WorldWideScience

Sample records for dc dc power

  1. Synchronous DC Power Supply.

    Science.gov (United States)

    The patent describes a synchronous direct current (dc) power supply which has the power supply input drive synchronized with the pulse repetition...frequency (PRF) of the amplifying or load circuit requiring the dc power for operation. This limits the occurrence of ripple components in the power ... supply output to the spectral positions of the PRF lines, eliminating ripple interference with signal processing in the load. An astable multivibrator is

  2. Power flow analysis for DC voltage droop controlled DC microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Dragicevic, Tomislav

    2014-01-01

    This paper proposes a new algorithm for power flow analysis in droop controlled DC microgrids. By considering the droop control in the power flow analysis for the DC microgrid, when compared with traditional methods, more accurate analysis results can be obtained. The algorithm verification...

  3. Simultaneous distribution of AC and DC power

    Science.gov (United States)

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  4. Pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2008-01-01

    This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,

  5. Pulsewidth modulated DC-to-DC power conversion circuits, dynamics, and control designs

    CERN Document Server

    Choi, Byungcho

    2013-01-01

    This is the definitive reference for anyone involved in pulsewidth modulated DC-to-DC power conversion Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, and Control Designs provides engineers, researchers, and students in the power electronics field with comprehensive and complete guidance to understanding pulsewidth modulated (PWM) DC-to-DC power converters. Presented in three parts, the book addresses the circuitry and operation of PWM DC-to-DC converters and their dynamic characteristics, along with in-depth discussions of control design of PWM DC-to

  6. High voltage DC power supply

    Science.gov (United States)

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  7. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    Science.gov (United States)

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  8. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  9. DC to DC power converters and methods of controlling the same

    Science.gov (United States)

    Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

    2012-12-11

    A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

  10. Hierarchical Power Sharing Control in DC Microgrids

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Blaabjerg, Frede

    2016-01-01

    Because of the advances in power electronics, DC-based power systems, have been used in industrial applications such as data centers [18], space applications [10], aircraft [12], offshore wind farms, electric vehicles [56], DC home systems [5, 20], and high-voltage DC transmission systems....... To provide such sensitive loads with more reliability, efficiency, and controllability for future power systems, AC microgrid and more recently DC microgrid and smart-grid technologies have been employed [ , , , and ]. To obtain stable and optimal operation in DC power systems (microgrids), proper load...... sharing among different energy units and acceptable voltage regulation across the microgrid is required. This can be achieved by use of a hierarchical power management structure. The highest level in this hierarchy (tertiary) is responsible for the power flow control between the microgrid and the utility...

  11. RESONANT STEP-DOWN DC-DC POWER CONVERTERS

    DEFF Research Database (Denmark)

    2015-01-01

    charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier by a semiconductor switch arrangement in accordance with a switch control signal to produce the converter output voltage. The resonant step-down DC-DC power converter comprises an electrical short...... and an input capacitor coupled between the positive and negative input terminals and the secondary side circuit comprises an output capacitor chargeable to a converter output voltage between a first positive electrode and a second negative electrode. A resonant network is con- figured for alternatingly being......-circuit connection across the galvanic isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal...

  12. Step-Up DC-DC Power Converter

    DEFF Research Database (Denmark)

    2015-01-01

    being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic...... capacitor coupled between the positive and negative input terminals and the secondary side circuit comprises an output capacitor chargeable to a converter output voltage between a first positive electrode and a second negative electrode. A switched energy storage network is configured for alternatingly...... isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal of the primary side circuit...

  13. Power Quality in DC Power Distribution Systems and Microgrids

    Directory of Open Access Journals (Sweden)

    Stephen Whaite

    2015-05-01

    Full Text Available This review paper discusses power quality considerations for direct current (DC electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.

  14. A DC-DC Conversion Powering Scheme for the CMS Phase-1 Pixel Upgrade

    CERN Document Server

    Feld, Lutz Werner; Marcel Friedrichs; Richard Hensch; Karpinski, Waclaw; Klein, Katja; Sammet, Jan Domenik; Wlochal, Michael

    2012-01-01

    The powering scheme of the CMS pixel detector will be described, and the performance of prototype DC-DC buck converters will be presented, including power efficiency, system tests with DC-DC converters and pixel modules, thermal management, reliability at low temperature, and studies of potential frequency locking betwe...

  15. Advanced DC/DC converters

    CERN Document Server

    Luo, Fang Lin

    2003-01-01

    DC/DC conversion techniques have undergone rapid development in recent decades. With the pioneering work of these authors, DC/DC converters have now moved into their sixth generation. This book offers a concise, practical presentation of DC/DC converters, summarizing the spectrum of conversion tecnologies and presentingmany new ideas and more than 100 new topologies. Nowhere else in the literature are DC/DC converters so logically sorted and systematically introduced, and nowhere else can readers find detailed information on prototype topologies that represent a major contribution to modern power engineering. More than 320 figures, 60 tables, and 500 formulae facilitate understand and provide precise data.

  16. dc power system for deuteron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Creek, K.O.; Liska, D.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility dc power system provides excitation current for all linac and High-Energy Beam Transport (HEBT) quadrupole and bending magnets, excitation for horizontal and vertical beam steering, and current-bypass shunts.

  17. DC motor operation controlled from a DC/DC power converter in pulse mode with low duty cycle

    OpenAIRE

    Stefanov, Goce; Kukuseva, Maja; Citkuseva Dimitrovska, Biljana

    2016-01-01

    In this paper pulse mode of operation of DC motor controlled by DC/DC power converter is analyzed. DC motor operation with time intervals in which the motor operates without output load is of interest. In this mode it is possible the motor to restore energy. Also, in the paper are represented calculations for the amount of the restored energy in the pulse mode operation of the motor for different duty cycles.

  18. Low dose failures of hardened DC-DC power converters

    Science.gov (United States)

    Lehman, J.; Yui, C.; Rax, B. G.; Miyahira, T. F.; Weideman, M.; Schrick, P.; Swift, G. M.; Johnston, A. H.

    2002-01-01

    Box-level total dose testing of the FOG (Fiber Optic Gyro) by IXSEA at ESA's GammabeamFacility were abruptly terminated at 8krad (Si) due to catastrophic failure (complete shutdown). This was unexpected because all components within the gyro were supposedly radiation tolerant. Further testing showed that the components responsible for the failure were two DC-DC converters, manufactured by Interpoint, that stopped regulating shortly before shutdown. This paper summarizes diagnostic test results for the converters to determine the underlying cause of the unexpected failure at low levels of radiation.

  19. Modular Power System Configured with Standard Product Hybrid DC-DC Converters, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex NASA space power electronic systems can be configured using a small number of qualified hybrid DC-DC converter and...

  20. Intelligent Power Control of DC Microgrid

    DEFF Research Database (Denmark)

    Hajizadeh, Amin; N. Soltani, Mohsen; Norum, Lars

    2017-01-01

    In this paper, an intelligent power management strategy is proposed for hybrid DC microgrid, including wind turbine, fuel cell and battery energy storage. The considered wind turbine has a permanent magnet synchronous generator (PMSG). In the considered structure, wind turbine operates as the main...

  1. Two new families of high-gain dc-dc power electronic converters for dc-microgrids

    Science.gov (United States)

    Prabhala, Venkata Anand Kishore

    Distributing the electric power in dc form is an appealing solution in many applications such as telecommunications, data centers, commercial buildings, and microgrids. A high gain dc-dc power electronic converter can be used to individually link low-voltage elements such as solar panels, fuel cells, and batteries to the dc voltage bus which is usually 400 volts. This way, it is not required to put such elements in a series string to build up their voltages. Consequently, each element can function at it optimal operating point regardless of the other elements in the system. In this dissertation, first a comparative study of dc microgrid architectures and their advantages over their ac counterparts is presented. Voltage level selection of dc distribution systems is discussed from the cost, reliability, efficiency, and safety standpoints. Next, a new family of non-isolated high-voltage-gain dc-dc power electronic converters with unidirectional power flow is introduced. This family of converters benefits from a low voltage stress across its switches. The proposed topologies are versatile as they can be utilized as single-input or double-input power converters. In either case, they draw continuous currents from their sources. Lastly, a bidirectional high-voltage-gain dc-dc power electronic converter is proposed. This converter is comprised of a bidirectional boost converter which feeds a switched-capacitor architecture. The switched-capacitor stage suggested here has several advantages over the existing approaches. For example, it benefits from a higher voltage gain while it uses less number of capacitors. The proposed converters are highly efficient and modular. The operating modes, dc voltage gain, and design procedure for each converter are discussed in details. Hardware prototypes have been developed in the lab. The results obtained from the hardware agree with those of the simulation models.

  2. DC Voltage Droop Control Implementation in the AC/DC Power Flow Algorithm: Combinational Approach

    DEFF Research Database (Denmark)

    Akhter, F.; Macpherson, D.E.; Harrison, G.P.

    2015-01-01

    of operational flexibility, as more than one VSC station controls the DC link voltage of the MTDC system. This model enables the study of the effects of DC droop control on the power flows of the combined AC/DC system for steady state studies after VSC station outages or transient conditions without needing...... to use its complete dynamic model. Further, the proposed approach can be extended to include multiple AC and DC grids for combined AC/DC power flow analysis. The algorithm is implemented by modifying the MATPOWER based MATACDC program and the results shows that the algorithm works efficiently....

  3. Electrostatic Energy Harvesting Circuit with DC-DC Convertor for Vibration Power Generation System

    Science.gov (United States)

    Wei, J.; Lefeuvre, E.; Mathias, H.; Costa, F.

    2016-11-01

    This paper presents an interface circuit with power control features for electrostatic vibration energy harvesting. A DC-DC convertor is used to control the output voltage of a diode-based charge pump circuit. Therefore, the maximum and minimum voltage across the variable capacitor of the energy harvester may be adjusted to track the maximum power point of the system. The power conversion function of the DC-DC convertor depends on the switches configuration. An example of Maximum Power Point Tracking (MPPT) for different conversion function is presented in this paper. Simulation results show that at least 10 μW is generated.

  4. Next-Generation Shipboard DC Power System

    DEFF Research Database (Denmark)

    Jin, Zheming; Sulligoi, Giorgio; Cuzner, Rob

    2016-01-01

    In recent years, more and more evidence suggests that the global energy system is on the verge of a drastic revolution. The evolutionary development in power electronic technologies, the emerging high-performance energy storage devices, as well as the ever increasing penetration of renewable energy......, aerospace/aircraft power systems, as well as maritime power systems....... sources (RES) are commonly recognized as the major driven force of the revolution, the outburst of customer electronics and new kinds of household electronics is also powering this change. In this context, dc power distribution technologies have made a comeback and keep gaining a commendable increase...

  5. Research on Two-channel Interleaved Two-stage Paralleled Buck DC-DC Converter for Plasma Cutting Power Supply

    DEFF Research Database (Denmark)

    Yang, Xi-jun; Qu, Hao; Yao, Chen

    2014-01-01

    As for high power plasma power supply, due to high efficiency and flexibility, multi-channel interleaved multi-stage paralleled Buck DC-DC Converter becomes the first choice. In the paper, two-channel interleaved two- stage paralleled Buck DC-DC Converter powered by three-phase AC power supply...

  6. Bidirectional DC/DC Converter

    Science.gov (United States)

    Pedersen, F.

    2008-09-01

    The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.

  7. Selection of DC/DC converter for offshore wind farms with MVDC power collection

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2017-01-01

    Four DC/DC converters are analyzed and compared with respects to availability, efficiency, ratings, repair costs and power density. Intended application is offshore wind farms with MVDC power collection. The selected topology is a new series resonant converter, which offers 99% efficiency across...... the entire operational range, but needs components designed for high voltage stress....

  8. Innovative use of power integrated modules for DC power supplies

    DEFF Research Database (Denmark)

    Ørndrup Nielsen, Rasmus; Elkiær, Alexander; Munk-Nielsen, Stig

    2013-01-01

    In this article several innovative ways of utilizing Power Integrated Modules (PIM) as switching device in a DC power supply are presented. PIM have advantages in compactness of design, cost and fast prototype due to easier PCB layout. A PIM converter topology is chosen and designed resulting...... in an experimental setup. Results from the setup are presented showing the feasibility of using a PIM module as almost all power semiconductors in a DC power supply....

  9. DC/DC converters for integration of double-layer condensers in onboard power supply; DC/DC-Wandler zur Einbindung von Doppelschichtkondensatoren in das Fahrzeugenergiebordnetz

    Energy Technology Data Exchange (ETDEWEB)

    Polenov, Dieter

    2010-01-15

    The paper discusses DC/DC converters for integration of double layer condensers into the onboard power system. First, requirements on DC/DC converters are listed and compared on the basis of three exemplary applications. A DC/DC converter concept is developed for decoupling transient high-power loads like electric steering systems. Three different topologies are compared using a specially developed method in order to find the best solution for the given application. In order to establish adequate criteria for selecting the switching frequency and inductivities of storage throttles, the influence of the trottle power change on the switching characteristics of the MOSFETs and on certain ranges of EMP interference emissions is investigated. As methods of optimising the operation of the synchronous rectifiers, parallel connection of Schottky diodes and synchronous rectifiers as well as the variation of the shut-off dead times of synchronous rectifiers were investigated. Further, a concept for converter control was developed in consideration of the intended application and topology. Finally, selected aspects for implementation of the DC/DC converter concept are presented as well as the results of experimental investigations.

  10. Modular Power System Configured with Standard Product Hybrid DC-DC Converters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex, multiple-output, DC-DC converter systems can be configured through use of only 2 standard product hybrid DC-DC...

  11. The application of standardized control and interface circuits to three dc to dc power converters.

    Science.gov (United States)

    Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.

    1973-01-01

    Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.

  12. Modelling, simulation and construction of a dc/dc boost power converter: a school experimental system

    International Nuclear Information System (INIS)

    Silva-Ortigoza, R; Marciano-Melchor, M; Silva-Ortigoza, G; Hernández-Guzmán, V M; Saldaña-González, G; Marcelino-Aranda, M

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders the feasible introduction of this equipment in undergraduate laboratories. (paper)

  13. Overvoltage protection in DC power systems; Ueberspannungsschutz in Gleichstromanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Birkl, Josef; Zahlmann, Peter [Dehn + Soehne GmbH + Co.KG, Neumarkt (Germany)

    2012-02-15

    The utilisation of DC power systems has increased dramatically in the recent years. In addition to traditional DC applications such as in telecommunications and railway engineering a variety of DC applications arise due to a rapid spread of photovoltaic systems. Current projects for the e-mobility expand the scope of application.

  14. Milliwatt dc/dc Inverter

    Science.gov (United States)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  15. A DC-DC Converter Efficiency Model for System Level Analysis in Ultra Low Power Applications

    Directory of Open Access Journals (Sweden)

    Benton H. Calhoun

    2013-06-01

    Full Text Available This paper presents a model of inductor based DC-DC converters that can be used to study the impact of power management techniques such as dynamic voltage and frequency scaling (DVFS. System level power models of low power systems on chip (SoCs and power management strategies cannot be correctly established without accounting for the associated overhead related to the DC-DC converters that provide regulated power to the system. The proposed model accurately predicts the efficiency of inductor based DC-DC converters with varying topologies and control schemes across a range of output voltage and current loads. It also accounts for the energy and timing overhead associated with the change in the operating condition of the regulator. Since modern SoCs employ power management techniques that vary the voltage and current loads seen by the converter, accurate modeling of the impact on the converter efficiency becomes critical. We use this model to compute the overall cost of two power distribution strategies for a SoC with multiple voltage islands. The proposed model helps us to obtain the energy benefits of a power management technique and can also be used as a basis for comparison between power management techniques or as a tool for design space exploration early in a SoC design cycle.

  16. Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads

    Science.gov (United States)

    Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique

    Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.

  17. Custom DC-DC converters for distributing power in SLHC trackers

    CERN Document Server

    Allongue, B; Blanchot, G; Faccio, F; Fuentes, C; Mattavelli, P; Michelis, S; Orlandis, S; Spiazzi, G

    2008-01-01

    A power distribution scheme based on the use of on-board DC-DC converters is proposed to efficiently distribute power to the on-detector electronics of SLHC trackers. A comparative analysis of different promising converter topologies is presented, leading to the choice of a magneticbased buck converter as a first conversion stage followed by an on-chip switched capacitors converter. An overall efficiency above 80% is estimated for the practical implementation proposed.

  18. DC-DC switching converter based power distribution vs serial power distribution EMC strategies

    CERN Document Server

    Arteche, F; Iglesias, M; Rivetta, C; Arcega, F G; Vila, I

    2009-01-01

    This paper presents a detailed and comparative analysis from the electromagnetic compatibility point of view of the proposed power distributions for the SLHC tracker up-grade. The main idea is to identify and quantify the noise sources, noise distribution at the system level and the sensitive areas in the front-end electronics corresponding to both proposed topologies: The DC-DC converter based power distribution and the serial power distribution. These studies will be used to define critical points on both systems to be studied and prototyped to ensure the correct integration of the system taking critically into account the electromagnetic compatibility. This analysis at the system level is crucial to ensure the final performance of the detector using non conventional power distributions, avoiding interference problems and excessive losses that can lead to catastrophic failures or expensive and un-practical solutions.

  19. Reliability of dc power supplies in nuclear power plant application

    International Nuclear Information System (INIS)

    Eisenhut, D.G.

    1978-01-01

    In June 1977 the reliability of dc power supplies at nuclear power facilities was questioned. It was postulated that a sudden gross failure of the redundant dc power supplies might occur during normal plant operation, and that this could lead to insufficient shutdown cooling of the reactor core. It was further suggested that this potential for insufficient cooling is great enough to warrant consideration of prompt remedies. The work described herein was part of the NRC staff's efforts aimed towards putting the performance of dc power supplies in proper perspective and was mainly directed towards the particular concern raised at that time. While the staff did not attempt to perform a systematic study of overall dc power supply reliability including all possible failure modes for such supplies, the work summarized herein describes how a probabilistic approach was used to supplement our more usual deterministic approach to reactor safety. Our evaluation concluded that the likelihood of dc power supply failures leading to insufficient shutdown cooling of the reactor core is sufficiently small as to not require any immediate action

  20. Technical report on dc power supplies in nuclear power plants

    International Nuclear Information System (INIS)

    1977-06-01

    Emergency electrical power supplies, both a.c. and d.c. for nuclear power plants are important to safety. For this reason, the electric power systems for operating nuclear plants and those plants under licensing review have been required to provide a high degree of reliability. It is this high reliability that provides confidence that sufficient safety margin exists against loss of all d.c. power for extended periods of time to allow an orderly examination of safety issues, such as this. However, because of the importance of the a.c. and d.c. power systems, the staff has been expending effort to review the reliability of these systems and shall continue to do so in the future

  1. Deadbeat control of power leveling unit with bidirectional buck/boost DC/DC converter

    OpenAIRE

    Hamasaki, Shin-ichi; Mukai, Ryosuke; Yano, Yoshihiro; Tsuji, Mineo

    2014-01-01

    As a distributed generation system increases, a stable power supply becomes difficult. Thus control of power leveling (PL) unit is required to maintain the balance of power flow for irregular power generation. The unit is required to respond to change of voltage and bidirectional power flow. So the bidirectional buck/boost DC/DC converter is applied for the control of PL unit in this research. The PL unit with Electric double-layer capacitor (EDLC) is able to absorb change of power, and it is...

  2. A Nonlinear Digital Control Solution for a DC/DC Power Converter

    Science.gov (United States)

    Zhu, Minshao

    2002-01-01

    A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.

  3. Power Oscillations Damping in DC Microgrids

    DEFF Research Database (Denmark)

    Hamzeh, Mohsen; Ghafouri, Mohsen; Karimi, Houshang

    2016-01-01

    impedance loop is determined using small signal analysis and pole placement method. The Mesh analysis is employed to further study the stability of low-frequency modes of the overall dc microgrid. Moreover, based on the guardian map theorem, a robust stability analysis is carried out to determine...

  4. Maximum Safety Regenerative Power Tracking for DC Traction Power Systems

    Directory of Open Access Journals (Sweden)

    Guifu Du

    2017-02-01

    Full Text Available Direct current (DC traction power systems are widely used in metro transport systems, with running rails usually being used as return conductors. When traction current flows through the running rails, a potential voltage known as “rail potential” is generated between the rails and ground. Currently, abnormal rises of rail potential exist in many railway lines during the operation of railway systems. Excessively high rail potentials pose a threat to human life and to devices connected to the rails. In this paper, the effect of regenerative power distribution on rail potential is analyzed. Maximum safety regenerative power tracking is proposed for the control of maximum absolute rail potential and energy consumption during the operation of DC traction power systems. The dwell time of multiple trains at each station and the trigger voltage of the regenerative energy absorbing device (READ are optimized based on an improved particle swarm optimization (PSO algorithm to manage the distribution of regenerative power. In this way, the maximum absolute rail potential and energy consumption of DC traction power systems can be reduced. The operation data of Guangzhou Metro Line 2 are used in the simulations, and the results show that the scheme can reduce the maximum absolute rail potential and energy consumption effectively and guarantee the safety in energy saving of DC traction power systems.

  5. Trends of DC Power Technologies and their Applications

    Science.gov (United States)

    Hirose, Keiichi

    Renewable energy resources such as photovoltaic panels and wind turbines have been increasing rapidly to prevent global warming. The number of energy storage systems and many types of batteries is also growing to keep supply and demand balance in local areas. Interfaces of these facilities are direct current (DC). Most of modern electrical appliances also use DC power inside them. Therefore, DC power technologies with some features are expected to meet requirements for new electrical power systems, for example smartgrids, microgrids, and other electrical applications. In recent years, DC power applications in data centers, commercial buildings, and dwellings have been developed in Japan, the U.S. European countries, and so on. At the same time, international standardization activities had started. This paper describes trends of DC power technologies and their applications.

  6. Rf-to-dc power converters for wireless powering

    KAUST Repository

    Ouda, Mahmoud Hamdy

    2016-12-01

    Various examples are provided related to radio frequency (RF) to direct current (DC) power conversion. In one example, a RF-to-DC converter includes a fully cross-coupled rectification circuit including a pair of forward rectifying transistors and a feedback circuit configured to provide feedback bias signals to gates of the pair of forward rectifying transistors via feedback branch elements. In another example, a method includes receiving a radio frequency (RF) signal; rectifying the RF signal via a fully cross-coupled rectification circuit including a pair of forward rectifying transistors; and providing a DC output voltage from an output connection of the fully cross-coupled rectification circuit, where gating of the pair of forward rectifying transistors is controlled by feedback bias signals provided to gates of the pair of forward rectifying transistors via feedback branch elements.

  7. An FPGA Based Controller for a SOFC DC-DC Power System

    Directory of Open Access Journals (Sweden)

    Kanhu Charan Bhuyan

    2013-01-01

    Full Text Available Fuel cells are an attractive option for alternative power and of use in a variety of applications. This paper proposes a state space model for the solid oxide fuel cell (SOFC based power system that comprises fuel cell, DC-DC buck converter, and load. In this investigation we have taken up a case study for SOFC feeding a DC load where a DC-DC buck converter acts as the interface between the load and the source. A proportional-integral (PI controller is used in conjunction with pulse width modulation (PWM that computes the pulse width and switches the MOSFET at the right instant so that the desired voltage is obtained. The proposed model is validated through extensive simulation using MATLAB/SIMULINK. Controller for the fuel cell power system (FCPS is prototyped using XC3S500E development board containing a SPARTAN 3E Xilinx FPGA that simplifies the entire control circuit besides providing additional flexibility for further improvement. The results clearly indicate improved performance and validate our proposed model.

  8. Synchronverter-Enabled DC Power Sharing Approach for LVDC Microgrids

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Davari, Pooya; Mokhtari, Hossein

    2017-01-01

    by introducing a small ac voltage superimposed onto the output dc voltage of converters. Therefore, dc sources can be coordinated together with the frequency of the ac voltage, without any communication network like Synchronous Generators (SGs) in conventional power systems. Small signal stability analysis......In a classical ac Micro-Grid (MG), a common frequency exists for coordinating active power sharing among droop-controlled sources. Like the frequency droop method, a voltage based droop approach has been employed to control the converters in dc MGs. However, voltage variation due to the droop gains...... and line resistances causes poor power sharing and voltage regulation in dc MG, which in most cases are solved by a secondary controller using a communication network. To avoid such an infrastructure and its accompanied complications, this paper proposes a new droop scheme to control dc sources...

  9. Lightweight DC-DC Converter with Partial Power Processing and MPPT for a Solar Powered Aircraft

    Science.gov (United States)

    Diab-Marzouk, Ahmad

    A lightweight dc-dc partial power processing converter is demonstrated for solar aerospace applications. A system-level model is conceived to determine conformity to payload and target distance objectives, with the Solarship aircraft used as an application example. The concept of partial power processing is utilized to realize a high efficiency lightweight converter that performs Max Peak Power Tracking (MPPT) to transfer power from the aircraft solar array to the high-voltage battery bus. The isolated Cuk is determined to be a suitable converter topology for the application. A small-signal model is derived for control design. The operation of a 400V, 2.7 kW prototype is verified at high frequency (200 kHz), high efficiency (> 98%), small mass (0.604 kg), and uses no electrolytic capacitors. MPPT operation is verified on a 376 V commercial solar installation at The University of Toronto. The prototype serves as an enabling technology for solar aerospace applications.

  10. First Implementation of a Two-Stage DC-DC Conversion Powering Scheme for the CMS Phase-2 Outer Tracker

    CERN Document Server

    Feld, Lutz Werner; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Pauls, Alexander Josef; Preuten, Marius; Rauch, Max Philip; Wangelik, Frederik; Wlochal, Michael

    2017-01-01

    The 2S silicon strip modules for the CMS Phase-2 tracker upgrade will require two operating voltages. These will be provided via a two-step DC-DC conversion powering scheme, in which one DC-DC converter delivers 2.5\\,V while the second DC-DC converter receives 2.5\\,V at its input and converts it to 1.2\\,V. The DC-DC converters will be mounted on a flex PCB, the service hybrid, together with an opto-electrical converter module (VTRx+) and a serializer (LP-GBT). The service hybrid will be mounted directly on the 2S module. A prototype service hybrid has been developed and its performance has been evaluated, including radiative and conductive noise emissions, and efficiency. In addition system tests with a prototype module have been performed. In this report the service hybrid will be described and the test results will be summarized.

  11. AC/DC Smart Control And Power Sharing of DC Distribution Systems

    Science.gov (United States)

    2012-02-10

    input voltage and output current variations, a voltage feedback signal is needed. Moreover, if current control or maximum power point tracking ( MPPT ) is...ic character tuations in ). The figu MPPT ) de-r rent charact a boost co nd its DC v de-rate the ich is not de tions at the to smooth t s of PB

  12. Development of AC-DC power system simulator

    International Nuclear Information System (INIS)

    Ichikawa, Tatsumi; Ueda, Kiyotaka; Inoue, Toshio

    1984-01-01

    A modeling and realization technique is described for realtime plant dynamics simulation of nuclear power generating unit in AC-DC power system simulator. Dynamic behavior of reactor system and steam system is important for investigation a further adequate unit control and protection system to system faults in AC and DC power system. Each unit of two nuclear power generating unit in the power system simulator consists of micro generator, DC motors, flywheels and process computer. The DC motor and flywheel simulates dynamic characteristics of steam turbine, and process computer simulates plant dynamics by digital simulation. We have realized real-time plant dynamics simulation by utilizing a high speed process I/O and a high speed digital differential analyzing processor (DDA) in which we builted a newly developed simple plant model. (author)

  13. "Forback" Dc-To-Dc Converters

    Science.gov (United States)

    Lukemire, Alan T.

    1992-01-01

    Dc-to-dc power-converter circuits called "forback" resemble circuits of standard configurations called "forward", "flyback", and "Cuk". Circuit employs minor modifications to existing topologies, combines advantages, while eliminating disadvantages, of older circuits.

  14. DC Home Appliances for DC Distribution System

    Directory of Open Access Journals (Sweden)

    MUHAMMAD KAMRAN

    2017-10-01

    Full Text Available This paper strengthens the idea of DC distribution system for DC microgrid consisting of a building of 50 apartments. Since the war of currents AC system has been dominant because of the paucity of research in the protection of the DC system. Now with the advance research in power electronics material and components, generation of electricity is inherently DC as by solar PV, fuel cell and thermoelectric generator that eliminates the rectification process. Transformers are replaced by the power electronics buck-boost converters. DC circuit breakers have solved the protection problems for both DC transmission and distribution system. In this paper 308V DC microgrid is proposed and home appliances (DC internal are modified to operate on 48V DC from DC distribution line. Instead of using universal and induction motors in rotary appliances, BLDC (Brushless DC motors are proposed that are highly efficient with minimum electro-mechanical and no commutation losses. Proposed DC system reduces the power conversion stages, hence diminishes the associated power losses and standby losses that boost the overall system efficiency. So in view of all this a conventional AC system can be replaced by a DC system that has many advantages by cost as well as by performance

  15. Estimation of Faults in DC Electrical Power System

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper demonstrates a novel optimizationbased approach to estimating fault states in a DC power system. The model includes faults changing the circuit topology...

  16. Solar fed DC-DC single ended primary inductance converter for low power applications

    Science.gov (United States)

    Narendranath, K. V.; Viswanath, Y.; Babu, K. Suresh; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This paper presents 34 to 36 volts. SEPIC converter for solar fed applications. Now days, there has been tremendous increase in the usage of solar energy and this solar energy is most valuable energy source available all around the world. The solar energy system require a Dc-Dc converter in order to modulate and govern the changing output of the panel. In this paper, a system comprising of Single Ended Primary Inductance Converter [SEPIC] integrated with solar panel is proposed. This paper proposes SEPIC power converter design that will secure high performance and cost efficiency while powering up a LAMP load. This power converter designed with low output ripple voltage, higher efficiency and less electrical pressure on the power switching elements. The simulation and prototype hardware results are presented in this paper.

  17. Analysis of a high power, resonant DC-DC converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    and variable phase displacement in sub resonant mode, the new method of operation promises transformer size reduction and facilitates soft-switching transition of the IGBTs and line frequency diodes on rectifier side. Four modes of operation are identified, while equations for output power, voltage and current...

  18. Experimental power reactor dc generator energy storage study

    International Nuclear Information System (INIS)

    Heck, F.M.; Smeltzer, G.S.; Myers, E.H.; Kilgore, L.

    1978-01-01

    This study covers the use of dc generators for meeting the Experimental Power Reactor Ohmic Heating Energy Storage Requirements. The dc generators satisfy these requirements which are the same as defined in WFPS-TME-038 which covered the use of ac generators and homopolar generators. The costs of the latter two systems have been revised to eliminate first-of-a-kind factors. The cost figures for dc generators indicate a need to develop larger machines in order to take advantage of the economy-of-scale that the large ac machines have. Each of the systems has its own favorable salient features on which to base a system selection

  19. Smart Power Management of DC Microgrids in Future Milligrids

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Davari, Pooya

    2016-01-01

    In this paper a novel droop approach for power management in low voltage dc MicroGrids (MGs) based on a master-slave concept is presented. A virtual frequency is injected by a master unit, which is proportional to its output power. Other slave units determine their output power according to the c......In this paper a novel droop approach for power management in low voltage dc MicroGrids (MGs) based on a master-slave concept is presented. A virtual frequency is injected by a master unit, which is proportional to its output power. Other slave units determine their output power according...

  20. Influence of Dynamic Efficiency in the DC Microgrid Power Balance

    Directory of Open Access Journals (Sweden)

    Hongwei Wu

    2017-10-01

    Full Text Available This work aims to enhance the ability of a direct current (DC microgrid to guarantee the power supply without interruptions by considering the dynamic efficiency of each power converter in the power balance. Previous works show that the converter efficiency varies according to the instant power. If the variable efficiency of the converters in the microgrid is not considered, some extra power must be considered to compensate the losses in the power balance. However, this leads to a waste of available energy and unnecessary load shedding. The work presented here includes the power converters’ dynamic efficiencies in the control of a DC microgrid to improve its performance. MATLAB/Simulink simulations were carried out and the results show that the dynamic efficiency can reduce the load shedding and improve the total DC microgrid efficiency.

  1. Feasibility analysis of the application and positioning of DC HTS FCL in a DC microgrid through modeling and simulation using Simulink and SimPowerSystem

    International Nuclear Information System (INIS)

    Khan, U.A.; Shin, W.J.; Seong, J.K.; Oh, S.H.; Lee, S.H.; Lee, B.W.

    2011-01-01

    We modeled DC SFCL by use of SimPowerSystem blocks. We examine the DC fault current limitation in low voltage DC distribution networks. SFCL's affects at critical points were measured. SFCL installed at the substation rectifier branch resulted in abnormal increase of fault current. The strategic location of SFCL is the point of integration of the PV plant with the power grid. DC fault current limitation in DC distribution network is one of the critical issues which need to be taken care of before they can be practically implemented. High temperature superconductors could be efficiently installed to cope with the problem of DC fault currents. In this paper, a generalized DC high temperature superconducting fault current limiter (SFCL) is modeled by integrating Simulink and SimPowerSystem blocks. This model is designed for limiting DC fault currents in low voltage DC distribution networks. A DC microgrid having a low voltage DC distribution network, an integrated photovoltaic plant and domestic customer load is modeled. Transient analysis of the DC microgrid is performed by generating fault and measuring DC fault currents at critical points. The designed DC SFCL is placed at different strategic locations in DC microgrid and fault current limitation performance of DC SFCL in DC microgrid has been analyzed. Moreover, the affects of rapid impedance changing in the distribution network due to the fault followed by DC SFCL activation is investigated. Finally, the best suitable position and affects of DC SFCL in a DC microgrid along with suggestions for implementation have been proposed.

  2. PI and Fuzzy Control Strategies for High Voltage Output DC-DC Boost Power Converter - Hardware Implementation and Analysis

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi

    2016-01-01

    This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter...

  3. A Proficient AC/DC Converter with Power Factor Correction

    OpenAIRE

    Shakh Md. Alimuzjaman Alim; Md. Shafiqul Islam; Md. Shajib; Shafiul Islam

    2016-01-01

    Dc power supplies are extensively used inside most of electrical and electronic appliances such as in computers, televisions, audio sets and others. Power supplies make the load compatible with its power source. The presence of nonlinear loads results into low power factor operation of the power system. Several techniques for power factor correction and harmonic reduction have been reported and a few of them have gained greater acceptance over the others. In this paper a bridgeless power fact...

  4. DC electric springs with DC/DC converters

    DEFF Research Database (Denmark)

    Wang, Qingsong; Cheng, Ming; Jiang, Yunlei

    2016-01-01

    The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi-directio......The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi...... and/or constant discharging for batteries is adopted and four operating modes are analyzed as charging-positive, charging-negative, discharging-positive and discharging-negative modes. An additional mechanism for fast charging or fast discharging is also designed to secure normal operation...... of batteries. With the proposed DCES, the power fluctuations due to intermittent RESs can be passed to non-critical loads (NCLs) and batteries while power on critical loads (CLs) is kept stable. This is possibly the first attempt to design a DCES with only DC/DC converters. The performances of the proposed...

  5. SWITCH MODE PULSE WIDTH MODULATED DC-DC CONVERTER WITH MULTIPLE POWER TRANSFORMERS

    DEFF Research Database (Denmark)

    2009-01-01

    A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end....... The first electronic circuit comprises terminals (AO, A1) for connecting a source or a load, at least one energy storage inductor (L) coupled in series with at least one of the first windings (T1a, T2a) of the power transformers (T1, T2), and for each power transformer (T1, T2), an arrangement of switches...

  6. Economic Droop Scheme for Decentralized Power Management in DC Microgrids

    Directory of Open Access Journals (Sweden)

    E. Alizadeh

    2016-12-01

    Full Text Available This paper proposes an autonomous and economic droop control scheme for DC microgrid application. In this method, a cost-effective power sharing technique among various types of DG units is properly adopted. The droop settings are determined based on an algorithm to individually manage the power management without any complicated optimization methods commonly applied in the centralized control method. In the proposed scheme, the system retains all the advantages of the traditional droop method while minimizes the generation costs of the DC microgrid. In the proposed method, all DGs are classified in a sorting rule based on their total generation cost and the reference voltage of their droop equations is then determined. The proposed scheme is applied to a typical DC microgrid consisting of four different types of DGs and a controllable load. The simulation results are presented to verify the effectiveness of the proposed method using MATLAB/SIMULINK software.

  7. Optical transponder DC probe [for pulsed power generator

    CERN Document Server

    Thompson, M C

    1999-01-01

    The Atlas Pulse Power, Marx Bank will produce significant electromagnetic interference potential (EMI) via its 192 spark-gaps and trigger systems (36 more spark gaps). The authors have a need to measure DC charge components to a fair degree of accuracy during charge to ensure a safe and balanced system. Isolation from elevated- deck and/or high EMI environments during DC voltage or current measurement has classically been approached using frequency modulation (FM) of an imposed carrier on an optical fiber coupled system. There are shortcomings in most systems that can generally be compensated for by various means. In their application of remote sensing, the power to run this remote probe was a central issue. As such the authors took another approach to monitor the DC charge record for the Atlas' Marx banks. (0 refs).

  8. Automation of Aditya tokamak plasma position control DC power supply

    Energy Technology Data Exchange (ETDEWEB)

    Arambhadiya, Bharat, E-mail: bharat@ipr.res.in; Raj, Harshita; Tanna, R.L.; Edappala, Praveenlal; Rajpal, Rachana; Ghosh, Joydeep; Chattopadhyay, P.K.; Kalal, M.B.

    2016-11-15

    Highlights: • Plasma position control is very essential for obtaining repeatable high temperature, high-density discharges of longer durations in tokomak. • The present capacitor bank has limitations of maximum current capacity and position control beyond 200 ms. • The installation of a separate set of coils and a DC power supply can control the plasma position beyond 200 ms. • A high power thyristor (T588N1200) triggers for DC current pulse of 300 A fires precisely at required positions to modify plasma position. • The commissioning is done for the automated in-house, quick and reliable solution. - Abstract: Plasma position control is essential for obtaining repeatable high temperature, high-density discharges of longer duration in tokamaks. Recently, a set of external coils is installed in the vertical field mode configuration to control the radial plasma position in ADITYA tokamak. The existing capacitor bank cannot provide the required current pulse beyond 200 ms for position control. This motivated to have a DC power supply of 500 A to provide current pulse beyond 200 ms for the position control. The automatization of the DC power supply mandated interfaces with the plasma control system, Aditya Pulse Power supply, and Data acquisition system for coordinated discharge operation. A high current thyristor circuit and a timer circuit have been developed for controlling the power supply automatically for charging vertical field coils of Aditya tokamak. Key protection interlocks implemented in the development ensure machine and occupational safety. Fiber-optic trans-receiver isolates the power supply with other subsystems, while analog channel is optically isolated. Commissioning and testing established proper synchronization of the power supply with tokamak operation. The paper discusses the automation of the DC power supply with main circuit components, timing control, and testing results.

  9. Power Talk for Multibus DC MicroGrids

    DEFF Research Database (Denmark)

    Angjelichinoski, Marko; Stefanovic, Cedomir; Popovski, Petar

    2016-01-01

    We study a communication framework for nonlinear multibus DC MicroGrids based on a deliberate modification of the parameters of the primary control and termed power talk. We assess the case in which the information is modulated in the deviations of reference voltages of the primary control loops...

  10. A Perspective on Line Regulation of DC Power Supplies

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 10. A Perspective on Line Regulation of DC Power Supplies. Vijay H Raybagkar. Classroom Volume 12 Issue 10 October 2007 pp 80-85. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Power factor correction (PFC) converters feeding brushless DC ...

    African Journals Online (AJOL)

    This paper presents a comprehensive study of power factor correction (PFC) converters for feeding brushless DC (BLDC) motor drive. This work explores various configurations of PFC converters which are classified into five different categories of non-isolated, bridgeless (BL) non-isolated, isolated, BL-isolated PFC ...

  12. OffshoreDC DC grids for integration of large scale wind power

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Endegnanew, Atsede Gualu; Stamatiou, Georgios

    The present report summarizes the main findings of the Nordic Energy Research project “DC grids for large scale integration of offshore wind power – OffshoreDC”. The project is been funded by Nordic Energy Research through the TFI programme and was active between 2011 and 2016. The overall...... objective of the project was to drive the development of the VSC based HVDC technology for future large scale offshore grids, supporting a standardised and commercial development of the technology, and improving the opportunities for the technology to support power system integration of large scale offshore...... wind power. This was done by bringing together the key industry stakeholders and competent research organisations in the project....

  13. DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

    Directory of Open Access Journals (Sweden)

    F. Azma

    2015-06-01

    Full Text Available This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC grids based on an optimal power flow (OPF procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage droop characteristics of voltage-regulating converters, at the primary level, are tuned based on the OPF results such that the operating point of the MTDC grid lies on the voltage droop characteristics. Consequently, the optimally-tuned voltage droop controller leads to the optimal operation of the MTDC grid. In case of variation in load or generation of the grid, a new stable operating point is achieved based on the voltage droop characteristics. By execution of a new OPF, the voltage droop characteristics are re-tuned for optimal operation of the MTDC grid after the occurrence of the load or generation variations. The results of simulation on a grid inspired by CIGRE B4 DC grid test system demonstrate efficient grid performance under the proposed control strategy.

  14. Research on design feasibility of high-power light-weight dc-to-dc converters for space power applications

    Science.gov (United States)

    Wilson, T. G.

    1981-01-01

    Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.

  15. Efficiency Analyses of a DC Residential Power Distribution System for the Modern Home

    Directory of Open Access Journals (Sweden)

    GELANI, H. E.

    2015-02-01

    Full Text Available The electric power system started as DC back in the nineteenth century. However, the DC paradigm was soon ousted by AC due to inability of DC to change its voltage level. Now, after many years, with the development of power electronic converters capable of stepping-up and down DC voltage and converting it to-and-from AC, DC appears to be challenging AC and attempting a comeback. We now have DC power generation by solar cells, fuel cells and wind farms, DC power transmission in the form of HVDC (High Voltage DC transmission, DC power utilization by various modern electronic loads and DC power distribution that maybe regarded as still in research phase. This paper is an attempt to investigate feasibility of DC in the distribution portion of electrical power system. Specifically, the efficiency of a DC distribution system for residential localities is determined while keeping in view the concept of daily load variation. The aim is to bring out a more practical value of system efficiency as the efficiencies of DC/DC converters making up the system vary with load variation. This paper presents the modeling and simulation of a DC distribution system and efficiency results for various scenarios are presented.

  16. Autonomous Control Strategy of DC Microgrid for Islanding Mode Using Power Line Communication

    Directory of Open Access Journals (Sweden)

    Dong-Keun Jeong

    2018-04-01

    Full Text Available This paper proposes a DC-bus signaling (DBS method for autonomous power management in a DC microgrid, used to improve its reliability. Centralized power management systems require communication between the power sources and loads. However, the DBS method operates based on the common DC-bus voltage and does not require communication. Based on the DC-bus voltage band, the DC-bus voltage can be used to inform the status of the DC-bus in various scenarios. The DC microgrid operates independently to maintain the system stably in the DC-bus voltage band. The DC microgrid can be divided into a grid-connected mode and an islanding mode. This paper proposes a control strategy based on power management of various independent components in islanding mode. In addition, the autonomous control method for switching the converter’s operation between grid-connected mode and islanding mode is proposed. A DC microgrid test bed consisting of a grid-connected AC/DC converter, a bidirectional DC/DC converter, a renewable energy simulator, DC home appliances and a DC-bus protector is used to test the proposed control strategy. The proposed autonomous control strategy is experimentally verified using the DC microgrid test bed.

  17. Distributed maximum power point tracking in photovoltaic applications: active bypass DC/DC converter

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Ramos-Paja

    2012-01-01

    Full Text Available Se propone una estructura de desvío activo para maximizar la producción de potencia en sistemas fotovoltaicos bajo condiciones irregulares de operación, comparando su eficiencia con soluciones individuales y distribuidas basadas en convertidores DC/DC convencionales. Los análisis y simulaciones realistas demuestran las ventajas del nuevo convertidor de desvío activo sobre soluciones basadas en convertidores Boost, Buck y Buck-Boost.

  18. Power Talk in DC Micro Grids

    DEFF Research Database (Denmark)

    Angjelichinoski, Marko; Stefanovic, Cedomir; Popovski, Petar

    2015-01-01

    Power talk is a novel concept for communication among units in a Micro Grid (MG), where information is sent by using power electronics as modems and the common bus of the MG as a communication medium. The technique is implemented by modifying the droop control parameters from the primary control...

  19. Constant Power Load Instability Mitigation in DC Shipboard Power Systems Using Negative Series Virtual Inductor Method

    DEFF Research Database (Denmark)

    Jin, Zheming; Meng, Lexuan; Guerrero, Josep M.

    2017-01-01

    DC distribution technology has become the new choice and the trending technology of shipboard power systems for its advancement over its AC counterpart. In DC shipboard power systems, the bus voltage stability is a critical issue. The presence of tightly controlled high-power constant power load ...

  20. Lifetime Estimation of DC-link Capacitors in a Single-phase Converter with an Integrated Active Power Decoupling Module

    DEFF Research Database (Denmark)

    Ma, Siyuan; Wang, Haoran; Tang, Junchaojie

    2016-01-01

    In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC-link capa......In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC...

  1. Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance

    Directory of Open Access Journals (Sweden)

    Jaime Wladimir Zapata

    2018-02-01

    Full Text Available This work presents a partial power converter allowing us to obtain, with a single DC-DC converter, the same feature as the classical interleaved operation of two converters. More precisely, the proposed topology performs similarly as the input-parallel output-series (IPOS configuration reducing the current ripple at the input of the system and dividing the individual converters power rating, compared to a single converter. The proposed topology consists of a partial DC-DC converter processing only a fraction of the total power, thus allowing high efficiency. Experimental results are provided to validate the proposed converter topology with a Flyback-based 100 W test bench with a transformer turns ratio n 1 = n 2 . Experimental results show high performances reducing the input current ripple around 30 % , further increasing the conversion efficiency.

  2. PIII Plasma Density Enhancement by a New DC Power Source

    International Nuclear Information System (INIS)

    Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Granda-Gutierrez, E. E.; Piedad-Beneitez, A. de la; Munoz-Castro, A. E.; Valencia A, R.; Barocio, S. R.; Mercado-Cabrera, A.; Pena-Eguiluz, R.

    2006-01-01

    In practical terms, those plasmas produced by a DC voltage power supply do not attain densities above the 108 to 109 cm-3 band. Here we present a power supply, controlled in current and voltage, which has been successfully designed and constructed delivering plasma densities in the orders of 109 - 1010 cm-3. Its experimental performance test was conducted within one toroidal and one cylindrical chambers capable of 29 and 35 litres, respectively, using nitrogen gas. The DC plasma was characterized by a double electric probe. Several physical phenomena present in the PIII process have been keenly investigated including plasma sheath dynamics, interaction of plasma and surface, etc. In this paper we analyze the effect of the implantation voltage, plasma density and pulse time in the PIII average heating power and fluence density

  3. High-power DC plasma torches

    International Nuclear Information System (INIS)

    Koroteev, A.S.; Lomovtsev, M.A.

    2000-01-01

    The main principles of development of powerful plasma torches operating for long periods of time with the current are described. The circuits of plasma torches with vortex stabilization of the arc discharge and circuits of coaxial plasma torches with magnetic stabilization are discussed, and special attention is given to a combined plasma torch with magnetogas vortex stabilization of the arc discharge. The main parameters of the plasma torches are presented. (author)

  4. DC switch power supply for vacuum-arc coatings deposition

    International Nuclear Information System (INIS)

    Zalesskij, D.Yu.; Volkov, Yu.Ya.; Vasil'ev, V.V.; Kozhushko, V.V.; Luchaninov, A.A.; Strel'nitskij, V.E.

    2008-01-01

    Special DC Switch Power Supply for vacuum-arc deposition was developed and tested in the mode of depositing Al and AlN films. Maximum output power was 6 kW, maximum output current - 120 A, open-circuit voltage - 150 V. The Power Supply allows to adjust and stabilize output current in a wide range. Testing of the Power Supply revealed an advantages over the standard 'Bulat-6' power supply, especially for deposition of non-conductive AlN films.

  5. Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid

    Directory of Open Access Journals (Sweden)

    Robert Antonio Salas-Puente

    2018-03-01

    Full Text Available In this paper, a centralized control strategy for the efficient power management of power converters composing a hybrid AC/DC microgrid is explained. The study is focused on the converters connected to the DC bus. The proposed power management algorithm is implemented in a microgrid central processor which is based on assigning several operation functions to each of the generators, loads and energy storage systems in the microgrid. The power flows between the DC and AC buses are studied in several operational scenarios to verify the proposed control. Experimental and simulation results demonstrate that the algorithm allows control of the power dispatch inside the microgrid properly by performing the following tasks: communication among power converters, the grid operator and loads; connection and disconnection of loads; control of the power exchange between the distributed generators and the energy storage system and, finally, supervision of the power dispatch limit set by the grid operator.

  6. Three Phase Resonant DC Power Converter for Ion Thrusters, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Our phase 1 study has revealed many significant benefits of a new class of DC-to-DC power converters with performance that cannot be matched by current flight power...

  7. DC source assemblies

    Science.gov (United States)

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  8. Multi-kw dc power distribution system study program

    Science.gov (United States)

    Berkery, E. A.; Krausz, A.

    1974-01-01

    The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors.

  9. Design optimization of a high-power transformer for three-phase dual active bridge DC-DC converter for MVDC grids

    OpenAIRE

    Lee, Youngsil; Vakil, Gaurang; Feldman, Ralph; Goodman, Andrew; Wheeler, Patrick

    2016-01-01

    High-power DC-DC converter will be one of the essential technologies for the future DC grids. Especially, a three-phase dual-active bridge DC-DC (3DAB) Converter is highly suitable for high-power DC systems. Key component within this converter is the high power transformer operated at a medium frequency (MF) range. The design and optimization of this key component is presented in this paper. The transformer provides galvanic isolation from low voltage level to medium level or high voltage lev...

  10. Optimal Design and Tradeoffs Analysis for Planar Transformer in High Power DC-DC Converters

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2010-01-01

    A planar magnetic is a low profile transformer or inductor utilizing planar windings instead of the traditional windings made of Cu-wires. In this paper, the important factors for planar transformer design including winding loss, core loss, leakage inductance and stray capacitance have been.......2-kW full-bridge DC-DC converter prototype employing the improved planar transformer structure has been constructed, over 96% efficiency is achieved and a 2.7% improvement compared to the non-interleaving structure is obtained....

  11. Reduction of DC-link Capacitor in Case of Cascade Multilevel Converters by means of Reactive Power Control

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Wang, Huai; Liserre, Marco

    2014-01-01

    A method to selectively control the amount of dc link voltage ripple by processing desired reactive power by a DC/DC converter in isolated AC/DC or AC/DC/AC system is proposed. The concept can reduce the dc link capacitors used for balancing the input and output power and thereby limiting...... the voltage ripple. It allows the use of smaller dc link capacitor and hence a longer lifetime and at the same time high power density and low cost can be achieved. The isolated DC/DC converter is controlled to process the desired reactive power in addition to the active power. The control system to achieve...

  12. Modeling Microinverters and DC Power Optimizers in PVWatts

    Energy Technology Data Exchange (ETDEWEB)

    MacAlpine, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Deline, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-02-01

    Module-level distributed power electronics including microinverters and DC power optimizers are increasingly popular in residential and commercial PV systems. Consumers are realizing their potential to increase design flexibility, monitor system performance, and improve energy capture. It is becoming increasingly important to accurately model PV systems employing these devices. This document summarizes existing published documents to provide uniform, impartial recommendations for how the performance of distributed power electronics can be reflected in NREL's PVWatts calculator (http://pvwatts.nrel.gov/).

  13. DC power supplies power management and surge protection for power electronic systems

    CERN Document Server

    Kularatna, Nihal

    2011-01-01

    Modern electronic systems, particularly portable consumer electronic systems and processor based systems, are power hungry, compact, and feature packed. This book presents the most essential summaries of the theory behind DC-DC converter topologies of both linear and switching types. The text discusses power supply characteristics and design specifications based on new developments in power management techniques and modern semiconductors entering into the portable electronics market. The author also addresses off-the-line power supplies, digital control of power supply, power supply protection

  14. Probabilistic safety analysis of DC power supply requirements for nuclear power plants. Technical report

    International Nuclear Information System (INIS)

    Baranowsky, P.W.; Kolaczkowski, A.M.; Fedele, M.A.

    1981-04-01

    A probabilistic safety assessment was performed as part of the Nuclear Regulatory Commission generic safety task A-30, Adequacy of Safety Related DC Power Supplies. Event and fault tree analysis techniques were used to determine the relative contribution of DC power related accident sequences to the total core damage probability due to shutdown cooling failures. It was found that a potentially large DC power contribution could be substantially reduced by augmenting the minimum design and operational requirements. Recommendations included (1) requiring DC power divisional independence, (2) improved test, maintenance, and surveillance, and (3) requiring core cooling capability be maintained following the loss of one DC power bus and a single failure in another system

  15. DC-Link Protection and Control in Modular Uninterruptible Power Supply

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guan, Yajuan

    2018-01-01

    In this paper, a DC-link voltage protection (DCVP) control method is proposed to address the DC-link overvoltage issue due to power back-feeding in parallel Uninterruptible Power Supply (UPS) system. The proposed control method is able to protect the inverter against the excessive DC-link voltage...

  16. A Simple MPPT Algorithm for Novel PV Power Generation System by High Output Voltage DC-DC Boost Converter

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Grandi, Gabriele; Wheeler, Patrick

    2015-01-01

    This paper presents the novel topology of Photo Voltaic (PV) power generation system with simple Maximum Power Point Tracking (MPPT) algorithm in voltage operating mode. Power circuit consists of high output voltage DC-DC boost converter which maximizes the output of PV panel. Usually traditional...... substantially improves the high output-voltage by a simple MPPT closed loop proportional-integral (P-I) controller, and requires only two sensor for feedback needs. The complete numerical model of the converter circuit along with PV MPPT algorithm is developed in numerical simulation (Matlab/Simulink) software...

  17. Influence of SDBD plasma aerodynamic actuation on flow control by AC power supply and AC-DC power supply

    Science.gov (United States)

    Hu, Xu; Gao, Chao; Hao, Jiangnan

    2018-01-01

    In this paper, the excitation effect of single dielectric barrier discharge plasma actuator (SDBD) is compared by using AC power supply and AC-DC power supply. AC-DC power supply is based on the AC power supply, just adding DC component. The flow measurement is carried out by PIV technique. Results show that the excitation effect of AC power supply and AC-DC power supply increases by the increase of voltage, the range of speed field excited by AC power is greater than that of AC-DC power supply. For x direction maximum speed, excited by AC power supply is close to AC-DC, and for y direction maximum speed, AC power supply is greater than AC-DC power supply. So the excitation effect of AC power supply is better than that of AC-DC power supply for SDBD.

  18. Reliability of Capacitors for DC-Link Applications in Power Electronic Converters:An Overview

    OpenAIRE

    Wang, Huai; Blaabjerg, Frede

    2014-01-01

    DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of dc link in power electronic converters from two aspects: 1) reliability-oriented dc-link design solutions; 2) conditioning monitoring of dc-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capaci...

  19. A Robust Fuzzy Sliding Mode Controller Synthesis Applied on Boost DC-DC Converter Power Supply for Electric Vehicle Propulsion System

    Directory of Open Access Journals (Sweden)

    Boumediène Allaoua

    2013-01-01

    Full Text Available The development of electric vehicles power electronics system control comprising of DC-AC inverters and DC-DC converters takes a great interest of researchers in the modern industry. A DC-AC inverter supplies the high power electric vehicle motors torques of the propulsion system and utility loads, whereas a DC-DC converter supplies conventional low-power, low-voltage loads. However, the need for high power bidirectional DC-DC converters in future electric vehicles has led to the development of many new topologies of DC-DC converters. Nonlinear control of power converters is an active area of research in the fields of power electronics. This paper focuses on a fuzzy sliding mode strategy (FSMS as a control strategy for boost DC-DC converter power supply for electric vehicle. The proposed fuzzy controller specifies changes in the control signal based on the surface and the surface change knowledge to satisfy the sliding mode stability and attraction conditions. The performances of the proposed fuzzy sliding controller are compared to those obtained by a classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variation of the load resistance and the input voltage of the studied converter.

  20. Optimal Switching of DC-DC Power Converters Using Approximate Dynamic Programming.

    Science.gov (United States)

    Heydari, Ali

    2018-03-01

    Optimal switching between different topologies in step-down dc-dc voltage converters, with nonideal inductors and capacitors, is investigated in this paper. Challenges including constraint on the inductor current and voltage leakages across the capacitor (due to switching) are incorporated. The objective is generating the desired voltage with low ripples and high robustness toward line and load disturbances. A previously developed tool, which is based on approximate dynamic programming, is adapted for this application. The scheme leads to tuning a parametric function approximator to provide optimal switching in a feedback form. No fixed cycle time is assumed, as the cycle time and the duty ratio will be adjusted on the fly in an optimal fashion. The controller demonstrates good capabilities in controlling the system even under parameter uncertainties. Finally, some modifications on the scheme are conducted to handle optimal switching problems with state jumps at the switching times.

  1. ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    Science.gov (United States)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.

  2. Power conditioning for large dc motors for space flight applications

    Science.gov (United States)

    Veatch, Martin S.; Anderson, Paul M.; Eason, Douglas J.; Landis, David M.

    1988-01-01

    The design and performance of a prototype power-conditioning system for use with large brushless dc motors on NASA space missions are discussed in detail and illustrated with extensive diagrams, drawings, and graphs. The 5-kW 8-phase parallel module evaluated here would be suitable for use in the Space Shuttle Orbiter cargo bay. A current-balancing magnetic assembly with low distributed inductance permits high-speed current switching from a low-voltage bus as well as current balancing between parallel MOSFETs.

  3. Controller for a High-Power, Brushless dc Motor

    Science.gov (United States)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  4. Stability analysis of a three-phase grid-connected DC power supply with small DC-link capacitor and voltage feed-forward compensation

    DEFF Research Database (Denmark)

    Török, Lajos; Mathe, L.

    2017-01-01

    The purpose of this work was to investigate effect of the DC-link voltage feed-forward compensation on the stability of the three-phase-grid connected DC power supply, used for electrolysis application, equipped with small DC link capacitor. In case of weak grid condition, the system...

  5. Multiuser Communication Through Power Talk in DC MicroGrids

    DEFF Research Database (Denmark)

    Angjelichinoski, Marko; Stefanovic, Cedomir; Popovski, Petar

    2016-01-01

    Power talk is a novel ultra narrow-band powerline communication (UNB-PLC) technique for communication among control units in MicroGrids (MGs). Unlike the existing UNB-PLC solutions, power talk does not require installation of additional dedicated communication hardware and, instead, uses only...... be detected by other units. In this paper, we develop power talk communication strategies for direct-current (DC) MG systems with arbitrary number of control units that carry out all-to-all communication. We investigate two multiple access strategies: time-division multiple access, where only one unit...... transmits at a time, and full duplex, where all units transmit and receive simultaneously. We apply the concepts of signaling space, where the power talk symbol constellations are constructed, and detection space, where the demodulation of the symbols is performed. The proposed communication technique...

  6. Design and performance of PEP dc-power systems

    International Nuclear Information System (INIS)

    Jackson, T.

    1981-03-01

    The PEP Magnet Power Supply System represents a significant departure from previous technology with the goal of improved performance at lower cost. In nineteen of the magnet families around the ring, Chopper power supplies are used. The many choppers are powered from two 2 MW dc supplies, and control the average power to the various magnet loads by pulse-width modulation at a 2 kilohertz repetition rate. Each chopper utilizes SCR's for switching, and stores sufficient capacitive energy for turn-off on command. Most of the energy is recirculated, resulting in high-efficiency. The two kilohertz chopping rate allows a one kilohertz unity-gain bandwidth in the current-regulator loop, and this wide bandwidth, coupled with low drift components in the error-detection system, provides a high-performance system. The PEP system has also shown that the chopper system is economical compared to standard multi-pulse controlled-rectifier

  7. Experience from design, prototyping and production of a DC-DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    International Nuclear Information System (INIS)

    Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Schmitz, S.; Wlochal, M.

    2016-01-01

    The CMS collaboration has adopted a DC-DC conversion powering scheme for the Phase-1 Upgrade of its pixel detector. DC-DC buck converters with a conversion ratio of around 3 are installed on the support structures, outside of the sensitive tracking region, requiring a re-design of the low and high voltage distribution to the pixel modules. After several years of R and D, the project has entered the production phase. A total of 1800 DC-DC converters are being produced, and rigorous quality assurance and control is being employed during the production process. The testing program is outlined, results from mass production are presented and issues that have been encountered are described. In addition, two system level challenges, namely the choice of output voltage in the presence of large, load-dependent voltage drops, and the thermal management required to remove the heat load caused by the DC-DC converters, are discussed

  8. Wide Temperature DC Link Capacitors for Aerospace Power Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop advanced DC link capacitors using flexible ultrathin glass dielectric materials. The glass capacitor will be able to be operated in a broad...

  9. Six switches solution for single-phase AC/DC/AC converter with capability of second-order power mitigation in DC-link capacitor

    DEFF Research Database (Denmark)

    Liu, Xiong; Wang, Peng; Loh, Poh Chiang

    2011-01-01

    This paper proposes an approach for DC-link second-order harmonic power cancellation in single-phase AC/DC/AC converter with reduced number of switches. The proposed six-switch converter has two bridges with three switches in each of them, where the middle switch in each bridge is shared by the AC....../DC rectifier and DC/AC inverter. A small size DC-link capacitor can be achieved through coordination control of rectifier and inverter to cancel the second-order oscillation power. Maximum available phase difference between rectifier’s and inverter’s modulation references is investigated to be dependent...... on their modulation indices of the six-switch converter, and high modulation indices are proved to be feasible for second-order power cancellation in the DC-link based on the phase difference analysis. Both reduced switch numbers and DC electrolytic capacitor size can be achieved using the proposed converter...

  10. Estimation of Faults in DC Electrical Power System

    Science.gov (United States)

    Gorinevsky, Dimitry; Boyd, Stephen; Poll, Scott

    2009-01-01

    This paper demonstrates a novel optimization-based approach to estimating fault states in a DC power system. Potential faults changing the circuit topology are included along with faulty measurements. Our approach can be considered as a relaxation of the mixed estimation problem. We develop a linear model of the circuit and pose a convex problem for estimating the faults and other hidden states. A sparse fault vector solution is computed by using 11 regularization. The solution is computed reliably and efficiently, and gives accurate diagnostics on the faults. We demonstrate a real-time implementation of the approach for an instrumented electrical power system testbed, the ADAPT testbed at NASA ARC. The estimates are computed in milliseconds on a PC. The approach performs well despite unmodeled transients and other modeling uncertainties present in the system.

  11. Analog Circuit Design Low Voltage Low Power; Short Range Wireless Front-Ends; Power Management and DC-DC

    CERN Document Server

    Roermund, Arthur; Baschirotto, Andrea

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design.  Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.

  12. Design considerations for high current regulated DC power supplies with reference to 600 kW variable DC power supply

    International Nuclear Information System (INIS)

    Ushakumari; Garud, A.N.; Nadkarni, S.S.

    1980-01-01

    High current regulated dc power supplies find increasing applications in industry and research. The power rating of these supplies vary from few killowatts to megawatts. The general requirements of these supplies for various applications and the techniques used to achieve the desired performance are presented. The design and selection of various circuit blocks namely the rectifier transformer, multiphase rectifier arrangement, SCR paralleling and current sensing techniques, are discussed in detail for a 600 killowatt current controlled supply developed in the Bhabha Atomic Research Centre, Bombay, and used for the thermal studies of reactor components. The power supply incorporates paralleled phase controlled thyristors with a closed loop feedback circuitary to achieve a current stability of 0.1% and smooth output variation from 10 to 100%. (auth.)

  13. A Comprehensive Analysis and Hardware Implementation of Control Strategies for High Output Voltage DC-DC Boost Power Converter

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2017-01-01

    Full Text Available Classical DC-DC converters used in high voltage direct current (HVDC power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I and fuzzy logic closed-loop controller to get high and stable output voltage. Complete hardware prototype of EHV is implemented and experimental tasks are carried out with digital signal processor (DSP TMS320F2812. The control algorithms P-I, fuzzy logic and the pulse-width modulation (PWM signals for N-channel MOSFET device are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions.

  14. Design of 5 V DC to 20 V DC switching regulator for power supply module

    Science.gov (United States)

    Azmi, N. A.; Murad, S. A. Z.; Harun, A.; Ismail, R. C.; Isa, M. N. M.; Zulkifeli, M. A.

    2017-09-01

    This paper presents the design of 5 V to 20 V DC switching regulator for power supply module. A voltage multiplier which consists of cascaded diode-capacitor combination is used in order to obtain a high voltage power supply. Due to power loss that has occurred in a stray of component arrangement, the proposed design employs a pulse width modulation (PWM) controller circuit with an inclusion of a capacitor, diode, and inductor components. The input supply of 5 V DC to LT1618 controller circuit has produced 20.35 V based from simulation results. Meanwhile, the measurement results of 19.36 V are obtained and the feedback signal is required for the purpose of stabilizing the output. The proposed design can reduce the components as well as the PCB size, thus minimizing the overall cost of making a switching regulator for power supply module.

  15. DC systems design and research of Hainan Changjiang nuclear power plant

    International Nuclear Information System (INIS)

    Jiang Qingshui; Wang Yuhan

    2014-01-01

    Hainan Changjiang nuclear power plant is different from the referent power plant, the DC and 220 V AC uninterrupted systems of the nuclear island have been changed since the control system use DCS. It has different design on DC systems, power supply, selectivity of breakers, capacity of equipments and layout. We optimize the design of DC systems at the basement of Fuqing and Fangjiashan project. These are good experiments for the three generation nuclear power project about DC systems design of ACP1000. (authors)

  16. A DC Transformer

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the project was to demonstrate a true direct current (DC) transformer, a new electro-mechanical component with potentially high power applications; in...

  17. Power Electronic Systems for Switched Reluctance Generator based Wind Farms and DC Networks

    DEFF Research Database (Denmark)

    Park, Kiwoo

    . Under these circumstances, research on dc network connection with a novel wind power generator system is presented in this thesis, which mainly consists of two major parts: control of a Switched Reluctance Generator (SRG) system and development of dc-dc converters for a dc network system in a wind farm...... for generators in wind turbine systems. However, despite all these advantageous features, the SRG has not been widely employed in wind energy applications. The most renowned technical disadvantages of the SRG are its nonlinearity and high torque ripples, which should be overcome to promote the application...... are presented to verify the feasibility and operational principles of the proposed converters. Finally, modelling and control of a dc-grid wind farm using one of the proposed dc-dc converters are presented. An average model provides insight into the overall performance of the system. Meanwhile, a switching...

  18. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    Science.gov (United States)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  19. Power flow analysis for droop controlled LV hybrid AC-DC microgrids with virtual impedance

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Vasquez, Juan Carlos

    2014-01-01

    The AC-DC hybrid microgrid is an effective form of utilizing different energy resources and the analysis of this system requires a proper power flow algorithm. This paper proposes a suitable power flow algorithm for LV hybrid AC-DC microgrid based on droop control and virtual impedance. Droop...... algorithm makes it a potential method for planning, dispatching and operation of droop controlled LV hybrid AC-DC....

  20. Overview of Multi-DC-Bus Solutions for DC Microgrids

    DEFF Research Database (Denmark)

    Ricchiuto, D.; Mastromauro, R.A.; Liserre, Marco

    2013-01-01

    DC Microgrids have recently received a lot of attention in the last years due to high penetration of renewable energy sources as well as distributed energy storage systems. In the future DC microgrids could be preferable respect to AC microgrids in terms of redundancy since multi-DC-Bus solutions...... could provide a continuative power supply to the loads. An overview of Multi-DC-Bus solutions is presented in this paper. The performances are compared on the basis of possible DC microgrid configurations, redundancy, different DC voltage levels....

  1. Transmission Technologies and Operational Characteristic Analysis of Hybrid UHV AC/DC Power Grids in China

    Science.gov (United States)

    Tian, Zhang; Yanfeng, Gong

    2017-05-01

    In order to solve the contradiction between demand and distribution range of primary energy resource, Ultra High Voltage (UHV) power grids should be developed rapidly to meet development of energy bases and accessing of large-scale renewable energy. This paper reviewed the latest research processes of AC/DC transmission technologies, summarized the characteristics of AC/DC power grids, concluded that China’s power grids certainly enter a new period of large -scale hybrid UHV AC/DC power grids and characteristics of “strong DC and weak AC” becomes increasingly pro minent; possible problems in operation of AC/DC power grids was discussed, and interaction or effect between AC/DC power grids was made an intensive study of; according to above problems in operation of power grids, preliminary scheme is summarized as fo llows: strengthening backbone structures, enhancing AC/DC transmission technologies, promoting protection measures of clean energ y accessing grids, and taking actions to solve stability problems of voltage and frequency etc. It’s valuable for making hybrid UHV AC/DC power grids adapt to operating mode of large power grids, thus guaranteeing security and stability of power system.

  2. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    Science.gov (United States)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  3. Circuit and Method for Communication Over DC Power Line

    Science.gov (United States)

    Krasowski, Michael J.; Prokop, Norman F.

    2007-01-01

    A circuit and method for transmitting and receiving on-off-keyed (OOK) signals with fractional signal-to-noise ratios uses available high-temperature silicon- on-insulator (SOI) components to move computational, sensing, and actuation abilities closer to high-temperature or high-ionizing radiation environments such as vehicle engine compartments, deep-hole drilling environments, industrial control and monitoring of processes like smelting, and operations near nuclear reactors and in space. This device allows for the networking of multiple, like nodes to each other and to a central processor. It can do this with nothing more than the already in-situ power wiring of the system. The device s microprocessor allows it to make intelligent decisions within the vehicle operational loop and to effect control outputs to its associated actuators. The figure illustrates how each node converts digital serial data to OOK 18-kHz in transmit mode and vice-versa in receive mode; though operations at lower frequencies or up to a megahertz are within reason using this method and these parts. This innovation s technique modulates a DC power bus with millivolt-level signals through a MOSFET (metal oxide semiconductor field effect transistor) and resistor by OOK. It receives and demodulates this signal from the DC power bus through capacitive coupling at high temperature and in high ionizing radiation environments. The demodulation of the OOK signal is accomplished by using an asynchronous quadrature detection technique realized by a quasi-discrete Fourier transform through use of the quadrature components (0 and 90 phases) of the carrier frequency as generated by the microcontroller and as a function of the selected crystal frequency driving its oscillator. The detected signal is rectified using an absolute-value circuit containing no diodes (diodes being non-operational at high temperatures), and only operational amplifiers. The absolute values of the two phases of the received signal

  4. Reliability of Capacitors for DC-Link Applications in Power Electronic Converters

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede

    2014-01-01

    DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of dc link in power electronic converters...... from two aspects: 1) reliability-oriented dc-link design solutions; 2) conditioning monitoring of dc-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capacitors suitable for the applications are also discussed as a basis to understand the physics...

  5. Chaos control in solar fed DC-DC boost converter by optimal parameters using nelder-mead algorithm powered enhanced BFOA

    Science.gov (United States)

    Sudhakar, N.; Rajasekar, N.; Akhil, Saya; Jyotheeswara Reddy, K.

    2017-11-01

    The boost converter is the most desirable DC-DC power converter for renewable energy applications for its favorable continuous input current characteristics. In other hand, these DC-DC converters known as practical nonlinear systems are prone to several types of nonlinear phenomena including bifurcation, quasiperiodicity, intermittency and chaos. These undesirable effects has to be controlled for maintaining normal periodic operation of the converter and to ensure the stability. This paper presents an effective solution to control the chaos in solar fed DC-DC boost converter since the converter experiences wide range of input power variation which leads to chaotic phenomena. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Nelder-Mead Enhanced Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The results are compared with the traditional methods. The obtained results of the proposed system ensures the operation of the converter within the controllable region.

  6. Advanced dc motor controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  7. TID and Displacement Damage Effects in Vertical and Lateral Power MOSFETs for Integrated DC-DC Converters

    CERN Document Server

    Faccio, F; Michelis, S; Faccio, Federico; Fuentes, C; Allongue, B; Sorge, R; Orlandi, S

    2010-01-01

    TID and displacement damage effects are studied for vertical and lateral power MOSFETs in five different technologies in view of the development of radiation-tolerant fully integrated DC-DC converters. Investigation is pushed to the very high level of radiation expected for an upgrade to the LHC experiments. TID induces threshold voltage shifts and, in n-channel transistors, source-drain leakage currents. Wide variability in the magnitude of these effects is observed. Displacement damage increases the on-resistance of both vertical and lateral high-voltage transistors. In the latter case, degradation at high particle fluence might lead to a distortion of the output characteristics curve. HBD techniques to limit or eliminate the radiation-induced leakage currents are successfully applied to these high-voltage transistors, but have to be used carefully to avoid consequences on the breakdown voltage.

  8. Maximum power point tracking for photovoltaic applications by using two-level DC/DC boost converter

    Science.gov (United States)

    Moamaei, Parvin

    Recently, photovoltaic (PV) generation is becoming increasingly popular in industrial applications. As a renewable and alternative source of energy they feature superior characteristics such as being clean and silent along with less maintenance problems compared to other sources of the energy. In PV generation, employing a Maximum Power Point Tracking (MPPT) method is essential to obtain the maximum available solar energy. Among several proposed MPPT techniques, the Perturbation and Observation (P&O;) and Model Predictive Control (MPC) methods are adopted in this work. The components of the MPPT control system which are P&O; and MPC algorithms, PV module and high gain DC-DC boost converter are simulated in MATLAB Simulink. They are evaluated theoretically under rapidly and slowly changing of solar irradiation and temperature and their performance is shown by the simulation results, finally a comprehensive comparison is presented.

  9. dc Arc Fault Effect on Hybrid ac/dc Microgrid

    Science.gov (United States)

    Fatima, Zahra

    The advent of distributed energy resources (DER) and reliability and stability problems of the conventional grid system has given rise to the wide spread deployment of microgrids. Microgrids provide many advantages by incorporating renewable energy sources and increasing the reliability of the grid by isolating from the main grid in case of an outage. AC microgrids have been installed all over the world, but dc microgrids have been gaining interest due to the advantages they provide over ac microgrids. However the entire power network backbone is still ac and dc microgrids require expensive converters to connect to the ac power network. As a result hybrid ac/dc microgrids are gaining more attention as it combines the advantages of both ac and dc microgrids such as direct integration of ac and dc systems with minimum number of conversions which increases the efficiency by reducing energy losses. Although dc electric systems offer many advantages such as no synchronization and no reactive power, successful implementation of dc systems requires appropriate protection strategies. One unique protection challenge brought by the dc systems is dc arc faults. A dc arc fault is generated when there is a gap in the conductor due to insulation degradation and current is used to bridge the gap, resulting in an arc with very high temperature. Such a fault if it goes undetected and is not extinguished can cause damage to the entire system and cause fires. The purpose of the research is to study the effect of the dc arc fault at different locations in the hybrid ac/dc microgrid and provide insight on the reliability of the grid components when it is impacted by arc faults at various locations in the grid. The impact of dc arc fault at different locations on the performance of the PV array, wind generation, and constant power loads (CPL) interfaced with dc/dc converters is studied. MATLAB/Simulink is used to model the hybrid ac/dc microgrid and arc fault.

  10. DC-DC boost-flyback converter functioning as input stage for one phase low power grid-connected inverter

    Directory of Open Access Journals (Sweden)

    Kawa Adam

    2014-09-01

    Full Text Available The paper treats about main problems of one phase DC-AC microinverters that allow single solar cell to be joined with the grid. One of the issues is to achieve high voltage gain with high efficiency in DC circuit, which is necessary for proper operation of inverter. The operating principles, results of practical implementation and investigations on boost-flyback converter, which meets mentioned demands, are presented. (high step-up DC-DC boost-flyback converter for single phase grid microinverter

  11. Control strategy for a distributed DC power system with renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Kurohane, Kyohei; Uehara, Akie; Senjyu, Tomonobu; Yona, Atsushi; Urasaki, Naomitsu [University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami, Okinawa 903-0213 (Japan); Funabashi, Toshihisa [Meidensha Corporation, 36-2 Nihonbashi-Hakozakicho, Chuo-ku, Tokyo 103-8513 (Japan); Kim, Chul-Hwan [Sungkyunkwan University and NPT Center, Suwon City 440-746 (Korea)

    2011-01-15

    This paper deals with a DC-micro-grid with renewable energy. The proposed method is composed of a gearless wind power generation system, a battery, and DC loads in a DC distribution system. The battery helps to avoid the DC over-voltages by absorbing the power of the permanent magnet synchronous generator (PMSG) during line-fault. In addition, the control schemes presented in this paper including the maximum power point tracking (MPPT) control and a pitch angle control for the gearless wind turbine generator. By means of the proposed method, high-reliable power can be supplied to the DC distribution system during the line-fault and stable power supply from the PMSG can be achieved after line-fault clearing. The effectiveness of the proposed method is examined in a MATLAB/Simulink {sup registered} environment. (author)

  12. DC switching regulated power supply for driving an inductive load

    Science.gov (United States)

    Dyer, George R.

    1986-01-01

    A power supply for driving an inductive load current from a dc power supply hrough a regulator circuit including a bridge arrangement of diodes and switching transistors controlled by a servo controller which regulates switching in response to the load current to maintain a selected load current. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. The regulator may be operated in three "stages" or modes: (1) For current runup in the load, both first and second transistor switch arrays are turned "on" and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned "off", and load current "flywheels" through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays "off", allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load. The three operating states are controlled automatically by the controller.

  13. Novel DC ring topology and protection system - a comprehensive solution for mega city power grids

    Science.gov (United States)

    Haj-Maharsi, Mohamed Yassine

    2009-07-01

    The development of mega cities leads to increased load concentration and brings additional challenges to managing the electrical grid while keeping power available for critical loads. Techniques using FACTS devices are being applied to alleviate power management difficulties and to confine faults in their originating areas in order to limit the risk of cascading failures in the grid. The addition of many FACTS devices often results in control and protection coordination difficulties, power oscillations between connected networks, subsynchronous resonance problems, and torsional interactions with nearby generator units. The most effective solution is obtained when the individual AC subsystems representing sources and loads are decoupled so a fault in a given subsystem is not propagated to another subsystem. This solution can be achieved by the deployment of a DC system where power sources and loads are connected to the DC bus through voltage source converters. For a mega city, this would be conceived as a DC ring feeding multiple loads and connected to remote and local power sources. Unfortunately, the lack of fast DC circuit breakers has been one of the key issues affecting extensive applications of DC systems with common DC buses; a DC fault would discharge all the capacitors of the DC bus and cause delays in system recovery and possibly a wide system collapse. In this research, I provide a comprehensive solution to mega city power grid problems by proposing a DC system topology that enables grid expansions without affecting existing protection settings or changing existing AC breaker ratings. I also propose the means for protecting the DC system by designing a fast DC breaker and developing a control algorithm capable of isolating DC faults without blocking converter stations or depleting DC bus capacitors. My contribution is three folds: (1) I modeled and simulated Shanghai power grid and performed a study to identify short circuit and voltage stability problems

  14. Cooling cycle test of DC superconducting power transmission cable

    Energy Technology Data Exchange (ETDEWEB)

    Hamabe, M; Watanabe, H; Kawahara, T; Yamaguchi, S [Center of Applied Superconductivity and Sustainable Energy Research, Chubu University, Kasugai, Aichi, 487-8501 (Japan); Fujii, T; Sugino, M; Sasaki, A; Sugimoto, T [Department of Electric Engineering, Chubu University, Kasugai, Aichi, 487-8501 (Japan); Ishiguro, Y [JFE Steel Co., Chita, Aichi, 475-8611 (Japan); Kawamura, K, E-mail: hamabe@isc.chubu.ac.j [Mayekawa M.F.G. Co Ltd., Moriya, Ibaraki, 302-0118 (Japan)

    2010-06-01

    We constructed a test stand of a 20 m DC superconducting power transmission cable in Chubu University in 2006. The cable uses thirty-nine Bi-2223 tapes. Four cycles of a cooling and current-feeding test have been carried out after the construction of the test stand. The cable suffered rapid temperature decrease of 20 K/hour at the daytime during the cooling process by cold nitrogen gas and liquid to the liquid nitrogen temperature. Nineteen HTS tapes in the cable are electrically isolated from each other, and the superconducting characteristics of these HTS tapes can be measured separately. At every cooling cycle, critical current of these isolated HTS tapes were measured. Consequently, no reduction of the critical current characteristics was observed through the 4 cooling cycles. We considered that this endurance of the cable against the cooling cycle is due to unfixed cable end structure of the cable, and that the cable was free from the mechanical stress in spite of the 6 cm shrinkage of the cable length under the low temperature.

  15. single-phase dc phase dc-ac boost converter ac boost converter

    African Journals Online (AJOL)

    User

    supply (UPS) AC motor drives and other power sup systems, need to step-up the DC input voltage. increase the output voltage level in order requirements, DC-DC boost converter is used provide DC bus voltage for PWM inverters. Hence, conventional design always cascades DC and a separate DC-AC converter.

  16. Loss optimizing low power 50 Hz transformers intended for AC/DC standby power supplies

    DEFF Research Database (Denmark)

    Nielsen, Nils

    2004-01-01

    This paper presents the measured efficiency on selected low power conventional 50 Hz/230 V-AC transformers. The small transformers are intended for use in 1 W@5 V-DC series- or buck-regulated power supplies for standby purposes. The measured efficiency is compared for cheap off-the-self transformer...

  17. Research on DC Micro-grid system of photovoltaic power generation

    Science.gov (United States)

    Zheng, Yiming; Wang, Xiaohui

    2018-01-01

    The use of energy has become a topic of concern, the demand of people for power grows in number or quantity with the development of economy. It is necessary to consider using new forms of power supply-microgrid system for distributed power supply. The power supply mode can not only effectively solve the problem of excessive line loss in the large power grid, but also can increase the reliability of the power supply, and is economical and environmental friendly. With the increasing of DC loads, in order to improve the utilization efficiency, the DC microgrid power supply problems are begin to be researched and integrated with the renewable energy sources. This paper researched the development of microgrid, compared AC microgrid with DC microgrid, summarized the distribution of DC bus voltage level, the DC microgrid network form, the control mode and the main power electronics elements of DC microgrid of photovoltaic power generation system. Today, the DC microgrid system is still in the development stage without uniform voltage level standard, however, it will come into service in the future.

  18. Family of Step-up DC/DC Converters with Fast Dynamic Response for Low Power Applications

    DEFF Research Database (Denmark)

    N. Soltani, Mohsen; Mostaan, Ali; Siwakoti, Yam Prasad

    2016-01-01

    This study presents a family of novel step-up DC/DC converters which do not have a right half plane zero in their transfer function resulting in faster dynamic behaviour of the converters under the load variation. In addition, the voltage stress on all the active switches and diodes is as low...

  19. An Efficiency-Optimized Isolated Bidirectional DC-DC Converter with Extended Power Range for Energy Storage Systems in Microgrids

    Directory of Open Access Journals (Sweden)

    Xiaolong Shi

    2012-12-01

    Full Text Available This paper proposes a novel extended-single-phase shift (ESPS control strategy of isolated bidirectional full-bridge DC-DC converters (IBDCs which are a promising alternative as a power electronic interface in microgrids with an additional function of galvanic isolation. Based on the mathematical models of ESPS control under steady-state conditions, detailed theoretical and experimental analyses of IBDC under ESPS control are presented. Compared with conventional single-phase-shift (CSPS control, ESPS control can greatly improve the efficiency of IBDCs in microgrids through decreasing current stress and backflow power considerably over a wide input and output voltage range under light and medium loads. In addition, ESPS control only needs to adjust one single phase-shift angel to control transmission power, thus it retains implementation simplicity in comparison with dual-phase-shift (DPS control for microgrid applications. Furthermore, an efficiency-optimized modulation scheme based on ESPS and CSPS control is developed in the whole power range of IBDC for power distribution in microgrids. A 10 kW IBDC prototype is constructed and the experimental results validate the effectiveness of the proposed control strategy, showing that the proposed strategy can enhance the overall efficiency up to 30%.

  20. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    Directory of Open Access Journals (Sweden)

    Baolian Liu

    2014-01-01

    Full Text Available The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the above problem, and the design method is given. The simulation and experiment results proved that the proposed variable structure control algorithm can eliminate the chattering problem existing in traditional variable structure control effectively, is insensitive to system disturbance, and has good robustness and fast dynamic response speed and stable DC bus voltage with small fluctuation. The above advantages ensure the compensation effect of APF.

  1. A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2017-01-01

    , instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more......Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...

  2. Generalized Design Equations for Class-E Power Amplifiers with Finite DC Feed Inductance

    NARCIS (Netherlands)

    Acar, M.; Annema, Anne J.; Nauta, Bram

    2006-01-01

    Abstract—In literature, it is widely accepted that the design of Class-E Power Amplifier (PA) with finite dc feed inductance requires a long iterative solution procedure. To avoid such iterative solution methods, analytical design equations should be known. The problem associated with the finite dc

  3. A direct power conversion topology for grid integrations of hybrid AC/DC resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng

    2012-01-01

    and modulation schemes are proposed to extract the commanded current from the input ac/dc sources to the grid and guarantee high quality ac/dc inputs and ac output current waveforms with unity power factors. The proposed modulation scheme for sinusoidal outputs of the VMC is mathematically proved...

  4. Radiation-Tolerant DC-DC Converters

    Science.gov (United States)

    Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn

    2012-01-01

    A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).

  5. DC Link Current Estimation in Wind-Double Feed Induction Generator Power Conditioning System

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2010-12-01

    Full Text Available In this paper the implementation of the DC link current estimator in power conditioning system of the variable speed wind turbine is shown. The wind turbine is connected to double feed induction generator (DFIG. The variable electrical energy parameters delivered by DFIG are fitted with the electrical grid parameters through back-to-back power converter. The bidirectional AC-AC power converter covers a wide speed range from subsynchronous to supersynchronous speeds. The modern control of back-to-back power converter involves power balance concept, therefore its load power should be known in any instant. By using the power balance control, the DC link voltage variation at the load changes can be reduced. In this paper the load power is estimated from the dc link, indirectly, through a second order DC link current estimator. The load current estimator is based on the DC link voltage and on the dc link input current of the rotor side converter. This method presents certain advantages instead of using measured method, which requires a low pass filter: no time delay, the feedforward current component has no ripple, no additional hardware, and more fast control response. Through the numerical simulation the performances of the proposed DC link output current estimator scheme are demonstrated.

  6. A low capacitance single-phase AC-DC converter with inherent power ripple decoupling

    OpenAIRE

    Gottardo, Davide; De Lillo, Liliana; Empringham, Lee; Costabeber, Alessando

    2016-01-01

    This paper proposes a new single-phase AC-DC conversion topology with inherent power ripple decoupling, based on the combination of a PWM H-bridge inverter, an AC side LC filter and a ZVS line commutated H-bridge. A capacitor on the AC side is used as power decoupling element. By appropriate selection of the capacitor voltage, the power ripple at twice the AC frequency can be cancelled from the DC side instantaneous power, achieving negligible DC voltage ripple using a smaller total capacitan...

  7. Universal and inductorless DC/DC converter for multi-output power supplies in sensor and actuator networks

    Science.gov (United States)

    Saponara, Sergio; Ciarpi, Gabriele

    2017-05-01

    This work proposes a universal and inductorless DC/DC converter that can be used for a wide input range, from few V to 60 V, to regulate output voltages from 5 V down to 1 V in Sensor and Actuator Network nodes. The proposed converter has been developed within the Athenis3D European project. It is composed by a cascade of multiple switching capacitor stages, with a proper skip-mode control to implement both step-down and step-up converting ratios, thus regulating all input sources to a voltage of about 6 V. These switching stages are further cascaded with linear regulators, which can provide stable output voltages down to 1 V. The multi-output regulator has been realized as a single-chip in a low-cost 0.35 μm CMOS technology. It is available as a naked die or in a ceramic package. The only needed external components are surface mount capacitors, which can be integrated on top of the naked chip die, creating a 3D structure, using trench capacitors embedded in a passive interposing layer. This way the size of the power management unit is further minimized. An advantage of the proposed converter is that it isn't optimized for a particular input voltage, therefore it can be used with no constant input power, like power harvesting systems (e.g. solar cells, wind and water turbines) and very disturbed power supplies.

  8. Control and dynamic analysis of a parallel-connected single active bridge DC-DC converter for DC-grid wind farm application

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2015-01-01

    This study presents a control strategy and its dynamic analysis of a high-power dc-dc converter, which is constructed with the parallel-connected single active bridge (SAB) dc-dc converters for dc-grid wind farm applications. The structural and operational characteristics of the SAB dc-dc converter...

  9. TOPOLOGICAL REVIEW AND ANALYSIS OF DC-DC BOOST CONVERTERS

    Directory of Open Access Journals (Sweden)

    V. INDRA GANDHI

    2017-06-01

    Full Text Available DC voltage boost up is essential in numerous applications; especially considering Photovoltaic (PV based renewable power generation system. The conventional DC-DC boost converter is the most admired configuration for this scheme, even if the converter efficiency is restricted at duty cycle near to maximum value. In order to find solution to the problem and improve its conversion capability, many converter configurations have been implemented so far. With this circumstance, this research work proposes to give overview of a few most imperative research works related to DC-DC boost converters. Some configurations are covered and classified basically based on the application. The major benefits and disadvantages related to the available techniques are also briefly conveyed. At last, a proper evaluation is recognized among the important types of DC-DC boost converters in terms of efficiency, number of components, and stability.

  10. Stability boundaries analysis of electric power system with DC transmission based on differential-algebraic equation system

    OpenAIRE

    Susuki, Yoshihiko; Hikihara Takashi; Chiang, HD

    2004-01-01

    This paper discusses stability boundaries in an electric power system with dc transmission based on a differential-algebraic equation (DAE) system. The DAE system is derived to analyze transient stability of the ac/dc power system: the differential equation represents the dynamics of the generator and the dc transmission, and the algebraic equation the active and reactive power relationship between the ac system and the dc transmission. In this paper complete characterization of stability bou...

  11. Performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX

    Science.gov (United States)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Irwanto, M.; Leow, W. Z.; Amelia, A. R.

    2017-09-01

    A research has been conducted to find the optimum combination for DC fan air cooling system of photovoltaic (PV) panel. During normal operation of PV panel, it is estimated that only 15 % of solar radiation is converted into electrical energy. Meanwhile, the rest of the solar radiation is converted into heat energy which affects the performance of the PV panel. Therefore, the aim of this research is to investigate the performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX. The effect of airflow configuration of DC fan has been investigated. This is to analyze whether the airflow circulation of DC fan cause a change towards the maximum temperature of PV panel. Besides, the impact of varying number of DC fans attached at the back of PV panel is evaluated. The result of airflow circulation of DC fan has been discussed. Meanwhile, with the increment number of DC fans, the PV panel temperature drops significantly. As a conclusion, the optimum number of DC fans is two with the combination of inlet airflow.

  12. Forback DC-to-DC converter

    Science.gov (United States)

    Lukemire, Alan T.

    1995-05-01

    A pulse-width modulated DC-to-DC power converter including a first inductor, i.e. a transformer or an equivalent fixed inductor equal to the inductance of the secondary winding of the transformer, coupled across a source of DC input voltage via a transistor switch which is rendered alternately conductive (ON) and nonconductive (OFF) in accordance with a signal from a feedback control circuit is described. A first capacitor capacitively couples one side of the first inductor to a second inductor which is connected to a second capacitor which is coupled to the other side of the first inductor. A circuit load shunts the second capacitor. A semiconductor diode is additionally coupled from a common circuit connection between the first capacitor and the second inductor to the other side of the first inductor. A current sense transformer generating a current feedback signal for the switch control circuit is directly coupled in series with the other side of the first inductor so that the first capacitor, the second inductor and the current sense transformer are connected in series through the first inductor. The inductance values of the first and second inductors, moreover, are made identical. Such a converter topology results in a simultaneous voltsecond balance in the first inductance and ampere-second balance in the current sense transformer.

  13. A new DC/AC boost transformerless converter in application of photovoltaic power generation

    DEFF Research Database (Denmark)

    Wei, Mo; Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    This paper presents a new DC/AC boost transformerless converter in the applications of photovoltaic (PV) power generation. A new circuit topology of single phase full bridge power inverter with additional DC/DC boost stage is proposed. The proposed topology overcomes two commonly existing...... shortcomings of transformerless PV system: namely one, the voltage generated sometimes low and insufficient to fulfill the load requirement; and two, there always leakage current flowing through parasitic capacitance between PV panel and ground. This configuration helps to boost the voltage at the PV side...

  14. Coordinated Control of Multi-terminal DC Grid for Wind Power Integration

    DEFF Research Database (Denmark)

    Hao, Yu; Zhao, Haoran; Wu, Qiuwei

    2016-01-01

    Multi-terminal HVDC (MTDC) technology using voltage source converter (VSC) is a good option for wind power integration. Compared with point to point DC connection, MTDC provide better controllability based on different control strategies. In this paper, proportional-integral (PI) controllers...... with tuned PI parameters are designed to coordinate DC flow among the DC grid with good dynamic performance. In order to overcome the disadvantages of the conventional PI control, a simple adaptive PI control strategy is proposed based on the system transfer function. Case studies were conducted with PowerFactory....

  15. Very low noise AC/DC power supply systems for large detector arrays.

    Science.gov (United States)

    Arnaboldi, C; Baù, A; Carniti, P; Cassina, L; Giachero, A; Gotti, C; Maino, M; Passerini, A; Pessina, G

    2015-12-01

    In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0-60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μV(RMS) (CUORE setup) and 90 μV(RMS) (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled).

  16. Converter Power Density Increase using Low Inductive Integrated DC-link Capacitor/Bus

    DEFF Research Database (Denmark)

    Trintis, Ionut; Franke, Toke; Rannested, Bjørn

    2015-01-01

    The power losses in switching devices have a direct effect on the maximum converter power. For a voltage source converter, the DC-link bus has a major influence on the power loss and safe operating area of the power devices. The Power Ring Film CapacitorTM integrated with an optimized bus structu...... has a measured inductance of around 5 nH. That allows the converter to switch with low turn-off losses, and allows the safe operation at higher dc-link voltages. This paper investigates the power transfer limits of a ShowerPower® cooled power stack....

  17. Three-port DC-DC converter with new integrated transformer for DC Distribution Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2014-01-01

    A new integrated transformer for three-port dc-dc converter is proposed to overcome the power coupling effect existed in some known multiple inputs dc-dc converters. Orthogonal primary windings arrangement and in series connection of diagonal secondary Windings enables a fully power decoupling...... between the multiple inputs while the output power is still coupled with all inputs. The energy is accordingly allowed to deliver into the output load simultaneously or at any time-multiplexing scheme. 1-kW experimental prototypes have been built to demonstrate a well-managed power flow for photovoltaic...... (PV) and battery standalone system....

  18. DC arc weld starter

    Science.gov (United States)

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  19. Auxiliary resonant DC tank converter

    Science.gov (United States)

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  20. Design and Implementation of Power Flow Control for a novel Dual Input DC-DC Converter

    DEFF Research Database (Denmark)

    Taeed, Fazel; Ouyang, Ziwei; Nymand, Morten

    2014-01-01

    is outlined; then the control method for adjusting power sharing is proposed. In the next step, the controller is implemented in an FPGA, and then a 350W dual input converter is built to verify operation of the proposed control strategy. The experimental results show the excellent ability of the controller...... to control the power flow in the converter. The implemented controller in FPGA is low cost and simple. The complete system can be practically used in power management for renewable energy sources....

  1. Comprehensive review of high power factor ac-dc boost converters for PFC applications

    Science.gov (United States)

    De Castro Pereira, Dênis; Da Silva, Márcio Renato; Mateus Silva, Elder; Lessa Tofoli, Fernando

    2015-08-01

    High power factor rectifiers have been consolidated as an effective solution to improve power quality indices in terms of input power factor correction, reduction in the total harmonic distortion of the input current and also regulated dc voltages. Within this context, this subject has motivated the introduction of numerous converter topologies based on classic dc-dc structures associated with novel control techniques, thus leading to the manufacturing of dedicated integrated circuits that allow high input power factor by adding a front-end stage to switch-mode converters. In particular, boost converters in continuous current mode (CCM) are widely employed since they allow obtaining minimised electromagnetic interference levels. This work is concerned with a literature review involving relevant ac-dc single-phase boost-based topologies with high input power factor. The evolution of aspects regarding the conventional boost converter is shown in terms of improved characteristics inherent to other ac-dc boost converters. Additionally, the work intends to be a fast and concise reference to single-phase ac-dc boost converters operating in CCM for engineers, researchers and experts in the field of power electronics by properly analysing and comparing the aforementioned rectifiers.

  2. A highly stable DC power supply for precision magnetic field measurements and other purposes.

    Science.gov (United States)

    Ino, Takashi

    2012-04-01

    A homogeneous magnetic field is essential for the (3)He neutron spin filter used to polarize neutron beams and analyze neutron spins in neutron scattering. The required spatial uniformity of the magnetic field is on the order of 10(-4)/cm or less. To measure such uniformity, one needs a DC current source with a current stability much better than 10(-4). However, laboratory DC power supplies, which are commonly used in many (3)He neutron spin filters, do not have such stabilities. To attain a highly stable current with a common laboratory DC power supply for every (3)He neutron spin filter, a simple feedback circuit has been developed to keep the output current stable up to 10(-6). Such a highly stable current or voltage from a common laboratory DC power supply can also be used for various other research applications. © 2012 American Institute of Physics

  3. DC/AC Power Converter for Home Scale Electricity Systems Powered by Renewable Energy

    OpenAIRE

    Samman, Faizal Arya; Azhari, Arie

    2017-01-01

    in Proc. of the International Conference on Smart Green Technology in Electrical and Information Systems (ICSGTEIS), 2016, publised in IEEE Explorer (indexed by SCOPUS) This paper presents the design of a single phase DC/AC Converter or Inverter for home scale electricity systems powered by renewable energy such as photovoltaic system. The power converter is controlled using a microcontroller. The inverter system is firstly modeled and simulated using SPICE, before we design it. A control ...

  4. Optimizing efficiency on conventional transformer based low power AC/DC standby power supplies

    DEFF Research Database (Denmark)

    Nielsen, Nils

    2004-01-01

    This article describes the research results for simple and cheap methods to reduce the idle- and load-losses in very low power conventional transformer based power supplies intended for standby usage. In this case "very low power" means 50 Hz/230 V-AC to 5 V-DC@1 W. The efficiency is measured...... on two common power supply topologies designed for this power level. The two described topologies uses either a series (or linear) or a buck regulation approach. Common to the test power supplies is they either are using a standard cheap off-the-shelf transformer, or one, which are loss optimized by very...

  5. Implementation of Rapid Prototyping Tools for Power Loss and Cost Minimization of DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Amruta V. Kulkarni

    2016-07-01

    Full Text Available In this paper, power loss and cost models of power electronic converters based on converter ratings and datasheet information are presented. These models aid in creating rapid prototypes which facilitate the component selection process. Through rapid prototyping, users can estimate power loss and cost which are essential in design decisions. The proposed approach treats main power electronic components of a converter as building blocks that can be arranged to obtain multiple topologies to facilitate rapid prototyping. In order to get system-level power loss and cost models, two processes are implemented. The first process automatically provides minimum power loss or cost estimates and identifies components for specific applications and ratings; the second process estimates power losses and costs of each component of interest as well as the whole system. Two examples are used to illustrate the proposed approaches—boost and buck converters in continuous conduction mode. Achieved cost and loss estimates are over 93% accurate when compared to measured losses and real cost data. This research presents derivations of the proposed models, experimental validation of the models and demonstration of a user friendly interface that integrates all the models. Tools presented in this paper are expected to be very useful for practicing engineers, designers, and researchers, and are flexible and adaptable with changing or new technologies and varying component prices.

  6. Frequency Domain Modeling and Simulation of DC Power Electronic Systems Using Harmonic State Space Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    . Through this method, the required computation time and CPU memory can be reduced, where this faster simulation can be an advantage of a large network simulation. Besides, the achieved results show the same results as the non-linear time-domain simulation. Furthermore, the HSS modeling can describe how...... with different switching frequency or harmonics from ac-dc converters makes that harmonics and frequency coupling are both problems of ac system and challenges of dc system. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling...

  7. Virtual Impedance Based Stability Improvement for DC Microgrids with Constant Power Loads

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Huang, Lipei

    2014-01-01

    DC microgrid provides an efficient way to integrate different kinds of renewable energy sources with DC couplings. In this paper, in order to improve the stability of DC microgrids with constant power loads (CPLs), a virtual impedance based method is proposed. The CPLs have inherent instability...... issues induced by negative incremental impedances. This negative impedance makes the system poorly damped and the stability is thereby degraded. To enhance the system stability, virtual impedance based stabilizer comprised of series-connected inductance and resistance is employed. In particular, two...

  8. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    Science.gov (United States)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  9. DC injection into low voltage AC networks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report summarises the results of a study investigating the impact of levels of injected DC current injections on a low voltage AC distribution network systems in order to recommend acceptable limits of DC from microgeneration. Relevant literature is reviewed, and the impact of DC levels in distribution transformers, transformer modelling, and instrumental transformers are discussed. The impact of DC in residual current devices (RCD) and in domestic electricity watt hour meters is examined along with DC enhanced corrosion, corrosion failure, and the measurement of DC current injection. Sources of DC injection outlined include DC from computer power supplies, network faults, geomagnetic phenomena, lighting circuits/dimmers, and embedded generators.

  10. 76 FR 31462 - Airworthiness Directives; The Boeing Company Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10...

    Science.gov (United States)

    2011-06-01

    ... Model DC-10-10, DC- 10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F.... Applicability (c) This AD applies to all The Boeing Company Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10- 40, DC-10-40F, MD-10-10F, MD-10-30F, MD-11, and MD-11F airplanes...

  11. Efficiency and hardware comparison of analog control-based and digital control-based 70 W two-stage power factor corrector and DC-DC converters

    DEFF Research Database (Denmark)

    Török, Lajos; Munk-Nielsen, Stig

    2011-01-01

    A comparison of an analog and a digital controller driven 70 W two-stage power factor corrector converter is presented. Both controllers are operated in average current-mode-control for the PFC and peak current control for the DC-DC converter. Digital controller design and converter modeling is d...... is described. Results show that digital control can compete with the analog one in efficiency, PFC and THD.......A comparison of an analog and a digital controller driven 70 W two-stage power factor corrector converter is presented. Both controllers are operated in average current-mode-control for the PFC and peak current control for the DC-DC converter. Digital controller design and converter modeling...

  12. Virtual Resistance-Based Control Strategy for DC link Regeneration Protection and Current Sharing in Uninterruptible Power Supply

    DEFF Research Database (Denmark)

    Lu, Jinghang; Guan, Yajuan; Savaghebi, Mehdi

    2017-01-01

    To address the DC link voltage regeneration issue in parallel Uninterruptible Power Supply (UPS) system, a DC link voltage protection (DCVP) method through online virtual resistance regulation is proposed. The proposed control strategy is able to protect the DC link from overvoltage that may...

  13. Efficiency and hardware comparison of analog control-based and digital control-based 70 W two-stage power factor corrector and DC-DC converters

    DEFF Research Database (Denmark)

    Török, Lajos; Munk-Nielsen, Stig

    2011-01-01

    A comparison of an analog and a digital controller driven 70 W two-stage power factor corrector converter is presented. Both controllers are operated in average current-mode-control for the PFC and peak current control for the DC-DC converter. Digital controller design and converter modeling...... is described. Results show that digital control can compete with the analog one in efficiency, PFC and THD....

  14. Characteristic Analysis of DC Electric Railway Systems with Superconducting Power Cables Connecting Power Substations

    Science.gov (United States)

    Ohsaki, H.; Matsushita, N.; Koseki, T.; Tomita, M.

    2014-05-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  15. DC microgrid power flow optimization by multi-layer supervision control. Design and experimental validation

    International Nuclear Information System (INIS)

    Sechilariu, Manuela; Wang, Bao Chao; Locment, Fabrice; Jouglet, Antoine

    2014-01-01

    Highlights: • DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control. • Power balancing following power flow optimization while providing interface for smart grid communication. • Optimization under constraints: storage capability, grid power limitations, grid time-of-use pricing. • Experimental validation of DC microgrid power flow optimization by multi-layer supervision control. • DC microgrid able to perform peak shaving, to avoid undesired injection, and to make full use of locally energy. - Abstract: Urban areas have great potential for photovoltaic (PV) generation, however, direct PV power injection has limitations for high level PV penetration. It induces additional regulations in grid power balancing because of lacking abilities of responding to grid issues such as reducing grid peak consumption or avoiding undesired injections. The smart grid implementation, which is designed to meet these requirements, is facilitated by microgrids development. This paper presents a DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control which handles instantaneous power balancing following the power flow optimization while providing interface for smart grid communication. The optimization takes into account forecast of PV power production and load power demand, while satisfying constraints such as storage capability, grid power limitations, grid time-of-use pricing and grid peak hour. Optimization, whose efficiency is related to the prediction accuracy, is carried out by mixed integer linear programming. Experimental results show that the proposed microgrid structure is able to control the power flow at near optimum cost and ensures self-correcting capability. It can respond to issues of performing peak shaving, avoiding undesired injection, and making full use of locally produced energy with respect to rigid element constraints

  16. Charge pump DC-DC converter comprising solid state batteries

    NARCIS (Netherlands)

    Reefman, D.; Roozeboom, F.; Notten, P.H.L.; Klootwijk, J.H.

    2013-01-01

    An electronic device is provided which comprises a DC-DC converter. The DC-DC converter comprises at least one solid-state rechargeable battery (B1, B2) for storing energy for the DC-DC conversion and an output capacitor (C2).

  17. SCM Handbooks for dc-to-dc Converters

    Science.gov (United States)

    Lee, F.; Mohmoud, M.; Yu, Y.

    1984-01-01

    Two documents aid in design of control modules for dc-to-dc converters. Features of SCM include: Adaptive stability, power component stress limiting, implementation of various control laws, unified design approach. Analysis and quidelines contained in handbooks enable engineer to design SCM circuit and confidently predict resulting overall performance.

  18. Sheppard-Taylor Isolated High Boost DC-DC Converter

    DEFF Research Database (Denmark)

    Chub, Andrii; Siwakoti, Yam Prasad; Vinnikov, Dmitri

    2017-01-01

    This paper presents a new galvanically isolated step-up dc-dc converter intended for low-power but high step-up applications. The proposed converter is capable of regulating output voltage within a wide range of the input voltage or load variations. In contrast to competitors, the converter can b...

  19. Triple voltage dc-to-dc converter and method

    Science.gov (United States)

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  20. Gate Driver Circuit of Power Electronic Switches with Reduced Number of Isolated DC/DC Converter for a Switched Reluctance Motor

    International Nuclear Information System (INIS)

    Memon, A.A.

    2013-01-01

    This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is also significant that required number of isolation converters is much less than the switches used in converter. In addition, a simple logic circuit has been presented for producing the gate signals at correct phase sequence which is compared with the gated signals directly obtained from the encoder of an existing machine. (author)

  1. Gate Driver Circuit of Power Electronic Switches with Reduced Number of Isolated DC/DC Converter for a Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Memon

    2013-04-01

    Full Text Available This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is also significant that required number of isolation converters is much less than the switches used in converter. In addition, a simple logic circuit has been presented for producing the gate signals at correct phase sequence which is compared with the gated signals directly obtained from the encoder of an existing machine.

  2. DC Distributed Power Systems. Analysis, Design and Control for a Renewable Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Per

    2002-12-01

    Renewable energy systems are likely to become wide spread in the future due to environmental demands. As a consequence of the dispersed nature of renewable energy systems, this implies that there will be a distributed generation of electric power. Since most of the distributed electrical energy sources do not provide their electric power at line frequency and voltage, a DC bus is a useful common connection for several such sources. Due to the differences in output voltage among the sources, depending on both the type of source and their actual operating point, the sources are connected to the DC power system via power electronic converters. The intention behind the presented work is not to replace the existing AC power system, but to include local DC power systems. The AC and DC power systems are connected at some points in the network. The renewable energy sources are weak compared to the present hydro power and nuclear power plants, resulting in a need of power conditioning before the renewable energy is fed to the transmission lines. The benefit of such an approach is that power conditioning is applied on a central level, i.e. at the interface between the AC and DC power systems. The thesis starts with an overview of related work. Present DC transmission systems are discussed and investigated in simulations. Then, different methods for load sharing and voltage control are discussed. Especially, the voltage droop control scheme is examined thoroughly. Since the droop control method does not require any high-speed communication between sources and loads, this is considered the most suitable for DC distributed power systems. The voltage feed back design of the controller also results in a specification of the DC bus capacitors (equivalents to DC link capacitors of single converters) needed for filtering. If the converters in the DC distribution system are equipped with capacitors selected from this design criterion and if the DC bus impedance is neglected, the

  3. Progress in the design of a DC FEL power source using a pelletron driver

    International Nuclear Information System (INIS)

    Larson, D.J.; Cline, D.B.; Anderson, D.R.; Rosenzweig, J.B.; Mills, F.E.; Sundquist, M.L.; Adney, J.R.; Dehais, S.J.

    1987-01-01

    The authors discuss progress in the design of a DC Free Electron Laser power source using a Pelletron electrostatic accelerator as a driver. Such a power source should deliver up to 200 kW DC power in wavelengths ranging from a few microns to a few centimeters. The advantages of this system for use as a power source for future acceleration techniques are its efficiency, tunability and high average power. In order to achieve DC operation of the system extremely high electron recovery efficiencies are required. It is also likely that FEL operation will result in a large spread of electron energies. These design constraints require the development of a highly efficient electron beam collector as well as beam optic capable of recirculating beams with a large energy spread. The authors present collector and beamline designs and include electron optics studies for the full range of operating conditions

  4. Voltage ripple compensation for grid connected electrolyser power supply using small DC link capacitor

    DEFF Research Database (Denmark)

    Török, Lajos; Mathe, Laszlo; Munk-Nielsen, Stig

    2014-01-01

    The purpose of this work was to investigate a three-phase-grid connected power supply using small DC link capacitor for electrolyser application. The hydrogen generation system requires low voltage and high current power supply. Thus the structure of the 3-phase power supply is defined as follows...... is analysed from the grid current harmonic point of view and compensation solutions are discussed....

  5. A Novel Design of an RF-DC Converter for a Low–Input Power Receiver

    Directory of Open Access Journals (Sweden)

    Ngoc-Duc Au

    2017-10-01

    Full Text Available Microwave wireless power transmission (MWPT is a promising technique for low and medium power applications such as wireless charging for sensor network or for biomedical chips in case with long ranges or in dispersive media such. A key factor of the MWPT technique is its efficiency, which includes the wireless power transmission efficiency and the radio frequency (RF to direct current (DC voltage efficiency of RF–DC converter (which transforms RF energy to DC supply voltage. The main problem in designing an RF–DC converter is the nonlinear characteristic of Schottky diodes; this characteristic causes low efficiency, higher harmonics frequency and a change in the input impedance value when the RF input power changes. In this paper, rather than using harmonic termination techniques of class E or class F power amplifiers, which are usually used to improve the efficiency of RF-DC converters, we propose a new method called “optimal input impedance” to enhance the performance of our design. The results of simulations and measurements are presented in this paper along with a discussion of our design concerning its practical applications.

  6. Startup experience with the MFTF-B ECRH 100 kV dc power supply

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, S.R.; Goodman, R.A.; Wilson, J.H.

    1983-11-30

    One of the 24 Accel dc Power Supplies (ADCPS) originally intended for the Mirror Fusion Test Facility (MFTF-B) Neutral Beam Power Supply (NBPS) System has been converted to provide negative polarity output at 90 kV with a load current of 64 A dc. The load duty cycle is a pulse of 30-seconds duration with a pulse repetition period of five minutes. A new control system has been built which will serve as a prototype for the MFTF-B ADCPS controls, and a test setup was built which will be used to test the ADCPS. The Electron Cyclotron Resonance Heating (ECRH) dc Power Supply (DCPS) has been tested under both no-load and dummy-load conditions, under remote control, without notable problems. Test results indicate that the power supply should be reliable and safe to operate, and will meet the load duty requirements.

  7. Startup experience with the MFTF-B ECRH 100 kV dc power supply

    International Nuclear Information System (INIS)

    Bishop, S.R.; Goodman, R.A.; Wilson, J.H.

    1983-01-01

    One of the 24 Accel dc Power Supplies (ADCPS) originally intended for the Mirror Fusion Test Facility (MFTF-B) Neutral Beam Power Supply (NBPS) System has been converted to provide negative polarity output at 90 kV with a load current of 64 A dc. The load duty cycle is a pulse of 30-seconds duration with a pulse repetition period of five minutes. A new control system has been built which will serve as a prototype for the MFTF-B ADCPS controls, and a test setup was built which will be used to test the ADCPS. The Electron Cyclotron Resonance Heating (ECRH) dc Power Supply (DCPS) has been tested under both no-load and dummy-load conditions, under remote control, without notable problems. Test results indicate that the power supply should be reliable and safe to operate, and will meet the load duty requirements

  8. Startup experience with the MFTF-B ECRH 100 kV dc power supply

    International Nuclear Information System (INIS)

    Bishop, S.R.; Goodman, R.A.; Wilson, J.H.

    1983-01-01

    One of the 24 Accel DC Power Supplies (ADCPS) originally intended for the Mirror Fusion Test Facility (MFTF-B) Neutral Beam Power Supply (NBPS) System has been converted to provide negative polarity output at 90 kV with a load current of 64 A dc. The load duty cycle is a pulse of 30-seconds duration with a pulse repetition period of five minutes. A new control system has been built which will serve as a prototype for the MFTF-B ADCPS controls, and a test setup was built which will be used to test the ADCPS. The Electron Cyclotron Resonance Heating (ECRH) DC Power Supply (DCPS) has been tested under both no-load and dummy-load conditions, under remote control, without notable problems. Test results indicate that the power supply should be reliable and safe to operate, and will meet the load duty requirements

  9. Power quality improvement by using multi-pulse AC-DC converters for DC drives: Modeling, simulation and its digital implementation

    Directory of Open Access Journals (Sweden)

    Mohd Tariq

    2014-12-01

    Full Text Available The paper presents the modeling, simulation and digital implementation of power quality improvement of DC drives by using multi pulse AC–DC converter. As it is a well-known fact that power quality determines the fitness of electrical power to consumer devices, hence an effort has been made to improve power quality in this work. Simulation and digital implementation with the help of MATLAB/Simulink has been done and results obtained are discussed in detail to verify the theoretical results. The multipulse converter was connected with DC drives and was run at no load condition to find out the transient and steady state performances. FFT analysis has been performed and Total Harmonic Distortion (THD results obtained at different pulses are shown here.

  10. Review of the development of multi-terminal HVDC and DC power grid

    Science.gov (United States)

    Chen, Y. X.

    2017-11-01

    Traditional power equipment, power-grid structures, and operation technology are becoming increasingly powerless with the large-scale renewable energy access to the grid. Thus, we must adopt new technologies, new equipment, and new grid structure to satisfy future requirements in energy patterns. Accordingly, the multiterminal direct current (MTDC) transmission system is receiving increasing attention. This paper starts with a brief description of current developments in MTDC worldwide. The MTDC project, which has been placed into practical operation, is introduced by the Italian–Corsica–Sardinian three-terminal high-voltage DC (HVDC) project. We then describe the basic characteristics and regulations of multiterminal DC transmission. The current mainstream of several control methods are described. In the third chapter, the key to the development of MTDC system or hardware and software technology that restricts the development of multiterminal DC transmission is discussed. This chapter focuses on the comparison of double-ended HVDC and multiterminal HVDC in most aspects and subsequently elaborates the key and difficult point of MTDC development. Finally, this paper summarizes the prospect of a DC power grid. In a few decades, China can build a strong cross-strait AC-DC hybrid power grid.

  11. Optimized efficiency of all-electric ships by dc hybrid power systems

    Science.gov (United States)

    Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.

    2014-06-01

    Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.

  12. Wind-driven SEIG supplying DC microgrid through a single-stage power converter

    Directory of Open Access Journals (Sweden)

    Vellapatchi Nayanar

    2016-09-01

    Full Text Available Nowadays, there is an increased emphasis on utilizing the renewable energy sources and selection of suitable power converters for supplying dc microgrid. Among the various renewable energy sources, wind energy stands first in terms of installed capacity. So, an attempt is made in this paper for supplying dc microgrid utilizing wind energy. A self-excited induction generator has been used in the proposed wind energy conversion system (WECS. A single-stage power converter, namely, semi-converter is connected between the SEIG and dc grid terminals for closed-loop control of the proposed system. A perturb and observe (P&O based maximum power point tracking (MPPT algorithm has been developed and implemented using a dsPIC30F4011 digital controller. In this MPPT algorithm, the firing angle of the converter is adjusted by continuously monitoring the dc grid current for a given wind velocity. For analyzing the proposed system, a MATLAB/Simulink model has been developed by selecting the various components starting from wind-turbine model to the power converter supplying dc microgrid. Successful working of the proposed WECS has also been shown through experimental results obtained on a prototype model developed in the laboratory.

  13. Simulation and analysis of an isolated full-bridge DC/DC boost converter operating with a modified perturb and observe maximum power point tracking algorithm

    Directory of Open Access Journals (Sweden)

    Calebe A. Matias

    2017-07-01

    Full Text Available The purpose of the present study is to simulate and analyze an isolated full-bridge DC/DC boost converter, for photovoltaic panels, running a modified perturb and observe maximum power point tracking method. The zero voltage switching technique was used in order to minimize the losses of the converter for a wide range of solar operation. The efficiency of the power transfer is higher than 90% for large solar operating points. The panel enhancement due to the maximum power point tracking algorithm is 5.06%.

  14. DC Distribution Systems and Microgrids

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Anvari-Moghaddam, Amjad; Quintero, Juan Carlos Vasquez

    2017-01-01

    A qualitative overview of different hardware topologies and control systems for DC MGs has been presented in this chapter. Some challenges and design considerations of DC protections systems have also been discussed. Finally, applications of DC MGs in emerging smart grid applications have been su...... in different industries and gradually lead to new ways of rethinking of the future power distribution philosophies, especially with the emergence of SSTs. Research in DC systems, especially in the power electronics-based technologies will be highly attractive in the future.......A qualitative overview of different hardware topologies and control systems for DC MGs has been presented in this chapter. Some challenges and design considerations of DC protections systems have also been discussed. Finally, applications of DC MGs in emerging smart grid applications have been...... summarized. Due to its attractive characteristics in terms of compliance with modern generation, storage and electronic load technologies, high reliability and current carrying capacity, as well as simple control, DC systems are already an indispensable part of power systems. Moreover, the existing...

  15. Distributed Primary and Secondary Power Sharing in a Droop-Controlled LVDC Microgrid with Merged AC and DC Characteristics

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Loh, Poh Chiang

    2018-01-01

    in dc microgrids, which in most cases, are solved by a secondary control layer reinforced by an extensive communication network. To avoid such an infrastructure and its accompanied complications, this paper proposes an alternative droop scheme for low-voltage dc (LVDC) microgrid with both primary power...... sharing and secondary voltage regulation merged. The main idea is to introduce a non-zero unifying frequency and a second power term to each dc source by modulating its converter with both a dc and a small ac signal. Two droop expressions can then be written for the proposed scheme, instead of the single...... expression found in the conventional droop scheme. The first expression is for regulating the ac frequency and active power generated, while the second is for relating the dc voltage to the second power term. The outcomes are better active power sharing and average voltage regulation in the dc microgrid...

  16. A Control Strategy of DC Building Microgrid Connected to the Neighborhood and AC Power Network

    Directory of Open Access Journals (Sweden)

    Thi Thuong Huyen Ma

    2017-05-01

    Full Text Available Recently, the use of DC microgrid distribution system has become more attractive than traditional AC systems due to their energy efficiency and ability to easily integrate with renewable energy sources and batteries. This paper proposes a 500 V DC microgrid which consists of a 20 kWp photovoltaic panel, batteries, and DC loads. A hierarchical control strategy to ensure balance power of the DC microgrid and the maintenance of common DC bus voltage is presented. The capability of exchanging power energy of the microgrid with the power system of neighborhood buildings is also considered. Typical operation modes are simulated in the Matlab/simulink environment to confirm the good performance of the controllers and the efficiency of appropriately controlling the charge–discharge of the battery system. This research is expected to bring benefits to the design and operation of the system, such as reducing the capacity of batteries, increasing the self-supply of buildings, and decreasing the electricity demand from the AC grid.

  17. Communication-Theoretic Model of Power Talk for a Single-Bus DC Microgrid

    DEFF Research Database (Denmark)

    Angjelichinoski, Marko; Stefanovic, Cedomir; Popovski, Petar

    2016-01-01

    Power talk is a method for communication among voltage control sources (VSCs) in DC microgrids (MGs), achieved through variations of the supplied power that is incurred by modulation of the parameters of the primary control. The physical medium upon which the communication channel is established...

  18. Long distance transmission of bulk power: the EHV-UHV DC challenge

    Energy Technology Data Exchange (ETDEWEB)

    Clerici, A.; Valtorta, G.

    1994-12-31

    This paper deals with technical and economical analysis of transmission of powers in the range from 1000 to 5000 MW and distances included between 1000 to 4000 km. The advantages of adoption of UHV DC transmission are evident especially for the longest distances and the largest power levels considered. (author) 4 refs., 9 figs.

  19. A Wireless Power Sharing Control Strategy for Hybrid Energy Storage Systems in DC Microgrids

    DEFF Research Database (Denmark)

    Yang, Jie; Jin, Xinmin; Wu, Xuezhi

    2017-01-01

    In order to compensate multiple time scales power fluctuation resulted from distributed energy resources and loads, hybrid energy storage systems are employed as the buffer unit in DC microgrid. In this paper, a wireless hierarchical control strategy is proposed to realize power sharing between...

  20. Bi-Directional DC-DC Converter for PHEV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  1. 75 FR 63040 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, DC-10-30, DC...

    Science.gov (United States)

    2010-10-14

    ... Corporation Model DC- 10-10, DC-10-10F, DC-10-30, DC-10-30F (KDC-10), DC-10-40, and DC-10-40F Airplanes AGENCY...-10F, DC-10-30, DC-10-30F (KDC-10), DC-10-40, and DC-10- 40F airplanes, certificated in any category...

  2. Modeling and Simulation of DC Power Electronics Systems Using Harmonic State Space (HSS) Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    based on the state-space averaging and generalized averaging, these also have limitations to show the same results as with the non-linear time domain simulations. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling....... Through this method, the required computation time and CPU memory for large dc power electronics systems can be reduced. Besides, the achieved results show the same results as with the non-linear time domain simulation, but with the faster simulation time which is beneficial in a large network....

  3. High power, medium voltage, series resonant converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    , and the resulting compact and efficient transformer, and soft-commutated inverter, present particular advantages in high-power, high-voltage applications, like DC offshore wind turbines. With transformer excitation frequency in hundreds of Hz range, line-frequency diodes can be employed in the high......A new modulation scheme is introduced for a single-phase series-resonant converter, which permits continuous regulation of power from nominal level to zero, in presence of variable input and output dc voltage levels. Rearranging the circuit to locate the resonant LC tank on the rectifier side...

  4. Analysis and design of a parallel-connected single active bridge DC-DC converter for high-power wind farm applications

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2013-01-01

    ripples without increasing switching losses or device stresses. Analysis of both the input and output current characteristics and design aspects of the transformer, the filter inductor, and the input and output filter capacitors will be presented. Considering the high maintenance cost and fault tolerant......This paper presents a parallel-connected Single Active Bridge (SAB) dc-dc converter for high-power applications. Paralleling lower-power converters can lower the current rating of each modular converter and interleaving the outputs can significantly reduce the magnitudes of input and output current...... requirements, this modular converter concept is expected to be highly beneficial especially for the offshore wind farm application....

  5. Operation strategy for grid-tied DC-coupling power converter interface integrating wind/solar/battery

    Science.gov (United States)

    Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.

    2017-11-01

    The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.

  6. Design of resonant converter based DC power supply for RF amplifier

    International Nuclear Information System (INIS)

    Mohan, Kartik; Suthar, Gajendra; Dalicha, Hrushikesh; Agarwal, Rohit; Trivedi, R.G.; Mukherjee, Aparajita

    2017-01-01

    ITER require 20 MW of RF power to a large variety of plasmas in the Ion Cyclotron frequency range for heating and driving plasma current. Nine RF sources of 2.5MW RF power level each collectively will accomplish the above requirement. Each RF source consists of SSPA, driver and end stage, above which driver and end stage amplifier are tube (Tetrode/Diacrode) based which requires auxiliary DC power source viz. filament, screen grid and control grid DC power supply. DC power supply has some stringent requirements like low stored energy, fast turn off, and low ripple value, etc. This paper will focus only on Zero Current Switching (ZCS) resonant converter based buck converter. This can serve the purpose of control grid and screen grid DC power supply for above requirement. IGBT switch will be used at 20 kHz so as to lower the filter requirement hence low stored energy and ripple in the output voltage. ZCS operation will also assist us in reducing EMI/EMC effect. Design of resonant tank circuit is important aspect of the converter as it forms the backbone of the complete system and basis of selection of other important parameters as well hence mathematical model analysis with the help of circuit equations for various modes have been shown as a part of selection criteria. Peak current through the switch, duty cycle, switching frequency will be the design parameters for selecting resonant tank circuit

  7. DC Microgrids—Part II

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Lu, Xiaonan; Quintero, Juan Carlos Vasquez

    2016-01-01

    distribution applications such as traction, telecom, vehicular and distributed power systems can be classified under DC MG framework and ongoing development and expansion of the field is largely influenced by concepts used over there. This paper aims firstly to shed light on the practical design aspects of DC...... MG technology concerning typical power hardware topologies and their suitability for different emerging smart grid applications. Then, an overview of the state of the art in DC MG protection and grounding is provided. Owing to the fact that there is no zero current crossing, an arc that appears upon...

  8. Optimization of Consumed Power in Two Different DC Motors Coupled Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mehrdad Jafarboland

    2011-01-01

    Full Text Available A single DC motor can be substituted by two different couple DC motors in submarines. By this way, by varying the speed of submarine, the power of propellant and subsequently the mechanical power of these motors would vary. One important promlem in controlling the mechanical coupling of these motors is the power sharing between them. In the previous reports the mechanical power was shared between them in nonoptimized manner. In this paper an optimized cantroller is indroduced that optimize the efficiency of the system. The power sharing between these motors would vary according to their speed. The proposed controller is based on Genetic Algoritm and is able to share the mechanical power between the motors in an optimized manner at different speeds. The simutation results shows the well behavior of system and also the optimize power sharing.

  9. Maritime DC Microgrids - A Combination of Microgrid Technologies and Maritime Onboard Power System for Future Ships

    DEFF Research Database (Denmark)

    Jin, Zheming; Savaghebi, Mehdi; Quintero, Juan Carlos Vasquez

    2016-01-01

    alternative to the conventional AC power systems in the field of future maritime applications. Moreover, the inevitable cabin structure of maritime applications naturally separate the large-scale power system into several zonal parts. Furthermore, it is expected that the zonal parts can maintain autonomous......DC power distribution system is being considered as an attractive alternative to its traditional AC counterpart in many fields of applications and, in particular, for maritime onboard power systems. The adoption of DC power architecture would bring a broad range of benefits to the onboard power...... and coordination methods, and specific issues of maritime onboard power system, fuel efficiency optimization and systemic reconfiguration are outlined, referring to state-of-the-art realizations as well as to novel concept designs presently under development and investigation....

  10. Programmable dc motor controller

    Science.gov (United States)

    Hopwood, J. E.

    1982-11-01

    A portable programmable dc motor controller, with features not available on commercial instruments was developed for controlling fixtures during welding processes. The controller can be used to drive any dc motor having tachometer feedback and motor requirements not exceeding 30 volts, 3 amperes. Among the controller's features are delayed start time, upslope time, speed, and downslope time.

  11. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    Science.gov (United States)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  12. Multilevel DC link inverter

    Science.gov (United States)

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  13. Coordinated Stability Control of Wind-Thermal Hybrid AC/DC Power System

    Directory of Open Access Journals (Sweden)

    Zhiqing Yao

    2015-01-01

    Full Text Available The wind-thermal hybrid power transmission will someday be the main form of transmitting wind power in China but such transmission mode is poor in system stability. In this paper, a coordinated stability control strategy is proposed to improve the system stability. Firstly, the mathematical model of doubly fed wind farms and DC power transmission system is established. The rapid power controllability of large-scale wind farms is discussed based on DFIG model and wide-field optical fiber delay feature. Secondly, low frequency oscillation and power-angle stability are analyzed and discussed under the hybrid transmission mode of a conventional power plant with wind farms. A coordinated control strategy for the wind-thermal hybrid AC/DC power system is proposed and an experimental prototype is made. Finally, real time simulation modeling is set up through Real Time Digital Simulator (RTDS, including wind power system and synchronous generator system and DC power transmission system. The experimental prototype is connected with RTDS for joint debugging. Joint debugging result shows that, under the coordinated control strategy, the experimental prototype is conductive to enhance the grid damping and effectively prevents the grid from occurring low frequency oscillation. It can also increase the transient power-angle stability of a power system.

  14. Optimal Power Flow for resistive DC Network : A Port-Hamiltonian approach

    NARCIS (Netherlands)

    Benedito, Ernest; del Puerto-Flores, D.; Doria-Cerezo, A.; Scherpen, Jacquelien M.A.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    This paper studies the optimal power flow problem for resistive DC networks. The gradient method algorithm is written in a port-Hamiltonian form and the stability of the resulting dynamics is studied. Stability conditions are provided for general cyclic networks and a solution, when these conditions

  15. Stability Enhancement Based on Virtual Impedance for DC Microgrids with Constant Power Loads

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.

    2015-01-01

    . It can be seen that by using the proposed stabilizers, the unstable poles induced by the CPLs are forced to move into the stable region. The proposed method is verified by the MATLAB/Simulink model of multi-stage DC microgrids with three distributed power generation units....

  16. A Direct Power Conversion Topology for Grid Integration of Hybrid AC/DC Energy Resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng

    2013-01-01

    This paper proposes a multiple-input versatile matrix converter (VMC) for integrating hybrid ac/dc energy resources and storages to the power grid. The VMC is developed from the traditional indirect matrix converter but operates in the reverse-boost mode rather than in the forward-buck mode...

  17. Secure and robust authentication for DC MicroGrids based on power talk communication

    DEFF Research Database (Denmark)

    Angjelichinoski, Marko; Danzi, Pietro; Stefanovic, Cedomir

    2017-01-01

    We propose a novel framework for secure and reliable authentication of Distributed Energy Resources to the centralized secondary/tertiary control system of a DC MicroGrid (MG), networked using the IEEE 802.11 wireless interface. The key idea is to perform the authentication using power talk...

  18. 75 FR 38943 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, DC-10-30, DC...

    Science.gov (United States)

    2010-07-07

    ... Corporation Model DC- 10-10, DC-10-10F, DC-10-30, DC-10-30F (KDC-10), DC-10-40, and DC-10-40F Airplanes AGENCY... propose to adopt a new airworthiness directive (AD) for certain Model DC-10-10, DC-10-10F, DC-10-30, DC-10-30F (KDC-10), DC-10- 40, and DC-10-40F airplanes. This proposed AD would require installing a support...

  19. Power flow control strategy in distribution network for dc type distributed energy resource at load bus

    International Nuclear Information System (INIS)

    Hanif, A.; Choudhry, M.A.

    2013-01-01

    This research work presents a feed forward power flow control strategy in the secondary distribution network working in parallel with a DC type distributed energy resource (DER) unit with SPWM-IGBT Voltage Source Converter (VSC). The developed control strategy enables the VSC to be used as power flow controller at the load bus in the presence of utility supply. Due to the investigated control strategy, power flow control from distributed energy resource (DER) to common load bus is such that power flows to the load without facing any power quality problem. The technique has an added advantage of controlling power flow without having a dedicated power flow controller. The SPWM-IGBT VSC is serving the purpose of dc-ac converter as well as power flow controller. Simulations for a test system using proposed power flow control strategy are carried out using SimPower Systems toolbox of MATLAB at the rate and Simulink at the rate. The results show that a reliable, effective and efficient operation of DC type DER unit in coordination with main utility network can be achieved. (author)

  20. A Survey on Voltage Boosting Techniques for Step-Up DC-DC Converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam Prasad; Gorji, Saman Asghari

    2016-01-01

    Step-up dc-dc converters are used to boost the voltage level of the input to a higher output level. Despite of its features such as simplicity of implementation, the fundamental boost dc-dc converter has shortcomings such as low boost ability and low power density. With these limitations, researc...

  1. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  2. Perancangan Zeta Converter yang dilengkapi Power Factor Correction pada Aplikasi Pengaturan Kecepatan Motor Brushless DC

    Directory of Open Access Journals (Sweden)

    Adhika Prajna Nandiwardhana

    2017-01-01

    Full Text Available Penggunaan motor brushless DC telah banyak digunakan dalam berbagai bidang seperti peralatan rumah tangga maupun industri dikarenakan motor ini memiliki struktur yang sederhana, efisiensi dan torsi yang tinggi, serta menggunakan konsep komutasi elektris yang berbeda dari motor DC lainnya. Namun pengoperasian pada umumnya yang menggunakan sumber AC, penyearah serta inverter membuat tingginya nilai harmonisa arus (THD sebesar 73,33% dan power factor sebesar 0,803 dimana nilai ini kurang baik dalam pengaplikasiannya. Pada penelitian ini akan dikaji mengenai proses power factor correction yang mereduksi harmonisa arus (THD sumber AC dengan menggunakan zeta converter dalam pengaplikasian motor brushless DC, serta pengoperasian motor dengan mengamati respon motor terhadap kecepatan referensi yang berubah-ubah dan mengamati kestabilan motor terhadap pembebanan yang bervariasi. Dalam menerapkan metode yang dilakukan pada penelitian ini, pengoperasian motor brushless DC yang telah dirancang dapat bekerja dengan baik meliputi respon motor yang dapat mengikuti kecepatan referensi yang berubah-ubah, serta kestabilan motor dalam mempertahankan kecepatannya pada pembebanan yang bervariasi. Proses power factor correction dapat meningkatkan kualitas daya pada berbagai kecepatan dan mode penerapan yang berbeda-beda, dimana peningkatan tersebut membuktikan kinerja yang baik dalam sistem ini dan memiliki nilai kualitas daya yang baik.

  3. Load Flow Analysis of Hybrid AC-DC Power System with Offshore Wind Power

    DEFF Research Database (Denmark)

    Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei

    2017-01-01

    is to model such hybrid AC-DC systems including the interfacing converters, which have several control parameters that can change the load flow of the hybrid systems. Then, the paper proposes a Load Flow algorithm based on the Newton-Raphson method, which covers three different section types...... of the transmission system: the AC parts, the DC parts and the interfacing converters. Finally, this paper validates this algorithm through a detailed case study with a typical hybrid network...

  4. Using PBL to Improve Educational Outcomes and Student Satisfaction in the Teaching of DC/DC and DC/AC Converters

    Science.gov (United States)

    Martinez-Rodrigo, Fernando; Herrero-De Lucas, Luis Carlos; de Pablo, Santiago; Rey-Boue, Alexis B.

    2017-01-01

    This paper examines the question of how to use project-based learning to increase student performance and satisfaction in a power electronics course addressing the topics of dc/dc and dc/ac converters, the assembly of a dc/dc converter, and the use of a commercial speed drive. A detailed presentation of the methodology is shown, and the results…

  5. Isolated step-down DC -DC converter for electric vehicles

    Science.gov (United States)

    Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.

    2018-02-01

    Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.

  6. Diesel fuel to dc power: Navy & Marine Corps Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, D.P. [Analytic Power Corp., Boston, MA (United States)

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have been tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.

  7. Disturbance in the power system caused by auxiliary DC installation failure of switchyard

    Energy Technology Data Exchange (ETDEWEB)

    Mesic, M. [HEP Transmission System Operator, Zagreb (Croatia); Tesnjak, S.; Skok, S. [Zagreb Univ. (Croatia). Faculty of Electrical Engineering and Computing

    2008-07-01

    Auxiliary direct current (DC) installation failures can lead to outages in power plants and compromise the security of power systems. In this study, a simplified stationary model was used to simulate an auxiliary DC installation in a switchyard. The aim of the study was to evaluate new International Electrotechnical Commission (IEC) standards for auxiliary DC installation dimensioning and analysis. Criteria included the dimensioning and selection of batteries; the calculation of conductor heating; voltage drop calculations; conductor squares in relation to permanent currents; and the evaluation of protection elements. The new standards were compared with the previous auxiliary system installation methodology. Results of the study suggested that the new standard has introduced significant improvements in short circuit current calculation. Laboratory tests for the measurement of short circuits showed that the active network has less of an impact on the auxiliary system than previous measuring methods. Alterations to the IEC standard will be required as a result of limitations to the short circuit current and new rectifier technology. Results of the study will be used to develop a new model and scheme for dimensioning and analyzing auxiliary DC installations. 9 refs., 4 tabs., 5 figs.

  8. Design and implementation of a low-cost maximization power conversion system for brushless DC generator

    Directory of Open Access Journals (Sweden)

    Abolfazl Halvaei Niasar

    2017-12-01

    Full Text Available This paper presents a simple and low-cost method to capture maximum power throughput of permanent magnet brushless DC (BLDC generator. Conventional methods of rectification are based on passive converters, and because the current waveform cannot be controlled as ideal waveform, a highly distorted current is drawn from brushless generator. It leads to lower power factor and reduces the efficiency and power per ampere capability. So, in this study an active six-witch power converter is employed and based on the phase back-EMF voltage, an optimum current waveform is generated. The phase currents are controlled inphase to phase voltages and their magnitudes are adjusted to regulate the DC-link voltage. Proposed control theory is verified by simulations for BLDC generator and permanent magnet synchronous generator (PMSG. Moreover, some experimental results are given to demonstrate the theoretical and simulation results.

  9. Rethinking Rectification: AC-DC Power Supply in Package

    DEFF Research Database (Denmark)

    Pejtersen, Jens; Knott, Arnold; Jørgensen, Ivan Harald Holger

    Rectification of AC mains voltage is almost exclusively implemented with passive diode bridge rectifiers for power applications below 100 W. The diode bridge rectifier is reliable, cost effective and easy to use. But it is also lossy, nonlinear and passive. Thus reducing the power conversion effi...

  10. High performance AC–DC control power supply for low voltage ride ...

    Indian Academy of Sciences (India)

    400V for output stage and 50W for losses of system assum- ing ηpre = 83.33%. The isolated dc–dc converter stage is designed for 250W input power so as to allocate 200W at 24Vdc for output power and 50W for losses of system assuming ηdsf c = 80%. It is preferred that the input to the CPS be ac rather than from a source ...

  11. Multilink DC Transmission for Offshore Wind Power Integration

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Silva, Rodrigo Da; Teodorescu, Remus

    2012-01-01

    analysis the Multi Terminal Direct Current (MTDC) operation and focuses on the sharing of active power produced by an offshore Wind Power Plant (WPP). The first objective was to model the system in PSCAD/EMTDC simulation software and then control structure tested under different situations. The second...... objective was to validate the simulation on a laboratory platform using 15 kW Voltage Source Converters (VSC) and a Real Time Interface (RTI). As a result, the power sharing is validated using such methodology and the influence in the parameters can be evaluated...

  12. A single-phase PWM controlled AC to DC converter based on control of unity displacement power factor

    OpenAIRE

    Funabiki, Shigeyuki

    1990-01-01

    A modified pulse-width modulation (PWM) technique that improves the displacement power factor and the input power factor of a single-phase AC to DC converter is discussed. The modified converter is shown to have a high input power factor and allows the of DC voltage from zero to more than the maximum value of the source voltage. The displacement power factor is unity, and the input power factor is almost unity in the wide range of current command

  13. Nonlinear control of voltage source converters in AC-DC power system.

    Science.gov (United States)

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. AC-DC PFC Converter Using Combination of Flyback Converter and Full-bridge DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Moh. Zaenal Efendi

    2014-06-01

    Full Text Available This paper presents a combination of power factor correction converter using Flyback converter and Full-bridge dc-dc converter in series connection. Flyback converter is operated in discontinuous conduction mode so that it can serve as a power factor correction converter and meanwhile Full-bridge dc-dc converter is used for dc regulator. This converter system is designed to produce a 86 Volt of output voltage and 2 A of output current. Both simulation and experiment results show that the power factor of this converter achieves up to 0.99 and meets harmonic standard of IEC61000-3-2. Keywords: Flyback Converter, Full-bridge DC-DC Converter, Power Factor Correction.

  15. DC grid for home applications

    Science.gov (United States)

    Elangovan, D.; Archana, R.; Jayadeep, V. J.; Nithin, M.; Arunkumar, G.

    2017-11-01

    More than fifty percent Indian population do not have access to electricity in daily lives. The distance between the power generating stations and the distribution centers forms one of the main reasons for lack of electrification in rural and remote areas. Here lies the importance of decentralization of power generation through renewable energy resources. In the present world, electricity is predominantly powered by alternating current, but most day to day devices like LED lamps, computers and electrical vehicles, all run on DC power. By directly supplying DC to these loads, the number of power conversion stages was reduced, and overall system efficiency increases. Replacing existing AC network with DC is a humongous task, but with power electronic techniques, this project intends to implement DC grid at a household level in remote and rural areas. Proposed work was designed and simulated successfully for various loads amounting to 250 W through appropriate power electronic convertors. Maximum utilization of the renewable sources for domestic and commercial application was achieved with the proposed DC topology.

  16. An improved power control strategy for hybrid AC-DC microgrids

    DEFF Research Database (Denmark)

    Baharizadeh, Mehdi; Karshenas, Hamid Reza; Guerrero, Josep M.

    2018-01-01

    This paper presents a new droop-based control strategy for hybrid microgrids (HMG) with improved power sharing. When ac microgrids (AC-MG) and dc microgrids (DC-MG) are present in a distribution grid, there is an opportunity to interconnect them via an interlinking converter (IC) and form a HMG......, the possibility of participation of IC in AC-MG reactive power adds some complexity to a HMG control system. In this paper, a new decentralized control strategy is presented for a HMG which relies on regulating the voltage magnitude of a common bus in each microgrid. In this regard, new droop characteristics...... for sources across both microgrids as well as IC are proposed. The proposed droop characteristics result in better active/reactive power sharing across both microgrids and at the same time results in better voltage regulation. The derivation of new droop characteristics is thoroughly discussed in this paper...

  17. Design of a high power, resonant converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    This paper presents a design procedure and loss estimation for a high power, medium voltage series resonant converter (entitled SRC#), intended for application in megawatt medium-voltage DC wind turbines. The converter is operated with a novel method of operation, entitled pulse removal technique...... below 1.5% from zero to nominal power, due to soft-switching characteristics. An experimental setup, rated for 10 kW and 5 kV output was assembled to extract losses and validate the semiconductor loss model.......This paper presents a design procedure and loss estimation for a high power, medium voltage series resonant converter (entitled SRC#), intended for application in megawatt medium-voltage DC wind turbines. The converter is operated with a novel method of operation, entitled pulse removal technique...

  18. Micro-Fabricated DC Comparison Calorimeter for RF Power Measurement

    Directory of Open Access Journals (Sweden)

    Bilel Neji

    2014-10-01

    Full Text Available Diode detection and bolometric detection have been widely used to measure radio frequency (RF power. However, flow calorimeters, in particular micro-fabricated flow calorimeters, have been mostly unexplored as power meters. This paper presents the design, micro-fabrication and characterization of a flow calorimeter. This novel device is capable of measuring power from 100 \\(\\mu\\W to 200 mW. It has a 50-Ohm load that is heated by the RF source, and the heat is transferred to fluid in a microchannel. The temperature change in the fluid is measured by a thermistor that is connected in one leg of a Wheatstone bridge. The output voltage change of the bridge corresponds to the RF power applied to the load. The microfabricated device measures 25.4 mm \\(\\times\\ 50.8 mm, excluding the power supplies, microcontroller and fluid pump. Experiments demonstrate that the micro-fabricated sensor has a sensitivity up to 22 \\(\\times\\ \\(10^{-3}\\ V/W. The typical resolution of this micro-calorimeter is on the order of 50 \\(\\mu\\W, and the best resolution is around 10 \\(\\mu\\W. The effective efficiency is 99.9\\% from 0–1 GHz and more than 97.5\\% at frequencies up to 4 GHz. The measured reflection coefficient of the 50-Ohm load and coplanar wave guide is less than \\(-25\\ dB from 0–2 GHz and less than \\(-16\\ dB at 2–4 GHz.

  19. Micro-fabricated DC comparison calorimeter for RF power measurement.

    Science.gov (United States)

    Neji, Bilel; Xu, Jing; Titus, Albert H; Meltzer, Joel

    2014-10-27

    Diode detection and bolometric detection have been widely used to measure radio frequency (RF) power. However, flow calorimeters, in particular micro-fabricated flow calorimeters, have been mostly unexplored as power meters. This paper presents the design, micro-fabrication and characterization of a flow calorimeter. This novel device is capable of measuring power from 100 μW to 200 mW. It has a 50-Ohm load that is heated by the RF source, and the heat is transferred to fluid in a microchannel. The temperature change in the fluid is measured by a thermistor that is connected in one leg of a Wheatstone bridge. The output voltage change of the bridge corresponds to the RF power applied to the load. The microfabricated device measures 25.4 mm × 50.8 mm, excluding the power supplies, microcontroller and fluid pump. Experiments demonstrate that the micro-fabricated sensor has a sensitivity up to 22 × 10⁻³ V/W. The typical resolution of this micro-calorimeter is on the order of 50 μW, and the best resolution is around 10 μW. The effective efficiency is 99.9% from 0−1 GHz and more than 97.5% at frequencies up to 4 GHz. The measured reflection coefficient of the 50-Ohm load and coplanar wave guide is less than −25 dB from 0−2 GHz and less than −16 dB at 2−4 GHz.

  20. A novel powering scheme based on DC-DC conversion for the luminosity upgrades of the CMS tracking system at CERN

    International Nuclear Information System (INIS)

    Sammet, Jan

    2014-01-01

    The instantaneous luminosity of the LHC is expected to reach 2 x 10 34 s -1 cm -2 and 5 x 10 34 s -1 cm -2 around the years 2019 and 2024, respectively. After the second upgrade the LHC will be referred to as the High Luminosity LHC (HL-LHC). In order to benefit from the higher luminosities, CMS foresees to upgrade its pixel detector during an extended winter shutdown of the LHC at the end of 2016 and the beginning of 2017. During a long shutdown of the LHC over the years 2022 and 2023, it is foreseen to install a completely new tracking system in CMS. Both upgrades are expected to result in the need to provide more electric current to the detector. However, power losses in cables already contribute 50% to the power consumption of the present tracker and rise with the current squared. Since no more space is available for cables, and thicker cables within the tracking volume spoil the material budget of the detector, new powering schemes are considered mandatory. CMS foresees the use of radiation tolerant DC-DC converters on the front-end to reduce power losses on cables. This thesis describes the new powering scheme of the CMS pixel detector and discusses the options with respect to a new strip tracker. A radiation and magnetic field tolerant DC-DC converter prototype, the PIXV8A, is introduced and the research that led to its development is summarised. The PIXV8A has been developed for the application in the pixel upgrade and is also a first approach for a DC-DC converter for the later upgrade of the CMS tracking system. The PIXV8A makes use of the AMIS4 chip, which has been proven to stay operational for total ionising doses of up to 1 MGy and fluences of up to 10 15 n eq /cm 2 . With an input voltage of 10 V, the PIXV8A converter provides an efficiency of about 80% for output voltages of 2.5 V and 3.0 V. Within this thesis the robustness of the novel powering scheme and the qualification of the PIXV8A are demonstrated in several tests, including system test

  1. A Novel Multilevel DC - AC Converter from Green Energy Power Generators Using Step-Square Waving and PWM Technique

    Science.gov (United States)

    Fajingbesi, F. E.; Midi, N. S.; Khan, S.

    2017-06-01

    Green energy sources or renewable energy system generally utilize modular approach in their design. This sort of power sources are generally in DC form or in single cases AC. Due to high fluctuation in the natural origin of this energy (wind & solar) source they are stored as DC. DC power however are difficult to transfer over long distances hence DC to AC converters and storage system are very important in green energy system design. In this work we have designed a novel multilevel DC to AC converter that takes into account the modular design of green energy systems. A power conversion efficiency of 99% with reduced total harmonic distortion (THD) was recorded from our simulated system design.

  2. Three new DC-to-DC Single-Switch Converters

    Directory of Open Access Journals (Sweden)

    Barry W. Williams

    2017-06-01

    Full Text Available This paper presents a new family of three previously unidentified dc-to-dc converters, buck, boost, and buck-boost voltage-transfer-function topologies, which offer advantageous transformer coupling features and low capacitor dc voltage stressing. The three single-switch, single-diode, converters offer the same features as basic dc-to-dc converters, such as the buck function with continuous output current and the boost function with continuous input current. Converter time-domain simulations and experimental results (including transformer coupling support and extol the dc-to-dc converter concepts and analysis presented.

  3. A DC Transformer

    Science.gov (United States)

    Youngquist, Robert C.; Ihlefeld, Curtis M.; Starr, Stanley O.

    2013-01-01

    A component level dc transformer is described in which no alternating currents or voltages are present. It operates by combining features of a homopolar motor and a homopolar generator, both de devices, such that the output voltage of a de power supply can be stepped up (or down) with a corresponding step down (or up) in current. The basic theory for this device is developed, performance predictions are made, and the results from a small prototype are presented. Based on demonstrated technology in the literature, this de transformer should be scalable to low megawatt levels, but it is more suited to high current than high voltage applications. Significant development would be required before it could achieve the kilovolt levels needed for de power transmission.

  4. D.C. side active filter for high stability accelerator magnet power supplies

    International Nuclear Information System (INIS)

    Singh, Yash Pal; Thakurta, A.C.; Kotaiah, S.

    2006-01-01

    Accelerator d.c, magnets have to produce a highly stable magnetic field which in turn needs highly stable d.c. current sources to energise them. Indus-II Q4 and Q5 power supplies are SCR based power supplies wherein the rectified voltage is fed to a passive filter to reduce the ripple voltage. The output of the passive filter still contains some ripple particularly on the low frequency side. The design and the test results of an active filter module have been discussed wherein the low frequency attenuation can be very effectively taken care of by allowing this to be absorbed in a coupling transformer put after the passive filter. Considerable size reduction has been achieved by using switching techniques. Low frequency attenuation has been made quite a simple task. This filter also helps in handling transients from input. (author)

  5. Performance evaluation of directly photovoltaic powered DC PM (direct current permanent magnet) motor – propeller thrust system

    International Nuclear Information System (INIS)

    Atlam, Ozcan; Kolhe, Mohan

    2013-01-01

    Photovoltaic (PV) powered directly coupled electro-mechanical system has wide applications (e.g. PV powered cooling fans in green houses, PV water pumping system, solar vehicles). The objective of this work is to analyse the operation of directly PV powered DC PM (direct current permanent magnet) motor – propeller system for selection of motor parameters. The performance of such system mainly depends on the incident solar radiation, operating cell temperature, DC motor and propeller load parameters. It is observed that the operating points of the PV DC PM motor – propeller system matches very closely with the maximum power points (MPPs) of the PV array, if the DC PM motor – propeller parameters have been properly selected. It is found that for a specific application of such type of system, matching of torque–speed operating points with respect to the maximum power points of PV array are very important. It is ascertained through results that the DC PM motor's armature resistance, magnetic field constant, starting current to overcome the starting torque and torque coefficient are the main parameters. In designing a PV powered DC PM motor for a specific application, selection of these parameters are important for maximum utilization of the PV array output. The results of this system are useful for designing of directly PV powered DC PM motor's for aerodynamic applications. - Highlights: • We analyse the performance of directly PV powered DC PM motor – propeller system. • We examine PV electro-mechanical system for selection of DC motor parameters. • Matching of torque–speed curve to maximum power points of PV array is important

  6. Analysis and distributed control of power flow in DC microgrids to improve system efficiency

    DEFF Research Database (Denmark)

    Chen, Fang; Burgos, Rolando; Boroyevich, Dushan

    2016-01-01

    , which includes constant power renewables generation, droop-controlled voltage source and different kinds of load. Then the dc power flow is solved for optimization. A voltage restoration method based on consensus communication is used to restore the voltage deviation from droop characteristic....... An enhanced current regulator is adopted to guarantee the accurate load sharing considering the impact from sensor error and line resistance. A tie line power flow control method is proposed to regulate the tie line power and increase the system efficiency at light load. All the considered methods only need...

  7. Power Measurement and Data Logger with High-Resolution for Industrial DC-Grid Application

    Directory of Open Access Journals (Sweden)

    Apse-Apsitis Peteris

    2015-12-01

    Full Text Available Power and energy measurement and monitoring is a key factor for many industries in terms of energy and cost efficiency evaluation. Due to trends of Smart Grid concept application in industrial environment, including decentralized DC-Grid implementation, for precise evaluation – faster and low-cost measurement equipment is needed. Manufacturing industry widely uses industrial robots that have dynamic load characteristics for which faster measurement equipment is needed.

  8. Insulation Coordination and Failure Mitigation Concerns for Roust Dc Electrical Power Systems (Preprint)

    Science.gov (United States)

    2014-05-01

    create light, powerful and controllable motors through dc brushless technology. Unfortunately, some complications are created by the presence of high...This is especially true on feeder cables for inverter-fed drives (IFD) for motors and actuators. International standards, such as IEC-60034-18-41 [17...have been developed to qualify random-wound induction motors for use with pulse-width-modulated drives to control motor speed and/or torque. This

  9. A SOFT SWITCHED INTERLEAVED HIGH GAIN DC-DC CONVERTER

    Directory of Open Access Journals (Sweden)

    SHESHIDHAR REDDY ADDULA

    2017-09-01

    Full Text Available In this paper, a novel soft-switched interleaved DC-DC converter which provides a high voltage gain of 12 is proposed. Voltage gain of the basic interleaved boost converter is extended by using diode-capacitor multiplier (DCM cells. The switches are operated at a nominal duty ratio of 0.5. The voltage stress on the power switches and diodes is only a fraction of the output voltage. To enhance the operating power conversion efficiency, the switches are turned ON at zero voltage condition. Experimental results of 18-216V, 100W prototype converter validate the operating principle and the advantageous features of the presented converter.

  10. 75 FR 68246 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, DC-10-15, DC...

    Science.gov (United States)

    2010-11-05

    ... Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F... to supersede an existing airworthiness directive (AD) that applies to all Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F, MD-10- 10F, MD-10-30F, MD-11...

  11. 75 FR 20790 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, DC-10-15, DC...

    Science.gov (United States)

    2010-04-21

    ... Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F... (AD) for certain Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC- 10A and KDC-10), DC-10-40, DC-10-40F, MD-10-10F, MD-10-30F, MD-11, and MD-11F airplanes. This proposed AD would require...

  12. 75 FR 23571 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, DC-10-15, DC...

    Science.gov (United States)

    2010-05-04

    ... Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F.... ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F, MD-10-10F, MD...

  13. 75 FR 60602 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, DC-10-15, DC...

    Science.gov (United States)

    2010-10-01

    ... Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F.... ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F, MD-10-10F, MD...

  14. An improved dc SQUID

    International Nuclear Information System (INIS)

    Clarke, J.; Goubau, W.M.; Ketchen, M.B.

    1975-01-01

    Cylindrical thin film dc SQUIDS that make use of resistively shunted Nb-NbOx-Pb tunnel junctions have been constructed and tested. These junctions are very robust: the SQUIDs can be thermally cycled repeatedly and stored at room temperature indefinitely. The weak temperature dependence of the critical current allows SQUID operation at any temperature below about 6K. The resolution is typically 4x10 -5 phi 0 /√Hz above 2x10 -2 Hz; at lower frequencies the noise power spectrum is 1/f. The long-term drift is less than 2x10 -5 phi 0 /hr. The 1/f noise and drift are lower than any values reported for other types of SQUIDs. (Auth.)

  15. Impact of Negative Reactance on Definiteness of B-Matrix and Feasibility of DC Power Flow

    DEFF Research Database (Denmark)

    Ding, Tao; Bo, Rui; Yang, Yongheng

    2018-01-01

    This paper reports an essential phenomenon on the existence of “negative reactance” in practical power system models. The negative reactance issue is important, as it could affect the definiteness of the B admittance matrix of power networks and the feasibility of DC power flow. With the graph...... theory, the B matrix can be treated as a Laplacian matrix. Several theorems and corollaries are given with proof to study the definiteness of the Laplacian matrix with negative weights. Based upon these theorems, the exploration in this paper demonstrates that the negative reactance may even result...

  16. Experiments with a DC Motor

    Science.gov (United States)

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…

  17. Modeling and Control of the Distributed Power Converters in a Standalone DC Microgrid

    Directory of Open Access Journals (Sweden)

    Xiaodong Lu

    2016-03-01

    Full Text Available A standalone DC microgrid integrated with distributed renewable energy sources, energy storage devices and loads is analyzed. To mitigate the interaction among distributed power modules, this paper describes a modeling and control design procedure for the distributed converters. The system configuration and steady-state analysis of the standalone DC microgrid under study are discussed first. The dynamic models of the distributed converters are then developed from two aspects corresponding to their two operating modes, device-regulating mode and bus-regulating mode. Average current mode control and linear compensators are designed accordingly for each operating mode. The stability of the designed system is analyzed at last. The operation and control design of the system are verified by simulation results.

  18. Generation-Side Power Scheduling in a Grid-Connected DC Microgrid

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Meng, Lexuan

    2015-01-01

    In this paper, a constrained mixed-integer programming model for scheduling the active power supplied by the generation units in storage-based DC microgrids is presented. The optimization problem minimizes operating costs taking into account a two-stage mode operation of the energy storage system...... so that a more accurate model for optimization of the microgrid operation can be obtained. The model is used in a particular grid-connected DC microgrid that includes two renewable energy sources and an energy storage system which supply a critical load. The results of the scheduling process...... are including in simulation by establishing a MATLAB/Simulink model of the microgrid and setting several initial conditions of the state of charge of the energy storage system. As a result, we obtain reductions in costs and at the same time guarantee safe levels of state of charge to increase the life...

  19. DC wiring system grounding and ground fault protection issues for central station photovoltaic power plants

    Science.gov (United States)

    Simburger, E. J.

    1983-01-01

    The DC wiring system for a photovoltaic power plant presents a number of unique challenges to be overcome by the plant designers. There are a number of different configurations that the grounding of the DC wiring system can take, and the choice will affect the number and type of protective devices required to ensure safety of personnel and protection of equipment. The major grounding and fault protection considerations that must be taken into account when selecting the basic overall circuit configuration are summarized. The inherent advantages and disadvantages of each type of circuit grounding (resistance or solid) along with the personnel safety and equipment protection issues for each of these grounding methods are presented.

  20. The Rated Voltage Determination of DC Building Power Supply System Considering Human Beings Safety

    Science.gov (United States)

    Wang, Zhicheng; Yu, Kansheng; Xie, Guoqiang; Zou, Jin

    2018-01-01

    Generally two-level voltages are adopted for DC building power supply system. From the point of view of human beings safety, only the lower level voltage which may be contacted barehanded is discussed in this paper based on the related safety thresholds of human beings current effect. For several voltage levels below 100V recommended by IEC, the body current and current density of human electric shock under device normal work condition, as well as effect of unidirectional single impulse currents of short durations are calculated and analyzed respectively. Finally, DC 60V is recommended as the lower level rating voltage through the comprehensive consideration of technical condition and cost of safety criteria.

  1. A study of some features of ac and dc electric power systems for a space station

    Science.gov (United States)

    Hanania, J. I.

    1983-01-01

    This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.

  2. Design and Testing of Boost Type DC/DC Converter for DC Motor Control Applications

    OpenAIRE

    Samman, Faizal Arya; Akil, Yusri Syam; Noor, Nirwan A.

    2017-01-01

    in The Proceeding of The 2nd International Symposium on Smart Material and Mechatronics 2015 This paper presents the design and testing of a boost type DC/DC converter circuit, which can be used for DC motor control applications. The Boost converter is designed using DC chopper and DC chopper cascade configurations. The experimental setup was made by connecting the boost converter circuit with four types of DC motor, i.e. self-excited DC motor shunt, series, compound and separately exci...

  3. Electrochemical treatment of tannery effluent using a battery integrated DC-DC converter and solar PV power supply--an approach towards environment and energy management.

    Science.gov (United States)

    Iyappan, K; Basha, C Ahmed; Saravanathamizhan, R; Vedaraman, N; Tahiyah Nou Shene, C A; Begum, S Nathira

    2014-01-01

    Electrochemical oxidation of tannery effluent was carried out in batch, batch recirculation and continuous reactor configurations under different conditions using a battery-integrated DC-DC converter and solar PV power supply. The effect of current density, electrolysis time and fluid flow rate on chemical oxygen demand (COD) removal and energy consumption has been evaluated. The results of batch reactor show that a COD reduction of 80.85% to 96.67% could be obtained. The results showed that after 7 h of operation at a current density of 2.5 A dm(-2) and flow rate of 100 L h(-1) in batch recirculation reactor, the removal of COD is 82.14% and the specific energy consumption was found to be 5.871 kWh (kg COD)(-1) for tannery effluent. In addition, the performance of single pass flow reactors (single and multiple reactors) system of various configurations are analyzed.

  4. DIAGNOSTIC/PROGNOSTIC EXPERIMENTS FOR CAPACITOR DEGRADATION AND HEALTH MONITORING IN DC-DC CONVERTERS

    Data.gov (United States)

    National Aeronautics and Space Administration — Studying and analyzing the ageing mechanisms of electronic components avionics in systems such as the GPS and INAV are of critical importance. In DC-DC power...

  5. Magnification of starting torques of dc motors by maximum power point trackers in photovoltaic systems

    Science.gov (United States)

    Appelbaum, Joseph; Singer, S.

    1989-01-01

    Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.

  6. Fundamental Characteristics of Laboratory Scale Model DC Microgrid to Exchange Electric Power from Distributed Generations installed in Residential Houses

    Science.gov (United States)

    Kakigano, Hiroaki; Hashimoto, Takuya; Matsumura, Yohei; Kurotani, Takashi; Iwamoto, Wataru; Miura, Yushi; Ise, Toshifumi; Momose, Toshinari; Hayakawa, Hideki

    DC microgrid is a novel power system using dc distribution in order to provide a super high quality power. This dc system is suitable for dc output type distributed generations and energy storages. In this research, we assumed one type of the dc microgrids for residential houses (apartment house or housing complex). Each residence has a distributed generation such as gas engine or fuel cell. Those cogenerations are connected to the dc power line, and the electricity from the generations can be shared among the residences. The hot water from the cogeneration is used in each residence. We constructed an experimental system based on this concept in our laboratory. We have studied the fundamental characteristics and the quality of the supplied power to the loads against several fluctuations or faults. Experimental results demonstrated that the system could supply high quality power to the loads against a sudden load variation and a voltage sag of the utility grid. Afterwards, we moved the experimental system to an experimental apartment house (NEXT21). We studied the quality of the supplying power by using practical power line, and confirmed that the system was also able to supply a power to home appliances stably.

  7. Design and Control of a Multiple Input DC/DC Converter for Battery/Ultra-capacitor Based Electric Vehicle Power System

    DEFF Research Database (Denmark)

    Schaltz, Erik; Li, Zhihao; Onar, Omer

    2009-01-01

    Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi-input con......Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi...

  8. Modelling and control of three-phase grid-connected power supply with small DC-link capacitor for electrolysers

    DEFF Research Database (Denmark)

    Török, Lajos; Máthé, Lászlo; Nielsen, Carsten Karup

    2016-01-01

    These days electrolyzers are becoming more and more interesting due to the high demand for energy storage in form of hydrogen for renewable power generation using fuel cells. The design of a power supply for such a system is complex especially when the DC-link capacitance is reduced....... By substituting the complex switching model of the power supply with a simplified one, the system dynamics can be better observed. The resonances caused by the small DC link capacitor and grid side inductance can be easier analyzed. A feed forward compensation method is proposed based on the simplified model......-forward compensation signal is created, canceling in such a way the resonance introduced by the grid inductance and the DC-link capacitor from the feed-forward loop. The theoretical work has been validated through experiments on a 5 kW DC power supply used for electrolyser application....

  9. Chaos analysis and chaotic EMI suppression of DC-DC converters

    CERN Document Server

    Zhang, Bo

    2014-01-01

    Introduces chaos theory, its analytical methods and the means to apply chaos to the switching power supply design DC-DC converters are typical switching systems which have plenty of nonlinear behaviors, such as bifurcation and chaos. The nonlinear behaviors of DC-DC converters have been studied heavily over the past 20 years, yet researchers are still unsure of the practical application of bifurcations and chaos in switching converters. The electromagnetic interference (EMI), which resulted from the high rates of changes of voltage and current, has become a major design criterion in DC-DC co

  10. Multi-Channel Adjustable DC Power Supply with Single Transformer Based on Spectral Separation

    Science.gov (United States)

    Benfeng, Zhang; Huafeng, Li; Sunan, Li

    2014-01-01

    To meet the need of multi-channel DC power supply to activate multiple macro fiber composite (MFC) material simultaneously, a novel multi-channel adjustable DC supply using single-input single-output transformer based on spectral separation is proposed. A hybrid signal containing multiple frequency bands is boosted to obtain a high-voltage signal without bands change. Several frequency selection circuits are then used to separate individual signals in different frequency band from the high-voltage signal. Finally, these signals are rectified and filtered respectively to obtain multiple channel DC voltages. The feasibility of the proposed scheme is analyzed theoretically and verified by simulation. The hybrid signal containing multiple frequency bands is constructed by MCU (Micro Control Unit) and boosted using push-pull boost circuit. Low-pass, band-pass and high-pass frequency selection circuits are used to obtain the individual high-voltage signal in different frequency bands, and the amplitude frequency response characteristics of these filters are simulated using PSpice. Experimental results prove that each part of the scheme runs reliable and the output is stable and adjustable.

  11. Multilink DC Transmission System for Supergrid Future Concepts and Wind Power Integration

    DEFF Research Database (Denmark)

    Silva, Rodrigo Da; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    . Using the concept of virtual impedances, the droop parameters are limited by the boundaries of the DC voltage limits and line characteristics. For the power sharing point of view, mainly the cable resistances are considered. Simulation results using time domain simulation (EMTDC/PSCAD) will reinforce...... the methodology. The approach can be considered as a general case from the previous control schemes based on voltage droop. The work extends the purpose to power sharing characteristic and it can be useful when the converters have different sizes or/and there are restrict agreements among all the operators...

  12. Multilink DC Transmission System for Supergrid Future Concepts and Wind Power Integration

    DEFF Research Database (Denmark)

    Silva, Rodrigo Da; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    . Using the concept of virtual impedances, the droop parameters are limited by the boundaries of the DC voltage limits and line characteristics. For the power sharing point of view, mainly the cable resistances are considered. Simulation results using time domain simulation (EMTDC/PSCAD) will reinforce...... the methodology. The approach can be considered as a general case from the previous control schemes based on voltage droop. The work extends the purpose to power sharing characteristic and it can be useful when the converters have different sizes or/and there are restrict agreements among all the operators...... at onshore AC systems....

  13. Magnification of starting torques of dc motors by maximum power point trackers in photovoltaic systems

    Science.gov (United States)

    Appelbaum, J.; Singer, S.

    1989-01-01

    A calculation of the starting torque ratio of permanent magnet, series, and shunt-excited dc motors powered by solar cell arrays is presented for two cases, i.e., with and without a maximum-power-point tracker (MPPT). Defining motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 for the permanent magnet motor and a magnification of 7 for both the series and shunt motors are obtained. The study also shows that all motor types are less sensitive to solar insolation variation in systems including MPPTs as compared to systems without MPPTs.

  14. Coordinated Control of Multiterminal DC Grid Power Injections for Improved Rotor-Angle Stability Based on Lyapunov Theory

    DEFF Research Database (Denmark)

    Eriksson, Robert

    2014-01-01

    The stability of an interconnected ac/dc system is affected by disturbances occurring in the system. Disturbances, such as three-phase faults, may jeopardize the rotor-angle stability and, thus, the generators fall out of synchronism. The possibility of fast change of the injected powers by the m......The stability of an interconnected ac/dc system is affected by disturbances occurring in the system. Disturbances, such as three-phase faults, may jeopardize the rotor-angle stability and, thus, the generators fall out of synchronism. The possibility of fast change of the injected powers...... by the multiterminal dc grid can, by proper control action, enhance this stability. This paper proposes a new time optimal control strategy for the injected power of multiterminal dc grids to enhance the rotor-angle stability. The controller is time optimal, since it reduces the impact of a disturbance as fast...

  15. Comparative Analysis of Semiconductor Power Losses of Galvanically Isolated Quasi-Z-Source and Full-Bridge Boost DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Kosenko Roman

    2015-07-01

    Full Text Available This paper compares semiconductor losses of the galvanically isolated quasi-Z-source converter and full-bridge boost DC-DC converter with active clamping circuit. Operation principle of both converters is described. Short design guidelines are provided as well. Results of steady state analysis are used to calculate semiconductor power losses for both converters. Analytical expressions are derived for all types of semiconductor power losses present in these converters. The theoretical results were verified by means of numerical simulation performed in the PSIM simulation software. Its add-on module “Thermal module” was used to estimate semiconductor power losses using the datasheet parameters of the selected semiconductor devices. Results of calculations and simulation study were obtained for four operating points with different input voltage and constant input current to compare performance of the converters in renewable applications, like photovoltaic, where input voltage and power can vary significantly. Power loss breakdown is detailed and its dependence on the converter output power is analyzed. Recommendations are given for the use of the converter topologies in applications with low input voltage and relatively high input current.

  16. Application of Distributed DC/DC Electronics in Photovoltaic Systems

    Science.gov (United States)

    Kabala, Michael

    In a typical residential, commercial or utility grade photovoltaic (PV) system, PV modules are connected in series and in parallel to form an array that is connected to a standard DC/AC inverter, which is then connected directly to the grid. This type of standard installation; however, does very little to maximize the energy output of the solar array if certain conditions exist. These conditions could include age, temperature, irradiance and other factors that can cause mismatch between PV modules in an array that severely cripple the output power of the system. Since PV modules are typically connected in series to form a string, the output of the entire string is limited by the efficiency of the weakest module. With PV module efficiencies already relatively low, it is critical to extract the maximum power out of each module in order to make solar energy an economically viable competitor to oil and gas. Module level DC/DC electronics with maximum power point (MPP) tracking solves this issue by decoupling each module from the string in order for the module to operate independently of the geometry and complexity of the surrounding system. This allows each PV module to work at its maximum power point by transferring the maximum power the module is able to deliver directly to the load by either boosting (stepping up) the voltage or bucking (stepping down) the voltage. The goal of this thesis is to discuss the development of a per-module DC/DC converter in order to maximize the energy output of a PV module and reduce the overall cost of the system by increasing the energy harvest.

  17. Experience from design, prototyping and production of a DC-DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    CERN Document Server

    AUTHOR|(CDS)2069786; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max Philip; Schmitz, Stefan Antonius; Wlochal, Michael

    2016-01-01

    The testing program is outlined, results from mass production are presented and issues that have been encountered are described. In addition, two system level challenges, namely the choice of output voltage in the presence of large, load-dependent voltage drops, and the thermal management required to remove the heat load caused by the DC-DC converters, are discussed.

  18. POWER FACTOR CORRECTION IN PERMANENT MAGNET BRUSHLESS DC MOTOR DRIVE USING SINGLE-PHASE CUK CONVERTER

    Directory of Open Access Journals (Sweden)

    SANJEEV SINGH

    2010-12-01

    Full Text Available Permanent magnet brushless DC motor (PMBLDCM drives are being employed in many variable speed applications due to their high efficiency, silent operation, compact size, high reliability, ease of control, and low maintenance requirements. These drives have power quality problems and poor power factor at input AC mains as they are mostly fed through diode bridge rectifier based voltage source inverters. To overcome such problems a single-phase single-switch power factor correction AC-DC converter topology based on a Cuk converter is proposed to feed voltage source inverters based PMBLDCM. It focuses on the analysis, design and performance evaluation of the proposed PFC converter topology for a 1.5 kW, 1500 rpm, 400 V PMBLDCM drive used for an air-conditioning system. The proposed PFC converter topology is modelled and its performance is simulated in Matlab-Simulink environment and results show an improved power quality and good power factor in wide speed range of the drive.

  19. MPPT algorithm test on a photovoltaic emulating system constructed by a DC power supply and an indoor solar panel

    International Nuclear Information System (INIS)

    Zhou, Z.; Holland, P.M.; Igic, P.

    2014-01-01

    Highlights: • A novel PV emulator is constructed by using conventional solar panels with a DC power supply. • The proposed PV emulator is cost-effectiveness, relatively easy implementation. • The proposed PV emulator avoids the bandwidth problem associated with electronics PV emulators. • Indoor testing of MPPT algorithms and power converters avoids the dependency on solar irradiation. • The PV emulating system has been used for testing a P and O MPPT algorithm and a boost dc converter. - Abstract: In this paper a novel photovoltaic (PV) emulating scheme for testing maximum power point tracking (MPPT) algorithms and PV inverters has been proposed. It is constructed by the parallel connection of conventional solar panels with a DC power supply operating in current source mode. The advantages of the proposed scheme are cost-effectiveness, relatively easy implementation and indoor testing of MPPT algorithms and power converters avoiding weather and time of day dependency on solar irradiation levels. Furthermore, the proposed PV emulator avoids the bandwidth problem associated with the dc converter based PV emulating systems. Detailed circuit connection, parameters, electrical characteristics and mathematical model of the PV emulator are presented and discussed. Proposed PV emulating system has been used to test a boost DC/DC converter controlled by Perturb and Observe (P and O) MPPT algorithm. Test results confirmed the effectiveness of the proposed PV emulation system and all achieved results correspond well to the original designed values

  20. World's largest DC flywheel generator for the toroidal field power supply of JAERI's JFT-2M Tokamak nuclear fusion reactor

    International Nuclear Information System (INIS)

    Tani, Takashi; Nakanishi, Yuji; Horita, Tsuyoshi; Kawase, Chiharu; Oyabu, Isao; Kishimoto, Takeshi.

    1996-01-01

    Mitsubishi Electric has delivered the world's largest DC generator for the toroidal field coil power supply of the JFT-2M Tokamak at the Japan Atomic Energy Research Institute. The unit rotates at 225 or 460 rpm, providing a maximum rated output of 2,700 V, 19,000 A and 51.3 MW. The toroidal field is a DC field, so use of a DC generator permits a simpler design consuming less floor space than an AC drive system. The generator was manufactured following extensive studies on commutation, mechanical strength and insulation. (author)

  1. Quadratic models of AC-DC power flow and optimal reactive power flow with HVDC and UPFC controls

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Juan; Yan, Wei; Wen, Lili [The Key Laboratory of High Voltage Engineering and Electrical New Technology, Ministry of Education, Electrical Engineering College of Chongqing University, Chongqing 400030 (China); Li, Wenyuan [British Columbia Transmission Corporation (BCTC), Suite 1100, Four Bentall Center, 1055 Dunsmuir Street, P.O. Box 49260, Vancouver, BC (Canada)

    2008-03-15

    Quadratic models of power flow (PF) and optimal reactive power flow (ORPF) for AC-DC power systems are proposed in the paper. Voltage magnitudes at the two sides of ideal converter transformers are used as additional state variables to build the quadratic models. Effects of converter controls on equality constraints are considered. The quadratic expression of unified power flow controller (UPFC) is also developed and incorporated into the proposed models. The proposed PF model retaining nonlinearity has a better convergence feature and requires less CPU time compared to traditional PF models. The Hessian matrices in the quadratic AC-DC ORPF model are constant and need to be calculated only once in the entire optimization process, which speeds up the calculation greatly. Results obtained from the four IEEE test systems and an actual utility system indicate that the proposed quadratic models achieve a superior performance than conventional models. (author)

  2. A Dual-Buck–Boost AC/DC Converter for DC Nanogrid With Three Terminal Outputs

    DEFF Research Database (Denmark)

    Wu, Weimin; Wang, Houqing; Liu, Yuan

    2017-01-01

    Due to the widely used dc characterized loads and more distributed power generation sources, the dc nanogrid becomes more and more popular, and it is seen as an alternative to the ac grid. For safety considerations, the dc nanogrid should provide reliable grounding for the residential loads...

  3. An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters

    Science.gov (United States)

    Ali, M. S.; Kamarudin, S. K.; Masdar, M. S.; Mohamed, A.

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581

  4. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    Science.gov (United States)

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  5. 75 FR 6160 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, DC-10-15, DC...

    Science.gov (United States)

    2010-02-08

    ... Douglas Corporation Model DC- 10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F, MD-10-10F, MD-10-30F, MD-11, and MD-11F Airplanes AGENCY: Federal Aviation... airworthiness directive (AD) for certain Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC- 10A and...

  6. A high voltage DC switching power supply of corona discharge for ozone tube

    International Nuclear Information System (INIS)

    Ketkaew, Siseerot

    2007-08-01

    Full text: This paper presents a study of design and construction of a high voltage DC switching power supply for corona generating of ozone gas generating. This supply uses fly back converter at 3 k Vdc 30 khz and controls its operation using PWM techniques. I C TL494 is controlled of the switching. The testing of supply by putting high voltage to ozone gas tube at one-hour, the oxygen quantity 21 % of air, which ozone tube model enables ozone gas generating capacity of 95.2 mgO3/hr

  7. Economic power schedule and transactive energy through an intelligent centralized energy management system for a DC residential distribution system

    DEFF Research Database (Denmark)

    Yue, Jingpeng; Hu, Zhijian; Li, Chendan

    2017-01-01

    is aligned with the command of the unit power schedule. In this work, a DC RDS is used as a case study to demonstrate the process, the RDS is associated with unit economic models, and a cost minimization objective is proposed that is to be achieved based on the real-time electrical price. The results show...... that the proposed framework and methods will help the targeted DC residential system to reduce the total cost and reach stability and efficiency....

  8. Communication-Theoretic Model of Power Talk for a Single-Bus DC Microgrid

    Directory of Open Access Journals (Sweden)

    Marko Angjelichinoski

    2016-03-01

    Full Text Available Power talk is a method for communication among voltage control sources (VSCs in DC microgrids (MGs, achieved through variations of the supplied power that is incurred by modulation of the parameters of the primary control. The physical medium upon which the communication channel is established is the voltage supply level of the common MG bus. In this paper, we show how to create power talk channels in all-to-all communication scenarios and implement the signaling and detection techniques, focusing on the construction and use of the constellations or arbitrary order. The main challenge to the proposed communication method stems from random shifts of the loci of the constellation symbols, which are due to random load variations in the MG. We investigate the impact that solutions that combat the effects of random load variations by re-establishing the detection regions have on the power talk rate.

  9. A Wireless Power Sharing Control Strategy for Hybrid Energy Storage Systems in DC Microgrids

    DEFF Research Database (Denmark)

    Yang, Jie; Jin, Xinmin; Wu, Xuezhi

    2017-01-01

    In order to compensate multiple time scales power fluctuation resulted from distributed energy resources and loads, hybrid energy storage systems are employed as the buffer unit in DC microgrid. In this paper, a wireless hierarchical control strategy is proposed to realize power sharing between...... energy density storage unit and power density storage unit in reasonable fashion. Primary control introduces change rate of voltage as virtual information carrier, and urges supercapacitor unit to pick up major dynamic power immediately in the load switching moment, by setting sensitivity of different...... storage interface converters. The steady state error produced in primary control is eliminated by secondary control, in which voltage magnitude is maintained and zero steady state current in supercapacitor is guaranteed. In this framework, autonomous and coordinated control is achieved using only local...

  10. An Emulated PV Source Based on an Unilluminated Solar Panel and DC Power Supply

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhou

    2017-12-01

    Full Text Available This paper provides a review on various PV simulator technologies as well as presents a novel equivalent photovoltaic (PV source that was constructed by using un-illuminated solar panels and a DC power supply that operates in current source mode. The constructed PV source was used for testing photovoltaic converters and various maximum power point tracking (MPPT algorithms required for capturing the maximum possible output power. The mathematical model and electrical characteristics of the constructed PV source were defined and analyzed in detail in the paper. The constructed PV source has the advantages of high bandwidth over the switching circuit based PV simulators. The constructed PV source has been used for testing various power electronics converters and various control techniques effectively in laboratory environments for researchers and university students.

  11. Brief analysis of Jiangsu grid security and stability based on multi-infeed DC index in power system

    Science.gov (United States)

    Zhang, Wenjia; Wang, Quanquan; Ge, Yi; Huang, Junhui; Chen, Zhengfang

    2018-02-01

    The impact of Multi-infeed HVDC has gradually increased to security and stability operating in Jiangsu power grid. In this paper, an appraisal method of Multi-infeed HVDC power grid security and stability is raised with Multi-Infeed Effective Short Circuit Ratio, Multi-Infeed Interaction Factor and Commutation Failure Immunity Index. These indices are adopted in security and stability simulating calculation of Jiangsu Multi-infeed HVDC system. The simulation results indicate that Jiangsu power grid is operating with a strong DC system. It has high level of power grid security and stability, and meet the safety running requirements. Jinpin-Suzhou DC system is located in the receiving end with huge capacity, which is easily leading to commutation failure of the transmission line. In order to resolve this problem, dynamic reactive power compensation can be applied in power grid near Jinpin-Suzhou DC system. Simulation result shows this method is feasible to commutation failure.

  12. Stability of large DC power systems using switching converters, with application to the international space station

    Science.gov (United States)

    Manners, B.; Gholdston, E. W.; Karimi, K.; Lee, F. C.; Rajagopalan, J.; Panov, Y.

    1996-01-01

    As space direct current (dc) power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When designing a large dc system using power converters of this type, special attention must be placed on the electrical stability of the system and of the individual loads on the system. In the design of the electric power system (EPS) of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) and its contractor team led by Boeing Defense & Space Group has placed a great deal of emphasis on designing for system and load stability. To achieve this goal, the team has expended considerable effort deriving a dear concept on defining system stability in both a general sense and specifically with respect to the space station. The ISS power system presents numerous challenges with respect to system stability, such as high power, complex sources and undefined loads. To complicate these issues, source and load components have been designed in parallel by three major subcontractors (Boeing, Rocketdyne, and McDonnell Douglas) with interfaces to both sources and loads being designed in different countries (Russia, Japan, Canada, Europe, etc.). These issues, coupled with the program goal of limiting costs, have proven a significant challenge to the program. As a result, the program has derived an impedance specification approach for system stability. This approach is based on the significant relationship between source and load impedances and the effect of this relationship on system stability. This approach is limited in its applicability by the theoretical and practical limits on component designs as presented by each system segment. As a result, the overall approach to system stability implemented by the ISS program consists of specific hardware requirements coupled with extensive system analysis and hardware testing. Following this approach, the ISS program plans to begin

  13. A comprehensive cloud-based real-time simulation framework for oblivious power routing in clusters of DC microgrids

    DEFF Research Database (Denmark)

    Amini, M. Hadi; Boroojeni, Kianoosh G.; Dragicevic, Tomislav

    2017-01-01

    In this paper, we propose a novel cloud-based approach for solving the optimal power routing problem in clusters of DC microgrids. To this end, we deploy oblivious network routing design. Each cluster includes multiple microgrids which are connected via DC links in a multi-terminal DC system...... cluster are unaware of the current cluster status. Furthermore, each microgrid does not need to have the access to the current flows through the multi-terminal DC system as well as the generation capacity and load demand of other microgrids. The optimal routing strategy considers two main objectives: 1...... of microgrids. The effectiveness of the proposed algorithm has been verified in MATLAB simulation. Furthermore, we propose a comprehensive simulation platform for further implementation of the proposed strategy on OPAL-RT real-time simulator system (RTDS). In our proposed platform, the communication path...

  14. Extra-High-Voltage DC-DC Boost Converters Topology with Simple Control Strategy

    Directory of Open Access Journals (Sweden)

    P. Sanjeevikumar

    2008-01-01

    Full Text Available This paper presents the topology of operating DC-DC buck converter in boost mode for extra-high-voltage applications. Traditional DC-DC boost converters are used in high-voltage applications, but they are not economical due to the limited output voltage, efficiency and they require two sensors with complex control algorithm. Moreover, due to the effect of parasitic elements the output voltage and power transfer efficiency of DC-DC converters are limited. These limitations are overcome by using the voltage lift technique, opens a good way to improve the performance characteristics of DC-DC converter. The technique is applied to DC-DC converter and a simplified control algorithm in this paper. The performance of the controller is studied for both line and load disturbances. These converters perform positive DC-DC voltage increasing conversion with high power density, high efficiency, low cost in simple structure, small ripples, and wide range of control. Simulation results along theoretical analysis are provided to verify its performance.

  15. Adapting AC Lines to DC Grids for Large-Scale Renewable Power Transmission

    Directory of Open Access Journals (Sweden)

    D. Marene Larruskain

    2014-10-01

    Full Text Available All over the world, governments of different countries are nowadays promoting the use of clean energies in order to achieve sustainable energy systems. In this scenario, since the installed capacity is continuously increasing, renewable sources can play an important role. Notwithstanding that, some important problems may appear when connecting these sources to the grid, being the overload of distribution lines one of the most relevant. In fact, renewable generation is usually connected to the nearest AC grid, although this HV system may not have been designed considering distributed generation. In the particular case of large wind farms, the electrical grid has to transmit all the power generated by wind energy and, as a consequence, the AC system may get overloaded. It is therefore necessary to determine the impact of wind power transmission so that appropriate measures can be taken. Not only are these measures influenced by the amount of power transmitted, but also by the quality of the transmitted power, due to the output voltage fluctuation caused by the highly variable nature of wind. When designing a power grid, although AC systems are usually the most economical solution because of its highly proven technology, HVDC may arise in some cases (e.g. offshore wind farms as an interesting alternative, offering some added values such as lower losses and better controllability. This way, HVDC technology can solve most of the aforementioned problems and has a good potential for future use. Additionally, the fast development of power electronics based on new and powerful semiconductor devices allow the spread of innovative technologies, such as VSC-HVDC, which can be applied to create DC grids. This paper focuses on the main aspects involved in adapting the existing overhead AC lines to DC grids, with the objective of improving the transmission of distributed renewable energy to the centers of consumption.

  16. An LCLC resonant topology based filament power supply for 300 KeV DC accelerator

    International Nuclear Information System (INIS)

    Kasliwal, A.; Gauttam, V.K.; Banwari, R.; Pandit, T.G.; Thakurta, A.C.

    2013-01-01

    A compact, low energy dc accelerator for industrial applications requiring beam energy in the range of 100 to 300 keV is under development at Raja Ramanna Centre for Advanced Technology, Indore. The accelerator uses an indirectly heated LaB6 disc type filament of 4 mm diameter as an electron emitter which is floating at terminal voltage of the accelerator. A power supply is required to heat the filament for its full range of emission. A high frequency inverter operating at fixed frequency feeds the power to the filament through high frequency transformers and capacitive isolation column. A buck chopper controls the dc bus voltage of the inverter so as to control the terminal voltage of the filament thus controlling the beam current. This paper presents the analysis and design of the filament supply that implements a 40 kHz high order LCLC series parallel resonant inverter that utilizes the reflected capacitance of the HV transformer and capacitive isolation column as its tank circuit component. The operating characteristics and analysis of series resonant (SRC), parallel resonant (PRC) and series parallel (SPRC) resonant converters have been reported for fixed frequency operation. It has been shown that SPRC takes the advantage of both SRC and PRC curtailing their disadvantages. Hence a series parallel LCLC combination has been used as it gives the advantage of low device currents and a better load regulation. (author)

  17. Interior point algorithm-based power flow optimisation of a combined AC and DC multi-terminal grid

    Directory of Open Access Journals (Sweden)

    Farhan Beg

    2015-01-01

    Full Text Available The high cost of power electronic equipment, lower reliability and poor power handling capacity of the semiconductor devices had stalled the deployment of systems based on DC (multi-terminal direct current system (MTDC networks. The introduction of voltage source converters (VSCs for transmission has renewed the interest in the development of large interconnected grids based on both alternate current (AC and DC transmission networks. Such a grid platform also realises the added advantage of integrating the renewable energy sources into the grid. Thus a grid based on DC MTDC network is a possible solution to improve energy security and check the increasing supply demand gap. An optimal power solution for combined AC and DC grids obtained by the solution of the interior point algorithm is proposed in this study. Multi-terminal HVDC grids lie at the heart of various suggested transmission capacity increases. A significant difference is observed when MTDC grids are solved for power flows in place of conventional AC grids. This study deals with the power flow problem of a combined MTDC and an AC grid. The AC side is modelled with the full power flow equations and the VSCs are modelled using a connecting line, two generators and an AC node. The VSC and the DC losses are also considered. The optimisation focuses on several different goals. Three different scenarios are presented in an arbitrary grid network with ten AC nodes and five converter stations.

  18. Load converter interactions with the secondary system in the Space Station Freedom power management and distribution DC test bed

    Science.gov (United States)

    Lebron, Ramon C.

    1992-01-01

    The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF Program design and development phases, a system Power Management and Distribution (PMAD) DC test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.

  19. Coordinated frequency control from offshore wind power plants connected to multi terminal DC system considering wind speed variation

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Altin, Müfit; Hansen, Anca Daniela

    2017-01-01

    A coordinated fast primary frequency control scheme from offshore wind power plants (OWPPs) integrated to a three terminal high voltage DC (HVDC) system is proposed in this study. The impact of wind speed variation on the OWPP active power output and thus on the AC grid frequency and DC grid...... the active power support from OWPP with a ramp rate limiter and (iii) An alternative method for the wind turbine overloading considering rotor speed. The effectiveness of the proposed control scheme is demonstrated on a wind power plant integrated into a three terminal HVDC system developed in DIg......SILIENT PowerFactory. The results show that the proposed coordinated frequency control method performs effectively at different wind speeds and minimises the secondary effects on frequency and DC voltage....

  20. Wide-Range Adaptive RF-to-DC Power Converter for UHF RFIDs

    KAUST Repository

    Ouda, Mahmoud H.

    2016-07-27

    A wide-range, differential, cross-coupled rectifier is proposed with an extended dynamic range of input RF power that enables wireless powering from varying distances. The proposed architecture mitigates the reverse-leakage problem in conven- tional, cross-coupled rectifiers without degrading sensitivity. A prototype is designed for UHF RFID applications, and is imple- mented using 0.18 μ m CMOS technology. On-chip measurements demonstrate a sensitivity of − 18 dBm for 1 V output over a 100 k Ω load and a peak RF-to-DC power conversion efficiency of 65%. A conventional, fully cross-coupled rectifier is fabricated along- side for comparison and the proposed rectifier shows more than 2 × increase in dynamic range and a 25% boosting in output voltage than the conventional rectifier

  1. Impute DC link (IDCL) cell based power converters and control thereof

    Science.gov (United States)

    Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad

    2016-04-26

    Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.

  2. An offshore wind farm with dc grid connection and its performance under power system transients

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2011-01-01

    The continuous increase in wind power penetration level brings new requirements for wind turbine integration into the network. The grid code requires that after clearance of an external short-circuit fault, grid-connected wind turbines should restore their normal operation without power loss caused...... by disconnections. This paper presents a transient performance study of an offshore wind farm with HVDC transmission for grid connection, where the wind turbines in the offshore wind farm are also connected with dc collection network. A power-reduction control strategy (PRCS) for transient performance improvement...... is proposed for the offshore wind farm that allows it to withstand severe voltage dips. A simulation model of a 400 MW offshore wind farm developed in PSCAD/EMTDC is presented. The transient performance of the offshore wind farm is studied, and the results show the effectiveness of the proposed control...

  3. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2017-10-24

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross-coupled rectifier, the proposed design offers 3.2× the dynamic range. It is also highly sensitive and requires −18 dBm of input power to produce a 1 V-output voltage when operating with a 100 kΩ load. Furthermore, the proposed design offers an open circuit sensitivity of −23.4 dBm and a peak power conversion efficiency of 67%.

  4. Fuzzy Logic Controlled DC-DC Converter Based Dynamic Voltage Restorer

    Directory of Open Access Journals (Sweden)

    Mustafa İnci

    2015-12-01

    Full Text Available This paper presents fuzzy logic controlled dc-dc boost converter based Dynamic Voltage Restorer (DVR to compensate severe voltage sag problems in an electrical system. DVR absorbs real power from battery to compensate voltage sags in the system. This condition causes reduction in voltage magnitude of dc-link capacitor. Additionally, DVR requires large dc capacitors to compensate long and severe voltage sags in the system. In this study, dc-dc boost converter is connected to DVR for keeping dc link voltage constant. For this propose, a control algorithm based on Fuzzy Logic (FL control is developed for dc-dc boost converter. The main contribution of this study is that Fuzzy Logic (FL is firstly used to generate reference signal for PWM signals of dc-dc converter applied in DVR. FL is a very flexible controller which keeps the dc link voltage constant during voltage sag. The performance results of proposed study are verified with PSCAD/EMDTC.

  5. Dynamic modeling of brushless dc motor-power conditioner unit for electromechanical actuator application

    Science.gov (United States)

    Demerdash, N. A.; Nehl, T. W.

    1979-01-01

    A comprehensive digital model for the analysis of the dynamic-instantaneous performance of a power conditioner fed samarium-cobalt permanent magnet brushless DC motor is presented. The particular power conditioner-machine system at hand, for which this model was developed, is a component of an actual prototype electromechanical actuator built for NASA-JSC as a possible alternative to hydraulic actuators as part of feasibility studies for the shuttle orbiter applications. Excellent correlation between digital simulated and experimentally obtained performance data was achieved for this specific prototype. This is reported on in this paper. Details of one component of the model, its applications and the corresponding results are given in this paper.

  6. Development of DC active filter for high magnetic field stable power supply

    International Nuclear Information System (INIS)

    Wang Lei; Liu Xiaoning

    2008-01-01

    The DC active filter (DAF), with very low current ripple, of the stable power supply system of high magnetic field device is developed by using the PWM and parallel active power filter technique. Due to the PWM control technique, the required DAF current can be obtained and the current ripple can be compensated by means of monitoring the load voltage, and the current ripple becomes very low by adjusting the load voltage. The simulation and analysis show that this system can respond to the reference quickly and is effective in suppressing the harmonics, especially the low-order harmonics. The feasibility of the proposed scheme is proved on the equipment built in the laboratory. (authors)

  7. Design of an AC/DC power supply for telecom applications

    Energy Technology Data Exchange (ETDEWEB)

    Suntio, T.; Vallittu, P.; Laurinen, T.; Ikonen, M. [Efore Oy, Espoo (Finland)

    1997-12-31

    Typical Telecom uninterruptible power supply system (UPS) comprises of parallel connected rectifiers and storage batteries supplying DC power for Telecom switching systems on fixed or mobile telephone networks. The requirement is most often of total uninterruptibility meaning high reliability and availability performance as a vital design and development goal. The Telecom systems must also meet stringent noise emission and immunity requirements stipulated by EMC and Low Voltage Directives, European Telecommunications Standard Institute (ETSI) as well as other global and local standards depending on the area they are to be used. This paper will describe in practice the vital features the rectifiers should contain as well as presents results from a practical equipment of 48 V, 500 W. (orig.) 27 refs.

  8. Improved Design Methods for Robust Single- and Three-Phase ac-dc-ac Power Converters

    DEFF Research Database (Denmark)

    Qin, Zian

    After a century of fast developing, the society is facing energy issues again, e.g. the exhaustion of fossil fuel, emission caused air pollution, radiation leakage of nuclear generation, and so on. How to produce and use electricity in a more sustainable, efficient, and cost-effective way thus...... becomes a emerging challenge. Accordingly, installation of sustainable power generators like wind turbines and solar panels has experienced a large increase during the last decades. Meanwhile, power electronics converters, as interfaces in electrical system, are delivering approximately 80 % electricity......, the emerging challenges, and the structure of the thesis. The main content of the thesis starts with single-phase converters: Chapter 2 and Chapter 3 propose new modulation methods for single-phase B6 and H6 converters, respectively, in order to retain the same dc link voltage with two full-bridges connected...

  9. Characteristics of a dc 75 kA power supply in the superconducting magnet test facilities

    International Nuclear Information System (INIS)

    Yamada, S.; Mito, T.; Tanahashi, S.; Takahata, K.; Yanagi, N.; Sakamoto, M.; Nishimura, A.; Motojima, O.; Yamamoto, J.; Kubo, H.; Yonenaga, Y.; Watanabe, R.

    1993-01-01

    To investigate properties of superconducting R and D conductors and coils for the Large Helical Device (LHD), a dc 75 kA power supply system which consists of three 25 kA unit banks has been designed and constructed. One unit bank has two double-star-rectifier connections with the inter-phase reactors. The algorithm of the digital feedback control system is installed in each unit bank. In this algorithm, each 6 phase is operated independently on the process of averaging, proportioning and integrating. The experiments of several short samples and one of the R and D coils have been done under the maximum ramp rate of the power supply, 999 A/s per unit. It is confirmed that the measured current stability is less than ±0.75%, and the deviation between a set value and an output value of the load current is less than ±1% under the short circuit test. (orig.)

  10. DESIGN OF SPEED CONTROL BRUHLESS DC MOTOR BASED POWER FACTOR CORRECTION (PFC USING SINGLE ENDED PRIMARY INDUCTANCE CONVERTER (SEPIC

    Directory of Open Access Journals (Sweden)

    Nanda Redha Arsya

    2017-01-01

    Full Text Available Brushless DC motors have been applied extensively in household and industrial scale because of the advantages such as high efficiency and mechanical losses are low because it does not use the brush like a DC motor. Application of the brushless DC motors using 220 rms AC source is rectified to minimize battery usage. However, the use of brushless DC motors and rectifying circuit can cause poor power factor and harmonic value. Power factor value reaches 0,73 while the current THD at 74%. These values are outside the permitted tolerance limits. This study aims to improve the power factor and THD value of current caused by the operation of brushless DC motors using a SEPIC converter. Moreover, the purpose of this study is that the motor is able to operate at different levels of speed and load vary. Based on the results of the simulation from the design has been made, the motor can respond to variations in the speed reference given to well. The control circuit is also able to make the motor maintain its speed with changes in the load every time. Power factor observed in resources has increased to 0.999 at various speeds. In addition, the current THD has an average value of 2% at various speeds. Both of these parameters are within the tolerances allowed by the standard. 

  11. Research on power equalization using a low-loss DC-DC chopper for lithium-ion batteries in electric vehicle

    Science.gov (United States)

    Wei, Y. W.; Liu, G. T.; Xiong, S. N.; Cheng, J. Z.; Huang, Y. H.

    2017-01-01

    In the near future, electric vehicle is entirely possible to replace traditional cars due to its zero pollution, small power consumption and low noise. Lithium-ion battery, which owns lots of advantages such as lighter and larger capacity and longer life, has been widely equipped in different electric cars all over the world. One disadvantage of this energy storage device is state of charge (SOC) difference among these cells in each series branch. If equalization circuit is not allocated for series-connected batteries, its safety and lifetime are declined due to over-charge or over-discharge happened, unavoidably. In this paper, a novel modularized equalization circuit, based on DC-DC chopper, is proposed to supply zero loss in theory. The proposed circuit works as an equalizer when Lithium-ion battery pack is charging or discharging or standing idle. Theoretical analysis and control method have been finished, respectively. Simulation and small scale experiments are applied to verify its real effect.

  12. Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2017-03-01

    Full Text Available In this paper, a novel isolated bidirectional DC-DC converter is proposed, which is able to accomplish high step-up/down voltage conversion. Therefore, it is suitable for hybrid electric vehicle, fuel cell vehicle, energy backup system, and grid-system applications. The proposed converter incorporates a coupled inductor to behave forward-and-flyback energy conversion for high voltage ratio and provide galvanic isolation. The energy stored in the leakage inductor of the coupled inductor can be recycled without the use of additional snubber mechanism or clamped circuit. No matter in step-up or step-down mode, all power switches can operate with soft switching. Moreover, there is a inherit feature that metal–oxide–semiconductor field-effect transistors (MOSFETs with smaller on-state resistance can be adopted because of lower voltage endurance at primary side. Operation principle, voltage ratio derivation, and inductor design are thoroughly described in this paper. In addition, a 1-kW prototype is implemented to validate the feasibility and correctness of the converter. Experimental results indicate that the peak efficiencies in step-up and step-down modes can be up to 95.4% and 93.6%, respectively.

  13. Design of current source DC/DC converter and inverter for 2kW fuel cell application

    DEFF Research Database (Denmark)

    Andreiciks, A.; Steiks, I.; Krievs, O.

    2013-01-01

    of a DC/DC converter and an inverter. In this paper a detailed simulation study of such interfacing converter system comprising a double inductor push-pull step-up DC/DC converter and a cascaded H-bridge inverter has been carried out and further confirmed with experimental results. The power converter...

  14. Local digital control of power electronic converters in a dc microgrid based on a-priori derivation of switching surfaces

    Science.gov (United States)

    Banerjee, Bibaswan

    In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes

  15. DC-based magnetic field controller

    Science.gov (United States)

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  16. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    Science.gov (United States)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  17. PENGGUNAAN FUZZY LOGIC UNTUK KONTROL PARALLEL CONVERTER DC-DC

    Directory of Open Access Journals (Sweden)

    Bambang Prio Hartono

    2012-09-01

    Full Text Available Abstract: Using system fuzzy logic as control  technology have been used on low load dc-dc converter with combined parallel compiled  dc-dc converter can  obtain big load.   With existence of differrence of component parameter and each parallel compiled converter can obtained different current  and voltage output.  Function of controller  for to do adjustment, so that current which is applied  to  load by each converter  can be obtained  difference error as small as possible or same. The object of research is developing design of large signal dc-dc converter which is  combined with using  FLC so that  obtain  better performance.  To get better performance have been made plant model and simulation with CDE method.  The more systematic  system and design is needed to overcome bigger load  on dc-dc converter, so that parallel  compiled current master slave control system on dc-dc converter with using fuzzy logic  controller is used. Result of  research showed that error or difference of  current  which is applied to load can handled by fuzzy logic  controller.  Technic of current and voltage controller co to do adjustment current and voltage distribution  equally to load.  Distribution of iL1,iL2 and  output voltage Vo on dc-dc  converter with load 2,25 until  7,875 and voltage  100  until 120 volt,  load current beetwen  12 until 48, % relatif  error  Vo  0,4% until  0,9%.

  18. Lowest of AC-DC power output for electrostrictive polymers energy harvesting systems

    Science.gov (United States)

    Meddad, Mounir; Eddiai, Adil; Hajjaji, Abdelowahed; Guyomar, Daniel; Belkhiat, Saad; Boughaleb, Yahia; Chérif, Aida

    2013-11-01

    Advances in technology led to the development of electronic circuits and sensors with extremely low electricity consumption. At the same time, structural health monitoring, technology and intelligent integrated systems created a need for wireless sensors in hard to reach places in aerospace vehicles and large civil engineering structures. Powering sensors with energy harvesters eliminates the need to replace batteries on a regular basis. Scientists have been forced to search for new power source that are able to harvested energy from their surrounding environment (sunlight, temperature gradients etc.). Electrostrictive polymer belonging to the family of electro-active polymers, offer unique properties for the electromechanical transducer technology has been of particular interest over the last few years in order to replace conventional techniques such as those based on piezoelectric or electromagnetic, these materials are highly attractive for their low-density, with large strain capability that can be as high as two orders of magnitude greater than the striction-limited, rigid and fragile electroactive ceramics. Electrostrictive polymers sensors respond to vibration with an ac output signal, one of the most important objectives of the electronic interface is to realize the required AC-DC conversion. The goal of this paper is to design an active, high efficiency power doubler converter for electrostrictive polymers exclusively uses a fraction of the harvested energy to supply its active devices. The simulation results show that it is possible to obtain a maximum efficiency of the AC-DC converter equal to 80%. Premiliminary experimental measurements were performed and the results obtained are in good agreement with simulations.

  19. Power Loss Analysis and Comparision of DC and AC Side Decoupling Module in a H-bridge Inverter

    DEFF Research Database (Denmark)

    Ma, Siyuan; Wang, Haoran; Zhu, Guorong

    2016-01-01

    perspective. The analytical power loss models are derived based on the operation principles of the active power decoupling methods. A comparative study is performed based on a 500 W single-phase H-bridge inverter study case with 400 V DC-link voltage level. The results provide a guideline to justify whether...

  20. Thermal Modelling and Design of On-board DC-DC Power Converter using Finite Element Method

    DEFF Research Database (Denmark)

    Staliulionis, Z.; Zhang, Z.; Pittini, R.

    2014-01-01

    Power electronic converters are widely used and play a pivotal role in electronics area. The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined...... the potential of such analysis was demonstrated by real-world measurements and comparison of obtained results. Thermal modelling was accomplished using finite element analysis software COMSOL and thermo-imaging camera was used to measure the thermal field distribution. Also, the improved configuration of power...... by numerical modelling techniques. Therefore, thermal design through thermal modelling and simulation is becoming an integral part of the design process as less expensive compared to the experimental cut-and-try approach. Here the investigation is performed using finite element method-based modelling, and also...

  1. Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.

  2. Decoupled Power Solution for Dual-input Isolated DC-DC Converters Using Four Quadrants Integrated Transformers (FQIT)

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.; Thomsen, Ole Cornelius

    2012-01-01

    ) space orthogonal flux is proposed in this paper. And thus a new geometry core and relative winding arrangements are proposed in accordance with the rthogonal flux decoupling technology. Due to the four secondary windings are arranged in a quadratic pattern at the base core plate with the two...... perpendicular primary windings, a name of “four quadrants integrated transformers” (FQIT) is therefore given to the proposed construction. Since the two primary windings are uncoupled, the FQIT allows the two input power stages to transfer the energy into the output load simultaneously or at any...... timemultiplexing scheme, which can optimize the utilization of diversified power energy sources, simplify the system structure, improve the flexibility and reduce the overall cost, so they are attractive for the hybrid renewable power system. Section IV initiates a discussion for the advantages of the FQIT...

  3. Thermal Modeling and Design of On-board DC-DC Power Converter using Finite Element Method

    DEFF Research Database (Denmark)

    Staliulionis, Zygimantas; Zhang, Zhe; Pittini, Riccardo

    2014-01-01

    Power electronic converters are widely used and play a pivotal role in electronics area . The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined...... , and also the potential of such analysis was demonstrated by real - world measurements and comparison of obtained results . Thermal modeling was accomplishe d using finite element anal ysis software COMSOL and thermo - imaging camera was used to measure the thermal field distribution. Also, the improved...... by numerical modeling techniques. Therefore, thermal design through thermal modeling and simulation is becoming an integral part of the design process as less expensive compared to the experimenta l cut - and - try approach. Here the investigation is performed using finite element method - based modeling...

  4. Guest Editorial Special Issue on Structured DC Microgrids

    DEFF Research Database (Denmark)

    Guerrero, Josep M.; Tan, Don F. D.

    2017-01-01

    With the development of dc coupled devices, such as photovoltaic generations, batteries, supercapacitors, LEDs, computers, and electronics equipment, low-voltage dc distribution networks, structured dc microgrids are emerging as a natural platform to integrate renewable energy sources. However...... in either series/parallel, forming a number of dc busses with different voltage levels. Recently, with the advance of new dc power technologies, several ongoing standards, alliances, and initiatives are bringing the possibility of developing future homes, offices, buildings, campuses, datacenters, ships...

  5. An experimental study of energy loss mechanisms and efficiency consideration in the low power dc arcjet

    Science.gov (United States)

    Curran, F. M.

    1985-01-01

    The potential utility of the low power dc arcjet in auxiliary propulsion was investigated. It was indicated that improvements in the areas of stability, energy efficiency, reliability, and electrode erosion are necessary to obtain a useful device. A water-cooled arcjet simulator was tested to investigate both the energy loss mechanisms at the electrodes and the stability of different conventional arcjet configurations in the presence of a vortex flow field. It is shown that in certain configurations only 25 to 30% of the input energy is lost to the electrodes. It is also shown that vortex stabilization is not difficult to obtain in many cases at the flow rates used and that a careful starting procedure is effective in minimizing electrode damage.

  6. Solid State Remote Power Controllers for high voltage DC distribution systems

    Science.gov (United States)

    Billings, W. W.; Sundberg, G. R.

    1977-01-01

    Presently, hybrid Remote Power Controllers (RPC's) are in production and prototype units are available for systems utilizing 28VDC, 120VDC, 115VAC/400 Hz and 230VAC/400 Hz. This paper describes RPC development in a new area of application: HVDC distribution systems utilizing 270/300VDC. Two RPC current ratings, 1 amp and 2 amps, were selected for development as they are adequate to control 90% of projected system loads. The various aspects and trade-offs encountered in circuit development are discussed with special focus placed on the circuits that see the duress of the high dc potentials. The comprehensive evaluation tests are summarized which confirmed the RPC compliance with the specification and with system/load compatibility requirements. In addition, present technology status and new applications are summarized.

  7. Substantial difference in target surface chemistry between reactive dc and high power impulse magnetron sputtering

    Science.gov (United States)

    Greczynski, G.; Mráz, S.; Schneider, J. M.; Hultman, L.

    2018-02-01

    The nitride layer formed in the target race track during the deposition of stoichiometric TiN thin films is a factor 2.5 thicker for high power impulse magnetron sputtering (HIPIMS), compared to conventional dc processing (DCMS). The phenomenon is explained using x-ray photoelectron spectroscopy analysis of the as-operated Ti target surface chemistry supported by sputter depth profiles, dynamic Monte Carlo simulations employing the TRIDYN code, and plasma chemical investigations by ion mass spectrometry. The target chemistry and the thickness of the nitride layer are found to be determined by the implantation of nitrogen ions, predominantly N+ and N2+ for HIPIMS and DCMS, respectively. Knowledge of this method-inherent difference enables robust processing of high quality functional coatings.

  8. Costs of magnets for large fusion power reactors: Phase I, cost of superconductors for dc magnets

    International Nuclear Information System (INIS)

    Powell, J.R.

    1972-01-01

    Projections are made for dc magnet conductor costs for large fusion power reactors. A mature fusion economy is assumed sometime after 2000 A. D. in which approximately 90,000 MW(e) of fusion reactors are constructed/year. State of the art critical current vs. field characteristics for superconductors are used in these projections. Present processing techniques are used as a basis for the design of large plants sized to produce approximately one-half of the conductor needed for the fusion magnets. Multifilamentary Nb-Ti, Pb-Bi in glass fiber, GE Nb 3 Sn tape, Linde plasma sprayed Nb 3 Sn tape, and V 3 Ga tape superconductors are investigated, together with high purity aluminum cryoconductor. Conductor costs include processing costs [capital (equipment plus buildings), labor, and operating] and materials costs. Conductor costs are compared for two sets of material costs: current (1971 A. D.) costs, and projected (after 2000 A. D.) costs. (U.S.)

  9. Limitations of the Conventional Phase Advance Method for Constant Power Operation of the Brushless DC Motor

    International Nuclear Information System (INIS)

    Lawler, J.S.

    2001-01-01

    The brushless dc motor (BDCM) has high-power density and efficiency relative to other motor types. These properties make the BDCM well suited for applications in electric vehicles provided a method can be developed for driving the motor over the 4 to 6:1 constant power speed range (CPSR) required by such applications. The present state of the art for constant power operation of the BDCM is conventional phase advance (CPA)[1]. In this paper, we identify key limitations of CPA. It is shown that the CPA has effective control over the developed power but that the current magnitude is relatively insensitive to power output and is inversely proportional to motor inductance. If the motor inductance is low, then the rms current at rated power and high speed may be several times larger than the current rating. The inductance required to maintain rms current within rating is derived analytically and is found to be large relative to that of BDCM designs using high-strength rare earth magnets. Th us, the CPA requires a BDCM with a large equivalent inductance

  10. DC-Link Voltage Control of Unified Power Quality Conditioner using PI Fuzzy Self-tuning Controller

    Directory of Open Access Journals (Sweden)

    FERDI Brahim

    2012-05-01

    Full Text Available The unified power quality conditioner (UPQC, is one of the best solutions towards the mitigation of voltage and current harmonics problems in distribution power system. PI controller is verycommon in the control of DC-Link Voltage of UPQC. However, one disadvantage of this conventional controller is the difficulty in tuning its gains (Kp and Ki. To overcome this problem, PI fuzzy logic selftuning controller is proposed. The controller is acombination of fuzzy and PI controller. According to the error and error rate of the control system and fuzzy control rules, the fuzzy controller can online adjust the two gains of the PI controller to get better regulation performance of the DC-Link Voltage for any voltage or current harmonics distortions. Simulations using MATLAB / SIMULINK are carried out to verify the performance of the proposed controller. The results show that the proposed controller has fast dynamic response and high accuracy of tracking the DC-Link voltage reference.

  11. Suitable Method of Overloading for Fast Primary Frequency Control from Offshore Wind Power Plants in Multi-Terminal DC Grid

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Hansen, Anca Daniela; Altin, Müfit

    2017-01-01

    considering the operation of the WT at below rated wind speed. Moreover, the impact of release of overload on the dynamics of the wind turbine, therefore on the associated AC and DC grids are studied in this paper. Finally, the suitable overloading method is proposed based on the simulation and experimental...... results. The time domain simulations for fast primary frequency control are performed on an OWPP connected through a 3-terminal DC grid using DIgSILENT PowerFactory. The experiments are performed on OWPP model integrated to a laboratory scale 3-terminal DC grid test set up. Based on the simulations...... and experimental results, overloading method which considers the variation of WT output power during the overload provides better performance during and after release of the overload....

  12. Ultra-high Efficiency DC-DC Converter using GaN Devices

    DEFF Research Database (Denmark)

    Ramachandran, Rakesh

    2016-01-01

    for many decades. However, the rate of improvement slowed as the silicon power materials asymptotically approached its theoretical bounds. Compared to Si, wideband gap materials such as Silicon Carbide (SiC) and Gallium Nitride (GaN) are promising semiconductors for power devices due to their superior...... properties of GaN devices can be utilized in power converters to make them more compact and highly efficient. This thesis entitled “Ultra-high Efficiency DC-DC Converter using GaN devices” focuses on achieving ultra-high conversion efficiency in an isolated dc-dc converter by the optimal utilization of Ga...... in this thesis. Efficiency measurements from the hardware prototype of both the topologies are also presented in this thesis. Finally, the bidirectional operation of an optimized isolated dc-dc converter is presented. The optimized converter has achieved an ultra-high efficiency of 98.8% in both directions...

  13. A computer model of the MFTF-B neutral beam accel dc power supply

    International Nuclear Information System (INIS)

    Wilson, J.H.

    1983-01-01

    Using the SCEPTRE circuit modeling code, a computer model was developed for the MFTF Neutral Beam Power Supply System (NBPSS) Accel DC Power Supply (ADCPS). The ADCPS provides 90 kV, 88 A, to the Accel Modulator. Because of the complex behavior of the power supply, use of the computer model is necessary to adequately understand the power supply's behavior over a wide range of load conditions and faults. The model developed includes all the circuit components and parameters, and some of the stray values. The model has been well validated for transients with times on the order of milliseconds, and with one exception, for steady-state operation. When using a circuit modeling code for a system with a wide range of time constants, it can become impossible to obtain good solutions for all time ranges at once. The present model concentrates on the millisecond-range transients because the compensating capacitor bank tends to isolate the power supply from the load for faster transients. Attempts to include stray circuit elements with time constants in the microsecond and shorter range have had little success because of hugh increases in computing time that result. The model has been successfully extended to include the accel modulator

  14. Computer model of the MFTF-B neutral beam Accel dc power supply

    International Nuclear Information System (INIS)

    Wilson, J.H.

    1983-01-01

    Using the SCEPTRE circuit modeling code, a computer model was developed for the MFTF Neutral Beam Power Supply System (NBPSS) Accel dc Power Supply (ADCPS). The ADCPS provides 90 kV, 88 A, to the Accel Modulator. Because of the complex behavior of the power supply, use of the computer model is necessary to adequately understand the power supply's behavior over a wide range of load conditions and faults. The model developed includes all the circuit components and parameters, and some of the stray values. The model has been well validated for transients with times on the order of milliseconds, and with one exception, for steady-state operation. When using a circuit modeling code for a system with a wide range of time constants, it can become impossible to obtain good solutions for all time ranges at once. The present model concentrates on the millisecond-range transients because the compensating capacitor bank tends to isolate the power supply from the load for faster transients. Attempts to include stray circuit elements with time constants in the microsecond and shorter range have had little success because of huge increases in computing time that result. The model has been successfully extended to include the accel modulator

  15. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu

    2015-09-01

    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  16. Hybrid Z-Source DC-DC Converter with ZVZCS and Power Transformer Resetting: Design, Modeling, and Fabrication

    Directory of Open Access Journals (Sweden)

    H. Torkaman

    2018-03-01

    Full Text Available This paper introduces a novel two transistors forward topology employing a z-source to achieve ZVZCS and power transformer resetting for various applications. Comparing with the forward converter, this topology has the advantage of displaying ZCS condition with an added Z-Source and no additional switches when the switches turn on, and that ZVS condition happens when the switches turn off. Duty cycle of the topology can exceed 50 percent. As a result, these converters are suitable for applications with high efficiency. In this paper, structure and properties of the topology will be discussed in details. Then the design principles will be presented. Finally, the benefits aforementioned will be approved in practice through a simple forward converter.

  17. Damping of power oscillations of exchange lines using a DC link; Amortecimento de oscilacoes de potencia de linhas de intercambio utilizando um elo de CC

    Energy Technology Data Exchange (ETDEWEB)

    Paccini, Rodrigo de O.; Custodio, Diogo T.; Kopcak, Igor; Costa, Vivaldo F. da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Sistemas de Energia Eletrica], Emails: rodrigo@dsee.fee.unicamp.br, totti@dsee.fee.unicamp.br, kopcak@dsee.fee.unicamp.br, vivaldo@dsee.fee.unicamp.br.

    2009-07-01

    This article presents a study that evaluates the effectiveness of a DC link in order to damp power oscillations, of inter area exchange, under small disturbance conditions, operating with Automatic Control Generation. The DC link was represented by a power injection model included the Sensitivity Power Model. Through this representation, the DC link was inserted in the block diagram, modeled as an injection power in the bars terminals in the net active and reactive, closing a new power balance at every instant. It was also designed a controller for damping power oscillations (POD-Power Oscillation Damping Controller) for modulation the power of the DC link and, therefore, insertion of additional damping in a frequency oscillations of exchange lines. The results confirm that the DC link has a great potential for maintaining the damping of oscillations frequency so inter area when equipped with POD controllers.

  18. Mesoscopic electronics beyond DC transport

    Science.gov (United States)

    di Carlo, Leonardo

    arise from interdot Coulomb interaction. Super-Poissonian auto-correlation and positive cross correlation are measured in a multi-lead dot, and shown consistent with dynamical blockade of multi-level transport. Shot noise measurements in graphene nanostructures reveal a Fano factor independent of carrier type and density, device geometry, and the presence of a p-n junction. This result contrasts with theory for ballistic graphene sheets and junctions, and points to strong influence of disorder on transmission. A final experiment investigating the graphene p-n junction in the quantum Hall regime reminds us the power of dc transport. New conductance plateaus are observed at 1 and 3/2xe2/ h, consistent with recent theory for equilibration of edge states at the p-n interface.

  19. Very High Frequency Half Bridge DC/DC Converter

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...

  20. EXPERIMENTAL CHARACTERIZATION OF A MAGNETOHYDRODYNAMIC POWER GENERATOR UNDER DC ARC PLASMA

    Directory of Open Access Journals (Sweden)

    Ayokunle Oluwaseun Ayeleso

    2018-02-01

    Full Text Available The generation of electric power through the conventional systems (thermal and hydroelectric is no longer sufficient to meet the increasing industrial and commercial usage. Therefore, an alternative energy conversion system is currently being sought. The aim of the presented study is to develop a direct energy conversion system (Magnetohydrodynamics, MHD generator to generate electric power using plasma. Additionally, the generator electric response is investigated based on the Faraday’s principle of electromagnetism and fluid dynamics. For this purpose, a rectangular MHD generator prototype with segmented electrodes was constructed and subjected to continuous plasma from a DC arc source at test facilities available in the Western Cape region (South Africa. Subsequently, the terminal voltages at the middle-electrodes were measured one after another across 1, 100 and 470 Ω load resistors. In all experiments, the absolute time-averages of the measured terminal voltage across each load resistor were similar, which indicates a generation of power. The maximum power of the order 0.203mW was obtained when 1 Ω resistor was connected to the middle-electrodes. Conclusively, these results validate the measurement approach of the MHD generator with segmented electrodes and could be used to design a large MHD unit that can be incorporated to the existing conventional thermal plant to improve their cyclic thermal efficiency.

  1. Distributed Coordination Control Based on State-of-Charge for Bidirectional Power Converters in a Hybrid AC/DC Microgrid

    Directory of Open Access Journals (Sweden)

    Zeyan Lv

    2018-04-01

    Full Text Available This paper proposes a distributed coordination control for multiple bidirectional power converters (BPCs in a hybrid AC/DC microgrid with consideration of state-of-charge (SOC of storages. The researched hybrid AC/DC microgrid is composed of both AC and DC subgrids connected by multiple parallel BPCs. In the literature, the storages of a hybrid microgrid are considered to allocate in only the AC subgrid or DC subgrid, which reduces the reliability of the whole system, especially during the islanded mode. Besides, the SOC management has not been considered in BPCs’ operating strategy. This paper considers a hybrid microgrid topology which has energy storages in both AC side and DC side. This ensures the reliability while increasing the complexity of the control strategy at the same time. Further, a distributed coordination control method for multiple BPCs based on SOC was proposed to enhance the reliability of hybrid microgrid. Finally, the performance of the proposed control methods was verified by real-time hardware-in-loop (HIL tests.

  2. Analysis of Electric Propulsion Performance on Submersible with Motor DC, Supply Power 10260AH at Voltage 115VDC

    Directory of Open Access Journals (Sweden)

    Indra Ranu Kusuma

    2017-03-01

    Full Text Available Electric propulsion is the ship system using propulsion motor to replace performance of main engine. The application of diesel engine as propulsion system have some problems and weaknesses such as diesel engine unability to operate when submersible vessel is operating under sea. To overcome that problems in submersible vessel, alternative solution of ship propulsion is required. DC Motor can be used as this alternative solution. Submersible vessel use electric propulsion system with DC Motor because DC Motor has advantages of easy rotation setting and does not cause noise when submersible vessel is diving. This bachelor thesis will study the application of DC Motor as an electric propulsion system on submersible vessel with length 59,57 m in series and parallel circuit by simulation using MATLAB software. The simulation data obtained are rotation and torque of DC Motor. From these simulation, it can be concluded that parallel circuit rotation is greater than series circuit rotation. It caused the greater speed and lower power in parallel circuit. 

  3. Control of improved full-bridge three-level DC/DC converter for wind turbines in a DC grid

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2013-01-01

    This paper presents an improved full-bridge three-level (IFBTL) dc/dc converter for a wind turbine in a dc grid by inserting a passive filter into the dc/dc converter to improve the performance of the converter. The passive filter can effectively reduce the voltage stress of the medium frequency...

  4. Experiments with a dc motor

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the mechanical and electrical parameters of the motor is clearly seen. The measurements are carried out with the ScienceWorkshop data-acquisition system and the DataStudio software from PASCO scientific. The experiments are well related to university courses of electricity and magnetism and can be used in undergraduate laboratories or for lecture demonstrations.

  5. Pulsed-DC DBD Plasma Actuators

    Science.gov (United States)

    Duong, Alan; Corke, Thomas; Thomas, Flint

    2017-11-01

    A power system for dielectric barrier discharge (DBD) plasma actuators that utilizes a pulsed-DC waveform is presented. The plasma actuator arrangement is identical to most typical AC-DBD designs with staggered electrodes that are separated by a dielectric insulator. A key difference is that the pulsed-DC actuator utilizes a DC voltage source to drive the actuator instead of an AC voltage input. The DC source is supplied to both electrodes. The exposed electrode remains constant in time while the encapsulated electrode is periodically grounded for short instances then is allowed to rise to the source DC level. Further investigation of the pulsed-DC plasma actuator was conducted. Time-resolved velocity measurements were done to characterize the induced velocity field generated by the pulsed-DC plasma actuator. A model of the pulsed-DC plasma actuator is developed in LTspice for further study. The work presented are intended in developing a model to be used in CFD flow control simulations. NASA SBIR NNX14CC12C.

  6. Robust Power Decoupling Control Scheme for DC Side Split Decoupling Capacitor Circuit with Mismatched Capacitance in Single Phase System

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2016-01-01

    imperfections when storage mismatch occurs, which may break the standard requirement such as IEEE 1547. As a consequence, a robust control scheme is then proposed for half-bridge circuit, which realized power decoupling by generating second order harmonic voltage on the split dc decoupling capacitor instead...

  7. The performance of the DC motor by the PID controlling PWM DC-DC boost converter

    OpenAIRE

    Can, Erol; Sayan, Hasan Hüseyin

    2017-01-01

    This paper presents the PID controlling direct current (DC) to the direct current boost converter feds DC motor which has a 3.68 kW and 240 V of DC voltage input on its characteristics. What is first formed is the boost converter mathematical model at the design stage. Secondly, a mathematical model of the DC motor is created so that the boost converter with the machine can be established and modeled at the Matlab Simulink. The PID controller is considered for arranging a pulse width modulati...

  8. Powers of Traction Rectifier Substation of DC ELectric Railways 3kV

    Directory of Open Access Journals (Sweden)

    Josef Palecek

    2004-01-01

    Full Text Available The article states main principles of dimensioning of traction supply stations DC traction current system. it also provides detailed results of the traction rectifier substation Ostrava-Svinov load measurement. The measured valued are subsequently used for calculation of characteristic coefficients, whitch make it possible to dimension rectifier groups.

  9. Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    interface to the grid. In power electronics, the converter efficiency is characterized at fixed operating voltage for various output power. This type of characterization is not suitable for fuel cells, since as the power from the fuel cell increases, the cell voltage decreases. This paper analyses how......Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power...... the fuel cell I-V characteristics influences the power electronics converter efficiency and their consequence on the overall system. A loaddependent efficiency curve is presented based on experimental results from a 6 kW dc-dc converter prototype including the most suitable control strategy which maximizes...

  10. Pulsed-DC selfsputtering of copper

    International Nuclear Information System (INIS)

    Wiatrowski, A; Posadowski, W M; Radzimski, Z J

    2008-01-01

    At standard magnetron sputtering conditions (argon pressure ∼0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (∼550W/cm 2 ). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%

  11. Optimal Power Flow Modelling and Analysis of Hybrid AC-DC Grids with Offshore Wind Power Plant

    DEFF Research Database (Denmark)

    Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei

    2017-01-01

    , it is essential to develop a suitable model and apply optimization algorithms for different application scenarios. The objective of this work is to develop a generalized model and evaluate the Optimal Power Flow (OPF) solutions in a hybrid AC/DC system including HVDC (LCC based) and offshore WPP (VSC based......In order to develop renewables based energy systems, the installation of the offshore wind power plants (WPPs) is globally encouraged. However, wind power generation is intermittent and uncertain. An accurate modelling and evaluation reduces investment and provide better operation. Hence......). This paper also shows the significance and impact of control parameters in OPF applications. An integrated hybrid power system network is adopted in this paper and OPF techniques are applied on it by considering the impact of different control parameters. In addition to the impact of the control variables...

  12. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    Science.gov (United States)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-01-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.

  13. Transient analysis of the output short-circuit fault of high power and high voltage DC power supply

    International Nuclear Information System (INIS)

    Yang Zhigang; Zhang Jian; Huang Yiyun; Hao Xu; Sun Haozhang; Guo Fei

    2014-01-01

    The transient conditions of output short-circuit fault of high voltage DC power supply was introduced, and the energy of power supply injecting into klystron during the protection process of three-electrode gas switch were analyzed and calculated in detail when klystron load happening electrode arc faults. The results of calculation and simulation are consistent with the results of the experiment. When the output short-circuit fault of high voltage power supply occurs, switch can be shut off in the microsecond, and the short circuit current can be controlled in 200 A. It has verified the rapidity and reliability of the three-electrode gas switch protection, and it has engineering application value. (authors)

  14. Reliability of capacitors for DC-link applications - An overview

    OpenAIRE

    Wang, Huai; Blaabjerg, Frede

    2013-01-01

    DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of DC-link in power electronic converters from two aspects: 1) reliability-oriented DC-link design solutions; 2) conditioning monitoring of DC-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capaci...

  15. Active superconducting DC fault current limiter based on flux compensation

    International Nuclear Information System (INIS)

    Shi Jing; Tang Yuejin; Wang, Chen; Zhou Yusheng; Li Jingdong; Ren Li; Chen Shijie

    2006-01-01

    With the extensive application of DC power systems, suppression of DC fault current is an important subject that guarantees system security. This paper presents an active superconducting DC fault current limiter (DC-SFCL) based on flux compensation. The DC-SFCL is composed of two superconducting windings wound on a single iron core, the primary winding is in series with DC power system, and the second winding is connected with AC power system through a PWM converter. In normal operating state, the flux in the iron core is compensated to zero, and the SFCL has no influence on DC power system. In the case of DC system accident, through regulating the active power exchange between the SFCL's second winding and the AC power system, the current on the DC side can be limited to different level complying with the system demand. Moreover, the PWM converter that interface the DC system and AC system can be controlled as a reactive power source to supply voltage support for the AC side, which has little influence on the performance of SFCL. Using MATLAB SIMULINK, the mathematic model of the DC-SFCL is created, simulation results validate the dynamics of system, and the performance of DC-SFCL is confirmed

  16. Verification of Safety Margins of Battery Banks Capacity of Class 1E DC System in a Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lukman, Abdulrauf; Zhu, Oon-Pyo

    2015-01-01

    According to Ref 'Station blackout (SBO) is generally a plant condition with complete loss of all alternating current (AC) power from off-site sources, from the main generator and from standby AC power sources important to safety to the essential and nonessential switchgear buses. Direct current (DC) power supplies and uninterruptible AC power supplies may be available as long as batteries can supply the loads, alternate AC power supplies are available'. The above IAEA document indicated the importance of batteries during SBO. Prior to the Fukushima accident, most batteries might be designed with coping capability of four hours. However, the accident showed the need for the coping capability to be increased to at least eight hours. The purpose of this research is to verify the safety capacity margin of the nuclear qualified battery banks of class 1E DC system and test the response to SBO using the load profile of a Korean design nuclear power plant (NPP). The capacity margins of class 1E batteries of DC power system batteries in a nuclear power plant were determined using the load profile of the plant. It was observed that if appropriate manufacturer Kt data are not available, the accuracy of the battery capacity might not be accurately calculated. The result obtained shows that the batteries have the coping capability of two hours for channel A and B, and eight hours for channel C and D. Also capacity margin as show in figure show a reasonable margin for each batteries of the DC system

  17. Development of traction power supply for d.c. light rail vehicles; Entwicklung der Bahnenergieversorgung fuer Gleichstrom-Nahverkehrsbahnen

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W.; George, G. [Balfour Beatty Rail GmbH Power Systems, Offenbach/Main (Germany); Schlechter, E. [ELBAS GmbH, Berlin (Germany)

    2003-06-01

    The generation, supply, conversion and distribution of traction power has undergone a basic change since 1879. Instead of the d.c. power stations of the early times use was later on made of substations with rotating converters and ultimately of converters equipped with semiconductor rectifiers and controlled double-way converters. The vehicles are no longer supplied via the rails but from contact lines of single-wire and catenary trolley wire design or third rails. (orig.)

  18. Operation and control of a DC-grid offshore wind farm under DC transmission system faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2013-01-01

    . Consequently, the protection and control strategies of dc systems need to be established. This paper studies a dc-grid offshore wind farm, where the wind power collection system and power transmission system adopt dc technology. In this paper, the redundancy of the HVDC transmission system under faults...... is studied, and a fault ridethrough strategy for the dc-grid offshore wind farm is proposed. The proposed strategy can effectively minimize the impacts of the power transmission system disturbance on the offshore wind farm, and on the ac grid. A dc-grid offshore wind farm example is simulated with PSCAD....../EMTDC, and the results validate the feasibility of the presented redundancy configuration and operation approach, and the fault ridethrough control strategy....

  19. SEE Transient Response of Crane Interpoint Single Output Point of Load DC-DC Converters

    Science.gov (United States)

    Sanders, Anthony B.; Chen, Dakai; Kim, Hak S.; Phan, Anthony M.

    2011-01-01

    This study was undertaken to determine the single event effect and transient susceptibility of the Crane Interpoint Maximum Flexible Power (MFP) Single Output Point of Load DC/DC Converters for transient interruptions in the output signal and for destructive and non destructive events induced by exposing it to a heavy ion beam..

  20. Very High Frequency Resonant DC/DC Converters for LED Lighting

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...

  1. Area-Efficiency Trade-Offs in Integrated Switched-Capacitor DC-DC Converters

    DEFF Research Database (Denmark)

    Spliid, Frederik Monrad; Larsen, Dennis Øland; Knott, Arnold

    2016-01-01

    This paper analyzes the relationship between efficiency and chip area in a fully integrated switched capacitor voltage divider dc-dc converter implemented in 180nm-technology and a 1/2 topology. A numerical algorithm for choosing the optimal sizes of individual components, in terms of power loss,...

  2. A Novel Quasi-SEPIC High-Voltage Boost DC-DC Converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; N. Soltani, Mohsen; Blaabjerg, Frede

    2017-01-01

    This paper proposes a modified coupled-inductor SEPIC dc-dc converter for low power and high voltage gain applications such as for piezoelectric drive systems. The converter uses the same components as of SEPIC converter with an additional diode. Compared to conventional topologies with similar...

  3. Y-Source Boost DC/DC Converter for Distributed Generation

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    This paper introduces a versatile Y-source boost dc/dc converter intended for distributed power generation, where high gain is often demanded. The proposed converter uses a Y-source impedance network realized with a tightly coupled three-winding inductor for high voltage boosting that is presently...

  4. Five-Level Active-Neutral-Point-Clamped DC/DC Converter

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Chen, Zhe

    2016-01-01

    Multi-level converters are getting more and more attentions because of their obvious merits such as lower voltage stress and harmonic, smaller size of output filters, and so on. In this paper, a five-level active-neutral-point-clamped (5L-ANPC) dc/dc converter is proposed for power transfer...

  5. Integrated S-band transmitter with on-chip DC-DC converter and control loop

    NARCIS (Netherlands)

    Brouzes, H.; Geurts, S.; Besselink, M.; Telli, A.; Hek, A.P. de; Bent, G. van der; Vliet, F.E. van

    2012-01-01

    A highly integrated high-power transmitter has been designed in a high breakdown GaAs MMIC technology. The transmitter includes, on top of an S-Band 10 W class-F HPA, a DC/DC converter and its associated gate driver, the full voltage regulation control loop, which provides a significant step for

  6. Magnetically coupled high-gain Y-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    A new form of magnetically coupled DC/DC converter is proposed for medium power applications (250 W to 2 kW), requiring a high-voltage gain, short inductive charging time and galvanic isolation. The proposed converter can be realised using a unique Y-source impedance network and a two-switch push...

  7. Decentralized Interleaving of Paralleled Dc-Dc Buck Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sinha, Mohit [University of Minnesota; Dhople, Sairaj [University of Minnesota; Poon, Jason [University of California at Berkeley

    2017-09-01

    We present a decentralized control strategy that yields switch interleaving among parallel connected dc-dc buck converters without communication. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work represents the first fully decentralized strategy for switch interleaving of paralleled dc-dc buck converters.

  8. Active pre-filters for dc/dc Boost regulators

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Ramos-Paja

    2014-05-01

    Full Text Available This paper proposes an active pre-filter to mitigate the current harmonics generated by classical dc/dc Boost regulators, which generate current ripples proportional to the duty cycle. Therefore, high output voltage conditions, i.e., high voltage conversion ratios, produce high current harmonics that must be filtered to avoid damage or source losses. Traditionally, these current components are filtered using electrolytic capacitors, which introduce reliability problems because of their high failure rate. The solution introduced in this paper instead uses a dc/dc converter based on the parallel connection of the Boost canonical cells to filter the current ripples generated by the Boost regulator, improving the system reliability. This solution provides the additional benefits of improving the overall efficiency and the voltage conversion ratio. Finally, the solution is validated with simulations and experimental results.

  9. Fuzzy Control of DC-DC Converters with Input Constraint

    Directory of Open Access Journals (Sweden)

    D. Saifia

    2012-01-01

    Full Text Available This paper proposes a method for designing fuzzy control of DC-DC converters under actuator saturation. Because linear control design methods do not take into account the nonlinearity of the system, a T-S fuzzy model and a controller design approach is used. The designed control not only handles the external disturbance but also the saturation of duty cycle. The input constraint is first transformed into a symmetric saturation which is represented by a polytopic model. Stabilization conditions for the state feedback system of DC-DC converters under actuator saturation are established using the Lyapunov approach. The proposed method has been compared and verified with a simulation example.

  10. Switched capacitor DC-DC converter ASICs for the upgraded LHC trackers

    CERN Document Server

    Bochenek, M; Faccio, F; Michelis, S

    2010-01-01

    The High Luminosity Upgrade of the ATLAS Inner Tracker puts demanding requirements on the powering system of the silicon strip detector modules due to 10-fold increase of the channel count compared to the existing SemiConductor Tracker. Therefore, new solutions for the powering scheme must be elaborated. Currently two possible approaches, the serial powering and the parallel powering scheme using the DC-DC conversion technique, are under development. This paper describes two switched capacitor DC-DC converters designed in a 130 nm technology. For the optimized step-down converter, foreseen for the parallel powering scheme, power efficiency of 97% has been achieved, while for the charge pump, designed for the serial powering scheme, power efficiency of 85% has been achieved

  11. Hybrid battery with bi-directional DC/DC converter

    Directory of Open Access Journals (Sweden)

    DUDRIK Jaroslav

    2010-05-01

    Full Text Available Bi-directional buck-boost DC/DC converterfor hybrid battery is described in this paper. The firstpart of the paper is aimed at concept of hybrid battery;main advance compared to conventional accumulatoris explained there. Control circuit with UC3637 andpower circuit of the converter are described in thesecond part of the paper. Experimental results frommeasuring of converter are mentioned in the last part.

  12. High gain high efficiency resonant DC-DC converter

    Science.gov (United States)

    Shang, Fei

    Low voltage power sources have played an important role in applications such as automotive system, renewable energy power generation and so on, where require a high gain DC-DC step-up converter. The converter is going to sustain a very high input current which can bring many design challenges in the existing topologies, such as high component current stress and power loss, complex and costly design for magnetic components, high input current ripple, etc. A new topology of high gain DCDC step-up converter proposed in this dissertation. The topology has many merits such as high gain capability, high efficiency, low components stress and requirement of the transformer, simple topology with less number of active switching devices, and easy to control. The dissertation carries out theoretical analysis of the proposed topology under different operating modes and the voltage gain has been deduced for each mode. The design of circuit components has been well studied, including the power devices current stress and power, the selection of transformer turns-ratio, the design method of the resonant tank and input current ripple. System dynamic state-space models are acquired by using generalized averaging method. Small signal model of the converter is achieved by linearization of the dynamic model around the operating points. The stability study indicates that the open loop system is stable at all operating points, except some operating points containing RHP zeros which can cause closed loop system unstable. The parameter sensitivity study shows that the system transfer function is not greatly affected by the variation of the leakage inductance and load resistance. A design of PI controller is implemented to achieve the output voltage regulation. Simulations have been carried out to validate the circuit operation and support the design analysis. A 2kW prototype has been built for experimental testing. The experimental results are in a good agreement with the theoretical

  13. The state-of-the-art of dc power distribution systems/components for space applications

    Science.gov (United States)

    Krauthamer, S.

    1988-01-01

    This report is a survey of the state of the art of high voltage dc systems and components. This information can be used for consideration of an alternative secondary distribution (120 Vdc) system for the Space Station. All HVdc components have been prototyped or developed for terrestrial, aircraft, and spacecraft applications, and are applicable for general space application with appropriate modification and qualification. HVdc systems offer a safe, reliable, low mass, high efficiency and low EMI alternative for Space Station secondary distribution.

  14. Power quality analysis of DC arc furnace operation using the Bowman model for electric arc

    Science.gov (United States)

    Gherman, P. L.

    2018-01-01

    This work is about a relatively new domain. The DC electric arc is superior to the AC electric arc and it’s not used in Romania. This is why we analyzed the work functions of these furnaces by simulation and model checking of the simulation results.The conclusions are favorable, to be carried is to develop a real-time control system of steel elaboration process.

  15. D.C. Circuit broadly extends NEPA coverage for nuclear power plant accidents

    International Nuclear Information System (INIS)

    Rush, S.B.

    1983-01-01

    According to the D.C. Circuit Court of Appeals, the National Environmental Policy Act (NEPA) now requires complete evaluation of all aspects of human health affected by nuclear development, including psychological health. The Supreme Court may not agree with the circuit court's conclusion that the Nuclear Regulatory Commission must pay special attention to psychological health effects from nuclear accidents because this extension of NEPA may become a major new tool for slowing the development of nuclear energy production

  16. Pulse doubling in zigzag-connected autotransformer-based 12-pulse ac-dc converter for power quality improvement

    Science.gov (United States)

    Abdollahi, Rohollah

    2012-12-01

    This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMDs) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse acdc converters each of them consisting of three-phase diode bridge rectifiers. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6-pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

  17. Enhanced Load Power Sharing Accuracy in Droop-Controlled DC Microgrids with Both Mesh and Radial Configurations

    Directory of Open Access Journals (Sweden)

    Yiqi Liu

    2015-04-01

    Full Text Available The rational power sharing among different interface converters should be determined by the converter capacity. In order to guarantee that each converter operates at the ideal condition, considering the radial and mesh configuration, a modified strategy for load power sharing accuracy enhancement in droop-controlled DC microgrid is proposed in this paper. Two compensating terms which include averaging output power control and averaging DC voltage control of neighboring converters are employed. Since only the information of the neighboring converter is used, the complexity of the communication network can be reduced. The rational distribution of load power for different line resistance conditions is realized by using modified droop control that can be regarded as a distributed approach. Low bandwidth communication is used for exchanging sampled information between different converters. The feasibility and effectiveness of the proposed method for different network configurations and line resistances under different communication delay is analyzed in detail. Simulation results derived from a DC microgrid with three converters is implemented in MATLAB/Simulink to verify the proposed approach. Experimental results from a 3 × 10 kW prototype also show the performance of the proposed modified droop control scheme.

  18. Analysis of impact of “strong DC and weak AC” on receiving-end power system

    Science.gov (United States)

    Wang, Qiang; Li, Tianran; Yang, Pengcheng

    2018-02-01

    The rapid development of UHVDC transmission project has brought abundant power supply to the receiving-end power system area, but also many security and stability problems. This paper summarizes four elements that affect the strength of AC system, and then simulates the most basic two-terminal single-pole UHV transmission system by MATLAB/Simulink. It analyses the impact of receiving-end AC power system strength on real-time power, frequency and voltage. Finally, in view of operation risk of “strong DC and weak AC”, this paper puts forward three countermeasures.

  19. Reduction of dc-link capacitance for three-phase three-wire shunt active power filters

    DEFF Research Database (Denmark)

    Jin, Chi; Tang, Yi; Wang, Peng

    2013-01-01

    Three-phase three-wire shunt active power filters (APFs) usually employ very large electrolytic capacitors in the dc-link to mitigate utility side harmonics. These capacitors are however known to be bulky and of short operating lifetime, particularly for systems where high ripple currents exist...... instead. Moreover, DLC itself is constructed with small passive components and features very simple circuit configuration. Experimental results are provided to show its effectiveness....

  20. High current DC ion beams

    International Nuclear Information System (INIS)

    Shubaly, M.R.; de Jong, M.S.

    1983-01-01

    Development of high-current cw accelerators such as ZEBRA and FMIT, use of high current dc ion beams in industry for sputtering and material treatment, and scientific applications such as heavy-ion fusion and plasma physics diagnostics have provided the impetus for ion source development programs at many laboratories. At Chalk River, development of efficient plasma generators and reliable extraction columns to provide high quality beams of hydrogen, nitrogen, argon and xenon is underway. DC beams of up to 850 mA (limited by available power supplies) of hydrogen, 200 mA of nitrogen, 155 mA of argon and 100 mA of xenon have been produced with good reliability. DuoPIGatrons, with and without magnetic cusps, are used to generate a high density, reasonably quiescent plasma. Multi-aperture accel-decel columns are used for extraction with shaped apertures and beamlet steering to improve beam quality. This paper describes the performance of these sources and identifies some of the remaining problems. Guidelines for extraction column design, and experience with transporting high current beams are also presented

  1. Improved Control Strategy for T-type Isolated DC/DC Converters

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Wang, Yanbo

    2017-01-01

    T-type isolated DC/DC converters have recently attracted attention due to their numerous advantages, including few components, low cost, and symmetrical operation of transformers. This study proposes an improved control strategy for increasing the efficiency of T-type isolated DC/DC converters....../DC converters. The operation principles and performances of T-type isolated DC/DC converters under the proposed control strategy are analyzed in detail and verified through the simulation and experimental results....

  2. SMALL-SIGNAL ANALYZING OF SEPARATELY EXCITED DC MOTOR FED DC - DC CHOPPER

    Directory of Open Access Journals (Sweden)

    İSMAİL COŞKUN

    1999-12-01

    Full Text Available Choppers are widely used in order to get smooth speed characteristics of DC motors. If the load or input voltage is changed, a feedback control technique is used to get the constant speed. To design the proper feedback control, the transfer function of the chopper-motor combination should be kno\\vn. ln this study, the effort was given to obtain the general black diagram, inciurling the field current and aı1na ture current of chopper-fed DC motor. It can be seen from the black diagram that the chopper circuit modifies the transfer function of the DC motor. DC-DC DARBEL E YİCİ iLE YABANCI UYARTIMLI DC KÜÇÜK SİNY AL ANALİZİ ÖZET BESLENEN MOT O RUN DC motorlardan düzgün bir hız karakteristiği elde etmek için darbeleyiciler çok kullamlır. Eğer yük ya da giriş gerilimi de ği şirse, sabit hız elde etmek için geribeslemeli kontrol tekniği kuJlanılır. Uygun bir geribesleme kontrolu tasarlamak iç� darbeliyici-motor kombinasy onunun transfer fonksiyonu bilinmelidir. -Bu çalışma da, darbeleyici ile beslenen DC motorun alan akımı ve endüvi akımını da kapsayan genel blok diyağraınını elde etıııek için çaba gösterilmiştir. Blok diyagramından görülebilec eği gibi, darbeleyici devresi DC motorun tra nsfer fonksiyonunu değiştirmektedir. I. INTRODUCTI ON Choppers are widely used for speed control of DC separately excited motors as they offer high efficiency, quick response, wide speed control range and regeneration down to very low speeds [ 1] . All chopper circuits can be classified into two groups. (a Load ind ependent choppers� in which the output voltage waveform is either a square wave or can be approximated by a square \\vave. (b Load dependent choppers, in which charging of the commutating capacitor is govemed by load current. In such cases, the output voltage wavefoım is neither a square wave nor can be approximated by a square wave. Various methods of analyzing of DC motors fed by a chopper with

  3. A suitable model plant for control of the set fuel cell-DC/DC converter

    Energy Technology Data Exchange (ETDEWEB)

    Andujar, J.M.; Segura, F.; Vasallo, M.J. [Departamento de Ingenieria Electronica, Sistemas Informaticos y Automatica, E.P.S. La Rabida, Universidad de Huelva, Ctra. Huelva - Palos de la Frontera, S/N, 21819 La Rabida - Palos de la Frontera Huelva (Spain)

    2008-04-15

    In this work a state and transfer function model of the set made up of a proton exchange membrane (PEM) fuel cell and a DC/DC converter is developed. The set is modelled as a plant controlled by the converter duty cycle. In addition to allow setting the plant operating point at any point of its characteristic curve (two interesting points are maximum efficiency and maximum power points), this approach also allows the connection of the fuel cell to other energy generation and storage devices, given that, as they all usually share a single DC bus, a thorough control of the interconnected devices is required. First, the state and transfer function models of the fuel cell and the converter are obtained. Then, both models are related in order to achieve the fuel cell+DC/DC converter set (plant) model. The results of the theoretical developments are validated by simulation on a real fuel cell model. (author)

  4. A novel DC-DC convertor using LTCC technology for magnetic integration application

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z Q [Research Institutes, University of Electronic Science and Technology of China, Chengdu (China); Shi, Y; Guo, H P; Yang, B C, E-mail: nanterxu@uestc.edu.cn [State key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China)

    2011-01-01

    A compact DC-DC convertor is proposed and fabricated in multilayer ferrite substrate using LTCC technology. The spiral conductors are buried into the ferrite substrate with a multilayer 3-D structure to reduce the volume of convertor. The passive integration of magnetic components and surface circuitry are achieved in a whole substrate and the size of module can be reduced markedly. The whole height of module is only 3mm, 1/3 of the height of conventional modules. Testing results indicate that the performance of the module is excellent in Point-of-Load (POL) field. The step-down DC-DC converter converts input voltage of 5V to output voltage of 3.3V. It is confirmed that the maximum conversion efficiency of 93.2% is sufficient for actual DC-DC converter application. Such a compact DC-DC convertor provides a compact, low cost and high reliability approach for power supply and magnetic integration application.

  5. A New Sliding Mode Controller for DC/DC Converters in Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    M. Sarvi

    2013-01-01

    Full Text Available DC/DC converters are widely used in many industrial and electrical systems. As DC/DC converters are nonlinear and time-variant systems, the application of linear control techniques for the control of these converters is not suitable. In this paper, a new sliding mode controller is proposed as the indirect control method and compared to a simple direct control method in order to control a buck converter in photovoltaic applications. The solar arrays are dependent power sources with nonlinear voltage-current characteristics under different environmental conditions (insolation and temperature. From this point of view, the DC/DC converter is particularly suitable for the application of the sliding mode control in photovoltaic application, because of its controllable states. Simulations are performed in Matlab/Simulink software. The simulation results are presented for a step change in reference voltage and input voltage as well as step load variations. The simulations results of proposed method are compared with the conventional PID controller. The results show the good performance of the proposed sliding mode controller. The proposed method can be used for the other DC/DC converter.

  6. Design of an Input-Parallel Output-Parallel LLC Resonant DC-DC Converter System for DC Microgrids

    Science.gov (United States)

    Juan, Y. L.; Chen, T. R.; Chang, H. M.; Wei, S. E.

    2017-11-01

    Compared with the centralized power system, the distributed modularized power system is composed of several power modules with lower power capacity to provide a totally enough power capacity for the load demand. Therefore, the current stress of the power components in each module can then be reduced, and the flexibility of system setup is also enhanced. However, the parallel-connected power modules in the conventional system are usually controlled to equally share the power flow which would result in lower efficiency in low loading condition. In this study, a modular power conversion system for DC micro grid is developed with 48 V dc low voltage input and 380 V dc high voltage output. However, in the developed system control strategy, the numbers of power modules enabled to share the power flow is decided according to the output power at lower load demand. Finally, three 350 W power modules are constructed and parallel-connected to setup a modular power conversion system. From the experimental results, compared with the conventional system, the efficiency of the developed power system in the light loading condition is greatly improved. The modularized design of the power system can also decrease the power loss ratio to the system capacity.

  7. Sistem Kontrol Torsi pada Motor DC

    OpenAIRE

    Wahid Ibrahim, Arifin; Wahyu Widodo, Triyogatama; Wahyu Supardi, Tri

    2016-01-01

    The use of a DC motor in the industrialized world is very important. Speed of DC motor and torque of DC motor greatly affects quality and quantity of product. Therefore, we need control system of a DC motor that can be set speed and torque. The number of industry players complained about damage to the DC motor because transported load torque of motor exceeds capabilities of torque of DC motor. Based on these problem, we should make torque control system in DC motor.Torque control system made ...

  8. Design considerations for a negative ion source for dc operation of high-power, multi-megaelectron-volt neutral beams

    International Nuclear Information System (INIS)

    Tsai, C.C.; Stirling, W.L.; Akerman, M.A.; Becraft, W.R.; Dagenhart, W.K.; Haselton, H.H.; Ryan, P.M.; Schechter, D.E.; Whealton, J.H.

    1988-03-01

    A dc negative hydrogen and/or deuterium ion source is needed to prouce high-power, high-energy neutral beams for alpha diagnostics and current drive applicatiosn in fusion devices. The favorable beam particle energy for such applications extends to 1.5 MeV/amu. Continuous-wave (cw) radio-frequency quadrupole (RFQ) accelerators have been proposed to accelerate negative ions effeciently to this energy range. In this paper, the desired beam properties for ion beams injected into cw RFQ accelerators are summariezed. A number of candidate ion sources being developed at Culham, JAERI, LBL, and ORNL may prove useful for these applications. The properties of the Volume Ionization with Transverse Extraction (VITEX) ion sources being developed at ORNL are presented. Scaling such a dc ion source to produce ampere beams is discussed. 53 refs., 4 figs., 2 tabs

  9. Design of a single phase high voltage DC power supply at 15 kV output using voltage doubler circuit

    Energy Technology Data Exchange (ETDEWEB)

    Mariun, N.; Anayet, K.; Khan, N.; Amran, M. [Putra Malaysia Univ., Serdang (Malaysia). Dept. of Electrical and Electronic Engineering

    2006-07-01

    High voltage testing equipment is normally used in research laboratories and routine testing laboratories. However, the work carried out in research laboratories varies significantly from one establishment to the other. In addition, the type of equipment needed varies accordingly. A general high voltage laboratory may include equipment for all classes of routine tests, with testing equipment such as transformer, switchgear, bushings as well as cables. In the industry, the main application of the direct current (DC) high voltage is for testing cables with a relatively large capacitance, which takes a very large current if it is tested with alternating current (AC) voltages. This paper presented the results of a study that examined the voltage doubler circuit based on simulation, hardware implementation, and on Cockcroft-Walton (C-W) voltage multiplier circuits to fabricate a DC power supply in the laboratory at the output range of 15 kV. The paper provided a detailed description of the simulation, design, development and implementation of the hardware needed in order to build a high voltage DC power supply in the laboratory. The simulation and experimental results were also presented using EMTDC PSCAD software. 7 refs., 1 tab., 10 figs.

  10. Circuit description of unipolar DC-to-DC converters for APS storage ring quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    McGhee, D.G.

    1993-01-01

    This paper describes the control, interlock, and power circuits for 680 unipolar switch mode DC-to-DC converters used to regulate the Advanced Photon Sources (APS's) storage ring quadrupole and sextupole magnet currents. Quadrupole current stability is ± 6x10 -5 and the sextupole current stability is ±3x10 -4 . The stability is obtained with pulse width modulation, operating at a switching frequency of 20kHz with full current switching. The converters are housed in 200 cabinets located on top of the storage ring tunnel. Raw DC power is distributed from 80 AC-to-DC power supplies, four at each of 20 locations around the storage ring. Voltages, currents, and temperatures are computer monitored and logged for the converters and magnets. All converters and magnets are water cooled with the flow and pressure monitored at the inlet and outlet of groups. Water is interlocked with the raw power supplies and not the individual converters

  11. On the modelling of linear-assisted DC-DC voltage regulators for photovoltaic solar energy systems

    Science.gov (United States)

    Martínez-García, Herminio; García-Vílchez, Encarna

    2017-11-01

    This paper shows the modelling of linear-assisted or hybrid (linear & switching) DC/DC voltage regulators. In this kind of regulators, an auxiliary linear regulator is used, which objective is to cancel the ripple at the output voltage and provide fast responses for load variations. On the other hand, a switching DC/DC converter, connected in parallel with the linear regulator, allows to supply almost the whole output current demanded by the load. The objective of this topology is to take advantage of the suitable regulation characteristics that series linear voltage regulators have, but almost achieving the high efficiency that switching DC/DC converters provide. Linear-assisted DC/DC regulators are feedback systems with potential instability. Therefore, their modelling is mandatory in order to obtain design guidelines and assure stability of the implemented power supply system.

  12. Pulsed dc self-sustained magnetron sputtering

    International Nuclear Information System (INIS)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-01-01

    The magnetron sputtering has become one of the commonly used techniques for industrial deposition of thin films and coatings due to its simplicity and reliability. At standard magnetron sputtering conditions (argon pressure of ∼0.5 Pa) inert gas particles (necessary to sustain discharge) are often entrapped in the deposited films. Inert gas contamination can be eliminated during the self-sustained magnetron sputtering (SSS) process, where the presence of the inert gas is not a necessary requirement. Moreover the SSS process that is possible due to the high degree of ionization of the sputtered material also gives a unique condition during the transport of sputtered particles to the substrate. So far it has been shown that the self-sustained mode of magnetron operation can be obtained using dc powering (dc-SSS) only. The main disadvantage of the dc-SSS process is its instability related to random arc formation. In such case the discharge has to be temporarily extinguished to prevent damaging both the magnetron source and power supply. The authors postulate that pulsed powering could protect the SSS process against arcs, similarly to reactive pulsed magnetron deposition processes of insulating thin films. To put this concept into practice, (i) the high enough plasma density has to be achieved and (ii) the type of pulsed powering has to be chosen taking plasma dynamics into account. In this article results of pulsed dc self-sustained magnetron sputtering (pulsed dc-SSS) are presented. The planar magnetron equipped with a 50 mm diameter and 6 mm thick copper target was used during the experiments. The maximum target power was about 11 kW, which corresponded to the target power density of ∼560 W/cm 2 . The magnetron operation was investigated as a function of pulse frequency (20-100 kHz) and pulse duty factor (50%-90%). The discharge (argon) extinction pressure level was determined for these conditions. The plasma emission spectra (400-410 nm range) and deposition

  13. Light-weight DC to very high voltage DC converter

    Science.gov (United States)

    Druce, R.L.; Kirbie, H.C.; Newton, M.A.

    1998-06-30

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current. 1 fig.

  14. Gravity Compensation Technique Uses Small dc Motor

    Science.gov (United States)

    Hollow, Richard

    1988-01-01

    Small dc servomotor powered by simple constant-current source and with suitable gearing used to cancel effect of gravity upon load. Lead-screw positioning system has load counterbalanced by small supplementary motor powered by constant current source. Motor lighter and more compact alternative to counterbalance. Used in variety of mechanical systems where load positioned or accelerated in vertical plane.

  15. Stability Constrained Efficiency Optimization for Droop Controlled DC-DC Conversion System

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2013-01-01

    Paralleled dc converter systems are widely used in distribution systems and uninterruptable power supplies. This paper implements a hierarchical control in a droop-controlled dc-dc conversion system with special focus on improving system efficiency which is dealt within the tertiary regulation....... As the efficiency of each converter changes with output power, virtual resistances (VRs) are set as decision variables for adjusting power sharing proportion among converters. It is noteworthy that apart from restoring the voltage deviation, secondary control plays an important role to stabilize dc bus voltage when...... implementing tertiary regulation. Moreover, system dynamic is affected when shifting VRs. Therefore, the stability is considered in optimization by constraining the eigenvalues arising from dynamic state space model of the system. Genetic algorithm is used in searching for global efficiency optimum while...

  16. Analysis of the Thermal Load of Structural Elements High-Power DC Supply with the Transformer of Ripple Filter with Current Overload

    Directory of Open Access Journals (Sweden)

    Jaroslav Lokvenc

    2017-01-01

    Full Text Available Design of the high-power DC supply quite logically based on the required electrical parameters and expected or defined operating conditions. A prerequisite trouble-free operation is also the correct choice of construction materials. Both in terms of mechanical strength and stability, and in terms of thermal load. The article deals with thermal conditions in the high-power DC supply with the transformer of ripple filter for long-term current overload.

  17. DC Motor Drive with PFC Rectifier

    Directory of Open Access Journals (Sweden)

    Lascu Mihaela

    2008-05-01

    Full Text Available The goal of this work is to study theperformances of a hybrid controller used to controlDC Motor drive with a single-phase power factorcorrection rectifier. This study is made usingcomputer simulation (Simulink. The first part isdevoted to the control system of the DC Motors. Inthe second part, the design of the hybrid controllerwill be presented. The third part is the design ofthe fast response single-phase boost power factorcorrection rectifier. The last parts are devoted tosimulation and experimental results.

  18. Comparison of solar panel cooling system by using dc brushless fan and dc water

    International Nuclear Information System (INIS)

    Irwan, Y M; Leow, W Z; Irwanto, M; M, Fareq; Hassan, S I S; Amelia, A R; Safwati, I

    2015-01-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer. (paper)

  19. Comparison of solar panel cooling system by using dc brushless fan and dc water

    Science.gov (United States)

    Irwan, Y. M.; Leow, W. Z.; Irwanto, M.; M, Fareq; Hassan, S. I. S.; Safwati, I.; Amelia, A. R.

    2015-06-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer.

  20. Note: Ultra-high frequency ultra-low dc power consumption HEMT amplifier for quantum measurements in millikelvin temperature range.

    Science.gov (United States)

    Korolev, A M; Shnyrkov, V I; Shulga, V M

    2011-01-01

    We have presented theory and experimentally demonstrated an efficient method for drastically reducing the power consumption of the rf/microwave amplifiers based on HEMT in unsaturated dc regime. Conceptual one-stage 10 dB-gain amplifier showed submicrowatt level of the power consumption (0.95 μW at frequency of 0.5 GHz) when cooled down to 300 mK. Proposed technique has a great potential to design the readout amplifiers for ultra-deep-cooled cryoelectronic quantum devices.

  1. Linking DC together with TRSL

    DEFF Research Database (Denmark)

    Haxthausen, Anne Elisabeth; Yong, X.

    2000-01-01

    Duration Calculus (DC) is an interval-based real-time logic, which can be used in capturing and eliciting users' real-time requirements. The Timed RAISE Specification Language (TRSL) is an extension of the RAISE Specification Language with real-time features. This paper links DC and TRSL together...... in a method for real-time developments. An operational semantics with behavior is specified for TRSL. It is defined what its means for a TRSL process to satisfy a DC requirement, and a method for verifying whether the satisfaction relation holds or not is provided. Our contribution also demonstrates a general...... approach for linking state-based real-time logics together with event-based, timed process algebra languages....

  2. Integrated-Circuit Controller For Brushless dc Motor

    Science.gov (United States)

    Le, Dong Tuan

    1994-01-01

    Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.

  3. Performance of 22.4-kW nonlaminated-frame dc series motor with chopper controller. [a dc to dc voltage converter

    Science.gov (United States)

    Schwab, J. R.

    1979-01-01

    Performance data obtained through experimental testing of a 22.4 kW traction motor using two types of excitation are presented. Ripple free dc from a motor-generator set for baseline data and pulse width modulated dc as supplied by a battery pack and chopper controller were used for excitation. For the same average values of input voltage and current, the motor power output was independent of the type of excitation. However, at the same speeds, the motor efficiency at low power output (corresponding to low duty cycle of the controller) was 5 to 10 percentage points lower on chopped dc than on ripple free dc. The chopped dc locked-rotor torque was approximately 1 to 3 percent greater than the ripple free dc torque for the same average current.

  4. Foundations of DC plasma sources

    Science.gov (United States)

    Tomas Gudmundsson, Jon; Hecimovic, Ante

    2017-12-01

    A typical dc discharge is configured with the negative cathode at one end and a positive anode at the other end, separated by a gas filled gap, placed inside a long glass cylinder. A few hundred volts between the cathode and anode is required to maintain the discharge. The type of discharge that is formed between the two electrodes depends upon the pressure of the working gas, the nature of the working gas, the applied voltage and the geometry of the discharge. We discuss the current–voltage characteristics of the discharge as well as the distinct structure that develops in the glow discharge region. The dc glow discharge appears in the discharge current range from μA to mA at 0.5–300 Pa pressure. We discuss the various phenomena observed in the dc glow discharge, including the cathode region, the positive column, and striations. The dc glow discharge is maintained by the emission of secondary electrons from the cathode target due to the bombardment of ions. For decades, the dc glow discharge has been used as a sputter source. Then it is often operated as an obstructed abnormal glow discharge and the required applied voltage is in the range 2–5 kV. Typically, the cathode target (the material to be deposited) is connected to a negative voltage supply (dc or rf) and the substrate holder faces the target. The relatively high operating pressure, in the range from 2 to 4 Pa, high applied voltages, and the necessity to have a conductive target limit the application of dc glow discharge as a sputter source. In order to lower the discharge voltage and expand the operation pressure range, the lifetime of the electrons in target vicinity is increased through applying magnetic field, by adding permanent magnets behind the cathode target. This arrangement is coined the magnetron sputtering discharge. The various configurations of the magnetron sputtering discharge and its applications are described. Furthermore, the use of dc discharges for chemical analysis, the

  5. Scalable single point power extraction for compact mobile and stand-alone solar harvesting power sources based on fully printed organic photovoltaic modules and efficient high voltage DC/DC conversion

    DEFF Research Database (Denmark)

    Garcia Valverde, Rafael; Villarejo, José A.; Hösel, Markus

    2015-01-01

    Patterns for fully printed polymer solar cells are presented that inherently enable scaling of the power output with single point electrical energy connection is presented. Connection is made to only one end of the printed foil that can be rolled out for light energy harvesting. The power level...... (AM1.5G, 1000 W m−2). As a demonstration we present a scalable fully integrated and compact power unit for mobile applications comprising solar energy harvesting OPV modules, power conversion and storage. Applications possible include electrical charging of mobile devices, illumination using LED lamps...... takes place in a HVDC–DC converter that is tailored specifically for operation with polymer solar cells by regulation on the input side. The system charges a lithium-polymer battery thus enabling storage of 82 Wh for a printed OPV foil measuring 0.305 m×9 m having a nominal power output of at least 15 W...

  6. Analysis of LCA/LCB DC power supply loss in Fuqing nuclear power plant

    International Nuclear Information System (INIS)

    Sun Mingchen; Wu Shengguo

    2015-01-01

    This paper comprehensively analyzes the impact on the nuclear power plant security when LCA/LCB loses the power. When LCA loses the power, the normal boronization of the reactor coolant is unavailable, only the direct boronization can be used; the normal discharge, excess discharge and low pressure discharge of the pressurizer are unavailable: the reactor trip breakers disconnect and P4 signal appears; the reactor trips or safety injection probably happens for the excessive cooling reactor coolant or too low pressure. When LCB loses the power, normal boronization is available, and normal discharge can be used by manual operation, and the reactor shutdown or safety injection probably also happen for the same reason. (authors)

  7. A Novel Soft Switching PWM Power Frequency Converter with Non DC Smoothing Filter Link for Consumer High Frequency Induction Heating

    Science.gov (United States)

    Sugimura, Hisayuki; Muraoka, Hidekazu; Hiraki, Eiji; Hirota, Izuo; Yasui, Kenji; Omori, Hideki; Lee, Hyun-Woo; Nakaoka, Mutsuo

    In this paper, high frequency power converter without DC smoothing electrolytic capacitor filter link which convert the 100V/200Vrms and 60Hz single phase utility frequency AC power into a high frequency AC. This proposed high frequency AC power converter without electrolytic capacitor filter can operate under a principle of soft switching PWM based on a lossless capacitor snubber is proposed and demonstrated for consumer high frequency induction heating (IH). In particular, this high frequency power converter capable of producing a high frequency AC more than 20kHz is developed for consumer IH applications as hot water producer and steamer based on the specially designed spiral type IH-Dual Packs Heater (DPH), which includes the dual mode pulse modulation control scheme based on soft switching PWM for high output power setting and commercial frequency AC zero voltage soft switching pulse density modulation (PDM) for low output power settings. This developed high frequency power frequency converter using trench gate IGBTs is clarified on the basis of experimental and simulation results for its circuit operation of the utility frequency AC to high frequency AC frequency PWM power converter without the electrolytic capacitor bank DC filter link for the IH hot water and IH steamer. These IH appliances are based upon an innovative electromagnetic IH-DPH for fluid heating as heat exchanger in consumer pipeline. Finally, its power regulation characteristics, power conversion efficiency and harmonic current components characteristics including power factor in utility AC grid side are evaluated and discussed from an experimental point of view. The practical effectiveness of this utility frequency AC to high frequency AC soft switching high power frequency converter defined conveniently as high frequency soft switching cyclo-inverter is proved as one of the important products effective for next generation IH application all electricity power utilizations.

  8. Design and Performance Test of Axial Halbach Brushless DC Motor with Power Density 1.5 Kw/Kg

    Directory of Open Access Journals (Sweden)

    Kevin Dwi Prasetio

    2017-01-01

    Full Text Available Progress of technology on electric vehicle component sector is one reason the emergence of electric vehicles at the moment. Starting from battery which has a great current density up to the automatic control systems on electric vehicles. But there are still some shortcomings of this electric vehicle components, one of which is the low value of power density of existing electric motor in the market today.On vehicles such as electric cars when Race Car Contest, energy saving problems about power density of the driving motor is very vital. This is because the total weight of the vehicle has a huge influence on the vehicle efficiency is against it. The issue is one of the reasons of the research task. In this final task is done making the design, simulation, and architecture of the Axial Halbach Brushless DC Motor. Use of system configuration on the halbach magnet to avoid the use of iron as a material cantilever rotor. By changing the material of the cantilever rotor with lighter materials such as aluminum or even carbon fibre, the value of power density electric motors can be increased. Then using the litz wire on coil stator to reduce loss-power loss due to the barriers on the coil. Coreless stator on the system and to avoid the phenomenon of cogging at the time due to low rpm style attraction magnet with iron in the core material. While the creation process begins by determining the specifications of the Axial Halbach Brushless DC motors. Then go into the design phase of the mechanical and electrical design. Who then conducted simulations to help determine other parameters such as air gap, slot turn, and magnetic orientation. The process of making a component of stator and rotor after the simulation is completed. After all the components of the rotor and stator on assembly, mounting the hall sensor is carried out to the right to position obtained by reading the signals. After the motor can spin with good motor performance, testing can be done

  9. Transition towards DC micro grids: From an AC to a hybrid AC and DC energy infrastructure

    Directory of Open Access Journals (Sweden)

    Evi Ploumpidou

    2017-12-01

    Full Text Available Our electricity is predominantly powered by alternating current (AC, ever since the War of Currents ended in the favor of Nicola Tesla at the end of the 19th century. However, lots of the appliances we use, such as electronics and lights with light-emitting diode (LED technology, work internally on direct current (DC and it is projected that the number of these appliances will increase in the near future. Another contributor to the increase in DC consumption is the ongoing electrification of mobility (Electric Vehicles (EVs. At the same time, photovoltaics (PV generate DC voltages, while the most common storage technologies also use DC. In order to integrate all these appliances and technologies to the existing AC grid, there is a need for converters which introduce power losses. By distributing DC power to DC devices instead of converting it to AC first, it is possible to avoid substantial energy losses that occur every time electricity is converted. This situation initiated the concept for the implementation of the DC-Flexhouse project. A prototype DC installation will be developed and tested in one of the buildings of the developing living lab area called the District of Tomorrow (De Wijk van Morgen which is located in Heerlen, the Netherlands. A neighborhood cooperative (Vrieheide cooperatie is also part of the consortium in order to address the aspect of social acceptance. Although DC seems to be a promising solution for a more sustainable energy system, the business case is still debatable due to both technology- and market-related challenges. The current energy infrastructure is predominantly based on AC, manufacturers produce devices based on AC standards and people are using many AC products across a long life span. This Smart Energy Buildings & Cities (SEB&C PDEng project is a contribution to the DC-Flexhouse project. The aim is to analyze the challenges in the transition to DC micro grids, assess the market potential of DC

  10. Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles

    Science.gov (United States)

    Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G.

    2017-11-01

    Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied.

  11. Simulating and Testing a DC-DC Half-Bridge SLR Converter

    Science.gov (United States)

    2013-06-01

    proliferated due to the recent advances in electric cars. Yilmaz and Krein’s overview of battery charger topologies for electric and hybrid vehicles ...7] M. Yilmaz and P. T. Krein, “Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid...thesis meets the needs of an efficient, sensor integrated, and galvanically isolated trickle charger . The SLR DC- DC converter was successfully

  12. Characterising and modelling extended conducted electromagnetic interference in densely packed DC-DC converter

    CSIR Research Space (South Africa)

    Grobler, Inus

    2013-09-01

    Full Text Available Extended Conducted Electromagnetic Interference in Densely Packed DC- DC Converter I Grobler1 and MN Gitau2 Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa. igrobler@csir.co.za1, mgitau.... This will improve the overall design efficiency and shorten the crucial time to market period [1]. It is of utmost importance to try and model the electromagnetic compatibility concurrent with the power processor design stage. The marketplace is in need...

  13. Coodinative Control of Active Power and DC-link Voltage for Cascaded Dual-Active-Bridge and Inverter in Bidirectional Applications

    DEFF Research Database (Denmark)

    Tian, Yanjun; Chen, Zhe; Deng, Fujin

    2014-01-01

    to the bidirectional power flow, and the potential different control bandwidth of the DAB and the inverter, the DC-link voltage between DAB and inverter may experience significant oscillations, which will increase the stress of the semiconductor devices and cause distortions of grid current. This paper proposes...... a coordinative control of active power and DC-link voltage for the bidirectional cascaded DAB and inverter. The proposed control method can effectively decrease DC-link voltage oscillation and improve the system performance. The effectiveness has been validated by both simulation and experiment results.......A bidirectional interface converter is attractive for the flexible operation and control of a system consisting of a DC sub-grid and an AC sub-grid. Cascaded connection of a dual-active-bridge (DAB) with an inverter is an ideal topology for the bidirectional interface. However, due...

  14. DC-based smart PV-powered home energy management system based on voltage matching and RF module.

    Directory of Open Access Journals (Sweden)

    Ahmad H Sabry

    Full Text Available The main tool for measuring system efficiency in homes and offices is the energy monitoring of the household appliances' consumption. With the help of GUI through a PC or smart phone, there are various applications that can be developed for energy saving. This work describes the design and prototype implementation of a wireless PV-powered home energy management system under a DC-distribution environment, which allows remote monitoring of appliances' energy consumptions and power rate quality. The system can be managed by a central computer, which obtains the energy data based on XBee RF modules that access the sensor measurements of system components. The proposed integrated prototype framework is characterized by low power consumption due to the lack of components and consists of three layers: XBee-based circuit for processing and communication architecture, solar charge controller, and solar-battery-load matching layers. Six precise analogue channels for data monitoring are considered to cover the energy measurements. Voltage, current and temperature analogue signals were accessed directly from the remote XBee node to be sent in real time with a sampling frequency of 11-123 Hz to capture the possible surge power. The performance shows that the developed prototype proves the DC voltage matching concept and is able to provide accurate and precise results.

  15. DC-based smart PV-powered home energy management system based on voltage matching and RF module.

    Science.gov (United States)

    Sabry, Ahmad H; Hasan, W Z W; Ab Kadir, Mza; Radzi, M A M; Shafie, S

    2017-01-01

    The main tool for measuring system efficiency in homes and offices is the energy monitoring of the household appliances' consumption. With the help of GUI through a PC or smart phone, there are various applications that can be developed for energy saving. This work describes the design and prototype implementation of a wireless PV-powered home energy management system under a DC-distribution environment, which allows remote monitoring of appliances' energy consumptions and power rate quality. The system can be managed by a central computer, which obtains the energy data based on XBee RF modules that access the sensor measurements of system components. The proposed integrated prototype framework is characterized by low power consumption due to the lack of components and consists of three layers: XBee-based circuit for processing and communication architecture, solar charge controller, and solar-battery-load matching layers. Six precise analogue channels for data monitoring are considered to cover the energy measurements. Voltage, current and temperature analogue signals were accessed directly from the remote XBee node to be sent in real time with a sampling frequency of 11-123 Hz to capture the possible surge power. The performance shows that the developed prototype proves the DC voltage matching concept and is able to provide accurate and precise results.

  16. Voltage Weak DC Distribution Grids

    NARCIS (Netherlands)

    Hailu, T.G.; Mackay, L.J.; Ramirez Elizondo, L.M.; Ferreira, J.A.

    2017-01-01

    This paper describes the behavior of voltage weak DC distribution systems. These systems have relatively small system capacitance. The size of system capacitance, which stores energy, has a considerable effect on the value of fault currents, control complexity, and system reliability. A number of

  17. Electricity-AC versus DC

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 10. Electricity - AC versus DC. D P Sen Gupta. General Article Volume 2 Issue 10 October 1997 pp 46-53. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/002/10/0046-0053. Author Affiliations.

  18. Move to Solar-DC at Home Premises

    Indian Academy of Sciences (India)

    48V DC line as an additional power line at home. Highly power-efficient usage of Solar; Low-power from grid alone converted from AC-DC. Designed to have minimal loss. Battery can be added with higher efficiency (no convertors), if required.

  19. Relationships among classes of self-oscillating transistor parallel inverters. [dc to square wave converter circuits for power conditioning

    Science.gov (United States)

    Wilson, T. G.; Lee, F. C. Y.; Burns, W. W., III; Owen, H. A., Jr.

    1974-01-01

    A procedure is developed for classifying dc-to-square-wave two-transistor parallel inverters used in power conditioning applications. The inverters are reduced to equivalent RLC networks and are then grouped with other inverters with the same basic equivalent circuit. Distinction between inverter classes is based on the topology characteristics of the equivalent circuits. Information about one class can then be extended to another class using the basic oscillation theory and the concept of duality. Oscillograms from test circuits confirm the validity of the procedure adopted.

  20. 75 FR 27401 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-9-30, DC-9-40, and DC-9-50...

    Science.gov (United States)

    2010-05-17

    ... Corporation Model DC- 9-30, DC-9-40, and DC-9-50 Series Airplanes AGENCY: Federal Aviation Administration (FAA... DC-9-30, DC-9-40, and DC-9-50 series airplanes. This AD requires inspecting to determine the part...-30, DC-9-40, and DC-9-50 series airplanes. That NPRM was published in the Federal Register on August...

  1. POWER CONTROL OF A BIDIRECTIONAL DC BUS FOR FUEL CELLS APPLICATIONS CONTROL DE POTENCIA DE UN BUS DC BIDIRECCIONAL PARA APLICACIONES DE PILAS DE COMBUSTIBLE CONTROLE DE POTÊNCIA DE UM ÔNIBUS DC BIDIRECIONAL PARA APLICAÇÕES DE PILHAS DE COMBUSTÍVE

    Directory of Open Access Journals (Sweden)

    Andrés Fernando Restrepo

    2012-12-01

    Full Text Available This paper proposes a power system for fuel cell applications able to transfer energy from the power source to the load, and to charge an auxiliary storage device using regenerative power flows generated by the load. The solution is based on a closed loop bidirectional DC/DC converter, where additional devices have been also designed to experimentally test the solution in a safe and realistic environment: a fuel cell emulator and an electronic load.Este artículo propone un sistema de potencia para aplicaciones de pilas de combustible capaz de transferir energía de la fuente de potencia a la carga y de cargar un sistema de almacenamiento con flujos regenerativos de potencia desde la carga. La solución está basada en un convertidor bidireccional DC/DC en lazo cerrado. Además, se presentan dispositivos auxiliares diseñados para evaluar experimentalmente la solución en un entorno seguro y realista: un emulador de pila de combustible y una carga electrónica.Este artigo propõe um sistema de potência para aplicações de pilhas de combustível capaz de transferir energia da fonte de potência à carga e de carregar um sistema de armazenamento com fluxos regenerativos de potência desde a carga. A solução está baseada em um conversor bidirecional DC/DC em laço fechado. Ademais, apresentam-se dispositivos auxiliares desenhados para avaliar experimentalmente a solução em um meio seguro e realista: um emulador de pilha de combustível e uma carga eletrônica.

  2. Experience from design, prototyping and production of a DC–DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz, E-mail: Lutz.Feld@cern.ch; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max; Schmitz, Stefan; Wlochal, Michael

    2017-02-11

    The CMS pixel detector will be replaced during the technical stop 2016/2017. To allow the new pixel detector to be powered with the legacy cable plant and power supplies, a novel powering scheme based on DC–DC conversion will be employed. After the successful conclusion of an extensive development and prototyping phase, mass production of 1800 DC–DC converters as well as motherboards and other power PCBs has now been completed. This contribution reviews the lessons learned from the development of the power system for the Phase-1 pixel detector, and summarizes the experience gained from the production phase.

  3. Speed Control of DC Motor using AC/AC/DC Converter Based on Intelligent Techniques

    Directory of Open Access Journals (Sweden)

    Rakan Kh Antar

    2013-05-01

    Full Text Available    This paper describes the application of ac/ac/dc and ac/dc converters to control the speed of a separately excited DC motor. Artificial neural network and PI controller are trained to select the desired values of firing angles for triggering thyristors of the ac/ac/dc and ac/dc bridge converters in order to control the speed of the dc motor at a desired value with constant and different load torques in order to obtain the best speed response. Simulation results show that the rising time for ac/dc and ac/ac/dc converters at 250rpm are reduced about 79% and 89% respectively, while delay time it reduced about 69% and 64% respectively. Therefore, speed response of the dc motor is more efficient for closed loop system compared with open loop also the response of ac/ac/dc converter is better than ac/dc converter.

  4. SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, Laura D [ORNL; Zhu, Lizhi [Ballard Power Systems/Siemens VDO

    2007-07-01

    The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.

  5. Current Mode Control for LLC Series Resonant DC-to-DC Converters

    Directory of Open Access Journals (Sweden)

    Jinhaeng Jang

    2015-06-01

    Full Text Available Conventional voltage mode control only offers limited performance for LLC series resonant DC-to-DC converters experiencing wide variations in operational conditions. When the existing voltage mode control is employed, the closed-loop performance of the converter is directly affected by unavoidable changes in power stage dynamics. Thus, a specific control design optimized at one particular operating point could become unacceptable when the operational condition is varied. This paper presents a new current mode control scheme which could consistently provide good closed-loop performance for LLC resonant converters for the entire operational range. The proposed control scheme employs an additional feedback from the current of the resonant tank network to overcome the limitation of the existing voltage mode control. The superiority of the proposed current mode control over the conventional voltage mode control is verified using an experimental 150 W LLC series resonant DC-to-DC converter.

  6. Modeling and Implementing a Digitally Embedded Maximum Power Point Tracking Algorithm and a Series-Loaded Resonant DC-DC Converter to Integrate a Photovoltaic Array with a Micro-Grid

    Science.gov (United States)

    2014-09-01

    resonant capacitor Vres, gate voltage Vgate, current on the resonant tank Ires, and current on the secondary of the transformer Isec. ..........15...Figure 9. Input and output DC power supplies and output resistor bank . .......................17 Figure 10. Block diagram of laboratory setup for initial...of the Navy FPGA field programmable gate array G cell irradiance IC integrated circuit LC tank inductor- capacitor tank LUT look-up table MOSFET

  7. A Current-Fed Isolated Bidirectional DC-DC Converter

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Wu, Xiaoying; Shen, Yanfeng

    2017-01-01

    This paper proposes a current-fed isolated bidirectional DC-DC converter (CF-IBDC) which has the advantages of wide input voltage range, low input current ripple, low conduction losses, and soft switching over the full operating range. Compared with conventional CF-IBDCs, the voltage spikes...... of the low-voltage (LV) side switches in the proposed converter can be eliminated without additional clamp circuits. The converter adopts the pulse width modulation (PWM) plus hybrid phase-shift control scheme such that the bus voltage can match the output voltage by means of the transformer. Thus......, the current stresses and conduction losses of the converter become lower. In addition, the practical ZVS of the secondary-side switches can be realized by adjusting the phase-shift angle within the secondary side when in light load or no load condition. The operating principles and characteristics including...

  8. Dynamic Consensus Algorithm Based Distributed Global Efficiency Optimization of a Droop Controlled DC Microgrid

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2014-01-01

    In a DC microgrid, several paralleled conversion systems are installed in distributed substations for transferring power from external grid to a DC microgrid. Droop control is used for the distributed load sharing among all the DC/DC converters. Considering the typical efficiency feature of power...

  9. Design and implementation of current fed DC-DC converter for PHEV application using renewable source

    Science.gov (United States)

    Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.

    2017-11-01

    As the fossil fuels are depleting day by day, the use of renewable energy sources came into existence and they evolved a lot lately. To increase efficiency and productivity in the hybrid vehicles, the existence less efficient petroleum and diesel IC engines need to be replaced with the new and efficient converters with renewable energy sources. This has to be done in such a way that impacts three factors mainly: cost, efficiency and reliability. The PHEVs that have been launched and the upcoming PHEVs using converters with voltage range around 380V to 400V generated with power ranges between 2.4KW to 2.8KW. The basic motto of this paper is to design a prolific converter while considering the factor such as cost and size. In this paper, a two stage DC-DC converter is proposed and the proposed DC-DC converter is utilized to endeavour voltage from 24V (photovoltaic source) to a yield voltage of 400V and to meet the power demand of 250W, since only one panel is being used for this proposed paper. This paper discuss in detail about why and how the current fed DC-DC converter is utilized along with a voltage doubler, thus reducing transformer turns and thereby reducing overall size of the product. Simulation and hardware results have been presented along with calculations for duty cycle required for firing sequence for different values of transformer turns.

  10. NAMMA DC-8 DROPSONDE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA DC-8 Dropsonde dataset were collected by the DC-8 dropsonde system, which uses an integrated, highly accurate, GPS-located atmospheric profiling dropsonde...

  11. System Integration Issues of DC to DC converters in the sLHC Trackers

    CERN Document Server

    Allongue, B; Faccio, F; Fuentes, c; Michelisa, S; Orlandia, S

    2009-01-01

    The upgrade of the trackers at the sLHC experiments requires implementing new powering schemes that will provide an increased power density with reduced losses and material budget. A scheme based on buck and switched capacitors DC to DC converters has been proposed as an optimal solution. The buck converter is based on a power ASIC, connected to a custom made air core inductor. The arrangement of the parts and the board layout of the power module are designed to minimize the emissions of EMI in a compact volume, enabling its integration on the tracker modules and staves.

  12. Accuracy of Fault Current DC Component Calculation in Multi-machine Power System

    Science.gov (United States)

    Kumano, Teruhisa

    Accuracy of the calculation method of transient DC component of three phase short circuit current is carefully studied. Using a multi-machine model system 4 different methods are compared, which are catenacci method, AIEE method, 4 parameters method, and the proposed method. Among all these four methods the proposed method gives the most accurate result, which gives almost identical wave form of the averaged wave obtained by the post processing of ATP-EMTP results. Compared to ATP-EMTP the proposed method is more convenient because it automatically gives the severest fault case while ATP-EMTP needs several computations. Main reason of the discrepancies of the conventional methods is based on the insufficient order of the internal models. In contrast to the proposed method, they use only a second order model at most. The usefulness of the proposed method is demonstrated using a test analysis of the saturation of a current transformer. Computing time is also discussed by comparing the results applied to two 10-machines systems and one 30-machines system. In conclusion, the proposed method is accurate and is ready to apply to multi-machine systems within a realistic computing time. The usefulness of the proposed method is confirmed by this study.

  13. Implementation of hierarchical control in DC microgrids

    DEFF Research Database (Denmark)

    Jin, Chi; Wang, Peng; Xiao, Jianfang

    2014-01-01

    DC microgrids are becoming popular in low-voltage distribution systems due to the better compatibility with photovoltaic panels, electric vehicles, and dc loads. This paper presents a practical dc microgrid developed in the Water and Energy Research Laboratory (WERL) in the Nanyang University...

  14. Five-Level Active-Neutral-Point-Clamped DC/DC Converter for Medium-Voltage DC Grids

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Chen, Zhe

    2017-01-01

    /dt, reduce voltage stress on the transformer, and thus reduce the electromagnetic interference (EMI) and increase reliability. An elimination method for the dead time effect is also proposed along with the proposed modulation strategy by employing a switch in series with the flying capacitor, which can......This paper proposes a five-level active-neutralpoint- clamped (5L-ANPC) dc/dc converter for applications in medium voltage dc (MVDC) grids. A modulation strategy is proposed for the 5L-ANPC dc/dc converter to generate multilevel voltage waveforms, which can effectively reduce voltage change rate dv...

  15. A Family of Four Quadrant DC/DC Converters with Reduced Number of Components

    DEFF Research Database (Denmark)

    Mostaan, Ali; Soltani, Mohsen

    2015-01-01

    A family of four quadrant DC/DC converters is presented in this paper. Compare with existing four quadrant DC/DC converters that have been introduced in literature, the proposed converters have lower number of components. There are two bidirectional switches, two coupled inductors and one capacitor...

  16. A Fixed-Frequency Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant DC-DC converters, and meanwhile achieves high efficiency. It i...

  17. DC Microgrids – Part I

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Lu, Xiaonan; Quintero, Juan Carlos Vasquez

    2016-01-01

    This paper presents a review of control strategies, stability analysis and stabilization techniques for DC microgrids (MGs). Overall control is systematically classified into local and coordinated control levels according to respective functionalities in each level. As opposed to local control...... strategies to achieve various control objectives are reviewed in the paper. Moreover, properties of DC MG dynamics and stability are discussed. The paper illustrates that tightly regulated point-of-load (POL) converters tend to reduce the stability margins of the system since they introduce negative...... which relies only on local measurements, some line of communication between units needs to be made available in order to achieve coordinated control. Depending on the communication method, three basic coordinated control strategies can be distinguished, i.e. decentralized, centralized and distributed...

  18. Linking DC together with TRSL

    DEFF Research Database (Denmark)

    Haxthausen, Anne; Yong, Xia

    1999-01-01

    (parts of) the history of the observables of the system,and then define a satisfaction relation in terms of behaviours. DC has previously been linked together with subsets of other event-based process algebra languages, but using another approach:the event-based languages were given a denotational...... of constraints on the durations of states of the system, i.e. at a high level of abstraction.However, as a state-based logic, it lacks the ability to specifysequential programs and communicating concurrent processes at a concrete level. The Timed RAISE Specification Language (TRSL) [XG99] has this ability.......TRSL is a real-time extension of the RAISE Specification Language (RSL) [Rlg92] which together with its associated method [Rmg95]and tools has shown to be very useful in the industrial development of software systems. Therefore, a promising approach for the development of real-time systemscould be to use DC...

  19. ITAR Free Commercial-of-the-Shelf DC/DC Converter

    Science.gov (United States)

    Denzinger, Wolfgang; Hintze, Thomas

    2014-08-01

    A commercial-of-the-shelf (COTS) DC/DC converter for digital space equipment has been developed by ASP under ESA contract with special emphasis on low cost, no use of ITAR listed EEE parts like Mosfets, minimum number of rad-hard digital IC's and a design tolerance against single event effects by appropriate filtering. However, the intention to qualify this discrete converter design for a low cost FM series production was difficult due to the high up-sceening cost of EEE-parts with one lot guarantee and minimum-by. To overcome this problem, in a next step a redesign of the DC/DC converter was performed with all semiconductors like bipolar transistors, rectifiers and zener diodes packaged into hybrids. With this approach it was possible to buy a high number of less expensive wafers or dies from one lot, to perform a lot acceptance test and to integrate the dies into hybrid packages with further up- screening for FM use. The semiconductors have been packaged into three signal hybrids with 44 pins and one power hybrid with 24 pins for the dissipating transistors and rectifiers. The design of the hybrids is such, that all integrated semiconductors can be tested individually. The qualification of four EQM DC/DC converters with different combinations of output voltages has been successfully performed and two FM's have been manufactured and tested.

  20. Load Dump Analysis in a 42/14V DC-DC Converter for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Mohamed Abdualla Shrud

    2013-07-01

    Full Text Available The paper presents a model for a dc-dc centralised based architecture using Matlab/Simulink for load dump analysis. As the electrical load varies for various driving conditions such as day or night, summer or winter; and city or country side, the analysis of load change is a very important parameter for system behaviour. In order to study the 42V power generation dynamic performance under load variations, step change in loads have been investigated. A detailed mathematical model for a 3-phase, 4 kW and 42V Lundell alternator average electrical equivalent circuit along with the DC/DC converter based architectures for dual-voltage systems has been covered in previous publications. Aspects of the steady-state output current capabilities, transient behaviour due to load dump on the 14/42V buses and the behaviour of the system model under different loads are assessed and results discussed. The performance of the 42V Lundell alternator with the interleaved six-phase buck dc-to-dc converter system is modelled using Simulink software to assess the effectiveness of the model and its transient behaviour. The simulated results are presented for the transient characteristics of the system for load dumps.

  1. Development of a smart DC grid model

    Energy Technology Data Exchange (ETDEWEB)

    Dalimunthe, Amty Ma’rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia; Joni, I. Made, E-mail: imadejoni@phys.unpad.ac.id [Lab. of Instrumentation System and Functional Material Processing, Physics Department, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang KM21, Jatinangor 45363, Jawa Barat (Indonesia)

    2016-03-11

    Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for a renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become ‘smart’. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.

  2. Development of a smart DC grid model

    Science.gov (United States)

    Dalimunthe, Amty Ma'rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia; Joni, I. Made

    2016-03-01

    Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for a renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become `smart'. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.

  3. A Feed-Forward Control Realizing Fast Response for Three-Branch Interleaved DC-DC Converter in DC Microgrid

    Directory of Open Access Journals (Sweden)

    Haojie Wang

    2016-07-01

    Full Text Available It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC is proposed for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load changing. A prototype of the TIDC is developed and an experimental platform is built. The experiment results show that DC bus voltage sags or swells caused by load changing can be reduced and the time for voltage recovery can be decreased significantly with the proposed feed-forward control.

  4. 75 FR 36579 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-30, DC-10-30F, DC-10-30F (KC...

    Science.gov (United States)

    2010-06-28

    ... Corporation Model DC- 10-30, DC-10-30F, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F, and MD-10-30F...). SUMMARY: We propose to adopt a new airworthiness directive (AD) for certain Model DC-10-30, DC-10-30F, DC-10-30F (KC-10A and KDC-10), DC- 10-40, DC10-40F, and MD-10-30F airplanes. This proposed AD would...

  5. 75 FR 61352 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-30, DC-10-30F, DC-10-30F (KC...

    Science.gov (United States)

    2010-10-05

    ... Corporation Model DC- 10-30, DC-10-30F, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F, and MD-10-30F... new airworthiness directive (AD) for certain Model DC-10-30, DC-10-30F, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC- 10-40F, and MD-10-30F airplanes. This AD requires doing a one-time inspection of the...

  6. A Novel Dual-input Isolated Current-Fed DC-DC Converter for Renewable Energy System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2010-01-01

    In this paper, a novel isolated current-fed DC-DC converter (boost-type) with two input power sources based on multi-transformer structure, which is suitable for fuel cells and super-capacitors hybrid energy system, is proposed and designed. With particular transformer windings connection strategy......, the proposed converter can draw power from two different DC sources with lower voltage and deliver it to the higher voltage DC bus or load individually and simultaneously. The detailed operation principle of the proposed converter has been analyzed in dual-input mode and single-input mode, respectively...

  7. Series-Connected High Frequency Converters in a DC Microgrid System for DC Light Rail Transit

    Directory of Open Access Journals (Sweden)

    Bor-Ren Lin

    2018-01-01

    Full Text Available This paper studies and presents a series-connected high frequency DC/DC converter connected to a DC microgrid system to provide auxiliary power for lighting, control and communication in a DC light rail vehicle. Three converters with low voltage and current stresses of power devices are series-connected with single transformers to convert a high voltage input to a low voltage output for a DC light rail vehicle. Thus, Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs with a low voltage rating and a turn-on resistance are adopted in the proposed circuit topology in order to decrease power losses on power switches and copper losses on transformer windings. A duty cycle control with an asymmetric pulse-width modulation is adopted to control the output voltage at the desired voltage level. It is also adopted to reduce switching losses on MOSFETs due to the resonant behavior from a leakage inductor of an isolated transformer and output capacitor of MOSFETs at the turn-on instant. The feasibility and effectiveness of the proposed circuit have been verified by a laboratory prototype with a 760 V input and a 24 V/60 A output.

  8. High Radiation Resistant DC-DC Converter Regulators for use in Magnetic fields for LHC High Luminosity Silicon Trackers

    CERN Document Server

    Dhawan, S; Tipton, P; Kierstead, J; Lynn, D; rescia, S; Weber, M

    2007-01-01

    For more efficient power transport to the electronics embedded inside large colliding beam detectors, we explore the feasibility of supplying higher DC voltage and using local DC-DC conversion to 1.3 V (or lower, depending upon on the lithography of the embedded electronics) using switch mode regulators located very close to the front end electronics. These devices will be exposed to high radiation and high magnetic fields, 10 – 100 Mrads and 2 - 4 Tesla at the SLHC.

  9. 77 FR 31341 - Application To Export Electric Energy; DC Energy, LLC

    Science.gov (United States)

    2012-05-25

    ... Energy to transmit electric energy from the United States to Canada as a power marketer for a five-year... entities selling the power to DC Energy. The application also indicates that DC Energy is a power marketer...

  10. Dynamic Performance of Grid Converters using Adaptive DC Voltage Control

    DEFF Research Database (Denmark)

    Trintis, Ionut; Sun, Bo; Guerrero, Josep M.

    2014-01-01

    This paper investigates a controller that ensures minimum operating dc-link voltage of a back-to-back converter system. The dc-link voltage adapts its reference based on the system state, reference given by an outer loop to the dc-link voltage controller. The operating dc-link voltage should...... be kept as low as possible to increase the power conversion efficiency and increase the reliability of converters. The dynamic performance of the proposed controller is investigated by simulations and experiments....

  11. A Feedback Passivation Design for DC Microgrid and Its DC/DC Converters

    Directory of Open Access Journals (Sweden)

    Feifan Ji

    2016-12-01

    Full Text Available There are difficulties in analyzing the stability of microgrids since they are located on various network structures. However, considering that the network often consists of passive elements, the passivity theory is applied in this paper to solve the above-mentioned problem. It has been formerly shown that when the network is weakly strictly positive real (WSPR, the DC microgrid is stable if all interfaces between the microgrid and converters are made to be passive, which is called interface passivity. Then, the feedback passivation method is proposed for the controller design of various DC–DC converters to achieve the interface passivity. The interface passivity is different from the passivity of closed-loop systems on which the passivity based control (PBC concentrates. The feedback passivation design is detailed for typical buck converters and boost converters in terms of conditions that the controller parameters should satisfy. The theoretical results are verified by a hardware-in-loop real-time labotray (RTLab simulation of a DC microgrid with four generators.

  12. High Efficiency Interleaved Bi-Directional ZVS DC-DC Converter

    DEFF Research Database (Denmark)

    Zafar Ullah Khan, M.; Mohsin Naveed, M.; Hussain, Dil Muhammad Akbar

    2013-01-01

    A High Efficiency Interleaved Bi-Directional ZVS DC-DC converter is presented in this paper. This converter can be operated in both buck and boost mode. CoolMOS is used as a power device to achieve low conduction losses and fast turn off. The value of inductance is selected such that the Cool......MOS drain-to-source voltage always falls to zero before it turns on and ZVS is achieved. Multiphase interleaved inductors are used to achieve high power and low ripple currents. Converter is operated at 50kHz and MATLAB Simulink simulation is performed. 6kW prototype converter is implemented in buck mode...

  13. The Chaotic-Based Control of Three-Port Isolated Bidirectional DC/DC Converters for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    2016-01-01

    Full Text Available Three-port isolated (TPI bidirectional DC/DC converters have three energy ports and offer advantages of large voltage gain, galvanic isolation ability and high power density. For this reason this kind of converters are suitable to connect different energy sources and loads in electric and hybrid vehicles. The purpose of this paper is to propose chaotic modulation and the related control scheme for TPI bidirectional DC/DC converters, in such a way that the switching harmonic peaks can be suppressed in spectrum and the conducted electromagnetic interference (EMI is reduced. Two chaotic modulation strategies, namely the continuously chaotic modulation and the discretely chaotic modulation are presented. These two chaotic modulation strategies are applied for TPI bidirectional DC/DC converters with shifted-phase angle based control and phase-shifted PWM control. Both simulation and experiments are given to verify the validity of the proposed chaotic modulation-based control schemes.

  14. Design and Implementation of Anti-windup PI Control on DC-DC Bidirectional Converter for Hybrid Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Muh. Zakiyullah Romdlony

    2012-07-01

    Full Text Available Well-regulated DC bus voltage is the important point to guarantee the power demand in hybrid vehicle applications. Voltage regulation can be achieved with control method that build switching signal on DC-DC converter. This paper describes design and small scale experimental results of bus voltage regulation control of the DC-DC bidirectional converter with battery and supercapacitor as energy source. The control system consists of two control loops, the outer loop that get DC bus voltage feedback using PI anti-windup back calculation control method. This outer loop will generate a reference current for the inner loop that implement hysteresis control. The inner control loop will compare that reference curent with the source current obtained from the current sensor. Simulation and experimental results show that bus voltage is well-regulated under the load changes with 1% voltage ripple.

  15. Multi-output DC-DC converters based on diode-clamped converters configuration

    DEFF Research Database (Denmark)

    Nami, A.; Zare, F.; Ghosh, A.

    2010-01-01

    for a diode-clamed inverter in the grid connection systems, where boosting low rectified output-voltage and series DC link capacitors is required. To verify the proposed topology, steady-state and dynamic analyses of a MOB converter are examined. A simple control strategy has been proposed to demonstrate......This study presents a new DC DC multi-output boost (MOB) converter which can share its total output between different series of output voltages for low- and high-power applications. This configuration can be utilised instead of several single output power supplies. This is a compatible topology...... the performance of the proposed topology for a double-output boost converter. The topology and its control strategy can easily be extended to offer multiple outputs. Simulation and experimental results are presented to show the validity of the control strategy for the proposed converter....

  16. Analytical evaluation of DC capacitor RMS current and voltage ...

    Indian Academy of Sciences (India)

    K S GOPALAKRISHNAN

    Abstract. The sizing of the DC-link capacitor in a three-level inverter is based on the RMS current flowing through it. This paper analyses the DC-link capacitor RMS current in a neutral-point clamped (NPC) inverter and expresses the same as a function of modulation index, line-side current amplitude and power factor.

  17. Analytical evaluation of DC capacitor RMS current and voltage ...

    Indian Academy of Sciences (India)

    The sizing of the DC-link capacitor in a three-level inverter is based on the RMS current flowing through it. This paper analyses the DC-link capacitor RMS current in a neutral-point clamped (NPC) inverter and expresses the same as a function of modulation index, line-side current amplitude and power factor. Analytical ...

  18. Improvement of a high current DC power supply system for testing the large scaled superconducting cables and magnets

    Science.gov (United States)

    Yamada, Shuichi; Chikaraishi, Hirotaka; Tanahashi, Shugo; Mito, Toshiyuki; Takahata, Kazuya; Yanagi, Nagato; Sakamoto, Mizuki; Nishimura, Arata; Motojima, Osamu; Yamamoto, Junya

    1994-07-01

    A dc 75 kA power supply system was constructed to test the SC (superconducting) R&D (research and development) cables and magnets for the Large Helical Device (LHD). It consists of three 25 kA unit banks. A unit bank has two double-star-rectifier connections with the inter-phase reactors. A digital feedback control method is applied to the automatic current regulation (ACR) in each unit bank. For shortening the dead time of the feedback process, a new algorithm of a digital phase controller for the ACR is investigated. A Bode diagram of the feedback process is directly measured. It is confirmed that the dead time of the feedback process is reduced to one sixth, and that the feedback gain of PID (proportional, integral and differential) compensation is improved by a factor of two from the original method.

  19. Improvement of a high current DC power supply system for testing the large scaled superconducting cables and magnets

    International Nuclear Information System (INIS)

    Yamada, Shuichi; Chikaraishi, Hirotaka; Tanahashi, Shugo

    1993-11-01

    A dc 75 kA power supply system was constructed to test the superconducting (SC) R and D cables and magnets for the Large Helical Device. It consists of three 25 kA unit banks. A unit bank has two double-star-rectifier connections with the inter-phase reactors. A digital feedback control method is applied to the automatic current regulation (ACR) in each unit bank. For shortening the dead time of the feedback process, a new algorithm of a digital phase controller for the ACR is investigated. A Bode diagram of the feedback process is directly measured. It is confirmed that the dead time of the feedback process is reduced to one sixth, and that the feedback gain of PID compensation is improved by a factor of two from the original method. (author)

  20. Simulation to Implementation as Good Practices for Teaching Power Electronics to Undergraduate Students: Fuzzy Sliding Mode Control for DC Motors

    Directory of Open Access Journals (Sweden)

    Paul Cepeda

    2014-01-01

    Full Text Available How can students be given experience in the confused realities of engineering processes? How can undergraduate students be convinced that processes can be analyzed and improved? Computer simulations properly designed and applied could answer these challenges revolutionizing education in Power Electronics. In recent years, computer simulation has been commonly used in education to motivate students in their learning and help teachers to improve their teaching level. The present paper focuses on developing a speed controller for DC motors starting from theoretical aspects, passing through simulations, and finally reaching a control prototype. The control theory is based on a nonlinear technique known as Sliding Mode Control (SMC involving artificial intelligence for optimization such as Fuzzy Logic (FL, Adaptive Neurofuzzy Inference Systems (ANFIS, and Genetic Algorithms (GAs.

  1. Improvement of a high current dc power supply system for testing the large scaled superconducting cables and magnets

    International Nuclear Information System (INIS)

    Yamada, Shuichi; Chikaraishi, Hirotaka; Tanahashi, Shugo

    1994-01-01

    A dc 75 kA power supply system was constructed to test the SC (superconducting) R and D (research and development) cables and magnets for the Large Helical Device (LHD). It consists of three 25 kA unit banks. A unit bank has two double-star-rectifier connections with the inter-phase reactors. A digital feedback control method is applied to the automatic current regulation (ACR) in each unit bank. For shortening the dead time of the feedback process, a new algorithm of a digital phase controller for the ACR is investigated. A Bode diagram of the feedback process is directly measured. It is confirmed that the dead time of the feedback process is reduced to one sixth, and that the feedback gain of PID (proportional, integral and differential) compensation is improved by a factor of two from the original method

  2. Security analysis of interconnected AC/DC systems

    DEFF Research Database (Denmark)

    Eriksson, Robert

    2015-01-01

    This paper analyses N-1 security in an interconnected ac/dc transmission system using power transfer distribution factors (PTDFs). In the case of a dc converter outage the power needs to be redistributed among the remaining converter to maintain power balance and operation of the dc grid. The red......This paper analyses N-1 security in an interconnected ac/dc transmission system using power transfer distribution factors (PTDFs). In the case of a dc converter outage the power needs to be redistributed among the remaining converter to maintain power balance and operation of the dc grid...... voltage control design consider the power distribution for a converter outage. By proper design and utilizing the proposed method increases the N-1 security and the secure transfer limits. This article proposes a method which minimizes the 2-norm of the sum of the PTDFs with constraints of not violating...... any line or transformer limits. Simulations were performed in a model of the Nordic power system where a dc grid is placed on top. The simulation supports the method as a tool to consider transfer limits in the grid to avoid violate the same and increase the security after a converter outage....

  3. Elimination of output voltage oscillations in DC-DC converter using PWM with PI controller

    Directory of Open Access Journals (Sweden)

    Sreenivasappa Veeranna Bhupasandra

    2010-01-01

    Full Text Available In this paper the SIMULINK model of a PWM controlled DC-DC converter is modeled using switching function concept to control the speed of the DC motor. The presence of the voltage oscillation cycles due to higher switching frequency in the DC-DC converter is identified. The effect of these oscillations on the output voltage of the converter, Armature current, Developed torque and Speed of the DC motor is analyzed. In order to minimize the oscillation cycles the PI controller is proposed in the PWM controller.

  4. Hierarchical Velocity Control Based on Differential Flatness for a DC/DC Buck Converter-DC Motor System

    Directory of Open Access Journals (Sweden)

    R. Silva-Ortigoza

    2014-01-01

    Full Text Available This paper presents a hierarchical controller that carries out the angular velocity trajectory tracking task for a DC motor driven by a DC/DC Buck converter. The high level control is related to the DC motor and the low level control is dedicated to the DC/DC Buck converter; both controls are designed via differential flatness. The high level control provides a desired voltage profile for the DC motor to achieve the tracking of a desired angular velocity trajectory. Then, a low level control is designed to ensure that the output voltage of the DC/DC Buck converter tracks the voltage profile imposed by the high level control. In order to experimentally verify the hierarchical controller performance, a DS1104 electronic board from dSPACE and Matlab-Simulink are used. The switched implementation of the hierarchical average controller is accomplished by means of pulse width modulation. Experimental results of the hierarchical controller for the velocity trajectory tracking task show good performance and robustness against the uncertainties associated with different system parameters.

  5. Reliability of capacitors for DC-link applications - An overview

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede

    2013-01-01

    DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of DC-link in power electronic converters...... from two aspects: 1) reliability-oriented DC-link design solutions; 2) conditioning monitoring of DC-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capacitors suitable for the applications are also discussed as a basis to understand the physics......-of-failure. This review serves to provide a clear picture of the state-of-the-art research in this area and to identify the corresponding challenges and future research directions for capacitors and their DC-link applications....

  6. An Integrated Programmable Wide-range PLL for Switching Synchronization in Isolated DC-DC Converters

    Science.gov (United States)

    Fard, Miad

    In this thesis, two Phase-Locked-Loop (PLL) based synchronization schemes are introduced and applied to a bi-directional Dual-Active-Bridge (DAB) dc-dc converter with an input voltage up to 80 V switching in the range of 250 kHz to 1 MHz. The two schemes synchronize gating signals across an isolated boundary without the need for an isolator per transistor. The Power Transformer Sensing (PTS) method utilizes the DAB power transformer to indirectly sense switching on the secondary side of the boundary, while the Digital Isolator Sensing (DIS) method utilizes a miniature transformer for synchronization and communication at up to 100 MHz. The PLL is implemented on-chip, and is used to control an external DAB power-stage. This work will lead to lower cost, high-frequency isolated dc-dc converters needed for a wide variety of emerging low power applications where isolator cost is relatively high and there is a demand for the reduction of parts.

  7. A CMOS RF-to-DC Power Converter With 86% Efficiency and -19.2-dBm Sensitivity

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2018-01-09

    This paper proposes an RF-to-dc power converter for ambient wireless powering that is efficient, highly sensitive, and less dependent on the load resistance with an extended dynamic range. The proposed rectifier utilizes a variable biasing technique to control the conduction of the rectifying transistors selectively, hence minimizing the leakage current; unlike the prior work that has a fixed feedback resistors, which limits the efficient operation to a relatively high RF power and causes a drop in the peak power conversion efficiency (PCE). The proposed design is fabricated using a 0.18-μm standard CMOS technology and occupies an area of 8800 μm². The measurement results show an 86% PCE and -19.2-dBm (12 μW) sensitivity when operating at the medical band 433 MHz with a 100-kΩ load. Furthermore, the PCE is 66%, and the sensitivity is -18.2 dBm (15.1 μW) when operating at UHF 900 MHz with a 100-kΩ load.

  8. Analysis of Electric Vehicle DC High Current Conversion Technology

    Science.gov (United States)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  9. Drilling history core hole DC-8

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.

  10. Teaching about operation of brushless DC motors

    OpenAIRE

    Čufar, Aleksandra

    2013-01-01

    Brush DC motor is being replaced by brushless DC motors on every area of application. My diploma thesis is a presentation of brushless DC motor, how it works and its application. Within first part we describe various electric motors and their application. There are several types of electric motors division. Last to be added is a brushless motor. Within second part of thesis we look into a brushless DC motor, how it works, its application and control. In the third part of thesis we construct a...

  11. Drilling history core hole DC-8

    International Nuclear Information System (INIS)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored

  12. Characterisation of 100 kW electron beam melting gun and its adaptation as electron gun for high power DC electron accelerators

    International Nuclear Information System (INIS)

    Banerjee, Srutarshi; Bhattacharjee, Dhruva; Waghmare, Abhay; Tiwari, Rajnish; Bakhtsingh, R.I.; Dasgupta, K.; Gupta, Sachin; Prakash, Baibhaw; Jha, M.N.

    2015-01-01

    The paper deals with the characterization of the 100 kW electron beam melting gun for its adaptation in high power DC Electron Accelerators. The indigenously designed electron beam melting system at BARC is chosen for characterization. It comprises of electron gun as source of electrons, two electromagnetic focusing lenses viz. upper focusing lens and lower focusing lens for beam focusing, intermediate beam aperture for vacuum decoupling between gun region and melt zone, deflection and oscillation lens for maneuvering the beam on the melt charge and water cooled crucible that acts as a beam dump. In this system, the electron gun is designed for 40 kV and 100 kW corresponding to a maximum beam current of 2.5 A. The electron gun uses directly heated spiral tungsten filament. The operating temperature of the filament is 2800 °K. The focusing electrode and the anode profile are designed based on Pierce geometry. High Power DC Electron Accelerators require high currents of 1 A. The beam must comply with the requirement of 40 mm beam diameter and 10 mrad divergence at the exit of the electron gun. The characterization of the existing electron gun was done to find out all the beam parameters, for e.g. beam size, beam divergence, perveance etc. to be adapted or to be modified for the design of electron gun for high power DC accelerators. This paper shows limitations and the possible solutions for design of high power DC accelerators. (author)

  13. Decentralized Nonlinear Controller Based SiC Parallel DC-DC Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is aimed at demonstrating the feasibility of a Decentralized Control based SiC Parallel DC-DC Converter Unit (DDCU) with targeted application for...

  14. Digitally intensive DC-DC converter for extreme space environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Micro –Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator core...

  15. Digitally intensive DC-DC converter for extreme space environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Micro-Arizona State University (ASU) team will develop an all-digitally controlled, wide temperature range point-of-load switch-mode DC-DC regulator core...

  16. Wide Temperature Range DC-DC Boost Converters for Command/Control/Drive Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We shall develop wide temperature range DC-DC boost converters that can be fabricated using commercial CMOS foundries. The boost converters will increase the low...

  17. A Four-Phase High Voltage Conversion Ratio Bidirectional DC-DC Converter for Battery Applications

    Directory of Open Access Journals (Sweden)

    Li-Kun Xue

    2015-06-01

    Full Text Available This study presents a four-phase interleaved high voltage conversion ratio bidirectional DC-DC converter circuit based on coupled inductors and switched capacitors, which can eliminate the defects of conventional high voltage conversion ratio bidirectional DC-DC converters in terms of high-voltage/current stress, less efficiency and low-power limitation. Parallel channels are used to reduce current stress at the low-voltage side and series connected switched capacitors are used to enlarge voltage conversion ratio, reduce voltage stress and achieve auto current sharing. This paper proposes the operation principle, feature analysis and optimization design considerations. On this basis the objectives of high voltage conversion ratio, low voltage/current stress, high power density, high efficiency and high-power applications can be achieved. Some experimental results based on a 500 W prototype converter (24 V to 48 V at low-voltage side, 400 V at high-voltage side are given to verify the theoretical analysis and the effectiveness of the proposed converter.

  18. Fibre optic control for electron gun power supplies and data acquisition of 3 MeV DC accelerator

    International Nuclear Information System (INIS)

    Chavan, R.B.; Yadav, Vivek; Dixit, K.P.; Bakhtsingh, R.I.; Rajan, Rehim; Nanu, K.; Mittal, K.C.; Chakravarthy, D.P.; Gantayet, L.M.

    2011-01-01

    A 3 MeV, 10 mA DC Industrial Electron Beam Accelerator is being commissioned at Electron Beam Centre, Navi Mumbai. The electron beam is generated by a triode electron gun and injected into the accelerating column at 5 keV. The gun and its power supplies, (5 kV anode, 3 kV grid and 15V/20A filament), are floating at 3 Million volts, and are situated in a tank which is pressurized with SF6 at 6 kg/cm 2 . These power supplies are required to be controlled remotely. The various accelerator parameters like Beam Energy, Beam Current, RF Electrode Voltage, Power Oscillator Plate Voltage / Current and Vacuum are required to be monitored during beam operation. The software was developed in VB.Net for control and data acquisition. The database is provided in SQL 2005 for storing the data. For this purpose, control system using ADAM modules and Optical fibre has been designed and developed. This paper describes the design features of the control system and experience of use of control software during initial beam trials. (author)

  19. Effect of DC-pulsed magnetron sputtering power on structural, tribological and biocompatibility of Ti-Zr-N thin film

    Science.gov (United States)

    El-Hossary, F. M.; El-Rahman, A. M. Abd; Raaif, M.; Qu, Shuxin; Zhao, Junsheng; Maitz, Manfred F.; EL-Kassem, M. Abo

    2018-01-01

    The DC-pulsed magnetron sputtering was employed to deposit Ti-Zr-N thin film on AISI 316 substrates. All the plasma parameters were kept to be constant except the plasma-processing power which was varied from 125 to 250 W. The structure, tribological, electrochemical and biocompatibility properties of Ti-Zr-N films have been investigated. X-ray patterns confirmed the formation of solid solution phase of Ti-Zr-N with different orientations. The results depicted that, the microhardness of Ti-Zr-N film increases with increasing the plasma-processing power to reach a maximum value of approximately 1050 HV0.015 at 200 W. Moreover, the tribological properties of AISI 316 coated with Ti-Zr-N were found to be superior compared with the uncoated sample. The wear rate of the coated sample at 225 W has a value of nearly 0.0034 mm3/Nm which is very low in comparison with AISI 316 substrate that has a value of 0.137 mm3/Nm. The biological properties of the examined samples were evaluated by investigating the proliferation of MC3T3-E1 osteoblast cells on the surface. The proliferation rate of the osteoblast cells was enhanced on Ti-Zr-N films prepared at low plasma power. It has been demonstrated that the surface roughness and surface energy besides the surface chemical compositions affect the tribo-mechanical and biocompatibility features of Ti-Zr-N surfaces.

  20. Distributed control system for parallel-connected DC boost converters

    Science.gov (United States)

    Goldsmith, Steven

    2017-08-15

    The disclosed invention is a distributed control system for operating a DC bus fed by disparate DC power sources that service a known or unknown load. The voltage sources vary in v-i characteristics and have time-varying, maximum supply capacities. Each source is connected to the bus via a boost converter, which may have different dynamic characteristics and power transfer capacities, but are controlled through PWM. The invention tracks the time-varying power sources and apportions their power contribution while maintaining the DC bus voltage within the specifications. A central digital controller solves the steady-state system for the optimal duty cycle settings that achieve a desired power supply apportionment scheme for a known or predictable DC load. A distributed networked control system is derived from the central system that utilizes communications among controllers to compute a shared estimate of the unknown time-varying load through shared bus current measurements and bus voltage measurements.

  1. Bidirectional DC-DC conversion device use at system of urban electric transport

    Science.gov (United States)

    Vilberger, M. E.; Vislogusov, D. P.; Kotin, D. A.; Kulekina, A. V.

    2017-10-01

    The paper considers questions of energy storage devices used in electric transport, especially in the electric traction drive of a trolley bus, in order to provide an autonomous motion, overhead system’s load leveling and energy recovering. For efficiency of the proposed system, a bidirectional DC-DC converter is used. During the simulation, regulation characteristics of the bidirectional DC-DC converters were obtained.

  2. Regulation of DC development and DC-mediated T-cell immunity via CISH

    OpenAIRE

    Miah, Mohammad Alam; Bae, Yong-Soo

    2013-01-01

    Cytokine inducible SH2-containing protein (CISH) plays a crucial role in type 1 dendritic cell (DC) development as well as in the DC-mediated activation of cytotoxic T lymphocytes (CTLs). CISH expression at late DC developmental stages shuts down the proliferation of DC progenitors by negatively regulating signal transducer and activator of transcription 5 (STAT5) and facilitates the differentiation of DCs into potent stimulators of CTLs.

  3. Regulation of DC development and DC-mediated T-cell immunity via CISH.

    Science.gov (United States)

    Miah, Mohammad Alam; Bae, Yong-Soo

    2013-03-01

    Cytokine inducible SH2-containing protein (CISH) plays a crucial role in type 1 dendritic cell (DC) development as well as in the DC-mediated activation of cytotoxic T lymphocytes (CTLs). CISH expression at late DC developmental stages shuts down the proliferation of DC progenitors by negatively regulating signal transducer and activator of transcription 5 (STAT5) and facilitates the differentiation of DCs into potent stimulators of CTLs.

  4. Power Flow Analysis for Low-Voltage AC and DC Microgrids Considering Droop Control and Virtual Impedance

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay Kumar; Savaghebi, Mehdi

    2017-01-01

    In the low-voltage (LV) ac microgrids (MGs), with a relatively high R/X ratio, virtual impedance is usually adopted to improve the performance of droop control applied to distributed generators (DGs). At the same time, LV dc MG using virtual impedance as droop control is emerging without adequate...

  5. Cost-based droop scheme for DC microgrid

    DEFF Research Database (Denmark)

    Nutkani, Inam Ullah; Wang, Peng; Loh, Poh Chiang

    2014-01-01

    DC microgrids are gaining interest due to higher efficiencies of DC distribution compared with AC. The benefits of DC systems have been widely researched for data centers, IT facilities and residential applications. The research focus, however, has been more on system architecture and optimal...... voltage level, less on optimized operation and control of generation sources. The latter theme is perused in this paper, where cost-based droop scheme is proposed for distributed generators (DGs) in DC microgrids. Unlike traditional proportional power sharing based droop scheme, the proposed scheme......-connected operation. Most importantly, the proposed scheme can reduce overall total generation cost in DC microgrids without centralized controller and communication links. The performance of the proposed scheme has been verified under different load conditions....

  6. Integrating DC/DC Conversion with Possible Reconfiguration within Submodule Solar Photovoltaic Systems

    Science.gov (United States)

    Huang, Peter Jen-Hung

    This research first proposes a method to merge photovoltaic (PV) cells or PV panels within the internal components DC-DC converters. The purpose of this merged structure is to reconfigure the PV modules between series and parallel connections using high switching frequencies (hundreds of kHz). This leads to multi-levels of voltages and currents that become applied to the output filter of the converter. Further, this research introduces a concept of a switching cell that utilizes the reconfiguration of series and parallel connections in DC-DC converters. The switching occurs at high switching frequency and the switches can be integrated to be within the solar panels or in between the solar cells. The concept is generalized and applied to basic buck and boost topologies. As examples of the new types of converters: reconfigurable PV-buck and PV-boost converter topologies are presented. It is also possible to create other reconfigurable power converters: non-isolated and isolated topologies. Analysis, simulation and experimental verification for the reconfigurable PV-buck and PV-boost converters are presented extensively to illustrate proof of concept. Benefits and drawbacks of the new approach are discussed. The second part of this research proposes to utilize the internal solar cell capacitance and internal solar module wire parasitic inductances to replace the input capacitor and filter inductor in boost derived DC-DC converters for energy harvesting applications. High switching frequency (MHz) hard switched and resonant boost converters are proposed. Their analysis, simulation and experimental prototypes are presented. A specific proof-of-concept application is especially tested for foldable PV panels, which are known for their high internal wire inductance. The experimental converters successfully boost solar module voltage without adding any external input capacitance or filter inductor. Benefits and drawbacks of new proposed PV submodule integrated boost

  7. High performance AC–DC control power supply for low voltage ride ...

    Indian Academy of Sciences (India)

    This paper presents a control power supply (CPS) design which is used to feed power to the subsystems of a power converter. The CPS design presented here maintains a constant 24Vdc output even over a wide (90Vrms to 270Vrms ) ac voltage variation at its input for a High Power Converter (HPC). The circuit design and ...

  8. Advanced DC/AC inverters applications in renewable energy

    CERN Document Server

    Luo, Fang Lin

    2013-01-01

    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  9. Benchmark of AC and DC active power decoupling circuits for second-order harmonic mitigation in kW-scale single-phase inverters

    DEFF Research Database (Denmark)

    Qin, Zian; Tang, Yi; Loh, Poh Chiang

    2015-01-01

    studied, where the commercially available film capacitors, circuit topologies, and control strategies for active power decoupling are all taken into account. Then, an adaptive decoupling voltage control method is proposed to further improve the performance of dc decoupling in terms of efficiency...... and reliability. The feasibility and superiority of the identified solution for active power decoupling together with the proposed adaptive decoupling voltage control method are finally verified by both the experimental results obtained on a 2 kW single-phase inverter.......This paper presents the benchmark study of ac and dc active power decoupling circuits for second-order harmonic mitigation in kW-scale single-phase inverters. First of all, the best solutions of active power decoupling to achieve high efficiency and power density are identified and comprehensively...

  10. Benchmark of AC and DC Active Power Decoupling Circuits for Second-Order Harmonic Mitigation in Kilowatt-Scale Single-Phase Inverters

    DEFF Research Database (Denmark)

    Qin, Zian; Tang, Yi; Loh, Poh Chiang

    2016-01-01

    efficiency and high power density is identified and comprehensively studied, and the commercially available film capacitors, the circuit topologies, and the control strategies adopted for active power decoupling are all taken into account. Then, an adaptive decoupling voltage control method is proposed...... to further improve the performance of dc decoupling in terms of efficiency and reliability. The feasibility and superiority of the identified solution for active power decoupling together with the proposed adaptive decoupling voltage control method are finally verified by both the simulation and experimental......This paper presents the benchmark study of ac and dc active power decoupling circuits for second order harmonic mitigation in kW scale single-phase inverters. First of all, a brief comparison of recently reported active power decoupling circuits is given, and the best solution that can achieve high...

  11. Periodically Swapping Modulation (PSM) Strategy for Three-Level (TL) DC/DC Converter with Balanced Switch Currents

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2018-01-01

    The asymmetrical modulation strategy is widely used in various types of three-level (TL) DC/DC converters, while the current imbalance among the power switches is one of the important issues. In this paper, a novel periodically swapping modulation (PSM) strategy is proposed for balancing the power...... switches’ currents in various types of TL DC/DC converters. In the proposed PSM strategy, the driving signals of the switch pairs are swapped periodically, which guarantees that the currents through the power switches are kept balanced in every two switching periods. Therefore, the proposed PSM...... strategy can effectively improve the reliability of the converter by balancing the power losses and thermal stresses among the power switches. The operation principle and performances of the proposed PSM strategy are analyzed in detail. Finally, the simulation and experimental results are presented...

  12. A study on stimulation of DC high voltage power of LCC series parallel resonant in projectile velocity measurement system

    Science.gov (United States)

    Lu, Dong-dong; Gu, Jin-liang; Luo, Hong-e.; Xia, Yan

    2017-10-01

    According to specific requirements of the X-ray machine system for measuring velocity of outfield projectile, a DC high voltage power supply system is designed for the high voltage or the smaller current. The system comprises: a series resonant circuit is selected as a full-bridge inverter circuit; a high-frequency zero-current soft switching of a high-voltage power supply is realized by PWM output by STM32; a nanocrystalline alloy transformer is chosen as a high-frequency booster transformer; and the related parameters of an LCC series-parallel resonant are determined according to the preset parameters of the transformer. The concrete method includes: a LCC series parallel resonant circuit and a voltage doubling circuit are stimulated by using MULTISM and MATLAB; selecting an optimal solution and an optimal parameter of all parts after stimulation analysis; and finally verifying the correctness of the parameter by stimulation of the whole system. Through stimulation analysis, the output voltage of the series-parallel resonant circuit gets to 10KV in 28s: then passing through the voltage doubling circuit, the output voltage gets to 120KV in one hour. According to the system, the wave range of the output voltage is so small as to provide the stable X-ray supply for the X-ray machine for measuring velocity of outfield projectile. It is fast in charging and high in efficiency.

  13. DC motor proportional control system for orthotic devices

    Science.gov (United States)

    Blaise, H. T.; Allen, J. R.

    1972-01-01

    Multi-channel proportional control system for operation of dc motors for use with externally-powered orthotic arm braces is described. Components of circuitry and principles of operation are described. Schematic diagram of control circuit is provided.

  14. A Two-stage DC-DC Converter for the Fuel Cell-Supercapacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2009-01-01

    A wide input range multi-stage converter is proposed with the fuel cells and supercapacitors as a hybrid system. The front-end two-phase boost converter is used to optimize the output power and to reduce the current ripple of fuel cells. The supercapacitor power module is connected by push......-pull-forward half bridge (PPFHB) converter with coupled inductors in the second stage to handle the slow transient response of the fuel cells and realize the bidirectional power flow control. Moreover, this cascaded structure simplifies the power management. The control strategy for the whole system is analyzed...... and designed. A 1kW prototype controlled by TMS320F2808 DSP is built in the lab. Simulation and experimental results confirm the feasibility of the proposed two stage dc-dc converter system....

  15. Economic Viability Improvement of Solar Powered Indian Rural Banks through DC Grids

    NARCIS (Netherlands)

    Panguloori, R.

    2012-01-01

    Power shortages result in power outages for period of 8 to 10 Hrs aday in rural areas due to significant gap between electricity demandand supply. Rural banking is one of the sectors severely affected by power. Majority of population in emerging markets like India livein rural areas. Therefore,

  16. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an

  17. Dual wound dc brush motor gearhead

    Science.gov (United States)

    Henson, Barrie W.

    1986-01-01

    The design requirements, the design, development tests and problems, the qualification and life test and the findings of the strip examination of a dual wound DC brushed motor gearhead are described. It is the only space qualified dual wound dc brushed motor gearhead in Europe.

  18. Analysis of a Hybrid DC Comparator

    Directory of Open Access Journals (Sweden)

    Li Web

    2006-06-01

    Full Text Available The traditional controllable saturation reactor (CSR consists of single toroidal core, DC (direct current controlled loop (including DC controlled winding and DC biasing source and AC (alternating current excitation loop (including excitation winding and AC source. A detection winding and secondary winding are added up to the CSR configuration and form a hybrid DC comparator. The excitation current is asymmetric waveform when the CSR core is commonly stimulated by both AC and DC biasing sources, which just is the fundamental characteristic for the proposed comparator. Research shows the terminal voltage of the detection winding is asymmetric waveform when the secondary winding of the comparator is open and the CSR core is stimulated both by AC and DC biasing sources. Both theory analysis and experiment verify the feasibility of the differential RMS (root-mean-square between positive and negative half waves of the terminal voltage from the detection winding fitting for the feedback variance to balance DC biasing magnetic potential and form a self-balancing comparator. The zero-flux technique that the primary ampere-turn is equal to the secondary is the function base for the comparator. The operation details of the comparator including the control characteristics both of open-loop and close loop, the satiability judgment criterion, static error property and test range are introduced. The experimental results testify to the truth of the principle of the proposed DC comparator.

  19. 75 FR 61989 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-8-31, DC-8-32, DC-8-33, DC-8-41...

    Science.gov (United States)

    2010-10-07

    ... 125 airplanes of the affected design in the worldwide fleet. The following table provides the... 30-1 ``DC-8 Pneumatic System Decay Check'' in Appendix C of Boeing DC-8 Special Compliance Item... contained in Table 1 of this AD to do the actions required by this AD, unless the AD specifies otherwise...

  20. DC KIDS COUNT e-Databook Indicators

    Science.gov (United States)

    DC Action for Children, 2012

    2012-01-01

    This report presents indicators that are included in DC Action for Children's 2012 KIDS COUNT e-databook, their definitions and sources and the rationale for their selection. The indicators for DC KIDS COUNT represent a mix of traditional KIDS COUNT indicators of child well-being, such as the number of children living in poverty, and indicators of…