tDCS for reducing off time ( when the symptoms are not controlled by the medication) and on time with dyskinesia ( time that symptoms are controlled but the person still experiences involuntary muscle movements ) , and for improving health- related quality of life, disability, and impairment in patients with IPD. Evidence of very low quality indicates no difference in dropouts and adverse events between tDCS and control groups.

  2. Gal-3 regulates the capacity of dendritic cells to promote NKT-cell-induced liver injury.

    Science.gov (United States)

    Volarevic, Vladislav; Markovic, Bojana Simovic; Bojic, Sanja; Stojanovic, Maja; Nilsson, Ulf; Leffler, Hakon; Besra, Gurdyal S; Arsenijevic, Nebojsa; Paunovic, Verica; Trajkovic, Vladimir; Lukic, Miodrag L

    2015-02-01

    Galectin-3 (Gal-3), an endogenous lectin, exhibits pro- and anti-inflammatory effects in various disease conditions. In order to explore the role of Gal-3 in NKT-cell-dependent pathology, we induced hepatitis in C57BL/6 WT and Gal-3-deficient mice by using specific ligand for NKT cells: α-galactosylceramide, glycolipid Ag presented by CD1d. The injection of α-galactosylceramide significantly enhanced expression of Gal-3 in liver NKT and dendritic cells (DCs). Genetic deletion or selective inhibition of Gal-3 (induced by Gal-3-inhibitor TD139) abrogated the susceptibility to NKT-cell-dependent hepatitis. Blood levels of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-12) and their production by liver DCs and NKT cells were also downregulated. Genetic deletion or selective inhibition of Gal-3 alleviated influx of inflammatory CD11c(+) CD11b(+) DCs in the liver and favored tolerogenic phenotype and IL-10 production of liver NKT and DCs. Deletion of Gal-3 attenuated the capacity of DCs to support liver damage in the passive transfer experiments and to produce pro-inflammatory cytokines in vitro. Gal-3-deficient DCs failed to optimally stimulate production of pro-inflammatory cytokines in NKT cells, in vitro and in vivo. In conclusion, Gal-3 regulates the capacity of DCs to support NKT-cell-mediated liver injury, playing an important pro-inflammatory role in acute liver injury. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Treatment of visuospatial neglect with biparietal tDCS and cognitive training: a single-case study

    Directory of Open Access Journals (Sweden)

    Anna-Katharine eBrem

    2014-09-01

    Full Text Available Symptoms of visuospatial neglect occur frequently after unilateral brain damage. Neglect hampers rehabilitation progress and is associated with reduced quality of life. However, existing treatment methods show limited efficacy. Transcranial direct current stimulation (tDCS is a neuromodulatory technique, which can be used to increase or decrease brain excitability. Its combination with conventional neglect therapy may enhance treatment efficacy.A 72-year-old male with a subacute ischaemic stroke of the right posterior cerebral artery suffering from visuospatial neglect, hemianopia, and hemiparesis was treated with biparietal tDCS and cognitive neglect therapy in a double-blind, sham-controlled single-case study. Four weeks of daily treatment sessions (5 days per week, 30 min were started 26 days post-stroke. During week 1 and 4 the patient received conventional neglect therapy, during week 2, conventional neglect therapy was combined once with sham and once with real biparietal tDCS. Week 3 consisted of daily sessions of real biparietal tDCS (1 mA, 20 min combined with neglect therapy. Outcome measures were assessed before, immediately after, as well as 1 week and 3 months after the end of treatment. They included subtests of the Test for Attentional Performance (TAP: covert attention (main outcome, alertness, visual field; the Neglect-Test (NET: line bisection, cancellation, copying; and activities of daily living (ADL. After real stimulation, covert attention allocation towards left-sided invalid stimuli was significantly improved, and line bisection and copying improved qualitatively as compared to sham stimulation. ADL were only improved at the 3-month follow-up. This single-case study demonstrates for the first time that combined application of tDCS and cognitive training may enhance training-induced improvements in measures of visuospatial neglect and is applicable in a clinical context.

  4. Task-specificity of unilateral anodal and dual-M1 tDCS effects on motor learning.

    Science.gov (United States)

    Karok, Sophia; Fletcher, David; Witney, Alice G

    2017-01-08

    Task-specific effects of transcranial direct current stimulation (tDCS) on motor learning were investigated in 30 healthy participants. In a sham-controlled, mixed design, participants trained on 3 different motor tasks (Purdue Pegboard Test, Visuomotor Grip Force Tracking Task and Visuomotor Wrist Rotation Speed Control Task) over 3 consecutive days while receiving either unilateral anodal over the right primary motor cortex (M1), dual-M1 or sham stimulation. Retention sessions were administered 7 and 28 days after the end of training. In the Purdue Pegboard Test, both anodal and dual-M1 stimulation reduced average completion time approximately equally, an improvement driven by online learning effects and maintained for about 1 week. The Visuomotor Grip Force Tracking Task and the Visuomotor Wrist Rotation Speed Control Task were associated with an advantage of dual-M1 tDCS in consolidation processes both between training sessions and when testing at long-term retention; both were maintained for at least 1 month. This study demonstrates that M1-tDCS enhances and sustains motor learning with different electrode montages. Stimulation-induced effects emerged at different learning phases across the tasks, which strongly suggests that the influence of tDCS on motor learning is dynamic with respect to the functional recruitment of the distributed motor system at the time of stimulation. Divergent findings regarding M1-tDCS effects on motor learning may partially be ascribed to task-specific consequences and the effects of offline consolidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Can low-dose CT with iterative reconstruction reduce both the radiation dose and the amount of iodine contrast medium in a dynamic CT study of the liver?

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroto; Okada, Masahiro; Hyodo, Tomoko; Hidaka, Syojiro; Kagawa, Yuki; Matsuki, Mitsuru; Tsurusaki, Masakatsu; Murakami, Takamichi, E-mail: murakami@med.kindai.ac.jp

    2014-04-15

    Purpose: To investigate whether low-dose dynamic CT of the liver with iterative reconstruction can reduce both the radiation dose and the amount of contrast medium. Materials and methods: This study was approved by our institutional review board. 113 patients were randomly assigned to one of two groups. Group A/group B (fifty-eight/fifty-five patients) underwent liver dynamic CT at 120/100 kV, with 0/40% adaptive statistical iterative reconstruction (ASIR), with a contrast dose of 600/480 mg I/kg, respectively. Radiation exposure was estimated based on the manufacturer's phantom data. The enhancement value of the hepatic parenchyma, vessels and the tumor-to-liver contrast of hepatocellular carcinomas (HCCs) were compared between two groups. Two readers independently assessed the CT images of the hepatic parenchyma and HCCs. Results: The mean CT dose indices: 6.38/4.04 mGy, the dose-length products: 194.54/124.57 mGy cm, for group A/group B. The mean enhancement value of the hepatic parenchyma and the tumor-to-liver contrast of HCCs with diameters greater than 1 cm in the post-contrast all phases did not differ significantly between two groups (P > 0.05). The enhancement values of vessels in group B were significantly higher than that in group A in the delayed phases (P < 0.05). Two reader's confidence levels for the hepatic parenchyma in the delayed phases and HCCs did not differ significantly between the groups (P > 0.05). Conclusions: Low-dose dynamic CT with ASIR can reduce both the radiation dose and the amount of contrast medium without image quality degradation, compared to conventional dynamic CT without ASIR.

  6. Exploratory study of once-daily transcranial direct current stimulation (tDCS) as a treatment for auditory hallucinations in schizophrenia.

    Science.gov (United States)

    Fröhlich, F; Burrello, T N; Mellin, J M; Cordle, A L; Lustenberger, C M; Gilmore, J H; Jarskog, L F

    2016-03-01

    Auditory hallucinations are resistant to pharmacotherapy in about 25% of adults with schizophrenia. Treatment with noninvasive brain stimulation would provide a welcomed additional tool for the clinical management of auditory hallucinations. A recent study found a significant reduction in auditory hallucinations in people with schizophrenia after five days of twice-daily transcranial direct current stimulation (tDCS) that simultaneously targeted left dorsolateral prefrontal cortex and left temporo-parietal cortex. We hypothesized that once-daily tDCS with stimulation electrodes over left frontal and temporo-parietal areas reduces auditory hallucinations in patients with schizophrenia. We performed a randomized, double-blind, sham-controlled study that evaluated five days of daily tDCS of the same cortical targets in 26 outpatients with schizophrenia and schizoaffective disorder with auditory hallucinations. We found a significant reduction in auditory hallucinations measured by the Auditory Hallucination Rating Scale (F2,50=12.22, PtDCS for treatment of auditory hallucinations and the pronounced response in the sham-treated group in this study contrasts with the previous finding and demonstrates the need for further optimization and evaluation of noninvasive brain stimulation strategies. In particular, higher cumulative doses and higher treatment frequencies of tDCS together with strategies to reduce placebo responses should be investigated. Additionally, consideration of more targeted stimulation to engage specific deficits in temporal organization of brain activity in patients with auditory hallucinations may be warranted. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Liver Transplant

    Science.gov (United States)

    ... Liver Function Tests Clinical Trials Liver Transplant FAQs Medical Terminology Diseases of the Liver Alagille Syndrome Alcohol-Related ... the Liver The Progression of Liver Disease FAQs Medical Terminology HOW YOU CAN HELP Sponsorship Ways to Give ...

  8. Ventral medial prefrontal cortex (vmPFC) as a target of the dorsolateral prefrontal modulation by transcranial direct current stimulation (tDCS) in drug addiction.

    Science.gov (United States)

    Nakamura-Palacios, Ester Miyuki; Lopes, Isabela Bittencourt Coutinho; Souza, Rodolpho Albuquerque; Klauss, Jaisa; Batista, Edson Kruger; Conti, Catarine Lima; Moscon, Janine Andrade; de Souza, Rodrigo Stênio Moll

    2016-10-01

    Here, we report some electrophysiologic and imaging effects of the transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (dlPFC) in drug addiction, notably in alcohol and crack-cocaine dependence. The low resolution electromagnetic tomography (LORETA) analysis obtained through event-related potentials (ERPs) under drug-related cues, more specifically in its P3 segment (300-500 ms) in both, alcoholics and crack-cocaine users, showed that the ventral medial prefrontal cortex (vmPFC) was the brain area with the largest change towards increasing activation under drug-related cues in those subjects that kept abstinence during and after the treatment with bilateral tDCS (2 mA, 35 cm(2), cathodal left and anodal right) over dlPFC, applied repetitively (five daily sessions). In an additional study in crack-cocaine, which showed craving decreases after repetitive bilateral tDCS, we examined data originating from diffusion tensor imaging (DTI), and we found increased DTI parameters in the left connection between vmPFC and nucleus accumbens (NAcc), such as the number of voxels, fractional anisotropy (FA) and apparent diffusion coefficient (ADC), in tDCS-treated crack-cocaine users when compared to the sham-tDCS group. This increasing of DTI parameters was significantly correlated with craving decreasing after the repetitive tDCS. The vmPFC relates to the control of drug seeking, possibly by extinguishing this behavior. In our studies, the bilateral dlPFC tDCS reduced relapses and craving to the drug use, and increased the vmPFC activation under drug cues, which may be of a great importance in the control of drug use in drug addiction.

  9. Parameter Optimization Analysis of Prolonged Analgesia Effect of tDCS on Neuropathic Pain Rats

    Science.gov (United States)

    Wen, Hui-Zhong; Gao, Shi-Hao; Zhao, Yan-Dong; He, Wen-Juan; Tian, Xue-Long; Ruan, Huai-Zhen

    2017-01-01

    Background: Transcranial direct current stimulation (tDCS) is widely used to treat human nerve disorders and neuropathic pain by modulating the excitability of cortex. The effectiveness of tDCS is influenced by its stimulation parameters, but there have been no systematic studies to help guide the selection of different parameters. Objective: This study aims to assess the effects of tDCS of primary motor cortex (M1) on chronic neuropathic pain in rats and to test for the optimal parameter combinations for analgesia. Methods: Using the chronic neuropathic pain models of chronic constriction injury (CCI), we measured pain thresholds before and after anodal-tDCS (A-tDCS) using different parameter conditions, including stimulation intensity, stimulation time, intervention time and electrode located (ipsilateral or contralateral M1 of the ligated paw on male/female CCI models). Results: Following the application of A-tDCS over M1, we observed that the antinociceptive effects were depended on different parameters. First, we found that repetitive A-tDCS had a longer analgesic effect than single stimulus, and both ipsilateral-tDCS (ip-tDCS) and contralateral-tDCS (con-tDCS) produce a long-lasting analgesic effect on neuropathic pain. Second, the antinociceptive effects were intensity-dependent and time-dependent, high intensities worked better than low intensities and long stimulus durations worked better than short stimulus durations. Third, timing of the intervention after injury affected the stimulation outcome, early use of tDCS was an effective method to prevent the development of pain, and more frequent intervention induced more analgesia in CCI rats, finally, similar antinociceptive effects of con- and ip-tDCS were observed in both sexes of CCI rats. Conclusion: Optimized protocols of tDCS for treating antinociceptive effects were developed. These findings should be taken into consideration when using tDCS to produce analgesic effects in clinical applications. PMID

  10. Transcranial direct current stimulation (tDCS) modulation of picture naming and word reading: A meta-analysis of single session tDCS applied to healthy participants.

    Science.gov (United States)

    Westwood, Samuel J; Romani, Cristina

    2017-09-01

    Recent reviews quantifying the effects of single sessions of transcranial direct current stimulation (or tDCS) in healthy volunteers find only minor effects on cognition despite the popularity of this technique. Here, we wanted to quantify the effects of tDCS on language production tasks that measure word reading and picture naming. We reviewed 14 papers measuring tDCS effects across a total of 96 conditions to a) quantify effects of conventional stimulation on language regions (i.e., left hemisphere anodal tDCS administered to temporal/frontal areas) under normal conditions or under conditions of cognitive (semantic) interference; b) identify parameters which may moderate the size of the tDCS effect within conventional stimulation protocols (e.g., online vs offline, high vs. low current densities, and short vs. long durations), as well as within types of stimulation not typically explored by previous reviews (i.e., right hemisphere anodal tDCS or left/right hemisphere cathodal tDCS). In all analyses there was no significant effect of tDCS, but we did find a small but significant effect of time and duration of stimulation with stronger effects for offline stimulation and for shorter durations (tDCS and its poor efficacy in healthy participants. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task.

    Science.gov (United States)

    Gözenman, Filiz; Berryhill, Marian E

    2016-08-26

    There is growing interest in non-invasive brain stimulation techniques. A drawback is that the relationship between stimulation and cognitive outcomes for various tasks are unknown. Transcranial direct current stimulation (tDCS) provides diffuse current spread, whereas high-definition tDCS (HD-tDCS) provides more targeted current. The direction of behavioral effects after tDCS can be difficult to predict in cognitive realms such as attention and working memory (WM). Previously, we showed that in low and high WM capacity groups tDCS modulates performance in nearly equal and opposite directions on a change detection task, with improvement for the high capacity participants alone. Here, we used the retro-cue paradigm to test attentional shifting among items in WM to investigate whether WM capacity (WMC) predicted different behavioral consequences during anodal tDCS or HD-tDCS to posterior parietal cortex (PPC). In two experiments, with 24 participants each, we used different stimulus categories (colored circles, letters) and stimulation sites (right, left PPC). The results showed a significant (Experiment 1) or trending (Experiment 2) WMC x stimulation interaction. Compared to tDCS, after HD-tDCS the retro-cueing benefit was significantly greater for the low WMC group but numerically worse for the high WMC group. These data highlight the importance of considering group differences when using non-invasive neurostimulation techniques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Liver fat is reduced by an isoenergetic MUFA diet in a controlled randomized study in type 2 diabetic patients.

    Science.gov (United States)

    Bozzetto, Lutgarda; Prinster, Anna; Annuzzi, Giovanni; Costagliola, Lucia; Mangione, Anna; Vitelli, Alessandra; Mazzarella, Raffaella; Longobardo, Margaret; Mancini, Marcello; Vigorito, Carlo; Riccardi, Gabriele; Rivellese, Angela A

    2012-07-01

    To evaluate the effects of qualitative dietary changes and the interaction with aerobic exercise training on liver fat content independent of weight loss in patients with type 2 diabetes. With use of a factorial 2 × 2 randomized parallel-group design, 37 men and 8 women, aged 35-70 years, with type 2 diabetes in satisfactory blood glucose control on diet or diet plus metformin treatment were assigned to one of the following groups for an 8-week period: 1) high-carbohydrate/high-fiber/low-glycemic index diet (CHO/fiber group), 2) high-MUFA diet (MUFA group), 3) high-carbohydrate/high-fiber/low-glycemic index diet plus physical activity program (CHO/fiber+Ex group), and 4) high-MUFA diet plus physical activity program (MUFA+Ex group). Before and after intervention, hepatic fat content was measured by (1)H NMR. Dietary compliance was optimal and body weight remained stable in all groups. Liver fat content decreased more in MUFA (-29%) and MUFA+Ex (-25%) groups than in CHO/fiber (-4%) and CHO/fiber+Ex groups (-6%). Two-way repeated-measures ANOVA, including baseline values as covariate, showed a significant effect on liver fat content for diet (P = 0.006), with no effects for exercise training (P = 0.789) or diet-exercise interaction (P = 0.712). An isocaloric diet enriched in MUFA compared with a diet higher in carbohydrate and fiber was associated with a clinically relevant reduction of hepatic fat content in type 2 diabetic patients independent of an aerobic training program and should be considered for the nutritional management of hepatic steatosis in people with type 2 diabetes.

  13. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice.

    Science.gov (United States)

    Passman, Adam M; Strauss, Robyn P; McSpadden, Sarah B; Finch-Edmondson, Megan L; Woo, Ken H; Diepeveen, Luke A; London, Roslyn; Callus, Bernard A; Yeoh, George C

    2015-12-01

    The choline-deficient, ethionine-supplemented (CDE) dietary model induces chronic liver damage, and stimulates liver progenitor cell (LPC)-mediated repair. Long-term CDE administration leads to hepatocellular carcinoma in rodents and lineage-tracing studies show that LPCs differentiate into functional hepatocytes in this model. The CDE diet was first modified for mice by our laboratory by separately administering choline-deficient chow and ethionine in the drinking water (CD+E diet). Although this CD+E diet is widely used, concerns with variability in weight loss, morbidity, mortality and LPC response have been raised by researchers who have adopted this model. We propose that these inconsistencies are due to differential consumption of chow and ethionine in the drinking water, and that incorporating ethionine in the choline-deficient chow, and altering the strength, will achieve better outcomes. Therefore, C57Bl/6 mice, 5 and 6 weeks of age, were fed an all-inclusive CDE diet of various strengths (67% to 100%) for 3 weeks. The LPC response was quantitated and cell lines were derived. We found that animal survival, LPC response and liver damage are correlated with CDE diet strength. The 67% and 75% CDE diet administered to mice older than 5 weeks and greater than 18 g provides a consistent and acceptable level of animal welfare and induces a substantial LPC response, permitting their isolation and establishment of cell lines. This study shows that an all-inclusive CDE diet for mice reproducibly induces an LPC response conducive to in vivo studies and isolation, whilst minimizing morbidity and mortality. © 2015. Published by The Company of Biologists Ltd.

  14. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2015-12-01

    Full Text Available The choline-deficient, ethionine-supplemented (CDE dietary model induces chronic liver damage, and stimulates liver progenitor cell (LPC-mediated repair. Long-term CDE administration leads to hepatocellular carcinoma in rodents and lineage-tracing studies show that LPCs differentiate into functional hepatocytes in this model. The CDE diet was first modified for mice by our laboratory by separately administering choline-deficient chow and ethionine in the drinking water (CD+E diet. Although this CD+E diet is widely used, concerns with variability in weight loss, morbidity, mortality and LPC response have been raised by researchers who have adopted this model. We propose that these inconsistencies are due to differential consumption of chow and ethionine in the drinking water, and that incorporating ethionine in the choline-deficient chow, and altering the strength, will achieve better outcomes. Therefore, C57Bl/6 mice, 5 and 6 weeks of age, were fed an all-inclusive CDE diet of various strengths (67% to 100% for 3 weeks. The LPC response was quantitated and cell lines were derived. We found that animal survival, LPC response and liver damage are correlated with CDE diet strength. The 67% and 75% CDE diet administered to mice older than 5 weeks and greater than 18 g provides a consistent and acceptable level of animal welfare and induces a substantial LPC response, permitting their isolation and establishment of cell lines. This study shows that an all-inclusive CDE diet for mice reproducibly induces an LPC response conducive to in vivo studies and isolation, whilst minimizing morbidity and mortality.

  15. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    Science.gov (United States)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  16. The Effectivity of Green Coconut Water To Reduce Mercury Level In The Blood And To Improve Blood Profiles And Liver Cells Appearance (Study In Sprague Dawley Rats)

    Science.gov (United States)

    Abdulrzag, Ehmeeda M.; Nur Kristina, Tri; Suwondo, Ari; Sunoko, Henna Rya

    2018-02-01

    When people are exposed to mercury chloride, it can produce a variety of health effects in the blood and liver. Coconut water contains Zn, Fe, Vit. C, Vit B11, Vit. B6, and Se to reduce mercury chloride level in the blood and improve blood profile and liver cells. Aim of this study was to analysis the effect of green coconut water supplementation in overcoming the toxic effect of Hg chlorid in the blood and liver of Sprague dawley rats exposed to Hg chloride. Samples were randomly about 36 animals rats exposed to HgCl2 through forced feeding by 20 mg/kgBW sondage per day for 14 days, which divided into control group, and intervention groups were given fresh green coconut water in each by 6, 8, and 10 mL/kgBW for intervention 7 and 17 days. The result of this study showed that there is a significant effect and the decrease in mercury levels in the blood. There is no significant affect on the hemoglobin level, hematocrit level and platelet count with the treatment of green coconut water in the mice with exposure Hg. There is no significant effect between treatments using green coconut water with SGPT levels; there is a decrease in SGPT levels at the increasing number of doses of green coconut water and the length of treatment.

  17. Hypoxis hemerocallidea Significantly Reduced Hyperglycaemia and Hyperglycaemic-Induced Oxidative Stress in the Liver and Kidney Tissues of Streptozotocin-Induced Diabetic Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Oluwafemi O. Oguntibeju

    2016-01-01

    Full Text Available Background. Hypoxis hemerocallidea is a native plant that grows in the Southern African regions and is well known for its beneficial medicinal effects in the treatment of diabetes, cancer, and high blood pressure. Aim. This study evaluated the effects of Hypoxis hemerocallidea on oxidative stress biomarkers, hepatic injury, and other selected biomarkers in the liver and kidneys of healthy nondiabetic and streptozotocin- (STZ- induced diabetic male Wistar rats. Materials and Methods. Rats were injected intraperitoneally with 50 mg/kg of STZ to induce diabetes. The plant extract-Hypoxis hemerocallidea (200 mg/kg or 800 mg/kg aqueous solution was administered (daily orally for 6 weeks. Antioxidant activities were analysed using a Multiskan Spectrum plate reader while other serum biomarkers were measured using the RANDOX chemistry analyser. Results. Both dosages (200 mg/kg and 800 mg/kg of Hypoxis hemerocallidea significantly reduced the blood glucose levels in STZ-induced diabetic groups. Activities of liver enzymes were increased in the diabetic control and in the diabetic group treated with 800 mg/kg, whereas the 200 mg/kg dosage ameliorated hepatic injury. In the hepatic tissue, the oxygen radical absorbance capacity (ORAC, ferric reducing antioxidant power (FRAP, catalase, and total glutathione were reduced in the diabetic control group. However treatment with both doses improved the antioxidant status. The FRAP and the catalase activities in the kidney were elevated in the STZ-induced diabetic group treated with 800 mg/kg of the extract possibly due to compensatory responses. Conclusion. Hypoxis hemerocallidea demonstrated antihyperglycemic and antioxidant effects especially in the liver tissue.

  18. Reduced mitochondrial mass and function add to age-related susceptibility toward diet-induced fatty liver in C57BL/6J mice.

    Science.gov (United States)

    Lohr, Kerstin; Pachl, Fiona; Moghaddas Gholami, Amin; Geillinger, Kerstin E; Daniel, Hannelore; Kuster, Bernhard; Klingenspor, Martin

    2016-10-01

    Nonalcoholic fatty liver disease (NAFLD) is a major health burden in the aging society with an urging medical need for a better understanding of the underlying mechanisms. Mitochondrial fatty acid oxidation and mitochondrial-derived reactive oxygen species (ROS) are considered critical in the development of hepatic steatosis, the hallmark of NAFLD. Our study addressed in C57BL/6J mice the effect of high fat diet feeding and age on liver mitochondria at an early stage of NAFLD development. We therefore analyzed functional characteristics of hepatic mitochondria and associated alterations in the mitochondrial proteome in response to high fat feeding in adolescent, young adult, and middle-aged mice. Susceptibility to diet-induced obesity increased with age. Young adult and middle-aged mice developed fatty liver, but not adolescent mice. Fat accumulation was negatively correlated with an age-related reduction in mitochondrial mass and aggravated by a reduced capacity of fatty acid oxidation in high fat-fed mice. Irrespective of age, high fat diet increased ROS production in hepatic mitochondria associated with a balanced nuclear factor erythroid-derived 2 like 2 (NFE2L2) dependent antioxidative response, most likely triggered by reduced tethering of NFE2L2 to mitochondrial phosphoglycerate mutase 5. Age indirectly influenced mitochondrial function by reducing mitochondrial mass, thus exacerbating diet-induced fat accumulation. Therefore, consideration of age in metabolic studies must be emphasized. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  19. SU-F-T-121: Abdominal Compression Effectively Reduces the Interplay Effect and Enables Pencil Beam Scanning Proton Therapy of Liver Tumors

    International Nuclear Information System (INIS)

    Souris, K; Glick, A; Kang, M; Lin, H; McDonough, J; Simone, C; Solberg, T; Ben-Josef, E; Lin, L; Janssens, G; Sterpin, E; Lee, J

    2016-01-01

    Purpose: To study if abdominal compression can reduce breathing motion and mitigate interplay effect in pencil beam scanning proton therapy (PBSPT) treatment of liver tumors in order to better spare healthy liver volumes compared with photon therapy. Methods: Ten patients, six having large tumors initially treated with IMRT and four having small tumors treated with SBRT, were replanned for PBSPT. ITV and beam-specific PTVs based on 4D-CT were used to ensure target coverage in PBSPT. The use of an abdominal compression belt and volumetric repainting was investigated to mitigate the interplay effect between breathing motion and PBSPT dynamic delivery. An in-house Matlab script has been developed to simulate this interplay effect. The dose is computed on each phase individually by sorting all spots according to their simulated delivery timing. The final dose distribution is then obtained by accumulating all dose maps to a reference phase. Results: For equivalent target coverage PBSPT reduced average healthy liver dose by 9.5% of the prescription dose compared with IMRT/SBRT. Abdominal compression of 113.2±42.2 mmHg was effective for all 10 patients and reduced average motion by 2.25 mm. As a result, the average ITV volume decreased from 128.2% to 123.1% of CTV volume. Similarly, the average beam-specific PTV volume decreased from 193.2% to 183.3%. For 8 of the 10 patients, the average motion was reduced below 5 mm, and up to 3 repainting were sufficient to mitigate interplay. For the other two patients with larger residual motion, 4–5 repainting were needed. Conclusion: We recommend evaluation of the 4DCT motion histogram following simulation and the interplay effect following treatment planning in order to personalize the use of compression and volumetric repainting for each patient. Abdominal compression enables safe and more effective PBS treatment of liver tumors by reduction of motion and interplay effect. Kevin Souris is supported by IBA and Televie Grant

  20. SU-F-T-121: Abdominal Compression Effectively Reduces the Interplay Effect and Enables Pencil Beam Scanning Proton Therapy of Liver Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Souris, K [Universite catholique de Louvain, Brussels (Belgium); University of Pennsylvania, Philadelphia, PA (United States); Glick, A; Kang, M; Lin, H; McDonough, J; Simone, C; Solberg, T; Ben-Josef, E; Lin, L [University of Pennsylvania, Philadelphia, PA (United States); Janssens, G [IBA, Louvain-la-neuve (Belgium); Sterpin, E [Universite catholique de Louvain, Brussels (Belgium); KU Leuven, Leuven (Belgium); Lee, J [Universite catholique de Louvain, Brussels (Belgium)

    2016-06-15

    Purpose: To study if abdominal compression can reduce breathing motion and mitigate interplay effect in pencil beam scanning proton therapy (PBSPT) treatment of liver tumors in order to better spare healthy liver volumes compared with photon therapy. Methods: Ten patients, six having large tumors initially treated with IMRT and four having small tumors treated with SBRT, were replanned for PBSPT. ITV and beam-specific PTVs based on 4D-CT were used to ensure target coverage in PBSPT. The use of an abdominal compression belt and volumetric repainting was investigated to mitigate the interplay effect between breathing motion and PBSPT dynamic delivery. An in-house Matlab script has been developed to simulate this interplay effect. The dose is computed on each phase individually by sorting all spots according to their simulated delivery timing. The final dose distribution is then obtained by accumulating all dose maps to a reference phase. Results: For equivalent target coverage PBSPT reduced average healthy liver dose by 9.5% of the prescription dose compared with IMRT/SBRT. Abdominal compression of 113.2±42.2 mmHg was effective for all 10 patients and reduced average motion by 2.25 mm. As a result, the average ITV volume decreased from 128.2% to 123.1% of CTV volume. Similarly, the average beam-specific PTV volume decreased from 193.2% to 183.3%. For 8 of the 10 patients, the average motion was reduced below 5 mm, and up to 3 repainting were sufficient to mitigate interplay. For the other two patients with larger residual motion, 4–5 repainting were needed. Conclusion: We recommend evaluation of the 4DCT motion histogram following simulation and the interplay effect following treatment planning in order to personalize the use of compression and volumetric repainting for each patient. Abdominal compression enables safe and more effective PBS treatment of liver tumors by reduction of motion and interplay effect. Kevin Souris is supported by IBA and Televie Grant

  1. Transcriptional changes associated with reduced spontaneous liver tumor incidence in mice chronically exposed to high dose arsenic

    International Nuclear Information System (INIS)

    Nelson, Gail M.; Ahlborn, Gene J.; Allen, James W.; Ren, Hongzu; Corton, J. Christopher; Waalkes, Michael P.; Kitchin, Kirk T.; Diwan, Bhalchandra A.; Knapp, Geremy; Delker, Don A.

    2009-01-01

    Exposure of male C3H mice in utero (from gestational days 8-18) to 85 ppm sodium arsenite via the dams' drinking water has previously been shown to increase liver tumor incidence by 2 years of age. However, in our companion study (Ahlborn et al., 2009), continuous exposure to 85 ppm sodium arsenic (from gestational day 8 to postnatal day 365) did not result in increased tumor incidence, but rather in a significant reduction (0% tumor incidence). The purpose of the present study was to examine the gene expression responses that may lead to the apparent protective effect of continuous arsenic exposure. Genes in many functional categories including cellular growth and proliferation, gene expression, cell death, oxidative stress, protein ubiquitination, and mitochondrial dysfunction were altered by continuous arsenic treatment. Many of these genes are known to be involved in liver cancer. One such gene associated with rodent hepatocarcinogenesis, Scd1, encodes stearoyl-CoA desaturase and was down-regulated by continuous arsenic treatment. An overlap between the genes in our study affected by continuous arsenic exposure and those from the literature affected by long-term caloric restriction suggests that reduction in the spontaneous tumor incidence under both conditions may involve similar gene pathways such as fatty acid metabolism, apoptosis, and stress response.

  2. Corticospinal excitability changes to anodal tDCS elucidated with NIRS-EEG joint-imaging

    DEFF Research Database (Denmark)

    Jindal, Utkarsh; Sood, Mehak; Chowdhury, Shubhajit Roy

    2015-01-01

    Transcranial direct current stimulation (tDCS) has been shown to modulate corticospinal excitability. We used near-infrared spectroscopy (NIRS) - electroencephalography (EEG) joint-imaging during and after anodal tDCS to measure changes in mean cerebral haemoglobin oxygen saturation (rSO2) along...... with changes in the log-transformed mean-power of EEG within 0.5 Hz - 11.25 Hz. In two separate studies, we investigated local post-tDCS alterations from baseline at the site of anodal tDCS using NIRS-EEG/tDCS joint-imaging as well as local post-tDCS alterations in motor evoked potentials (MEP...... that the innovative technologies for portable NIRS-EEG neuroimaging may be leveraged to objectively quantify the progress (e.g., corticospinal excitability alterations) and dose tDCS intervention as an adjuvant treatment during neurorehabilitation....

  3. Reducing iodine load in hepatic CT for patients with chronic liver disease with a combination of low-tube-voltage and adaptive statistical iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Yoshifumi [Department of Radiology and Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Kanematsu, Masayuki, E-mail: masa_gif@yahoo.co.jp [Department of Radiology and Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Goshima, Satoshi; Kondo, Hiroshi; Watanabe, Haruo; Kawada, Hiroshi; Kawai, Nobuyuki; Tanahashi, Yukichi [Department of Radiology and Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Miyoshi, Toshiharu R.T. [Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194 (Japan); Bae, Kyongtae T. [Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2015-01-15

    Highlights: • 80 kVp CT scanning was successfully applied to the hepatic imaging. • Iodine contrast material load was reduced to 400 mg iodine/kg. • Image quality and the detectability of HCCs were maintained. - Abstract: Purpose: To prospectively assess the effect of reduced iodine load to contrast enhancement, image quality, and detectability of hepatocellular carcinomas (HCCs) in hepatic CT with a combination of 80 kVp tube voltage setting and adaptive statistical iterative reconstruction (ASIR) technique in patients with chronic liver disease. Materials and methods: This HIPAA-compliant study was approved by our institutional review board and written informed consent was obtained in all patients. During a recent 9-month period, 170 consecutive patients (114 men and 56 women; age range, 40–85 years; mean, 67.7 years) with suspected chronic liver diseases were randomized into three CT groups according to the following iodine-load and tube-voltage protocols: 600 milligram per kilogram body weight (mg/kg) iodine load and 120 peak kilovolt (kVp) tube voltage setting (600-120 group), 500 mg/kg and 80 kVp (500-80 group), and 400 mg/kg and 80 kVp (400-80 group). Analysis of variance was conducted to evaluate differences in CT number, background noise, signal-to-noise ratio (SNR), effective dose, HCC-to-liver contrast-to-noise ratio (CNR), and figure of merit (FOM). Sensitivity, specificity, and area under the receiver-operating-characteristic curve (AUC) were compared to assess the detectability of HCCs. Results: Vascular and hepatic enhancement in the 400-80 and 500-80 groups was comparable to or greater than that in the 600-120 group (P < .05). Subjective image quality was comparable among the three groups. Sensitivity, specificity, and AUC for detecting HCCs were comparable among the groups. The effective dose was kept low (3.3–4.1 mSv) in all three groups. Conclusion: Iodine load can be reduced by 33% in CT of the liver with a combination of 80 kVp tube

  4. DCS-Neural-Network Program for Aircraft Control and Testing

    Science.gov (United States)

    Jorgensen, Charles C.

    2006-01-01

    A computer program implements a dynamic-cell-structure (DCS) artificial neural network that can perform such tasks as learning selected aerodynamic characteristics of an airplane from wind-tunnel test data and computing real-time stability and control derivatives of the airplane for use in feedback linearized control. A DCS neural network is one of several types of neural networks that can incorporate additional nodes in order to rapidly learn increasingly complex relationships between inputs and outputs. In the DCS neural network implemented by the present program, the insertion of nodes is based on accumulated error. A competitive Hebbian learning rule (a supervised-learning rule in which connection weights are adjusted to minimize differences between actual and desired outputs for training examples) is used. A Kohonen-style learning rule (derived from a relatively simple training algorithm, implements a Delaunay triangulation layout of neurons) is used to adjust node positions during training. Neighborhood topology determines which nodes are used to estimate new values. The network learns, starting with two nodes, and adds new nodes sequentially in locations chosen to maximize reductions in global error. At any given time during learning, the error becomes homogeneously distributed over all nodes.

  5. Laser-induced thermotherapy (LITT) elevates mRNA expression of connective tissue growth factor (CTGF) associated with reduced tumor growth of liver metastases compared to hepatic resection.

    Science.gov (United States)

    Isbert, Christoph; Ritz, Jörg-Peter; Roggan, André; Schuppan, Detlef; Ajubi, Navid; Buhr, Heinz Johannes; Hohenberger, Werner; Germer, Christoph-Thomas

    2007-01-01

    Proliferation and synthesis of hepatocellular tissue after tissue damage are promoted by specific growth factors such as hepatic tissue growth factor (HGF) and connective growth factor (CTGF). Laser-induced thermotherapy (LITT) for the treatment of liver metastases is deemed to be a parenchyma-saving procedure compared to hepatic resection. The aim of this study was to compare the impact of LITT and hepatic resection on intrahepatic residual tumor tissue and expression levels of mRNA HGF/CTGF within liver and tumor tissue. Two independent adenocarcinomas (CC531) were implanted into 75 WAG rats, one in the right (untreated tumor) and one in the left liver lobe (treated tumor). The left lobe tumor was treated either by LITT or partial hepatectomy. The control tumor was submitted to in-situ hybridization of HGF and CTGF 24-96 hours and 14 days after intervention. Volumes of the untreated tumors prior to intervention were 38+/-8 mm(3) in group I (laser), 39 +/- 7 mm(3) in group II (resection), and 42 +/- 12 mm(3) in group III (control) and did not differ significantly (P > 0.05). Fourteen days after the intervention the mean tumor+/-SEM volume of untreated tumor in group I (laser) [223 +/- 36] was smaller than in group II (resection) [1233.28 +/- 181.52; P tumor growth in comparison to hepatic resection. Accelerated tumor growth after hepatic resection is associated with higher mRNA level of HGF and reduced tumor growth after LITT with higher mRNA level of CTGF. The increased CTGF-mediated regulation of ECM may cause reduced residual tumor growth after LITT. (c) 2006 Wiley-Liss, Inc.

  6. Long term effect of reduced pack sizes of paracetamol on poisoning deaths and liver transplant activity in England and Wales: interrupted time series analyses

    Science.gov (United States)

    Bergen, Helen; Simkin, Sue; Dodd, Sue; Pocock, Phil; Bernal, William; Gunnell, David; Kapur, Navneet

    2013-01-01

    Objective To assess the long term effect of United Kingdom legislation introduced in September 1998 to restrict pack sizes of paracetamol on deaths from paracetamol poisoning and liver unit activity. Design Interrupted time series analyses to assess mean quarterly changes from October 1998 to the end of 2009 relative to projected deaths without the legislation based on pre-legislation trends. Setting Mortality (1993-2009) and liver unit activity (1995-2009) in England and Wales, using information from the Office for National Statistics and NHS Blood and Transplant, respectively. Participants Residents of England and Wales. Main outcome measures Suicide, deaths of undetermined intent, and accidental poisoning deaths involving single drug ingestion of paracetamol and paracetamol compounds in people aged 10 years and over, and liver unit registrations and transplantations for paracetamol induced hepatotoxicity. Results Compared with the pre-legislation level, following the legislation there was an estimated average reduction of 17 (95% confidence interval −25 to −9) deaths per quarter in England and Wales involving paracetamol alone (with or without alcohol) that received suicide or undetermined verdicts. This decrease represented a 43% reduction or an estimated 765 fewer deaths over the 11¼ years after the legislation. A similar effect was found when accidental poisoning deaths were included, and when a conservative method of analysis was used. This decrease was largely unaltered after controlling for a non-significant reduction in deaths involving other methods of poisoning and also suicides by all methods. There was a 61% reduction in registrations for liver transplantation for paracetamol induced hepatotoxicity (−11 (−20 to −1) registrations per quarter). But no reduction was seen in actual transplantations (−3 (−12 to 6)), nor in registrations after a conservative method of analysis was used. Conclusions UK legislation to reduce pack sizes of

  7. Design of a DCS Based Model for Continuous Leakage Monitoring System of Rotary Air Preheater of a Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Madan BHOWMICK

    2011-01-01

    Full Text Available The leakage in rotary air preheater makes a considerable contribution to the reduced overall efficiency of fossil-fuel-fired thermal power plants and increase the effect on environment. Since it is normal phenomenon, continuous monitoring of leakage is generally omitted in most power plants. But for accurate analysis of the operation of the thermal power plant, this leakage monitoring plays a vital role. In the present paper, design of a DCS based model for continuous leakages monitoring of rotary air preheater has been described. In the proposed model, the existing DCS based instrumentation system has been modified and online leakage monitoring system has been developed. This model has been installed in a captive power plant with high capacity boilers and very much satisfactory operation of this system has been observed. The observed online data along with their analysis results are presented in this paper.

  8. Food craving, food choice and consumption: The role of impulsivity and sham-controlled tDCS stimulation of the right dlPFC.

    Science.gov (United States)

    Georgii, Claudio; Goldhofer, Philipp; Meule, Adrian; Richard, Anna; Blechert, Jens

    2017-08-01

    Impulsivity has been found to be associated with overeating and obesity. Transcranial direct current stimulation (tDCS) may enhance inhibitory control while reducing food craving and intake. Thus, the aim of the present study was to investigate whether tDCS stimulation modifies food choice, craving and consumption as a function of trait impulsivity. Forty-two predominantly healthy-weight women received active tDCS stimulation to the right dorsolateral prefrontal cortex and sham stimulation in a within participant design. Trait impulsivity was measured with a short form of the Barratt Impulsiveness Scale. Participants completed a computerized food-choice task, during which their mouse movements were traced. Current food craving was measured by a modified version of the Food Cravings Questionnaire-State as well as by desire to eat ratings for food pictures. Food intake was measured in a taste test. There were no tDCS effects on any of the dependent variables. Trait impulsivity (and non-planning impulsivity in particular) was positively associated with higher calorie intake in the taste test, irrespective of tDCS stimulation. The current findings question the efficacy of single-session tDCS stimulation of the right dLPFC to reduce food craving, high caloric food choice and calorie intake in non-selected, predominantly healthy weight women. However, they do support the idea that trait impulsivity is related to overeating and, therefore, may be a risk factor for obesity. Future research needs to specify which appetitive behaviors can be modulated by brain stimulation and which populations might profit from it the most. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Pretreatment of liver grafts in vivo by γ-aminobutyric acid receptor regulation reduces cold ischemia/warm reperfusion injury in rat

    Science.gov (United States)

    Hori, Tomohide; Gardner, Lindsay B.; Hata, Toshiyuki; Chen, Feng; Baine, Ann-Marie T.; Uemoto, Shinji; Nguyen, Justin H.

    2014-01-01

    Summary Background: Gamma-aminobutyric acid (GABA) is found throughout the body. The regulation of GABA receptor (GABAR) reduces oxidative stress (OS). Ischemia/reperfusion injury after orthotopic liver transplantation (OLT) causes OS-induced graft damage. The effects of GABAR regulation in donors in vivo were investigated. Material/Methods: Donor rats received saline, a GABAR agonist or GABAR antagonist 4 h before surgery. Recipient rats were divided into four groups according to the donor treatments: laparotomy, OLT with saline, OLT with GABAR agonist and OLT with GABAR antagonist. Histopathological, biochemical and immunohistological examinations were performed at 6, 12 and 24 h after OLT. Protein assays were performed at 6 h after OLT. The 4-hydroxynonenal (4-HNE), ataxia-telangiectasia mutated kinase (ATM), phosphorylated histone H2AX (γH2AX), phosphatidylinositol-3 kinase (PI3K), Akt and superoxide dismutase (SOD) were assessed by western blot analysis. Results: In the univariate analysis, histopathological and biochemical profiles verified that the GABAR agonist reduced graft damage. Immunohistology revealed that the GABAR agonist prevented the induction of apoptosis. Measurement of 4-4-HNE levels confirmed OS-induced damage after OLT, and the GABAR agonist improved this damage. In the γH2AX, PI3K, Akt and antioxidant enzymes (SODs), ATM and H2AX were greatly increased after OLT, and were reduced by the GABAR agonist. In the multivariate analyses between multiple groups, histopathological assessment, aspartate aminotransferase level, immunohistological examinations for apoptotic induction and γH2AX showed statistical differences. Conclusions: A specific agonist demonstrated regulation of GABAR in vivo in the liver. This activation in vivo reduced OS after OLT via the ATM/H2AX pathway. PMID:23792534

  10. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields.

    Science.gov (United States)

    Garcia-Cossio, Eliana; Witkowski, Matthias; Robinson, Stephen E; Cohen, Leonardo G; Birbaumer, Niels; Soekadar, Surjo R

    2016-10-15

    Transcranial direct current stimulation (tDCS) can influence cognitive, affective or motor brain functions. Whereas previous imaging studies demonstrated widespread tDCS effects on brain metabolism, direct impact of tDCS on electric or magnetic source activity in task-related brain areas could not be confirmed due to the difficulty to record such activity simultaneously during tDCS. The aim of this proof-of-principal study was to demonstrate the feasibility of whole-head source localization and reconstruction of neuromagnetic brain activity during tDCS and to confirm the direct effect of tDCS on ongoing neuromagnetic activity in task-related brain areas. Here we show for the first time that tDCS has an immediate impact on slow cortical magnetic fields (SCF, 0-4Hz) of task-related areas that are identical with brain regions previously described in metabolic neuroimaging studies. 14 healthy volunteers performed a choice reaction time (RT) task while whole-head magnetoencephalography (MEG) was recorded. Task-related source-activity of SCFs was calculated using synthetic aperture magnetometry (SAM) in absence of stimulation and while anodal, cathodal or sham tDCS was delivered over the right primary motor cortex (M1). Source reconstruction revealed task-related SCF modulations in brain regions that precisely matched prior metabolic neuroimaging studies. Anodal and cathodal tDCS had a polarity-dependent impact on RT and SCF in primary sensorimotor and medial centro-parietal cortices. Combining tDCS and whole-head MEG is a powerful approach to investigate the direct effects of transcranial electric currents on ongoing neuromagnetic source activity, brain function and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. PPAR-gamma activation is associated with reduced liver ischemia-reperfusion injury and altered tissue-resident macrophages polarization in a mouse model.

    Science.gov (United States)

    Linares, Ivan; Farrokhi, Kaveh; Echeverri, Juan; Kaths, Johan Moritz; Kollmann, Dagmar; Hamar, Matyas; Urbanellis, Peter; Ganesh, Sujani; Adeyi, Oyedele A; Yip, Paul; Selzner, Markus; Selzner, Nazia

    2018-01-01

    PPAR-gamma (γ) is highly expressed in macrophages and its activation affects their polarization. The effect of PPAR-γ activation on Kupffer cells (KCs) and liver ischemia-reperfusion injury (IRI) has not yet been evaluated. We investigated the effect of PPAR-γ activation on KC-polarization and IRI. Seventy percent (70%) liver ischemia was induced for 60mins. PPAR-γ-agonist or vehicle was administrated before reperfusion. PPAR-γ-antagonist was used to block PPAR-γ activation. Liver injury, necrosis, and apoptosis were assessed post-reperfusion. Flow-cytometry determined KC-phenotypes (pro-inflammatory Nitric Oxide +, anti-inflammatory CD206+ and anti-inflammatory IL-10+). Liver injury assessed by serum AST was significantly decreased in PPAR-γ-agonist versus control group at all time points post reperfusion (1hr: 3092±105 vs 4469±551; p = 0.042; 6hr: 7041±1160 vs 12193±1143; p = 0.015; 12hr: 5746±328 vs 8608±1259; p = 0.049). Furthermore, liver apoptosis measured by TUNEL-staining was significantly reduced in PPAR-γ-agonist versus control group post reperfusion (1hr:2.46±0.49 vs 6.90±0.85%;p = 0.001; 6hr:26.40±2.93 vs 50.13±8.29%; p = 0.048). H&E staining demonstrated less necrosis in PPAR-γ-agonist versus control group (24hr:26.66±4.78 vs 45.62±4.57%; p = 0.032). The percentage of pro-inflammatory NO+ KCs was significantly lower at all post reperfusion time points in the PPAR-γ-agonist versus control group (1hr:28.49±4.99 vs 53.54±9.15%; p = 0.040; 6hr:5.51±0.54 vs 31.12±9.58%; p = 0.009; 24hr:4.15±1.50 vs 17.10±4.77%; p = 0.043). In contrast, percentage of anti-inflammatory CD206+ KCs was significantly higher in PPAR-γ-agonist versus control group prior to IRI (8.62±0.96 vs 4.88 ±0.50%; p = 0.04). Administration of PPAR-γ-antagonist reversed the beneficial effects on AST, apoptosis, and pro-inflammatory NO+ KCs. PPAR-γ activation reduces IRI and decreases the pro-inflammatory NO+ Kupffer cells. PPAR-γ activation can become an

  12. Extra Virgin Olive Oil Reduced Polyunsaturated Fatty Acid and Cholesterol Oxidation in Rodent Liver: Is This Accounted for Hydroxytyrosol-Fatty Acid Conjugation?

    Science.gov (United States)

    Lee, Yiu Yiu; Crauste, Céline; Wang, Hualin; Leung, Ho Hang; Vercauteren, Joseph; Galano, Jean-Marie; Oger, Camille; Durand, Thierry; Wan, Jennifer Man-Fan; Lee, Jetty Chung-Yung

    2016-10-17

    The effects of extra virgin olive oil (EVOO) and carbon tetrachloride (CCl 4 ) induced oxidative stress in rats were determined by the generation of isoprostanoids. These are known to be robust biomarkers to evaluate nonenzymatic and free radical related oxidation. Other oxidative stress biomarkers such as hydroxyeicosatetraenoic acid products (HETEs) and cholesterol oxidation products (COPs) were also determined. The rodents received a control diet, high-fat diet (20% w/w) composed of extra virgin olive oil (EVOO), corn oil (CO), or lard, and high-fat diets with CCl 4 insult throughout the experimental period. The EVOO diet was found to suppress the formation of isoprostanoids and COPs compared to that of the control. EVOO also had a high total phenolic content and antioxidant activity compared to those of CO and lard and may be contributed to by the hydroxytyrosol component conjugated to fatty acids (HT-FA). This is the first study to identify HT-FA in EVOO, and it was 4-fold higher than that of olive oil, whereas none was found in corn oil. Furthermore, the EVOO diet showed reduced liver lipid vesicles in CCl 4 treated rats compared to that of the control. However, liver toxicity measurements of AST (aspartate transaminase) and ALT (alanine transaminase) activities showed augmentation with CCl 4 treatment but were not alleviated by the diets given. Our findings suggest that EVOO is a daily functional food capable of enhancing the antioxidant system for liver protection; the effect is potentially attributed to the phenolic and lipophenolic (phenol conjugated by fatty acids) content.

  13. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects.

    Directory of Open Access Journals (Sweden)

    Greta Jakobsdottir

    Full Text Available Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs, particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation.To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks.Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin - acetic acid; guar gum - propionic acid; or a mixture - butyric acid. At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks.Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet.

  14. Inhibitory effect of immature dendritic cells (iDCs phagocytizing apoptotic lymphocytes on LPS-mediated activation of iDCs

    Directory of Open Access Journals (Sweden)

    Yu-xiang WEI

    2013-09-01

    Full Text Available Objective To investigate the inhibitory effect of immature dendritic cells(iDCs on LPS-mediated maturation of iDCs phagocytizing allogeneic spleen lymphocytes after being treated bypsoralen plus ultraviolet A(PUVA. Methods Bone marrow-derived DCs were obtained from bone marrow cells of C57BL/6 mice by co-cultivation with recombinant mouse IL-4 and GM-CSF. Spleenlymphocytes(SLP of BALB/c mice were isolated and transformed to PUVA-SLP by treatment with 8-methoxy PUVA irradiation.The bone marrow-derived iDCs of C57BL/6 were co-cultured with PUVA-SLP of BALB/c mice to obtain PUVA¬SLPDCs. After incubation, iDCs and PUVA-SP DCs were induced to maturation by LPS(10ng/ml,24h, and then they were analyzed by flow cytometry.At the same time,the concentrations of the immunoreactive proteins IL-12p70,IL-12p40andIL-10 in cell supernatants were determined by ELISA kits according to the manufacturer's recommendations. Results PUVA-SLP DCs and iDCs were compared in terms of LPS responsiveness.The phenotype of iDCs(CD40,CD80, andCD86 was 50.58%, 66.29%, 71.20%, respectively, showed more rapid changes from immature to mature statein response to LPS stimulation compared with PUVA-SP DCs, the phenotype of which was 21.26%,38.50% and 39.78%, respectively(P0.05.PUVA-SPDCs secreted high levels of IL-10(435.6±13.9, but lowlevels of IL-12(p7018.56±1.3,p4015.22±1.2, as compared with those of iDCs (132.6±2.8, p70192.1±5.9, p40999.8±26.9, P<0.01 after LPS stimulation. Conclusions Although PUVA-SLPDCs do not express as immature phenotype, they can be readily induced to differentiate into mature DCs in the presence of antigen or LPS. It may be suitable to use iDCs clinically in autoimmune diseases and transplantation.

  15. Transcranial Direct Current Stimulation (tDCS): A Promising Treatment for Major Depressive Disorder?

    Science.gov (United States)

    Bennabi, Djamila; Haffen, Emmanuel

    2018-01-01

    Background: Transcranial direct current stimulation (tDCS) opens new perspectives in the treatment of major depressive disorder (MDD), because of its ability to modulate cortical excitability and induce long-lasting effects. The aim of this review is to summarize the current status of knowledge regarding tDCS application in MDD. Methods: In this review, we searched for articles published in PubMed/MEDLINE from the earliest available date to February 2018 that explored clinical and cognitive effects of tDCS in MDD. Results: Despite differences in design and stimulation parameters, the examined studies indicated beneficial effects of tDCS for MDD. These preliminary results, the non-invasiveness of tDCS, and its good tolerability support the need for further research on this technique. Conclusions: tDCS constitutes a promising therapeutic alternative for patients with MDD, but its place in the therapeutic armamentarium remains to be determined. PMID:29734768

  16. Prospective evaluation of reduced dose computed tomography for the detection of low-contrast liver lesions. Direct comparison with concurrent standard dose imaging

    International Nuclear Information System (INIS)

    Pooler, B.D.; Lubner, Meghan G.; Kim, David H.; Chen, Oliver T.; Li, Ke; Chen, Guang-Hong; Pickhardt, Perry J.

    2017-01-01

    To prospectively compare the diagnostic performance of reduced-dose (RD) contrast-enhanced CT (CECT) with standard-dose (SD) CECT for detection of low-contrast liver lesions. Seventy adults with non-liver primary malignancies underwent abdominal SD-CECT immediately followed by RD-CECT, aggressively targeted at 60-70 % dose reduction. SD series were reconstructed using FBP. RD series were reconstructed with FBP, ASIR, and MBIR (Veo). Three readers - blinded to clinical history and comparison studies - reviewed all series, identifying liver lesions ≥4 mm. Non-blinded review by two experienced abdominal radiologists - assessing SD against available clinical and radiologic information - established the reference standard. RD-CECT mean effective dose was 2.01 ± 1.36 mSv (median, 1.71), a 64.1 ± 8.8 % reduction. Pooled per-patient performance data were (sensitivity/specificity/PPV/NPV/accuracy) 0.91/0.78/0.60/0.96/0.81 for SD-FBP compared with RD-FBP 0.79/0.75/0.54/0.91/0.76; RD-ASIR 0.84/0.75/0.56/0.93/0.78; and RD-MBIR 0.84/0.68/0.49/0.92/0.72. ROC AUC values were 0.896/0.834/0.858/0.854 for SD-FBP/RD-FBP/RD-ASIR/RD-MBIR, respectively. RD-FBP (P = 0.002) and RD-MBIR (P = 0.032) AUCs were significantly lower than those of SD-FBP; RD-ASIR was not (P = 0.052). Reader confidence was lower for all RD series (P < 0.001) compared with SD-FBP, especially when calling patients entirely negative. Aggressive CT dose reduction resulted in inferior diagnostic performance and reader confidence for detection of low-contrast liver lesions compared to SD. Relative to RD-ASIR, RD-FBP showed decreased sensitivity and RD-MBIR showed decreased specificity. (orig.)

  17. Prospective evaluation of reduced dose computed tomography for the detection of low-contrast liver lesions. Direct comparison with concurrent standard dose imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pooler, B.D.; Lubner, Meghan G.; Kim, David H.; Chen, Oliver T. [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States); Li, Ke; Chen, Guang-Hong [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States); University of Wisconsin School of Medicine and Public Health, Department of Medical Physics, Madison, WI (United States); Pickhardt, Perry J. [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States); University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Science Center, Department of Radiology, Madison, WI (United States)

    2017-05-15

    To prospectively compare the diagnostic performance of reduced-dose (RD) contrast-enhanced CT (CECT) with standard-dose (SD) CECT for detection of low-contrast liver lesions. Seventy adults with non-liver primary malignancies underwent abdominal SD-CECT immediately followed by RD-CECT, aggressively targeted at 60-70 % dose reduction. SD series were reconstructed using FBP. RD series were reconstructed with FBP, ASIR, and MBIR (Veo). Three readers - blinded to clinical history and comparison studies - reviewed all series, identifying liver lesions ≥4 mm. Non-blinded review by two experienced abdominal radiologists - assessing SD against available clinical and radiologic information - established the reference standard. RD-CECT mean effective dose was 2.01 ± 1.36 mSv (median, 1.71), a 64.1 ± 8.8 % reduction. Pooled per-patient performance data were (sensitivity/specificity/PPV/NPV/accuracy) 0.91/0.78/0.60/0.96/0.81 for SD-FBP compared with RD-FBP 0.79/0.75/0.54/0.91/0.76; RD-ASIR 0.84/0.75/0.56/0.93/0.78; and RD-MBIR 0.84/0.68/0.49/0.92/0.72. ROC AUC values were 0.896/0.834/0.858/0.854 for SD-FBP/RD-FBP/RD-ASIR/RD-MBIR, respectively. RD-FBP (P = 0.002) and RD-MBIR (P = 0.032) AUCs were significantly lower than those of SD-FBP; RD-ASIR was not (P = 0.052). Reader confidence was lower for all RD series (P < 0.001) compared with SD-FBP, especially when calling patients entirely negative. Aggressive CT dose reduction resulted in inferior diagnostic performance and reader confidence for detection of low-contrast liver lesions compared to SD. Relative to RD-ASIR, RD-FBP showed decreased sensitivity and RD-MBIR showed decreased specificity. (orig.)

  18. Cathodal Transcranial Direct Current Stimulation (tDCS) to the Right Cerebellar Hemisphere Affects Motor Adaptation During Gait.

    Science.gov (United States)

    Fernandez, Lara; Albein-Urios, Natalia; Kirkovski, Melissa; McGinley, Jennifer L; Murphy, Anna T; Hyde, Christian; Stokes, Mark A; Rinehart, Nicole J; Enticott, Peter G

    2017-02-01

    The cerebellum appears to play a key role in the development of internal rules that allow fast, predictive adjustments to novel stimuli. This is crucial for adaptive motor processes, such as those involved in walking, where cerebellar dysfunction has been found to increase variability in gait parameters. Motor adaptation is a process that results in a progressive reduction in errors as movements are adjusted to meet demands, and within the cerebellum, this seems to be localised primarily within the right hemisphere. To examine the role of the right cerebellar hemisphere in adaptive gait, cathodal transcranial direct current stimulation (tDCS) was administered to the right cerebellar hemisphere of 14 healthy adults in a randomised, double-blind, crossover study. Adaptation to a series of distinct spatial and temporal templates was assessed across tDCS condition via a pressure-sensitive gait mat (ProtoKinetics Zeno walkway), on which participants walked with an induced 'limp' at a non-preferred pace. Variability was assessed across key spatial-temporal gait parameters. It was hypothesised that cathodal tDCS to the right cerebellar hemisphere would disrupt adaptation to the templates, reflected in a failure to reduce variability following stimulation. In partial support, adaptation was disrupted following tDCS on one of the four spatial-temporal templates used. However, there was no evidence for general effects on either the spatial or temporal domain. This suggests, under specific conditions, a coupling of spatial and temporal processing in the right cerebellar hemisphere and highlights the potential importance of task complexity in cerebellar function.

  19. DCS: A Case Study of Identification of Knowledge and Disposition Gaps Using Principles of Continuous Risk Management

    Science.gov (United States)

    Norcross, Jason; Steinberg, Susan; Kundrot, Craig; Charles, John

    2011-01-01

    The Human Research Program (HRP) is formulated around the program architecture of Evidence-Risk-Gap-Task-Deliverable. Review of accumulated evidence forms the basis for identification of high priority risks to human health and performance in space exploration. Gaps in knowledge or disposition are identified for each risk, and a portfolio of research tasks is developed to fill them. Deliverables from the tasks inform the evidence base with the ultimate goal of defining the level of risk and reducing it to an acceptable level. A comprehensive framework for gap identification, focus, and metrics has been developed based on principles of continuous risk management and clinical care. Research towards knowledge gaps improves understanding of the likelihood, consequence or timeframe of the risk. Disposition gaps include development of standards or requirements for risk acceptance, development of countermeasures or technology to mitigate the risk, and yearly technology assessment related to watching developments related to the risk. Standard concepts from clinical care: prevention, diagnosis, treatment, monitoring, rehabilitation, and surveillance, can be used to focus gaps dealing with risk mitigation. The research plan for the new HRP Risk of Decompression Sickness (DCS) used the framework to identify one disposition gap related to establishment of a DCS standard for acceptable risk, two knowledge gaps related to DCS phenomenon and mission attributes, and three mitigation gaps focused on prediction, prevention, and new technology watch. These gaps were organized in this manner primarily based on target for closure and ease of organizing interim metrics so that gap status could be quantified. Additional considerations for the knowledge gaps were that one was highly design reference mission specific and the other gap was focused on DCS phenomenon.

  20. Frontoparietal tDCS Benefits Visual Working Memory in Older Adults With Low Working Memory Capacity.

    Science.gov (United States)

    Arciniega, Hector; Gözenman, Filiz; Jones, Kevin T; Stephens, Jaclyn A; Berryhill, Marian E

    2018-01-01

    Working memory (WM) permits maintenance of information over brief delays and is an essential executive function. Unfortunately, WM is subject to age-related decline. Some evidence supports the use of transcranial direct current stimulation (tDCS) to improve visual WM. A gap in knowledge is an understanding of the mechanism characterizing these tDCS linked effects. To address this gap, we compared the effects of two tDCS montages designed on visual working memory (VWM) performance. The bifrontal montage was designed to stimulate the heightened bilateral frontal activity observed in aging adults. The unilateral frontoparietal montage was designed to stimulate activation patterns observed in young adults. Participants completed three sessions (bilateral frontal, right frontoparietal, sham) of anodal tDCS (20 min, 2 mA). During stimulation, participants performed a visual long-term memory (LTM) control task and a visual WM task. There was no effect of tDCS on the LTM task. Participants receiving right unilateral tDCS showed a WM benefit. This pattern was most robust in older adults with low WM capacity. To address the concern that the key difference between the two tDCS montages could be tDCS over the posterior parietal cortex (PPC), we included new analyses from a previous study applying tDCS targeting the PPC paired with a recognition VWM task. No significant main effects were found. A subsequent experiment in young adults found no significant effect of either tDCS montage on either task. These data indicate that tDCS montage, age and WM capacity should be considered when designing tDCS protocols. We interpret these findings as suggestive that protocols designed to restore more youthful patterns of brain activity are superior to those that compensate for age-related changes.

  1. Treatment with non-selective beta blockers is associated with reduced severity of systemic inflammation and improved survival of patients with acute-on-chronic liver failure

    DEFF Research Database (Denmark)

    Mookerjee, Rajeshwar P; Pavesi, Marco; Thomsen, Karen Louise

    2016-01-01

    BACKGROUND & AIMS: Non-selective beta blockers (NSBBs) have been shown to have deleterious outcomes in patients with refractory ascites, alcoholic hepatitis and spontaneous bacterial peritonitis leading many physicians to stop the drug in these cases. Acute-on-chronic liver failure (ACLF......) is characterized by systemic inflammation and high mortality. As NSBBs may have beneficial effects on gut motility and permeability and, systemic inflammation, the aims of this prospective, observational study were to determine whether ongoing use of NSBBs reduced 28-day mortality in ACLF patients. METHODS...... at enrollment significantly associated with treatment and mortality were taken into account as potential confounders to adjust for treatment effect. A logistic regression model was fitted. RESULTS: 164 (47%) ACLF patients received NSBBs whereas 185 patients did not. Although the CLIF-C ACLF scores were similar...

  2. Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review

    Science.gov (United States)

    Lefebvre, Stephanie; Liew, Sook-Lei

    2017-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method to modulate the local field potential in neural tissue and consequently, cortical excitability. As tDCS is relatively portable, affordable, and accessible, the applications of tDCS to probe brain–behavior connections have rapidly increased in the last 10 years. One of the most promising applications is the use of tDCS to modulate excitability in the motor cortex after stroke and promote motor recovery. However, the results of clinical studies implementing tDCS to modulate motor excitability have been highly variable, with some studies demonstrating that as many as 50% or more of patients fail to show a response to stimulation. Much effort has therefore been dedicated to understand the sources of variability affecting tDCS efficacy. Possible suspects include the placement of the electrodes, task parameters during stimulation, dosing (current amplitude, duration of stimulation, frequency of stimulation), individual states (e.g., anxiety, motivation, attention), and more. In this review, we first briefly review potential sources of variability specific to stroke motor recovery following tDCS. We then examine how the anatomical variability in tDCS placement [e.g., neural target(s) and montages employed] may alter the neuromodulatory effects that tDCS exerts on the post-stroke motor system. PMID:28232816

  3. Transcranial Direct Current Stimulation (tDCS) Enhances the Excitability of Trigemino-Facial Reflex Circuits.

    Science.gov (United States)

    Cabib, Christopher; Cipullo, Federica; Morales, Merche; Valls-Solé, Josep

    2016-01-01

    Transcranial direct current stimulation (tDCS) causes a tiny burning sensation through activation of local cutaneous trigeminal afferents. Trigeminal sensory inputs from tDCS may generate excitability changes in the trigemino-facial reflex circuits. Sixteen healthy volunteers were submitted to 20 minutes tDCS sessions with two types of electrode-montage conditions: 1. Real vs Sham 'bi-hemispheric' tDCS (cathode/anode: C4/C3), for blinded assessment of effects, and 2. 'uni-hemispheric' tDCS (cathode/anode: Fp3/C3), for assessment of laterality of the effects. Supraorbital nerve stimuli were used to obtain blink reflexes before, during (10 minutes from onset) and after (30 minutes from onset) the tDCS session. Outcome measures were R2 habituation (R2H) to repeated stimuli, the blink reflex excitability recovery (BRER) to paired stimuli and the blink reflex inhibition by a prepulse (BRIP). Real but not sham bi-hemispheric tDCS caused a significant decrease of R2H and leftward shift of BRER curve (p tDCS on BRER and BRIP were larger on ipsilateral than on contralateral blink reflexes (p tDCS enhances the excitability of trigemino-facial reflex circuits. The finding of larger ipsilateral than contralateral effects suggests that sensitization through cutaneous trigeminal afferents adds on other possible mechanisms such as activation of cortico-nuclear or cortico-reticular connections. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Efficient Maturation and Cytokine Production of Neonatal DCs Requires Combined Proinflammatory Signals

    Directory of Open Access Journals (Sweden)

    Doreen Krumbiegel

    2005-01-01

    Full Text Available Specific functional properties of dendritic cells (DCs have been suspected as being responsible for the impaired specific immune responses observed in human neonates. To analyze stimulatory requirements for the critical transition from immature, antigen-processing DCs to mature, antigen-presenting DCs, we investigated the effect of different proinflammatory mediators and antigens on phenotype and cytokine secretion of human neonatal DCs derived from hematopoietic progenitor cells (HPCs. Whereas single proinflammatory mediators were unable to induce the maturation of neonatal DCs, various combinations of IFNγ, CD40L, TNFα, LPS and antigens, induced the maturation of neonatal DCs documented by up-regulation of HLA-DR, CD83 and CD86. Combinations of proinflammatory mediators also increased cytokine secretion by neonatal DCs. Especially combined stimulation with LPS and IFNγ proved to be very efficient in inducing maturation and cytokine synthesis of neonatal DCs. In conclusion, neonatal DCs can be stimulated to express maturation as well as costimulatory surface molecules. However, induction of maturation requires combined stimulation with multiple proinflammatory signals.

  5. Study on operation I and C DCS test method of EPR project

    International Nuclear Information System (INIS)

    Meng Ying; Lv Zhihong; Huang Xinnian; Fan Haiying; Li Zhuojia; Xiao Shushu

    2014-01-01

    Through summarization and optimization of the method for operation I and C DCS test of the European pressurized reactor project, the conclusions play a guiding role on the operation I and C DCS test of the domestic advanced nuclear power plant. The study of the method focuses on the test platform, the test process and the optimization of method of operation I and C DCS test with the practical experience. The reasonable and reliable test method for operation I and C DCS test of the European pressurized reactor project is worthy of the reference and the development in the project of the domestic advanced nuclear power plant. (authors)

  6. Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning.

    Science.gov (United States)

    Nikolin, Stevan; Loo, Colleen K; Bai, Siwei; Dokos, Socrates; Martin, Donel M

    2015-08-15

    Declarative verbal learning and memory are known to be lateralised to the dominant hemisphere and to be subserved by a network of structures, including those located in frontal and temporal regions. These structures support critical components of verbal memory, including working memory, encoding, and retrieval. Their relative functional importance in facilitating declarative verbal learning and memory, however, remains unclear. To investigate the different functional roles of these structures in subserving declarative verbal learning and memory performance by applying a more focal form of transcranial direct current stimulation, "High Definition tDCS" (HD-tDCS). Additionally, we sought to examine HD-tDCS effects and electrical field intensity distributions using computer modelling. HD-tDCS was administered to the left dorsolateral prefrontal cortex (LDLPFC), planum temporale (PT), and left medial temporal lobe (LMTL) to stimulate the hippocampus, during learning on a declarative verbal memory task. Sixteen healthy participants completed a single blind, intra-individual cross-over, sham-controlled study which used a Latin Square experimental design. Cognitive effects on working memory and sustained attention were additionally examined. HD-tDCS to the LDLPFC significantly improved the rate of verbal learning (p=0.03, η(2)=0.29) and speed of responding during working memory performance (p=0.02, η(2)=0.35), but not accuracy (p=0.12, η(2)=0.16). No effect of tDCS on verbal learning, retention, or retrieval was found for stimulation targeted to the LMTL or the PT. Secondary analyses revealed that LMTL stimulation resulted in increased recency (p=0.02, η(2)=0.31) and reduced mid-list learning effects (p=0.01, η(2)=0.39), suggesting an inhibitory effect on learning. HD-tDCS to the LDLPFC facilitates the rate of verbal learning and improved efficiency of working memory may underlie performance effects. This focal method of administrating tDCS has potential for probing

  7. Effect of D-penicillamine on the concentration of reduced glutathione in the liver of irradiated rats

    International Nuclear Information System (INIS)

    Oroszlan, Gyoergy; Buzasi, Edit; Szabo, Terez; Lakatos, Lajos; Karmazsin, Laszlo

    1984-01-01

    Rats received whole-body sup(60)Co-irradiation of 10 Gy total dose with a dose-rate of 0.6 Gy per min. The concentration of reduced glutathione increased upon irradiation; this increase was diminished by D-penicillamine pretreatment in newborn but not in adult rats. The age-dependent effects of D-penicillamine might explain the clinical observation that the frequency of retrolental fibrosis is decreased by D-penicillamine in small-weight pre-term neonates. (L.E.)

  8. Liver Hemangioma

    Science.gov (United States)

    Liver hemangioma Overview A liver hemangioma (he-man-jee-O-muh) is a noncancerous (benign) mass in the liver. A liver hemangioma is made up of a tangle of blood vessels. Other terms for a liver hemangioma are hepatic hemangioma and cavernous hemangioma. Most ...

  9. Parameter Optimization Analysis of Prolonged Analgesia Effect of tDCS on Neuropathic Pain Rats

    Directory of Open Access Journals (Sweden)

    Hui-Zhong Wen

    2017-06-01

    Full Text Available Background: Transcranial direct current stimulation (tDCS is widely used to treat human nerve disorders and neuropathic pain by modulating the excitability of cortex. The effectiveness of tDCS is influenced by its stimulation parameters, but there have been no systematic studies to help guide the selection of different parameters.Objective: This study aims to assess the effects of tDCS of primary motor cortex (M1 on chronic neuropathic pain in rats and to test for the optimal parameter combinations for analgesia.Methods: Using the chronic neuropathic pain models of chronic constriction injury (CCI, we measured pain thresholds before and after anodal-tDCS (A-tDCS using different parameter conditions, including stimulation intensity, stimulation time, intervention time and electrode located (ipsilateral or contralateral M1 of the ligated paw on male/female CCI models.Results: Following the application of A-tDCS over M1, we observed that the antinociceptive effects were depended on different parameters. First, we found that repetitive A-tDCS had a longer analgesic effect than single stimulus, and both ipsilateral-tDCS (ip-tDCS and contralateral-tDCS (con-tDCS produce a long-lasting analgesic effect on neuropathic pain. Second, the antinociceptive effects were intensity-dependent and time-dependent, high intensities worked better than low intensities and long stimulus durations worked better than short stimulus durations. Third, timing of the intervention after injury affected the stimulation outcome, early use of tDCS was an effective method to prevent the development of pain, and more frequent intervention induced more analgesia in CCI rats, finally, similar antinociceptive effects of con- and ip-tDCS were observed in both sexes of CCI rats.Conclusion: Optimized protocols of tDCS for treating antinociceptive effects were developed. These findings should be taken into consideration when using tDCS to produce analgesic effects in clinical

  10. A High-Protein Diet Reduces Weight Gain, Decreases Food Intake, Decreases Liver Fat Deposition, and Improves Markers of Muscle Metabolism in Obese Zucker Rats

    Directory of Open Access Journals (Sweden)

    William W. French

    2017-06-01

    Full Text Available A primary factor in controlling and preventing obesity is through dietary manipulation. Diets higher in protein have been shown to improve body composition and metabolic health during weight loss. The objective of this study was to examine the effects of a high-protein diet versus a moderate-protein diet on muscle, liver and fat metabolism and glucose regulation using the obese Zucker rat. Twelve-week old, male, Zucker (fa/fa and lean control (Fa/fa rats were randomly assigned to either a high-protein (40% energy or moderate-protein (20% energy diet for 12 weeks, with a total of four groups: lean 20% protein (L20; n = 8, lean 40% protein (L40; n = 10, obese 20% protein (O20; n = 8, and obese 40% protein (O40; n = 10. At the end of 12 weeks, animals were fasted and euthanized. There was no difference in food intake between L20 and L40. O40 rats gained less weight and had lower food intake (p < 0.05 compared to O20. O40 rats had lower liver weight (p < 0.05 compared to O20. However, O40 rats had higher orexin (p < 0.05 levels compared to L20, L40 and O20. Rats in the L40 and O40 groups had less liver and muscle lipid deposition compared to L20 and L40 diet rats, respectively. O40 had decreased skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1 phosphorylation and peroxisome proliferator-activated receptor gamma (PPARγ mRNA expression compared to O20 (p < 0.05, with no difference in 5′ AMP-activated protein kinase (AMPK, eukaryotic translation initiation factor 4E binding protein 1 (4EBP1, protein kinase B (Akt or p70 ribosomal S6 kinase (p70S6K phosphorylation. The data suggest that high-protein diets have the potential to reduce weight gain and alter metabolism, possibly through regulation of an mTORC1-dependent pathway in skeletal muscle.

  11. 3D visualization reduces operating time when compared to high-definition 2D in laparoscopic liver resection: a case-matched study.

    Science.gov (United States)

    Velayutham, Vimalraj; Fuks, David; Nomi, Takeo; Kawaguchi, Yoshikuni; Gayet, Brice

    2016-01-01

    To evaluate the effect of three-dimensional (3D) visualization on operative performance during elective laparoscopic liver resection (LLR). Major limitations of conventional laparoscopy are lack of depth perception and tactile feedback. Introduction of robotic technology, which employs 3D imaging, has removed only one of these technical obstacles. Despite the significant advantages claimed, 3D systems have not been widely accepted. In this single institutional study, 20 patients undergoing LLR by high-definition 3D laparoscope between April 2014 and August 2014 were matched to a retrospective control group of patients who underwent LLR by two-dimensional (2D) laparoscope. The number of patients who underwent major liver resection was 5 (25%) in the 3D group and 10 (25%) in the 2D group. There was no significant difference in contralateral wedge resection or combined resections between the 3D and 2D groups. There was no difference in the proportion of patients undergoing previous abdominal surgery (70 vs. 77%, p = 0.523) or previous hepatectomy (20 vs. 27.5%, p = 0.75). The operative time was significantly shorter in the 3D group when compared to 2D (225 ± 109 vs. 284 ± 71 min, p = 0.03). There was no significant difference in blood loss in the 3D group when compared to 2D group (204 ± 226 in 3D vs. 252 ± 349 ml in 2D group, p = 0.291). The major complication rates were similar, 5% (1/20) and 7.5% (3/40), respectively, (p ≥ 0.99). 3D visualization may reduce the operating time compared to high-definition 2D. Further large studies, preferably prospective randomized control trials are required to confirm this.

  12. The obesity and fatty liver are reduced by plant-derived Pediococcus pentosaceus LP28 in high fat diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Xingrong Zhao

    Full Text Available We evaluated the effect of an oral administration of a plant-derived lactic acid bacterium, Pediococcus pentosaceus LP28 (LP28, on metabolic syndrome by using high fat diet-induced obese mice. The obese mice were divided into 2 groups and fed either a high fat or regular diet for 8 weeks. Each group was further divided into 3 groups, which took LP28, another plant-derived Lactobacillus plantarum SN13T (SN13T or no lactic acid bacteria (LAB. The lean control mice were fed a regular diet without inducing obesity prior to the experiment. LP28 reduced body weight gain and liver lipid contents (triglyceride and cholesterol, in mice fed a high fat diet for 8 weeks (40%, 54%, and 70% less than those of the control group without LAB, and P = 0.018, P<0.001, and P = 0.021, respectively, whereas SN13T and the heat treated LP28 at 121°C for 15 min were ineffective. Abdominal visceral fat in the high fat diet mice fed with LP28 was also lower than that without LAB by 44%, although it was not significant but borderline (P = 0.076. The sizes of the adipocytes and the lipid droplets in the livers were obviously decreased. A real-time PCR analyses showed that lipid metabolism-related genes, such as CD36 (P = 0.013, SCD1 encoding stearoyl-CoA desaturase 1 (not significant but borderline, P = 0.066, and PPARγ encoding peroxisome proliferator-activated receptor gamma (P = 0.039, were down-regulated by taking LP28 continuously, when compared with those of the control group. In conclusion, LP28 may be a useful LAB strain for the prevention and reduction of the metabolic syndrome.

  13. Efficacy of Jian'ganle () versus Hugan Pian (), glucuronolactone and reduced glutathione in prevention of antituberculosis drug-induced liver injury.

    Science.gov (United States)

    Zhang, Quan; Zhong, Fang-ying; Wu, Meng; Zhang, Xin-ping

    2014-06-01

    Evidence-based medicine is advocated by WHO and adopted by developed countries for many years. In China, however, the selection of essential medicine and various medical insurance reimbursement schemes medicine is usually based on experts' experience of prescription practice which is under heavy critics resulting from the lack of related comparative efficacy and evidence-based research. The efficacy of Jian'ganle in prevention of drug-induced liver injury (DILI) caused by antituberculotics was evaluated in this study by comparison with Hugan Pian, glucuronolactone and reduced glutathione. Evidence was provided for relevant sectors such as Ministry for Human Resources and Social Security of the People's Republic of China and National Health and Family Planning Commission of the People's Republic of China to select and renew the Essential Medicine List (EML), the new rural cooperative medical scheme in China (NRCMS) list or the reimbursement list of industrial injury insurance. A total of 189 patients with initial pulmonary tuberculosis were divided into four groups who took antituberculotics combined with Jian'ganle, Hugan Pian, glucuronolactone and reduced glutathione respectively. Their liver function profile including alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), total protein (TP), albumin (A) and globulin (G) were detected at admission as baseline and after treatment. The Jian'ganle group was compared with the three others by chi-square tests. In an aspect of maintaining bilirubin indexes normal, Jian'ganle was more efficacious than glucuronolactone. And Jian'ganle had a little more efficacy than reduced glutathione to maintain protein indexes normal as well. And the therapeutic regimen of antituberculotics combined with Jian'ganle was the best in treating tuberculosis and preventing DILI at the same time. The study showed that among the four hepatinicas which demonstrated similar prevention

  14. Liver biopsy

    Science.gov (United States)

    Biopsy - liver; Percutaneous biopsy ... the biopsy needle to be inserted into the liver. This is often done by using ultrasound. The ... the chance of damage to the lung or liver. The needle is removed quickly. Pressure will be ...

  15. Tranilast reduces serum IL-6 and IL-13 and protects against thioacetamide-induced acute liver injury and hepatic encephalopathy.

    Science.gov (United States)

    Abdelaziz, Rania R; Elkashef, Wagdi F; Said, Eman

    2015-07-01

    Hepatic encephalopathy is a serious neuropsychiatric disorder usually affecting either acute or chronic hepatic failure patients. Hepatic encephalopathy was replicated in a validated rat model to assess the potential protective efficacy of tranilast against experimentally induced hepatic encephalopathy. Thioacetamide injection significantly impaired hepatic synthetic, metabolic and excretory functions with significant increase in serum NO, IL-6 and IL-13 levels and negative shift in the oxidant/antioxidant balance. Most importantly, there was a significant increase in serum ammonia levels with significant astrocytes' swelling and vacuolization; hallmarks of hepatic encephalopathy. Tranilast administration (300 mg/kg, orally) for 15 days significantly improved hepatic functions, restored oxidant/antioxidant balance, reduced serum NO, IL-6 and IL-13 levels. Meanwhile, serum ammonia significantly declined with significant reduction in astrocytes' swelling and vacuolization. Several mechanisms can be implicated in the observed hepato- and neuroprotective potentials of tranilast, such as its anti-inflammatory potential, its antioxidant potential as well as its immunomodulatory properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Cerebellar tDCS does not enhance performance in an implicit categorization learning task

    NARCIS (Netherlands)

    M.C. Verhage (Claire); E. Avila (Eric); M.A. Frens (Maarten); O. Donchin (Opher); J.N. van der Geest (Jos)

    2017-01-01

    textabstractBackground: Transcranial Direct Current Stimulation (tDCS) is a form of non-invasive electrical stimulation that changes neuronal excitability in a polarity and site-specific manner. In cognitive tasks related to prefrontal and cerebellar learning, cortical tDCS arguably facilitates

  17. Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging

    Science.gov (United States)

    Jog, Mayank Anant

    Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.

  18. Effects of Transcranial Direct Current Stimulation (tDCS) on Behaviour and Electrophysiology of Language Production

    Science.gov (United States)

    Wirth, Miranka; Rahman, Rasha Abdel; Kuenecke, Janina; Koenig, Thomas; Horn, Helge; Sommer, Werner; Dierks, Thomas

    2011-01-01

    Excitatory anodal transcranial direct current stimulation (A-tDCS) over the left dorsal prefrontal cortex (DPFC) has been shown to improve language production. The present study examined neurophysiological underpinnings of this effect. In a single-blinded within-subject design, we traced effects of A-tDCS compared to sham stimulation over the left…

  19. Enhancement of selective attention by tDCS: interaction with interference in a Sternberg task

    NARCIS (Netherlands)

    Gladwin, T.E.; den Uyl, T.E.; Fregni, F.F.; Wiers, R.W.

    2012-01-01

    Transcranial Direct Current Stimulation (tDCS) enhances performance on working memory tasks. However, such effects may be dependent on modulation of specific aspects of working memory. We therefore tested the hypothesis that tDCS improves selective attention in the context of a Sternberg task.

  20. Effects of different language and tDCS interventions in PPA and their neural correlates

    Directory of Open Access Journals (Sweden)

    Kyrana Tsapkini

    2015-05-01

    Results: First, we replicated our previous results obtained with fewer participants: all improved in both tDCS and sham conditions on trained items. Generalization of treatment on untrained items was significant only in tDCS condition. Therapy gains lasted longer in tDCS condition as well. Second, preliminary analyses of rs-fMRI show changes of functional connectivity between written language areas in the tDCS and sham conditions. Conclusions: tDCS represents an increasingly valuable treatment option in language rehabilitation even in neurodegeneration. Late intervention is as beneficial as early intervention but improvement seems more dramatic in early cases. Different possibilities are discussed: tDCS may indeed change the course of the disease, i.e., it may slow down the rate of decline or, language improvement due to tDCS (or delay in language deterioration due to the course of the disease may hold the spread of decline in other cognitive functions, thus, early interventions appear more beneficial. The correlation between functional connectivity and language production outcomes is expected to shed light on how tDCS works in the brains of people with a neurodegenerative disease. Implications of functional connectivity changes between language areas involved in the targeted language function will inform further interventions.

  1. 75 FR 59686 - Proposed Information Collection; Comment Request; NOAA Space-Based Data Collection System (DCS...

    Science.gov (United States)

    2010-09-28

    ...., Washington, DC 20230 (or via the Internet at [email protected] ). FOR FURTHER INFORMATION CONTACT: Requests for... Environmental Satellite (GOES) DCS and the Polar-Orbiting Operational Environmental Satellite (POES) DCS, also... Collection Submittal include Internet, facsimile transmission and postal mailing of paper forms. III. Data...

  2. Using Transcranial tDCS to test cognitive hypotheses

    Directory of Open Access Journals (Sweden)

    Nazbanou Nozari

    2014-04-01

    Full Text Available Transcranial Direct Current Stimulation (tDCS is used increasingly often for testing cognitive hypotheses. It is, however, often ignored that many assumptions regarding how the neural tissue reacts to stimulation have only been verified in the motor domain. Extrapolating these assumptions to the cognitive domain has a set of unique issues which, if ignored, can lead to incorrect interpretations. In this talk I will review a number of common pitfalls in using tDCS for testing a cognitive hypothesis, and discuss some solutions for better-controlled designs. I will address the following issues: 1- Making an incorrect assumption about the nature of the effect: It is often assumed that anodal stimulation has “excitatory” and cathodal stimulation has “inhibitory” effects. Results are then interpreted in light of this assumption. Obviously, if the assumption is incorrect, the interpretation of the results too will be incorrect. I will discuss how the effects of polarity can change as a function of a number of design parameters, and the dangers of making a priori assumptions about the direction of stimulation effects, especially when employing a new design. 2- Choosing an inappropriate montage: By definition, tDCS requires two electrodes, although we are often only interested in stimulating one brain region. Where the second (reference electrode is placed may not be of theoretical interest to us, but it can have serious consequences for our effects of interest. For one thing the path of the direct current changes as a function of where the reference electrode is placed. This affects the density of the current, as well as the regions that undergo stimulation. Moreover, the region directly under the reference electrode is very likely to be affected by stimulation. Therefore, sometimes the changes in behavior may be due to the unanticipated effects at the reference electrode site, as opposed to the hypothesized effects at the target electrode site

  3. Increased contextual cue utilization with tDCS over the prefrontal cortex during a recognition task

    Science.gov (United States)

    Pergolizzi, Denise; Chua, Elizabeth F.

    2016-01-01

    The precise role of the prefrontal and posterior parietal cortices in recognition performance remains controversial, with questions about whether these regions contribute to recognition via the availability of mnemonic evidence or via decision biases and retrieval orientation. Here we used an explicit memory cueing paradigm, whereby external cues probabilistically predict upcoming memoranda as old or new, in our case with 75% validity, and these cues affect recognition decision biases in the direction of the cue. The present study applied bilateral transcranial direct current stimulation (tDCS) over prefrontal or posterior parietal cortex, or sham tDCS, to test the causal role of these regions in recognition accuracy or decision biasing. Participants who received tDCS over prefrontal cortex showed increased cue utilization compared to tDCS over posterior parietal cortex and sham tDCS, suggesting that the prefrontal cortex is involved in processes that contribute to decision biases in memory. PMID:27845032

  4. Electrodes for high-definition transcutaneous DC stimulation for applications in drug-delivery and electrotherapy, including tDCS

    OpenAIRE

    Minhas, Preet; Bansal, Varun; Patel, Jinal; Ho, Johnson S.; Diaz, Julian; Datta, Abhishek; Bikson, Marom

    2010-01-01

    Transcutaneous electrical stimulation is applied in a range of biomedical applications including Transcranial Direct Current Stimulation (tDCS). tDCS is a non-invasive procedure where a weak direct current (

  5. Clinical predictors of acute response to transcranial direct current stimulation (tDCS) in major depression.

    Science.gov (United States)

    D'Urso, Giordano; Dell'Osso, Bernardo; Rossi, Rodolfo; Brunoni, Andre Russowsky; Bortolomasi, Marco; Ferrucci, Roberta; Priori, Alberto; de Bartolomeis, Andrea; Altamura, Alfredo Carlo

    2017-09-01

    Transcranial direct current stimulation (tDCS) is a promising neuromodulation intervention for poor-responding or refractory depressed patients. However, little is known about predictors of response to this therapy. The present study aimed to analyze clinical predictors of response to tDCS in depressed patients. Clinical data from 3 independent tDCS trials on 171 depressed patients (including unipolar and bipolar depression), were pooled and analyzed to assess predictors of response. Depression severity and the underlying clinical dimensions were measured using the Hamilton Depression Rating Scale (HDRS) at baseline and after the tDCS treatment. Age, gender and diagnosis (bipolar/unipolar depression) were also investigated as predictors of response. Linear mixed models were fitted in order to ascertain which HDRS factors were associated with response to tDCS. Age, gender and diagnosis did not show any association with response to treatment. The reduction in HDRS scores after tDCS was strongly associated with the baseline values of "Cognitive Disturbances" and "Retardation" factors, whilst the "Anxiety/Somatization" factor showed a mild association with the response. Open-label design, the lack of control group, and minor differences in stimulation protocols. No differences in response to tDCS were found between unipolar and bipolar patients, suggesting that tDCS is effective for both conditions. "Cognitive disturbance", "Retardation", and "Anxiety/Somatization", were identified as potential clinical predictors of response to tDCS. These findings point to the pre-selection of the potential responders to tDCS, therefore optimizing the clinical use of this technique and the overall cost-effectiveness of the psychiatric intervention for depressed patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Extra virgin olive oil reduces liver oxidative stress and tissue depletion of long-chain polyunsaturated fatty acids produced by a high saturated fat diet in mice

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, B.R.; Hernandez Rodas, M.C.; Espinosa, A.; Rincon Cervera, M.A.; Romero, N.; Barrera Vazquez, C.; Marambio, M.; Vivero, J.; Valenzuela, B.A.

    2016-07-01

    Long-chain polyunsaturated fatty acids (LCPUFA) which are synthesized mainly in the liver have relevant functions in the organism. A diet high in fat (HFD) generates an increase in the levels of fat and induces oxidative stress (lipo-peroxidation) in the liver, along with a reduction in tissue n-3 and n-6 LCPUFA. Extra virgin olive oil (EVOO) is rich in anti-oxidants (polyphenols and tocopherols) which help to prevent the development of oxidative stress. This study evaluated the role of EVOO in preventing the induction of fat deposition and oxidative stress in the liver and in the depletion of LCPUFA in the liver, erythrocytes and brain generated by a HFD in C57BL/6J mice. Four experimental groups (n = 10/group) were fed a control diet (CD) or a HFD for 12 weeks and were respectively supplemented with EVOO (100 mg/day). The group fed HFD showed a significant increase (p < 0.05) in fat accumulation and oxidative stress in the liver, accompanied by a reduction in the levels of n-3 and n-6 LCPUFA in the liver, erythrocytes and brain. Supplementation with EVOO mitigated the increase in fat and oxidative stress produced by HFD in the liver, along with a normalization of LCPUFA levels in the liver, erythrocytes and brain. It is proposed that EVOO supplementation protects against fat accumulation, and oxidative stress and normalizes n-3 and n-6 LCPUFA depletion induced in mice fed a HFD. (Author)

  7. Multifactorial Biological Modulation of Warm Ischemia Reperfusion Injury in Liver Transplantation From Non-Heart-Beating Donors Eliminates Primary Nonfunction and Reduces Bile Salt Toxicity

    NARCIS (Netherlands)

    Monbaliu, Diethard; Vekemans, Katrien; Hoekstra, Harm; Vaahtera, Lauri; Libbrecht, Louis; Derveaux, Katelijne; Parkkinen, Jaakko; Liu, Qiang; Heedfeld, Veerle; Wylin, Tine; Deckx, Hugo; Zeegers, Marcel; Balligand, Erika; Buurman, Wim; van Pelt, Jos; Porte, Robert J.; Pirenne, Jacques

    Objective: To design a multifactorial biological modulation approach targeting ischemia reperfusion injury to augment viability of porcine liver grafts from non-heart-beating donors (NHBD). Background Data: Liver Transplantation (LTx) from NHBD is associated with an increased risk of primary

  8. Decreased hepatic RBP4 secretion is correlated with reduced hepatic glucose production but is not associated with insulin resistance in patients with liver cirrhosis

    NARCIS (Netherlands)

    Bahr, Matthias J.; Boeker, Klaus H. W.; Manns, Michael P.; Tietge, Uwe J. F.

    Patients with liver cirrhosis have a high incidence of insulin resistance and diabetes. This study was designed to determine circulating levels and hepatic production of retinol-binding protein 4 (RBP4) in relation to parameters of hepatic and systemic metabolism in patients with liver cirrhosis.

  9. Cathodal transcranial direct current stimulation (tDCS) applied to the left premotor cortex (PMC) stabilizes a newly learned motor sequence.

    Science.gov (United States)

    Focke, Jan; Kemmet, Sylvia; Krause, Vanessa; Keitel, Ariane; Pollok, Bettina

    2017-01-01

    While the primary motor cortex (M1) is involved in the acquisition the premotor cortex (PMC) has been related to over-night consolidation of a newly learned motor skill. The present study aims at investigating the possible contribution of the left PMC for the stabilization of a motor sequence immediately after acquisition as determined by susceptibility to interference. Thirty six healthy volunteers received anodal, cathodal and sham transcranial direct current stimulation (tDCS) to the left PMC either immediately prior to or during training on a serial reaction time task (SRTT) with the right hand. TDCS was applied for 10min, respectively. Reaction times were measured prior to training (t1), at the end of training (t2), and after presentation of an interfering random pattern (t3). Beyond interference from learning, the random pattern served as control condition in order to estimate general effects of tDCS on reaction times. TDCS applied during SRTT training did not result in any significant effects neither on acquisition nor on susceptibility to interference. In contrast to this, tDCS prior to SRTT training yielded an unspecific facilitation of reaction times at t2 independent of tDCS polarity. At t3, reduced susceptibility to interference was found following cathodal stimulation. The results suggest the involvement of the PMC in early consolidation and reveal a piece of evidence for the hypothesis that behavioral tDCS effects vary with the activation state of the stimulated area. Copyright © 2016. Published by Elsevier B.V.

  10. Health and economic benefits of reducing sugar intake in the USA, including effects via non-alcoholic fatty liver disease: a microsimulation model.

    Science.gov (United States)

    Vreman, Rick A; Goodell, Alex J; Rodriguez, Luis A; Porco, Travis C; Lustig, Robert H; Kahn, James G

    2017-08-03

    Excessive consumption of added sugars in the human diet has been associated with obesity, type 2 diabetes (T2D), coronary heart disease (CHD) and other elements of the metabolic syndrome. Recent studies have shown that non-alcoholic fatty liver disease (NAFLD) is a critical pathway to metabolic syndrome. This model assesses the health and economic benefits of interventions aimed at reducing intake of added sugars. Using data from US National Health Surveys and current literature, we simulated an open cohort, for the period 2015-2035. We constructed a microsimulation model with Markov chains for NAFLD (including steatosis, non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma (HCC)), body mass index, T2D and CHD. We assessed reductions in population disease prevalence, disease-attributable disability-adjusted life years (DALYs) and costs, with interventions that reduce added sugars consumption by either 20% or 50%. The model estimated that a 20% reduction in added sugars intake will reduce prevalence of hepatic steatosis, NASH, cirrhosis, HCC, obesity, T2D and CHD. Incidence of T2D and CHD would be expected to decrease by 19.9 (95% CI 12.8 to 27.0) and 9.4 (95% CI 3.1 to 15.8) cases per 100 000 people after 20 years, respectively. A 20% reduction in consumption is also projected to annually avert 0.767 million (M) DALYs (95% CI 0.757M to 0.777M) and a total of US$10.3 billion (B) (95% CI 10.2B to 10.4B) in discounted direct medical costs by 2035. These effects increased proportionally when added sugars intake were reduced by 50%. The decrease in incidence and prevalence of disease is similar to results in other models, but averted costs and DALYs were higher, mainly due to inclusion of NAFLD and CHD. The model suggests that efforts to reduce consumption of added sugars may result in significant public health and economic benefits. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All

  11. Health and economic benefits of reducing sugar intake in the USA, including effects via non-alcoholic fatty liver disease: a microsimulation model

    Science.gov (United States)

    Vreman, Rick A; Goodell, Alex J; Rodriguez, Luis A; Porco, Travis C; Lustig, Robert H; Kahn, James G

    2017-01-01

    Objectives Excessive consumption of added sugars in the human diet has been associated with obesity, type 2 diabetes (T2D), coronary heart disease (CHD) and other elements of the metabolic syndrome. Recent studies have shown that non-alcoholic fatty liver disease (NAFLD) is a critical pathway to metabolic syndrome. This model assesses the health and economic benefits of interventions aimed at reducing intake of added sugars. Methods Using data from US National Health Surveys and current literature, we simulated an open cohort, for the period 2015–2035. We constructed a microsimulation model with Markov chains for NAFLD (including steatosis, non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma (HCC)), body mass index, T2D and CHD. We assessed reductions in population disease prevalence, disease-attributable disability-adjusted life years (DALYs) and costs, with interventions that reduce added sugars consumption by either 20% or 50%. Findings The model estimated that a 20% reduction in added sugars intake will reduce prevalence of hepatic steatosis, NASH, cirrhosis, HCC, obesity, T2D and CHD. Incidence of T2D and CHD would be expected to decrease by 19.9 (95% CI 12.8 to 27.0) and 9.4 (95% CI 3.1 to 15.8) cases per 100 000 people after 20 years, respectively. A 20% reduction in consumption is also projected to annually avert 0.767 million (M) DALYs (95% CI 0.757M to 0.777M) and a total of US$10.3 billion (B) (95% CI 10.2B to 10.4B) in discounted direct medical costs by 2035. These effects increased proportionally when added sugars intake were reduced by 50%. Conclusions The decrease in incidence and prevalence of disease is similar to results in other models, but averted costs and DALYs were higher, mainly due to inclusion of NAFLD and CHD. The model suggests that efforts to reduce consumption of added sugars may result in significant public health and economic benefits. PMID:28775179

  12. Insulin-induced inhibition of gluconeogenesis genes, including glutamic pyruvic transaminase 2, is associated with reduced histone acetylation in a human liver cell line.

    Science.gov (United States)

    Honma, Kazue; Kamikubo, Michiko; Mochizuki, Kazuki; Goda, Toshinao

    2017-06-01

    Hepatic glutamic pyruvic transaminase (GPT; also known as alanine aminotransferase) is a gluconeogenesis enzyme that catalyzes conversions between alanine and pyruvic acid. It is also used as a blood biomarker for hepatic damage. In this study, we investigated whether insulin regulates GPT expression, as it does for other gluconeogenesis genes, and if this involves the epigenetic modification of histone acetylation. Human liver-derived HepG2 cells were cultured with 0.5-100nM insulin for 8h, and the mRNA expression of GPT, glutamic-oxaloacetic transaminase (GOT), γ-glutamyltransferase (GGT), PCK1, G6PC and FBP1 was measured. We also investigated the extent of histone acetylation around these genes. Insulin suppressed the mRNA expression of gluconeogenesis genes (GPT2, GOT1, GOT2, GGT1, GGT2, G6PC, and PCK1) in HepG2 cells in a dose-dependent manner. mRNA levels of GPT2, but not GPT1, were decreased by insulin. Histone acetylation was also reduced around GPT2, G6PC, and PCK1 in response to insulin. The expression of GPT2 and other gluconeogenesis genes such as G6PC and PCK1 was suppressed by insulin, in association with decreases in histone H3 and H4 acetylation surrounding these genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Mangifera indica L. extract (Vimang®) reduces plasma and liver cholesterol and leucocyte oxidative stress in hypercholesterolemic LDL receptor deficient mice.

    Science.gov (United States)

    Dorighello, Gabriel G; Inada, Natália M; Paim, Bruno A; Pardo-Andreu, Gilberto L; Vercesi, Anibal E; Oliveira, Helena C F

    2018-06-01

    Cardiovascular diseases are major causes of death worldwide. Beyond the classical cholesterol risk factor, other conditions such as oxidative stress are well documented to promote atherosclerosis. The Mangifera indica L. extract (Vimang®) was reported to present antioxidant and hypocholesterolemic properties. Thus, here we evaluate the effects of Vimang treatment on risk factors of the atherosclerosis prone model of familial hypercholesterolemia, the LDL receptor knockout mice. Mice were treated with Vimang during 2 weeks and were fed a cholesterol-enriched diet during the second week. The Vimang treated mice presented significantly reduced levels of plasma (15%) and liver (20%) cholesterol, increased plasma total antioxidant capacity (10%) and decreased reactive oxygen species (ROS) production by spleen mononuclear cells (50%), P Vimang treated mice. Therefore, in this study we demonstrated that Vimang has protective effects on systemic and tissue-specific risk factors, but it is not sufficient to promote a reduction in the initial steps of atherosclerosis development. In addition, we disclosed a new antioxidant target of Vimang, the spleen mononuclear cells that might be relevant for more advanced stages of atherosclerosis. © 2018 International Federation for Cell Biology.

  14. Pomegranate seed oil influences the fatty acids profile and reduces the activity of desaturases in livers of Sprague-Dawley rats.

    Science.gov (United States)

    Białek, Agnieszka; Stawarska, Agnieszka; Bodecka, Joanna; Białek, Małgorzata; Tokarz, Andrzej

    2017-07-01

    The aim of our study was to compare the influence of diet supplementation with pomegranate seed oil - as conjugated linolenic acids (CLnA) source, or conjugated linoleic acids (CLA) and to examine the mechanism of their activity. The content of fatty acids, levels of biomarkers of lipids' oxidation and the activity of key enzymes catalyzing lipids metabolism were measured. Obtained results revealed that conjugated fatty acids significantly decrease the activity of Δ5-desaturase (p=0.0001) and Δ6-desaturase (p=0.0008) and pomegranate seed oil reduces their activity in the most potent way. We confirmed that diet supplementation with pomegranate seed oil - a rich source of punicic acid leads to the increase of cis-9, trans-11 CLA content in livers (p=0.0003). Lack of side effects and beneficial influence on desaturases activity and fatty acids profile claim pomegranate seed oil to become interesting alternative for CLA as functional food. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm.

    Science.gov (United States)

    Mondini, Valeria; Mangia, Anna Lisa; Cappello, Angelo

    2018-01-01

    Transcranial direct current stimulation (tDCS) and neurofeedback-guided motor imagery (MI) have attracted considerable interest in neurorehabilitation, given their ability to influence neuroplasticity. As tDCS has been shown to modulate event-related desynchronization (ERD), the neural signature of motor imagery detected for neurofeedback, a combination of the techniques was recently proposed. One limitation of this approach is that the area targeted for stimulation is the same from which the signal for neurofeedback is acquired. As tDCS may interfere with proximal electroencephalographic (EEG) electrodes, in this study our aim was to test whether contralateral tDCS could have interhemispheric effects on the spectral power of the unstimulated hemisphere, possibly mediated by transcallosal connection, and whether such effects could be used to enhance ERD magnitudes. A contralateral stimulation approach would indeed facilitate co-registration, as the stimulation electrode would be far from the recording sites. Twenty right-handed healthy volunteers (aged 21 to 32) participated in the study: ten assigned to cathodal, ten to anodal versus sham stimulation. We applied stimulation over the dominant (left) hemisphere, and assessed ERD and spectral power over the non-dominant (right) hemisphere. The effect of tDCS was evaluated over time. Spectral power was assessed in theta, alpha and beta bands, under both rest and MI conditions, while ERD was evaluated in alpha and beta bands. Two main findings emerged: (1) contralateral alpha-ERD was reduced after anodal (p = 0.0147), but not enhanced after cathodal tDCS; (2) both stimulations had remote effects on the spectral power of the contralateral hemisphere, particularly in theta and alpha (significant differences in the topographical t-value maps). The absence of contralateral cathodal ERD enhancement suggests that the protocol is not applicable in the context of MI training. Nevertheless, ERD results of anodal and spectral

  16. Reducing mineral usage in feedlot diets for Nellore cattle: II. Impacts of calcium, phosphorus, copper, manganese, and zinc contents on intake, performance, and liver and bone status.

    Science.gov (United States)

    Prados, L F; Sathler, D F T; Silva, B C; Zanetti, D; Valadares Filho, S C; Alhadas, H M; Detmann, E; Santos, S A; Mariz, L D S; Chizzotti, M L

    2017-04-01

    Weaned Nellore bulls ( = 36; 274 ± 34 kg) were used in a randomized block design with a 2 × 2 factorial arrangement of treatments to evaluate intake, fecal excretion, and performance with different concentrations of minerals. Experimental diets were formulated with 2 concentrations of Ca and P (macromineral factor; diet supplying 100% of Ca and P according to BR-CORTE () [CaP+] or diet without limestone and dicalcium phosphate [CaP-]) and 2 concentrations of microminerals (micromineral factor; diet with supplementation of microminerals [Zn, Mn, and Cu; CuMnZn+] or diet without supplementation of microminerals [Zn, Mn, and Cu; CuMnZn-]). The factor CaP- was formulated without the addition of limestone and dicalcium phosphate, and the factor CuMnZn- was formulated without inorganic supplementation of microminerals (premix). The diets were isonitrogenous (13.3% CP). Intake was individually monitored every day. Indigestible NDF was used as an internal marker for digestibility estimates. The bulls were slaughtered (84 or 147 d on feed), and then carcass characteristics were measured and liver and rib samples were collected. Feed, feces, rib bones, and liver samples were analyzed for DM, ash, CP, ether extract (EE), Ca, P, Zn, Mn, and Cu. There were no significant interactions ( ≥ 0.06) between macro- and micromineral supplementation for any variables in the study. Calcium, P, and micromineral concentrations did not affect ( ≥ 0.20) intake of DM, OM, NDF, EE, CP, TDN, and nonfiber carbohydrates (NFC). Calcium and P intake were affected ( < 0.01) by macromineral factor. Animals fed without Ca and P supplementation consumed less of these minerals. Dry matter and nutrient fecal excretion (OM, NDF, EE, CP, and NFC) were similar ( ≥ 0.23) among all factors. Performance and carcass characteristics were similar ( ≥ 0.09) among diets. The content of ash in rib bones was not affected by diets ( ≥ 0.06). Plasma P and phosphatase alkaline concentrations were similar (

  17. Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System.

    Science.gov (United States)

    Leite, Jorge; Morales-Quezada, Leon; Carvalho, Sandra; Thibaut, Aurore; Doruk, Deniz; Chen, Chiun-Fan; Schachter, Steven C; Rotenberg, Alexander; Fregni, Felipe

    2017-09-01

    Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.

  18. Impact of antipsychotic medication on transcranial direct current stimulation (tDCS) effects in schizophrenia patients.

    Science.gov (United States)

    Agarwal, Sri Mahavir; Bose, Anushree; Shivakumar, Venkataram; Narayanaswamy, Janardhanan C; Chhabra, Harleen; Kalmady, Sunil V; Varambally, Shivarama; Nitsche, Michael A; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N

    2016-01-30

    Transcranial direct current stimulation (tDCS) has generated interest as a treatment modality for schizophrenia. Dopamine, a critical pathogenetic link in schizophrenia, is also known to influence tDCS effects. We evaluated the influence of antipsychotic drug type (as defined by dopamine D2 receptor affinity) on the impact of tDCS in schizophrenia. DSM-IV-TR-diagnosed schizophrenia patients [N=36] with persistent auditory hallucinations despite adequate antipsychotic treatment were administered add-on tDCS. Patients were divided into three groups based on the antipsychotic's affinity to D2 receptors. An auditory hallucinations score (AHS) was measured using the auditory hallucinations subscale of the Psychotic Symptom Rating Scales (PSYRATS). Add-on tDCS resulted in a significant reduction inAHS. Antipsychotic drug type had a significant effect on AHS reduction. Patients treated with high affinity antipsychotics showed significantly lesser improvement compared to patients on low affinity antipsychotics or a mixture of the two. Furthermore, a significant sex-by-group interaction occurred; type of medication had an impact on tDCS effects only in women. Improvement differences could be due to the larger availability of the dopamine receptor system in patients taking antipsychotics with low D2 affinity. Sex-specific differences suggest potential estrogen-mediated effects. This study reports a first-time observation on the clinical utility of antipsychotic drug type in predicting tDCS effects in schizophrenia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Effects of transcranial direct current stimulation (tDCS) on binge eating disorder.

    Science.gov (United States)

    Burgess, Emilee E; Sylvester, Maria D; Morse, Kathryn E; Amthor, Frank R; Mrug, Sylvie; Lokken, Kristine L; Osborn, Mary K; Soleymani, Taraneh; Boggiano, Mary M

    2016-10-01

    To investigate the effect of transcranial direct current stimulation (tDCS) on food craving, intake, binge eating desire, and binge eating frequency in individuals with binge eating disorder (BED). N = 30 adults with BED or subthreshold BED received a 20-min 2 milliampere (mA) session of tDCS targeting the dorsolateral prefrontal cortex (DLPFC; anode right/cathode left) and a sham session. Food image ratings assessed food craving, a laboratory eating test assessed food intake, and an electronic diary recorded binge variables. tDCS versus sham decreased craving for sweets, savory proteins, and an all-foods category, with strongest reductions in men (p tDCS also decreased total and preferred food intake by 11 and 17.5%, regardless of sex (p tDCS administration (p tDCS in BED. Stimulation of the right DLPFC suggests that enhanced cognitive control and/or decreased need for reward may be possible functional mechanisms. The results support investigation of repeated tDCS as a safe and noninvasive treatment adjunct for BED. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2016; 49:930-936). © 2016 Wiley Periodicals, Inc.

  20. The Effects of Compensatory Auditory Stimulation and High-Definition Transcranial Direct Current Stimulation (HD-tDCS) on Tinnitus Perception - A Randomized Pilot Study.

    Science.gov (United States)

    Henin, Simon; Fein, Dovid; Smouha, Eric; Parra, Lucas C

    2016-01-01

    Tinnitus correlates with elevated hearing thresholds and reduced cochlear compression. We hypothesized that reduced peripheral input leads to elevated neuronal gain resulting in the perception of a phantom sound. The purpose of this pilot study was to test whether compensating for this peripheral deficit could reduce the tinnitus percept acutely using customized auditory stimulation. To further enhance the effects of auditory stimulation, this intervention was paired with high-definition transcranial direct current stimulation (HD-tDCS). A randomized sham-controlled, single blind study was conducted in a clinical setting on adult participants with chronic tinnitus (n = 14). Compensatory auditory stimulation (CAS) and HD-tDCS were administered either individually or in combination in order to access the effects of both interventions on tinnitus perception. CAS consisted of sound exposure typical to daily living (20-minute sound-track of a TV show), which was adapted with compressive gain to compensate for deficits in each subject's individual audiograms. Minimum masking levels and the visual analog scale were used to assess the strength of the tinnitus percept immediately before and after the treatment intervention. CAS reduced minimum masking levels, and visual analog scale trended towards improvement. Effects of HD-tDCS could not be resolved with the current sample size. The results of this pilot study suggest that providing tailored auditory stimulation with frequency-specific gain and compression may alleviate tinnitus in a clinical population. Further experimentation with longer interventions is warranted in order to optimize effect sizes.

  1. Hits and Misses: Leveraging tDCS to Advance Cognitive Research

    Directory of Open Access Journals (Sweden)

    Marian E Berryhill

    2014-07-01

    Full Text Available The popularity of non-invasive brain stimulation techniques in basic, commercial, and applied settings grew tremendously over the last decade. Here, we focus on one popular neurostimulation method: transcranial direct current stimulation (tDCS. Many assumptions regarding the outcomes of tDCS are based on the results of stimulating motor cortex. For instance, the primary motor cortex is predictably suppressed by cathodal tDCS or made more excitable by anodal tDCS. However, wide-ranging studies testing cognition provide more complex and sometimes paradoxical results that challenge this heuristic. Here, we first summarize successful efforts in applying tDCS to cognitive questions, with a focus on working memory. These recent findings indicate that tDCS can result in cognitive task improvement or impairment regardless of stimulation site or direction of current flow. We then report working memory and response inhibition studies that failed to replicate and/or extend previously reported effects. From these opposing outcomes, we present a series of factors to consider that are intended to facilitate future use of tDCS when applied to cognitive questions. In short, common pitfalls include testing too few participants, using insufficiently challenging tasks, using heterogeneous participant populations, and including poorly motivated participants. Furthermore, the poorly understood underlying mechanism for long-lasting tDCS effects make it likely that other important factors predict responses. In conclusion, we argue that although tDCS can be used experimentally to understand brain function its greatest potential may be in applied or translational research.

  2. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Lefaucheur, Jean-Pascal; Antal, Andrea; Ayache, Samar S; Benninger, David H; Brunelin, Jérôme; Cogiamanian, Filippo; Cotelli, Maria; De Ridder, Dirk; Ferrucci, Roberta; Langguth, Berthold; Marangolo, Paola; Mylius, Veit; Nitsche, Michael A; Padberg, Frank; Palm, Ulrich; Poulet, Emmanuel; Priori, Alberto; Rossi, Simone; Schecklmann, Martin; Vanneste, Sven; Ziemann, Ulf; Garcia-Larrea, Luis; Paulus, Walter

    2017-01-01

    A group of European experts was commissioned by the European Chapter of the International Federation of Clinical Neurophysiology to gather knowledge about the state of the art of the therapeutic use of transcranial direct current stimulation (tDCS) from studies published up until September 2016, regarding pain, Parkinson's disease, other movement disorders, motor stroke, poststroke aphasia, multiple sclerosis, epilepsy, consciousness disorders, Alzheimer's disease, tinnitus, depression, schizophrenia, and craving/addiction. The evidence-based analysis included only studies based on repeated tDCS sessions with sham tDCS control procedure; 25 patients or more having received active treatment was required for Class I, while a lower number of 10-24 patients was accepted for Class II studies. Current evidence does not allow making any recommendation of Level A (definite efficacy) for any indication. Level B recommendation (probable efficacy) is proposed for: (i) anodal tDCS of the left primary motor cortex (M1) (with right orbitofrontal cathode) in fibromyalgia; (ii) anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) (with right orbitofrontal cathode) in major depressive episode without drug resistance; (iii) anodal tDCS of the right DLPFC (with left DLPFC cathode) in addiction/craving. Level C recommendation (possible efficacy) is proposed for anodal tDCS of the left M1 (or contralateral to pain side, with right orbitofrontal cathode) in chronic lower limb neuropathic pain secondary to spinal cord lesion. Conversely, Level B recommendation (probable inefficacy) is conferred on the absence of clinical effects of: (i) anodal tDCS of the left temporal cortex (with right orbitofrontal cathode) in tinnitus; (ii) anodal tDCS of the left DLPFC (with right orbitofrontal cathode) in drug-resistant major depressive episode. It remains to be clarified whether the probable or possible therapeutic effects of tDCS are clinically meaningful and how to optimally perform tDCS

  3. DCS cabinet power loss analysis for CPR1000 nuclear power plant

    International Nuclear Information System (INIS)

    Zhou Liang; Zhao Yanfeng; Sun Yongbin

    2014-01-01

    The DCS overall structure of CRP1000 nuclear power plant was introduced. Based on the RPC, the signal interface character and signal processing mechanism on the key root were analyzed. By the power loss analyzing of RPC, the RPC loss power may lead reactor trip signal from anticipated transient without scram (ATWS) system. The results indicate that it is necessary to search DCS cabinet power loss analysis. Optimizing and assigning the main water flow signals can avoid trigger reactor trip signal by mistake. The DCS cabinet power loss analysis can optimize the I and C (instrumentation and control) design and increase the nuclear plant's reliability. (authors)

  4. Analysis of effect of safety classification on DCS design in nuclear power plants

    International Nuclear Information System (INIS)

    Gou Guokai; Li Guomin; Wang Qunfeng

    2011-01-01

    By analyzing the safety classification for the systems and functions of nuclear power plants based on the general design requirements for nuclear power plants, especially the requirement of availability and reliability of I and C systems, the characteristics of modem DCS technology and I and C products currently applied in nuclear power field are interpreted. According to the requirements on the safety operation of nuclear power plants and the regulations for safety audit, the effect of different safety classifications on DCS design in nuclear power plants is analyzed, by considering the actual design process of different DCS solutions in the nuclear power plants under construction. (authors)

  5. Green tea extracts reduce leukocyte cell-Derived chemotaxin 2 and selenoprotein P levels in the livers of C57BL/6J mice fed a high-fat diet.

    Science.gov (United States)

    Onishi, Shintaro; Kitazawa, Hidefumi; Meguro, Shinichi; Tokimitsu, Ichiro

    2018-05-31

    Epidemiological studies suggest that green tea extracts (GTEs), including catechins such as epigallocatechin gallate and epicatechin gallate, have a beneficial effect on obesity, hyperglycemia, insulin resistance, endothelial dysfunction, and inflammation. Although several studies have shown that catechins directly modulate the cellular and molecular alterations in the liver tissue, the contributions of indirect mechanisms underlying these systemic effects of catechins remain unclear. In this study, we report that, in the C57BL/6J mouse liver, GTEs reduce high-fat diet-induced increases in the levels of hepatokines, liver-derived secretary proteins such as leukocyte cell-derived chemotaxin 2 and selenoprotein P production, which have been shown to induce systemic adverse effects, including several metabolic diseases. These findings suggest that the systemic effects of GTEs involve the regulation of hepatokine production as an indirect mechanism.

  6. Tiaozhi Tongmai Granules reduce atherogenesis and promote the expression of ATP-binding cassette transporter A1 in rabbit atherosclerotic plaque macrophages and the liver

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2014-07-01

    Conclusions: Tiaozhi Tongmai Granules appear to have an anti-atherogenic effect that is most likely mediated by simultaneously upregulating the protein expression of ABCA1 in rabbit atherosclerotic plaque macrophages and in the liver.

  7. Liver-primed memory T cells generated under noninflammatory conditions provide anti-infectious immunity.

    Science.gov (United States)

    Böttcher, Jan P; Schanz, Oliver; Wohlleber, Dirk; Abdullah, Zeinab; Debey-Pascher, Svenja; Staratschek-Jox, Andrea; Höchst, Bastian; Hegenbarth, Silke; Grell, Jessica; Limmer, Andreas; Atreya, Imke; Neurath, Markus F; Busch, Dirk H; Schmitt, Edgar; van Endert, Peter; Kolanus, Waldemar; Kurts, Christian; Schultze, Joachim L; Diehl, Linda; Knolle, Percy A

    2013-03-28

    Development of CD8(+) T cell (CTL) immunity or tolerance is linked to the conditions during T cell priming. Dendritic cells (DCs) matured during inflammation generate effector/memory T cells, whereas immature DCs cause T cell deletion/anergy. We identify a third outcome of T cell priming in absence of inflammation enabled by cross-presenting liver sinusoidal endothelial cells. Such priming generated memory T cells that were spared from deletion by immature DCs. Similar to central memory T cells, liver-primed T cells differentiated into effector CTLs upon antigen re-encounter on matured DCs even after prolonged absence of antigen. Their reactivation required combinatorial signaling through the TCR, CD28, and IL-12R and controlled bacterial and viral infections. Gene expression profiling identified liver-primed T cells as a distinct Neuropilin-1(+) memory population. Generation of liver-primed memory T cells may prevent pathogens that avoid DC maturation by innate immune escape from also escaping adaptive immunity through attrition of the T cell repertoire. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Liver-Primed Memory T Cells Generated under Noninflammatory Conditions Provide Anti-infectious Immunity

    Directory of Open Access Journals (Sweden)

    Jan P. Böttcher

    2013-03-01

    Full Text Available Development of CD8+ T cell (CTL immunity or tolerance is linked to the conditions during T cell priming. Dendritic cells (DCs matured during inflammation generate effector/memory T cells, whereas immature DCs cause T cell deletion/anergy. We identify a third outcome of T cell priming in absence of inflammation enabled by cross-presenting liver sinusoidal endothelial cells. Such priming generated memory T cells that were spared from deletion by immature DCs. Similar to central memory T cells, liver-primed T cells differentiated into effector CTLs upon antigen re-encounter on matured DCs even after prolonged absence of antigen. Their reactivation required combinatorial signaling through the TCR, CD28, and IL-12R and controlled bacterial and viral infections. Gene expression profiling identified liver-primed T cells as a distinct Neuropilin-1+ memory population. Generation of liver-primed memory T cells may prevent pathogens that avoid DC maturation by innate immune escape from also escaping adaptive immunity through attrition of the T cell repertoire.

  9. Mutagenicity of the potent rat hepatocarcinogen 6BT to the liver of transgenic (lacI) rats: consideration of a reduced mutation assay protocol.

    Science.gov (United States)

    Lefevre, P A; Tinwell, H; Ashby, J

    1997-01-01

    6-(p-dimethylaminophenylazo)benzothiazole (6BT) is an unusually potent rat hepatocarcinogen, producing large malignant liver tumours after only 2-3 months of dietary administration in a riboflavin-deficient diet. This azocarcinogen has been evaluated in a Big Blue F344 transgenic rat (lacI) gene mutation assay. In a reproduction of the early stages of the carcinogenesis bioassay of this agent, rats were maintained on a riboflavin-deficient diet and were given 10 consecutive daily doses of 6BT (10 mg/kg) by oral gavage. The animals were killed and the livers examined 11 days after the final dose. The livers of 6BT-treated rats showed evidence of hepatocellular hypertrophy in centrolobular areas, with some indication of an increased incidence of mitotic figures. An approximately 10-fold increase in the mutation frequency of DNA isolated from an aliquot of the combined liver homogenates of 6BT-treated rats was observed over that obtained from an equivalent aliquot from control animals. Examination of DNA samples isolated from the livers of individual animals confirmed that 6BT was mutagenic in Big Blue rat livers. These data extend the sensitivity of this transgenic assay to include azo hepatocarcinogens. The determination of mutation frequencies using pooled tissue samples represented a major resource-saving adaptation of the assay protocol in the present study; the general advantages and disadvantages of this practice are discussed.

  10. A High-Protein Diet Reduces Weight Gain, Decreases Food Intake, Decreases Liver Fat Deposition, and Improves Markers of Muscle Metabolism in Obese Zucker Rats.

    Science.gov (United States)

    French, William W; Dridi, Sami; Shouse, Stephanie A; Wu, Hexirui; Hawley, Aubree; Lee, Sun-Ok; Gu, Xuan; Baum, Jamie I

    2017-06-08

    A primary factor in controlling and preventing obesity is through dietary manipulation. Diets higher in protein have been shown to improve body composition and metabolic health during weight loss. The objective of this study was to examine the effects of a high-protein diet versus a moderate-protein diet on muscle, liver and fat metabolism and glucose regulation using the obese Zucker rat. Twelve-week old, male, Zucker (fa/fa) and lean control (Fa/fa) rats were randomly assigned to either a high-protein (40% energy) or moderate-protein (20% energy) diet for 12 weeks, with a total of four groups: lean 20% protein (L20; n = 8), lean 40% protein (L40; n = 10), obese 20% protein (O20; n = 8), and obese 40% protein (O40; n = 10). At the end of 12 weeks, animals were fasted and euthanized. There was no difference in food intake between L20 and L40. O40 rats gained less weight and had lower food intake ( p diet rats, respectively. O40 had decreased skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1) phosphorylation and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to O20 ( p protein kinase (AMPK), eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), protein kinase B (Akt) or p70 ribosomal S6 kinase (p70S6K) phosphorylation. The data suggest that high-protein diets have the potential to reduce weight gain and alter metabolism, possibly through regulation of an mTORC1-dependent pathway in skeletal muscle.

  11. Dietary Mung Bean Protein Reduces Hepatic Steatosis, Fibrosis, and Inflammation in Male Mice with Diet-Induced, Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Watanabe, Hitoshi; Inaba, Yuka; Kimura, Kumi; Asahara, Shun-Ichiro; Kido, Yoshiaki; Matsumoto, Michihiro; Motoyama, Takayasu; Tachibana, Nobuhiko; Kaneko, Shuichi; Kohno, Mitsutaka; Inoue, Hiroshi

    2017-01-01

    As the prevalence of nonalcoholic fatty liver disease (NAFLD), including steatosis and nonalcoholic steatohepatitis, is increasing, novel dietary approaches are required for the prevention and treatment of NAFLD. We evaluated the potential of mung bean protein isolate (MuPI) to prevent NAFLD progression. In Expts. 1 and 2, the hepatic triglyceride (TG) concentration was compared between 8-wk-old male mice fed a high-fat diet (61% of energy from fat) containing casein, MuPI, and soy protein isolate and an MuPI-constituent amino acid mixture as a source of amino acids (18% of energy) for 4 wk. In Expt. 3, hepatic fatty acid synthase (Fasn) expression was evaluated in 8-wk-old male Fasn-promoter-reporter mice fed a casein- or MuPI-containing high-fat diet for 20 wk. In Expt. 4, hepatic fibrosis was examined in 8-wk-old male mice fed an atherogenic diet (61% of energy from fat, containing 1.3 g cholesterol/100 g diet) containing casein or MuPI (18% of energy) as a protein source for 20 wk. In the high fat-diet mice, the hepatic TG concentration in the MuPI group decreased by 66% and 47% in Expt. 1 compared with the casein group (P hepatic TG concentration were lower in the MuPI group than in those fed casein (P hepatic fibrosis was not induced in the MuPI group, whereas it developed overtly in the casein group. MuPI potently reduced hepatic lipid accumulation in mice and may be a potential foodstuff to prevent NAFLD onset and progression. © 2017 American Society for Nutrition.

  12. LHCb Silicon Tracker DAQ and DCS Online Systems

    CERN Multimedia

    Buechler, A; Rodriguez, P

    2009-01-01

    The LHCb experiment at the Large Hadron Collider (LHC) at CERN in Geneva Switzerland is specialized on precision measurements of b quark decays. The Silicon Tracker (ST) contributes a crucial part in tracking the particle trajectories and consists of two silicon micro-strip detectors, the Tracker Turicensis upstream of the LHCb magnet and the Inner Tracker downstream. The radiation and the magnetic field represent new challenges for the implementation of a Detector Control System (DCS) and the data acquisition (DAQ). The DAQ has to deal with more than 270K analog readout channels, 2K readout chips and real time DAQ at a rate of 1.1 MHz with data processing at TELL1 level. The TELL1 real time algorithms for clustering thresholds and other computations run on dedicated FPGAs that implement 13K configurable parameters per board, in total 1.17 K parameters for the ST. After data processing the total throughput amounts to about 6.4 Gbytes from an input data rate of around ~337 Gbytes per second. A finite state ma...

  13. Cyber security risk assessment for SCADA and DCS networks.

    Science.gov (United States)

    Ralston, P A S; Graham, J H; Hieb, J L

    2007-10-01

    The growing dependence of critical infrastructures and industrial automation on interconnected physical and cyber-based control systems has resulted in a growing and previously unforeseen cyber security threat to supervisory control and data acquisition (SCADA) and distributed control systems (DCSs). It is critical that engineers and managers understand these issues and know how to locate the information they need. This paper provides a broad overview of cyber security and risk assessment for SCADA and DCS, introduces the main industry organizations and government groups working in this area, and gives a comprehensive review of the literature to date. Major concepts related to the risk assessment methods are introduced with references cited for more detail. Included are risk assessment methods such as HHM, IIM, and RFRM which have been applied successfully to SCADA systems with many interdependencies and have highlighted the need for quantifiable metrics. Presented in broad terms is probability risk analysis (PRA) which includes methods such as FTA, ETA, and FEMA. The paper concludes with a general discussion of two recent methods (one based on compromise graphs and one on augmented vulnerability trees) that quantitatively determine the probability of an attack, the impact of the attack, and the reduction in risk associated with a particular countermeasure.

  14. Liver Immunology

    Science.gov (United States)

    Bogdanos, Dimitrios P.; Gao, Bin; Gershwin, M. Eric

    2014-01-01

    The liver is the largest organ in the body and is generally regarded by non-immunologists as not having lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates a tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and is also instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena which if are not controlled by regulatory lymphoid populations may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events which lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discus select, but not all, immune mediated liver disease and attempt to place these data in the context of human autoimmunity. PMID:23720323

  15. Cooperation Not Competition: Bihemispheric tDCS and fMRI Show Role for Ipsilateral Hemisphere in Motor Learning.

    Science.gov (United States)

    Waters, Sheena; Wiestler, Tobias; Diedrichsen, Jörn

    2017-08-02

    What is the role of ipsilateral motor and premotor areas in motor learning? One view is that ipsilateral activity suppresses contralateral motor cortex and, accordingly, that inhibiting ipsilateral regions can improve motor learning. Alternatively, the ipsilateral motor cortex may play an active role in the control and/or learning of unilateral hand movements. We approached this question by applying double-blind bihemispheric transcranial direct current stimulation (tDCS) over both contralateral and ipsilateral motor cortex in a between-group design during 4 d of unimanual explicit sequence training in human participants. Independently of whether the anode was placed over contralateral or ipsilateral motor cortex, bihemispheric stimulation yielded substantial performance gains relative to unihemispheric or sham stimulation. This performance advantage appeared to be supported by plastic changes in both hemispheres. First, we found that behavioral advantages generalized strongly to the untrained hand, suggesting that tDCS strengthened effector-independent representations. Second, functional imaging during speed-matched execution of trained sequences conducted 48 h after training revealed sustained, polarity-independent increases in activity in both motor cortices relative to the sham group. These results suggest a cooperative rather than competitive interaction of the two motor cortices during skill learning and suggest that bihemispheric brain stimulation during unimanual skill learning may be beneficial because it harnesses plasticity in the ipsilateral hemisphere. SIGNIFICANCE STATEMENT Many neurorehabilitation approaches are based on the idea that is beneficial to boost excitability in the contralateral hemisphere while attenuating that of the ipsilateral cortex to reduce interhemispheric inhibition. We observed that bihemispheric transcranial direct current stimulation (tDCS) with the excitatory anode either over contralateral or ipsilateral motor cortex

  16. Transcranial Direct Current Stimulation (tDCS: A Beginner's Guide for Design and Implementation

    Directory of Open Access Journals (Sweden)

    Hayley Thair

    2017-11-01

    Full Text Available Transcranial direct current stimulation (tDCS is a popular brain stimulation method that is used to modulate cortical excitability, producing facilitatory or inhibitory effects upon a variety of behaviors. There is, however, a current lack of consensus between studies, with many results suggesting that polarity-specific effects are difficult to obtain. This article explores some of these differences and highlights the experimental parameters that may underlie their occurrence. We provide a general, practical snapshot of tDCS methodology, including what it is used for, how to use it, and considerations for designing an effective and safe experiment. Our aim is to equip researchers who are new to tDCS with the essential knowledge so that they can make informed and well-rounded decisions when designing and running successful experiments. By summarizing the varied approaches, stimulation parameters, and outcomes, this article should help inform future tDCS research in a variety of fields.

  17. Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Design and Implementation

    Science.gov (United States)

    Thair, Hayley; Holloway, Amy L.; Newport, Roger; Smith, Alastair D.

    2017-01-01

    Transcranial direct current stimulation (tDCS) is a popular brain stimulation method that is used to modulate cortical excitability, producing facilitatory or inhibitory effects upon a variety of behaviors. There is, however, a current lack of consensus between studies, with many results suggesting that polarity-specific effects are difficult to obtain. This article explores some of these differences and highlights the experimental parameters that may underlie their occurrence. We provide a general, practical snapshot of tDCS methodology, including what it is used for, how to use it, and considerations for designing an effective and safe experiment. Our aim is to equip researchers who are new to tDCS with the essential knowledge so that they can make informed and well-rounded decisions when designing and running successful experiments. By summarizing the varied approaches, stimulation parameters, and outcomes, this article should help inform future tDCS research in a variety of fields. PMID:29213226

  18. Translating tDCS into the field of obesity: mechanism-driven approaches

    Directory of Open Access Journals (Sweden)

    Miguel eAlonso-Alonso

    2013-08-01

    Full Text Available Transcranial direct current stimulation (tDCS is emerging as a promising technique for neuromodulation in a variety of clinical conditions. Recent neuroimaging studies suggest that modifying the activity of brain circuits involved in eating behavior could provide therapeutic benefits in obesity. One session of tDCS over the dorsolateral prefrontal cortex can induce an acute decrease in food craving, according to three small clinical trials, but the extension of these findings into the field of obesity remains unexplored. Importantly, there has been little/no interaction of our current understanding of tDCS and its mechanisms with obesity-related research. How can we start closing this gap and rationally guide the translation of tDCS into the field of obesity? In this mini-review I summarize some of the challenges and questions ahead, related to basic science and technical aspects, and suggest future directions.

  19. Deft Control Software (DCS) for Remote Robotic Operations with Underlying Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — BluHaptics proposes Deft Control Software (DCS), which utilizes machine learning to enable intuitive and efficient control of robotic arms in remote operations with...

  20. Feasibility of using high-definition transcranial direct current stimulation (HD-tDCS) to enhance treatment outcomes in persons with aphasia.

    Science.gov (United States)

    Richardson, Jessica; Datta, Abhishek; Dmochowski, Jacek; Parra, Lucas C; Fridriksson, Julius

    2015-01-01

    Transcranial direct current stimulation (tDCS) enhances treatment outcomes post-stroke. Feasibility and tolerability of high-definition (HD) tDCS (a technique that increases current focality and intensity) for consecutive weekdays as an adjuvant to behavioral treatment in a clinical population has not been demonstrated. To determine HD-tDCS feasibility outcomes: 1) ability to implement study as designed, 2) acceptability of repeated HD-tDCS administration to patients, and 3) preliminary efficacy. Eight patients with chronic post-stroke aphasia participated in a randomized crossover trial with two arms: conventional sponge-based (CS) tDCS and HD-tDCS. Computerized anomia treatment was administered for five consecutive days during each treatment arm. Individualized modeling/targeting procedures and an 8-channel HD-tDCS device were developed. CS-tDCS and HD-tDCS were comparable in terms of implementation, acceptability, and outcomes. Naming accuracy and response time improved for both stimulation conditions. Change in accuracy of trained items was numerically higher (but not statistically significant) for HD-tDCS compared to CS-tDCS for most patients. Regarding feasibility, HD-tDCS treatment studies can be implemented when designed similarly to documented CS-tDCS studies. HD-tDCS is likely to be acceptable to patients and clinicians. Preliminary efficacy data suggest that HD-tDCS effects, using only 4 electrodes, are at least comparable to CS-tDCS.

  1. Liver spots

    Science.gov (United States)

    ... skin changes - liver spots; Senile or solar lentigines; Skin spots - aging; Age spots ... Liver spots are changes in skin color that occur in older skin. The coloring may be due to aging, exposure to the sun ...

  2. Liver Diseases

    Science.gov (United States)

    Your liver is the largest organ inside your body. It helps your body digest food, store energy, and remove poisons. There are many kinds of liver diseases: Diseases caused by viruses, such as hepatitis ...

  3. Liver disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000205.htm Liver disease To use the sharing features on this page, please enable JavaScript. The term "liver disease" applies to many conditions that stop the ...

  4. The Effects of Transcranial Direct Current Stimulation (tDCS on Multitasking Throughput Capacity

    Directory of Open Access Journals (Sweden)

    Justin Nelson

    2016-11-01

    Full Text Available Background: Multitasking has become an integral attribute associated with military operations within the past several decades. As the amount of information that needs to be processed during these high level multitasking environments exceeds the human operators’ capabilities, the information throughput capacity reaches an asymptotic limit. At this point, the human operator can no longer effectively process and respond to the incoming information resulting in a plateau or decline in performance. The objective of the study was to evaluate the efficacy of a non-invasive brain stimulation technique known as transcranial direct current stimulation (tDCS applied to a scalp location over the left dorsolateral prefrontal cortex (lDLPFC to improve information processing capabilities during a multitasking environment. Methods: The study consisted of 20 participants from Wright-Patterson Air Force Base (16 male and 4 female with an average age of 31.1 (SD = 4.5. Participants were randomly assigned into two groups, each consisting of eight males and two females. Group one received 2mA of anodal tDCS and group two received sham tDCS over the lDLPFC on their testing day. Results: The findings indicate that anodal tDCS significantly improves the participants’ information processing capability resulting in improved performance compared to sham tDCS. For example, the multitasking throughput capacity for the sham tDCS group plateaued near 1.0 bits/s at the higher baud input (2.0 bits/s whereas the anodal tDCS group plateaued near 1.3 bits/s. Conclusion: The findings provided new evidence that tDCS has the ability to augment and enhance multitasking capability in a human operator. Future research should be conducted to determine the longevity of the enhancement of transcranial direct current stimulation on multitasking performance, which has yet to be accomplished.

  5. The Effects of Transcranial Direct Current Stimulation (tDCS) on Multitasking Throughput Capacity.

    Science.gov (United States)

    Nelson, Justin; McKinley, Richard A; Phillips, Chandler; McIntire, Lindsey; Goodyear, Chuck; Kreiner, Aerial; Monforton, Lanie

    2016-01-01

    Background: Multitasking has become an integral attribute associated with military operations within the past several decades. As the amount of information that needs to be processed during these high level multitasking environments exceeds the human operators' capabilities, the information throughput capacity reaches an asymptotic limit. At this point, the human operator can no longer effectively process and respond to the incoming information resulting in a plateau or decline in performance. The objective of the study was to evaluate the efficacy of a non-invasive brain stimulation technique known as transcranial direct current stimulation (tDCS) applied to a scalp location over the left dorsolateral prefrontal cortex (lDLPFC) to improve information processing capabilities during a multitasking environment. Methods: The study consisted of 20 participants from Wright-Patterson Air Force Base (16 male and 4 female) with an average age of 31.1 (SD = 4.5). Participants were randomly assigned into two groups, each consisting of eight males and two females. Group one received 2 mA of anodal tDCS and group two received sham tDCS over the lDLPFC on their testing day. Results: The findings indicate that anodal tDCS significantly improves the participants' information processing capability resulting in improved performance compared to sham tDCS. For example, the multitasking throughput capacity for the sham tDCS group plateaued near 1.0 bits/s at the higher baud input (2.0 bits/s) whereas the anodal tDCS group plateaued near 1.3 bits/s. Conclusion: The findings provided new evidence that tDCS has the ability to augment and enhance multitasking capability in a human operator. Future research should be conducted to determine the longevity of the enhancement of transcranial direct current stimulation on multitasking performance, which has yet to be accomplished.

  6. Functional connectivity substrates for tDCS response in Minimally Conscious State patients

    Directory of Open Access Journals (Sweden)

    Carlo Cavaliere

    2016-11-01

    Full Text Available Transcranial direct current stimulation (tDCS is a non-invasive technique recently employed in disorders of consciousness, and determining a transitory recovery of signs of consciousness in almost half of minimally conscious state (MCS patients. Although the rising evidences about its possible role in the treatment of many neurological and psychiatric conditions, no evidences exist about brain functional connectivity substrates underlying tDCS response. We retrospectively evaluated resting state functional Magnetic Resonance Imaging (fMRI of 16 sub-acute and chronic MCS patients (6 tDCS responders who successively received a single left dorsolateral prefrontal cortex (DLPFC tDCS in a double-blind randomized cross-over trial. A seed-based approach for regions of left extrinsic control network and default-mode network was performed.TDCS responders showed an increased left intra-network connectivity for regions co-activated with left DLPFC, and significantly with left inferior frontal gyrus. Non-responders MCS patients showed an increased connectivity between left DLPFC and midline cortical structures, including anterior cingulate cortex and precuneus.Our findings suggest that a prior high connectivity with regions belonging to extrinsic control network can facilitate transitory recovery of consciousness in a subgroup of MCS patients that underwent tDCS treatment. Therefore, resting state-fMRI could be very valuable in detecting the neuronal conditions necessary for tDCS to improve behavior in MCS.

  7. Delayed plastic responses to anodal tDCS in older adults

    Directory of Open Access Journals (Sweden)

    Hakuei eFujiyama

    2014-06-01

    Full Text Available Despite the abundance of research reporting the neurophysiological and behavioral effects of transcranial direct current stimulation (tDCS in healthy young adults and clinical populations, the extent of potential neuroplastic changes induced by tDCS in healthy older adults is not well understood. The present study compared the extent and time course of anodal tDCS-induced plastic changes in primary motor cortex (M1 in young and older adults. Furthermore, as it has been suggested that neuroplasiticity and associated learning depends on the brain-derived neurotrophic factor (BDNF gene polymorphisms, we also assessed the impact of BDNF polymorphism on these effects. Corticospinal excitability was examined using transcranial magnetic stimulation before and following (0, 10, 20, 30 min anodal tDCS (30 min, 1 mA or sham in young and older adults. While the overall extent of increases in corticospinal excitability induced by anodal tDCS did not vary reliably between young and older adults, older adults exhibited a delayed response; the largest increase in corticospinal excitability occurred 30 min following stimulation for older adults, but immediately post-stimulation for the young group. BDNF genotype did not result in significant differences in the observed excitability increases for either age group. The present study suggests that tDCS-induced plastic changes are delayed as a result of healthy aging, but that the overall efficacy of the plasticity mechanism remains unaffected.

  8. LILRB4 Decrease on uDCs Exacerbate Abnormal Pregnancy Outcomes Following Toxoplasma gondii Infection

    Directory of Open Access Journals (Sweden)

    Shaowei Zhan

    2018-03-01

    Full Text Available Toxoplasma gondii (T. gondii infection in early pregnancy can result in miscarriage, dead fetus, and other abnormalities. The LILRB4 is a central inhibitory receptor in uterine dendritic cells (uDCs that plays essential immune-regulatory roles at the maternal–fetal interface. In this study, T. gondii-infected human primary uDCs and T. gondii-infected LILRB4-/- pregnant mice were utilized. The immune mechanisms underlying the role of LILRB4 on uDCs were explored in the development of abnormal pregnancy outcomes following T. gondii infection in vitro and in vivo. Our results showed that the expression levels of LILRB4 on uDCs from normal pregnant mice were obviously higher than non-pregnant mice, and peaked in mid-gestation. The LILRB4 expression on uDC subsets, especially tolerogenic subsets, from mid-gestation was obviously down-regulated after T. gondii infection and LILRB4 decrease could further regulate the expression of functional molecules (CD80, CD86, and HLA-DR or MHC II on uDCs, contributing to abnormal pregnancy outcomes. Our results will shed light on the molecular immune mechanisms of uDCs in abnormal pregnancy outcomes by T. gondii infection.

  9. Effects of tDCS on Bimanual Motor Skills: A Brief Review.

    Science.gov (United States)

    Pixa, Nils H; Pollok, Bettina

    2018-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation.

  10. A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex.

    Directory of Open Access Journals (Sweden)

    Toni Cunillera

    Full Text Available Proactive and reactive inhibitory processes are a fundamental part of executive functions, allowing a person to stop inappropriate responses when necessary and to adjust performance in in a long term in accordance to the goals of a task. In the current study, we manipulate, in a single task, both reactive and proactive inhibition mechanisms, and we investigate the within-subjects effect of increasing, by means of anodal transcranial direct current stimulation (tDCS, the involvement of the right inferior frontal cortex (rIFC. Our results show a simultaneous enhancement of these two cognitive mechanisms when modulating the neural activity of rIFC. Thus, the application of anodal tDCS increased reaction times on Go trials, indicating a possible increase in proactive inhibition. Concurrently, the stop-signal reaction time, as a covert index of the inhibitory process, was reduced, demonstrating an improvement in reactive inhibition. In summary, the current pattern of results validates the engagement of the rIFC in these two forms of inhibitory processes, proactive and reactive inhibition and it provides evidence that both processes can operate concurrently in the brain.

  11. Diffuse correlation spectroscopy (DCS) study of blood flow changes during low level laser therapy (LLLT): a preliminary report

    Science.gov (United States)

    Soni, Sagar; Wang, Xinlong; Liu, Hanli; Tian, Fenghua

    2017-02-01

    Photobiomodulation with low-power, high-fluence light in the near-infrared range (600-1100nm), also known as low level laser therapy (LLLT), has been used for promoting healing of wounds, reducing pain, and so on. Understanding its physiological effect is essential for treatment optimization and evaluation. In this study, we used diffuse correlation spectroscopy (DCS) to investigate the changes of regional blood flow in skeletal muscle induced by a single session of LLLT. DCS is an emerging optical modality to probe microvascular blood flow in human tissues in vivo. We have developed a software-based autocorrelator system with the benefits such as flexibility in raw photon count data processing, portability and low cost. LLLT was administered at the human forearm with a 1064-nm, continuous-wave laser. The emitting power was 3.4 W in an area of 13.6 cm2, corresponding to 0.25W/cm2 irradiance. The emitting duration was 10 minutes. Eight healthy adults of any ethnic background, in an age range of 18-40 years old were included. The results indicate that LLLT causes reliable changes in regional blood flow. However, it remains unclear whether these changes are physiological or attributed to the heating effect of the stimulation laser.

  12. Anodal-tDCS over the human right occipital cortex enhances the perception and memory of both faces and objects.

    Science.gov (United States)

    Barbieri, Marica; Negrini, Marcello; Nitsche, Michael A; Rivolta, Davide

    2016-01-29

    Accurate face processing skills are pivotal for typical social cognition, and impairments in this ability characterise various clinical conditions (e.g., prosopagnosia). No study to date has investigated whether transcranial direct current stimulation (tDCS) can causally enhance face processing. In addition, the category- and the process-specificity of tDCS effects, as well as the role of the timing of neuromodulation with respect to the execution of cognitive tasks are still unknown. In this single-blind, sham-controlled study, we examined whether the administration of anodal-tDCS (a-tDCS) over the right occipital cortex of healthy volunteers (N=64) enhances performance on perceptual and memory tasks involving both face and object stimuli. Neuromodulation was delivered in two conditions: online (a-tDCS during task execution) and offline (a-tDCS before task execution). The results demonstrate that offline a-tDCS enhances the perception and memory performance of both faces and objects. There was no effect of online a-tDCS on behaviour. Furthermore, the offline effect was site-specific since a-tDCS over the sensory-motor cortex did not lead to behavioural changes. Our results add relevant information about the breadth of cognitive processes and visual stimuli that can be modulated by tDCS, and about the design of effective neuromodulation protocols, which have implications for advancing theories in cognitive neuroscience and clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance.

    Science.gov (United States)

    Molero-Chamizo, Andrés; Alameda Bailén, José R; Garrido Béjar, Tamara; García López, Macarena; Jaén Rodríguez, Inmaculada; Gutiérrez Lérida, Carolina; Pérez Panal, Silvia; González Ángel, Gloria; Lemus Corchero, Laura; Ruiz Vega, María J; Nitsche, Michael A; Rivera-Urbina, Guadalupe N

    2018-02-01

    Anodal transcranial direct current stimulation (tDCS) induces long-term potentiation-like plasticity, which is associated with long-lasting effects on different cognitive, emotional, and motor performances. Specifically, tDCS applied over the motor cortex is considered to improve reaction time in simple and complex tasks. The timing of tDCS relative to task performance could determine the efficacy of tDCS to modulate performance. The aim of this study was to compare the effects of a single session of anodal tDCS (1.5 mA, for 15 min) applied over the left primary motor cortex (M1) versus sham stimulation on performance of a go/no-go simple reaction-time task carried out at three different time points after tDCS-namely, 0, 30, or 60 min after stimulation. Performance zero min after anodal tDCS was improved during the whole course of the task. Performance 30 min after anodal tDCS was improved only in the last block of the reaction-time task. Performance 60 min after anodal tDCS was not significantly different throughout the entire task. These findings suggest that the motor cortex excitability changes induced by tDCS can improve motor responses, and these effects critically depend on the time interval between stimulation and task performance.

  14. Effects of HD-tDCS on memory and metamemory for general knowledge questions that vary by difficulty

    Science.gov (United States)

    Chua, Elizabeth F.; Ahmed, Rifat; Garcia, Sandry

    2016-01-01

    Background The ability to monitor one’s own memory is an important feature of normal memory and is an aspect of ‘metamemory’. Lesion studies have shown dissociations between memory and metamemory, but only single dissociations have been shown using transcranial direct current stimulation (tDCS). One potential reason that only single dissociations have been shown is that tDCS effects may be moderated by task difficulty. Objective/Hypothesis We used high definition (HD) tDCS to test for dissociable roles of the dorsolateral prefrontal cortex (DLPFC) and anterior temporal lobe (ATL) in semantic long-term memory and metamemory tasks. We also tested whether general knowledge question difficulty moderated the effects of HD-tDCS. Methods Across 3 sessions, participants received active HD-tDCS over the left DLPFC or left ATL, or sham HD-tDCS during general knowledge recall and recognition tests, and a ‘feeling-of-knowing’ metamemory task. General knowledge questions were blocked by difficulty. Repeated measures ANOVAs were used to examine the effects of HD-tDCS on memory and metamemory tasks by memory question difficulty. Results HD-tDCS over the ATL led to improved recall compared to DLPFC and sham HD-tDCS, and this occurred only for medium difficulty questions. In contrast, for non-recalled questions, HD-tDCS over the DLPFC led to improved recognition accuracy and improved feeling-of-knowing accuracy compared to ATL and sham HD-tDCS, and this was not moderated by memory question difficulty. Conclusion(s) HD-tDCS can be used to dissociate the roles of the ATL and DLPFC in different memory and ‘metamemory’ tasks. The effects of HD-tDCS on task may be moderated by task difficulty, depending on the nature of the task and site of stimulation. PMID:27876306

  15. Sodium-reduced continuous venovenous hemodiafiltration (CVVHDF) for the prevention of central pontine myelinolysis (CPM) in hyponatremic patients scheduled for orthotopic liver transplantation.

    Science.gov (United States)

    Lenk, Marcus R; Kaspar, Michael

    2012-08-01

    Two patients in end-stage hepatic failure presented for orthotopic liver transplantation with longstanding severe hyponatremia (121 and 122 mmol/L). Both patients underwent liver transplantation with the concomitant use of continuous venovenous hemodiafiltration. Replacement and dialysate solutions were prepared individually to contain a sodium level that was individually considered safe with regard to the development of central pontine myelinolysis. The sodium increase in both patients was within the expected and planned limits despite a situation of mass transfusion. Both patients did well postoperatively and neither patient suffered neurological deficits. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Bidirectional interactions between neuronal and hemodynamic responses to transcranial direct current stimulation (tDCS: challenges for brain-state dependent tDCS

    Directory of Open Access Journals (Sweden)

    Anirban eDutta

    2015-08-01

    Full Text Available Transcranial direct current stimulation (tDCS has been shown to modulate cortical neural activity. During neural activity, the electric currents from excitable membranes of brain tissue superimpose in the extracellular medium and generate a potential at scalp, which is referred as the electroencephalogram (EEG. Respective neural activity (energy demand has been shown to be closely related, spatially and temporally, to cerebral blood flow (CBF that supplies glucose (energy supply via neurovascular coupling. The hemodynamic response can be captured by near-infrared spectroscopy (NIRS, which enables continuous monitoring of cerebral oxygenation and blood volume. This neurovascular coupling phenomenon led to the concept of neurovascular unit (NVU that consists of the endothelium, glia, neurons, pericytes, and the basal lamina. Here, recent works suggest NVU as an integrated system working in concert using feedback mechanisms to enable proper brain homeostasis and function where the challenge remains in capturing these mostly nonlinear spatiotemporal interactions within NVU during tDCS. Therefore, we propose EEG-NIRS-based whole-head monitoring of tDCS-induced neuronal and hemodynamic alterations for brain-state dependent tDCS.

  17. Realization of BP neural network modeling based on NOXof CFB boiler in DCS

    Science.gov (United States)

    Bai, Jianyun; Zhu, Zhujun; Wang, Qi; Ying, Jiang

    2018-02-01

    In the CFB boiler installed with SNCR denitrification system, the mass concentration of NO X is difficult to be predicted by the conventional mathematical model, and the step response mathematical model, obtained by using the step disturbance test of ammonia injection,is inaccurate. this paper presents two kinds of BP neural network model, according to the relationship between the generated mass concentration of NO X and the load, the ratio of air to coal without using the SNCR system, as well as the relationship between the tested mass concentration of NO X and the load, the ratio of air to coal and the amount of ammonia using the SNCR system. then itrealized the on-line prediction of the mass concentration of NO X and the remaining mass concentration of NO X after reductionreaction in DCS system. the practical results show that the average error per hour between generation and the prediction of the amount of NO X mass concentration is within 10 mg/Nm3,the reducing reaction of measured and predicted hourly average error is within 2 mg/Nm3, all in error range, which provides a more accurate model for solvingthe problem on NO X automatic control of SNCR system.

  18. En Bloc Hilar Dissection of the Right Hepatic Artery in Continuity with the Bile Duct: a Technique to Reduce Biliary Complications After Adult Living-Donor Liver Transplantation.

    Science.gov (United States)

    Abu-Gazala, Samir; Olthoff, Kim M; Goldberg, David S; Shaked, Abraham; Abt, Peter L

    2016-04-01

    Techniques that preserve the right hepatic artery and the common bile duct in continuity during the dissection may be associated with lower rates of biliary complications in living-donor liver transplants. This study sought to determine whether en bloc hilar dissections were associated with fewer biliary complications in living-donor liver transplants. This was a retrospective review of 41 adult LDLTs performed in a single, liver transplant center between February 2007 and September 2014. The primary outcome of interest was the occurrence of at least one of the following biliary complications: anastomotic leak, stricture, or biloma. The primary predictor of interest was the hilar dissection technique: conventional hilar dissection vs. en bloc hilar dissection. A total of 41 LDLTs were identified, 24 had a conventional, and 17 an en bloc hilar biliary dissection. The occurrence of any biliary complication was significantly more common in the conventional hilar dissection group compared to the en bloc hilar dissection group (66.7 vs. 35.3%, respectively, p = 0.047). In particularly, anastomotic strictures were significantly more common in the conventional hilar dissection group compared to the en bloc hilar dissection group (54.2 vs. 23.5%., respectively, p = 0.049). En bloc hilar dissection technique may decrease biliary complication rates in living donor liver transplants.

  19. Oral administration of Saccharomyces boulardii ameliorates carbon tetrachloride-induced liver fibrosis in rats via reducing intestinal permeability and modulating gut microbial composition.

    Science.gov (United States)

    Li, Ming; Zhu, Lin; Xie, Ao; Yuan, Jieli

    2015-02-01

    To investigate the effects of orally administrated Saccharomyces boulardii (S. boulardii) on the progress of carbon tetrachloride (CCl4)-induced liver fibrosis, 34 male Wistar rats were randomly divided into four experimental groups including the control group (n = 8), the cirrhotic group (n = 10), the preventive group (n = 8), and the treatment group (n = 8). Results showed that the liver expression levels of collagen, type I, alpha 1 (Col1A1), alpha smooth muscle actin (αSMA), transforming growth factor beta (TGF-β) and the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) increased significantly in cirrhotic rats compared with control and decreased by S. boulardii administration. Treatment of S. boulardii also attenuated the increased endotoxin levels and pro-inflammatory cytokines in CCl4-treated rats. And, these were associated with the changes of intestinal permeability and fecal microbial composition. Our study suggested that oral administration of S. boulardii can promote the liver function of CCl4-treated rats, and the preventive treatment of this probiotic yeast may decelerate the progress of liver fibrosis.

  20. Coupling DCS and MARTe: two real-time control frameworks in collaboration

    International Nuclear Information System (INIS)

    Rapson, Christopher J.; Carvalho, Pedro; Lüddecke, Klaus; Neto, André C.; Santos, Bruno; Treutterer, Wolfgang; Winter, Axel; Zehetbauer, Thomas

    2014-01-01

    Highlights: • Similarities and differences between DCS and MARTe. • Identifies the state-of-the-art in terms of software frameworks for fusion control. • Interfaces developed for realtime and non-realtime communication between DCS and MARTe. • An algorithm replicated in DCS and MARTe produces identical results and good performance. • The start of collaboration to develop a new framework for ITER PCS. - Abstract: Fusion experiments place high demands on real-time control systems. Within the fusion community two modern framework-based software architectures have emerged as powerful tools for developing algorithms for real-time control of complex systems while maintaining the flexibility required when operating a physics experiment. The two frameworks are known as DCS (Discharge Control System), from ASDEX Upgrade and MARTe (Multithreaded Application Real-Time executor), originally from JET. Based on the success of DCS and MARTe, ITER has chosen to develop a framework architecture for its Plasma Control System which will adopt major design concepts from both the existing frameworks. This paper describes a coupling of the two existing frameworks, which was undertaken to explore the degree of similarity and compliance between the concepts, and to extend their capabilities. DCS and MARTe operate in parallel with synchronised state machines and a common message logger. Configuration data is exchanged before the real-time phase. During the real-time phase, structured data is exchanged via shared memory and an existing DCS algorithm is replicated within MARTe. The coupling tests the flexibility and identifies the respective strengths of the two frameworks, providing a well-informed basis on which to move forward and design a new ITER real-time framework

  1. Clinical Research with Transcranial Direct Current Stimulation (tDCS): Challenges and Future Directions

    Science.gov (United States)

    Brunoni, Andre Russowsky; Nitsche, Michael A.; Bolognini, Nadia; Bikson, Marom; Wagner, Tim; Merabet, Lotfi; Edwards, Dylan J.; Valero-Cabre, Antoni; Rotenberg, Alexander; Pascual-Leone, Alvaro; Ferrucci, Roberta; Priori, Alberto; Boggio, Paulo; Fregni, Felipe

    2011-01-01

    Background Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past ten years, tDCS physiological mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodological, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. Methods We convened a workgroup of researchers in the field to review, discuss and provide updates and key challenges of neuromodulation use for clinical research. Main Findings/Discussion We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (i) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (ii) methodological aspects related to the clinical research of tDCS as divided according to study phase (i.e., preclinical, phase I, phase II and phase III studies); (iii) ethical and regulatory concerns; (iv) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS. PMID:22037126

  2. Coupling DCS and MARTe: two real-time control frameworks in collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Rapson, Christopher J., E-mail: chris.rapson@ipp.mpg.de [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Carvalho, Pedro [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Lüddecke, Klaus; Neto, André C. [Unlimited Computer Systems GmbH, Seeshaupterstr. 15, 82393 Iffeldorf (Germany); Santos, Bruno [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Treutterer, Wolfgang [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Winter, Axel [ITER Organization, Route de Vinon-sur-Verdon, 13115 St.-Paul-Lès-Durance (France); Zehetbauer, Thomas [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany)

    2014-12-15

    Highlights: • Similarities and differences between DCS and MARTe. • Identifies the state-of-the-art in terms of software frameworks for fusion control. • Interfaces developed for realtime and non-realtime communication between DCS and MARTe. • An algorithm replicated in DCS and MARTe produces identical results and good performance. • The start of collaboration to develop a new framework for ITER PCS. - Abstract: Fusion experiments place high demands on real-time control systems. Within the fusion community two modern framework-based software architectures have emerged as powerful tools for developing algorithms for real-time control of complex systems while maintaining the flexibility required when operating a physics experiment. The two frameworks are known as DCS (Discharge Control System), from ASDEX Upgrade and MARTe (Multithreaded Application Real-Time executor), originally from JET. Based on the success of DCS and MARTe, ITER has chosen to develop a framework architecture for its Plasma Control System which will adopt major design concepts from both the existing frameworks. This paper describes a coupling of the two existing frameworks, which was undertaken to explore the degree of similarity and compliance between the concepts, and to extend their capabilities. DCS and MARTe operate in parallel with synchronised state machines and a common message logger. Configuration data is exchanged before the real-time phase. During the real-time phase, structured data is exchanged via shared memory and an existing DCS algorithm is replicated within MARTe. The coupling tests the flexibility and identifies the respective strengths of the two frameworks, providing a well-informed basis on which to move forward and design a new ITER real-time framework.

  3. Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis.

    Science.gov (United States)

    Imburgio, Michael J; Orr, Joseph M

    2018-05-01

    A meta-analysis of studies using single-session transcranial direct current stimulation (tDCS) to target the dorsolateral prefrontal cortex (DLPFC) was undertaken to examine the effect of stimulation on executive function (EF) in healthy samples. 27 studies were included in analyses, yielding 71 effect sizes. The most relevant measure for each task was determined a priori and used to calculate Hedge's g. Methodological characteristics of each study were examined individually as potential moderators of effect size. Stimulation effects on three domains of EF (inhibition of prepotent responses, mental set shifting, and information updating and monitoring) were analyzed separately. In line with previous work, the current study found no significant effect of anodal unilateral tDCS, cathodal unilateral tDCS, or bilateral tDCS on EF. Further moderator and subgroup analyses were only carried out for anodal unilateral montages due to the small number of studies using other montages. Subgroup analyses revealed a significant effect of anodal unilateral tDCS on updating tasks, but not on inhibition or set-shifting tasks. Cathode location significantly moderated the effect of anodal unilateral tDCS. Extracranial cathodes yielded a significant effect on EF while cranial cathodes yielded no effect. Anode size also significantly moderated effect of anodal unilateral tDCS, with smaller anodes being more effective than larger anodes. In summary, anodal DLPFC stimulation is more effective at improving updating ability than inhibition and set-shifting ability, but anodal stimulation can significantly improve general executive function when extracranial cathodes or small anodes are used. Future meta-analyses may examine how stimulation's effects on specific behavioral tasks, rather than broader domains, might be affected by methodological moderators. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli.

    Science.gov (United States)

    Vanderhasselt, Marie-Anne; De Raedt, Rudi; Brunoni, Andre R; Campanhã, Camila; Baeken, Chris; Remue, Jonathan; Boggio, Paulo S

    2013-01-01

    Transcranial Direct Current Stimulation (tDCS) is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP) as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation), we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right) prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information.

  5. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli.

    Directory of Open Access Journals (Sweden)

    Marie-Anne Vanderhasselt

    Full Text Available Transcranial Direct Current Stimulation (tDCS is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation, we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information.

  6. Fatty Liver

    International Nuclear Information System (INIS)

    Filippone, A.; Digiovandomenico, V.; Digiovandomenico, E.; Genovesi, N.; Bonomo, L.

    1991-01-01

    The authors report their experience with the combined use of US and CT in the study of diffuse and subtotal fatty infiltration of the liver. An apparent disagreement was initially found between the two examinations in the study of fatty infiltration. Fifty-five patients were studied with US and CT of the upper abdomen, as suggested by clinics. US showed normal liver echogenicity in 30 patients and diffuse increased echogenicity (bright liver) in 25 cases. In 5 patients with bright liver, US demonstrated a solitary hypoechoic area, appearing as a 'skip area', in the quadrate lobe. In 2 patients with bright liver, the hypoechoic area was seen in the right lobe and exhibited no typical US features of 'Skip area'. Bright liver was quantified by measuring CT density of both liver and spleen. The relative attenuation values of spleen and liver were compared on plain and enhanced CT scans. In 5 cases with a hypoechoic area in the right lobe, CT findings were suggestive of hemangioma. A good correlation was found between broght liver and CT attenuation values, which decrease with increasing fat content of the liver. Moreover, CT attenuation values confirmed US findings in the study of typical 'skip area', by demonstrating normal density - which suggests that CT can characterize normal tissue in atypical 'skip area'

  7. Transcranial direct current stimulation (tDCS) Paired with massed practice training to promote adaptive plasticity and motor recovery in chronic incomplete tetraplegia: a pilot study.

    Science.gov (United States)

    Potter-Baker, Kelsey A; Janini, Daniel P; Lin, Yin-Liang; Sankarasubramanian, Vishwanath; Cunningham, David A; Varnerin, Nicole M; Chabra, Patrick; Kilgore, Kevin L; Richmond, Mary Ann; Frost, Frederick S; Plow, Ela B

    2017-08-07

    Objective Our goal was to determine if pairing transcranial direct current stimulation (tDCS) with rehabilitation for two weeks could augment adaptive plasticity offered by these residual pathways to elicit longer-lasting improvements in motor function in incomplete spinal cord injury (iSCI). Design Longitudinal, randomized, controlled, double-blinded cohort study. Setting Cleveland Clinic Foundation, Cleveland, Ohio, USA. Participants Eight male subjects with chronic incomplete motor tetraplegia. Interventions Massed practice (MP) training with or without tDCS for 2 hrs, 5 times a week. Outcome Measures We assessed neurophysiologic and functional outcomes before, after and three months following intervention. Neurophysiologic measures were collected with transcranial magnetic stimulation (TMS). TMS measures included excitability, representational volume, area and distribution of a weaker and stronger muscle motor map. Functional assessments included a manual muscle test (MMT), upper extremity motor score (UEMS), action research arm test (ARAT) and nine hole peg test (NHPT). Results We observed that subjects receiving training paired with tDCS had more increased strength of weak proximal (15% vs 10%), wrist (22% vs 10%) and hand (39% vs. 16%) muscles immediately and three months after intervention compared to the sham group. Our observed changes in muscle strength were related to decreases in strong muscle map volume (r=0.851), reduced weak muscle excitability (r=0.808), a more focused weak muscle motor map (r=0.675) and movement of weak muscle motor map (r=0.935). Conclusion Overall, our results encourage the establishment of larger clinical trials to confirm the potential benefit of pairing tDCS with training to improve the effectiveness of rehabilitation interventions for individuals with SCI. Trial Registration NCT01539109.

  8. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)

    Science.gov (United States)

    Alam, Mahtab; Truong, Dennis Q.; Khadka, Niranjan; Bikson, Marom

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability—enhancing or suppressing neuronal activity in regions of the brain depending on the polarity of stimulation. The specificity of tDCS to any therapeutic application derives in part from how electrode configuration determines the brain regions that are stimulated. Conventional tDCS uses two relatively large pads (>25 cm2) whereas high-definition tDCS (HD-tDCS) uses arrays of smaller electrodes to enhance brain targeting. The 4  ×  1 concentric ring HD-tDCS (one center electrode surrounded by four returns) has been explored in application where focal targeting of cortex is desired. Here, we considered optimization of concentric ring HD-tDCS for targeting: the role of electrodes in the ring and the ring’s diameter. Finite element models predicted cortical electric field generated during tDCS. High resolution MRIs were segmented into seven tissue/material masks of varying conductivities. Computer aided design (CAD) model of electrodes, gel, and sponge pads were incorporated into the segmentation. Volume meshes were generated and the Laplace equation (\

  9. Hitachi's proposed DCS solution for new build CANDU EC6 using the G-HIACS unified platform

    Energy Technology Data Exchange (ETDEWEB)

    Tan, D.; Ishii, K.; Otsuka, Y.; Uemura, K., E-mail: daisuke.tan.ye@hitachi.com [Hitachi Ltd., Infrastructure Systems Co., Ibaraki (Japan); Marko, P.E. [Hitachi Power Systems Canada Ltd., Power and Industry Div., Ontario (Canada)

    2013-07-01

    Hitachi Ltd. has developed the safe and secure functional safety DCS controller for potential new build NPP projects in the global market. Hitachi has improved the availability, maintainability, and reliability for its latest DCS systems named G-HIACS. In this latest paper on its DCS product development program, Hitachi would like to report a proposed DCS solution for new build CANDU NSP and BOP based on the G-HIACS Unified Architecture (R800FS/HSC800FS vSAFE Functional Safety Controller and R900/HSC900 General Purpose Controller) hybrid control system. (author)

  10. No significant effect of prefrontal tDCS on working memory performance in older adults

    Directory of Open Access Journals (Sweden)

    Jonna eNilsson

    2015-12-01

    Full Text Available Transcranial direct current stimulation (tDCS has been put forward as a non-pharmacological alternative for alleviating cognitive decline in old age. Although results have shown some promise, little is known about the optimal stimulation parameters for modulation in the cognitive domain. In this study, the effects of tDCS over the dorsolateral prefrontal cortex (dlPFC on working memory performance were investigated in thirty older adults. An N-back task assessed working memory before, during and after anodal tDCS at a current strength of 1mA and 2mA, in addition to sham stimulation. The study used a single-blind, cross-over design. The results revealed no significant effect of tDCS on accuracy or response times during or after stimulation, for any of the current strengths. These results suggest that a single session of tDCS over the dlPFC is unlikely to improve working memory, as assessed by an N-back task, in old age.

  11. Using transcranial direct-current stimulation (tDCS) to understand cognitive processing.

    Science.gov (United States)

    Reinhart, Robert M G; Cosman, Josh D; Fukuda, Keisuke; Woodman, Geoffrey F

    2017-01-01

    Noninvasive brain stimulation methods are becoming increasingly common tools in the kit of the cognitive scientist. In particular, transcranial direct-current stimulation (tDCS) is showing great promise as a tool to causally manipulate the brain and understand how information is processed. The popularity of this method of brain stimulation is based on the fact that it is safe, inexpensive, its effects are long lasting, and you can increase the likelihood that neurons will fire near one electrode and decrease the likelihood that neurons will fire near another. However, this method of manipulating the brain to draw causal inferences is not without complication. Because tDCS methods continue to be refined and are not yet standardized, there are reports in the literature that show some striking inconsistencies. Primary among the complications of the technique is that the tDCS method uses two or more electrodes to pass current and all of these electrodes will have effects on the tissue underneath them. In this tutorial, we will share what we have learned about using tDCS to manipulate how the brain perceives, attends, remembers, and responds to information from our environment. Our goal is to provide a starting point for new users of tDCS and spur discussion of the standardization of methods to enhance replicability.

  12. Anodal tDCS targeting the right orbitofrontal cortex enhances facial expression recognition

    Science.gov (United States)

    Murphy, Jillian M.; Ridley, Nicole J.; Vercammen, Ans

    2015-01-01

    The orbitofrontal cortex (OFC) has been implicated in the capacity to accurately recognise facial expressions. The aim of the current study was to determine if anodal transcranial direct current stimulation (tDCS) targeting the right OFC in healthy adults would enhance facial expression recognition, compared with a sham condition. Across two counterbalanced sessions of tDCS (i.e. anodal and sham), 20 undergraduate participants (18 female) completed a facial expression labelling task comprising angry, disgusted, fearful, happy, sad and neutral expressions, and a control (social judgement) task comprising the same expressions. Responses on the labelling task were scored for accuracy, median reaction time and overall efficiency (i.e. combined accuracy and reaction time). Anodal tDCS targeting the right OFC enhanced facial expression recognition, reflected in greater efficiency and speed of recognition across emotions, relative to the sham condition. In contrast, there was no effect of tDCS to responses on the control task. This is the first study to demonstrate that anodal tDCS targeting the right OFC boosts facial expression recognition. This finding provides a solid foundation for future research to examine the efficacy of this technique as a means to treat facial expression recognition deficits, particularly in individuals with OFC damage or dysfunction. PMID:25971602

  13. Anodal tDCS to V1 blocks visual perceptual learning consolidation.

    Science.gov (United States)

    Peters, Megan A K; Thompson, Benjamin; Merabet, Lotfi B; Wu, Allan D; Shams, Ladan

    2013-06-01

    This study examined the effects of visual cortex transcranial direct current stimulation (tDCS) on visual processing and learning. Participants performed a contrast detection task on two consecutive days. Each session consisted of a baseline measurement followed by measurements made during active or sham stimulation. On the first day, one group received anodal stimulation to primary visual cortex (V1), while another received cathodal stimulation. Stimulation polarity was reversed for these groups on the second day. The third (control) group of subjects received sham stimulation on both days. No improvements or decrements in contrast sensitivity relative to the same-day baseline were observed during real tDCS, nor was any within-session learning trend observed. However, task performance improved significantly from Day 1 to Day 2 for the participants who received cathodal tDCS on Day 1 and for the sham group. No such improvement was found for the participants who received anodal stimulation on Day 1, indicating that anodal tDCS blocked overnight consolidation of visual learning, perhaps through engagement of inhibitory homeostatic plasticity mechanisms or alteration of the signal-to-noise ratio within stimulated cortex. These results show that applying tDCS to the visual cortex can modify consolidation of visual learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Anodal tDCS applied during multitasking training leads to transferable performance gains.

    Science.gov (United States)

    Filmer, Hannah L; Lyons, Maxwell; Mattingley, Jason B; Dux, Paul E

    2017-10-11

    Cognitive training can lead to performance improvements that are specific to the tasks trained. Recent research has suggested that transcranial direct current stimulation (tDCS) applied during training of a simple response-selection paradigm can broaden performance benefits to an untrained task. Here we assessed the impact of combined tDCS and training on multitasking, stimulus-response mapping specificity, response-inhibition, and spatial attention performance in a cohort of healthy adults. Participants trained over four days with concurrent tDCS - anodal, cathodal, or sham - applied to the left prefrontal cortex. Immediately prior to, 1 day after, and 2 weeks after training, performance was assessed on the trained multitasking paradigm, an untrained multitasking paradigm, a go/no-go inhibition task, and a visual search task. Training combined with anodal tDCS, compared with training plus cathodal or sham stimulation, enhanced performance for the untrained multitasking paradigm and visual search tasks. By contrast, there were no training benefits for the go/no-go task. Our findings demonstrate that anodal tDCS combined with multitasking training can extend to untrained multitasking paradigms as well as spatial attention, but with no extension to the domain of response inhibition.

  15. Cerebellar tDCS does not affect performance in the N-back task.

    Science.gov (United States)

    van Wessel, Brenda W V; Claire Verhage, M; Holland, Peter; Frens, Maarten A; van der Geest, Jos N

    2016-01-01

    The N-back task is widely used in cognitive research. Furthermore, the cerebellum's role in cognitive processes is becoming more widely recognized. Studies using transcranial direct current stimulation (tDCS) have demonstrated effects of cerebellar stimulation on several cognitive tasks. Therefore, the aim of this study was to investigate the effects of cerebellar tDCS on cognitive performance by using the N-back task. The cerebellum of 12 participants was stimulated during the task. Moreover, the cognitive load was manipulated in N = 2, N = 3, and N = 4. Every participant received three tDCS conditions (anodal, cathodal, and sham) divided over three separated days. It was expected that anodal stimulation would improve performance on the task. Each participant performed 6 repetitions of every load in which correct responses, false alarms, and reaction times were recorded. We found significant differences between the three levels of load in the rate of correct responses and false alarms, indicating that subjects followed the expected pattern of performance for the N-back task. However, no significant differences between the three tDCS conditions were found. Therefore, it was concluded that in this study cognitive performance on the N-back task was not readily influenced by cerebellar tDCS, and any true effects are likely to be small. We discuss several limitations in task design and suggest future experiments to address such issues.

  16. tDCS stimulation segregates words in the brain: evidence from aphasia

    Directory of Open Access Journals (Sweden)

    Valentina eFiori

    2013-06-01

    Full Text Available A number of studies have already shown that modulating cortical activity by means of transcranial direct current stimulation (tDCS improves noun or verb naming in aphasic patients. However, it is not yet clear whether these effects are equally obtained through stimulation over the frontal or the temporal regions. In the present study, the same group of aphasic subjects participated in two randomized double-blind experiments involving two intensive language treatments for their noun and verb retrieval difficulties. During each training, each subject was treated with tDCS (20 min., 1mA over the left hemisphere in three different conditions: anodic tDCS over the temporal areas, anodic tDCS over the frontal areas and sham stimulation, while they performed a noun and an action naming tasks. Each experimental condition was run in five consecutive daily sessions over three weeks with 6 days of intersession interval. The order of administration of the two language trainings was randomly assigned to all patients. Overall, with respect to the other two conditions, results showed a significant greater improvement in noun naming after stimulation over the temporal region, while verb naming recovered significantly better after stimulation of the frontal region. These improvements persisted at one month after the end of each treatment suggesting a long-term effect on recovery of the patients’ noun and verb difficulties. These data clearly suggest that the mechanisms of recovery for naming can be segregated coupling tDCS with an intensive language training.

  17. Reduced Affective Biasing of Instrumental Action With tDCS Over the Prefrontal Cortex

    NARCIS (Netherlands)

    Ly, V.; Bergmann, T.O.; Gladwin, T.E.; Volman, I.A.C.; Usberti, N.; Cools, R.; Roelofs, K.

    2016-01-01

    BACKGROUND: Instrumental action is well known to be vulnerable to affective value. Excessive transfer of affective value to instrumental action is thought to contribute to psychiatric disorders. The brain region most commonly implicated in overriding such affective biasing of instrumental action is

  18. Dietary capsaicin and antibiotics act synergistically to reduce non-alcoholic fatty liver disease induced by high fat diet in mice.

    Science.gov (United States)

    Hu, Jingjuan; Luo, Haihua; Jiang, Yong; Chen, Peng

    2017-06-13

    The prevalence of non-alcoholic fatty liver disease is increasing rapidly worldwide. However, effective strategies for combating high-fat diet (HFD) induced obesity, fatty liver and metabolic disorder are still limited, and outcomes remain poor. In the present study, we evaluated the combined actions of dietary capsaicin and antibiotics on HFD-induced physiological abnormalities in mice. C57BL/6 male mice were fed with HFD (60% calories from fat) for 17 weeks, and the resultant pathophysiological effects were examined. Antibiotic treatment markedly attenuated gut inflammation and leakiness induced by HFD, whereas capsaicin showed limited effects on the gut. However, dietary capsaicin significantly increased PPAR-α expression in adipose tissue, while antibiotics had no such effect. Animals treated with a combination of capsaicin and antibiotics had the smallest body weight gain and fat pad index, as well as the lowest hepatic fat accumulation. Combination treatment also maximally improved insulin responsiveness, as indicated by insulin tolerance tests. These results suggest the co-treatment of capsaicin and antibiotics, a novel combination strategy, would play synergistically to attenuate the HFD-induced obesity, fatty liver and metabolic disorder.

  19. Bilateral native nephrectomy to reduce oxalate stores in children at the time of combined liver-kidney transplantation for primary hyperoxaluria type 1.

    Science.gov (United States)

    Lee, Eliza; Ramos-Gonzalez, Gabriel; Rodig, Nancy; Elisofon, Scott; Vakili, Khashayar; Kim, Heung Bae

    2018-05-01

    Primary hyperoxaluria type-1 (PH-1) is a rare genetic disorder in which normal hepatic metabolism of glyoxylate is disrupted resulting in diffuse oxalate deposition and end-stage renal disease (ESRD). While most centers agree that combined liver-kidney transplant (CLKT) is the appropriate treatment for PH-1, perioperative strategies for minimizing recurrent oxalate-related injury to the transplanted kidney remain unclear. We present our management of children with PH-1 and ESRD on hemodialysis (HD) who underwent CLKT at our institution from 2005 to 2015. On chart review, three patients (2 girls, 1 boy) met study criteria. Two patients received deceased-donor split-liver grafts, while one patient received a whole liver graft. All patients underwent bilateral native nephrectomy at transplant to minimize the total body oxalate load. Median preoperative serum oxalate was 72 μmol/L (range 17.8-100). All patients received HD postoperatively until predialysis serum oxalate levels fell stores and may mitigate damage to the renal allograft.

  20. STAMP model and its application prospect in DCS safety analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Yang Xiaohua; Liu Jie; Liu Zhaohui; Liu Hua; Yu Tonglan

    2013-01-01

    The application of DCS (Digit Control System) is a certain trend for the development of nuclear power. DCS not only improves the control capability of nuclear power system, but also increases the complexity of the system. Traditional safety analysis techniques based on event-chain model are facing challenges. In order to improve the safety performance of nuclear power DCS, the latest research achievement in the field of safety engineering should be focused, studied and applied into nuclear power safety. This paper introduces a new safety analysis model named STAMP (Systems-Theoretic Accident Modeling and Processes) based on the system theory, analyzes its advantages and disadvantages compared with the traditional ones, and explains the basic steps of STPA (STAMP-Based Hazard Analysis) technology. Finally, according to the application status of STAMP at home and abroad, it prospects the development of STAMP in China's nuclear power safety. (authors)

  1. JACoW ADAPOS: An architecture for publishing ALICE DCS conditions data

    CERN Document Server

    Lång, John; Bond, Peter; Chochula, Peter; Kurepin, Alexander; Lechman, Mateusz; Pinazza, Ombretta

    2018-01-01

    ALICE Data Point Service (ADAPOS) is a software architecture being developed for the RUN3 period of LHC, as a part of the effort to transmit conditions data from ALICE Detector Control System (DCS) to Event Processing Network (EPN), for distributed processing. The key processes of ADAPOS, Engine and Terminal, run on separate machines, facing different networks. Devices connected to DCS publish their state as DIM services. Engine gets updates to the services, and converts them into a binary stream. Terminal receives it over 0MQ, and maintains an image of the DCS state. It sends copies of the image, at regular intervals, over another 0MQ connection, to a readout process of ALICE Data Acquisition.

  2. The Integration of DCS I/O to an Existing PLC

    Science.gov (United States)

    Sadhukhan, Debashis; Mihevic, John

    2013-01-01

    At the NASA Glenn Research Center (GRC), Existing Programmable Logic Controller (PLC) I/O was replaced with Distributed Control System (DCS) I/O, while keeping the existing PLC sequence Logic. The reason for integration of the PLC logic and DCS I/O, along with the evaluation of the resulting system is the subject of this paper. The pros and cons of the old system and new upgrade are described, including operator workstation screen update times. Detail of the physical layout and the communication between the PLC, the DCS I/O and the operator workstations are illustrated. The complex characteristics of a central process control system and the plan to remove the PLC processors in future upgrades is also discussed.

  3. Consensus: "Can tDCS and TMS enhance motor learning and memory formation?"

    Science.gov (United States)

    Reis, Janine; Robertson, Edwin; Krakauer, John W; Rothwell, John; Marshall, Lisa; Gerloff, Christian; Wassermann, Eric; Pascual-Leone, Alvaro; Hummel, Friedhelm; Celnik, Pablo A; Classen, Joseph; Floel, Agnes; Ziemann, Ulf; Paulus, Walter; Siebner, Hartwig R; Born, Jan; Cohen, Leonardo G

    2008-10-01

    Noninvasive brain stimulation has developed as a promising tool for cognitive neuroscientists. Transcranial magnetic (TMS) and direct current (tDCS) stimulation allow researchers to purposefully enhance or decrease excitability in focal areas of the brain. The purpose of this paper is to review information on the use of TMS and tDCS as research tools to facilitate motor memory formation, motor performance and motor learning in healthy volunteers. Studies implemented so far have mostly focused on the ability of TMS and tDCS to elicit relatively short lasting motor improvements and the mechanisms underlying these changes have been only partially investigated. Despite limitations including the scarcity of data, work that has been already accomplished raises the exciting hypothesis that currently available noninvasive transcranial stimulation techniques could modulate motor learning and memory formation in healthy humans and potentially in patients with neurological and psychiatric disorders.

  4. The Immunomodulatory Potential of tolDCs Loaded with Heat Shock Proteins

    Directory of Open Access Journals (Sweden)

    Willem van Eden

    2017-11-01

    Full Text Available Disease suppressive T cell regulation may depend on cognate interactions of regulatory T cells with self-antigens that are abundantly expressed in the inflamed tissues. Heat shock proteins (HSPs are by their nature upregulated in stressed cells and therefore abundantly present as potential targets for such regulation. HSP immunizations have led to inhibition of experimentally induced inflammatory conditions in various models. However, re-establishment of tolerance in the presence of an ongoing inflammatory process has remained challenging. Since tolerogenic DCs (tolDCs have the combined capacity of mitigating antigen-specific inflammatory responses and of endowing T cells with regulatory potential, it seems attractive to combine the anti-inflammatory qualities of tolDCs with those of HSPs.

  5. Liver Disease

    Science.gov (United States)

    ... and ridding your body of toxic substances. Liver disease can be inherited (genetic) or caused by a variety of factors that damage the ... that you can't stay still. Causes Liver disease has many ... or semen, contaminated food or water, or close contact with a person who is ...

  6. Liver scintigraphy

    International Nuclear Information System (INIS)

    Tateno, Yukio

    1996-01-01

    Liver scintigraphy can be classified into 3 major categories according to the properties of the radiopharmaceuticals used, i.e., methods using radiopharmaceuticals which are (1) incorporated by hepatocytes, (2) taken up by reticulo endothelial cells, and (3) distributed in the blood pool of the liver. Of these three categories, the liver scintigraphy of the present research falls into category 2. Radiopharmaceuticals which are taken up by endothelial cells include 198 Au colloids and 99m Tc-labelled colloids. Liver scintigraphy takes advantage of the property by which colloidal microparticles are phagocytosed by Kupffer cells, and reflect the distribution of endothelial cells and the intensity of their phagocytic capacity. This examination is indicated in the following situations: (i) when you suspect a localized intrahepatic lesion (tumour, abscess, cyst, etc.), (ii) when you want to follow the course of therapy of a localized lesion, (iii) when you suspect liver cirrhosis, (iv) when you want to know the severity of liver cirrhosis or hepatitis, (v) when there is hepatomegaly and you want to determine the morphology of the liver, (vi) differential diagnosis of upper abdominal masses, and (vii) when there are abnormalities of the right diaphragm and you want to know their relation to the liver

  7. Liver regeneration

    NARCIS (Netherlands)

    Chamuleau, R. A.; Bosman, D. K.

    1988-01-01

    Despite great advances in analysing hemodynamic, morphological and biochemical changes during the process of liver regeneration, the exact (patho)physiological mechanism is still unknown. A short survey of literature is given of the kinetics of liver regeneration and the significance of different

  8. No Effects of Bilateral tDCS over Inferior Frontal Gyrus on Response Inhibition and Aggression.

    Directory of Open Access Journals (Sweden)

    Franziska Dambacher

    Full Text Available Response inhibition is defined as the capacity to adequately withdraw pre-planned responses. It has been shown that individuals with deficits in inhibiting pre-planned responses tend to display more aggressive behaviour. The prefrontal cortex is involved in both, response inhibition and aggression. While response inhibition is mostly associated with predominantly right prefrontal activity, the neural components underlying aggression seem to be left-lateralized. These differences in hemispheric dominance are conceptualized in cortical asymmetry theories on motivational direction, which assign avoidance motivation (relevant to inhibit responses to the right and approach motivation (relevant for aggressive actions to the left prefrontal cortex. The current study aimed to directly address the inverse relationship between response inhibition and aggression by assessing them within one experiment. Sixty-nine healthy participants underwent bilateral transcranial Direct Current Stimulation (tDCS to the inferior frontal cortex. In one group we induced right-hemispheric fronto-cortical dominance by means of a combined right prefrontal anodal and left prefrontal cathodal tDCS montage. In a second group we induced left-hemispheric fronto-cortical dominance by means of a combined left prefrontal anodal and right prefrontal cathodal tDCS montage. A control group received sham stimulation. Response inhibition was assessed with a go/no-go task (GNGT and aggression with the Taylor Aggression Paradigm (TAP. We revealed that participants with poorer performance in the GNGT displayed more aggression during the TAP. No effects of bilateral prefrontal tDCS on either response inhibition or aggression were observed. This is at odds with previous brain stimulation studies applying unilateral protocols. Our results failed to provide evidence in support of the prefrontal cortical asymmetry model in the domain of response inhibition and aggression. The absence of tDCS

  9. Applying anodal tDCS during tango dancing in a patient with Parkinson's disease.

    Science.gov (United States)

    Kaski, D; Allum, J H; Bronstein, A M; Dominguez, R O

    2014-05-07

    Gait disturbance in patients with Parkinson's disease remains a therapeutic challenge, given its poor response to levodopa. Dance therapy is of recognised benefit in these patients, particularly partnered dance forms such as the tango. In parallel, non-invasive brain stimulation has begun to show promise for the rehabilitation of patients with Parkinson's disease, although effects on gait, compared to upper limbs, have been less well defined. We applied transcranial direct current stimulation (tDCS) in a 79 year old male patient with moderate Parkinson's disease during tango dancing to assess its effect on trunk motion and balance. The patient performed a total of four dances over two days, two 'tango+tDCS' and two 'tango+sham' in a randomised double-blind fashion. In a separate experimental session we also assessed the isolated effect of tDCS (and sham) on gait without tango dancing. For the dance session, trunk peak velocity during tango was significantly greater during tDCS compared to sham stimulation. In the gait experiments we observed a modest but significant reduction in the time taken to complete the 3m 'timed up and go' and 6m walk, and an increase in overall gait velocity and peak pitch trunk velocity with tDCS compared to sham. Our findings suggest that tDCS may be a useful adjunct to gait rehabilitation for patients with PD, although studies in a larger group of patients are needed to evaluate the therapeutic use of non-invasive brain stimulation during dance therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Determination of optimal electrode positions for transcranial direct current stimulation (tDCS)

    International Nuclear Information System (INIS)

    Im, Chang-Hwan; Jung, Hui-Hun; Choi, Jung-Do; Lee, Soo Yeol; Jung, Ki-Young

    2008-01-01

    The present study introduces a new approach to determining optimal electrode positions in transcranial direct current stimulation (tDCS). Electric field and 3D conduction current density were analyzed using 3D finite element method (FEM) formulated for a dc conduction problem. The electrode positions for minimal current injection were optimized by changing the Cartesian coordinate system into the spherical coordinate system and applying the (2+6) evolution strategy (ES) algorithm. Preliminary simulation studies applied to a standard three-layer head model demonstrated that the proposed approach is promising in enhancing the performance of tDCS. (note)

  11. Determination of optimal electrode positions for transcranial direct current stimulation (tDCS)

    Energy Technology Data Exchange (ETDEWEB)

    Im, Chang-Hwan; Jung, Hui-Hun; Choi, Jung-Do [Department of Biomedical Engineering, Yonsei University, Wonju, 220-710 (Korea, Republic of); Lee, Soo Yeol [Department of Biomedical Engineering, Kyung Hee University, Suwon (Korea, Republic of); Jung, Ki-Young [Korea University Medical Center, Korea University College of Medicine, Seoul (Korea, Republic of)], E-mail: ich@yonsei.ac.kr

    2008-06-07

    The present study introduces a new approach to determining optimal electrode positions in transcranial direct current stimulation (tDCS). Electric field and 3D conduction current density were analyzed using 3D finite element method (FEM) formulated for a dc conduction problem. The electrode positions for minimal current injection were optimized by changing the Cartesian coordinate system into the spherical coordinate system and applying the (2+6) evolution strategy (ES) algorithm. Preliminary simulation studies applied to a standard three-layer head model demonstrated that the proposed approach is promising in enhancing the performance of tDCS. (note)

  12. Spelling rehabilitation using transcranial direct current (tDCS in primary progressive aphasia (PPA.

    Directory of Open Access Journals (Sweden)

    Constantine Frangakis

    2014-04-01

    Full Text Available Introduction: Spelling impairments are one of the first deficits that occur early in PPA and can usually predict the variant of PPA in which the patient may progress (Sepelyak et al., 2011. PPA is a neurodegenerative disease that affects people relatively early in life (between 55-65 years and therefore it is important to find ways to alleviate the symptoms or impede the degree of degeneration. We present and discuss new data indicating that a neuromodulatory treatment, using transcranial direct current stimulation (tDCS combined with a spelling intervention, shows promise for maintaining or even improving language abilities in PPA. The aim of this research is to determine whether tDCS plus language therapy is more effective than language therapy alone in treating written language deficits in PPA. Methods: Eight PPA participants underwent anodal tDCS or sham plus spelling intervention in a randomized order using a within-subject cross-over design. They were evaluated before, after, and at 2 weeks and 2 months post-intervention. Spelling intervention varied for each participant according to the main spelling deficit: 3 patients had phoneme-to-grapheme conversion (PGC intervention, 2 had lexical intervention and 3 had advanced PGC intervention (combined with written fluency and PGC practice. Four more patients have already finished the first period of stimulations (ether sham or tDCS and all their other sessions and evaluations will be completed in the next couple months. Analyses-Results: We analyzed the existing set of full data using both within-subject analyses (McNemar tests and across-subjects analyses while taking into account carry-over effects. We evaluated therapy effects by the Generalized Estimating Equation approach (Liang & Zeger, 1986. All participants showed improvement in spelling after spelling intervention in trained items (with either sham or tDCS. There was, however, a significant improvement for untrained items only in the tDCS

  13. Two New Chroman Derivations from the Endophytic Penicillium sp. DCS523

    OpenAIRE

    Li, Jun-Tian; Fu, Xiao-Li; Tan, Chun; Zeng, Ying; Wang, Qi; Zhao, Pei-Ji

    2011-01-01

    Strain DCS523 was isolated from the branch tissue of Daphniphyllum longeracemosum and determined to be a Penicillium sp. according to the ITS sequence analysis. The extracts from the PDA solid fermentation media of Penicillium sp. DCS523 were purified to give two new chroman derivatives as well as six known compounds. Based on their spectral data the new compounds were identified as (Z)-6-acetyl- 3-(1,2-dihydroxypropylidene)-5-hydroxy-8-methylchroman-2-one (1) and 6-acetyl-2α,5- dihydroxy-2-(...

  14. Two New Chroman Derivations from the Endophytic Penicillium sp. DCS523

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2011-01-01

    Full Text Available Strain DCS523 was isolated from the branch tissue of Daphniphyllum longeracemosum and determined to be a Penicillium sp. according to the ITS sequence analysis. The extracts from the PDA solid fermentation media of Penicillium sp. DCS523 were purified to give two new chroman derivatives as well as six known compounds. Based on their spectral data the new compounds were identified as (Z-6-acetyl- 3-(1,2-dihydroxypropylidene-5-hydroxy-8-methylchroman-2-one (1 and 6-acetyl-2α,5- dihydroxy-2-(2-hydroxypropyl- 3α,8-dimethylchroman (2, respectively.

  15. Two new chroman derivations from the endophytic Penicillium sp. DCS523.

    Science.gov (United States)

    Li, Jun-Tian; Fu, Xiao-Li; Tan, Chun; Zeng, Ying; Wang, Qi; Zhao, Pei-Ji

    2011-01-18

    Strain DCS523 was isolated from the branch tissue of Daphniphyllum longeracemosum and determined to be a Penicillium sp. according to the ITS sequence analysis. The extracts from the PDA solid fermentation media of Penicillium sp. DCS523 were purified to give two new chroman derivatives as well as six known compounds. Based on their spectral data the new compounds were identified as (Z)-6-acetyl- 3-(1,2-dihydroxypropylidene)-5-hydroxy-8-methylchroman-2-one and 6-acetyl-2α,5- dihydroxy-2-(2-hydroxypropyl)- 3α,8-dimethylchroman, respectively.

  16. Research of quality control during development of NPP DCS 1E classified software

    International Nuclear Information System (INIS)

    Shi Weihua; Lu Zhenguo; Xie Qi

    2012-01-01

    The Nuclear safety depends on right behavior of 1E software, which is a important part of 1E DCS system. Nowadays, user focus on good function of 1E system, but pay little attention to quality control of 1E software. In fact, it's declared in IEC61513 and IEC60880 that 1E software should under strict quality control during all stages of development. This article is related to the practice of 1E DCS system quality control and explores the QC surveillance for 1E software from the user's point of view. (authors)

  17. Research and practice on NPP safety DCS application software V and V defect classification system

    International Nuclear Information System (INIS)

    Zhang Dongwei; Li Yunjian; Li Xiangjian

    2012-01-01

    One of the most significant aims of Verification and Validation (V and V) is to find software errors and risks, especially for a DCS application software designed for nuclear power plant (NPP). Through classifying and analyzing errors, a number of obtained data can be utilized to estimate current status and potential risks of software development and improve the quality of project. A method of error classification is proposed, which is applied to whole V and V life cycle, using a MW pressurized reactor project as an example. The purpose is to analyze errors discovered by V and V activities, and result in improvement of safety critical DCS application software. (authors)

  18. Impact of tDCS on Performance and Learning of Target Detection: Interaction with Stimulus Characteristics and Experimental Design

    Science.gov (United States)

    Coffman, B. A.; Trumbo, M. C.; Flores, R. A.; Garcia, C. M.; van der Merwe, A. J.; Wassermann, E. M.; Weisend, M. P.; Clark, V. P.

    2012-01-01

    We have previously found that transcranial direct current stimulation (tDCS) over right inferior frontal cortex (RIFC) enhances performance during learning of a difficult visual target detection task (Clark et al., 2012). In order to examine the cognitive mechanisms of tDCS that lead to enhanced performance, here we analyzed its differential…

  19. Euglycemia in Diabetic Rats Leads to Reduced Liver Weight via Increased Autophagy and Apoptosis through Increased AMPK and Caspase-3 and Decreased mTOR Activities

    Directory of Open Access Journals (Sweden)

    Jun-Ho Lee

    2015-01-01

    Full Text Available Euglycemia is the ultimate goal in diabetes care to prevent complications. However, the benefits of euglycemia in type 2 diabetes are controversial because near-euglycemic subjects show higher mortality than moderately hyperglycemic subjects. We previously reported that euglycemic-diabetic rats on calorie-control lose a critical liver weight (LW compared with hyperglycemic rats. Here, we elucidated the molecular mechanisms underlying the loss of LW in euglycemic-diabetic rats and identified a potential risk in achieving euglycemia by calorie-control. Sprague-Dawley diabetic rats generated by subtotal-pancreatectomy were fed a calorie-controlled diet for 7 weeks to achieve euglycemia using 19 kcal% (19R or 6 kcal% (6R protein-containing chow or fed ad libitum (19AL. The diet in both R groups was isocaloric/kg body weight to the sham-operated group (19S. Compared with 19S and hyperglycemic 19AL, both euglycemic R groups showed lower LWs, increased autophagy, and increased AMPK and caspase-3 and decreased mTOR activities. Though degree of insulin deficiency was similar among the diabetic rats, Akt activity was lower, and PTEN activity was higher in both R groups than in 19AL whose signaling patterns were similar to 19S. In conclusion, euglycemia achieved by calorie-control is deleterious in insulin deficiency due to increased autophagy and apoptosis in the liver via AMPK and caspase-3 activation.

  20. [Liver transplantation].

    Science.gov (United States)

    Pompili, Maurizio; Mirante, Vincenzo Giorgio; Rapaccini, Gian Ludovico; Gasbarrini, Giovanni

    2004-01-01

    Liver transplantation represents the first choice treatment for patients with fulminant acute hepatitis and for patients with chronic liver disease and advanced functional failure. Patients in the waiting list for liver transplantation are classified according to the severity of their clinical conditions (evaluated using staging systems mostly based on hematochemical parameters related to liver function). This classification, together with the blood group and the body size compatibility, remains the main criterion for organ allocation. The main indications for liver transplantation are cirrhosis (mainly HCV-, HBV- and alcohol-related) and hepatocellular carcinoma emerging in cirrhosis in adult patients, biliary atresia and some inborn errors of metabolism in pediatric patients. In adults the overall 5-year survival ranges between 60 and 70%, in both American and European series. Even better results have been reported for pediatric patients: in fact, the 5-year survival rate for children ranges between 70 and 80% in the main published series. In this study we evaluated the main medical problems correlated with liver transplantation such as immunosuppressive treatment, acute and chronic rejection, infectious complications, the recurrence of the liver disease leading to transplantation, and cardiovascular and metabolic complications.

  1. Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions

    Directory of Open Access Journals (Sweden)

    Jamart Jacques

    2010-03-01

    Full Text Available Abstract Background Transcranial direct current stimulation (tDCS is used in human physiological studies and for therapeutic trials in patients with abnormalities of cortical excitability. Its safety profile places tDCS in the pole-position for translating in real-world therapeutic application. However, an episode of transient respiratory depression in a subject receiving tDCS with an extracephalic electrode led to the suggestion that such an electrode montage could modulate the brainstem autonomic centres. We investigated whether tDCS applied over the midline frontal cortex in 30 healthy volunteers (sham n = 10, cathodal n = 10, anodal n = 10 with an extracephalic reference electrode would modulate brainstem activity as reflected by the monitoring and stringent analysis of vital parameters: heart rate (variability, respiratory rate, blood pressure and sympatho-vagal balance. We reasoned that this study could lead to two opposite but equally interesting outcomes: 1 If tDCS with an extracephalic electrode modulated vital parameters, it could be used as a new tool to explore the autonomic nervous system and, even, to modulate its activity for therapeutic purposes. 2 On the opposite, if applying tDCS with an extracephalic electrode had no effect, it could thus be used safely in healthy human subjects. This outcome would significantly impact the field of non-invasive brain stimulation with tDCS. Indeed, on the one hand, using an extracephalic electrode as a genuine neutral reference (as opposed to the classical "bi-cephalic" tDCS montages which deliver bi-polar stimulation of the brain would help to comfort the conclusions of several modern studies regarding the spatial location and polarity of tDCS. On the other hand, using an extracephalic reference electrode may impact differently on a given cortical target due to the change of direct current flow direction; this may enlarge the potential interventions with tDCS. Results Whereas the respiratory

  2. Benign Liver Tumors

    Science.gov (United States)

    ... Liver Function Tests Clinical Trials Liver Transplant FAQs Medical Terminology Diseases of the Liver Alagille Syndrome Alcohol-Related ... the Liver The Progression of Liver Disease FAQs Medical Terminology HOW YOU CAN HELP Sponsorship Ways to Give ...

  3. Liver Function Tests

    Science.gov (United States)

    ... Liver Function Tests Clinical Trials Liver Transplant FAQs Medical Terminology Diseases of the Liver Alagille Syndrome Alcohol-Related ... the Liver The Progression of Liver Disease FAQs Medical Terminology HOW YOU CAN HELP Sponsorship Ways to Give ...

  4. Progression of Liver Disease

    Science.gov (United States)

    ... Liver Function Tests Clinical Trials Liver Transplant FAQs Medical Terminology Diseases of the Liver Alagille Syndrome Alcohol-Related ... the Liver The Progression of Liver Disease FAQs Medical Terminology HOW YOU CAN HELP Sponsorship Ways to Give ...

  5. Liver (Hepatocellular) Cancer Screening

    Science.gov (United States)

    ... Treatment Liver Cancer Prevention Liver Cancer Screening Research Liver (Hepatocellular) Cancer Screening (PDQ®)–Patient Version What is ... These are called diagnostic tests . General Information About Liver (Hepatocellular) Cancer Key Points Liver cancer is a ...

  6. Transcranial Direct Current Stimulation and Power Spectral Parameters: a tDCS/EEG co-registration study

    Directory of Open Access Journals (Sweden)

    Anna Lisa Mangia

    2014-08-01

    Full Text Available Transcranial direct current stimulation (tDCS delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta and gamma power bands were investigated. Three main findings emerged: 1 an increase in theta band activity during the first minutes of stimulation; 2 an increase in alpha and beta power during and after stimulation; 3 a widespread activation in several brain regions.

  7. Transcranial direct-current stimulation (tDCS) for bipolar depression: A systematic review and meta-analysis.

    Science.gov (United States)

    Dondé, Clément; Amad, Ali; Nieto, Isabel; Brunoni, André Russowsky; Neufeld, Nicholas H; Bellivier, Frank; Poulet, Emmanuel; Geoffroy, Pierre-Alexis

    2017-08-01

    Bipolar disorder (BD) is a severe and recurrent brain disorder that can manifest in manic or depressive episodes. Transcranial Direct Current Stimulation (tDCS) has been proposed as a novel therapeutic modality for patients experiencing bipolar depression, for which standard treatments are often inefficient. While several studies have been conducted in this patient group, there has been no systematic review or meta-analysis that specifically examines bipolar depression. We aimed to address this gap in the literature and evaluated the efficacy and tolerability of tDCS in patients fulfilling DSM-IV-TR criteria for BD I, II, or BD not otherwise specified (NOS). We systematically searched the literature from April 2002 to November 2016 to identify relevant publications for inclusion in our systematic review and meta-analysis. Effect sizes for depression rating-scale scores were expressed as the standardized mean difference (SMD) before and after tDCS. Thirteen of 382 identified studies met eligibility criteria for our systematic review. The meta-analysis included 46 patients from 7 studies with depression rating-scale scores pre- and post-tDCS. Parameters of tDCS procedures were heterogeneous. Depression scores decreased significantly with a medium effect size after acute-phase of treatment (SMD 0.71 [0.25-1.18], z=3.00, p=0.003) and at the furthest endpoint (SMD 1.27 [0.57-1.97], z=3.57, p=0.0004). Six cases of affective switching under tDCS treatment protocols were observed. Depressive symptoms respond to tDCS in patients with BD. Additional studies, and particularly randomized controlled trials, are needed to clarify the effectiveness of tDCS in bipolar depression, the frequency of tDCS-emergent hypomania/mania, and which tDCS modalities are most efficient. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities.

    Science.gov (United States)

    Chew, Taariq; Ho, Kerrie-Anne; Loo, Colleen K

    2015-01-01

    Translation of transcranial direct current stimulation (tDCS) from research to clinical practice is hindered by a lack of consensus on optimal stimulation parameters, significant inter-individual variability in response, and in sufficient intra-individual reliability data. Inter-individual differences in response to anodal tDCS at a range of current intensities were explored. Intra-individual reliability in response to anodal tDCS across two identical sessions was also investigated. Twenty-nine subjects participated in a crossover study. Anodal-tDCS using four different current intensities (0.2, 0.5, 1 and 2 mA), with an anode size of 16 cm2, was tested. The 0.5 mA condition was repeated to assess intra-individual variability. TMS was used to elicit 40 motor-evoked potentials (MEPs) before 10 min of tDCS, and 20 MEPs at four time-points over 30 min following tDCS. ANOVA revealed no main effect of TIME for all conditions except the first 0.5 mA condition, and no differences in response between the four current intensities. Cluster analysis identified two clusters for the 0.2 and 2 mA conditions only. Frequency distributions based on individual subject responses (excitatory, inhibitory or no response) to each condition indicate possible differential responses between individuals to different current intensities. Test-retest reliability was negligible (ICC(2,1) = -0.50). Significant inter-individual variability in response to tDCS across a range of current intensities was found. 2 mA and 0.2 mA tDCS were most effective at inducing a distinct response. Significant intra-individual variability in response to tDCS was also found. This has implications for interpreting results of single-session tDCS experiments. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  9. Remotely-Supervised Transcranial Direct Current Stimulation (tDCS for Clinical Trials: Guidelines for Technology and Protocols

    Directory of Open Access Journals (Sweden)

    Leigh E Charvet

    2015-03-01

    Full Text Available The effect of transcranial direct current stimulation (tDCS is cumulative. Treatment protocols typically require multiple consecutive sessions spanning weeks or months. However, traveling to clinic for a tDCS session can present an obstacle to subjects and their caregivers. With modified devices and headgear, tDCS treatment can be administered remotely under clinical supervision, potentially enhancing recruitment, throughput, and convenience. Here we propose standards and protocols for clinical trials utilizing remotely-supervised tDCS with the goal of providing safe, reproducible and well-tolerated stimulation therapy outside of the clinic. The recommendations include: 1 training of staff in tDCS treatment and supervision, 2 assessment of the user’s capability to participate in tDCS remotely, 3 ongoing training procedures and materials including assessments of the user and/or caregiver, 4 simple and fail-safe electrode preparation techniques and tDCS headgear, 5 strict dose control for each session, 6 ongoing monitoring to quantify compliance (device preparation, electrode saturation/placement, stimulation protocol, with corresponding corrective steps as required, 7 monitoring for treatment-emergent adverse effects, 8 guidelines for discontinuation of a session and/or study participation including emergency failsafe procedures tailored to the treatment population’s level of need. These guidelines are intended to provide a minimal level of methodological rigor for clinical trials seeking to apply tDCS outside a specialized treatment center. We outline indication-specific applications (Attention Deficit Hyperactivity Disorder, Depression, Multiple Sclerosis, Palliative Care following these recommendations that support a standardized framework for evaluating the tolerability and reproducibility of remote-supervised tDCS that, once established, will allow for translation of tDCS clinical trials to a greater size and range of patient populations.

  10. Dual-tDCS Enhances Online Motor Skill Learning and Long-Term Retention in Chronic Stroke Patients

    Science.gov (United States)

    Lefebvre, S.; Laloux, P.; Peeters, A.; Desfontaines, P.; Jamart, J.; Vandermeeren, Y.

    2013-01-01

    Background: Since motor learning is a key component for stroke recovery, enhancing motor skill learning is a crucial challenge for neurorehabilitation. Transcranial direct current stimulation (tDCS) is a promising approach for improving motor learning. The aim of this trial was to test the hypothesis that dual-tDCS applied bilaterally over the primary motor cortices (M1) improves online motor skill learning with the paretic hand and its long-term retention. Methods: Eighteen chronic stroke patients participated in a randomized, cross-over, placebo-controlled, double bind trial. During separate sessions, dual-tDCS or sham dual-tDCS was applied over 30 min while stroke patients learned a complex visuomotor skill with the paretic hand: using a computer mouse to move a pointer along a complex circuit as quickly and accurately as possible. A learning index involving the evolution of the speed/accuracy trade-off was calculated. Performance of the motor skill was measured at baseline, after intervention and 1 week later. Results: After sham dual-tDCS, eight patients showed performance worsening. In contrast, dual-tDCS enhanced the amount and speed of online motor skill learning compared to sham (p dual-tDCS (n = 10) than after sham (n = 3). More importantly, 1 week later, online enhancement under dual-tDCS had translated into superior long-term retention (+44%) compared to sham (+4%). The improvement generalized to a new untrained circuit and to digital dexterity. Conclusion: A single-session of dual-tDCS, applied while stroke patients trained with the paretic hand significantly enhanced online motor skill learning both quantitatively and qualitatively, leading to successful long-term retention and generalization. The combination of motor skill learning and dual-tDCS is promising for improving post-stroke neurorehabilitation. PMID:23316151

  11. Acute working memory improvement after tDCS in antidepressant-free patients with major depressive disorder.

    Science.gov (United States)

    Oliveira, Janaina F; Zanão, Tamires A; Valiengo, Leandro; Lotufo, Paulo A; Benseñor, Isabela M; Fregni, Felipe; Brunoni, André R

    2013-03-14

    Based on previous studies showing that transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique that employs weak, direct currents to induce cortical-excitability changes, might be useful for working memory (WM) enhancement in healthy subjects and also in treating depressive symptoms, our aim was to evaluate whether tDCS could acutely enhance WM in depressed patients. Twenty-eight age- and gender-matched, antidepressant-free depressed subjects received a single-session of active/sham tDCS in a randomized, double-blind, parallel design. The anode was positioned over the left and the cathode over the right dorsolateral prefrontal cortex. The n-back task was used for assessing WM and it was performed immediately before and 15min after tDCS onset. We found that active vs. sham tDCS led to an increase in the rate of correct responses. We also used signal detection theory analyses to show that active tDCS increased both discriminability, i.e., the ability to discriminate signal (correct responses) from noise (false alarms), and response criterion, indicating a lower threshold to yield responses. All effect sizes were large. In other words, one session of tDCS acutely enhanced WM in depressed subjects, suggesting that tDCS can improve "cold" (non affective-loaded) working memory processes in MDD. Based on these findings, we discuss the effects of tDCS on WM enhancement in depression. We also suggest that the n-back task could be used as a biomarker in future tDCS studies investigating prefrontal activity in healthy and depressed samples. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Enlarged Liver

    Science.gov (United States)

    ... of liver damage. Medicinal herbs. Certain herbs, including comfrey, ma huang and mistletoe, can increase your risk ... herbs to avoid include germander, chaparral, senna, mistletoe, comfrey, ma huang, valerian root, kava, celandine and green ...

  13. Using cyber vulnerability testing techniques to expose undocumented security vulnerabilities in DCS and SCADA equipment

    International Nuclear Information System (INIS)

    Pollet, J.

    2006-01-01

    This session starts by providing an overview of typical DCS (Distributed Control Systems) and SCADA (Supervisory Control and Data Acquisition) architectures, and exposes cyber security vulnerabilities that vendors never admit, but are found through a comprehensive cyber testing process. A complete assessment process involves testing all of the layers and components of a SCADA or DCS environment, from the perimeter firewall all the way down to the end devices controlling the process, including what to look for when conducting a vulnerability assessment of real-time control systems. The following systems are discussed: 1. Perimeter (isolation from corporate IT or other non-critical networks) 2. Remote Access (third Party access into SCADA or DCS networks) 3. Network Architecture (switch, router, firewalls, access controls, network design) 4. Network Traffic Analysis (what is running on the network) 5. Host Operating Systems Hardening 6. Applications (how they communicate with other applications and end devices) 7. End Device Testing (PLCs, RTUs, DCS Controllers, Smart Transmitters) a. System Discovery b. Functional Discovery c. Attack Methodology i. DoS Tests (at what point does the device fail) ii. Malformed Packet Tests (packets that can cause equipment failure) iii. Session Hijacking (do anything that the operator can do) iv. Packet Injection (code and inject your own SCADA commands) v. Protocol Exploitation (Protocol Reverse Engineering / Fuzzing) This paper will provide information compiled from over five years of conducting cyber security testing on control systems hardware, software, and systems. (authors)

  14. Modulation of Total Sleep Time by Transcranial Direct Current Stimulation (tDCS).

    Science.gov (United States)

    Frase, Lukas; Piosczyk, Hannah; Zittel, Sulamith; Jahn, Friederike; Selhausen, Peter; Krone, Lukas; Feige, Bernd; Mainberger, Florian; Maier, Jonathan G; Kuhn, Marion; Klöppel, Stefan; Normann, Claus; Sterr, Annette; Spiegelhalder, Kai; Riemann, Dieter; Nitsche, Michael A; Nissen, Christoph

    2016-09-01

    Arousal and sleep are fundamental physiological processes, and their modulation is of high clinical significance. This study tested the hypothesis that total sleep time (TST) in humans can be modulated by the non-invasive brain stimulation technique transcranial direct current stimulation (tDCS) targeting a 'top-down' cortico-thalamic pathway of sleep-wake regulation. Nineteen healthy participants underwent a within-subject, repeated-measures protocol across five nights in the sleep laboratory with polysomnographic monitoring (adaptation, baseline, three experimental nights). tDCS was delivered via bi-frontal target electrodes and bi-parietal return electrodes before sleep (anodal 'activation', cathodal 'deactivation', and sham stimulation). Bi-frontal anodal stimulation significantly decreased TST, compared with cathodal and sham stimulation. This effect was location specific. Bi-frontal cathodal stimulation did not significantly increase TST, potentially due to ceiling effects in good sleepers. Exploratory resting-state EEG analyses before and after the tDCS protocols were consistent with the notion of increased cortical arousal after anodal stimulation and decreased cortical arousal after cathodal stimulation. The study provides proof-of-concept that TST can be decreased by non-invasive bi-frontal anodal tDCS in healthy humans. Further elucidating the 'top-down' pathway of sleep-wake regulation is expected to increase knowledge on the fundamentals of sleep-wake regulation and to contribute to the development of novel treatments for clinical conditions of disturbed arousal and sleep.

  15. Anodal tDCS of dorsolateral prefontal cortex during an Implicit Association Test

    NARCIS (Netherlands)

    Gladwin, T.E.; den Uyl, T.E.; Wiers, R.W.

    2012-01-01

    Anodal stimulation of dorsolateral prefrontal cortex by transcranial Direct Current Stimulation (tDCS) has been shown to enhance performance on working memory tasks. However, it is not yet known precisely which aspects of working memory - a broad theoretical concept including short-term memory and

  16. Impact of transcranial direct current stimulation (tDCS) on neuronal functions

    NARCIS (Netherlands)

    Das, S. (Suman); P.J. Holland (Peter); M.A. Frens (Maarten); O. Donchin (Opher)

    2016-01-01

    textabstractTranscranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, modulates neuronal excitability by the application of a small electrical current. The low cost and ease of the technique has driven interest in potential clinical applications. However, outcomes

  17. Cerebellar tDCS does not improve performance in probabilistic classification learning

    NARCIS (Netherlands)

    N. Seyed Majidi; M.C. Verhage (Claire); O. Donchin (Opher); P.J. Holland (Peter); M.A. Frens (Maarten); J.N. van der Geest (Jos)

    2016-01-01

    textabstractIn this study, the role of the cerebellum in a cognitive learning task using transcranial direct current stimulation (tDCS) was investigated. Using a weather prediction task, subjects had to learn the probabilistic associations between a stimulus (a combination of cards) and an outcome

  18. Semantic Feature Training in Combination with Transcranial Direct Current Stimulation (tDCS for Progressive Anomia

    Directory of Open Access Journals (Sweden)

    Jinyi Hung

    2017-05-01

    Full Text Available We examined the effectiveness of a 2-week regimen of a semantic feature training in combination with transcranial direct current stimulation (tDCS for progressive naming impairment associated with primary progressive aphasia (N = 4 or early onset Alzheimer’s Disease (N = 1. Patients received a 2-week regimen (10 sessions of anodal tDCS delivered over the left temporoparietal cortex while completing a language therapy that consisted of repeated naming and semantic feature generation. Therapy targets consisted of familiar people, household items, clothes, foods, places, hygiene implements, and activities. Untrained items from each semantic category provided item level controls. We analyzed naming accuracies at multiple timepoints (i.e., pre-, post-, 6-month follow-up via a mixed effects logistic regression and individual differences in treatment responsiveness using a series of non-parametric McNemar tests. Patients showed advantages for naming trained over untrained items. These gains were evident immediately post tDCS. Trained items also showed a shallower rate of decline over 6-months relative to untrained items that showed continued progressive decline. Patients tolerated stimulation well, and sustained improvements in naming accuracy suggest that the current intervention approach is viable. Future implementation of a sham control condition will be crucial toward ascertaining whether neurostimulation and behavioral treatment act synergistically or alternatively whether treatment gains are exclusively attributable to either tDCS or the behavioral intervention.

  19. Failure of the straight-line DCS boundary when extrapolated to the hypobaric realm.

    Science.gov (United States)

    Conkin, J; Van Liew, H D

    1992-11-01

    The lowest pressure (P2) to which a diver can ascend without developing decompression sickness (DCS) after becoming equilibrated at some higher pressure (P1) is described by a straight line with a negative y-intercept. We tested whether extrapolation of such a line also predicts safe decompression to altitude. We substituted tissue nitrogen pressure (P1N2) calculated for a compartment with a 360-min half-time for P1 values; this allows data from hypobaric exposures to be plotted on a P2 vs. P1N2 graph, even if the subject breathes oxygen before ascent. In literature sources, we found 40 reports of human exposures in hypobaric chambers that fell in the region of a P2 vs. P1N2 plot where the extrapolation from hyperbaric data predicted that the decompression should be free of DCS. Of 4,576 exposures, 785 persons suffered decompression sickness (17%), indicating that extrapolation of the diver line to altitude is not valid. Over the pressure range spanned by human hypobaric exposures and hyperbaric air exposures, the best separation between no DCS and DCS on a P2 vs. P1N2 plot seems to be a curve which approximates a straight line in the hyperbaric region but bends toward the origin in the hypobaric region.

  20. DCS-SVM: a novel semi-automated method for human brain MR image segmentation.

    Science.gov (United States)

    Ahmadvand, Ali; Daliri, Mohammad Reza; Hajiali, Mohammadtaghi

    2017-11-27

    In this paper, a novel method is proposed which appropriately segments magnetic resonance (MR) brain images into three main tissues. This paper proposes an extension of our previous work in which we suggested a combination of multiple classifiers (CMC)-based methods named dynamic classifier selection-dynamic local training local Tanimoto index (DCS-DLTLTI) for MR brain image segmentation into three main cerebral tissues. This idea is used here and a novel method is developed that tries to use more complex and accurate classifiers like support vector machine (SVM) in the ensemble. This work is challenging because the CMC-based methods are time consuming, especially on huge datasets like three-dimensional (3D) brain MR images. Moreover, SVM is a powerful method that is used for modeling datasets with complex feature space, but it also has huge computational cost for big datasets, especially those with strong interclass variability problems and with more than two classes such as 3D brain images; therefore, we cannot use SVM in DCS-DLTLTI. Therefore, we propose a novel approach named "DCS-SVM" to use SVM in DCS-DLTLTI to improve the accuracy of segmentation results. The proposed method is applied on well-known datasets of the Internet Brain Segmentation Repository (IBSR) and promising results are obtained.

  1. The role of primary auditory and visual cortices in temporal processing: A tDCS approach.

    Science.gov (United States)

    Mioni, G; Grondin, S; Forgione, M; Fracasso, V; Mapelli, D; Stablum, F

    2016-10-15

    Many studies showed that visual stimuli are frequently experienced as shorter than equivalent auditory stimuli. These findings suggest that timing is distributed across many brain areas and that "different clocks" might be involved in temporal processing. The aim of this study is to investigate, with the application of tDCS over V1 and A1, the specific role of primary sensory cortices (either visual or auditory) in temporal processing. Forty-eight University students were included in the study. Twenty-four participants were stimulated over A1 and 24 participants were stimulated over V1. Participants performed time bisection tasks, in the visual and the auditory modalities, involving standard durations lasting 300ms (short) and 900ms (long). When tDCS was delivered over A1, no effect of stimulation was observed on perceived duration but we observed higher temporal variability under anodic stimulation compared to sham and higher variability in the visual compared to the auditory modality. When tDCS was delivered over V1, an under-estimation of perceived duration and higher variability was observed in the visual compared to the auditory modality. Our results showed more variability of visual temporal processing under tDCS stimulation. These results suggest a modality independent role of A1 in temporal processing and a modality specific role of V1 in the processing of temporal intervals in the visual modality. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Using cyber vulnerability testing techniques to expose undocumented security vulnerabilities in DCS and SCADA equipment

    Energy Technology Data Exchange (ETDEWEB)

    Pollet, J. [PlantData Technologies, Inc., 1201 Louisiana Street, Houston, TX 77002 (United States)

    2006-07-01

    This session starts by providing an overview of typical DCS (Distributed Control Systems) and SCADA (Supervisory Control and Data Acquisition) architectures, and exposes cyber security vulnerabilities that vendors never admit, but are found through a comprehensive cyber testing process. A complete assessment process involves testing all of the layers and components of a SCADA or DCS environment, from the perimeter firewall all the way down to the end devices controlling the process, including what to look for when conducting a vulnerability assessment of real-time control systems. The following systems are discussed: 1. Perimeter (isolation from corporate IT or other non-critical networks) 2. Remote Access (third Party access into SCADA or DCS networks) 3. Network Architecture (switch, router, firewalls, access controls, network design) 4. Network Traffic Analysis (what is running on the network) 5. Host Operating Systems Hardening 6. Applications (how they communicate with other applications and end devices) 7. End Device Testing (PLCs, RTUs, DCS Controllers, Smart Transmitters) a. System Discovery b. Functional Discovery c. Attack Methodology i. DoS Tests (at what point does the device fail) ii. Malformed Packet Tests (packets that can cause equipment failure) iii. Session Hijacking (do anything that the operator can do) iv. Packet Injection (code and inject your own SCADA commands) v. Protocol Exploitation (Protocol Reverse Engineering / Fuzzing) This paper will provide information compiled from over five years of conducting cyber security testing on control systems hardware, software, and systems. (authors)

  3. Liver X receptor antagonist reduces lipid formation and increases glucose metabolism in myotubes from lean, obese and type 2 diabetic individuals

    DEFF Research Database (Denmark)

    Kase, E T; Thoresen, G H; Westerlund, S

    2007-01-01

    AIMS/HYPOTHESIS: Liver X receptors (LXRs) play important roles in lipid and carbohydrate metabolism. The purpose of the present study was to evaluate effects of the endogenous LXR agonist 22-R-hydroxycholesterol (22-R-HC) and its stereoisomer 22-S-hydroxycholesterol (22-S-HC), in comparison...... with the synthetic agonist T0901317 on lipid and glucose metabolism in human skeletal muscle cells (myotubes). METHODS: Myotubes established from lean and obese control volunteers and from obese type 2 diabetic volunteers were treated with LXR ligands for 4 days. Lipid and glucose metabolisms were studied...... with labelled precursors, and gene expression was analysed using real-time PCR. RESULTS: Treatment with T0901317 increased lipogenesis (de novo lipid synthesis) and lipid accumulation in myotubes, this increase being more pronounced in myotubes from type 2 diabetic volunteers than from lean volunteers...

  4. Extra virgin olive oil reduces liver oxidative stress and tissue depletion of long-chain polyunsaturated fatty acids produced by a high saturated fat diet in mice

    Directory of Open Access Journals (Sweden)

    Valenzuela, R.

    2016-06-01

    Full Text Available Long-chain polyunsaturated fatty acids (LCPUFA which are synthesized mainly in the liver have relevant functions in the organism. A diet high in fat (HFD generates an increase in the levels of fat and induces oxidative stress (lipo-peroxidation in the liver, along with a reduction in tissue n-3 and n-6 LCPUFA. Extra virgin olive oil (EVOO is rich in anti-oxidants (polyphenols and tocopherols which help to prevent the development of oxidative stress. This study evaluated the role of EVOO in preventing the induction of fat deposition and oxidative stress in the liver and in the depletion of LCPUFA in the liver, erythrocytes and brain generated by a HFD in C57BL/6J mice. Four experimental groups (n = 10/group were fed a control diet (CD or a HFD for 12 weeks and were respectively supplemented with EVOO (100 mg/day. The group fed HFD showed a significant increase (p Los ácidos grasos poliinsaturados de cadena larga (AGPICL sintetizados principalmente por el hígado, cumplen funciones relevantes en el organismo. Una dieta alta en grasa (DAG genera un incremento en los niveles de grasa y estrés oxidativo (lipoperoxidación en hígado y una reducción en los niveles de AGPICL n-3 y n-6 en diferentes tejidos. El aceite de oliva extra virgen (AOEV es rico en antioxidantes (polifenoles y tocoferoles que ayudan a prevenir el desarrollo del estrés oxidativo. Este trabajo evaluó el rol del AOEV en la prevención del depósito de grasa, estrés oxidativo hepático y reducción de los AGPICL n-3 y n-6 en diferentes tejidos generado por una DAG en ratones C57BL/6J. Cuatro grupos experimentales (n=10/grupo fueron alimentados (12 semanas con dieta control (DC o DAG y suplementados con AOEV (100 mg/día. El grupo alimentado con DAG presentó un incremento (p < 0,05 en la acumulación de grasa y estrés oxidativo hepático, acompañado de una reducción en los niveles de AGPICL n-3 y n-6 en hígado, eritrocitos y cerebro. La suplementación con AOEV logr

  5. Stabilized alcohol solution of reducing salt formulations for use in preparing radioisotope labelled scanning agents: liver scanning technetium-99m colloid and method of preparation

    International Nuclear Information System (INIS)

    1980-01-01

    The preparation of a radiolabelled scanning agent for imaging reticuloendothelial organs, including the liver and spleen, is described. It consists of a sup(99m)Tc labelled colloid of a metal ion salt reductant, such as SnCl 2 , TiCl 3 , CrCl 2 or FeCl 2 , and an anhydrous non-oxidising organic solvent, such as diethyl ether, ethanol or another aliphatic alcohol. Examples are given of the effects of varying the pH, the metal ion salt reductant concentration, the eluate and solvent volumes and the temperature of the radiopharmaceutical on the tagging efficiency and organ distribution in mice and rabbits. (U.K.)

  6. CT of liver steatosis after subtotal pancreatectomy

    Energy Technology Data Exchange (ETDEWEB)

    Lundstedt, C; Andren-Sandberg, A [Lund Univ. (Sweden). Dept. of Diagnostic Radiology Lund Univ. (Sweden). Dept. of Surgery

    1991-01-01

    The liver attenuation of 50 patients operated with a subtotal pancreatectomy for pancreatic and duodenal tumors was evaluated with CT. Of 18 patients surviving more than 18 months after surgery, 7 developed a markedly reduced liver attenuation indicating liver steatosis. No patient became diabetic or showed evidence of malnutrition after surgery. No correlation between the liver attenuation values and the patients' liver function test was noted. The steatosis was reversible in 4 of the 7 patients. The pathophysiological cause of the steatosis remains unknown. Partial pancreatectomy should be included among the reasons listed for liver steatosis. (orig.).

  7. CT of liver steatosis after subtotal pancreatectomy

    Energy Technology Data Exchange (ETDEWEB)

    Lundstedt, C.; Andren-Sandberg, A. (Lund Univ. (Sweden). Dept. of Diagnostic Radiology Lund Univ. (Sweden). Dept. of Surgery)

    1991-01-01

    The liver attenuation of 50 patients operated with a subtotal pancreatectomy for pancreatic and duodenal tumors was evaluated with CT. Of 18 patients surviving more than 18 months after surgery, 7 developed a markedly reduced liver attenuation indicating liver steatosis. No patient became diabetic or showed evidence of malnutrition after surgery. No correlation between the liver attenuation values and the patients' liver function test was noted. The steatosis was reversible in 4 of the 7 patients. The pathophysiological cause of the steatosis remains unknown. Partial pancreatectomy should be included among the reasons listed for liver steatosis. (orig.).

  8. CT of liver steatosis after subtotal pancreatectomy

    International Nuclear Information System (INIS)

    Lundstedt, C.; Andren-Sandberg, A.; Lund Univ.

    1991-01-01

    The liver attenuation of 50 patients operated with a subtotal pancreatectomy for pancreatic and duodenal tumors was evaluated with CT. Of 18 patients surviving more than 18 months after surgery, 7 developed a markedly reduced liver attenuation indicating liver steatosis. No patient became diabetic or showed evidence of malnutrition after surgery. No correlation between the liver attenuation values and the patients' liver function test was noted. The steatosis was reversible in 4 of the 7 patients. The pathophysiological cause of the steatosis remains unknown. Partial pancreatectomy should be included among the reasons listed for liver steatosis. (orig.)

  9. Augmentation of Fear Extinction by Transcranial Direct Current Stimulation (tDCS

    Directory of Open Access Journals (Sweden)

    Natalie Dittert

    2018-04-01

    Full Text Available Although posttraumatic stress disorder (PTSD; DSM-V 309.82 and anxiety disorders (DSM-V 300.xx are widely spread mental disorders, the effectiveness of their therapy is still unsatisfying. Non-invasive brain-stimulation techniques like transcranial direct current stimulation (tDCS might be an option to improve extinction learning, which is a main functional factor of exposure-based therapy for anxiety disorders. To examine this hypothesis, we used a fear conditioning paradigm with female faces as conditioned stimuli (CS and a 95-dB female scream as unconditioned stimulus (UCS. We aimed to perform a tDCS of the ventromedial prefrontal cortex (vmPFC, which is mainly involved in the control of extinction-processes. Therefore, we applied two 4 × 4 cm electrodes approximately at the EEG-positions F7 and F8 and used a direct current of 1.5 mA. The 20-min stimulation was started during a 10-min break between acquisition and extinction and went on overall extinction-trials. The healthy participants were randomly assigned in two double-blinded process into two sham stimulation and two verum stimulation groups with opposite current flow directions. To measure the fear reactions, we used skin conductance responses (SCR and subjective ratings. We performed a generalized estimating equations model for the SCR to assess the impact of tDCS and current flow direction on extinction processes for all subjects that showed a successful conditioning (N = 84. The results indicate that tDCS accelerates early extinction processes with a significantly faster loss of CS+/CS– discrimination. The discrimination loss was driven by a significant decrease in reaction toward the CS+ as well as an increase in reaction toward the CS– in the tDCS verum groups, whereas the sham groups showed no significant reaction changes during this period. Therefore, we assume that tDCS of the vmPFC can be used to enhance early extinction processes successfully. But before it should be

  10. tDCS for Memory Enhancement: Analysis of the Speculative Aspects of Ethical Issues.

    Science.gov (United States)

    Voarino, Nathalie; Dubljević, Veljko; Racine, Eric

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a promising technology to enhance cognitive and physical performance. One of the major areas of interest is the enhancement of memory function in healthy individuals. The early arrival of tDCS on the market for lifestyle uses and cognitive enhancement purposes lead to the voicing of some important ethical concerns, especially because, to date, there are no official guidelines or evaluation procedures to tackle these issues. The aim of this article is to review ethical issues related to uses of tDCS for memory enhancement found in the ethics and neuroscience literature and to evaluate how realistic and scientifically well-founded these concerns are? In order to evaluate how plausible or speculative each issue is, we applied the methodological framework described by Racine et al. (2014) for "informed and reflective" speculation in bioethics. This framework could be succinctly presented as requiring: (1) the explicit acknowledgment of factual assumptions and identification of the value attributed to them; (2) the validation of these assumptions with interdisciplinary literature; and (3) the adoption of a broad perspective to support more comprehensive reflection on normative issues. We identified four major considerations associated with the development of tDCS for memory enhancement: safety, autonomy, justice and authenticity. In order to assess the seriousness and likelihood of harm related to each of these concerns, we analyzed the assumptions underlying the ethical issues, and the level of evidence for each of them. We identified seven distinct assumptions: prevalence, social acceptance, efficacy, ideological stance (bioconservative vs. libertarian), potential for misuse, long term side effects, and the delivery of complete and clear information. We conclude that ethical discussion about memory enhancement via tDCS sometimes involves undue speculation, and closer attention to scientific and social facts would bring

  11. Modelling the effect of electrode displacement on transcranial direct current stimulation (tDCS)

    Science.gov (United States)

    Ramaraju, Sriharsha; Roula, Mohammed A.; McCarthy, Peter W.

    2018-02-01

    Objective. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers a low-intensity, direct current to cortical areas with the purpose of modulating underlying brain activity. Recent studies have reported inconsistencies in tDCS outcomes. The underlying assumption of many tDCS studies has been that replication of electrode montage equates to replicating stimulation conditions. It is possible however that anatomical difference between subjects, as well as inherent inaccuracies in montage placement, could affect current flow to targeted areas. The hypothesis that stimulation of a defined brain region will be stable under small displacements was tested. Approach. Initially, we compared the total simulated current flowing through ten specific brain areas for four commonly used tDCS montages: F3-Fp2, C3-Fp2, Fp1-F4, and P3-P4 using the software tool COMETS. The effect of a slight (~1 cm in each of four directions) anode displacement on the simulated regional current density for each of the four tDCS montages was then determined. Current flow was calculated and compared through ten segmented brain areas to determine the effect of montage type and displacement. The regional currents, as well as the localised current densities, were compared with the original electrode location, for each of these new positions. Main results. Recommendations for montages that maximise stimulation current for the ten brain regions are considered. We noted that the extent to which stimulation is affected by electrode displacement varies depending on both area and montage type. The F3-Fp2 montage was found to be the least stable with up to 38% change in average current density in the left frontal lobe while the Fp1-F4 montage was found to the most stable exhibiting only 1% change when electrodes were displaced. Significance. These results indicate that even relatively small changes in stimulation electrode placement appear to result in surprisingly large

  12. Investigation of tDCS volume conduction effects in a highly realistic head model

    Science.gov (United States)

    Wagner, S.; Rampersad, S. M.; Aydin, Ü.; Vorwerk, J.; Oostendorp, T. F.; Neuling, T.; Herrmann, C. S.; Stegeman, D. F.; Wolters, C. H.

    2014-02-01

    Objective. We investigate volume conduction effects in transcranial direct current stimulation (tDCS) and present a guideline for efficient and yet accurate volume conductor modeling in tDCS using our newly-developed finite element (FE) approach. Approach. We developed a new, accurate and fast isoparametric FE approach for high-resolution geometry-adapted hexahedral meshes and tissue anisotropy. To attain a deeper insight into tDCS, we performed computer simulations, starting with a homogenized three-compartment head model and extending this step by step to a six-compartment anisotropic model. Main results. We are able to demonstrate important tDCS effects. First, we find channeling effects of the skin, the skull spongiosa and the cerebrospinal fluid compartments. Second, current vectors tend to be oriented towards the closest higher conducting region. Third, anisotropic WM conductivity causes current flow in directions more parallel to the WM fiber tracts. Fourth, the highest cortical current magnitudes are not only found close to the stimulation sites. Fifth, the median brain current density decreases with increasing distance from the electrodes. Significance. Our results allow us to formulate a guideline for volume conductor modeling in tDCS. We recommend to accurately model the major tissues between the stimulating electrodes and the target areas, while for efficient yet accurate modeling, an exact representation of other tissues is less important. Because for the low-frequency regime in electrophysiology the quasi-static approach is justified, our results should also be valid for at least low-frequency (e.g., below 100 Hz) transcranial alternating current stimulation.

  13. Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification.

    Science.gov (United States)

    Al-Kaysi, Alaa M; Al-Ani, Ahmed; Loo, Colleen K; Powell, Tamara Y; Martin, Donel M; Breakspear, Michael; Boonstra, Tjeerd W

    2017-01-15

    Transcranial direct current stimulation (tDCS) is a promising treatment for major depressive disorder (MDD). Standard tDCS treatment involves numerous sessions running over a few weeks. However, not all participants respond to this type of treatment. This study aims to investigate the feasibility of identifying MDD patients that respond to tDCS treatment based on resting-state electroencephalography (EEG) recorded prior to treatment commencing. We used machine learning to predict improvement in mood and cognition during tDCS treatment from baseline EEG power spectra. Ten participants with a current diagnosis of MDD were included. Power spectral density was assessed in five frequency bands: delta (0.5-4Hz), theta (4-8Hz), alpha (8-12Hz), beta (13-30Hz) and gamma (30-100Hz). Improvements in mood and cognition were assessed using the Montgomery-Åsberg Depression Rating Scale and Symbol Digit Modalities Test, respectively. We trained the classifiers using three algorithms (support vector machine, extreme learning machine and linear discriminant analysis) and a leave-one-out cross-validation approach. Mood labels were accurately predicted in 8 out of 10 participants using EEG channels FC4-AF8 (accuracy=76%, p=0.034). Cognition labels were accurately predicted in 10 out of 10 participants using channels pair CPz-CP2 (accuracy=92%, p=0.004). Due to the limited number of participants (n=10), the presented results mainly aim to serve as a proof of concept. These finding demonstrate the feasibility of using machine learning to identify patients that will respond to tDCS treatment. These promising results warrant a larger study to determine the clinical utility of this approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Transcranial direct current stimulation (tDCS) to the supplementary motor area (SMA) influences performance on motor tasks.

    Science.gov (United States)

    Hupfeld, K E; Ketcham, C J; Schneider, H D

    2017-03-01

    The supplementary motor area (SMA) is believed to be highly involved in the planning and execution of both simple and complex motor tasks. This study aimed to examine the role of the SMA in planning the movements required to complete reaction time, balance, and pegboard tasks using anodal transcranial direct current stimulation (tDCS), which passes a weak electrical current between two electrodes, in order to modulate neuronal activity. Twenty healthy adults were counterbalanced to receive either tDCS (experimental condition) or no tDCS (control condition) for 3 days. During administration of tDCS, participants performed a balance task significantly faster than controls. After tDCS, subjects significantly improved their simple and choice reaction time. These results demonstrate that the SMA is highly involved in planning and executing fine and gross motor skill tasks and that tDCS is an effective modality for increasing SMA-related performance on these tasks. The findings may be generalizable and therefore indicate implications for future interventions using tDCS as a therapeutic tool.

  15. Changes in corticomotor excitability and intracortical inhibition of the primary motor cortex forearm area induced by anodal tDCS.

    Directory of Open Access Journals (Sweden)

    Xue Zhang

    Full Text Available OBJECTIVE: Previous studies have investigated how tDCS over the primary motor cortex modulates excitability in the intrinsic hand muscles. Here, we tested if tDCS changes corticomotor excitability and/or cortical inhibition when measured in the extensor carpi radialis (ECR and if these aftereffects can be successfully assessed during controlled muscle contraction. METHODS: We implemented a double blind cross-over design in which participants (n = 16 completed two sessions where the aftereffects of 20 min of 1 mA (0.04 mA/cm2 anodal vs sham tDCS were tested in a resting muscle, and two more sessions where the aftereffects of anodal vs sham tDCS were tested in an active muscle. RESULTS: Anodal tDCS increased corticomotor excitability in ECR when aftereffects were measured with a low-level controlled muscle contraction. Furthermore, anodal tDCS decreased short interval intracortical inhibition but only when measured at rest and after non-responders (n = 2 were removed. We found no changes in the cortical silent period. CONCLUSION: These findings suggest that targeting more proximal muscles in the upper limb with anodal tDCS is achievable and corticomotor excitability can be assessed in the presence of a low-level controlled contraction of the target muscle.

  16. Modulation of Brain Activity with Noninvasive Transcranial Direct Current Stimulation (tDCS): Clinical Applications and Safety Concerns

    Science.gov (United States)

    Zhao, Haichao; Qiao, Lei; Fan, Dongqiong; Zhang, Shuyue; Turel, Ofir; Li, Yonghui; Li, Jun; Xue, Gui; Chen, Antao; He, Qinghua

    2017-01-01

    Transcranial direct current stimulation (tDCS) is a widely-used tool to induce neuroplasticity and modulate cortical function by applying weak direct current over the scalp. In this review, we first introduce the underlying mechanism of action, the brief history from discovery to clinical scientific research, electrode positioning and montages, and parameter setup of tDCS. Then, we review tDCS application in clinical samples including people with drug addiction, major depression disorder, Alzheimer's disease, as well as in children. This review covers the typical characteristics and the underlying neural mechanisms of tDCS treatment in such studies. This is followed by a discussion of safety, especially when the current intensity is increased or the stimulation duration is prolonged. Given such concerns, we provide detailed suggestions regarding safety procedures for tDCS operation. Lastly, future research directions are discussed. They include foci on the development of multi-tech combination with tDCS such as with TMS and fMRI; long-term behavioral and morphological changes; possible applications in other research domains, and more animal research to deepen the understanding of the biological and physiological mechanisms of tDCS stimulation. PMID:28539894

  17. Maturation and upregulation of functions of murine dendritic cells (DCs) under the influence of purified aromatic-turmerone (AR).

    Science.gov (United States)

    Yonggang, Tan; Yiming, Meng; Heying, Zhang; Cheng, Sun; Qiushi, Wang; Xianghong, Yang; Wei, Zheng; Huawei, Zhou; Shan, Fengping

    2012-10-01

    The aim of this work is to evaluate the effects of purified aromatic-turmerone (ar-turmerione, AR) on murine dendritic cells (DCs). These impacts of AR on DCs from bone marrow derived DCs(BMDCs) were assessed with use of conventional scanning electron microscopy (SEM), fluorescence activated cell sorting (FACS), transmission electron microscopy (TEM), cytochemistry assay, FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA). We found that AR induced phenotypic maturation as evidenced by increased expression of CD86, CD40, CD83, CD80 and major histocompatibility complex II (MHC II). The functional tests showed the activity of acidic phosphatase (ACP) inside the DCs were downregulated after treatment with AR (which occurs when phagocytosis of DCs were decreased). Finally, we proved that AR increased the production of IL-12 and tumor necrosis factor α (TNF-α). These data suggested that AR could promote phenotypic and functional maturation of DCs and this adjuvant-like activity may have potential therapeutic value. It is therefore concluded that AR could exert positive modulation on murine DCs.

  18. Neonatal plasmacytoid dendritic cells (pDCs display subset variation but can elicit potent anti-viral innate responses.

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhang

    Full Text Available Neonates are highly susceptible to infectious diseases and defective antiviral pDC immune responses have been proposed to contribute to this phenomenon. Isolated cord blood pDCs innately responded to a variety of TLR7 and TLR9 dependent viruses, including influenza A virus (IAV, human immunodeficiency virus (HIV or herpes-simplex virus (HSV by efficiently producing IFN-α, TNF-α as well as chemokines. Interestingly, following activation by CpGA, but not viruses, cord pDCs tend to survive less efficiently. We found that a hallmark of pDCs in neonates is an extended CD2+pDCs compartment compared to adult pDCs without affecting the antiviral IFN-α response. Within CD2+pDCs, we identified a subpopulation expressing CD5 and responsible for IL-12p40 production, however this population is significantly decreased in cord blood compared to adult blood. Therefore, neonatal pDCs clearly display variation in phenotype and subset composition, but without major consequences for their antiviral responses.

  19. "Weariness" and "unpleasantness" reduce adherence to branched-chain amino acid granules among Japanese patients with liver cirrhosis: results of a single-center cross-sectional survey.

    Science.gov (United States)

    Eguchi, Yuichiro; Furukawa, Naoko; Furukawa, Takeshi; Egashira, Yoshimitsu; Hotokezaka, Hiroshi; Oeda, Satoshi; Iwane, Shinji; Anzai, Keizo

    2017-03-01

    Branched-chain amino acids (BCAA) are valuable in the treatment of liver cirrhosis because they increase serum albumin levels. Poor adherence to BCAA may adversely affect prognosis, but little is known about factors predicting adherence. We undertook a survey of patients prescribed BCAA for the treatment of cirrhosis. Pharmacists carried out face-to-face interviews with patients (or their representatives) prescribed any of nine BCAA formulations. Question categories included patient characteristics, prescription of BCAA granules, and perceptions of BCAA administration, including adherence and possible factors that might impact adherence. "Poor adherence" was defined as "not taking the medication appropriately" or "forgetting to take the medication". Overall, 253 patients (or representatives) completed the survey, of whom 135 were men, 114 were women, and 148 were ≥70 years old. Most patients (163) were prescribed BCAA for ≥2 years and were using three packs per day. Thirty-two patients did not take their medication appropriately and 69 sometimes forgot to administer it. Weariness of taking the medication (P BCAA in clinical practice. Poor adherence was associated with weariness with taking medication, and the unpleasantness of the medication itself. Patient education from general practitioners and hepatologists combined with adherence counseling from pharmacists may help improve adherence. © 2016 The Authors. Hepatology Research published by John Wiley & Sons Australia, Ltd on behalf of Japan Society of Hepatology.

  20. Building up analgesia in humans via the endogenous μ-opioid system by combining placebo and active tDCS: a preliminary report.

    Directory of Open Access Journals (Sweden)

    Marcos F DosSantos

    Full Text Available Transcranial Direct Current Stimulation (tDCS is a method of non-invasive brain stimulation that has been frequently used in experimental and clinical pain studies. However, the molecular mechanisms underlying tDCS-mediated pain control, and most important its placebo component, are not completely established. In this pilot study, we investigated in vivo the involvement of the endogenous μ-opioid system in the global tDCS-analgesia experience. Nine healthy volunteers went through positron emission tomography (PET scans with [11C]carfentanil, a selective μ-opioid receptor (MOR radiotracer, to measure the central MOR activity during tDCS in vivo (non-displaceable binding potential, BPND--one of the main analgesic mechanisms in the brain. Placebo and real anodal primary motor cortex (M1/2mA tDCS were delivered sequentially for 20 minutes each during the PET scan. The initial placebo tDCS phase induced a decrease in MOR BPND in the periaqueductal gray matter (PAG, precuneus, and thalamus, indicating activation of endogenous μ-opioid neurotransmission, even before the active tDCS. The subsequent real tDCS also induced MOR activation in the PAG and precuneus, which were positively correlated to the changes observed with placebo tDCS. Nonetheless, real tDCS had an additional MOR activation in the left prefrontal cortex. Although significant changes in the MOR BPND occurred with both placebo and real tDCS, significant analgesic effects, measured by improvements in the heat and cold pain thresholds, were only observed after real tDCS, not the placebo tDCS. This study gives preliminary evidence that the analgesic effects reported with M1-tDCS, can be in part related to the recruitment of the same endogenous MOR mechanisms induced by placebo, and that such effects can be purposely optimized by real tDCS.

  1. Liver scintigraphy of fulminant hepatitis

    International Nuclear Information System (INIS)

    Tamaki, Nagara; Ishihara, Takashi; Mori, Toru

    1980-01-01

    The liver scintigraphies of five patients with fulminant hepatitis were examined. Scintiphotos using sup(99m)Tc-phytate were taken within two weeks after the onset. Scintiphotos of 12 normal subjects, 11 cases with acute hepatitis, 17 cases with liver cirrhosis were served as control. Their scintiphotos showed reduction of the size, well-maintained uptake, mostly homogenous RI distribution, and no left lobe enlargement, which could differentiate them from the chronic liver dysfunction. In one of the cases chronological changes in liver scintigraphy were observed. The size of the liver was reduced progressively until the 16th day and re-enlarged at the 30th day and thereafter. Three indices [S/W, (R + L)/W, and L/R] were calculated. S: area of liver, R or L: longitudinal length of the right or left lobe, W: body width. Relative size of the liver expressed by S/W or (R + L)/W showed significant reduction in fulminant hepatitis compared with acute hepatitis. However, they were not different significantly from those of normal subjects. Except for liver cirrhosis, L/R (left lobe swelling index) did not show significant differences among fulminant hepatitis, normal subjects, and acute hepatitis. These indices were also useful in follow-up study of the liver scintigraphy. The liver scintigraphy in the early phase of fulminant hepatitis seems to reflect the degree of massive hepatic necrosis. It is also useful to differentiate chronic hepatic failure. Apparant reduction in scintigraphical liver size seems to suggest poor prognosis, however, it should also kept in mind that the size of the liver in this condition might change quite rapidly and greatly. (author)

  2. Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing.

    Science.gov (United States)

    Impey, Danielle; de la Salle, Sara; Knott, Verner

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Transcranial direct current stimulation (tDCS) neuromodulatory effects on mechanical hyperalgesia and cortical BDNF levels in ovariectomized rats.

    Science.gov (United States)

    da Silva Moreira, Sônia Fátima; Medeiros, Liciane Fernandes; de Souza, Andressa; de Oliveira, Carla; Scarabelot, Vanessa Leal; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S

    2016-01-15

    Epidemiological studies show that painful disorders are more prevalent in women than in men, and the transcranial direct current stimulation (tDCS) technique has been tested in chronic pain states. We explored the effect of tDCS on pain behavior and brain-derived neurotrophic factor (BDNF) levels in ovariectomized rats. Forty-five female Wistar adult rats were distributed into five groups: control (CT), ovariectomy + tDCS (OT), ovariectomy + sham tDCS (OS), sham ovariectomy + tDCS (ST), and sham ovariectomy+shamtDCS (SS). The rats were subjected to cathodal tDCS. The vaginal cytology and the estradiol levels confirmed the hormonal status. In addition, nociceptive behavior was evaluated using the tail-flick, von Frey, and hot-plate tests, as well as the BDNF levels in the serum, hypothalamus, hippocampus, spinal cord, and cerebral cortex. One-way analysis of variance (ANOVA) or two-way ANOVA was used for statistical analysis, followed by the Bonferroni, and P-value b 0.05 was considered significant. The ovariectomized animals presented a hypersensitivity response in the hot-plate (P b 0.01) and von Frey (P b 0.05) tests, as well as increased serum BDNF (P b 0.05) and decreased hypothalamic BDNF (P b 0.01) levels. The OT, OS, ST, and SS groups showed decreased hippocampal BDNF levels as compared with the control group (P b 0.001). The interaction between tDCS and ovariectomy on the cortical BDNF levels (P b 0.01) was observed. The ovariectomy induced nociceptive hypersensitivity and altered serum and hypothalamic BDNF levels. The cathodal tDCS partially reversed nociceptive hypersensitivity.

  4. Influence of Anodal Transcranial Direct Current Stimulation (tDCS) over the Right Angular Gyrus on Brain Activity during Rest

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site. PMID:24760013

  5. Multi-session transcranial direct current stimulation (tDCS elicits inflammatory and regenerative processes in the rat brain.

    Directory of Open Access Journals (Sweden)

    Maria Adele Rueger

    Full Text Available Transcranial direct current stimulation (tDCS is increasingly being used in human studies as an adjuvant tool to promote recovery of function after stroke. However, its neurobiological effects are still largely unknown. Electric fields are known to influence the migration of various cell types in vitro, but effects in vivo remain to be shown. Hypothesizing that tDCS might elicit the recruitment of cells to the cortex, we here studied the effects of tDCS in the rat brain in vivo. Adult Wistar rats (n = 16 were randomized to either anodal or cathodal stimulation for either 5 or 10 consecutive days (500 µA, 15 min. Bromodeoxyuridine (BrdU was given systemically to label dividing cells throughout the experiment. Immunohistochemical analyses ex vivo included stainings for activated microglia and endogenous neural stem cells (NSC. Multi-session tDCS with the chosen parameters did not cause a cortical lesion. An innate immune response with early upregulation of Iba1-positive activated microglia occurred after both cathodal and anodal tDCS. The involvement of adaptive immunity as assessed by ICAM1-immunoreactivity was less pronounced. Most interestingly, only cathodal tDCS increased the number of endogenous NSC in the stimulated cortex. After 10 days of cathodal stimulation, proliferating NSC increased by ∼60%, with a significant effect of both polarity and number of tDCS sessions on the recruitment of NSC. We demonstrate a pro-inflammatory effect of both cathodal and anodal tDCS, and a polarity-specific migratory effect on endogenous NSC in vivo. Our data suggest that tDCS in human stroke patients might also elicit NSC activation and modulate neuroinflammation.

  6. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential.

    Science.gov (United States)

    Carrion, Julio; Scisci, Elizabeth; Miles, Brodie; Sabino, Gregory J; Zeituni, Amir E; Gu, Ying; Bear, Adam; Genco, Caroline A; Brown, David L; Cutler, Christopher W

    2012-09-15

    The low-grade oral infection chronic periodontitis (CP) has been implicated in coronary artery disease risk, but the mechanisms are unclear. In this study, a pathophysiological role for blood dendritic cells (DCs) in systemic dissemination of oral mucosal pathogens to atherosclerotic plaques was investigated in humans. The frequency and microbiome of CD19(-)BDCA-1(+)DC-SIGN(+) blood myeloid DCs (mDCs) were analyzed in CP subjects with or without existing acute coronary syndrome and in healthy controls. FACS analysis revealed a significant increase in blood mDCs in the following order: healthy controls < CP < acute coronary syndrome/CP. Analysis of the blood mDC microbiome by 16S rDNA sequencing showed Porphyromonas gingivalis and other species, including (cultivable) Burkholderia cepacia. The mDC carriage rate with P. gingivalis correlated with oral carriage rate and with serologic exposure to P. gingivalis in CP subjects. Intervention (local debridement) to elicit a bacteremia increased the mDC carriage rate and frequency in vivo. In vitro studies established that P. gingivalis enhanced by 28% the differentiation of monocytes into immature mDCs; moreover, mDCs secreted high levels of matrix metalloproteinase-9 and upregulated C1q, heat shock protein 60, heat shock protein 70, CCR2, and CXCL16 transcripts in response to P. gingivalis in a fimbriae-dependent manner. Moreover, the survival of the anaerobe P. gingivalis under aerobic conditions was enhanced when within mDCs. Immunofluorescence analysis of oral mucosa and atherosclerotic plaques demonstrate infiltration with mDCs, colocalized with P. gingivalis. Our results suggest a role for blood mDCs in harboring and disseminating pathogens from oral mucosa to atherosclerosis plaques, which may provide key signals for mDC differentiation and atherogenic conversion.

  7. Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest.

    Science.gov (United States)

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site.

  8. Alpha-defensins 1-3 release by dendritic cells is reduced by estrogen

    Directory of Open Access Journals (Sweden)

    Sperling Rhoda

    2011-08-01

    Full Text Available Abstract Background During pregnancy the immune system of the mother must protect any activation that may negatively affect the fetus. Changes in susceptibility to infection as well as resolution of some autoimmune disorders represent empirical evidence for pregnancy related alterations in immunity. Sex hormones reach extremely high levels during pregnancy and have been shown to have direct effects on many immune functions including the antiviral response of dendritic cells. Among the immunologically active proteins secreted by monocyte derived DCs (MDDC are the alpha-defensins 1-3. This family of cationic antimicrobial peptides has a broad spectrum of microbicidal activity and has also been shown to link innate to adaptive immunity by attracting T cells and immature DCs, which are essential for initiating and polarizing the immune response. Methods We compare culture-generated monocyte derived DCs (MDDCs with directly isolated myeloid dendritic cells (mDCs and plasmacytoid dendritic cells (pDCs and measure their alpha-defensins 1-3 secretion by ELISA both, in basal situations and after hormone (E2 or PG treatments. Moreover, using a cohort of pregnant women we isolated mDCs from blood and also measure the levels of these anti-microbial peptides along pregnancy. Results We show that mDCs and pDCs constitutively produce alpha-defensins 1-3 and at much higher levels than MDDCs. Alpha-defensins 1-3 production from mDCs and MDDCs but not pDCs is inhibited by E2. PG does not affect alpha-defensins 1-3 in any of the populations. Moreover, alpha-defensins 1-3 production by mDCs was reduced in the later stages of pregnancy in 40% of the patients. Conclusions Here, we demonstrate that mDCs and pDCs secrete alpha-defensins 1-3 and present a novel effect of E2 on the secretion of alpha-defensins 1-3 by dendritic cells.

  9. N-terminal and C-terminal heparin-binding domain polypeptides derived from fibronectin reduce adhesion and invasion of liver cancer cells

    International Nuclear Information System (INIS)

    Tang, Nan-Hong; Chen, Yan-Lin; Wang, Xiao-Qian; Li, Xiu-Jin; Wu, Yong; Zou, Qi-Lian; Chen, Yuan-Zhong

    2010-01-01

    Fibronectin (FN) is known to be a large multifunction glycoprotein with binding sites for many substances, including N-terminal and C-terminal heparin-binding domains. We investigated the effects of highly purified rhFNHN29 and rhFNHC36 polypeptides originally cloned from the two heparin-binding domains on the adhesion and invasion of highly metastatic human hepatocellular carcinoma cells (MHCC97H) and analyzed the underlying mechanism involved. The MHCC97H cells that adhered to FN in the presence of various concentrations of rhFNHN29 and rhFNHC36 polypeptides were stained with crystal violet and measured, and the effects of rhFNHN29 and rhFNHC36 on the invasion of the MHCC97H cells were then detected using the Matrigel invasion assay as well as a lung-metastasis mouse model. The expression level of integrins and focal adhesion kinase (FAK) phosphotyrosyl protein was examined by Western blot, and the activity of matrix metalloproteinases (MMPs) and activator protein 1 (AP-1) was analyzed by gelatin zymography and the electrophoretic mobility band-shift assay (EMSA), respectively. Both of the polypeptides rhFNHN29 and rhFNHC36 inhibited adhesion and invasion of MHCC97H cells; however, rhFNHC36 exhibited inhibition at a lower dose than rhFNHN29. These inhibitory effects were mediated by integrin αvβ3 and reversed by a protein tyrosine phosphatase inhibitor. Polypeptides rhFNHN29 and rhFNHC36 abrogated the tyrosine phosphorylation of focal adhesion kinase (p-FAK) and activation of activator protein 1 (AP-1), resulting in the decrease of integrin αv, β3 and β1 expression as well as the reduction of MMP-9 activity. Polypeptides rhFNHN29 and rhFNHC36 could potentially be applicable to human liver cancer as anti-adhesive and anti-invasive agents

  10. Transcranial direct current stimulation (tDCS) reveals a dissociation between SNARC and MARC effects: Implication for the polarity correspondence account.

    Science.gov (United States)

    Di Rosa, Elisa; Bardi, Lara; Umiltà, Carlo; Masina, Fabio; Forgione, Margherita; Mapelli, Daniela

    2017-08-01

    The concept of stimulus response compatibility (SRC) refers to the existence of a privileged association between a specific stimulus feature and a specific response feature. Two examples of SRC are the Spatial Numerical Association of Response Codes (SNARC) and the Markedness Association of Response Codes (MARC) effects. According to the polarity correspondence principle, these two SRC effects occur because of a match between the most salient dimensions of stimulus and response. Specifically, the SNARC effect would be caused by a match between right-sided responses and large numbers, while a match between right-sided responses and even numbers would give rise to the MARC effect. The aim of the present study was to test the validity of the polarity correspondence principle in explaining these two SRC effects. To this end, we applied transcranial direct current stimulation (tDCS) over left and right posterior parietal cortex (PPC), which is thought to be the neural basis of salience processing, during a parity judgement task. Results showed that cathodal tDCS over the PPC significantly reduced the MARC effect but did not affect the SNARC effect, suggesting a dissociation between the two effects. That is, the MARC would rely on a salience processing mechanism, whereas the SNARC would not. Despite this interpretation is in need of further experimental confirmations (i.e., testing different tasks or using different tDCS montages), our results suggest that the polarity correspondence principle can be a plausible explanation only for the MARC effect but not for the SNARC effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Coffee and liver health.

    Science.gov (United States)

    Morisco, Filomena; Lembo, Vincenzo; Mazzone, Giovanna; Camera, Silvia; Caporaso, Nicola

    2014-01-01

    Coffee is one of the most widely used beverages in the world. It includes a wide array of components that can have potential implications for health. Several epidemiological studies associate coffee consumption with a reduced incidence of various chronic diseases such as diabetes, cardiovascular diseases, and neurodegenerative diseases. Over the past 20 years, an increasing number of epidemiological and experimental studies have demonstrated the positive effects of coffee on chronic liver diseases. Coffee consumption has been inversely associated with the activity of liver enzymes in subjects at risk, including heavy drinkers. Coffee favours an improvement in hepatic steatosis and fibrosis, and a reduction in cirrhosis and the risk of hepatocellular carcinoma. The mechanisms of action through which it exerts its beneficial effects are not fully understood. Experimental studies show that coffee consumption reduces fat accumulation and collagen deposition in the liver and promotes antioxidant capacity through an increase in glutathione as well as modulation of the gene and protein expression of several inflammatory mediators. Animal and in vitro studies indicate that cafestol and kahweol, 2 diterpens, can operate by modulating multiple enzymes involved in the detoxification process of carcinogens causing hepatocellular carcinoma. It is unclear whether the benefits are significant enough to "treat" patients with chronic liver disease. While we await clarification, moderate daily unsweetened coffee use is a reasonable adjuvant to therapy for these patients.

  12. Amoebic liver

    African Journals Online (AJOL)

    lymphadenopathy were noted. The right-sided pleural effusion with relaxation atelectasis was also con- firmed (Fig. 4). The diagnosis of pos- sible amoebic liver abscess complicat- ed by rupture to the gallbladder was made at that stage. Ultrasound-guided abscess drainage was done and approximately 300 ml of pus was.

  13. Hepatic (Liver) Function Panel

    Science.gov (United States)

    ... Educators Search English Español Blood Test: Hepatic (Liver) Function Panel KidsHealth / For Parents / Blood Test: Hepatic (Liver) ... kidneys ) is working. What Is a Hepatic (Liver) Function Panel? A liver function panel is a blood ...

  14. American Liver Foundation

    Science.gov (United States)

    ... Cirrhosis Clinical Trials Galactosemia Gilbert Syndrome Hemochromatosis Hepatic Encephalopathy Hepatitis A Hepatitis B Hepatitis C Hepatocellular Carcinoma Lysosomal Acid Lipase Deficiency(LALD) Intrahepatic Cholestasis of Pregnancy (ICP) Liver Biopsy Liver Cancer Liver Cysts Liver Function Tests ...

  15. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  16. Facilitation of Function and Manipulation Knowledge of Tools Using Transcranial Direct Current Stimulation (tDCS

    Directory of Open Access Journals (Sweden)

    Ryo Ishibashi

    2018-01-01

    Full Text Available Using a variety of tools is a common and essential component of modern human life. Patients with brain damage or neurological disorders frequently have cognitive deficits in their recognition and manipulation of tools. In this study, we focused on improving tool-related cognition using transcranial direct current stimulation (tDCS. Converging evidence from neuropsychology, neuroimaging and non- invasive brain stimulation has identified the anterior temporal lobe (ATL and inferior parietal lobule (IPL as brain regions supporting action semantics. We observed enhanced performance in tool cognition with anodal tDCS over ATL and IPL in two cognitive tasks that require rapid access to semantic knowledge about the function or manipulation of common tools. ATL stimulation improved access to both function and manipulation knowledge of tools. The effect of IPL stimulation showed a trend toward better manipulation judgments. Our findings support previous studies of tool semantics and provide a novel approach for manipulation of underlying circuits.

  17. Antifibrotic effect of xanthohumol in combination with praziquantel is associated with altered redox status and reduced iron accumulation during liver fluke-associated cholangiocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Wassana Jamnongkan

    2018-01-01

    Full Text Available Cholangiocarcinoma (CCA caused by infection of the liver fluke Opisthorchis viverrini, (Ov is the major public health problem in northeast Thailand. Following Ov infection the subsequent molecular changes can be associated by reactive oxygen species (ROS induced chronic inflammation, advanced periductal fibrosis, and cholangiocarcinogenesis. Notably, resistance to an activation of cell death in prolonged oxidative stress conditions can occur but some damaged/mutated cells could survive and enable clonal expansion. Our study used a natural product, xanthohumol (XN, which is an anti-oxidant and anti-inflammatory compound, to examine whether it could prevent Ov-associated CCA carcinogenesis. We measured the effect of XN with or without praziquantel (PZ, an anti-helminthic treatment, on DNA damage, redox status change including iron accumulation and periductal fibrosis during CCA genesis induced by administration of Ov and N-dinitrosomethylamine (NDMA in hamsters. Animals were randomly divided into four groups: group I, Ov infection and NDMA administration (ON; group II, Ov infection and NDMA administration and PZ treatment (ONP; the latter 2 groups were similar to group I and II, but group III received additional XN (XON and group IV received XN plus PZ (XONP. The results showed that high 8-oxodG (a marker of DNA damage was observed throughout cholangiocarcinogenesis. Moreover, increased expression of CD44v8-10 (a cell surface in regulation of the ROS defense system, whereas decreased expression of phospho-p38MAPK (a major ROS target, was found during the progression of the bile duct cell transformation. In addition, high accumulation of iron and expression of transferrin receptor-1 (TfR-1 in both malignant bile ducts and inflammatory cells were detected. Furthermore, fibrosis also increased with the highest level being on day 180. On the other hand, the groups of XN with or without PZ supplementations showed an effective reduction in all the

  18. Effect of tDCS on task relevant and irrelevant perceptual learning of complex objects.

    Science.gov (United States)

    Van Meel, Chayenne; Daniels, Nicky; de Beeck, Hans Op; Baeck, Annelies

    2016-01-01

    During perceptual learning the visual representations in the brain are altered, but these changes' causal role has not yet been fully characterized. We used transcranial direct current stimulation (tDCS) to investigate the role of higher visual regions in lateral occipital cortex (LO) in perceptual learning with complex objects. We also investigated whether object learning is dependent on the relevance of the objects for the learning task. Participants were trained in two tasks: object recognition using a backward masking paradigm and an orientation judgment task. During both tasks, an object with a red line on top of it were presented in each trial. The crucial difference between both tasks was the relevance of the object: the object was relevant for the object recognition task, but not for the orientation judgment task. During training, half of the participants received anodal tDCS stimulation targeted at the lateral occipital cortex (LO). Afterwards, participants were tested on how well they recognized the trained objects, the irrelevant objects presented during the orientation judgment task and a set of completely new objects. Participants stimulated with tDCS during training showed larger improvements of performance compared to participants in the sham condition. No learning effect was found for the objects presented during the orientation judgment task. To conclude, this study suggests a causal role of LO in relevant object learning, but given the rather low spatial resolution of tDCS, more research on the specificity of this effect is needed. Further, mere exposure is not sufficient to train object recognition in our paradigm.

  19. Evaluation of DCS III Transmission Alternatives. Phase 1A report. Appendix B. Regulatory Barriers.

    Science.gov (United States)

    1980-05-26

    Resolution DK). B.1.1.5 Importance of the RR in the DCS III Study. The ITU Radio Regulation offers a means to appraise viability of the alternatives to be...interference 466-1 483 Measurement of performance by means of signal 482 Measurement of noise in actual traffic 481 Table B.l-6. Communication Satellite...Economic and technical aspects of the choice of transmission systems GAS 5 Economic conditions and tel ecommunication development GAS 6 Economic and

  20. Effects of Transcranial Direct Current Stimulation (tDCS) on Human Memory.

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Laura E.; Trumbo, Michael Christopher Stefan

    2014-10-01

    Training a person in a new knowledge base or skill set is extremely time consuming and costly, particularly in highly specialized domains such as the military and the intelligence community. Recent research in cognitive neuroscience has suggested that a technique called transcranial direct current stimulation (tDCS) has the potential to revolutionize training by enabling learners to acquire new skills faster, more efficiently, and more robustly (Bullard et al., 2011). In this project, we tested the effects of tDCS on two types of memory performance that are critical for learning new skills: associative memory and working memory. Associative memory is memory for the relationship between two items or events. It forms the foundation of all episodic memories, so enhancing associative memory could provide substantial benefits to the speed and robustness of learning new information. We tested the effects of tDCS on associative memory, using a real-world associative memory task: remembering the links between faces and names. Working memory refers to the amount of information that can be held in mind and processed at one time, and it forms the basis for all higher-level cognitive processing. We investigated the degree of transfer between various working memory tasks (the N-back task as a measure of verbal working memory, the rotation-span task as a measure of visuospatial working memory, and Raven's progressive matrices as a measure of fluid intelligence) in order to determine if tDCS-induced facilitation of performance is task-specific or general.

  1. Towards unravelling reading-related modulations of tDCS-induced neuroplasticity in the human visual cortex

    Directory of Open Access Journals (Sweden)

    Andrea eAntal

    2014-06-01

    Full Text Available Stimulation using weak electrical direct currents has shown to be capable of inducing polarity dependent diminutions or elevations in motor and visual cortical excitability. The aim of the present study was to test if reading during transcranial direct current stimulation (tDCS is able to modify stimulation-induced plasticity in the visual cortex. Phosphene thresholds (PT in 12 healthy subjects were recorded before and after 10 minutes of anodal, cathodal and sham tDCS in combination with reading. Reading alone decreased PTs significantly, compared to the sham tDCS condition without reading. Interestingly, after both anodal and cathodal stimulation there was a tendency toward smaller PTs. Our results support the observation that tDCS-induced plasticity is highly dependent on the cognitive state of the subject during stimulation, not only in the case of motor cortex but also in the case of visual cortex stimulation.

  2. Effects of Transcranial Direct Current Stimulation (tDCS) on Pain Distress Tolerance: A Preliminary Study.

    Science.gov (United States)

    Mariano, Timothy Y; van't Wout, Mascha; Jacobson, Benjamin L; Garnaat, Sarah L; Kirschner, Jason L; Rasmussen, Steven A; Greenberg, Benjamin D

    2015-08-01

    Pain remains a critical medical challenge. Current treatments target nociception without addressing affective symptoms. Medically intractable pain is sometimes treated with cingulotomy or deep brain stimulation to increase tolerance of pain-related distress. Transcranial direct current stimulation (tDCS) may noninvasively modulate cortical areas related to sensation and pain representations. The present study aimed to test the hypothesis that cathodal ("inhibitory") stimulation targeting left dorsal anterior cingulate cortex (dACC) would increase tolerance to distress from acute painful stimuli vs anodal stimulation. Forty healthy volunteers received both anodal and cathodal stimulation. During stimulation, we measured pain distress tolerance with three tasks: pressure algometer, cold pressor, and breath holding. We measured pain intensity with a visual-analog scale before and after each task. Mixed ANOVA revealed that mean cold pressor tolerance tended to be higher with cathodal vs anodal stimulation (P = 0.055) for participants self-completing the task. Pressure algometer (P = 0.81) and breath holding tolerance (P = 0.19) did not significantly differ. The pressure algometer exhibited a statistically significant order effect irrespective of stimulation polarity (all P tDCS (P = 0.072). Although our primary results were nonsignificant, there is a preliminary suggestion that cathodal tDCS targeting left dACC may increase pain distress tolerance to cold pressor. Pressure algometer results are consistent with task-related sensitization. Future studies are needed to refine this novel approach for pain neuromodulation. Wiley Periodicals, Inc.

  3. Differential influences of unilateral tDCS over the intraparietal cortex on numerical cognition

    Directory of Open Access Journals (Sweden)

    Christina eArtemenko

    2015-03-01

    Full Text Available Recent neuro-imaging research identified the bilateral intraparietal sulcus (IPS to be a key area associated with number processing. However, causal structure-function relationships are hard to evaluate from neuro-imaging techniques such as fMRI. Nevertheless, brain stimulation methods like transcranial direct current stimulation (tDCS allow for investigating the functional relevance of the IPS for number processing. Following up on a study using bilateral bi-cephalic tDCS over the IPS, the current study aimed at evaluating the differential lateralized functional contributions of the left and right IPS to number processing using unilateral bi-cephalic tDCS over either the left or right IPS. Results indicated a right lateralization for the processing of the place-value structure of the Arabic number system. Importantly, the processing of number magnitude information was not affected by unilateral IPS corroborating the assumption that number magnitude is processed in the bilateral IPS. Taken together, these data suggest that even though number magnitude is represented bilaterally, the left and right IPS seem to contribute differentially to numerical cognition with respect to the processing of specific other aspects of numerical information.

  4. Testing the involvement of the prefrontal cortex in lucid dreaming: a tDCS study.

    Science.gov (United States)

    Stumbrys, Tadas; Erlacher, Daniel; Schredl, Michael

    2013-12-01

    Recent studies suggest that lucid dreaming (awareness of dreaming while dreaming) might be associated with increased brain activity over frontal regions during rapid eye movement (REM) sleep. By applying transcranial direct current stimulation (tDCS), we aimed to manipulate the activation of the dorsolateral prefrontal cortex (DLPFC) during REM sleep to increase dream lucidity. Nineteen participants spent three consecutive nights in a sleep laboratory. On the second and third nights they randomly received either 1 mA tDCS for 10 min or sham stimulation during each REM period starting with the second one. According to the participants' self-ratings, tDCS over the DLPFC during REM sleep increased lucidity in dreams. The effects, however, were not strong and found only in frequent lucid dreamers. While this indicates some preliminary support for the involvement of the DLPFC in lucid dreaming, further research, controlling for indirect effects of stimulation and including other brain regions, is needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Incidence of DCS and oxygen toxicity in chamber attendants: a 28-year experience.

    Science.gov (United States)

    Witucki, Pete; Duchnick, Jay; Neuman, Tom; Grover, Ian

    2013-01-01

    Decompression sickness (DCS) and central nervous system oxygen toxicity are inherent risks for "inside" attendants (IAs) of hyperbaric chambers. At the Hyperbaric Medicine Center at the University of California San Diego (UCSD), protocols have been developed for decompressing IAs. Protocol 1: For a total bottom time (TBT) of less than 80 minutes at 2.4 atmospheres absolute (atm abs) or shallower, the U.S. Navy (1955) no-decompression tables were utilized. Protocol 2: For a TBT between 80 and 119 minutes IAs breathed oxygen for 15 minutes prior to initiation of ascent. Protocol 3: For a TBT between 120-139 minutes IAs breathed oxygen for 30 minutes prior to ascent. These protocols have been utilized for approximately 28 years and have produced zero cases of DCS and central nervous system oxygen toxicity. These results, based upon more than 24,000 exposures, have an upper limit of risk of DCS and oxygen toxicity of 0.02806 (95% CI) using UCSD IA decompression Protocol 1, 0.00021 for Protocol 2, and 0.00549 for Protocol 3. We conclude that the utilization of this methodology may be useful at other sea-level multiplace chambers.

  6. Extracellular ATP reduces HIV-1 transfer from immature dendritic cells to CD4+ T lymphocytes

    Directory of Open Access Journals (Sweden)

    Barat Corinne

    2008-03-01

    Full Text Available Abstract Background Dendritic cells (DCs are considered as key mediators of the early events in human immunodeficiency virus type 1 (HIV-1 infection at mucosal sites. Previous studies have shown that surface-bound virions and/or internalized viruses found in endocytic vacuoles of DCs are efficiently transferred to CD4+ T cells. Extracellular adenosine triphosphate (ATP either secreted or released from necrotic cells induces a distorted maturation of DCs, transiently increases their endocytic capacity and affects their migratory capacity. Knowing that high extracellular ATP concentrations are present in situations of tissue injury and inflammation, we investigated the effect of ATP on HIV-1 transmission from DCs to CD4+ T lymphocytes. Results In this study, we show that extracellular ATP reduces HIV-1 transfer from immature monocyte-derived DCs (iDCs to autologous CD4+ T cells. This observed decrease in viral replication was related to a lower proportion of infected CD4+ T cells following transfer, and was seen with both X4- and R5-tropic isolates of HIV-1. Extracellular ATP had no effect on direct CD4+ T cell infection as well as on productive HIV-1 infection of iDCs. These observations indicate that extracellular ATP affects HIV-1 infection of CD4+ T cells in trans with no effect on de novo virus production by iDCs. Additional experiments suggest that extracellular ATP might modulate the trafficking pathway of internalized virions within iDCs leading to an increased lysosomal degradation, which could be partly responsible for the decreased HIV-1 transmission. Conclusion These results suggest that extracellular ATP can act as a factor controlling HIV-1 propagation.

  7. Toxoplasma gondii infection shifts dendritic cells into an amoeboid rapid migration mode encompassing podosome dissolution, secretion of TIMP-1, and reduced proteolysis of extracellular matrix.

    Science.gov (United States)

    Ólafsson, Einar B; Varas-Godoy, Manuel; Barragan, Antonio

    2018-03-01

    Dendritic cells (DCs) infected by Toxoplasma gondii rapidly acquire a hypermigratory phenotype that promotes systemic parasite dissemination by a "Trojan horse" mechanism in mice. Recent paradigms of leukocyte migration have identified the amoeboid migration mode of DCs as particularly suited for rapid locomotion in extracellular matrix and tissues. Here, we have developed a microscopy-based high-throughput approach to assess motility and matrix degradation by Toxoplasma-challenged murine and human DCs. DCs challenged with T. gondii exhibited dependency on metalloproteinase activity for hypermotility and transmigration but, strikingly, also dramatically reduced pericellular proteolysis. Toxoplasma-challenged DCs up-regulated expression and secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) and their supernatants impaired matrix degradation by naïve DCs and by-stander DCs dose dependently. Gene silencing of TIMP-1 by short hairpin RNA restored matrix degradation activity in Toxoplasma-infected DCs. Additionally, dissolution of podosome structures in parasitised DCs coincided with abrogated matrix degradation. Toxoplasma lysates inhibited pericellular proteolysis in a MyD88-dependent fashion whereas abrogated proteolysis persevered in Toxoplasma-infected MyD88-deficient DCs. This indicated that both TLR/MyD88-dependent and TLR/MyD88-independent signalling pathways mediated podosome dissolution and the abrogated matrix degradation. We report that increased TIMP-1 secretion and cytoskeletal rearrangements encompassing podosome dissolution are features of Toxoplasma-induced hypermigration of DCs with an impact on matrix degradation. Jointly, the data highlight how an obligate intracellular parasite orchestrates key regulatory cellular processes consistent with non-proteolytic amoeboid migration of the vehicle cells that facilitate its dissemination. © 2017 John Wiley & Sons Ltd.

  8. Toward unraveling reading-related modulations of tDCS-induced neuroplasticity in the human visual cortex.

    OpenAIRE

    Antal, Andrea; Ambrus, Géza Gergely; Chaieb, Leila

    2014-01-01

    Stimulation using weak electrical direct currents has shown to be capable of inducing polarity-dependent diminutions or elevations in motor and visual cortical excitability. The aim of the present study was to test if reading during transcranial direct current stimulation (tDCS) is able to modify stimulation-induced plasticity in the visual cortex. Phosphene thresholds (PTs) in 12 healthy subjects were recorded before and after 10 min of anodal, cathodal, and sham tDCS in combination with rea...

  9. Impact of DCS-facilitated cue exposure therapy on brain activation to cocaine cues in cocaine dependence.

    Science.gov (United States)

    Prisciandaro, James J; Myrick, Hugh; Henderson, Scott; McRae-Clark, Aimee L; Santa Ana, Elizabeth J; Saladin, Michael E; Brady, Kathleen T

    2013-09-01

    The development of addiction is marked by a pathological associative learning process that imbues incentive salience to stimuli associated with drug use. Recent efforts to treat addiction have targeted this learning process using cue exposure therapy augmented with d-cycloserine (DCS), a glutamatergic agent hypothesized to enhance extinction learning. To better understand the impact of DCS-facilitated extinction on neural reactivity to drug cues, the present study reports fMRI findings from a randomized, double-blind, placebo-controlled trial of DCS-facilitated cue exposure for cocaine dependence. Twenty-five participants completed two MRI sessions (before and after intervention), with a cocaine-cue reactivity fMRI task. The intervention consisted of 50mg of DCS or placebo, combined with two sessions of cocaine cue exposure and skills training. Participants demonstrated cocaine cue activation in a variety of brain regions at baseline. From the pre- to post-study scan, participants experienced decreased activation to cues in a number of regions (e.g., accumbens, caudate, frontal poles). Unexpectedly, placebo participants experienced decreases in activation to cues in the left angular and middle temporal gyri and the lateral occipital cortex, while DCS participants did not. Three trials of DCS-facilitated cue exposure therapy for cocaine dependence have found that DCS either increases or does not significantly impact response to cocaine cues. The present study adds to this literature by demonstrating that DCS may prevent extinction to cocaine cues in temporal and occipital brain regions. Although consistent with past research, results from the present study should be considered preliminary until replicated in larger samples. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity.

    Directory of Open Access Journals (Sweden)

    Orjon Rroji

    Full Text Available Previous research suggests that anodal transcranial direct current stimulation (tDCS over the primary motor cortex (M1 modulates NMDA receptor dependent processes that mediate synaptic plasticity. Here we test this proposal by applying anodal versus sham tDCS while subjects practiced to flex the thumb as fast as possible (ballistic movements. Repetitive practice of this task has been shown to result in performance improvements that reflect use-dependent plasticity resulting from NMDA receptor mediated, long-term potentiation (LTP-like processes. Using a double-blind within-subject cross-over design, subjects (n=14 participated either in an anodal or a sham tDCS session which were at least 3 months apart. Sham or anodal tDCS (1 mA was applied for 20 min during motor practice and retention was tested 30 min, 24 hours and one week later. All subjects improved performance during each of the two sessions (p < 0.001 and learning gains were similar. Our main result is that long term retention performance (i.e. 1 week after practice was significantly better when practice was performed with anodal tDCS than with sham tDCS (p < 0.001. This effect was large (Cohen's d=1.01 and all but one subject followed the group trend. Our data strongly suggest that anodal tDCS facilitates long-term memory formation reflecting use-dependent plasticity. Our results support the notion that anodal tDCS facilitates synaptic plasticity mediated by an LTP-like mechanism, which is in accordance with previous research.

  11. Liver biopsy in liver patients with coagulopathy

    DEFF Research Database (Denmark)

    Ott, P.; Gronbaek, H.; Clausen, M.R.

    2008-01-01

    The risk of severe bleeding after liver biopsy is estimated to be 1:12,000 in patients with near normal coagulation (INR 60 billion /l). Beyond these limits, the risk is higher, but still uncertain. The Danish guidelines require INR > 1.5, platelet count ... and normal APTT. In some instances the risk of not knowing the histology is so high that a biopsy is considered even with a more disturbed coagulation. Vitamin K, freshly frozen plasma and recombinant activated factor VII may reduce the risk of bleeding in specific situations, but no firm recommendations can...

  12. Combined motor point associative stimulation (MPAS) and transcranial direct current stimulation (tDCS) improves plateaued manual dexterity performance.

    Science.gov (United States)

    Hoseini, Najmeh; Munoz-Rubke, Felipe; Wan, Hsuan-Yu; Block, Hannah J

    2016-10-28

    Motor point associative stimulation (MPAS) in hand muscles is known to modify motor cortex excitability and improve learning rate, but not plateau of performance, in manual dexterity tasks. Central stimulation of motor cortex, such as transcranial direct current stimulation (tDCS), can have similar effects if accompanied by motor practice, which can be difficult and tiring for patients. Here we asked whether adding tDCS to MPAS could improve manual dexterity in healthy individuals who are already performing at their plateau, with no motor practice during stimulation. We hypothesized that MPAS could provide enough coordinated muscle activity to make motor practice unnecessary, and that this combination of stimulation techniques could yield improvements even in subjects at or near their peak. If so, this approach could have a substantial effect on patients with impaired dexterity, who are far from their peak. MPAS was applied for 30min to two right hand muscles important for manual dexterity. tDCS was simultaneously applied over left sensorimotor cortex. The motor cortex input/output (I/O) curve was assessed with transcranial magnetic stimulation (TMS), and manual dexterity was assessed with the Purdue Pegboard Test. Compared to sham or cathodal tDCS combined with MPAS, anodal tDCS combined with MPAS significantly increased the plateau of manual dexterity. This result suggests that MPAS has the potential to substitute for motor practice in mediating a beneficial effect of tDCS on manual dexterity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. [Transcranial direct current stimulation (tDCS) for depression: Results of nearly a decade of clinical research].

    Science.gov (United States)

    Palm, U; Ayache, S S; Padberg, F; Lefaucheur, J-P

    2016-02-01

    Since 2006 transcranial direct current stimulation (tDCS) has been investigated in the treatment of depression. In this review, we discuss the implications and clinical perspectives that tDCS may have as a therapeutic tool in depression from the results reported in this domain. A comprehensive literature review has found nearly thirty articles - all in English - on this topic, corresponding to clinical studies, placebo-controlled or not, case reports and reviews. Several meta-analyses showed that the antidepressant effects of active tDCS are significant against placebo, but variable, mainly due to the heterogeneity of the patients included in the studies, for example regarding the resistance to antidepressant treatment. Specific recommendations for the use of tDCS in treating depression may not yet be available, but some elements of good practice can be highlighted. Of particular note is that anodal tDCS of the left prefrontal cortex at 2mA for 20 minutes per day has a potential therapeutic value without risk of significant side effects: tDCS offers safe conditions for clinical use in the treatment of depression. Copyright © 2015 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  14. The Role of Telehealth to Assist In-Home tDCS: Opportunities, Promising Results and Acceptability

    Directory of Open Access Journals (Sweden)

    Brenton Hordacre

    2018-06-01

    Full Text Available Transcranial direct current stimulation (tDCS has shown great promise as a neuromodulatory intervention capable of improving behavioral outcomes in a range of neurological and psychiatric populations. Evidence indicates that the neuromodulatory effect of stimulation may be cumulative, with greater improvements in behavior observed following multiple treatment sessions. However, the requirement to attend clinical or research departments for multiple treatment sessions may present a barrier for many people, particularly those with greater disability or living remotely. The portability of tDCS suggests that in-home stimulation may become an avenue for further investigation. However, safe and effective use of tDCS by a participant within their home requires a form of monitoring. This review discusses how telehealth may provide real-time visual monitoring to ensure correct tDCS set-up and adherence to stimulation protocols, manage technical issues and monitor adverse events. The combination of telehealth to supplement in-home tDCS use has potential to transform the way tDCS is delivered.

  15. Keep calm and carry on: improved frustration tolerance and processing speed by transcranial direct current stimulation (tDCS.

    Directory of Open Access Journals (Sweden)

    Christian Plewnia

    Full Text Available Cognitive control (CC of attention is a major prerequisite for effective information processing. Emotional distractors can bias and impair goal-directed deployment of attentional resources. Frustration-induced negative affect and cognition can act as internal distractors with negative impact on task performance. Consolidation of CC may thus support task-oriented behavior under challenging conditions. Recently, transcranial direct current stimulation (tDCS has been put forward as an effective tool to modulate CC. Particularly, anodal, activity enhancing tDCS to the left dorsolateral prefrontal cortex (dlPFC can increase insufficient CC in depression as indicated by a reduction of attentional biases induced by emotionally salient stimuli. With this study, we provide first evidence that, compared to sham stimulation, tDCS to the left dlPFC enhances processing speed measured by an adaptive version of the Paced Auditory Serial Addition Task (PASAT that is typically thwarted by frustration. Notably, despite an even larger amount of error-related negative feedback, the task-induced upset was suppressed in the group receiving anodal tDCS. Moreover, inhibition of task-related negative affect was correlated with performance gains, suggesting a close link between enhanced processing speed and consolidation of CC by tDCS. Together, these data provide first evidence that activity enhancing anodal tDCS to the left dlPFC can support focused cognitive processing particularly when challenged by frustration-induced negative affect.

  16. Keep calm and carry on: improved frustration tolerance and processing speed by transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Plewnia, Christian; Schroeder, Philipp A; Kunze, Roland; Faehling, Florian; Wolkenstein, Larissa

    2015-01-01

    Cognitive control (CC) of attention is a major prerequisite for effective information processing. Emotional distractors can bias and impair goal-directed deployment of attentional resources. Frustration-induced negative affect and cognition can act as internal distractors with negative impact on task performance. Consolidation of CC may thus support task-oriented behavior under challenging conditions. Recently, transcranial direct current stimulation (tDCS) has been put forward as an effective tool to modulate CC. Particularly, anodal, activity enhancing tDCS to the left dorsolateral prefrontal cortex (dlPFC) can increase insufficient CC in depression as indicated by a reduction of attentional biases induced by emotionally salient stimuli. With this study, we provide first evidence that, compared to sham stimulation, tDCS to the left dlPFC enhances processing speed measured by an adaptive version of the Paced Auditory Serial Addition Task (PASAT) that is typically thwarted by frustration. Notably, despite an even larger amount of error-related negative feedback, the task-induced upset was suppressed in the group receiving anodal tDCS. Moreover, inhibition of task-related negative affect was correlated with performance gains, suggesting a close link between enhanced processing speed and consolidation of CC by tDCS. Together, these data provide first evidence that activity enhancing anodal tDCS to the left dlPFC can support focused cognitive processing particularly when challenged by frustration-induced negative affect.

  17. Enhancing performance in numerical magnitude processing and mental arithmetic using transcranial Direct Current Stimulation (tDCS

    Directory of Open Access Journals (Sweden)

    Tobias U. Hauser

    2013-06-01

    Full Text Available The ability to accurately process numerical magnitudes and solve mental arithmetic is of highest importance for schooling and professional career. Although impairments in these domains in disorders such as developmental dyscalculia (DD are highly detrimental, remediation is still sparse. In recent years, transcranial brain stimulation methods such as transcranial Direct Current Stimulation (tDCS have been suggested as a treatment for various neurologic and neuropsychiatric disorders. The posterior parietal cortex (PPC is known to be crucially involved in numerical magnitude processing and mental arithmetic. In this study, we evaluated whether tDCS has a beneficial effect on numerical magnitude processing and mental arithmetic. Due to the unclear lateralization, we stimulated the left, right as well as both hemispheres simultaneously in two experiments. We found that left anodal tDCS significantly enhanced performance in a number comparison and a subtraction task, while bilateral and right anodal tDCS did not induce any improvements compared to sham. Our findings demonstrate that the left PPC is causally involved in numerical magnitude processing and mental arithmetic. Furthermore, we show that these cognitive functions can be enhanced by means of tDCS. These findings encourage to further investigate the beneficial effect of tDCS in the domain of mathematics in healthy and impaired humans.

  18. Total non-imaging in liver scintiscanning in case of alcoholic liver cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Schlicht, I; Roh, T

    1983-01-01

    Case reports are given of 3 female patients suffering from advanced, hypertrophic alcoholic cirrhosis of the liver with portal hypertension. The livers of these patients were not demonstrable by scintigraphy. The patients died a few months afterwards from liver failure. This syndrome - failure of the liver to show up in scintigraphy - may have diagnostic and prognostic implications; it may be caused by deficient blood circulation and by reduced phagocytic capacity of the kupfer cell system.

  19. Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex.

    Directory of Open Access Journals (Sweden)

    Daniel P Spiegel

    Full Text Available Transcranial direct current stimulation (tDCS is a safe, non-invasive technique for transiently modulating the balance of excitation and inhibition within the human brain. It has been reported that anodal tDCS can reduce both GABA mediated inhibition and GABA concentration within the human motor cortex. As GABA mediated inhibition is thought to be a key modulator of plasticity within the adult brain, these findings have broad implications for the future use of tDCS. It is important, therefore, to establish whether tDCS can exert similar effects within non-motor brain areas. The aim of this study was to assess whether anodal tDCS could reduce inhibitory interactions within the human visual cortex. Psychophysical measures of surround suppression were used as an index of inhibition within V1. Overlay suppression, which is thought to originate within the lateral geniculate nucleus (LGN, was also measured as a control. Anodal stimulation of the occipital poles significantly reduced psychophysical surround suppression, but had no effect on overlay suppression. This effect was specific to anodal stimulation as cathodal stimulation had no effect on either measure. These psychophysical results provide the first evidence for tDCS-induced reductions of intracortical inhibition within the human visual cortex.

  20. Ventilatory strategy during liver transplantation

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Grocott, Hilary P; Niemann, Mads

    2014-01-01

    BACKGROUND: As measured by near infrared spectroscopy (NIRS), cerebral oxygenation (ScO2) may be reduced by hyperventilation in the anhepatic phase of liver transplantation surgery (LTx). Conversely, the brain may be subjected to hyperperfusion during reperfusion of the grafted liver. We investig......, this retrospective analysis suggests that attention to maintain a targeted EtCO2 would result in a more stable ScO2 during the operation....

  1. Role of a novel dual flavin reductase (NR1) and an associated histidine triad protein (DCS-1) in menadione-induced cytotoxicity

    International Nuclear Information System (INIS)

    Kwasnicka-Crawford, Dorota A.; Vincent, Steven R.

    2005-01-01

    Microsomal cytochrome P450 reductase catalyzes the one-electron transfer from NADPH via FAD and FMN to various electron acceptors, such as cytochrome P450s or to some anti-cancer quinone drugs. This results in generation of free radicals and toxic oxygen metabolites, which can contribute to the cytotoxicity of these compounds. Recently, a cytosolic NADPH-dependent flavin reductase, NR1, has been described which is highly homologous to the microsomal cytochrome P450 reductase. In this study, we show that over-expression of NR1 in human embryonic kidney cells enhances the cytotoxic action of the model quinone, menadione. Furthermore, we show that a novel human histidine triad protein DCS-1, which is expressed together with NR1 in many tissues, can significantly reduce menadione-induced cytotoxicity in these cells. We also show that DCS-1 binds NF1 and directly modulates its activity. These results suggest that NR1 may play a role in carcinogenicity and cell death associated with one-electron reductions

  2. d-Cycloserine reduces context specificity of sexual extinction learning.

    Science.gov (United States)

    Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Trimbos, Baptist; Both, Stephanie

    2015-11-01

    d-Cycloserine (DCS) enhances extinction processes in animals. Although classical conditioning is hypothesized to play a pivotal role in the aetiology of appetitive motivation problems, no research has been conducted on the effect of DCS on the reduction of context specificity of extinction in human appetitive learning, while facilitation hereof is relevant in the context of treatment of problematic reward-seeking behaviors. Female participants were presented with two conditioned stimuli (CSs) that either predicted (CS+) or did not predict (CS-) a potential sexual reward (unconditioned stimulus (US); genital vibrostimulation). Conditioning took place in context A and extinction in context B. Subjects received DCS (125mg) or placebo directly after the experiment on day 1 in a randomized, double-blind, between-subject fashion (Placebo n=31; DCS n=31). Subsequent testing for CS-evoked conditioned responses (CRs) in both the conditioning (A) and the extinction context (B) took place 24h later on day 2. Drug effects on consolidation were then assessed by comparing the recall of sexual extinction memories between the DCS and the placebo groups. Post learning administration of DCS facilitates sexual extinction memory consolidation and affects extinction's fundamental context specificity, evidenced by reduced conditioned genital and subjective sexual responses, relative to placebo, for presentations of the reward predicting cue 24h later outside the extinction context. DCS makes appetitive extinction memories context-independent and prevents the return of conditioned response. NMDA receptor glycine site agonists may be potential pharmacotherapies for the prevention of relapse of appetitive motivation disorders with a learned component. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Transcranial direct current stimulation (tDCS) facilitates overall visual search response times but does not interact with visual search task factors.

    Science.gov (United States)

    Sung, Kyongje; Gordon, Barry

    2018-01-01

    Whether transcranial direct current stimulation (tDCS) affects mental functions, and how any such effects arise from its neural effects, continue to be debated. We investigated whether tDCS applied over the visual cortex (Oz) with a vertex (Cz) reference might affect response times (RTs) in a visual search task. We also examined whether any significant tDCS effects would interact with task factors (target presence, discrimination difficulty, and stimulus brightness) that are known to selectively influence one or the other of the two information processing stages posited by current models of visual search. Based on additive factor logic, we expected that the pattern of interactions involving a significant tDCS effect could help us colocalize the tDCS effect to one (or both) of the processing stages. In Experiment 1 (n = 12), anodal tDCS improved RTs significantly; cathodal tDCS produced a nonsignificant trend toward improvement. However, there were no interactions between the anodal tDCS effect and target presence or discrimination difficulty. In Experiment 2 (n = 18), we manipulated stimulus brightness along with target presence and discrimination difficulty. Anodal and cathodal tDCS both produced significant improvements in RTs. Again, the tDCS effects did not interact with any of the task factors. In Experiment 3 (n = 16), electrodes were placed at Cz and on the upper arm, to test for a possible effect of incidental stimulation of the motor regions under Cz. No effect of tDCS on RTs was found. These findings strengthen the case for tDCS having real effects on cerebral information processing. However, these effects did not clearly arise from either of the two processing stages of the visual search process. We suggest that this is because tDCS has a DIFFUSE, pervasive action across the task-relevant neuroanatomical region(s), not a discrete effect in terms of information processing stages.

  4. Radiation-induced liver damage

    International Nuclear Information System (INIS)

    Marcial, V.A.; Santiago-Delpin, E.A.; Lanaro, A.E.; Castro-Vita, H.; Arroyo, G.; Moscol, J.A.; Gomez, C.; Velazquez, J.; Prado, K.

    1977-01-01

    Due to the recent increase in the use of radiation therapy in the treatment of cancer with or without chemotherapy, the risk of liver radiation damage has become a significant concern for the radiotherapist when the treated tumour is located in the upper abdomen or lower thorax. Clinically evident radiation liver damage may result in significant mortality, but at times patients recover without sequelae. The dose of 3000 rads in 3 weeks to the entire liver with 5 fractions per week of 200 rads each, seems to be tolerated well clinically by adult humans. Lower doses may lead to damage when used in children, when chemotherapy is added, as in recent hepatectomy cases, and in the presence of pre-existent liver damage. Reduced fractionation may lead to increased damage. Increased fractionation, limitation of the dose delivered to the entire liver, and restriction of the high dose irradiation volume may afford protection. With the aim of studying the problems of hepatic radiation injury in humans, a project of liver irradiation in the dog is being conducted. Mongrel dogs are being conditioned, submitted to pre-irradiation studies (haemogram, blood chemistry, liver scan and biopsy), irradiated under conditions resembling human cancer therapy, and submitted to post-irradiation evaluation of the liver. Twenty-two dogs have been entered in the study but only four qualify for the evaluation of all the study parameters. It has been found that dogs are susceptible to liver irradiation damage similar to humans. The initial mortality has been high mainly due to non-radiation factors which are being kept under control at the present phase of the study. After the initial experiences, the study will involve variations in total dose and fractionation, and the addition of anticoagulant therapy for possible prevention of radiation liver injury. (author)

  5. Transcranial direct current stimulation (tDCS) to improve naming ability in post-stroke aphasia: A critical review.

    Science.gov (United States)

    ALHarbi, Mohammed F; Armijo-Olivo, Susan; Kim, Esther S

    2017-08-14

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive neuromodulation tool that can be used to influence cortical brain activity to induce measurable behavioral changes. Although there is growing evidence that tDCS combined with behavioural language therapy could boost language recovery in patients with post-stroke aphasia, there is great variability in patient characteristics, treatment protocols, and outcome measures in these studies that poses challenges for analyzing the evidence. The purpose of this study is to critically analyze the methodological rigor of the evidence regarding the use of tDCS for post-stroke anomia. This critical review was conducted by searching four databases (MEDLINE, EMBase, PsycINFO, and CINAHL). Nineteen studies fully met the inclusion criteria. Three critical appraisal tools and Robey and Schultz's (1998) five- phase model for conducting clinical outcome research were adopted to evaluate and analyze the current level of evidence. Methodological issues of the studies were also identified. The current level of evidence for using tDCS for anomia is at the pre-efficacy level with emerging evidence at the efficacy level. Lack of proper evaluation of carry-over effects in cross-over studies, lack of or unclear randomization, allocation concealment, and incomplete data handling were the main methodological issues that could threaten the validity of the tDCS for anomia studies. Several methodological issues have been identified in pre-efficacy studies that pose challenges in determining whether tDCS is a beneficial adjunct to behavioral aphasia therapy. Future studies need to improve the quality of the methods used to investigate the effect of tDCS for anomia. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Neural signature of tDCS, tPCS and their combination: Comparing the effects on neural plasticity

    Science.gov (United States)

    Thibaut, Aurore; Russo, Cristina; Morales-Quezada, Leon; Hurtado-Puerto, Aura; Deitos, Alícia; Freedman, Steven; Carvalho, Sandra; Fregni, Felipe

    2017-01-01

    Transcranial pulsed current stimulation (tPCS) and transcranial direct current stimulation (tDCS) are two noninvasive neuromodulatory brain stimulation techniques whose effects on human brain and behavior have been studied individually. In the present study we aimed to quantify the effects of tDCS and tPCS, individually and in combination, on cortical activity, sensitivity and pain-related assessments in healthy individuals in order to understand their neurophysiological mechanisms and potential applications in clinical populations. A total of 48 healthy individuals participated in this randomized double blind sham controlled study. Participants were randomized to receive a single stimulation session of either: active or sham tPCS and active or sham tDCS. Quantitative electroencephalography (qEEG), sensitivity and pain assessments were used before and after each stimulation session. We observed that tPCS had a higher effect on power, as compared to tDCS, in several bandwidths on various cortical regions: the theta band in the parietal region (p = 0.021), the alpha band in the temporal (p = 0.009), parietal (p = 0.0063), and occipital (p tDCS significantly decreased power in the low beta bandwidth of the frontal (p = 0.0006), central (p = 0.0001), and occipital (p = 0.0003) regions, when compared to sham stimulation. Additionally, tDCS significantly increased power in high beta over the temporal (p = 0.0015) and parietal (p = 0.0007) regions, as compared to sham. We found no effect on sensitivity or pain-related assessments. We concluded that tPCS and tDCS have different neurophysiological mechanisms, elicit distinct signatures, and that the combination of the two leads to no effect or a decrease on qEEG power. Further studies are required to examine the effects of these techniques on clinical populations in which EEG signatures have been found altered. PMID:27765610

  7. Modulation of phenotypic and functional maturation of murine dendritic cells (DCs) by purified Achyranthes bidentata polysaccharide (ABP).

    Science.gov (United States)

    Zou, Yaxuan; Meng, Jingjuan; Chen, Wenna; Liu, Jingling; Li, Xuan; Li, Weiwei; Lu, Changlong; Shan, Fengping

    2011-08-01

    There are a large number of interactions at molecular and cellular levels between the plant polysaccharides and immune system. Plant polysaccharides present an interesting effects as immunomodulators, particularly in the induction of the cells both in innate and adaptive immune systems. Activation of DCs could improve antitumoral responses usually diminished in cancer patients, and natural adjuvants provide a possibility of inducing this activation. ABP is a purified polysaccharide isolated from Achyranthes bidentata, a traditional Chinese medicine (TCM). The aim of this study is to investigate modulation of phenotypic and functional maturation of murine DCs by ABP. Both phenotypic and functional activities were assessed with use of conventional scanning electronic microscopy (SEM) for the morphology of the DC, transmitted electron microscopy (TEM) for intracellular lysosomes inside the DC, cellular immunohistochemistry for phagocytosis by the DCs, flow cytometry (FCM) for the changes in key surface molecules, bio-assay for the activity of acidic phosphatases (ACP), and ELISA for the production of pro-inflammatory cytokine IL-12. In fact, we found that purified ABP induced phenotypic maturation revealed by increased expression of CD86, CD40, and MHC II. Functional experiments showed the down-regulation of ACP inside DCs (which occurs when phagocytosis of DCs is decreased, and antigen presentation increased with maturation). Finally, ABP increased the production of IL-12. These data reveal that ABP promotes effective activation of murine DCs. This adjuvant-like activity may have therapeutic applications in clinical settings where immune responses need boosting. It is therefore concluded that ABP can exert positive modulation to murine DCs. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Hepatitis B virus induces IL-23 production in antigen presenting cells and causes liver damage via the IL-23/IL-17 axis.

    Directory of Open Access Journals (Sweden)

    Qinghong Wang

    Full Text Available IL-23 regulates myriad processes in the innate and adaptive immune systems, and is a critical mediator of the proinflammatory effects exerted by Th17 cells in many diseases. In this study, we investigated whether and how hepatitis B virus (HBV causes liver damage directly through the IL-23 signaling pathway. In biopsied liver tissues from HBV-infected patients, expression of both IL-23 and IL-23R was remarkably elevated. In vivo observations also indicated that the main sources of IL-23 were myeloid dendritic cells (mDCs and macrophages. Analysis of in vitro differentiated immature DCs and macrophages isolated from healthy donors revealed that the HBV surface antigen (HBsAg efficiently induces IL-23 secretion in a mannose receptor (MR-dependent manner. Culture with an endosomal acidification inhibitor and the dynamin inhibitor showed that, upon binding to the MR, the HBsAg is taken up by mDCs and macrophages through an endocytosis mechanism. In contrast, although the HBV core antigen (HBcAg can also stimulate IL-23 secretion from mDCs, the process was MR- and endocytosis-independent. In addition, IL-23 was shown to be indispensible for HBsAg-stimulated differentiation of naïve CD4(+ T cells into Th17 cells, which were determined to be the primary source of IL-17 in HBV-infected livers. The cognate receptor, IL-17R, was found to exist on the hepatic stellate cells and mDCs, both of which might represent the potential target cells of IL-17 in hepatitis B disease. These data provide novel insights into a yet unrecognized mechanism of HBV-induced hepatitis, by which increases in IL-23 expression, through an MR/endocytosis-dependent or -independent manner, produce liver damage through the IL-23/IL-17 axis.

  9. Interactions of the heart and the liver

    DEFF Research Database (Denmark)

    Møller, Søren; Bernardi, Mauro

    2013-01-01

    There is a mutual interaction between the function of the heart and the liver and a broad spectrum of acute and chronic entities that affect both the heart and the liver. These can be classified into heart diseases affecting the liver, liver diseases affecting the heart, and conditions affecting...... the heart and the liver at the same time. In chronic and acute cardiac hepatopathy, owing to cardiac failure, a combination of reduced arterial perfusion and passive congestion leads to cardiac cirrhosis and cardiogenic hypoxic hepatitis. These conditions may impair the liver function and treatment should...... be directed towards the primary heart disease and seek to secure perfusion of vital organs. In patients with advanced cirrhosis, physical and/or pharmacological stress may reveal a reduced cardiac performance with systolic and diastolic dysfunction and electrophysical abnormalities termed cirrhotic...

  10. Nutritional support of children with chronic liver disease

    African Journals Online (AJOL)

    The effect that chronic liver disease has on a child's nutritional status and ... even children with less severe liver disease require nutritional .... Reduced muscle bulk .... pain and fractures, palpation of the spine and assessment of pubertal stage.

  11. Effects of transcranial direct current stimulation (tDCS) on pain distress tolerance: a preliminary study

    Science.gov (United States)

    Mariano, Timothy Y.; Wout, Mascha van’t; Jacobson, Benjamin L.; Garnaat, Sarah L.; Kirschner, Jason L.; Rasmussen, Steven A.; Greenberg, Benjamin D.

    2015-01-01

    Objective Pain remains a critical medical challenge. Current treatments target nociception without addressing affective symptoms. Medically intractable pain is sometimes treated with cingulotomy or deep brain stimulation to increase tolerance of pain-related distress. Transcranial direct current stimulation (tDCS) may noninvasively modulate cortical areas related to sensation and pain representations. The present study aimed to test the hypothesis that cathodal (“inhibitory”) stimulation targeting left dorsal anterior cingulate cortex (dACC) would increase tolerance to distress from acute painful stimuli versus anodal stimulation. Methods Forty healthy volunteers received both anodal and cathodal stimulation. During stimulation, we measured pain distress tolerance with three tasks: pressure algometer, cold pressor, and breath holding. We measured pain intensity with a visual-analog scale before and after each task. Results Mixed ANOVA revealed that mean cold pressor tolerance tended to be higher with cathodal versus anodal stimulation (p = 0.055) for participants self-completing the task. Pressure algometer (p = 0.81) and breath holding tolerance (p = 0.19) did not significantly differ. The pressure algometer exhibited a statistically significant order effect irrespective of stimulation polarity (all p Pain intensity ratings increased acutely after cold pressor and pressure algometer tasks (both p pain ratings tended to rise less after cathodal versus anodal tDCS (p = 0.072). Conclusions Although our primary results were nonsignificant, there is a preliminary suggestion that cathodal tDCS targeting left dACC may increase pain distress tolerance to cold pressor. Pressure algometer results are consistent with task-related sensitization. Future studies are needed to refine this novel approach for pain neuromodulation. PMID:26115372

  12. Liver transplant for cholestatic liver diseases.

    Science.gov (United States)

    Carrion, Andres F; Bhamidimarri, Kalyan Ram

    2013-05-01

    Cholestatic liver diseases include a group of diverse disorders with different epidemiology, pathophysiology, clinical course, and prognosis. Despite significant advances in the clinical care of patients with cholestatic liver diseases, liver transplant (LT) remains the only definitive therapy for end-stage liver disease, regardless of the underlying cause. As per the United Network for Organ Sharing database, the rate of cadaveric LT for cholestatic liver disease was 18% in 1991, 10% in 2000, and 7.8% in 2008. This review summarizes the available evidence on various common and rare cholestatic liver diseases, disease-specific issues, and pertinent aspects of LT. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Low Intensity Focused tDCS Over the Motor Cortex Shows Inefficacy to Improve Motor Imagery Performance

    Directory of Open Access Journals (Sweden)

    Irma N. Angulo-Sherman

    2017-07-01

    Full Text Available Transcranial direct current stimulation (tDCS is a brain stimulation technique that can enhance motor activity by stimulating the motor path. Thus, tDCS has the potential of improving the performance of brain-computer interfaces during motor neurorehabilitation. tDCS effects depend on several aspects, including the current density, which usually varies between 0.02 and 0.08 mA/cm2, and the location of the stimulation electrodes. Hence, testing tDCS montages at several current levels would allow the selection of current parameters for improving stimulation outcomes and the comparison of montages. In a previous study, we found that cortico-cerebellar tDCS shows potential of enhancing right-hand motor imagery. In this paper, we aim to evaluate the effects of the focal stimulation of the motor cortex over motor imagery. In particular, the effect of supplying tDCS with a 4 × 1 ring montage, which consists in placing an anode on the motor cortex and four cathodes around it, over motor imagery was assessed with different current densities. Electroencephalographic (EEG classification into rest or right-hand/feet motor imagery was evaluated on five healthy subjects for two stimulation schemes: applying tDCS for 10 min on the (1 right-hand or (2 feet motor cortex before EEG recording. Accuracy differences related to the tDCS intensity, as well as μ and β band power changes, were tested for each subject and tDCS modality. In addition, a simulation of the electric field induced by the montage was used to describe its effect on the brain. Results show no improvement trends on classification for the evaluated currents, which is in accordance with the observation of variable EEG band power results despite the focused stimulation. The lack of effects is probably related to the underestimation of the current intensity required to apply a particular current density for small electrodes and the relatively short inter-electrode distance. Hence, higher current

  14. Regulatory Considerations for the Clinical and Research Use of Transcranial Direct Current Stimulation (tDCS): review and recommendations from an expert panel

    Science.gov (United States)

    Fregni, F; Nitsche, MA; Loo, C.K.; Brunoni, AR; Marangolo, P; Leite, J; Carvalho, S; Bolognini, N; Caumo, W; Paik, NJ; Simis, M; Ueda, K; Ekhitari, H; Luu, P; Tucker, DM; Tyler, WJ; Brunelin, J; Datta, A; Juan, CH; Venkatasubramanian, G; Boggio, PS; Bikson, M

    2014-01-01

    The field of transcranial electrical stimulation (tES) has experienced significant growth in the past 15 years. One of the tES techniques leading this increased interest is transcranial direct current stimulation (tDCS). Significant research efforts have been devoted to determining the clinical potential of tDCS in humans. Despite the promising results obtained with tDCS in basic and clinical neuroscience, further progress has been impeded by a lack of clarity on international regulatory pathways. We therefore convened a group of research and clinician experts on tDCS to review the research and clinical use of tDCS. In this report, we review the regulatory status of tDCS, and we summarize the results according to research, off-label and compassionate use of tDCS in the following countries: Australia, Brazil, France, Germany, India, Iran, Italy, Portugal, South Korea, Taiwan and United States. Research use, off label treatment and compassionate use of tDCS are employed in most of the countries reviewed in this study. It is critical that a global or local effort is organized to pursue definite evidence to either approve and regulate or restrict the use of tDCS in clinical practice on the basis of adequate randomized controlled treatment trials. PMID:25983531

  15. The effectiveness of ground level post-flight 100 percent oxygen breathing as therapy for pain-only altitude Decompression Sickness (DCS)

    Science.gov (United States)

    Demboski, John T.; Pilmanis, Andrew A.

    1994-01-01

    In both the aviation and space environments, decompression sickness (DCS) is an operational limitation. Hyperbaric recompression is the most efficacious treatment for altitude DCS. However, the inherent recompression of descent to ground level while breathing oxygen is in itself therapy for altitude DCS. If pain-only DCS occurs during a hypobaric exposure, and the symptoms resolver during descent, ground level post-flight breathing of 100% O2 for 2 hours (GLO2) is considered sufficient treatment by USAF Regulation 161-21. The effectiveness of the GLO2 treatment protocol is defined.

  16. A Protocol for the Use of Remotely-Supervised Transcranial Direct Current Stimulation (tDCS) in Multiple Sclerosis (MS).

    Science.gov (United States)

    Kasschau, Margaret; Sherman, Kathleen; Haider, Lamia; Frontario, Ariana; Shaw, Michael; Datta, Abhishek; Bikson, Marom; Charvet, Leigh

    2015-12-26

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that uses low amplitude direct currents to alter cortical excitability. With well-established safety and tolerability, tDCS has been found to have the potential to ameliorate symptoms such as depression and pain in a range of conditions as well as to enhance outcomes of cognitive and physical training. However, effects are cumulative, requiring treatments that can span weeks or months and frequent, repeated visits to the clinic. The cost in terms of time and travel is often prohibitive for many participants, and ultimately limits real-world access. Following guidelines for remote tDCS application, we propose a protocol that would allow remote (in-home) participation that uses specially-designed devices for supervised use with materials modified for patient use, and real-time monitoring through a telemedicine video conferencing platform. We have developed structured training procedures and clear, detailed instructional materials to allow for self- or proxy-administration while supervised remotely in real-time. The protocol is designed to have a series of checkpoints, addressing attendance and tolerability of the session, to be met in order to continue to the next step. The feasibility of this protocol was then piloted for clinical use in an open label study of remotely-supervised tDCS in multiple sclerosis (MS). This protocol can be widely used for clinical study of tDCS.

  17. No Effects of Stimulating the Left Ventrolateral Prefrontal Cortex with tDCS on Verbal Working Memory Updating

    Directory of Open Access Journals (Sweden)

    Karolina M. Lukasik

    2018-01-01

    Full Text Available The effects of transcranial direct current stimulation (tDCS on dorsolateral prefrontal cortex functions, such as working memory (WM, have been examined in a number of studies. However, much less is known about the behavioral effects of tDCS over other important WM-related brain regions, such as the ventrolateral prefrontal cortex (VLPFC. In a counterbalanced within-subjects design with 33 young healthy participants, we examined whether online and offline single-session tDCS over VLPFC affects WM updating performance as measured by a digit 3-back task. We compared three conditions: anodal, cathodal and sham. We observed no significant tDCS effects on participants' accuracy or reaction times during or after the stimulation. Neither did we find any differences between anodal and cathodal stimulation. Largely similar results were obtained when comparing subgroups of high- and low-performing participants. Possible reasons for the lack of effects, including individual differences in responsiveness to tDCS, features of montage, task and sample characteristics, and the role of VLPFC in WM, are discussed.

  18. Decompression sickness among diving fishermen in Mexico: observational retrospective analysis of DCS in three sea cucumber fishing seasons.

    Science.gov (United States)

    Huchim-Lara, Oswaldo; Chin, Walter; Salas, Silvia; Rivera-Canul, Normando; Cordero-Romero, Salvador; Tec, Juan; Joo, Ellie; Mendez-Dominguez, Nina

    2017-01-01

    The probabilities of decompression sickness (DCS) among diving fishermen are higher than in any other group of divers. Diving behavior of artisanal fishermen has been directed mainly to target high-value species. The aim of this study was to learn about the occurrence of DCS derived from sea cucumber harvesting in the Yucatán Peninsula, Mexico. We conducted a retrospective chart review of diving fishermen treated at a multiplace hyperbaric chamber in Tizimín, Mexico. In total, 233 recompression therapies were rendered to 166 diving fishermen from 2014 to 2016. The average age was 36.7 ± 9.2 years (range: 20-59 years); 84.3% had experienced at least one DCS event previously. There was a correlation between age and DCS incidents (F: 8.3; R2: 0.07) and differences in the fishing depth between seasons (H: 9.99; p⟨0.05). Musculoskeletal pain was the most frequently reported symptom. Three divers, respectively, suffered permanent hearing loss, spinal cord injury and fatal outcome. Diving fishermen experience DCS at an alarmingly high rate, probably due to the type of species targeted, given the requirements in each case. Understanding divers' behaviors and their incentives while in pursuit of high-value species such as sea cucumber could help to find ways to mitigate health risks and help enforce regulation. Copyright© Undersea and Hyperbaric Medical Society.

  19. The Effects of Transcranial Direct Current Stimulation (tDCS on Psychomotor and Visual Perception Functions Related to Driving Skills

    Directory of Open Access Journals (Sweden)

    Alexander Brunnauer

    2018-01-01

    Full Text Available Objective: It could be demonstrated that anodal transcranial direct current stimulation (tDCS of the left dorsolateral prefrontal cortex (DLPFC enhances accuracy in working memory tasks and reaction time in healthy adults and thus may also have an influence on complex everyday tasks like driving a car. However, no studies have applied tDCS to psychomotor skills related to a standard driving test so far.Methods: 10 female and 5 male healthy adults without any medication and history of psychiatric or neurological illness were randomly assigned to two groups receiving active and sham stimulation in a double blind, cross-over study design. Standardized computerized psychomotor tests according to the German guidelines for road and traffic safety were administered at baseline. Then they performed the same tests during an anodal or sham tDCS of the left DLPFC in two separated sessions.Results: No significant improvements in skills related to driving performance like visual perception, stress tolerance, concentration, and vigilance could be shown after left anodal prefrontal tDCS. Side effects were low and did not differ between active and sham stimulation.Conclusions: The findings of our study indicate that left prefrontal tDCS may not alter driving skills affording more automated action patterns but as shown in previous studies may have an influence on driving behavior requiring executive control processes. This however has to be proved in future studies and within greater samples.

  20. Fatty Liver Disease

    Science.gov (United States)

    What is fatty liver disease? Your liver is the largest organ inside your body. It helps your body digest food, store energy, and remove poisons. Fatty liver disease is a condition in which fat builds ...

  1. Pyogenic liver abscess

    Science.gov (United States)

    Liver abscess; Bacterial liver abscess ... There are many possible causes of liver abscesses, including: Abdominal infection, such as appendicitis , diverticulitis , or a perforated bowel Infection in the blood Infection of the bile draining tubes ...

  2. Neuromodulation directed at the prefrontal cortex of subjects with obesity reduces snack food intake and hunger in a randomized trial.

    Science.gov (United States)

    Heinitz, Sascha; Reinhardt, Martin; Piaggi, Paolo; Weise, Christopher M; Diaz, Enrique; Stinson, Emma J; Venti, Colleen; Votruba, Susanne B; Wassermann, Eric M; Alonso-Alonso, Miguel; Krakoff, Jonathan; Gluck, Marci E

    2017-12-01

    Background: Obesity is associated with reduced activation in the left dorsolateral prefrontal cortex (DLPFC), a region of the brain that plays a key role in the support of self-regulatory aspects of eating behavior and inhibitory control. Transcranial direct current stimulation (tDCS) is a noninvasive technique used to modulate brain activity. Objectives: We tested whether repeated anodal tDCS targeted at the left DLPFC (compared with sham tDCS) has an immediate effect on eating behavior during ad libitum food intake, resulting in weight change, and whether it might influence longer-term food intake-related appetite ratings in individuals with obesity. Design: In a randomized parallel-design study combining inpatient and outpatient assessments over 31 d, 23 individuals with obesity [12 men; mean ± SD body mass index (BMI; in kg/m 2 ): 39.3 ± 8.42] received 15 sessions of anodal (i.e., enhancing cortical activity) or sham tDCS aimed at the left DLPFC. Ad libitum food intake was assessed through the use of a vending machine paradigm and snack food taste tests (SFTTs). Appetite was evaluated with a visual analog scale (VAS). Body weight was measured. We examined the effect of short-term (i.e., 3 sessions) and long-term (i.e., 15 sessions) tDCS on these variables. Results: Relative to sham tDCS, short-term anodal tDCS did not influence ad libitum intake of food from the vending machines. Accordingly, no effect on short-term or 4-wk weight change was observed. In the anodal tDCS group, compared with the sham group, VAS ratings for hunger and the urge to eat declined significantly more ( P = 0.01 and P = 0.05, respectively), and total energy intake during an SFTT was relatively lower in satiated individuals ( P = 0.01), after long-term tDCS. Conclusions: Short-term anodal tDCS of the left DLPFC did not have an immediate effect on ad libitum food intake or thereby weight change, relative to sham tDCS. Hunger and snack food intake were reduced only after a longer period

  3. Amebic liver abscess

    Science.gov (United States)

    Hepatic amebiasis; Extraintestinal amebiasis; Abscess - amebic liver ... Amebic liver abscess is caused by Entamoeba histolytica. This parasite causes amebiasis , an intestinal infection that is also called ...

  4. reducing liver fluke transmission in northeastern Thailand

    International Development Research Centre (IDRC) Digital Library (Canada)

    A new model tested in northeastern Thailand shows that a multi-pronged ... MULTI-FUNDER INITIATIVE. T r o p ic a l D is e a s e r e s e a r c h l a b o r a. To r y, K h o ... research and capacity building collaboration in Southeast Asia. Eco EID is ...

  5. Pediatric liver transplantation in 31 consecutive children

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhong-yang; WANG Zi-fa; ZHU Zhi-jun; ZANG Yun-jin; ZHENG Hong; DENG Yong-lin; PAN Cheng; CHEN Xin-guo

    2008-01-01

    Background Although liver transplantation has become a standard therapy for end-stage liver diseases, the experience of pediatric liver transplantation is limited in China. In this article we report our experience in pediatric liver transplantation, and summarize its characters in their indications, surgical techniques, and postoperative managements. Methods Thirty-one children (≤18 years old) underwent liver transplantation in our centers. The mean age at transplantation was 12.4 years old (ranged from 5 months to 18 years) with 7 children being less than 4 years of age at transplantation. The most common diagnosis of patients who underwent liver transplantation were biliary atresia, Wilson's disease, primary biliary cirrhosis, glycogen storage disease, hepatoblastoma, urea cycle defects, fulminant hepatic failure, etc. The surgical procedures included 12 standard (without venovenous bypass), 6 pigyback, 6 reduced-size, 3 split, 3 living donor liver transplantation, and 1 Domino liver transplantation. The triple-drug (FK506, steroid, and mycophenolate mofetil) immunosuppressive regimen was used in most of patients. Patients were followed up for a mean of 21.8 months. Results Five of the 31 patients died during perioperative time; mortality rate was 16.1%. The reasons of death were infections, primary non-function, heart failure, and hypovolemic shock. Postoperative complications in 10 patients included biliary leakage, acute rejection, abdominal infection, hepatitis B virus (HBV) or hepatitis C virus (HCV) infection, and pulmonary infection. Overall patient cumulative survival rate at 1-, 3-, and 5-year was 78.1%, 62.6%, 62.6%, respectively.Conclusions The most common indications of pediatric liver transplantation were congenital end-stage liver diseases. According to patients' age and body weight, standard, piggyback, reduced-size, split, or living donor liver transplantation should be performed. Pediatric liver transplantation especially requires higher

  6. Coffee: The magical bean for liver diseases

    OpenAIRE

    Heath, Ryan D; Brahmbhatt, Mihir; Tahan, Asli C; Ibdah, Jamal A; Tahan, Veysel

    2017-01-01

    Coffee has long been recognized as having hepatoprotective properties, however, the extent of any beneficial effect is still being elucidated. Coffee appears to reduce risk of hepatocellular carcinoma, reduce advancement of fibrotic disease in a variety of chronic liver diseases, and perhaps reduce ability of hepatitis C virus to replicate. This review aims to catalog the evidence for coffee as universally beneficial across a spectrum of chronic liver diseases, as well as spotlight opportunit...

  7. Enhancement of liver regeneration and liver surgery

    NARCIS (Netherlands)

    Olthof, P.B.

    2017-01-01

    Liver regeneration allows surgical resection of up to 75% of the liver and enables curative treatment potential for patients with primary or secondary hepatic malignancies. Liver surgery is associated with substantial risks, reflected by considerable morbidity and mortality rates. Optimization of

  8. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS).

    Science.gov (United States)

    Santos-Pontelli, Taiza E G; Rimoli, Brunna P; Favoretto, Diandra B; Mazin, Suleimy C; Truong, Dennis Q; Leite, Joao P; Pontes-Neto, Octavio M; Babyar, Suzanne R; Reding, Michael; Bikson, Marom; Edwards, Dylan J

    2016-01-01

    Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional consequences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the temporal-parietal region could result in both online and offline SVV misperception in healthy subjects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the temporal-parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-specific current flow patterns were investigated using computational models. SVV was significantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treatment of SVV misperception in neurological patients.

  9. A systematic review of the clinical efficacy of transcranial direct current stimulation (tDCS) in psychiatric disorders.

    Science.gov (United States)

    Kekic, Maria; Boysen, Elena; Campbell, Iain C; Schmidt, Ulrike

    2016-03-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique, which can be used to selectively disrupt patterns of neural activity that are associated with symptoms of mental illness. tDCS has been implemented in numerous therapeutic trials across a range of patient populations, with a rapidly increasing number of studies being published each year. This systematic review aimed to evaluate the efficacy of tDCS in the treatment of psychiatric disorders. Four electronic databases were searched from inception until December 2015 by two independent reviewers, and 66 eligible studies were identified. Depression was the most extensively researched condition, followed by schizophrenia and substance use disorders. Data on obsessive compulsive disorder, generalised anxiety disorder, and anorexia nervosa were also obtained. The quality of included studies was appraised using a standardised assessment framework, which yielded a median score corresponding to "weak" on the three-point scale. This improved to "moderate" when case reports/series were excluded from the analysis. Overall, data suggested that tDCS interventions comprising multiple sessions can ameliorate symptoms of several major psychiatric disorders, both acutely and in the long-term. Nevertheless, the tDCS field is still in its infancy, and several methodological and ethical issues must be addressed before clinical efficacy can truly be determined. Studies probing the mechanisms of action of tDCS and those facilitating the definition of optimised stimulation protocols are warranted. Furthermore, evidence from large-scale, multi-centre randomised controlled trials is required if the transition of this therapy from the laboratory to the clinic is to be considered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effect of selective hepatic inflow occlusion during liver cancer resection on liver ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Yin-Tian Deng

    2016-11-01

    Full Text Available Objective: To study the effect of selective hepatic inflow occlusion during liver cancer resection on liver ischemia-reperfusion injury. Methods: A total of 68 patients with primary liver cancer who underwent left liver resection in our hospital between May 2012 and August 2015 were selected for study and divided into group A (selective hepatic inflow occlusion of left liver and group B (Prignle hepatic inflow occlusion according to different intraoperative blood occlusion methods, serum was collected before and after operation to determine liver enzyme content, the removed liver tissue was collected to determine energy metabolism indexes, inflammation indexes and oxidative stress indexes. Results: 1 d, 3 d and 5 d after operation, GPT, GOT, GGT, LDH and ALP content in serum of both groups were significantly higher than those before operation, and GPT, GOT, GGT, LDH and ALP content in serum of group A 1 d, 3 d and 5 d after operation were significantly lower than those of group B; ATP, ADP, AMP, PI3K, AKT, GSK3β, T-AOC, PrxI and Trx content in liver tissue of group A were significantly higher than those of group B while PTEN, IL-12p40, MDA and MPO content were significantly lower than those of group B. Conclusions: Selective hepatic inflow occlusion during liver cancer resection can reduce the liver ischemia-reperfusion injury, improve the energy metabolism of liver cells and inhibit inflammation and oxidative stress in liver tissue.

  11. Finite element model predicts current density distribution for clinical applications of tDCS and tACS

    Directory of Open Access Journals (Sweden)

    Toralf eNeuling

    2012-09-01

    Full Text Available Transcranial direct current stimulation (tDCS has been applied in numerous scientific studies over the past decade. However, the possibility to apply tDCS in therapy of neuropsychiatric disorders is still debated. While transcranial magnetic stimulation (TMS has been approved for treatment of major depression in the United States by the Food and Drug Administration (FDA, tDCS is not as widely accepted. One of the criticisms against tDCS is the lack of spatial specificity. Focality is limited by the electrode size (35 cm2 are commonly used and the bipolar arrangement. However, a current flow through the head directly from anode to cathode is an outdated view. Finite element (FE models have recently been used to predict the exact current flow during tDCS. These simulations have demonstrated that the current flow depends on tissue shape and conductivity. Toface the challenge to predict the location, magnitude and direction of the current flow induced by tDCS and transcranial alternating current stimulation (tACS, we used a refined realistic FE modeling approach. With respect to the literature on clinical tDCS and tACS, we analyzed two common setups for the location of the stimulation electrodes which target the frontal lobe and the occipital lobe, respectively. We compared lateral and medial electrode configuration with regard to theirusability. We were able to demonstrate that the lateral configurations yielded more focused stimulation areas as well as higher current intensities in the target areas. The high resolution of our simulation allows one to combine the modeled current flow with the knowledge of neuronal orientation to predict the consequences of tDCS and tACS. Our results not only offer a basis for a deeper understanding of the stimulation sites currently in use for clinical applications but also offer a better interpretation of observed effects.

  12. DCS (Digital Control System) application of three generations; Aplicacao de um SDCD (Sistemas Digitais de Controle Distribuido) de tres geracoes

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Celso Roberto Molinaro [PETROBRAS S.A., Sao Jose dos Campos, SP (Brazil). Refinaria Henrique Lage (REVAP)

    2004-07-01

    Digital Control System are three generations of hardware and software platforms in process automation , but DCS is using the same functions and presents the reliability and availability . The challenge in automation has to maintain the old and the newest system operating and integrated perhaps the different times of platforms to guarantee the actual investments and in the future. A new generation of DCS using field equipment to control or the actual architecture with a lot of new information are coming with the technologies. (author)

  13. The effect of transcranial direct current stimulation (tDCS) on locomotion and balance in patients with chronic stroke: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Geiger, M; Supiot, A; Zory, R; Aegerter, P; Pradon, D; Roche, N

    2017-10-23

    Following stroke, patients are often left with hemiparesis that reduces balance and gait capacity. A recent, non-invasive technique, transcranial direct current stimulation, can be used to modify cortical excitability when used in an anodal configuration. It also increases the excitability of spinal neuronal circuits involved in movement in healthy subjects. Many studies in patients with stroke have shown that this technique can improve motor, sensory and cognitive function. For example, anodal tDCS has been shown to improve motor performance of the lower limbs in patients with stroke, such as voluntary quadriceps strength, toe-pinch force and reaction time. Nevertheless, studies of motor function have been limited to simple tasks. Surprisingly, the effects of tDCS on the locomotion and balance of patients with chronic stroke have never been evaluated. In this study, we hypothesise that anodal tDCS will improve balance and gait parameters in patients with chronic stroke-related hemiparesis through its effects at cortical and spinal level. This is a prospective, randomised, placebo-controlled, double-blinded, single-centre, cross-over study over 36 months. Forty patients with chronic stroke will be included. Each patient will participate in three visits: an inclusion visit, and two visits during which they will all undergo either one 30-min session of transcranial direct current stimulation or one 30-min session of placebo stimulation in a randomised order. Evaluations will be carried out before, during and twice after stimulation. The primary outcome is the variability of the displacement of the centre of mass during gait and a static-balance task. Secondary outcomes include clinical and functional measures before and after stimulation. A three-dimensional gait analysis, and evaluation of static balance on a force platform will be also conducted before, during and after stimulation. These results should constitute a useful database to determine the aspects of

  14. Role of liver progenitors in liver regeneration.

    Science.gov (United States)

    Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A; Canbay, Ali

    2015-02-01

    During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.

  15. A combination of ascorbic acid and α-tocopherol or a combination of Mg and Zn are both able to reduce the adverse effects of lindane-poisoning on rat brain and liver.

    Science.gov (United States)

    Hfaiedh, Najla; Murat, Jean-Claude; Elfeki, Abdelfettah

    2012-10-01

    The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of supplementation with ascorbic acid (Vit C) and α-tocopherol (Vit E) or with Mg and Zn upon lindane-induced damages in liver and brain. Under our experimental conditions, lindane poisoning (5mg/kg body weight per day for 3 days) resulted in (1) an increased level of plasma glucose, cholesterol and triglycerides, (2) an increased activity of LDH, ALP, AST, ALT, (3) an oxidative stress in liver and brain as revealed by an increased level of lipids peroxidation (TBARS) and a decrease of glutathione-peroxidase, superoxide dismutase and catalase activities in liver and brain. In conclusion, both Vit C+E or Mg+Zn treatments display beneficial effects upon oxidative stress induced by lindane treatment in liver and brain. Copyright © 2012 Elsevier GmbH. All rights reserved.

  16. Imaging transcranial direct current stimulation (tDCS) of the prefrontal cortex-correlation or causality in stimulation-mediated effects?

    Science.gov (United States)

    Wörsching, Jana; Padberg, Frank; Ertl-Wagner, Birgit; Kumpf, Ulrike; Kirsch, Beatrice; Keeser, Daniel

    2016-10-01

    Transcranial current stimulation approaches include neurophysiologically distinct non-invasive brain stimulation techniques widely applied in basic, translational and clinical research: transcranial direct current stimulation (tDCS), oscillating transcranial direct current stimulation (otDCS), transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS). Prefrontal tDCS seems to be an especially promising tool for clinical practice. In order to effectively modulate relevant neural circuits, systematic research on prefrontal tDCS is needed that uses neuroimaging and neurophysiology measures to specifically target and adjust this method to physiological requirements. This review therefore analyses the various neuroimaging methods used in combination with prefrontal tDCS in healthy and psychiatric populations. First, we provide a systematic overview on applications, computational models and studies combining neuroimaging or neurophysiological measures with tDCS. Second, we categorise these studies in terms of their experimental designs and show that many studies do not vary the experimental conditions to the extent required to demonstrate specific relations between tDCS and its behavioural or neurophysiological effects. Finally, to support best-practice tDCS research we provide a methodological framework for orientation among experimental designs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Connectivity between Right Inferior Frontal Gyrus and Supplementary Motor Area Predicts After-Effects of Right Frontal Cathodal tDCS on Picture Naming Speed

    DEFF Research Database (Denmark)

    Rosso, Charlotte; Valabregue, R.; Arbizy, C.

    2014-01-01

    Background: Cathodal transcranial direct current stimulation (tDCS) of the right frontal cortex improves language abilities in post-stroke aphasic patients. Yet little is known about the effects of right frontal cathodal tDCS on normal language function. Objective/hypothesis: To explore the catho...

  18. Cod Liver Oil

    Science.gov (United States)

    Cod liver oil can be obtained from eating fresh cod liver or by taking supplements. Cod liver oil is used as a source of vitamin A ... called macular degeneration. Some people put cod liver oil on their skin to speed healing of wounds, ...

  19. Liver Cell Culture Devices

    NARCIS (Netherlands)

    Andria, B.; Bracco, A.; Cirino, G.; Chamuleau, R. A. F. M.

    2010-01-01

    In the last 15 years many different liver cell culture devices, consisting of functional liver cells and artificial materials, have been developed. They have been devised for numerous different applications, such as temporary organ replacement (a bridge to liver transplantation or native liver

  20. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS)

    Science.gov (United States)

    Guler, Seyhmus; Dannhauer, Moritz; Erem, Burak; Macleod, Rob; Tucker, Don; Turovets, Sergei; Luu, Phan; Erdogmus, Deniz; Brooks, Dana H.

    2016-06-01

    Objective. Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results. Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance. The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives

  1. IFNγ signaling endows DCs with the capacity to control type I inflammation during parasitic infection through promoting T-bet+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Hyang-Mi Lee

    2015-02-01

    Full Text Available IFNγ signaling drives dendritic cells (DCs to promote type I T cell (Th1 immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population.

  2. New botanical drug, HL tablet, reduces hepatic fat as measured by magnetic resonance spectroscopy in patients with nonalcoholic fatty liver disease: A placebo-controlled, randomized, phase II trial.

    Science.gov (United States)

    Jeong, Jae Yoon; Sohn, Joo Hyun; Baek, Yang Hyun; Cho, Yong Kyun; Kim, Yongsoo; Kim, Hyeonjin

    2017-08-28

    To evaluate the efficacy and safety of HL tablet extracted from magnolia officinalis for treating patients with nonalcoholic fatty liver disease (NAFLD). Seventy-four patients with NAFLD diagnosed by ultrasonography were randomly assigned to 3 groups given high dose (400 mg) HL tablet, low dose (133.4 mg) HL tablet and placebo, respectively, daily for 12 wk. The primary endpoint was post-treatment change of hepatic fat content (HFC) measured by magnetic resonance spectroscopy. Secondary endpoints included changes of serum aspartate aminotransferase, alanine aminotransferase (ALT), cholesterol, triglyceride, free fatty acid, homeostasis model assessment-estimated insulin resistance, and body mass index (BMI). The mean HFC of the high dose HL group, but not of the low dose group, declined significantly after 12 wk of treatment (high dose vs placebo, P = 0.033; low dose vs placebo, P = 0.386). The mean changes of HFC from baseline at week 12 were -1.7% ± 3.1% in the high dose group ( P = 0.018), -1.21% ± 4.97% in the low dose group ( P = 0.254) and 0.61% ± 3.87% in the placebo group (relative changes compared to baseline, high dose were: -12.1% ± 23.5%, low dose: -3.2% ± 32.0%, and placebo: 7.6% ± 44.0%). Serum ALT levels also tended to decrease in the groups receiving HL tablet while other factors were unaffected. There were no moderate or severe treatment-related safety issues during the study. HL tablet is effective in reducing HFC without any negative lipid profiles, BMI changes and adverse effects.

  3. Markers of liver function and inflammatory cytokines modulation by ...

    African Journals Online (AJOL)

    Conclusion: Aerobic exercise training modulates inflammatory cytokine levels and markers of liver function in patients with nonalcoholic ... and is associated with over nutrition and under activity, ... of these subjects with leptin reduced liver fat and liver enzyme ... tissue, muscle-released interleukin-6 inhibition of tumor.

  4. Age dependence of rat liver function measurements

    DEFF Research Database (Denmark)

    Fischer-Nielsen, A; Poulsen, H E; Hansen, B A

    1989-01-01

    Changes in the galactose elimination capacity, the capacity of urea-N synthesis and antipyrine clearance were studied in male Wistar rats at the age of 8, 20 and 44 weeks. Further, liver tissue concentrations of microsomal cytochrome P-450, microsomal protein and glutathione were measured. All...... liver function measurements increased from the age of 8 to 44 weeks when expressed in absolute values. In relation to body weight, these function measurements were unchanged or reduced from week 8 to week 20. At week 44, galactose elimination capacity and capacity of urea-N synthesis related to body...... weight were increased by 10% and 36%, respectively, and antipyrine plasma clearance was reduced to 50%. Liver tissue concentrations of microsomal cytochrome P-450 and microsomal protein increased with age when expressed in absolute values, but were unchanged per g liver, i.e., closely related to liver...

  5. Immune mediated liver failure

    OpenAIRE

    Wang, Xiaojing; Ning, Qin

    2014-01-01

    Liver failure is a clinical syndrome of various etiologies, manifesting as jaundice, encephalopathy, coagulopathy and circulatory dysfunction, which result in subsequent multiorgan failure. Clinically, liver failure is classified into four categories: acute, subacute, acute-on-chronic and chronic liver failure. Massive hepatocyte death is considered to be the core event in the development of liver failure, which occurs when the extent of hepatocyte death is beyond the liver regenerative capac...

  6. Risk factors for biliary complications after liver transplantation from donation after cardiac death

    Directory of Open Access Journals (Sweden)

    LYU Guoyue

    2015-12-01

    Full Text Available Liver transplantation has become the effective therapeutic method for end-stage liver disease, but the incidence of biliary complications after liver transplantation remains high. With an increasing number of liver transplantation procedures from donation after cardiac death (DCD, it is necessary to investigate the risk factors for biliary complications after liver transplantation from DCD and enhance our understanding of such risk factors in order to reduce biliary complications after liver transplantation from DCD.

  7. High Definition Transcranial Direct Current Stimulation Induces Both Acute and Persistent Changes in Broadband Cortical Synchronization: a Simultaneous tDCS-EEG Study

    Science.gov (United States)

    Roy, Abhrajeet; Baxter, Bryan

    2014-01-01

    The goal of this study was to develop methods for simultaneously acquiring electrophysiological data during high definition transcranial direct current stimulation (tDCS) using high resolution electroencephalography (EEG). Previous studies have pointed to the after effects of tDCS on both motor and cognitive performance, and there appears to be potential for using tDCS in a variety of clinical applications. However, little is known about the real-time effects of tDCS on rhythmic cortical activity in humans due to the technical challenges of simultaneously obtaining electrophysiological data during ongoing stimulation. Furthermore, the mechanisms of action of tDCS in humans are not well understood. We have conducted a simultaneous tDCS-EEG study in a group of healthy human subjects. Significant acute and persistent changes in spontaneous neural activity and event related synchronization (ERS) were observed during and after the application of high definition tDCS over the left sensorimotor cortex. Both anodal and cathodal stimulation resulted in acute global changes in broadband cortical activity which were significantly different than the changes observed in response to sham stimulation. For the group of 8 subjects studied, broadband individual changes in spontaneous activity during stimulation were apparent both locally and globally. In addition, we found that high definition tDCS of the left sensorimotor cortex can induce significant ipsilateral and contralateral changes in event related desynchronization (ERD) and ERS during motor imagination following the end of the stimulation period. Overall, our results demonstrate the feasibility of acquiring high resolution EEG during high definition tDCS and provide evidence that tDCS in humans directly modulates rhythmic cortical synchronization during and after its administration. PMID:24956615

  8. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials.

    Science.gov (United States)

    Elsner, Bernhard; Kwakkel, Gert; Kugler, Joachim; Mehrholz, Jan

    2017-09-13

    Transcranial Direct Current Stimulation (tDCS) is an emerging approach for improving capacity in activities of daily living (ADL) and upper limb function after stroke. However, it remains unclear what type of tDCS stimulation is most effective. Our aim was to give an overview of the evidence network regarding the efficacy and safety of tDCS and to estimate the effectiveness of the different stimulation types. We performed a systematic review of randomised trials using network meta-analysis (NMA), searching the following databases until 5 July 2016: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED, Web of Science, and four other databases. We included studies with adult people with stroke. We compared any kind of active tDCS (anodal, cathodal, or dual, that is applying anodal and cathodal tDCS concurrently) regarding improvement of our primary outcome of ADL capacity, versus control, after stroke. CRD42016042055. We included 26 studies with 754 participants. Our NMA showed evidence of an effect of cathodal tDCS in improving our primary outcome, that of ADL capacity (standardized mean difference, SMD = 0.42; 95% CI 0.14 to 0.70). tDCS did not improve our secondary outcome, that of arm function, measured by the Fugl-Meyer upper extremity assessment (FM-UE). There was no difference in safety between tDCS and its control interventions, measured by the number of dropouts and adverse events. Comparing different forms of tDCS shows that cathodal tDCS is the most promising treatment option to improve ADL capacity in people with stroke.

  9. Long-term effects of serial anodal tDCS on motion perception in subjects with occipital stroke measured in the unaffected visual hemifield

    Directory of Open Access Journals (Sweden)

    Manuel C Olma

    2013-06-01

    Full Text Available Transcranial direct current stimulation (tDCS is a novel neuromodulatory tool that has seen early transition to clinical trials, although the high variability of these findings necessitates further studies in clincally-relevant populations. The majority of evidence into effects of repeated tDCS is based on research in the human motor system, but it is unclear whether the long-term effects of serial tDCS are motor-specific or transferable to other brain areas. This study aimed to examine whether serial anodal tDCS over the visual cortex can exogenously induce long-term neuroplastic changes in the visual cortex. However, when the visual cortex is affected by a cortical lesion, up-regulated endogenous neuroplastic adaptation processes may alter the susceptibility to tDCS. To this end, motion perception was investigated in the unaffected hemifield of subjects with unilateral visual cortex lesions. Twelve subjects with occipital ischaemic lesions participated in a within-subject, sham-controlled, double-blind study. MRI-registered sham or anodal tDCS (1.5 mA, 20 minutes was applied on five consecutive days over the visual cortex. Motion perception was tested before and after stimulation sessions and at 14- and 28-day follow-up. After a 16-day interval an identical study block with the other stimulation condition (anodal or sham tDCS followed. Serial anodal tDCS over the visual cortex resulted in an improvement in motion perception, a function attributed to MT/V5. This effect was still measurable at 14- and 28-day follow-up measurements. Thus, this may represent evidence for long-term tDCS-induced plasticity and has implications for the design of studies examining the time course of tDCS effects in both the visual and motor systems.

  10. Frontal transcranial direct current stimulation (tDCS) abolishes list-method directed forgetting.

    Science.gov (United States)

    Silas, Jonathan; Brandt, Karen R

    2016-03-11

    It is a point of controversy as to whether directed forgetting effects are a result of active inhibition or a change of context initiated by the instruction to forget. In this study we test the causal role of active inhibition in directed forgetting. By applying cathodal transcranial direct current stimulation (tDCS) over the right prefrontal cortex we suppressed cortical activity commonly associated with inhibitory control. Participants who underwent real brain stimulation before completing the directed forgetting paradigm showed no directed forgetting effects. Conversely, those who underwent sham brain stimulation demonstrated classical directed forgetting effects. We argue that these findings suggest that inhibition is the primary mechanism that results in directed forgetting costs and benefits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. A technical guide to tDCS, and related non-invasive brain stimulation tools

    Science.gov (United States)

    Woods, AJ; Antal, A; Bikson, M; Boggio, PS; Brunoni, AR; Celnik, P; Cohen, LG; Fregni, F; Herrmann, CS; Kappenman, ES; Knotkova, H; Liebetanz, D; Miniussi, C; Miranda, PC; Paulus, W; Priori, A; Reato, D; Stagg, C; Wenderoth, N; Nitsche, MA

    2015-01-01

    Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain. PMID:26652115

  12. The LHCb RICH Upgrade: Development of the DCS and DAQ system.

    CERN Multimedia

    Cavallero, Giovanni

    2018-01-01

    The LHCb experiment is preparing for an upgrade during the second LHC long shutdown in 2019-2020. In order to fully exploit the LHC flavour physics potential with a five-fold increase in the instantaneous luminosity, a trigger-less readout will be implemented. The RICH detectors will require new photon detectors and a brand new front-end electronics. The status of the integration of the RICH photon detector modules with the MiniDAQ, the prototype of the upgraded LHCb readout architecture, has been reported. The development of the prototype of the RICH Upgrade Experiment Control System, integrating the DCS and DAQ partitions in a single FSM, has been described. The status of the development of the RICH Upgrade Inventory, Bookkeeping and Connectivity database has been reported as well.

  13. Research on engineering simulator for function validating of DCS in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Liu Pengfei; Lin Meng; Hou Dong; Yang Yanhua; Chen Zhi

    2009-01-01

    An engineering simulator for the function validating of Distributed Control System in Nuclear Power Plant (NPP) was developed in this paper.In the engineering simulator, the thermal-hydraulics was modeled by Relap5, the main control system of the NPP was modeled by Matlab/Simulink, the database was built by MySQL, and the control panel was developed by the Visual Studio. NET.Data acquisition system was used to realize the real-time communication between the simulator and the real Distributed Control System in the NPP. The validating results show that the simulator can meet the requirements of validating the hardware and logic control system of DCS in NPP. (authors)

  14. On the importance of electrode parameters for shaping electric field patterns generated by tDCS

    DEFF Research Database (Denmark)

    B. Saturnino, Guilherme; Antunes, André; Thielscher, Axel

    2015-01-01

    Transcranial direct current stimulation (tDCS) uses electrode pads placed on the head to deliver weak direct current to the brain and modulate neuronal excitability. The effects depend on the intensity and spatial distribution of the electric field. This in turn depends on the geometry and electric...... electrode modeling influences the calculated electric field in the brain. We take into account electrode shape, size, connector position and conductivities of different electrode materials (including saline solutions and electrode gels). These factors are systematically characterized to demonstrate...... their impact on the field distribution in the brain. The goals are to assess the effect of simplified electrode models; and to develop practical rules-of-thumb to achieve a stronger stimulation of the targeted brain regions underneath the electrode pads. We show that for standard rectangular electrode pads...

  15. Differential sensory cortical involvement in auditory and visual sensorimotor temporal recalibration: Evidence from transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk

    2017-02-01

    Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Can tDCS enhance item-specific effects and generalization after linguistically motivated aphasia therapy for verbs?

    NARCIS (Netherlands)

    de Aguiar, Vania; Bastiaanse, Roelien; Capasso, Rita; Gandolfi, Marialuisa; Smania, Nicola; Rossi, Giorgio; Miceli, Gabriele

    2015-01-01

    Background: Aphasia therapy focusing on abstract properties of language promotes both item-specific effects and generalization to untreated materials. Neuromodulation with transcranial Direct Current Stimulation (tDCS) has been shown to enhance item-specific improvement, but its potential to enhance

  17. Left prefrontal neuronavigated electrode localization in tDCS : 10–20 EEG system versus MRI-guided neuronavigation

    NARCIS (Netherlands)

    De Witte, Sara; Klooster, Debby; Dedoncker, Josefien; Duprat, Romain; Remue, Jonathan; Baeken, Chris

    2018-01-01

    Transcranial direct current stimulation (tDCS) involves positioning two electrodes at specifically targeted locations on the human scalp. In neuropsychiatric research, the anode is often placed over the left dorsolateral prefrontal cortex (DLPFC), while the cathode is positioned over a contralateral

  18. tDCS and Robotics on Upper Limb Stroke Rehabilitation: Effect Modification by Stroke Duration and Type of Stroke.

    Science.gov (United States)

    Straudi, Sofia; Fregni, Felipe; Martinuzzi, Carlotta; Pavarelli, Claudia; Salvioli, Stefano; Basaglia, Nino

    2016-01-01

    Objective. The aim of this exploratory pilot study is to test the effects of bilateral tDCS combined with upper extremity robot-assisted therapy (RAT) on stroke survivors. Methods. We enrolled 23 subjects who were allocated to 2 groups: RAT + real tDCS and RAT + sham-tDCS. Each patient underwent 10 sessions (5 sessions/week) over two weeks. Outcome measures were collected before and after treatment: (i) Fugl-Meyer Assessment-Upper Extremity (FMA-UE), (ii) Box and Block Test (BBT), and (iii) Motor Activity Log (MAL). Results. Both groups reported a significant improvement in FMA-UE score after treatment (p robotics on motor function. Patients with chronic and subcortical stroke benefited more from the treatments than patients with acute and cortical stroke, who presented very small changes. Conclusion. The additional use of bilateral tDCS to RAT seems to have a significant beneficial effect depending on the duration and type of stroke. These results should be verified by additional confirmatory studies.

  19. Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study.

    Science.gov (United States)

    Yavari, Fatemeh; Mahdavi, Shirin; Towhidkhah, Farzad; Ahmadi-Pajouh, Mohammad-Ali; Ekhtiari, Hamed; Darainy, Mohammad

    2016-04-01

    Despite several pieces of evidence, which suggest that the human brain employs internal models for motor control and learning, the location of these models in the brain is not yet clear. In this study, we used transcranial direct current stimulation (tDCS) to manipulate right cerebellar function, while subjects adapt to a visuomotor task. We investigated the effect of this manipulation on the internal forward and inverse models by measuring two kinds of behavior: generalization of training in one direction to neighboring directions (as a proxy for inverse models) and localization of the hand position after movement without visual feedback (as a proxy for forward model). The experimental results showed no effect of cerebellar tDCS on generalization, but significant effect on localization. These observations support the idea that the cerebellum is a possible brain region for internal forward, but not inverse model formation. We also used a realistic human head model to calculate current density distribution in the brain. The result of this model confirmed the passage of current through the cerebellum. Moreover, to further explain some observed experimental results, we modeled the visuomotor adaptation process with the help of a biologically inspired method known as population coding. The effect of tDCS was also incorporated in the model. The results of this modeling study closely match our experimental data and provide further evidence in line with the idea that tDCS manipulates FM's function in the cerebellum.

  20. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of nonalcoholic fatty liver disease

    Science.gov (United States)

    Obesity is often associated with a cluster of increased health risks collectively known as "Metabolic Syndrome" (MS). MS is often accompanied by development of fatty liver. Sometimes fatty liver results in damage leading to reduced liver function, and need for a transplant. This condition is known...

  1. tDCS Over DLPFC Leads to Less Utilitarian Response in Moral-Personal Judgment

    Directory of Open Access Journals (Sweden)

    Haoli Zheng

    2018-03-01

    Full Text Available The profound nature of moral judgment has been discussed and debated for centuries. When facing the trade-off between pursuing moral rights and seeking better consequences, most people make different moral choices between two kinds of dilemmas. Such differences were explained by the dual-process theory involving an automatic emotional response and a controlled application of utilitarian decision-rules. In neurocognitive studies, the bilateral dorsolateral prefrontal cortex (DLPFC has been demonstrated to play an important role in cognitive “rational” control processes in moral dilemmas. However, the profile of results across studies is not entirely consistent. Although one transcranial magnetic stimulation (TMS study revealed that disrupting the right DLPFC led to less utilitarian responses, other TMS studies indicated that inhibition of the right DLPFC led to more utilitarian choices. Moreover, the right temporoparietal junction (TPJ is essential for its function of integrating belief and intention in moral judgment, which is related to the emotional process according to the dual-process theory. Relatively few studies have reported the causal relationship between TPJ and participants' moral responses, especially in moral dilemmas. In the present study, we aimed to demonstrate a direct link between the neural and behavioral results by application of transcranial direct current stimulation (tDCS in the bilateral DLPFC or TPJ of our participants. We observed that activating the right DLPFC as well as inhibiting the left DLPFC led to less utilitarian judgments, especially in moral-personal conditions, indicating that the right DLPFC plays an essential role, not only through its function of moral reasoning but also through its information integrating process in moral judgments. It was also revealed that altering the excitability of the bilateral TPJ using tDCS negligibly altered the moral response in non-moral, moral-impersonal and moral

  2. Consideration of Individual Brain Geometry and Anisotropy on the Effect of tDCS

    Directory of Open Access Journals (Sweden)

    Mohsen Mosayebi Samani

    2017-12-01

    Full Text Available Introduction: The response variability between subjects, which is one of the fundamental challenges facing transcranial direct current stimulation (tDCS, can be investigated by understanding how the current is distributed through the brain. This understanding can be obtained by means of