WorldWideScience

Sample records for dc power line

  1. A Simplified Control Method for Tie-Line Power of DC Micro-Grid

    Directory of Open Access Journals (Sweden)

    Yanbo Che

    2018-04-01

    Full Text Available Compared with the AC micro-grid, the DC micro-grid has low energy loss and no issues of frequency stability, which makes it more accessible for distributed energy. Thus, the DC micro-grid has good potential for development. A variety of renewable energy is included in the DC micro-grid, which is easily affected by the environment, causing fluctuation of the DC voltage. For grid-connected DC micro-grid with droop control strategy, the tie-line power is affected by fluctuations in the DC voltage, which sets higher requirements for coordinated control of the DC micro-grid. This paper presents a simplified control method to maintain a constant tie-line power that is suitable for the DC micro-grid with the droop control strategy. By coordinating the designs of the droop control characteristics of generators, energy storage units and grid-connected inverter, a dead band is introduced to the droop control to improve the system performance. The tie-line power in the steady state is constant. When a large disturbance occurs, the AC power grid can provide power support to the micro-grid in time. The simulation example verifies the effectiveness of the proposed control strategy.

  2. A Simplified Control Method for Tie-Line Power of DC Micro-Grid

    OpenAIRE

    Yanbo Che; Jinhuan Zhou; Tingjun Lin; Wenxun Li; Jianmei Xu

    2018-01-01

    Compared with the AC micro-grid, the DC micro-grid has low energy loss and no issues of frequency stability, which makes it more accessible for distributed energy. Thus, the DC micro-grid has good potential for development. A variety of renewable energy is included in the DC micro-grid, which is easily affected by the environment, causing fluctuation of the DC voltage. For grid-connected DC micro-grid with droop control strategy, the tie-line power is affected by fluctuations in the DC voltag...

  3. Quality electricity lines of external power systems electric traction DC

    Directory of Open Access Journals (Sweden)

    A.V. Petrov

    2012-08-01

    Full Text Available The results of studies that compare and analyze the numerical values of some key indicators quality electricity in the lines of the external power supply system the electric traction DC. As a supplement are additional and fundamental values of energy losses in them.

  4. A resonant dc-dc power converter assembly

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the s......The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...... of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first...

  5. A resonant dc-dc power converter assembly

    OpenAIRE

    Madsen, Mickey Pierre

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or fo...

  6. Adapting AC Lines to DC Grids for Large-Scale Renewable Power Transmission

    Directory of Open Access Journals (Sweden)

    D. Marene Larruskain

    2014-10-01

    Full Text Available All over the world, governments of different countries are nowadays promoting the use of clean energies in order to achieve sustainable energy systems. In this scenario, since the installed capacity is continuously increasing, renewable sources can play an important role. Notwithstanding that, some important problems may appear when connecting these sources to the grid, being the overload of distribution lines one of the most relevant. In fact, renewable generation is usually connected to the nearest AC grid, although this HV system may not have been designed considering distributed generation. In the particular case of large wind farms, the electrical grid has to transmit all the power generated by wind energy and, as a consequence, the AC system may get overloaded. It is therefore necessary to determine the impact of wind power transmission so that appropriate measures can be taken. Not only are these measures influenced by the amount of power transmitted, but also by the quality of the transmitted power, due to the output voltage fluctuation caused by the highly variable nature of wind. When designing a power grid, although AC systems are usually the most economical solution because of its highly proven technology, HVDC may arise in some cases (e.g. offshore wind farms as an interesting alternative, offering some added values such as lower losses and better controllability. This way, HVDC technology can solve most of the aforementioned problems and has a good potential for future use. Additionally, the fast development of power electronics based on new and powerful semiconductor devices allow the spread of innovative technologies, such as VSC-HVDC, which can be applied to create DC grids. This paper focuses on the main aspects involved in adapting the existing overhead AC lines to DC grids, with the objective of improving the transmission of distributed renewable energy to the centers of consumption.

  7. DC power supplies power management and surge protection for power electronic systems

    CERN Document Server

    Kularatna, Nihal

    2011-01-01

    Modern electronic systems, particularly portable consumer electronic systems and processor based systems, are power hungry, compact, and feature packed. This book presents the most essential summaries of the theory behind DC-DC converter topologies of both linear and switching types. The text discusses power supply characteristics and design specifications based on new developments in power management techniques and modern semiconductors entering into the portable electronics market. The author also addresses off-the-line power supplies, digital control of power supply, power supply protection

  8. Control strategy for a distributed DC power system with renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Kurohane, Kyohei; Uehara, Akie; Senjyu, Tomonobu; Yona, Atsushi; Urasaki, Naomitsu [University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami, Okinawa 903-0213 (Japan); Funabashi, Toshihisa [Meidensha Corporation, 36-2 Nihonbashi-Hakozakicho, Chuo-ku, Tokyo 103-8513 (Japan); Kim, Chul-Hwan [Sungkyunkwan University and NPT Center, Suwon City 440-746 (Korea)

    2011-01-15

    This paper deals with a DC-micro-grid with renewable energy. The proposed method is composed of a gearless wind power generation system, a battery, and DC loads in a DC distribution system. The battery helps to avoid the DC over-voltages by absorbing the power of the permanent magnet synchronous generator (PMSG) during line-fault. In addition, the control schemes presented in this paper including the maximum power point tracking (MPPT) control and a pitch angle control for the gearless wind turbine generator. By means of the proposed method, high-reliable power can be supplied to the DC distribution system during the line-fault and stable power supply from the PMSG can be achieved after line-fault clearing. The effectiveness of the proposed method is examined in a MATLAB/Simulink {sup registered} environment. (author)

  9. Autonomous Control Strategy of DC Microgrid for Islanding Mode Using Power Line Communication

    Directory of Open Access Journals (Sweden)

    Dong-Keun Jeong

    2018-04-01

    Full Text Available This paper proposes a DC-bus signaling (DBS method for autonomous power management in a DC microgrid, used to improve its reliability. Centralized power management systems require communication between the power sources and loads. However, the DBS method operates based on the common DC-bus voltage and does not require communication. Based on the DC-bus voltage band, the DC-bus voltage can be used to inform the status of the DC-bus in various scenarios. The DC microgrid operates independently to maintain the system stably in the DC-bus voltage band. The DC microgrid can be divided into a grid-connected mode and an islanding mode. This paper proposes a control strategy based on power management of various independent components in islanding mode. In addition, the autonomous control method for switching the converter’s operation between grid-connected mode and islanding mode is proposed. A DC microgrid test bed consisting of a grid-connected AC/DC converter, a bidirectional DC/DC converter, a renewable energy simulator, DC home appliances and a DC-bus protector is used to test the proposed control strategy. The proposed autonomous control strategy is experimentally verified using the DC microgrid test bed.

  10. Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems

    Directory of Open Access Journals (Sweden)

    Sergio Ignacio Serna-Garcés

    2016-03-01

    Full Text Available Stand-alone power systems based on renewable energy sources are used to replace generators based on fossil fuels. Those renewable power systems also require Energy Storage Devices (ESD interfaced by a charger/discharger power converter, which consist of a bidirectional DC/DC converter, and a DC bus. This paper proposes a single sliding-mode controller (SMC for the charger/discharger DC/DC converter to provide a stable DC bus voltage in any operation condition: charging or discharging the ESD, or even without any power exchange between the ESD and the DC bus. Due to the non-linear nature of the power converter, the SMC parameters are adapted on-line to ensure global stability in any operation condition. Such stability of the adaptive SMC is mathematically demonstrated using analytical expressions for the transversality, reachability and equivalent control conditions. Moreover, a design procedure for the adaptive SMC parameters is provided in order to ensure the dynamic response required for the correct operation of the load. Finally, simulations and experimental tests validate the proposed controller and design procedure.

  11. Maximum Safety Regenerative Power Tracking for DC Traction Power Systems

    Directory of Open Access Journals (Sweden)

    Guifu Du

    2017-02-01

    Full Text Available Direct current (DC traction power systems are widely used in metro transport systems, with running rails usually being used as return conductors. When traction current flows through the running rails, a potential voltage known as “rail potential” is generated between the rails and ground. Currently, abnormal rises of rail potential exist in many railway lines during the operation of railway systems. Excessively high rail potentials pose a threat to human life and to devices connected to the rails. In this paper, the effect of regenerative power distribution on rail potential is analyzed. Maximum safety regenerative power tracking is proposed for the control of maximum absolute rail potential and energy consumption during the operation of DC traction power systems. The dwell time of multiple trains at each station and the trigger voltage of the regenerative energy absorbing device (READ are optimized based on an improved particle swarm optimization (PSO algorithm to manage the distribution of regenerative power. In this way, the maximum absolute rail potential and energy consumption of DC traction power systems can be reduced. The operation data of Guangzhou Metro Line 2 are used in the simulations, and the results show that the scheme can reduce the maximum absolute rail potential and energy consumption effectively and guarantee the safety in energy saving of DC traction power systems.

  12. Efficiency estimation method of three-wired AC to DC line transfer

    Science.gov (United States)

    Solovev, S. V.; Bardanov, A. I.

    2018-05-01

    The development of power semiconductor converters technology expands the scope of their application to medium voltage distribution networks (6-35 kV). Particularly rectifiers and inverters of appropriate power capacity complement the topology of such voltage level networks with the DC links and lines. The article presents a coefficient that allows taking into account the increase of transmission line capacity depending on the parameters of it. The application of the coefficient is presented by the example of transfer three-wired AC line to DC in various methods. Dependences of the change in the capacity from the load power factor of the line and the reactive component of the resistance of the transmission line are obtained. Conclusions are drawn about the most efficient ways of converting a three-wired AC line to direct current.

  13. Development Ground Fault Detecting System for D.C Voltage Line

    Energy Technology Data Exchange (ETDEWEB)

    Kim Taek Soo; Song Ung Il; Gwon, Young Dong; Lee Hyoung Kee [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    It is necessary to keep the security of reliability and to maximize the efficiency of maintenance by prompt detection of a D.C feeder ground fault point at the built ed or a building power plants. At present, the most of the power plants are set up the ground fault indicator lamp in the monitor room. If a ground fault occurs on DC voltage feeder, a current through the ground fault relay is adjusted and the lamps have brightened while the current flows the relay coil. In order to develop such a system, it is analyzed a D.C feeder ground circuit theoretically and studied a principles which can determine ground fault point or a polarity discrimination and a phase discrimination of the line. So, the developed system through this principles can compute a resistance ground fault current and a capacitive ground fault current. It shows that the system can defect a ground fault point or a bad insulated line by measuring a power plant D.C feeder insulation resistance at the un interruptible power status, and therefore the power plant could protect an unexpected service interruption . (author). 18 refs., figs.

  14. Research on DC Micro-grid system of photovoltaic power generation

    Science.gov (United States)

    Zheng, Yiming; Wang, Xiaohui

    2018-01-01

    The use of energy has become a topic of concern, the demand of people for power grows in number or quantity with the development of economy. It is necessary to consider using new forms of power supply-microgrid system for distributed power supply. The power supply mode can not only effectively solve the problem of excessive line loss in the large power grid, but also can increase the reliability of the power supply, and is economical and environmental friendly. With the increasing of DC loads, in order to improve the utilization efficiency, the DC microgrid power supply problems are begin to be researched and integrated with the renewable energy sources. This paper researched the development of microgrid, compared AC microgrid with DC microgrid, summarized the distribution of DC bus voltage level, the DC microgrid network form, the control mode and the main power electronics elements of DC microgrid of photovoltaic power generation system. Today, the DC microgrid system is still in the development stage without uniform voltage level standard, however, it will come into service in the future.

  15. DC-DC power converter research for Orbiter/Station power exchange

    Science.gov (United States)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  16. Damping of power oscillations of exchange lines using a DC link; Amortecimento de oscilacoes de potencia de linhas de intercambio utilizando um elo de CC

    Energy Technology Data Exchange (ETDEWEB)

    Paccini, Rodrigo de O.; Custodio, Diogo T.; Kopcak, Igor; Costa, Vivaldo F. da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Sistemas de Energia Eletrica], Emails: rodrigo@dsee.fee.unicamp.br, totti@dsee.fee.unicamp.br, kopcak@dsee.fee.unicamp.br, vivaldo@dsee.fee.unicamp.br.

    2009-07-01

    This article presents a study that evaluates the effectiveness of a DC link in order to damp power oscillations, of inter area exchange, under small disturbance conditions, operating with Automatic Control Generation. The DC link was represented by a power injection model included the Sensitivity Power Model. Through this representation, the DC link was inserted in the block diagram, modeled as an injection power in the bars terminals in the net active and reactive, closing a new power balance at every instant. It was also designed a controller for damping power oscillations (POD-Power Oscillation Damping Controller) for modulation the power of the DC link and, therefore, insertion of additional damping in a frequency oscillations of exchange lines. The results confirm that the DC link has a great potential for maintaining the damping of oscillations frequency so inter area when equipped with POD controllers.

  17. DC to DC power converters and methods of controlling the same

    Science.gov (United States)

    Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

    2012-12-11

    A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

  18. Synchronverter-Enabled DC Power Sharing Approach for LVDC Microgrids

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Davari, Pooya; Mokhtari, Hossein

    2017-01-01

    by introducing a small ac voltage superimposed onto the output dc voltage of converters. Therefore, dc sources can be coordinated together with the frequency of the ac voltage, without any communication network like Synchronous Generators (SGs) in conventional power systems. Small signal stability analysis......In a classical ac Micro-Grid (MG), a common frequency exists for coordinating active power sharing among droop-controlled sources. Like the frequency droop method, a voltage based droop approach has been employed to control the converters in dc MGs. However, voltage variation due to the droop gains...... and line resistances causes poor power sharing and voltage regulation in dc MG, which in most cases are solved by a secondary controller using a communication network. To avoid such an infrastructure and its accompanied complications, this paper proposes a new droop scheme to control dc sources...

  19. DC-Link Protection and Control in Modular Uninterruptible Power Supply

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guan, Yajuan

    2018-01-01

    In this paper, a DC-link voltage protection (DCVP) control method is proposed to address the DC-link overvoltage issue due to power back-feeding in parallel Uninterruptible Power Supply (UPS) system. The proposed control method is able to protect the inverter against the excessive DC-link voltage...... by the line impedance mismatching or power back-feeding issue in the UPS system. In addition, an improved consensus-based distributed controller is proposed to alleviate the overshoot issue during the transient process in voltage amplitude and frequency restoration. Finally, the feasibility of the proposed...

  20. Step-Up DC-DC Power Converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input...... being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic...

  1. Active load sharing technique for on-line efficiency optimization in DC microgrids

    DEFF Research Database (Denmark)

    Sanseverino, E. Riva; Zizzo, G.; Boscaino, V.

    2017-01-01

    Recently, DC power distribution is gaining more and more importance over its AC counterpart achieving increased efficiency, greater flexibility, reduced volumes and capital cost. In this paper, a 24-120-325V two-level DC distribution system for home appliances, each including three parallel DC......-DC converters, is modeled. An active load sharing technique is proposed for the on-line optimization of the global efficiency of the DC distribution network. The algorithm aims at the instantaneous efficiency optimization of the whole DC network, based on the on-line load current sampling. A Look Up Table......, is created to store the real efficiencies of the converters taking into account components tolerances. A MATLAB/Simulink model of the DC distribution network has been set up and a Genetic Algorithm has been employed for the global efficiency optimization. Simulation results are shown to validate the proposed...

  2. Power Quality in DC Power Distribution Systems and Microgrids

    Directory of Open Access Journals (Sweden)

    Stephen Whaite

    2015-05-01

    Full Text Available This review paper discusses power quality considerations for direct current (DC electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.

  3. MOEA based design of decentralized controllers for LFC of interconnected power systems with nonlinearities, AC-DC parallel tie-lines and SMES units

    International Nuclear Information System (INIS)

    Ganapathy, S.; Velusami, S.

    2010-01-01

    A new design of Multi-Objective Evolutionary Algorithm based decentralized controllers for load-frequency control of interconnected power systems with Governor Dead Band and Generation Rate Constraint nonlinearities, AC-DC parallel tie-lines and Superconducting Magnetic Energy Storage (SMES) units, is proposed in this paper. The HVDC link is used as system interconnection in parallel with AC tie-line to effectively damp the frequency oscillations of AC system while the SMES unit provides bulk energy storage and release, thereby achieving combined benefits. The proposed controller satisfies two main objectives, namely, minimum Integral Squared Error of the system output and maximum closed-loop stability of the system. Simulation studies are conducted on a two area interconnected power system with nonlinearities, AC-DC tie-lines and SMES units. Results indicate that the proposed controller improves the transient responses and guarantees the closed-loop stability of the overall system even in the presence of system nonlinearities and with parameter changes.

  4. Pulsewidth modulated DC-to-DC power conversion circuits, dynamics, and control designs

    CERN Document Server

    Choi, Byungcho

    2013-01-01

    This is the definitive reference for anyone involved in pulsewidth modulated DC-to-DC power conversion Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, and Control Designs provides engineers, researchers, and students in the power electronics field with comprehensive and complete guidance to understanding pulsewidth modulated (PWM) DC-to-DC power converters. Presented in three parts, the book addresses the circuitry and operation of PWM DC-to-DC converters and their dynamic characteristics, along with in-depth discussions of control design of PWM DC-to

  5. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    Science.gov (United States)

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  6. Mass and loss analysis of a space-type radiation cooled insulated DC transmission line

    International Nuclear Information System (INIS)

    Schwarze, g.E.

    1986-01-01

    As both the power levels and transmission distances increase such as for large future nuclear power systems, the transmission line becomes an important element in the power chain between the source and load bus. Thus, the transmission line's characteristics must be determined so that the effect of these characteristics on the total power system can be assessed. These design characteristics include the specific mass, percent power loss, size, voltage and power levels, and operating temperatures of the conductor and insulating materials. In a previous paper, the dc transmission line's characteristics of a noninsulated solid cylindrical conductor were determined. In that analysis the expression derived for the transmission line's mass only included the conductor mass and the operating temperature of the line was that of the conductor. In the analysis of this paper, a single layer of insulation is added to the solid cylindrical conductor. In this analysis the dependency of the dc transmission line's mass, loss, and size on the power and voltage levels, conductor and insulation surface temperatures, transmission distance, and conductor and insulation material properties is determined. This analysis can be extended to multi-layers of insulation but the complexity of the analysis increases as the number of layers increase

  7. Design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters

    CERN Document Server

    Cravero, Jean-Marc

    2013-01-01

    This technical report presents the design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters. The power stage is based on a half bridge series resonant converter in Discontinuous Conduction Mode (DCM). This simple and robust topology allows obtaining a current source behavior with a low switching losses power stage. The associated control stage is implemented using a commercial controller which has differenti nternal circuits that allows a high integration of the converter control system. The report presents the design and tuning criteria for the DC-DC converter, including the power stage and the control system.

  8. On and off controlled resonant dc-dc power converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter comprising an input side circuit comprising a positive and a negative input terminal for receipt of an input voltage or current and an output side circuit comprising positive and negative output terminals for supply of a converter...... output voltage and connection to a converter load. The resonant DC-DC power converter further comprises a rectification circuit connected between an output of a resonant network and the output side circuit. The resonant network is configured for alternatingly being charged from the input voltage...... or current and discharged through the rectification circuit by a first controllable switch arrangement in accordance with a first switch control signal. A second controllable switch arrangement of the resonant DC-DC power converter is configured to select a first impedance characteristic of the resonant...

  9. Laboratory manual for pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2015-01-01

    Designed to complement a range of power electronics study resources, this unique lab manual helps students to gain a deep understanding of the operation, modeling, analysis, design, and performance of pulse-width modulated (PWM) DC-DC power converters.  Exercises focus on three essential areas of power electronics: open-loop power stages; small-signal modeling, design of feedback loops and PWM DC-DC converter control schemes; and semiconductor devices such as silicon, silicon carbide and gallium nitride. Meeting the standards required by industrial employers, the lab manual combines program

  10. Analysis and Assessment of Operation Risk for Hybrid AC/DC Power System based on the Monte Carlo Method

    Science.gov (United States)

    Hu, Xiaojing; Li, Qiang; Zhang, Hao; Guo, Ziming; Zhao, Kun; Li, Xinpeng

    2018-06-01

    Based on the Monte Carlo method, an improved risk assessment method for hybrid AC/DC power system with VSC station considering the operation status of generators, converter stations, AC lines and DC lines is proposed. According to the sequential AC/DC power flow algorithm, node voltage and line active power are solved, and then the operation risk indices of node voltage over-limit and line active power over-limit are calculated. Finally, an improved two-area IEEE RTS-96 system is taken as a case to analyze and assessment its operation risk. The results show that the proposed model and method can intuitively and directly reflect the weak nodes and weak lines of the system, which can provide some reference for the dispatching department.

  11. Analysis and Assessment of Operation Risk for Hybrid AC/DC Power System based on the Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Hu Xiaojing

    2018-01-01

    Full Text Available Based on the Monte Carlo method, an improved risk assessment method for hybrid AC/DC power system with VSC station considering the operation status of generators, converter stations, AC lines and DC lines is proposed. According to the sequential AC/DC power flow algorithm, node voltage and line active power are solved, and then the operation risk indices of node voltage over-limit and line active power over-limit are calculated. Finally, an improved two-area IEEE RTS-96 system is taken as a case to analyze and assessment its operation risk. The results show that the proposed model and method can intuitively and directly reflect the weak nodes and weak lines of the system, which can provide some reference for the dispatching department.

  12. Electronic Current Transducer (ECT) for high voltage dc lines

    Science.gov (United States)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  13. Study on emergency power control strategy for AC/DC hybrid power system containing VSC-HVDC

    Science.gov (United States)

    Liu, Lin; Hu, Zhenda; Ye, Rong; Lin, Zhangsui; Yang, Xiaodong; Yi, Yang

    2018-04-01

    This paper presents a comprehensive emergency power control strategy for AC/DC hybrid power systems containing VSC-HVDC. Firstly, the paper analyzes the power support of the VSC-HVDC to the AC lines using the Power Transferring Relativity Factor (PTRF). Then the power adjustment of the VSC-HVDC in several different circumstances are calculated. Finally, the online power control strategies of VSC-HVDC are designed, which could rapidly control the power of the VSC-HVDC, keeping the power flow of AC lines below the upper limit. Furthermore, the strategy is proven to be effective by the simulations with EMTDC/PSCAD.

  14. RESONANT STEP-DOWN DC-DC POWER CONVERTERS

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant step-down DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage...... charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier by a semiconductor switch arrangement in accordance with a switch control signal to produce the converter output voltage. The resonant step-down DC-DC power converter comprises an electrical short......-circuit connection across the galvanic isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal...

  15. Multilink DC Transmission System for Supergrid Future Concepts and Wind Power Integration

    DEFF Research Database (Denmark)

    Silva, Rodrigo Da; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    A possible methodology for the power sharing is based on DC voltage droop control at onshore station converters. The aim is to present an evaluation tool for the droop control parameter description in support of DC power sharing. Main limitation for this method regarding sharing factors definition...... and overvoltages are going to be revised. A study case using two different onshore stations are going to be used. Both of them are sized with different power ratings and they have different distances from the offshore converters. This benchmark is suitable as starting point for future prospects of DC supergrids....... Using the concept of virtual impedances, the droop parameters are limited by the boundaries of the DC voltage limits and line characteristics. For the power sharing point of view, mainly the cable resistances are considered. Simulation results using time domain simulation (EMTDC/PSCAD) will reinforce...

  16. Onboard power line conditioning system for an electric or hybrid vehicle

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  17. Upgrade of DC power supply system in ITER CS model coil test facility

    International Nuclear Information System (INIS)

    Shimono, Mitsugu; Uno, Yasuhiro; Yamazaki, Keita; Kawano, Katsumi; Isono, Takaaki

    2014-03-01

    Objective of the ITER CS Model Coil Test Facility is to evaluate a large scale superconducting conductor for fusion using the Central Solenoid (CS) Model Coil, which can generate a 13T magnetic field in the inner bore with a 1.5 m diameter. The facility is composed of a helium refrigerator / liquefier system, a DC power supply system, a vacuum system and a data acquisition system. The DC power supply system supplies currents to two superconducting coils, the CS Model Coil and an insert coil. A 50-kA DC power supply is installed for the CS Model Coil and two 30 kA DC power supplies are installed for an insert coil. In order to evaluate superconducting performance of a conductor used for ITER Toroidal Field (TF) coils whose operating current is 68 kA, the line for an insert coil is upgraded. A 10 kA DC power supply was added, DC circuit breakers were upgraded, bus bars and current measuring instrument were replaced. In accordance to the upgrade, operation manual was revised. (author)

  18. Simultaneous distribution of AC and DC power

    Science.gov (United States)

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  19. DC Distributed Power Systems. Analysis, Design and Control for a Renewable Energy System

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Per

    2002-12-01

    Renewable energy systems are likely to become wide spread in the future due to environmental demands. As a consequence of the dispersed nature of renewable energy systems, this implies that there will be a distributed generation of electric power. Since most of the distributed electrical energy sources do not provide their electric power at line frequency and voltage, a DC bus is a useful common connection for several such sources. Due to the differences in output voltage among the sources, depending on both the type of source and their actual operating point, the sources are connected to the DC power system via power electronic converters. The intention behind the presented work is not to replace the existing AC power system, but to include local DC power systems. The AC and DC power systems are connected at some points in the network. The renewable energy sources are weak compared to the present hydro power and nuclear power plants, resulting in a need of power conditioning before the renewable energy is fed to the transmission lines. The benefit of such an approach is that power conditioning is applied on a central level, i.e. at the interface between the AC and DC power systems. The thesis starts with an overview of related work. Present DC transmission systems are discussed and investigated in simulations. Then, different methods for load sharing and voltage control are discussed. Especially, the voltage droop control scheme is examined thoroughly. Since the droop control method does not require any high-speed communication between sources and loads, this is considered the most suitable for DC distributed power systems. The voltage feed back design of the controller also results in a specification of the DC bus capacitors (equivalents to DC link capacitors of single converters) needed for filtering. If the converters in the DC distribution system are equipped with capacitors selected from this design criterion and if the DC bus impedance is neglected, the

  20. Circuit for Communication Over Power Lines

    Science.gov (United States)

    Krasowski, Michael J.; Prokop, Normal F.; Greer, Lawrence C., III; Nappier, Jennifer

    2011-01-01

    Many distributed systems share common sensors and instruments along with a common power line supplying current to the system. A communication technique and circuit has been developed that allows for the simple inclusion of an instrument, sensor, or actuator node within any system containing a common power bus. Wherever power is available, a node can be added, which can then draw power for itself, its associated sensors, and actuators from the power bus all while communicating with other nodes on the power bus. The technique modulates a DC power bus through capacitive coupling using on-off keying (OOK), and receives and demodulates the signal from the DC power bus through the same capacitive coupling. The circuit acts as serial modem for the physical power line communication. The circuit and technique can be made of commercially available components or included in an application specific integrated circuit (ASIC) design, which allows for the circuit to be included in current designs with additional circuitry or embedded into new designs. This device and technique moves computational, sensing, and actuation abilities closer to the source, and allows for the networking of multiple similar nodes to each other and to a central processor. This technique also allows for reconfigurable systems by adding or removing nodes at any time. It can do so using nothing more than the in situ power wiring of the system.

  1. Power flow analysis for DC voltage droop controlled DC microgrids

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Dragicevic, Tomislav

    2014-01-01

    This paper proposes a new algorithm for power flow analysis in droop controlled DC microgrids. By considering the droop control in the power flow analysis for the DC microgrid, when compared with traditional methods, more accurate analysis results can be obtained. The algorithm verification is ca...

  2. High-power three-port three-phase bidirectional DC-DC converter

    NARCIS (Netherlands)

    Tao, H.; Duarte, J.L.; Hendrix, M.A.M.

    2007-01-01

    This paper proposes a three-port three-phase bidirectional dc-dc converter suitable for high-power applications. The converter combines a slow primary source and a fast storage to power a common load (e.g., an inverter). Since this type of system is gaining popularity in sustainable energy

  3. Design of a -1 MV dc UHV power supply for ITER NBI

    Science.gov (United States)

    Watanabe, K.; Yamamoto, M.; Takemoto, J.; Yamashita, Y.; Dairaku, M.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; Umeda, N.; Sakamoto, K.; Inoue, T.

    2009-05-01

    Procurement of a dc -1 MV power supply system for the ITER neutral beam injector (NBI) is shared by Japan and the EU. The Japan Atomic Energy Agency as the Japan Domestic Agency (JADA) for ITER contributes to the procurement of dc -1 MV ultra-high voltage (UHV) components such as a dc -1 MV generator, a transmission line and a -1 MV insulating transformer for the ITER NBI power supply. The inverter frequency of 150 Hz in the -1 MV power supply and major circuit parameters have been proposed and adopted in the ITER NBI. The dc UHV insulation has been carefully designed since dc long pulse insulation is quite different from conventional ac insulation or dc short pulse systems. A multi-layer insulation structure of the transformer for a long pulse up to 3600 s has been designed with electric field simulation. Based on the simulation the overall dimensions of the dc UHV components have been finalized. A surge energy suppression system is also essential to protect the accelerator from electric breakdowns. The JADA contributes to provide an effective surge suppression system composed of core snubbers and resistors. Input energy into the accelerator from the power supply can be reduced to about 20 J, which satisfies the design criteria of 50 J in total in the case of breakdown at -1 MV.

  4. A DC-DC Conversion Powering Scheme for the CMS Phase-1 Pixel Upgrade

    CERN Document Server

    Feld, Lutz Werner; Marcel Friedrichs; Richard Hensch; Karpinski, Waclaw; Klein, Katja; Sammet, Jan Domenik; Wlochal, Michael

    2012-01-01

    The powering scheme of the CMS pixel detector will be described, and the performance of prototype DC-DC buck converters will be presented, including power efficiency, system tests with DC-DC converters and pixel modules, thermal management, reliability at low temperature, and studies of potential frequency locking betwe...

  5. DC Home Appliances for DC Distribution System

    Directory of Open Access Journals (Sweden)

    MUHAMMAD KAMRAN

    2017-10-01

    Full Text Available This paper strengthens the idea of DC distribution system for DC microgrid consisting of a building of 50 apartments. Since the war of currents AC system has been dominant because of the paucity of research in the protection of the DC system. Now with the advance research in power electronics material and components, generation of electricity is inherently DC as by solar PV, fuel cell and thermoelectric generator that eliminates the rectification process. Transformers are replaced by the power electronics buck-boost converters. DC circuit breakers have solved the protection problems for both DC transmission and distribution system. In this paper 308V DC microgrid is proposed and home appliances (DC internal are modified to operate on 48V DC from DC distribution line. Instead of using universal and induction motors in rotary appliances, BLDC (Brushless DC motors are proposed that are highly efficient with minimum electro-mechanical and no commutation losses. Proposed DC system reduces the power conversion stages, hence diminishes the associated power losses and standby losses that boost the overall system efficiency. So in view of all this a conventional AC system can be replaced by a DC system that has many advantages by cost as well as by performance

  6. Bidirectional dc-to-dc Power Converter

    Science.gov (United States)

    Griesbach, C. R.

    1986-01-01

    Solid-state, series-resonant converter uses high-voltage thyristors. Converter used either to convert high-voltage, low-current dc power to lowvoltage, high current power or reverse. Taking advantage of newly-available high-voltage thyristors to provide better reliability and efficiency than traditional converters that use vacuum tubes as power switches. New converter essentially maintenance free and provides greatly increased mean time between failures. Attractive in industrial applications whether or not bidirectional capability is required.

  7. Reliability of dc power supplies in nuclear power plant application

    International Nuclear Information System (INIS)

    Eisenhut, D.G.

    1978-01-01

    In June 1977 the reliability of dc power supplies at nuclear power facilities was questioned. It was postulated that a sudden gross failure of the redundant dc power supplies might occur during normal plant operation, and that this could lead to insufficient shutdown cooling of the reactor core. It was further suggested that this potential for insufficient cooling is great enough to warrant consideration of prompt remedies. The work described herein was part of the NRC staff's efforts aimed towards putting the performance of dc power supplies in proper perspective and was mainly directed towards the particular concern raised at that time. While the staff did not attempt to perform a systematic study of overall dc power supply reliability including all possible failure modes for such supplies, the work summarized herein describes how a probabilistic approach was used to supplement our more usual deterministic approach to reactor safety. Our evaluation concluded that the likelihood of dc power supply failures leading to insufficient shutdown cooling of the reactor core is sufficiently small as to not require any immediate action

  8. Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads

    Science.gov (United States)

    Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique

    Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.

  9. Light weight, high power, high voltage dc/dc converter technologies

    Science.gov (United States)

    Kraus, Robert; Myers, Ira; Baumann, Eric

    1990-01-01

    Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.

  10. Development of a DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    CERN Document Server

    Feld, Lutz Werner; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Max Rauch; Rittich, David Michael; Sammet, Jan Domenik; Wlochal, Michael

    2014-01-01

    A novel powering scheme based on the DC-DC conversion technique will be exploited to power the CMS Phase-1 pixel detector. DC-DC buck converters for the CMS pixel project have been developed, based on the AMIS5 ASIC designed by CERN. The powering system of the Phase-1 pixel detector is described and the performance of the converter prototypes is detailed, including power efficiency, stability of the output voltage, shielding, and thermal management. Results from a test of the magnetic field tolerance of the DC-DC converters are reported. System tests with pixel modules using many components of the future pixel barrel system are summarized. Finally first impressions from a pre-series of 200 DC-DC converters are presented.

  11. Hierarchical Power Sharing Control in DC Microgrids

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Blaabjerg, Frede

    2016-01-01

    Because of the advances in power electronics, DC-based power systems, have been used in industrial applications such as data centers [18], space applications [10], aircraft [12], offshore wind farms, electric vehicles [56], DC home systems [5, 20], and high-voltage DC transmission systems...

  12. High power, medium voltage, series resonant converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    , and the resulting compact and efficient transformer, and soft-commutated inverter, present particular advantages in high-power, high-voltage applications, like DC offshore wind turbines. With transformer excitation frequency in hundreds of Hz range, line-frequency diodes can be employed in the high...

  13. High power density dc/dc converter: Selection of converter topology

    Science.gov (United States)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  14. Move to Solar-DC at Home Premises

    Indian Academy of Sciences (India)

    48V DC line as an additional power line at home. Highly power-efficient usage of Solar; Low-power from grid alone converted from AC-DC. Designed to have minimal loss. Battery can be added with higher efficiency (no convertors), if required.

  15. Development of AC-DC power system simulator

    International Nuclear Information System (INIS)

    Ichikawa, Tatsumi; Ueda, Kiyotaka; Inoue, Toshio

    1984-01-01

    A modeling and realization technique is described for realtime plant dynamics simulation of nuclear power generating unit in AC-DC power system simulator. Dynamic behavior of reactor system and steam system is important for investigation a further adequate unit control and protection system to system faults in AC and DC power system. Each unit of two nuclear power generating unit in the power system simulator consists of micro generator, DC motors, flywheels and process computer. The DC motor and flywheel simulates dynamic characteristics of steam turbine, and process computer simulates plant dynamics by digital simulation. We have realized real-time plant dynamics simulation by utilizing a high speed process I/O and a high speed digital differential analyzing processor (DDA) in which we builted a newly developed simple plant model. (author)

  16. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  17. Technical report on dc power supplies in nuclear power plants

    International Nuclear Information System (INIS)

    1977-06-01

    Emergency electrical power supplies, both a.c. and d.c. for nuclear power plants are important to safety. For this reason, the electric power systems for operating nuclear plants and those plants under licensing review have been required to provide a high degree of reliability. It is this high reliability that provides confidence that sufficient safety margin exists against loss of all d.c. power for extended periods of time to allow an orderly examination of safety issues, such as this. However, because of the importance of the a.c. and d.c. power systems, the staff has been expending effort to review the reliability of these systems and shall continue to do so in the future

  18. Research on Two-channel Interleaved Two-stage Paralleled Buck DC-DC Converter for Plasma Cutting Power Supply

    DEFF Research Database (Denmark)

    Yang, Xi-jun; Qu, Hao; Yao, Chen

    2014-01-01

    As for high power plasma power supply, due to high efficiency and flexibility, multi-channel interleaved multi-stage paralleled Buck DC-DC Converter becomes the first choice. In the paper, two-channel interleaved two- stage paralleled Buck DC-DC Converter powered by three-phase AC power supply...

  19. Development of a DC 1MV power supply technology for NB injectors

    International Nuclear Information System (INIS)

    Watanabe, K.; Kashiwagi, M.; Hanada, M.; Inoue, T.; Taniguchi, M.; Okumura, Y.; Sakamoto, K.; Ono, Y.; Yamashita, Y.; Kawashima, S.; Yamazaki, C.

    2006-01-01

    Major issues of NBI power supplies are a high-speed switching, regulation and transmission of dc ultra high voltage, and suppression of surge energy input to the beam source at breakdown. A GTO (gate turn off thyristor) inverter type power supply where the control is performed at low voltage ac side was designed for the ITER NB. Based on the remarkable progress of a high power IEGT (injection enhanced gate transistor), the design of the inverter has been modified to increase an efficiency and compactness using such new elements. A power loss in the inverter is reduced to be 30% of the GTO inverter system. For the transmission line of the dc UHV with intermediate voltages, a disk shape multi-conductor bushing with a transmission line test chamber has been developed. Dimensions of the bushing are 1.8 m in diameter and 140 mm in thickness at the edge. Electric fields at the conductor surface and insulator surface were designed to be lower than 5 kV/mm and 7 kV/mm, respectively. An electric field at the bottom of the ground potential outer conductor was designed to be lower than 1.2 kV/mm to prevent particle levitation which triggers breakdowns. The prototype transmission line has passed the standard impulse test up to 1,300 kV. A dc UHV up to 1,175 kV was successfully sustained for 300 s. To prevent the electric damage of the beam source at the breakdown, core snubbers using Fe-based nanocrystalline soft magnetic materials are adopted to dissipate the surge energy. (author)

  20. Troubleshooting of Modulator DC power supply at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Seong; Kim, Han Sung; Kwon, Hyeok Jung; Kim, Seong Gu; Kim, Dae Il; Lee, Seok Geun; Kim, Jae Ha; Seol, Kyeong Tae; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The process of solving problems to operate the 2nd converter modulator will be introduced. Also, the PSpice simulation result about the 12-pulse rectifier will be compared with the measurement result. KOMAC (KOrea Multi-purpose Accelerator Complex) has four HVCMs (High Voltage Converter Modulator) which are the power source of nine klystrons. Four HVCMs are already operated since 2013 for operating the 100 MeV linear proton accelerator at KOMAC. This HVCM system includes the 12-pulse rectifier (ac-dc), capacitors bank (dc-link, Pos, Neg) and converter modulator (dc-dc). Especially, the 12-pulse rectifier system receives the power from the utility and converts 3,300 ac voltage to 2,200 dc voltage for supplying the dc power to the capacitors bank. This rectifier system used twelve thyristors for the rectification and applied RC snubber networks to protect the semiconductor switches (thyristors). Since the 2nd modulator dc power supply has troubled, the troubleshooting process conducted by the staves of KOMAC. It takes 3 months to solve the problems because it is not easy to find the faulty wiring. Nevertheless, our staves found the faulty point with a hope to operate the modulator system and the PSpice simulation helps to solve the problems. Using PSpice which is tool for simulating the circuit, the dc power supply abnormal phenomenon was simulated exactly. After corrected the faulty wiring, the modulator dc power supply operated.

  1. Pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2008-01-01

    This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,

  2. DC/DC converters for integration of double-layer condensers in onboard power supply; DC/DC-Wandler zur Einbindung von Doppelschichtkondensatoren in das Fahrzeugenergiebordnetz

    Energy Technology Data Exchange (ETDEWEB)

    Polenov, Dieter

    2010-01-15

    The paper discusses DC/DC converters for integration of double layer condensers into the onboard power system. First, requirements on DC/DC converters are listed and compared on the basis of three exemplary applications. A DC/DC converter concept is developed for decoupling transient high-power loads like electric steering systems. Three different topologies are compared using a specially developed method in order to find the best solution for the given application. In order to establish adequate criteria for selecting the switching frequency and inductivities of storage throttles, the influence of the trottle power change on the switching characteristics of the MOSFETs and on certain ranges of EMP interference emissions is investigated. As methods of optimising the operation of the synchronous rectifiers, parallel connection of Schottky diodes and synchronous rectifiers as well as the variation of the shut-off dead times of synchronous rectifiers were investigated. Further, a concept for converter control was developed in consideration of the intended application and topology. Finally, selected aspects for implementation of the DC/DC converter concept are presented as well as the results of experimental investigations.

  3. Innovative use of power integrated modules for DC power supplies

    DEFF Research Database (Denmark)

    Ørndrup Nielsen, Rasmus; Elkiær, Alexander; Munk-Nielsen, Stig

    2013-01-01

    In this article several innovative ways of utilizing Power Integrated Modules (PIM) as switching device in a DC power supply are presented. PIM have advantages in compactness of design, cost and fast prototype due to easier PCB layout. A PIM converter topology is chosen and designed resulting...... in an experimental setup. Results from the setup are presented showing the feasibility of using a PIM module as almost all power semiconductors in a DC power supply....

  4. Multi-Mode Operation for On-line Uninterruptible Power Supply System

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Golestan, Saeed

    2018-01-01

    To enhance the robustness and disturbance rejection ability of an on-line uninterruptible power supply (UPS) system, an Internal Model Control (IMC)-based DC-link voltage regulation method is proposed in this paper. Furthermore, the multi-mode operations of the on-line UPS system are investigated...

  5. Selection of DC/DC converter for offshore wind farms with MVDC power collection

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2017-01-01

    Four DC/DC converters are analyzed and compared with respects to availability, efficiency, ratings, repair costs and power density. Intended application is offshore wind farms with MVDC power collection. The selected topology is a new series resonant converter, which offers 99% efficiency across...

  6. DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter

    Science.gov (United States)

    Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi

    2013-06-01

    Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.

  7. DC Voltage Droop Control Implementation in the AC/DC Power Flow Algorithm: Combinational Approach

    DEFF Research Database (Denmark)

    Akhter, F.; Macpherson, D.E.; Harrison, G.P.

    2015-01-01

    of operational flexibility, as more than one VSC station controls the DC link voltage of the MTDC system. This model enables the study of the effects of DC droop control on the power flows of the combined AC/DC system for steady state studies after VSC station outages or transient conditions without needing...... to use its complete dynamic model. Further, the proposed approach can be extended to include multiple AC and DC grids for combined AC/DC power flow analysis. The algorithm is implemented by modifying the MATPOWER based MATACDC program and the results shows that the algorithm works efficiently....

  8. A review on DC/DC converter architectures for power fuel cell applications

    International Nuclear Information System (INIS)

    Kolli, Abdelfatah; Gaillard, Arnaud; De Bernardinis, Alexandre; Bethoux, Olivier; Hissel, Daniel; Khatir, Zoubir

    2015-01-01

    Highlights: • Different DC/DC power converter topologies for Fuel Cell systems are presented. • Advantages and drawbacks of the DC/DC power converter topologies are detailed. • Wide-BandGap semiconductors are attractive candidates for design of converters. • Wide-BandGap semiconductors improve efficiency and thermal limits of converters. • Different semiconductor technologies are assessed. - Abstract: Fuel cell-based power sources are attractive devices. Through multi-stack architecture, they offer flexibility, reliability, and efficiency. Keys to accessing the market are simplifying its architecture and each components. These include, among others, the power converter enabling the output voltage regulation. This article focuses on this specific component. The present paper gives a comprehensive overview of the power converter interfaces potentially favorable for the automotive, railways, aircrafts and small stationary domains. First, with respect to the strategic development of a modular design, it defines the specifications of a basic interface. Second, it inventories the best architecture opportunities with respect to these requirements. Based on this study, it fully designs a basic module and points out the outstanding contribution of the new developed silicon carbide switch technology. In conclusion, this review article exhibits the importance of choosing the right power converter architecture and the related technology. In this context it is highlighted that the output power interface can be efficient, compact and modular. In addition, its features enable a thermal compatibility with many ways of integrating this component in the global fuel cell based power source.

  9. Deadbeat control of power leveling unit with bidirectional buck/boost DC/DC converter

    OpenAIRE

    Hamasaki, Shin-ichi; Mukai, Ryosuke; Yano, Yoshihiro; Tsuji, Mineo

    2014-01-01

    As a distributed generation system increases, a stable power supply becomes difficult. Thus control of power leveling (PL) unit is required to maintain the balance of power flow for irregular power generation. The unit is required to respond to change of voltage and bidirectional power flow. So the bidirectional buck/boost DC/DC converter is applied for the control of PL unit in this research. The PL unit with Electric double-layer capacitor (EDLC) is able to absorb change of power, and it is...

  10. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    Science.gov (United States)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  11. Impact of DC link control strategies on the power-flow convergence of integrated AC–DC systems

    Directory of Open Access Journals (Sweden)

    Shagufta Khan

    2016-03-01

    Full Text Available For the power-flow solution of integrated AC–DC systems, five quantities are required to be solved per converter, against three independent equations available. These three equations consist of two basic converter equations and one DC network equation, corresponding to each converter. Thus, for solution, two additional equations are required. These two equations are derived from the control specifications adopted for the DC link. Depending on the application, several combinations of valid control specifications are possible. A set of valid control specifications constitutes a control strategy. It is observed that the control strategy adopted for the DC link strongly affects the power-flow convergence of integrated AC–DC systems. This paper investigates how different control strategies affect the power flow convergence of integrated AC–DC systems. Sequential method is used to solve the DC variables in the Newton Raphson (NR power flow model. Seven typical control strategies have been taken into consideration. This is validated by numerous case studies carried out with multiple DC links incorporated in the IEEE 118-bus and 300-bus test systems.

  12. DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy

    Directory of Open Access Journals (Sweden)

    F. Azma

    2015-06-01

    Full Text Available This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC grids based on an optimal power flow (OPF procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage droop characteristics of voltage-regulating converters, at the primary level, are tuned based on the OPF results such that the operating point of the MTDC grid lies on the voltage droop characteristics. Consequently, the optimally-tuned voltage droop controller leads to the optimal operation of the MTDC grid. In case of variation in load or generation of the grid, a new stable operating point is achieved based on the voltage droop characteristics. By execution of a new OPF, the voltage droop characteristics are re-tuned for optimal operation of the MTDC grid after the occurrence of the load or generation variations. The results of simulation on a grid inspired by CIGRE B4 DC grid test system demonstrate efficient grid performance under the proposed control strategy.

  13. Enhanced Load Power Sharing Accuracy in Droop-Controlled DC Microgrids with Both Mesh and Radial Configurations

    Directory of Open Access Journals (Sweden)

    Yiqi Liu

    2015-04-01

    Full Text Available The rational power sharing among different interface converters should be determined by the converter capacity. In order to guarantee that each converter operates at the ideal condition, considering the radial and mesh configuration, a modified strategy for load power sharing accuracy enhancement in droop-controlled DC microgrid is proposed in this paper. Two compensating terms which include averaging output power control and averaging DC voltage control of neighboring converters are employed. Since only the information of the neighboring converter is used, the complexity of the communication network can be reduced. The rational distribution of load power for different line resistance conditions is realized by using modified droop control that can be regarded as a distributed approach. Low bandwidth communication is used for exchanging sampled information between different converters. The feasibility and effectiveness of the proposed method for different network configurations and line resistances under different communication delay is analyzed in detail. Simulation results derived from a DC microgrid with three converters is implemented in MATLAB/Simulink to verify the proposed approach. Experimental results from a 3 × 10 kW prototype also show the performance of the proposed modified droop control scheme.

  14. Probabilistic safety analysis of DC power supply requirements for nuclear power plants. Technical report

    International Nuclear Information System (INIS)

    Baranowsky, P.W.; Kolaczkowski, A.M.; Fedele, M.A.

    1981-04-01

    A probabilistic safety assessment was performed as part of the Nuclear Regulatory Commission generic safety task A-30, Adequacy of Safety Related DC Power Supplies. Event and fault tree analysis techniques were used to determine the relative contribution of DC power related accident sequences to the total core damage probability due to shutdown cooling failures. It was found that a potentially large DC power contribution could be substantially reduced by augmenting the minimum design and operational requirements. Recommendations included (1) requiring DC power divisional independence, (2) improved test, maintenance, and surveillance, and (3) requiring core cooling capability be maintained following the loss of one DC power bus and a single failure in another system

  15. Security analysis of interconnected AC/DC systems

    DEFF Research Database (Denmark)

    Eriksson, Robert

    2015-01-01

    This paper analyses N-1 security in an interconnected ac/dc transmission system using power transfer distribution factors (PTDFs). In the case of a dc converter outage the power needs to be redistributed among the remaining converter to maintain power balance and operation of the dc grid...... any line or transformer limits. Simulations were performed in a model of the Nordic power system where a dc grid is placed on top. The simulation supports the method as a tool to consider transfer limits in the grid to avoid violate the same and increase the security after a converter outage........ The redistribution of power has a sudden effect on the power-flow in the interconnected ac system. This may cause overloading of lines and transformers resulting in disconnection of equipment, and as a consequence cascading failure. The PTDF is used as a method to analyze and avoid violating limits by in the dc...

  16. Research on design feasibility of high-power light-weight dc-to-dc converters for space power applications

    Science.gov (United States)

    Wilson, T. G.

    1981-01-01

    Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.

  17. DC motor operation controlled from a DC/DC power converter in pulse mode with low duty cycle

    OpenAIRE

    Stefanov, Goce; Kukuseva, Maja; Citkuseva Dimitrovska, Biljana

    2016-01-01

    In this paper pulse mode of operation of DC motor controlled by DC/DC power converter is analyzed. DC motor operation with time intervals in which the motor operates without output load is of interest. In this mode it is possible the motor to restore energy. Also, in the paper are represented calculations for the amount of the restored energy in the pulse mode operation of the motor for different duty cycles.

  18. Measurements of crowbar performance of the 20 kV 130 A dc power supply of the TRIUMF RF system

    International Nuclear Information System (INIS)

    Mitra, A.K.

    1991-05-01

    The TRIUMF RF system operates at a fixed frequency of 23.06 MHz with a power capability of 1800 kW. The dc plate power for the four push-pull power amplifiers is provided by a single dc power supply at 20 kV, 130 A and the amplifiers are protected by a single ignitron crowbar circuit. In the case of voltage breakdown outside the tube, the triggering of the crowbar circuit relies on the voltage developed across a low resistance shunt in the return path of the common dc power supply. Frequent failure of the crowbar ignitrons following an external dc voltage breakdown led to the investigation of the crowbar performance. Current transformers have been installed in the common B + line to the power amplifiers and the anode circuit of the ignitron crowbar in order to measure amplitude, duration and time delay of various dc currents under fault conditions. Similar current transformers were installed in the individual anode circuits of the power amplifiers to provide protection to the complete system in case of an external dc voltage breakdown. The results of these measurements and recommended solutions for operations are reported. (Author) 3 refs., 4 figs

  19. A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network

    Science.gov (United States)

    Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.

  20. Modular Power System Configured with Standard Product Hybrid DC-DC Converters, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex NASA space power electronic systems can be configured using a small number of qualified hybrid DC-DC converter and...

  1. SPEAR3 DC MAGNET POWER SUPPLIES - AN OVERVIEW

    International Nuclear Information System (INIS)

    De Lira, A.

    2004-01-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) has successfully commissioned SPEAR 3, its newly upgraded 3-GeV synchrotron light source. First stored beam occurred December 15, 2003. This paper presents an overview and descriptions of the DC magnet power supplies. These consist of tightly-regulated ((le) 10 ppm) current sources ranging in output from 30 A to 800 A and output power ranging from a few watts to almost 1.0 MW. A total of 226 magnet power supplies are in successful operation. The SPEAR 3 upgrade performance and reliability requirements mandated new power supplies for both the SPEAR 3 storage ring, and for the booster-to-SPEAR 3 (BTS) transport line. A large variety of precise, highly stable current power supplies were needed to fill the diverse magnet needs. Also described are outside procurement aspects, in-house construction, installation, testing, performance and operation of the power supplies. During field testing, special emphasis was made to ensure a critically damped response on the current loop. Frequency spectra measurements were made for reference and future diagnostics

  2. Limiting electric fields of HVDC overhead power lines.

    Science.gov (United States)

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.

  3. Brief analysis of Jiangsu grid security and stability based on multi-infeed DC index in power system

    Science.gov (United States)

    Zhang, Wenjia; Wang, Quanquan; Ge, Yi; Huang, Junhui; Chen, Zhengfang

    2018-02-01

    The impact of Multi-infeed HVDC has gradually increased to security and stability operating in Jiangsu power grid. In this paper, an appraisal method of Multi-infeed HVDC power grid security and stability is raised with Multi-Infeed Effective Short Circuit Ratio, Multi-Infeed Interaction Factor and Commutation Failure Immunity Index. These indices are adopted in security and stability simulating calculation of Jiangsu Multi-infeed HVDC system. The simulation results indicate that Jiangsu power grid is operating with a strong DC system. It has high level of power grid security and stability, and meet the safety running requirements. Jinpin-Suzhou DC system is located in the receiving end with huge capacity, which is easily leading to commutation failure of the transmission line. In order to resolve this problem, dynamic reactive power compensation can be applied in power grid near Jinpin-Suzhou DC system. Simulation result shows this method is feasible to commutation failure.

  4. Effect of dc-power-system reliability on reactor-shutdown cooling

    International Nuclear Information System (INIS)

    Kolaczkowski, A.M.; Baranowsky, P.W.; Hickman, J.W.

    1981-01-01

    The DC power systems in a nuclear power plant provide control and motive power to valves, instrumentation, emergency diesel generators, and many other components and systems during all phases of plant operation including abnormal shutdowns and accident situations. A specific area of concern is the adequacy of the minimum design requirements for DC power systems, particularly with regard to multiple and common cause failures. This concern relates to the application of the single failure criterion for assuring a reliable DC power supply which may be required for the functionability of shutdown cooling systems. The results are presented of a reliability based study performed to assess the adequacy of DC power supply design requirements for currently operating light water reactors with particular attention to shutdown cooling requirements

  5. Application of Superconducting Power Cables to DC Electric Railway Systems

    Science.gov (United States)

    Ohsaki, Hiroyuki; Lv, Zhen; Sekino, Masaki; Tomita, Masaru

    For novel design and efficient operation of next-generation DC electric railway systems, especially for their substantial energy saving, we have studied the feasibility of applying superconducting power cables to them. In this paper it is assumed that a superconducting power cable is applied to connect substations supplying electric power to trains. An analysis model line was described by an electric circuit, which was analyzed with MATLAB-Simulink. From the calculated voltages and currents of the circuit, the regenerative brake and the energy losses were estimated. In addition, assuming the heat loads of superconducting power cables and the cryogenic efficiency, the energy saving of the total system was evaluated. The results show that the introduction of superconducting power cables could achieve the improved use of regenerative brake, the loss reduction, the decreased number of substations, the reduced maintenance, etc.

  6. Interior point algorithm-based power flow optimisation of a combined AC and DC multi-terminal grid

    Directory of Open Access Journals (Sweden)

    Farhan Beg

    2015-01-01

    Full Text Available The high cost of power electronic equipment, lower reliability and poor power handling capacity of the semiconductor devices had stalled the deployment of systems based on DC (multi-terminal direct current system (MTDC networks. The introduction of voltage source converters (VSCs for transmission has renewed the interest in the development of large interconnected grids based on both alternate current (AC and DC transmission networks. Such a grid platform also realises the added advantage of integrating the renewable energy sources into the grid. Thus a grid based on DC MTDC network is a possible solution to improve energy security and check the increasing supply demand gap. An optimal power solution for combined AC and DC grids obtained by the solution of the interior point algorithm is proposed in this study. Multi-terminal HVDC grids lie at the heart of various suggested transmission capacity increases. A significant difference is observed when MTDC grids are solved for power flows in place of conventional AC grids. This study deals with the power flow problem of a combined MTDC and an AC grid. The AC side is modelled with the full power flow equations and the VSCs are modelled using a connecting line, two generators and an AC node. The VSC and the DC losses are also considered. The optimisation focuses on several different goals. Three different scenarios are presented in an arbitrary grid network with ten AC nodes and five converter stations.

  7. Autonomous power management for interlinked AC-DC microgrids

    DEFF Research Database (Denmark)

    Nutkani, Inam Ullah; Meegahapola, Lasantha; Andrew, Loh Poh Chiang

    2018-01-01

    of the DC micro-grid before importing power from the interlinked AC microgrid. This strategy enables voltage regulation in the DC microgrid, and also reduces the number of converters in operation. The proposed scheme is fully autonomous while it retains the plug-n-play features for generators and tie......The existing power management schemes for inter-linked AC-DC microgrids have several operational drawbacks. Some of the existing control schemes are designed with the main objective of sharing power among the interlinked microgrids based on their loading conditions, while other schemes regulate...... the voltage of the interlinked microgrids without considering the specific loading conditions. However, the existing schemes cannot achieve both objectives efficiently. To address these issues, an autonomous power management scheme is proposed, which explicitly considers the specific loading condition...

  8. Efficiency Analyses of a DC Residential Power Distribution System for the Modern Home

    Directory of Open Access Journals (Sweden)

    GELANI, H. E.

    2015-02-01

    Full Text Available The electric power system started as DC back in the nineteenth century. However, the DC paradigm was soon ousted by AC due to inability of DC to change its voltage level. Now, after many years, with the development of power electronic converters capable of stepping-up and down DC voltage and converting it to-and-from AC, DC appears to be challenging AC and attempting a comeback. We now have DC power generation by solar cells, fuel cells and wind farms, DC power transmission in the form of HVDC (High Voltage DC transmission, DC power utilization by various modern electronic loads and DC power distribution that maybe regarded as still in research phase. This paper is an attempt to investigate feasibility of DC in the distribution portion of electrical power system. Specifically, the efficiency of a DC distribution system for residential localities is determined while keeping in view the concept of daily load variation. The aim is to bring out a more practical value of system efficiency as the efficiencies of DC/DC converters making up the system vary with load variation. This paper presents the modeling and simulation of a DC distribution system and efficiency results for various scenarios are presented.

  9. Method to predetermine current/power flow change in a dc grid

    DEFF Research Database (Denmark)

    2017-01-01

    occurs at one of the AC/DC converters; establishing a generalized droop feedback gain matrix G; controlling current/power flow within DC grid towards predefined setpoints, by use of control law. The invention presents an analytical approach to derive the generalized feedback gain allowing......The invention relates to a method for controlling current/power flow within a power transmission system, comprising two or more interconnected converter stations. The method comprises the steps of: providing a DC admittance matrix given from the DC grid; providing a current distribution matrix...... for a number of, such as for all possible AC/DC converter outages; providing a DC bus voltage vector for the DC grid; the DC bus voltage vector being a vector containing the values of the voltage change at the AC/DC converters, measured at the AC/DC converters, before, during and after a forced current change...

  10. DC systems design and research of Hainan Changjiang nuclear power plant

    International Nuclear Information System (INIS)

    Jiang Qingshui; Wang Yuhan

    2014-01-01

    Hainan Changjiang nuclear power plant is different from the referent power plant, the DC and 220 V AC uninterrupted systems of the nuclear island have been changed since the control system use DCS. It has different design on DC systems, power supply, selectivity of breakers, capacity of equipments and layout. We optimize the design of DC systems at the basement of Fuqing and Fangjiashan project. These are good experiments for the three generation nuclear power project about DC systems design of ACP1000. (authors)

  11. PI and Fuzzy Control Strategies for High Voltage Output DC-DC Boost Power Converter - Hardware Implementation and Analysis

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi

    2016-01-01

    This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...

  12. Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance

    Directory of Open Access Journals (Sweden)

    Jaime Wladimir Zapata

    2018-02-01

    Full Text Available This work presents a partial power converter allowing us to obtain, with a single DC-DC converter, the same feature as the classical interleaved operation of two converters. More precisely, the proposed topology performs similarly as the input-parallel output-series (IPOS configuration reducing the current ripple at the input of the system and dividing the individual converters power rating, compared to a single converter. The proposed topology consists of a partial DC-DC converter processing only a fraction of the total power, thus allowing high efficiency. Experimental results are provided to validate the proposed converter topology with a Flyback-based 100 W test bench with a transformer turns ratio n 1 = n 2 . Experimental results show high performances reducing the input current ripple around 30 % , further increasing the conversion efficiency.

  13. Application of digital control techniques for satellite medium power DC-DC converters

    Science.gov (United States)

    Skup, Konrad R.; Grudzinski, Pawel; Nowosielski, Witold; Orleanski, Piotr; Wawrzaszek, Roman

    2010-09-01

    The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter bases on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage mode stabilization that was implemented using VHDL. The described controllers are a classical digital PID controller and a bang-bang controller. The used converter for testing is a simple model of 5-20 W, 200 kHz buck power converter. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.

  14. The 25 kW resonant dc/dc power converter

    Science.gov (United States)

    Robson, R. R.

    1983-01-01

    The feasibility of processing 25-kW of power with a single, transistorized, series resonant converter stage was demonstrated by the successful design, development, fabrication, and testing of such a device which employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350 Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Full circuit details of the converter are presented along with the test data.

  15. Transient phenomena analysis of a DC-1 MV power supply for the ITER NBI

    International Nuclear Information System (INIS)

    Yamamoto, Masanori; Watanabe, Kazuhiro; Yamanaka, Haruhiko; Takemoto, Jumpei; Inoue, Takashi; Yamashita, Yasuo

    2010-08-01

    A power supply for the ITER Neutral Beam Injector (NBI) is a DC ultra-high voltage (UHV) power supply to accelerate negative ion beams of 40 A up to an energy of 1 MeV. Japan Atomic Energy Agency as the Japan Domestic Agency for ITER contributes procurement of dc -1 MV main components such as step-up -1 MV transformers rectifiers, a high voltage deck 2, a -1 MV insulating transformer, a transmission line, a surge reduction system and equipments for site test. Design of the surge suppression in the NBI power supply is one of the key issues to obtain the stable injector performance. This report describes the design study using EMTDC code on the surge suppression by optimizing the core snubber and additional elements in the -1 MV power supply. The results show that the input energy from the stray capacitance to the accelerator at the breakdown can be reduced to about 25 J that is smaller than design criteria for ITER. (author)

  16. A comprehensive analysis and hardware implementation of control strategies for high output voltage DC-DC boost power converter

    OpenAIRE

    Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede; Wheeler, Patrick; Siano, Pierluigi; Hammami, Manel

    2017-01-01

    Classical DC-DC converters used in high voltage direct current (HVDC) power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current) numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned defic...

  17. Transient analysis of an HTS DC power cable with an HVDC system

    International Nuclear Information System (INIS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-01-01

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system

  18. Transient analysis of an HTS DC power cable with an HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@cwnu.ac.kr [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yang, Byeongmo [Korea Electric Power Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejon 305-760 (Korea, Republic of)

    2013-11-15

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  19. Direct switching control of DC-DC power electronic converters using hybrid system theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Lin, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wang, C. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wayne State Univ., Detroit, MI (United States). Div. of Engineering Technology

    2010-07-01

    A direct switching control (DSC) scheme for power electronics converters was described. The system was designed for use in both traditional and renewable energy applications as well as in electric drive vehicles. The proposed control scheme was based on a detailed hybrid system converter model that used model predictive control (MPC), piecewise affine (PWA) approximations and constrained optimal control methods. A DC-DC converter was modelled as a hybrid machine. Switching among different modes of the DC-DC converter were modelled as discrete events controlled by the hybrid controller. The modelling scheme was applied to a Buck converter. The DSC was used to control the switch of the power converter based on a hybrid machine model. Results of the study showed that the method can be used to regulate output voltage and inductor currents. The method also provides fast transient responses and effectively regulates both currents and voltage. The controller can be used to provide immediate responses to dynamic disturbances and output voltage fluctuations. 23 refs., 7 figs.

  20. Solar fed DC-DC single ended primary inductance converter for low power applications

    Science.gov (United States)

    Narendranath, K. V.; Viswanath, Y.; Babu, K. Suresh; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This paper presents 34 to 36 volts. SEPIC converter for solar fed applications. Now days, there has been tremendous increase in the usage of solar energy and this solar energy is most valuable energy source available all around the world. The solar energy system require a Dc-Dc converter in order to modulate and govern the changing output of the panel. In this paper, a system comprising of Single Ended Primary Inductance Converter [SEPIC] integrated with solar panel is proposed. This paper proposes SEPIC power converter design that will secure high performance and cost efficiency while powering up a LAMP load. This power converter designed with low output ripple voltage, higher efficiency and less electrical pressure on the power switching elements. The simulation and prototype hardware results are presented in this paper.

  1. Rf-to-dc power converters for wireless powering

    KAUST Repository

    Ouda, Mahmoud Hamdy

    2016-12-01

    Various examples are provided related to radio frequency (RF) to direct current (DC) power conversion. In one example, a RF-to-DC converter includes a fully cross-coupled rectification circuit including a pair of forward rectifying transistors and a feedback circuit configured to provide feedback bias signals to gates of the pair of forward rectifying transistors via feedback branch elements. In another example, a method includes receiving a radio frequency (RF) signal; rectifying the RF signal via a fully cross-coupled rectification circuit including a pair of forward rectifying transistors; and providing a DC output voltage from an output connection of the fully cross-coupled rectification circuit, where gating of the pair of forward rectifying transistors is controlled by feedback bias signals provided to gates of the pair of forward rectifying transistors via feedback branch elements.

  2. Modeling of HVDC System to Improve Estimation of Transient DC Current and Voltages for AC Line-to-Ground Fault—An Actual Case Study in Korea

    Directory of Open Access Journals (Sweden)

    Dohoon Kwon

    2017-10-01

    Full Text Available A new modeling method for high voltage direct current (HVDC systems and associated controllers is presented for the power system simulator for engineering (PSS/E simulation environment. The aim is to improve the estimation of the transient DC voltage and current in the event of an AC line-to-ground fault. The proposed method consists primary of three interconnected modules for (a equation conversion; (b control-mode selection; and (c DC-line modeling. Simulation case studies were carried out using PSS/E and a power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC model of the Jeju– Haenam HVDC system in Korea. The simulation results are compared with actual operational data and the PSCAD/EMTDC simulation results for an HVDC system during single-phase and three-phase line-to-ground faults, respectively. These comparisons show that the proposed PSS/E modeling method results in the improved estimation of the dynamic variation in the DC voltage and current in the event of an AC network fault, with significant gains in computational efficiency, making it suitable for real-time analysis of HVDC systems.

  3. Application research of power allocation based on Buck circuit in DC microgrid

    OpenAIRE

    Wang Zihao; Zhou Mingyu

    2017-01-01

    In a traditional DC microgrid, the power sharing control strategy has been always used in the distributed power converters, resulting in not making outer power allocation arbitrarily. In order to solve the power output allocation problem of wind power in DC microgrid, the intelligent Buck circuit based on PI algorithm and the load current feed-forward method was used to realize the arbitrary regulation of the output power of the wind power in the DC microgrid system. Compared with traditional...

  4. Assessment of environmental impact of HVDC power lines in terms of corona currents

    International Nuclear Information System (INIS)

    Tikhodeev, N.N.

    1997-01-01

    Corona loss measurements were made on a HVDC power transmission line to evaluate current density. Ion currents were obtained from unipolar and bipolar 400 to 1000 kV DC test lines. A numerical solution was proposed for assessing the maximum current density of unipolar corona currents near the lines. A larger ground clearance of line conductors was proposed as being the most effective way of lowering the current density. 11 refs., 2 tabs., 4 figs

  5. Overvoltage protection in DC power systems; Ueberspannungsschutz in Gleichstromanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Birkl, Josef; Zahlmann, Peter [Dehn + Soehne GmbH + Co.KG, Neumarkt (Germany)

    2012-02-15

    The utilisation of DC power systems has increased dramatically in the recent years. In addition to traditional DC applications such as in telecommunications and railway engineering a variety of DC applications arise due to a rapid spread of photovoltaic systems. Current projects for the e-mobility expand the scope of application.

  6. National Maglev initiative: California line electric utility power system requirements

    Science.gov (United States)

    Save, Phil

    1994-01-01

    The electrical utility power system requirements were determined for a Maglev line from San Diego to San Francisco and Sacramento with a maximum capacity of 12,000 passengers an hour in each direction at a speed of 300 miles per hour, or one train every 30 seconds in each direction. Basically the Maglev line requires one 50-MVA substation every 12.5 miles. The need for new power lines to serve these substations and their voltage levels are based not only on equipment loading criteria but also on limitations due to voltage flicker and harmonics created by the Maglev system. The resulting power system requirements and their costs depend mostly on the geographical area, urban or suburban with 'strong' power systems, or mountains and rural areas with 'weak' power systems. A reliability evaluation indicated that emergency power sources, such as a 10-MW battery at each substation, were not justified if sufficient redundancy is provided in the design of the substations and the power lines serving them. With a cost of $5.6 M per mile, the power system requirements, including the 12-kV DC cables and the inverters along the Maglev line, were found to be the second largest cost component of the Maglev system, after the cost of the guideway system ($9.1 M per mile), out of a total cost of $23 M per mile.

  7. Power Electronic Systems for Switched Reluctance Generator based Wind Farms and DC Networks

    DEFF Research Database (Denmark)

    Park, Kiwoo

    enable various renewable energy sources, such as Photovoltaic (PV) and wind, to produce dc power directly. In addition, battery-based energy storage systems inherently operate with dc power. Hence, dc network (dc-grid) systems which connect these dc sources and storages directly using dc networks...... are gaining much attention again. The dc network system has a great potential to outdo the traditional ac systems in many technical challenges and could be highly profitable especially for offshore wind farm applications, where the size and weight of the components are crucial to the entire system costs......Wind power technology, as the most competitive renewable energy technology, is quickly developing. The wind turbine size is growing and the grid penetration of wind power is increasing rapidly. Recently, the developments on wind power technology pay more attentions on efficiency and reliability...

  8. Use Conditions and Efficiency Measurements of DC Power Optimizers for Photovoltaic Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; MacAlpine, S.

    2013-10-01

    No consensus standard exists for estimating annual conversion efficiency of DC-DC converters or power optimizers in photovoltaic (PV) applications. The performance benefits of PV power electronics including per-panel DC-DC converters depend in large part on the operating conditions of the PV system, along with the performance characteristics of the power optimizer itself. This work presents acase study of three system configurations that take advantage of the capabilities of DC power optimizers. Measured conversion efficiencies of DC-DC converters are applied to these scenarios to determine the annual weighted operating efficiency. A simplified general method of reporting weighted efficiency is given, based on the California Energy Commission's CEC efficiency rating and severalinput / output voltage ratios. Efficiency measurements of commercial power optimizer products are presented using the new performance metric, along with a description of the limitations of the approach.

  9. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    OpenAIRE

    Liu, Baolian; Ding, Zujun; Zhao, Huanyu; Jin, Defei

    2014-01-01

    The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF) operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the ...

  10. Next-Generation Shipboard DC Power System

    DEFF Research Database (Denmark)

    Jin, Zheming; Sulligoi, Giorgio; Cuzner, Rob

    2016-01-01

    sources (RES) are commonly recognized as the major driven force of the revolution, the outburst of customer electronics and new kinds of household electronics is also powering this change. In this context, dc power distribution technologies have made a comeback and keep gaining a commendable increase...... in research interests and industrial applications. In addition, the concept of flexible and smart distribution has also been proposed, which tends to exploit distributed generation and pack the distributed RESs and local electrical loads as an independent and self-sustainable entity, namely microgrid....... At present, the research of dc microgrid has investigated and developed a series of advanced methods in control, management and objective-oriented optimization, which would found the technical interface enabling the future applications in multiple industrial areas, such as smart buildings, electric vehicles...

  11. Design and Implementation of Battery Charger with Power Factor Correction Using Sepic Converter and Full-bridge DC-DC Converter

    OpenAIRE

    Efendi, Moh. Zaenal; Windarko, Novie Ayub; Amir, Moh. Faisal

    2013-01-01

    This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulato...

  12. A Unidirectional DC-DC Autotransformer for DC Grid Application

    Directory of Open Access Journals (Sweden)

    Meng Zhou

    2018-03-01

    Full Text Available Conventional unidirectional DC-DC converters for DC grid application employ DC-AC-DC two-stage conversion technology and suffer from high converter cost and power loss. To solve these issues, a unidirectional step-up DC-DC autotransformer (UUDAT and a unidirectional step-down DC-DC autotransformer (DUDAT are studied. The UUDAT and DUDAT are composed of a series connection of diode bridges and voltage source converters. Topologies of UUDAT and DUDAT are detailed. The harmonic and un-controllability issues are discussed. Control and possible application scenarios for UUDAT and DUDAT are depicted. DC fault isolation mechanism and the methods of dimensioning the voltage and power ratings of the components in UUDAT and DUDAT are studied. Extensive simulations on power system level and experiments on a UUDAT and DUDAT prototype verified their technical feasibility.

  13. Design and Implementation of Battery Charger with Power Factor Correction using Sepic Converter and Full-bridge DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Moh. Zaenal Efendi

    2013-12-01

    Full Text Available This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulator of output voltage and operates at continuous conduction mode. The experimental results show that the power factor of this converter system can be achieved up to 0.96.

  14. SWITCH MODE PULSE WIDTH MODULATED DC-DC CONVERTER WITH MULTIPLE POWER TRANSFORMERS

    DEFF Research Database (Denmark)

    2009-01-01

    A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end....... The first electronic circuit comprises terminals (AO, A1) for connecting a source or a load, at least one energy storage inductor (L) coupled in series with at least one of the first windings (T1a, T2a) of the power transformers (T1, T2), and for each power transformer (T1, T2), an arrangement of switches...

  15. State-plane analysis of zero-voltage-switching resonant dc/dc power converters

    Science.gov (United States)

    Kazimierczuk, Marian K.; Morse, William D.

    The state-plane analysis technique for the zero-voltage-switching resonant dc/dc power converter family of topologies, namely the buck, boost, buck-boost, and Cuk converters is established. The state plane provides a compression of information that allows the designer to uniquely examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, resonant converter modes of operation are examined and the switching frequencies are derived for the boundaries between these modes, including the boundary of energy conversion.

  16. dc power system for deuteron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Creek, K.O.; Liska, D.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility dc power system provides excitation current for all linac and High-Energy Beam Transport (HEBT) quadrupole and bending magnets, excitation for horizontal and vertical beam steering, and current-bypass shunts.

  17. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Ichikawa, Takemi; Ueda, Kiyotaka; Machida, Takehiko

    1979-01-01

    The HVDC transmission directly from nuclear power plants is one of the patterns of long distance and large capacity HVDC transmission systems. In this report, the double pole, two-circuit HVDC transmission from a BWR nuclear power plant is considered, and the dynamic response characteristics due to the faults in dc line and ac line of inverter side are analyzed, to clarify the dynamic characteristics of the BWR nuclear power plant and dc system due to system faults and the effects of dc power control to prevent reactor scram. (1) In the instantaneous earthing fault of one dc line, the reactor is not scrammed by start-up within 0.8 sec. (2) When the earthing fault continues, power transmission drops to 75% by suspending the faulty pole, and the reactor is scrammed. (3) In the instantaneous ground fault of 2 dc lines, the reactor is not scrammed if the faulty dc lines are started up within 0.4 sec. (4) In the existing control of dc lines, the reactor is scrammed when the ac voltage at an ac-dc connection point largely drops due to ac failure. (J.P.N.)

  18. DC Link Current Estimation in Wind-Double Feed Induction Generator Power Conditioning System

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2010-12-01

    Full Text Available In this paper the implementation of the DC link current estimator in power conditioning system of the variable speed wind turbine is shown. The wind turbine is connected to double feed induction generator (DFIG. The variable electrical energy parameters delivered by DFIG are fitted with the electrical grid parameters through back-to-back power converter. The bidirectional AC-AC power converter covers a wide speed range from subsynchronous to supersynchronous speeds. The modern control of back-to-back power converter involves power balance concept, therefore its load power should be known in any instant. By using the power balance control, the DC link voltage variation at the load changes can be reduced. In this paper the load power is estimated from the dc link, indirectly, through a second order DC link current estimator. The load current estimator is based on the DC link voltage and on the dc link input current of the rotor side converter. This method presents certain advantages instead of using measured method, which requires a low pass filter: no time delay, the feedforward current component has no ripple, no additional hardware, and more fast control response. Through the numerical simulation the performances of the proposed DC link output current estimator scheme are demonstrated.

  19. Optical transponder DC probe [for pulsed power generator

    CERN Document Server

    Thompson, M C

    1999-01-01

    The Atlas Pulse Power, Marx Bank will produce significant electromagnetic interference potential (EMI) via its 192 spark-gaps and trigger systems (36 more spark gaps). The authors have a need to measure DC charge components to a fair degree of accuracy during charge to ensure a safe and balanced system. Isolation from elevated- deck and/or high EMI environments during DC voltage or current measurement has classically been approached using frequency modulation (FM) of an imposed carrier on an optical fiber coupled system. There are shortcomings in most systems that can generally be compensated for by various means. In their application of remote sensing, the power to run this remote probe was a central issue. As such the authors took another approach to monitor the DC charge record for the Atlas' Marx banks. (0 refs).

  20. The application of standardized control and interface circuits to three dc to dc power converters.

    Science.gov (United States)

    Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.

    1973-01-01

    Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.

  1. Autonomous Operation of a Hybrid AC/DC Microgrid with Multiple Interlinking Converters

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Blaabjerg, Frede

    2018-01-01

    Applying conventional dc-voltage based droop approaches for hybrid ac/dc microgrids interconnected by a single interlinking converter (IC) can properly manage the power flow among ac and dc subgrids. However, due to the effect of line resistances, these approaches may create a circulating power a...

  2. DC in urban areas distribution power systems and microgrids; Tasajaennite taajaman saehkoenjakelussa ja mikroverkoissa

    Energy Technology Data Exchange (ETDEWEB)

    Kylkisalo, T.; Alanen, R.

    2007-09-15

    This study deals with the utilization of DC distribution power systems and energy storages in urban areas. The properties and the components, that make the DC distribution power systems possible, are specifically examined from the perspective of the power system's control topology. The role of the energy storages as a part of the DC distribution power system and a tool of power quality control was also discussed. Using PSCAD/EMTDC simulation program two different concepts of the DC distribution power systems were simulated. Both low and medium voltage networks were designed as microgrids, which were capable operation without medium voltage feeder from the outside network as the entity of energy storages, auxiliary power source and loads. It emerged from the simulation that DC distribution power systems are capable to provide an uninterruptible delivery of current. In addition the effects on energy management of the DC distribution power systems, which include energy storages, were studied. Also a hierarchical principle was brought out, which could make an efficient interaction between electricity market and distributed power systems. Economical studies of the simplified 10 kV distribution system were done and the costs of AC and DC networks were compared. At 10 kV level AC system was found to be more economically efficient but DC network is more energy efficient because of remarkable smaller losses. Based on this study it can be said, that if the investment costs of the DC power systems can be reduced it could be a strong competitor to conventional AC power systems. (orig.)

  3. Transient analysis of an HTS DC power cable with an HVDC system

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-11-01

    The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  4. Automation of Aditya tokamak plasma position control DC power supply

    Energy Technology Data Exchange (ETDEWEB)

    Arambhadiya, Bharat, E-mail: bharat@ipr.res.in; Raj, Harshita; Tanna, R.L.; Edappala, Praveenlal; Rajpal, Rachana; Ghosh, Joydeep; Chattopadhyay, P.K.; Kalal, M.B.

    2016-11-15

    Highlights: • Plasma position control is very essential for obtaining repeatable high temperature, high-density discharges of longer durations in tokomak. • The present capacitor bank has limitations of maximum current capacity and position control beyond 200 ms. • The installation of a separate set of coils and a DC power supply can control the plasma position beyond 200 ms. • A high power thyristor (T588N1200) triggers for DC current pulse of 300 A fires precisely at required positions to modify plasma position. • The commissioning is done for the automated in-house, quick and reliable solution. - Abstract: Plasma position control is essential for obtaining repeatable high temperature, high-density discharges of longer duration in tokamaks. Recently, a set of external coils is installed in the vertical field mode configuration to control the radial plasma position in ADITYA tokamak. The existing capacitor bank cannot provide the required current pulse beyond 200 ms for position control. This motivated to have a DC power supply of 500 A to provide current pulse beyond 200 ms for the position control. The automatization of the DC power supply mandated interfaces with the plasma control system, Aditya Pulse Power supply, and Data acquisition system for coordinated discharge operation. A high current thyristor circuit and a timer circuit have been developed for controlling the power supply automatically for charging vertical field coils of Aditya tokamak. Key protection interlocks implemented in the development ensure machine and occupational safety. Fiber-optic trans-receiver isolates the power supply with other subsystems, while analog channel is optically isolated. Commissioning and testing established proper synchronization of the power supply with tokamak operation. The paper discusses the automation of the DC power supply with main circuit components, timing control, and testing results.

  5. Power Oscillations Damping in DC Microgrids

    OpenAIRE

    Hamzeh, Mohsen; Ghafouri, Mohsen; Karimi, Houshang; Sheshyekani, Keyhan; Guerrero, Josep M.

    2016-01-01

    This paper proposes a new control strategy for damping of power oscillations in a multi-source dc microgrid. A parallel combination of a fuel cell (FC), a photovoltaic (PV) system and a supercapacitor (SC) are used as a hybrid power conversion system (HPCS). The SC compensates for the slow transient response of the FC stack. The HPCS controller comprises a multi-loop voltage controller and a virtual impedance loop for power management. The virtual impedance loop uses a dynamic droop gain to a...

  6. Modelling, Simulation and Construction of a DC/DC Boost Power Converter: A School Experimental System

    Science.gov (United States)

    Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…

  7. Optimized efficiency of all-electric ships by dc hybrid power systems

    Science.gov (United States)

    Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.

    2014-06-01

    Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.

  8. Analysis and design of a parallel-connected single active bridge DC-DC converter for high-power wind farm applications

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2013-01-01

    This paper presents a parallel-connected Single Active Bridge (SAB) dc-dc converter for high-power applications. Paralleling lower-power converters can lower the current rating of each modular converter and interleaving the outputs can significantly reduce the magnitudes of input and output curre...

  9. Application research of power allocation based on Buck circuit in DC microgrid

    Directory of Open Access Journals (Sweden)

    Wang Zihao

    2017-01-01

    Full Text Available In a traditional DC microgrid, the power sharing control strategy has been always used in the distributed power converters, resulting in not making outer power allocation arbitrarily. In order to solve the power output allocation problem of wind power in DC microgrid, the intelligent Buck circuit based on PI algorithm and the load current feed-forward method was used to realize the arbitrary regulation of the output power of the wind power in the DC microgrid system. Compared with traditional distributed generators power-sharing method, the simulation and experimental results show the proposed method can realize arbitrary power outputting from distributed generators. Finally, the simulation and experimental results prove the validity and effectiveness of the control method.

  10. Power Oscillations Damping in DC Microgrids

    DEFF Research Database (Denmark)

    Hamzeh, Mohsen; Ghafouri, Mohsen; Karimi, Houshang

    2016-01-01

    This paper proposes a new control strategy for damping of power oscillations in a multi-source dc microgrid. A parallel combination of a fuel cell (FC), a photovoltaic (PV) system and a supercapacitor (SC) are used as a hybrid power conversion system (HPCS). The SC compensates for the slow transi...... of the proposed control scheme is verified using hardware-in-the-loop (HIL) simulations carried out in OPAL-RT technologies....

  11. Transmission Technologies and Operational Characteristic Analysis of Hybrid UHV AC/DC Power Grids in China

    Science.gov (United States)

    Tian, Zhang; Yanfeng, Gong

    2017-05-01

    In order to solve the contradiction between demand and distribution range of primary energy resource, Ultra High Voltage (UHV) power grids should be developed rapidly to meet development of energy bases and accessing of large-scale renewable energy. This paper reviewed the latest research processes of AC/DC transmission technologies, summarized the characteristics of AC/DC power grids, concluded that China’s power grids certainly enter a new period of large -scale hybrid UHV AC/DC power grids and characteristics of “strong DC and weak AC” becomes increasingly pro minent; possible problems in operation of AC/DC power grids was discussed, and interaction or effect between AC/DC power grids was made an intensive study of; according to above problems in operation of power grids, preliminary scheme is summarized as fo llows: strengthening backbone structures, enhancing AC/DC transmission technologies, promoting protection measures of clean energ y accessing grids, and taking actions to solve stability problems of voltage and frequency etc. It’s valuable for making hybrid UHV AC/DC power grids adapt to operating mode of large power grids, thus guaranteeing security and stability of power system.

  12. Operation strategy for grid-tied DC-coupling power converter interface integrating wind/solar/battery

    Science.gov (United States)

    Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.

    2017-11-01

    The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.

  13. Power Management of the DC Bus Connected Converters in a Hybrid AC/DC Microgrid Tied to the Main Grid

    Directory of Open Access Journals (Sweden)

    Robert Antonio Salas-Puente

    2018-03-01

    Full Text Available In this paper, a centralized control strategy for the efficient power management of power converters composing a hybrid AC/DC microgrid is explained. The study is focused on the converters connected to the DC bus. The proposed power management algorithm is implemented in a microgrid central processor which is based on assigning several operation functions to each of the generators, loads and energy storage systems in the microgrid. The power flows between the DC and AC buses are studied in several operational scenarios to verify the proposed control. Experimental and simulation results demonstrate that the algorithm allows control of the power dispatch inside the microgrid properly by performing the following tasks: communication among power converters, the grid operator and loads; connection and disconnection of loads; control of the power exchange between the distributed generators and the energy storage system and, finally, supervision of the power dispatch limit set by the grid operator.

  14. Large-signal stability analysis of two power converters solutions for DC shipboard microgrid

    NARCIS (Netherlands)

    Bosich, Daniele; Gibescu, Madeleine; Sulligoi, Giorgio

    2017-01-01

    Bus voltage stability is an essential requirement in DC shipboard microgrids. In presence of Constant Power Loads, voltage instability is strictly dependent on RLC filters. This paper evaluates two power converter solutions (Thyristor Converters, TCs, and diode rectifiers + DC-DC Converters, DCs)

  15. Reliability of Capacitors for DC-Link Applications in Power Electronic Converters

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede

    2014-01-01

    DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of dc link in power electronic converters...... from two aspects: 1) reliability-oriented dc-link design solutions; 2) conditioning monitoring of dc-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capacitors suitable for the applications are also discussed as a basis to understand the physics......-of-failure. This review serves to provide a clear picture of the state-of-the-art research in this area and to identify the corresponding challenges and future research directions for capacitors and their dc-link applications....

  16. A High-Voltage Low-Power Switched-Capacitor DC-DC Converter Based on GaN and SiC Devices for LED Drivers

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    Previous research on switched-capacitor DC-DC converters has focused on low-voltage and/or high-power ranges where the efficiencies are dominated by conduction loss. Switched-capacitor DC-DC converters at high-voltage (> 100 V) low-power (high efficiency and high power density...... are anticipated to emerge. This paper presents a switched-capacitor converter with an input voltage up to 380 V (compatible with rectified European mains) and a maximum output power of 10 W. GaN switches and SiC diodes are analytically compared and actively combined to properly address the challenges at high......-voltage low-current levels, where switching loss becomes significant. Further trade-off between conduction loss and switching loss is experimentally optimized with switching frequencies. Three variant designs of the proposed converter are implemented, and the trade-off between the efficiency and the power...

  17. A new DC/AC boost transformerless converter in application of photovoltaic power generation

    DEFF Research Database (Denmark)

    Wei, Mo; Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    This paper presents a new DC/AC boost transformerless converter in the applications of photovoltaic (PV) power generation. A new circuit topology of single phase full bridge power inverter with additional DC/DC boost stage is proposed. The proposed topology overcomes two commonly existing......, and then converts the DC into AC to supply the load. A special modulation technique is proposed to eliminate the leakage current which is commonly presents in PV transformerless power generation, helps to increase the system efficiency and output performance....

  18. Power quality improvement by using multi-pulse AC-DC converters for DC drives: Modeling, simulation and its digital implementation

    Directory of Open Access Journals (Sweden)

    Mohd Tariq

    2014-12-01

    Full Text Available The paper presents the modeling, simulation and digital implementation of power quality improvement of DC drives by using multi pulse AC–DC converter. As it is a well-known fact that power quality determines the fitness of electrical power to consumer devices, hence an effort has been made to improve power quality in this work. Simulation and digital implementation with the help of MATLAB/Simulink has been done and results obtained are discussed in detail to verify the theoretical results. The multipulse converter was connected with DC drives and was run at no load condition to find out the transient and steady state performances. FFT analysis has been performed and Total Harmonic Distortion (THD results obtained at different pulses are shown here.

  19. Power and Energy Management Strategy for Solid State Transformer Interfaced DC Microgrid

    Science.gov (United States)

    Yu, Xunwei

    As a result of more and more applications of renewable energy into our ordinary life, how to construct a microgrid (MG) based on the distributed renewable energy resources and energy storages, and then to supply a reliable and flexible power to the conventional power system are the hottest topics nowadays. Comparing to the AC microgrid (AC MG), DC microgrid (DC MG) gets more attentions, because it has its own advantages, such as high efficiency, easy to integrate the DC energy sources and energy storages, and so on. Furthermore, the interaction between DC MG system and the distribution system is also an important and practical issue. In Future Renewable Electric Energy Delivery and Management Systems Center (FREEDM), the Solid State Transformer (SST) is built, which can transform the distribution system to the low AC and DC system directly (usually home application level). Thus, the SST gives a new promising solution for low voltage level MG to interface the distribution level system instead of the traditional transformer. So a SST interfaced DC MG is proposed. However, it also brings new challenges in the design and control fields for this system because the system gets more complicated, which includes distributed energy sources and storages, load, and SST. The purpose of this dissertation is to design a reliable and flexible SST interfaced DC MG based on the renewable energy sources and energy storages, which can operate in islanding mode and SST-enabled mode. Dual Half Bridge (DHB) is selected as the topology for DC/DC converter in DC MG. The DHB operation procedure and average model are analyzed, which is the basis for the system modeling, control and operation. Furthermore, two novel power and energy management strategies are proposed. The first one is a distributed energy management strategy for the DC MG operating in the SST-enabled mode. In this method, the system is not only in distributed control to increase the system reliability, but the power sharing

  20. Modelling, simulation and construction of a dc/dc boost power converter: a school experimental system

    International Nuclear Information System (INIS)

    Silva-Ortigoza, R; Marciano-Melchor, M; Silva-Ortigoza, G; Hernández-Guzmán, V M; Saldaña-González, G; Marcelino-Aranda, M

    2012-01-01

    We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders the feasible introduction of this equipment in undergraduate laboratories. (paper)

  1. A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2017-01-01

    Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor......, instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...

  2. Analog Circuit Design Low Voltage Low Power; Short Range Wireless Front-Ends; Power Management and DC-DC

    CERN Document Server

    Roermund, Arthur; Baschirotto, Andrea

    2012-01-01

    The book contains the contribution of 18 tutorials of the 20th workshop on Advances in Analog Circuit Design.  Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 20 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of Low-Voltage Low-Power Data Converters - Chaired by Prof. Anderea Baschirotto, University of Milan-Bicocca Short Range Wireless Front-Ends - Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology Power management and DC-DC - Chaired by Prof. M. Steyaert, Katholieke University Leuven Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.

  3. Chaos control in solar fed DC-DC boost converter by optimal parameters using nelder-mead algorithm powered enhanced BFOA

    Science.gov (United States)

    Sudhakar, N.; Rajasekar, N.; Akhil, Saya; Jyotheeswara Reddy, K.

    2017-11-01

    The boost converter is the most desirable DC-DC power converter for renewable energy applications for its favorable continuous input current characteristics. In other hand, these DC-DC converters known as practical nonlinear systems are prone to several types of nonlinear phenomena including bifurcation, quasiperiodicity, intermittency and chaos. These undesirable effects has to be controlled for maintaining normal periodic operation of the converter and to ensure the stability. This paper presents an effective solution to control the chaos in solar fed DC-DC boost converter since the converter experiences wide range of input power variation which leads to chaotic phenomena. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Nelder-Mead Enhanced Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The results are compared with the traditional methods. The obtained results of the proposed system ensures the operation of the converter within the controllable region.

  4. Reduction of DC-link Capacitor in Case of Cascade Multilevel Converters by means of Reactive Power Control

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Wang, Huai; Liserre, Marco

    2014-01-01

    A method to selectively control the amount of dc link voltage ripple by processing desired reactive power by a DC/DC converter in isolated AC/DC or AC/DC/AC system is proposed. The concept can reduce the dc link capacitors used for balancing the input and output power and thereby limiting...... the voltage ripple. It allows the use of smaller dc link capacitor and hence a longer lifetime and at the same time high power density and low cost can be achieved. The isolated DC/DC converter is controlled to process the desired reactive power in addition to the active power. The control system to achieve...

  5. Analysis and distributed control of power flow in DC microgrids to improve system efficiency

    DEFF Research Database (Denmark)

    Chen, Fang; Burgos, Rolando; Boroyevich, Dushan

    2016-01-01

    DC Microgrid attains popularity in integrating renewable energy sources and batteries. It also has the potential to achieve higher efficiency than ac power grid under the condition of optimized power flow. In this paper, a general dc microgrid is modeled based on a cluster of general dc nodes......, which includes constant power renewables generation, droop-controlled voltage source and different kinds of load. Then the dc power flow is solved for optimization. A voltage restoration method based on consensus communication is used to restore the voltage deviation from droop characteristic...

  6. Overvoltage and Insulation Coordination of Overhead Lines in Multiple-Terminal MMC-HVDC Link for Wind Power Delivery

    Directory of Open Access Journals (Sweden)

    Huiwen He

    2017-01-01

    Full Text Available The voltage-sourced converter-based HVDC link, including the modular multilevel converter (MMC configuration, is suitable for wind power, photovoltaic energy, and other kinds of new energy delivery and grid-connection. Current studies are focused on the MMC principles and controls and few studies have been done on the overvoltage of transmission line for the MMC-HVDC link. The main reason is that environmental factors have little effect on DC cables and the single-phase/pole fault rate is low. But if the cables were replaced by the overhead lines, although the construction cost of the project would be greatly reduced, the single-pole ground fault rate would be much higher. This paper analyzed the main overvoltage types in multiple-terminal MMC-HVDC network which transmit electric power by overhead lines. Based on ±500 kV multiple-terminal MMC-HVDC for wind power delivery project, the transient simulation model was built and the overvoltage types mentioned above were studied. The results showed that the most serious overvoltage was on the healthy adjacent line of the faulty line caused by the fault clearing of DC breaker. Then the insulation coordination for overhead lines was conducted according to the overvoltage level. The recommended clearance values were given.

  7. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    Science.gov (United States)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  8. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    Science.gov (United States)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  9. DC-pass filter design with notch filters superposition for CPW rectenna at low power level

    Science.gov (United States)

    Rivière, J.; Douyère, A.; Alicalapa, F.; Luk, J.-D. Lan Sun

    2016-03-01

    In this paper the challenging coplanar waveguide direct current (DC) pass filter is designed, analysed, fabricated and measured. As the ground plane and the conductive line are etched on the same plane, this technology allows the connection of series and shunt elements to the active devices without via holes through the substrate. Indeed, this study presents the first step in the optimization of a complete rectenna in coplanar waveguide (CPW) technology: key element of a radio frequency (RF) energy harvesting system. The measurement of the proposed filter shows good performance in the rejection of F0=2.45 GHz and F1=4.9 GHz. Additionally, a harmonic balance (HB) simulation of the complete rectenna is performed and shows a maximum RF-to-DC conversion efficiency of 37% with the studied DC-pass filter for an input power of 10 µW at 2.45 GHz.

  10. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    Directory of Open Access Journals (Sweden)

    Baolian Liu

    2014-01-01

    Full Text Available The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the above problem, and the design method is given. The simulation and experiment results proved that the proposed variable structure control algorithm can eliminate the chattering problem existing in traditional variable structure control effectively, is insensitive to system disturbance, and has good robustness and fast dynamic response speed and stable DC bus voltage with small fluctuation. The above advantages ensure the compensation effect of APF.

  11. Calculation of single phase AC and monopolar DC hybrid corona effects

    International Nuclear Information System (INIS)

    Zhao, T.; Sebo, S.A.; Kasten, D.G.

    1996-01-01

    Operating a hybrid HVac and HVdc line is an option for increasing the efficiency of power transmission and overcoming the difficulties in obtaining a new right-of-way. This paper proposes a new calculation method for the study of hybrid line corona. The proposed method can be used to calculate dc corona losses and corona currents in dc or ac conductors for single phase ac and monopolar dc hybrid lines. Profiles of electric field strength and ion current density at ground level can be estimated. The effects of the presence of an energized ac conductor on dc conductor corona and dc voltage on ac conductor corona are included in the method. Full-scale and reduced-scale experiments were utilized to investigate the hybrid line corona effects. Verification of the proposed calculation method is given

  12. Coordinated Control of Multi-terminal DC Grid for Wind Power Integration

    DEFF Research Database (Denmark)

    Hao, Yu; Zhao, Haoran; Wu, Qiuwei

    2016-01-01

    Multi-terminal HVDC (MTDC) technology using voltage source converter (VSC) is a good option for wind power integration. Compared with point to point DC connection, MTDC provide better controllability based on different control strategies. In this paper, proportional-integral (PI) controllers...... with tuned PI parameters are designed to coordinate DC flow among the DC grid with good dynamic performance. In order to overcome the disadvantages of the conventional PI control, a simple adaptive PI control strategy is proposed based on the system transfer function. Case studies were conducted with PowerFactory....

  13. Experimental power reactor dc generator energy storage study

    International Nuclear Information System (INIS)

    Heck, F.M.; Smeltzer, G.S.; Myers, E.H.; Kilgore, L.

    1978-01-01

    This study covers the use of dc generators for meeting the Experimental Power Reactor Ohmic Heating Energy Storage Requirements. The dc generators satisfy these requirements which are the same as defined in WFPS-TME-038 which covered the use of ac generators and homopolar generators. The costs of the latter two systems have been revised to eliminate first-of-a-kind factors. The cost figures for dc generators indicate a need to develop larger machines in order to take advantage of the economy-of-scale that the large ac machines have. Each of the systems has its own favorable salient features on which to base a system selection

  14. Armature reaction of permanent magnet-excited small dc motors with shell type magnets and possibilities of power increase

    Energy Technology Data Exchange (ETDEWEB)

    Gutt, H J; Tran, Q N

    1983-07-01

    Permanent magnet-excited small dc motors allow an increase of power up to 30% compared with present permanent excited motors. The calculation of immediate irreversible demagnetization of the air-gap situated shell type magnets is necessary for a good motor design. Numerical calculated field line plots show the critical zones of the irreversible demagnetization at high armature reaction and refer how to avoid the flux loss and to increase the motor power.

  15. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    Science.gov (United States)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  16. OffshoreDC DC grids for integration of large scale wind power

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Endegnanew, Atsede Gualu; Stamatiou, Georgios

    The present report summarizes the main findings of the Nordic Energy Research project “DC grids for large scale integration of offshore wind power – OffshoreDC”. The project is been funded by Nordic Energy Research through the TFI programme and was active between 2011 and 2016. The overall...... objective of the project was to drive the development of the VSC based HVDC technology for future large scale offshore grids, supporting a standardised and commercial development of the technology, and improving the opportunities for the technology to support power system integration of large scale offshore...

  17. DC electric springs with DC/DC converters

    DEFF Research Database (Denmark)

    Wang, Qingsong; Cheng, Ming; Jiang, Yunlei

    2016-01-01

    The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi-directio......The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi...... and/or constant discharging for batteries is adopted and four operating modes are analyzed as charging-positive, charging-negative, discharging-positive and discharging-negative modes. An additional mechanism for fast charging or fast discharging is also designed to secure normal operation...... of batteries. With the proposed DCES, the power fluctuations due to intermittent RESs can be passed to non-critical loads (NCLs) and batteries while power on critical loads (CLs) is kept stable. This is possibly the first attempt to design a DCES with only DC/DC converters. The performances of the proposed...

  18. Step-Up DC-DC converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam P.; Gorji, Saman A.

    2017-01-01

    on the general law and framework of the development of next-generation step-up dc-dc converters, this paper aims to comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage......DC-DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which......-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc-dc converters are presented and summarized with comparative study of different voltage-boosting techniques....

  19. Intelligent Power Control of DC Microgrid

    DEFF Research Database (Denmark)

    Hajizadeh, Amin; N. Soltani, Mohsen; Norum, Lars

    2017-01-01

    In this paper, an intelligent power management strategy is proposed for hybrid DC microgrid, including wind turbine, fuel cell and battery energy storage. The considered wind turbine has a permanent magnet synchronous generator (PMSG). In the considered structure, wind turbine operates as the main...... condition and fuel cell will not generate excessive power. The proposed control scheme is based on the fuzzy algorithm. All simulations in variant operational modes are performed by MATLAB/Simulink and results show the effectiveness of the proposed control strategy....

  20. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    Science.gov (United States)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  1. Wind-driven SEIG supplying DC microgrid through a single-stage power converter

    Directory of Open Access Journals (Sweden)

    Vellapatchi Nayanar

    2016-09-01

    Full Text Available Nowadays, there is an increased emphasis on utilizing the renewable energy sources and selection of suitable power converters for supplying dc microgrid. Among the various renewable energy sources, wind energy stands first in terms of installed capacity. So, an attempt is made in this paper for supplying dc microgrid utilizing wind energy. A self-excited induction generator has been used in the proposed wind energy conversion system (WECS. A single-stage power converter, namely, semi-converter is connected between the SEIG and dc grid terminals for closed-loop control of the proposed system. A perturb and observe (P&O based maximum power point tracking (MPPT algorithm has been developed and implemented using a dsPIC30F4011 digital controller. In this MPPT algorithm, the firing angle of the converter is adjusted by continuously monitoring the dc grid current for a given wind velocity. For analyzing the proposed system, a MATLAB/Simulink model has been developed by selecting the various components starting from wind-turbine model to the power converter supplying dc microgrid. Successful working of the proposed WECS has also been shown through experimental results obtained on a prototype model developed in the laboratory.

  2. Review of the development of multi-terminal HVDC and DC power grid

    Science.gov (United States)

    Chen, Y. X.

    2017-11-01

    Traditional power equipment, power-grid structures, and operation technology are becoming increasingly powerless with the large-scale renewable energy access to the grid. Thus, we must adopt new technologies, new equipment, and new grid structure to satisfy future requirements in energy patterns. Accordingly, the multiterminal direct current (MTDC) transmission system is receiving increasing attention. This paper starts with a brief description of current developments in MTDC worldwide. The MTDC project, which has been placed into practical operation, is introduced by the Italian-Corsica-Sardinian three-terminal high-voltage DC (HVDC) project. We then describe the basic characteristics and regulations of multiterminal DC transmission. The current mainstream of several control methods are described. In the third chapter, the key to the development of MTDC system or hardware and software technology that restricts the development of multiterminal DC transmission is discussed. This chapter focuses on the comparison of double-ended HVDC and multiterminal HVDC in most aspects and subsequently elaborates the key and difficult point of MTDC development. Finally, this paper summarizes the prospect of a DC power grid. In a few decades, China can build a strong cross-strait AC-DC hybrid power grid.

  3. Three-port DC-DC converter with new integrated transformer for DC Distribution Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2014-01-01

    A new integrated transformer for three-port dc-dc converter is proposed to overcome the power coupling effect existed in some known multiple inputs dc-dc converters. Orthogonal primary windings arrangement and in series connection of diagonal secondary Windings enables a fully power decoupling...

  4. Design and performance study of a DC-DC flyback converter based on wide bandgap power devices for photovoltaic applications

    Science.gov (United States)

    Alharbi, Salah S.; Alharbi, Saleh S.; Al-bayati, Ali M. S.; Matin, Mohammad

    2017-08-01

    This paper presents a high-performance dc-dc flyback converter design based on wide bandgap (WBG) semiconductor devices for photovoltaic (PV) applications. Two different power devices, a gallium nitride (GaN)-transistor and a silicon (Si)-MOSFET, are implemented individually in the flyback converter to examine their impact on converter performance. The total power loss of the converter with different power devices is analyzed for various switching frequencies. Converter efficiency is evaluated at different switching frequencies, input voltages, and output power levels. The results reveal that the converter with the GaN-transistor has lower total power loss and better efficiency compared to the converter with the conventional Si-MOSFET.

  5. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    Science.gov (United States)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  6. Transformerless dc-Isolated Converter

    Science.gov (United States)

    Rippel, Wally E.

    1987-01-01

    Efficient voltage converter employs capacitive instead of transformer coupling to provide dc isolation. Offers buck/boost operation, minimal filtering, and low parts count, with possible application in photovoltaic power inverters, power supplies and battery charges. In photovoltaic inverter circuit with transformerless converter, Q2, Q3, Q4, and Q5 form line-commutated inverter. Switching losses and stresses nil because switching performed when current is zero.

  7. Usefulness of DC power flow for active power flow analysis with flow controlling devices

    NARCIS (Netherlands)

    Van Hertem, D.; Verboomen, J.; Purchala, K.; Belmans, R.; Kling, W.L.

    2006-01-01

    DC power flow is a commonly used tool for contingency analysis. Recently, due to its simplicity and robustness, it also becomes increasingly used for the real-time dispatch and techno-economic analysis of power systems. It is a simplification of a full power flow looking only at active power.

  8. A Secondary Voltage Control Method for an AC/DC Coupled Transmission System Based on Model Predictive Control

    DEFF Research Database (Denmark)

    Xu, Fengda; Guo, Qinglai; Sun, Hongbin

    2015-01-01

    For an AC/DC coupled transmission system, the change of transmission power on the DC lines will significantly influence the AC systems’ voltage. This paper describes a method to coordinated control the reactive power of power plants and shunt capacitors at DC converter stations nearby, in order t...

  9. Technical Challenges and Potential Solutions for Cross-Country Multi-Terminal Superconducting DC Power Cables

    Science.gov (United States)

    Al-Taie, A.; Graber, L.; Pamidi, S. V.

    2017-12-01

    Opportunities for applications of high temperature superconducting (HTS) DC power cables for long distance power transmission in increasing the reliability of the electric power grid and to enable easier integration of distributed renewable sources into the grid are discussed. The gaps in the technology developments both in the superconducting cable designs and cryogenic systems as well as power electronic devices are identified. Various technology components in multi-terminal high voltage DC power transmission networks and the available options are discussed. The potential of ongoing efforts in the development of superconducting DC transmission systems is discussed.

  10. First Implementation of a Two-Stage DC-DC Conversion Powering Scheme for the CMS Phase-2 Outer Tracker

    CERN Document Server

    Feld, Lutz Werner; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Pauls, Alexander Josef; Preuten, Marius; Rauch, Max Philip; Wangelik, Frederik; Wlochal, Michael

    2017-01-01

    The 2S silicon strip modules for the CMS Phase-2 tracker upgrade will require two operating voltages. These will be provided via a two-step DC-DC conversion powering scheme, in which one DC-DC converter delivers 2.5\\,V while the second DC-DC converter receives 2.5\\,V at its input and converts it to 1.2\\,V. The DC-DC converters will be mounted on a flex PCB, the service hybrid, together with an opto-electrical converter module (VTRx+) and a serializer (LP-GBT). The service hybrid will be mounted directly on the 2S module. A prototype service hybrid has been developed and its performance has been evaluated, including radiative and conductive noise emissions, and efficiency. In addition system tests with a prototype module have been performed. In this report the service hybrid will be described and the test results will be summarized.

  11. A Possibilistic Approach for the Prediction of the Risk of Interference between Power and Signal Lines Onboard Satellites

    Directory of Open Access Journals (Sweden)

    Nicola Toscani

    2018-01-01

    Full Text Available This work presents a hybrid random/fuzzy approach for uncertainty quantification in electromagnetic modelling, which combines probability and possibility theory in order to properly account for both aleatory and epistemic uncertainty, respectively. In particular, a typical intrasystem electromagnetic-compatibility problem in aerospace applications is considered, where some parameters are affected by fabrication tolerances or other kinds of randomness (aleatory uncertainty and others are inherently deterministic but unknown due to human’s lack of knowledge (epistemic uncertainty. Namely, a differential-signal line in a satellite is subject to crosstalk due to a nearby dc power line carrying conducted emissions generated by a dc-dc converter in a wide frequency range (up to 100 MHz. The nonideal features of the signal line (e.g., weak unbalance of terminal loads are treated as random variables (RVs, whereas the mutual position of signal and power line is characterized by possibility theory through suitable fuzzy variables. Such a hybrid approach allows deriving a general and exhaustive description of uncertainty of the target variable of interest, that is, the differential noise voltage induced in the signal line. The obtained results are compared versus a conventional Monte Carlo simulation where all parameters are treated as RVs, and the advantages of the proposed approach (in terms of completeness and richness of information gained about sensitivity of results are highlighted.

  12. DC microgrids providing frequency regulation in electrical power system - imperfect communication issues

    DEFF Research Database (Denmark)

    Bašić, Hrvoje; Dragicevic, Tomislav; Pandžić, Hrvoje

    2017-01-01

    This paper presents a model of multiple DC microgrids with battery energy storage systems and demand response capability, taking part in primary frequency regulation of electrical power system. Although DC microgrids can contribute to stability and efficiency of frequency regulation, these complex...... systems may cause serious stability issues due to the imperfect communication. This work presents possible scenarios of unstable primary frequency regulation in a simplified model of electrical power system with DC microgrids, which are controlled through communication network....

  13. AC-DC PFC Converter Using Combination of Flyback Converter and Full-bridge DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Moh. Zaenal Efendi

    2014-06-01

    Full Text Available This paper presents a combination of power factor correction converter using Flyback converter and Full-bridge dc-dc converter in series connection. Flyback converter is operated in discontinuous conduction mode so that it can serve as a power factor correction converter and meanwhile Full-bridge dc-dc converter is used for dc regulator. This converter system is designed to produce a 86 Volt of output voltage and 2 A of output current. Both simulation and experiment results show that the power factor of this converter achieves up to 0.99 and meets harmonic standard of IEC61000-3-2. Keywords: Flyback Converter, Full-bridge DC-DC Converter, Power Factor Correction.

  14. Smart Power Management of DC Microgrids in Future Milligrids

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Davari, Pooya

    2016-01-01

    In this paper a novel droop approach for power management in low voltage dc MicroGrids (MGs) based on a master-slave concept is presented. A virtual frequency is injected by a master unit, which is proportional to its output power. Other slave units determine their output power according to the c...

  15. A ZVS PWM control strategy with balanced capacitor current for half-bridge three-level DC/DC converter

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Chen, Zhe

    2017-01-01

    The capacitor current would be imbalanced under the conventional control strategy in the half-bridge three-level (HBTL) DC/DC converter due to the effect of the output inductance of the power supply and the input line inductance, which would affect the converter's reliability. This paper proposes...... a pulse-wide modulation (PWM) strategy composed of two operation modes for the HBTL DC/DC converter, which can realize the zero-voltage switching (ZVS) for the efficiency improvement. In addition, a capacitor current balancing control is proposed by alternating the two operation modes of the proposed ZVS...... PWM strategy, which can eliminate the current imbalance among the two input capacitors. Therefore, the proposed control strategy can improve the converter's performance and reliability in: 1) reducing the switching losses and noises of the power switches; 2) balancing the thermal stresses...

  16. A Novel High-Frequency Voltage Standing-Wave Ratio-Based Grounding Electrode Line Fault Supervision in Ultra-High Voltage DC Transmission Systems

    Directory of Open Access Journals (Sweden)

    Yufei Teng

    2017-03-01

    Full Text Available In order to improve the fault monitoring performance of grounding electrode lines in ultra-high voltage DC (UHVDC transmission systems, a novel fault monitoring approach based on the high-frequency voltage standing-wave ratio (VSWR is proposed in this paper. The VSWR is defined considering a lossless transmission line, and the characteristics of the VSWR under different conditions are analyzed. It is shown that the VSWR equals 1 when the terminal resistance completely matches the characteristic impedance of the line, and when a short circuit fault occurs on the grounding electrode line, the VSWR will be greater than 1. The VSWR will approach positive infinity under metallic earth fault conditions, whereas the VSWR in non-metallic earth faults will be smaller. Based on these analytical results, a fault supervision criterion is formulated. The effectiveness of the proposed VSWR-based fault supervision technique is verified with a typical UHVDC project established in Power Systems Computer Aided Design/Electromagnetic Transients including DC(PSCAD/EMTDC. Simulation results indicate that the proposed strategy can reliably identify the grounding electrode line fault and has strong anti-fault resistance capability.

  17. Application of parallel connected power-MOSFET elements to high current d.c. power supply

    International Nuclear Information System (INIS)

    Matsukawa, Tatsuya; Shioyama, Masanori; Shimada, Katsuhiro; Takaku, Taku; Neumeyer, Charles; Tsuji-Iio, Shunji; Shimada, Ryuichi

    2001-01-01

    The low aspect ratio spherical torus (ST), which has single turn toroidal field coil, requires the extremely high d.c. current like as 20 MA to energize the coil. Considering the ratings of such extremely high current and low voltage, power-MOSFET element is employed as the switching device for the a.c./d.c. converter of power supply. One of the advantages of power-MOSFET element is low on-state resistance, which is to meet the high current and low voltage operation. Recently, the capacity of power-MOSFET element has been increased and its on-state resistance has been decreased, so that the possibility of construction of high current and low voltage a.c./d.c. converter with parallel connected power-MOSFET elements has been growing. With the aim of developing the high current d.c. power supply using power-MOSFET, the basic characteristics of parallel operation with power-MOSFET elements are experimentally investigated. And, the synchronous rectifier type and the bi-directional self commutated type a.c./d.c. converters using parallel connected power-MOSFET elements are proposed

  18. Online optimization of a multi-conversion-level DC home microgrid for system efficiency enhancement

    DEFF Research Database (Denmark)

    Boscaino, V.; Guerrero, J. M.; Ciornei, I.

    2017-01-01

    stages, three paralleled DC/DC converters are implemented. A Genetic Algorithm performs the on-line optimization of the DC network’s global efficiency, generating the optimal current sharing ratios of the concurrent power converters. The overall DC/DC conversion system including the optimization section......In this paper, an on-line management system for the optimal efficiency operation of a multi-bus DC home distribution system is proposed. The operation of the system is discussed with reference to a distribution system with two conversion stages and three voltage levels. In each of the conversion...

  19. Feasibility analysis of the application and positioning of DC HTS FCL in a DC microgrid through modeling and simulation using Simulink and SimPowerSystem

    Energy Technology Data Exchange (ETDEWEB)

    Khan, U.A.; Shin, W.J.; Seong, J.K.; Oh, S.H.; Lee, S.H. [School of Electrical Engineering and Computer Science, Hanyang University, Ansan-Shi, Gyeonggi-do 426-791 (Korea, Republic of); Lee, B.W., E-mail: bangwook@hanyang.ac.kr [School of Electrical Engineering and Computer Science, Hanyang University, Ansan-Shi, Gyeonggi-do 426-791 (Korea, Republic of)

    2011-11-15

    We modeled DC SFCL by use of SimPowerSystem blocks. We examine the DC fault current limitation in low voltage DC distribution networks. SFCL's affects at critical points were measured. SFCL installed at the substation rectifier branch resulted in abnormal increase of fault current. The strategic location of SFCL is the point of integration of the PV plant with the power grid. DC fault current limitation in DC distribution network is one of the critical issues which need to be taken care of before they can be practically implemented. High temperature superconductors could be efficiently installed to cope with the problem of DC fault currents. In this paper, a generalized DC high temperature superconducting fault current limiter (SFCL) is modeled by integrating Simulink and SimPowerSystem blocks. This model is designed for limiting DC fault currents in low voltage DC distribution networks. A DC microgrid having a low voltage DC distribution network, an integrated photovoltaic plant and domestic customer load is modeled. Transient analysis of the DC microgrid is performed by generating fault and measuring DC fault currents at critical points. The designed DC SFCL is placed at different strategic locations in DC microgrid and fault current limitation performance of DC SFCL in DC microgrid has been analyzed. Moreover, the affects of rapid impedance changing in the distribution network due to the fault followed by DC SFCL activation is investigated. Finally, the best suitable position and affects of DC SFCL in a DC microgrid along with suggestions for implementation have been proposed.

  20. Feasibility analysis of the application and positioning of DC HTS FCL in a DC microgrid through modeling and simulation using Simulink and SimPowerSystem

    International Nuclear Information System (INIS)

    Khan, U.A.; Shin, W.J.; Seong, J.K.; Oh, S.H.; Lee, S.H.; Lee, B.W.

    2011-01-01

    We modeled DC SFCL by use of SimPowerSystem blocks. We examine the DC fault current limitation in low voltage DC distribution networks. SFCL's affects at critical points were measured. SFCL installed at the substation rectifier branch resulted in abnormal increase of fault current. The strategic location of SFCL is the point of integration of the PV plant with the power grid. DC fault current limitation in DC distribution network is one of the critical issues which need to be taken care of before they can be practically implemented. High temperature superconductors could be efficiently installed to cope with the problem of DC fault currents. In this paper, a generalized DC high temperature superconducting fault current limiter (SFCL) is modeled by integrating Simulink and SimPowerSystem blocks. This model is designed for limiting DC fault currents in low voltage DC distribution networks. A DC microgrid having a low voltage DC distribution network, an integrated photovoltaic plant and domestic customer load is modeled. Transient analysis of the DC microgrid is performed by generating fault and measuring DC fault currents at critical points. The designed DC SFCL is placed at different strategic locations in DC microgrid and fault current limitation performance of DC SFCL in DC microgrid has been analyzed. Moreover, the affects of rapid impedance changing in the distribution network due to the fault followed by DC SFCL activation is investigated. Finally, the best suitable position and affects of DC SFCL in a DC microgrid along with suggestions for implementation have been proposed.

  1. Design of resonant converter based DC power supply for RF amplifier

    International Nuclear Information System (INIS)

    Mohan, Kartik; Suthar, Gajendra; Dalicha, Hrushikesh; Agarwal, Rohit; Trivedi, R.G.; Mukherjee, Aparajita

    2017-01-01

    ITER require 20 MW of RF power to a large variety of plasmas in the Ion Cyclotron frequency range for heating and driving plasma current. Nine RF sources of 2.5MW RF power level each collectively will accomplish the above requirement. Each RF source consists of SSPA, driver and end stage, above which driver and end stage amplifier are tube (Tetrode/Diacrode) based which requires auxiliary DC power source viz. filament, screen grid and control grid DC power supply. DC power supply has some stringent requirements like low stored energy, fast turn off, and low ripple value, etc. This paper will focus only on Zero Current Switching (ZCS) resonant converter based buck converter. This can serve the purpose of control grid and screen grid DC power supply for above requirement. IGBT switch will be used at 20 kHz so as to lower the filter requirement hence low stored energy and ripple in the output voltage. ZCS operation will also assist us in reducing EMI/EMC effect. Design of resonant tank circuit is important aspect of the converter as it forms the backbone of the complete system and basis of selection of other important parameters as well hence mathematical model analysis with the help of circuit equations for various modes have been shown as a part of selection criteria. Peak current through the switch, duty cycle, switching frequency will be the design parameters for selecting resonant tank circuit

  2. DC microgrid power flow optimization by multi-layer supervision control. Design and experimental validation

    International Nuclear Information System (INIS)

    Sechilariu, Manuela; Wang, Bao Chao; Locment, Fabrice; Jouglet, Antoine

    2014-01-01

    Highlights: • DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control. • Power balancing following power flow optimization while providing interface for smart grid communication. • Optimization under constraints: storage capability, grid power limitations, grid time-of-use pricing. • Experimental validation of DC microgrid power flow optimization by multi-layer supervision control. • DC microgrid able to perform peak shaving, to avoid undesired injection, and to make full use of locally energy. - Abstract: Urban areas have great potential for photovoltaic (PV) generation, however, direct PV power injection has limitations for high level PV penetration. It induces additional regulations in grid power balancing because of lacking abilities of responding to grid issues such as reducing grid peak consumption or avoiding undesired injections. The smart grid implementation, which is designed to meet these requirements, is facilitated by microgrids development. This paper presents a DC microgrid (PV array, storage, power grid connection, DC load) with multi-layer supervision control which handles instantaneous power balancing following the power flow optimization while providing interface for smart grid communication. The optimization takes into account forecast of PV power production and load power demand, while satisfying constraints such as storage capability, grid power limitations, grid time-of-use pricing and grid peak hour. Optimization, whose efficiency is related to the prediction accuracy, is carried out by mixed integer linear programming. Experimental results show that the proposed microgrid structure is able to control the power flow at near optimum cost and ensures self-correcting capability. It can respond to issues of performing peak shaving, avoiding undesired injection, and making full use of locally produced energy with respect to rigid element constraints

  3. Development of innovative superconducting DC power cable

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Teruo; Kiuchi, Masaru [Dept. of Computer Science and Electronics Kyushu Institute of Technology, Iizuka (Japan)

    2017-09-15

    It is required to reduce the cost of superconducting cable to realize a superconducting DC power network that covers a wide area in order to utilize renewable energy. In this paper a new concept of innovative cable is introduced that can enhance the current-carrying capacity even though the same superconducting tape is used. Such a cable can be realized by designing an optimal winding structure in such a way that the angle between the tape and magnetic field becomes small. This idea was confirmed by preliminary experiments for a single layer model cable made of Bi-2223 tapes and REBCO coated conductors. Experiments of three and four layer cables of practical sizes were also done and it was found that the current-carrying capacity increased as theoretically predicted. If the critical current properties of commercial superconducting tapes are further improved in a parallel magnetic field, the enhancement will become pronounced and this technology will surely contribute to realization of superconducting DC power network.

  4. Stability analysis of a three-phase grid-connected DC power supply with small DC-link capacitor and voltage feed-forward compensation

    DEFF Research Database (Denmark)

    Török, Lajos; Mathe, L.

    2017-01-01

    The purpose of this work was to investigate effect of the DC-link voltage feed-forward compensation on the stability of the three-phase-grid connected DC power supply, used for electrolysis application, equipped with small DC link capacitor. In case of weak grid condition, the system...

  5. Resilience of electricity grids against transmission line overloads under wind power injection at different nodes.

    Science.gov (United States)

    Schiel, Christoph; Lind, Pedro G; Maass, Philipp

    2017-09-14

    A steadily increasing fraction of renewable energy sources for electricity production requires a better understanding of how stochastic power generation affects the stability of electricity grids. Here, we assess the resilience of an IEEE test grid against single transmission line overloads under wind power injection based on the dc power flow equations and a quasi-static grid response to wind fluctuations. Thereby we focus on the mutual influence of wind power generation at different nodes. We find that overload probabilities vary strongly between different pairs of nodes and become highly affected by spatial correlations of wind fluctuations. An unexpected behaviour is uncovered: for a large number of node pairs, increasing wind power injection at one node can increase the power threshold at the other node with respect to line overloads in the grid. We find that this seemingly paradoxical behaviour is related to the topological distance of the overloaded line from the shortest path connecting the wind nodes. In the considered test grid, it occurs for all node pairs, where the overloaded line belongs to the shortest path.

  6. World's longest underwater line part of new dc transmission link

    Energy Technology Data Exchange (ETDEWEB)

    1967-04-01

    The world's seventh dc transmission system including the world's longest underwater power cable is now operative. The system, linking the Italian Mainland with Sardinia, was designed and engineered by the English Electric Co. Ltd. It will ensure a constant power supply for Sardinia and allow export of 200 MW of power to the Tuscany area in Italy. Proving test began on the link in Decmeber and continued until full demand is made on it from Italy.

  7. ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    Science.gov (United States)

    Schoenfeld, A. D.; Yu, Y.

    1973-01-01

    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.

  8. Power Talk for Multibus DC MicroGrids

    DEFF Research Database (Denmark)

    Angjelichinoski, Marko; Stefanovic, Cedomir; Popovski, Petar

    2016-01-01

    We study a communication framework for nonlinear multibus DC MicroGrids based on a deliberate modification of the parameters of the primary control and termed power talk. We assess the case in which the information is modulated in the deviations of reference voltages of the primary control loops...

  9. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    Science.gov (United States)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  10. Triple voltage dc-to-dc converter and method

    Science.gov (United States)

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  11. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    Science.gov (United States)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-04-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.

  12. Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1

    Science.gov (United States)

    Lee, F. C.; Mahmoud, M. F.; Yu, Y.

    1980-01-01

    The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.

  13. Impact of Negative Reactance on Definiteness of B-Matrix and Feasibility of DC Power Flow

    DEFF Research Database (Denmark)

    Ding, Tao; Bo, Rui; Yang, Yongheng

    2018-01-01

    This paper reports an essential phenomenon on the existence of “negative reactance” in practical power system models. The negative reactance issue is important, as it could affect the definiteness of the B admittance matrix of power networks and the feasibility of DC power flow. With the graph th...... in “physical dis-connectivity” and make the linear system singular, so that the DC power flow will be infeasible. The results on several test systems show that the location and value of the negative reactance affect the DC power flow feasibility....

  14. A Droop Line Tracking Control for Multi-terminal VSC-HVDC Transmission System

    DEFF Research Database (Denmark)

    Irnawan, Roni; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2018-01-01

    Generally, a voltage-sourced converter (VSC) within a multi-terminal HVDC (MTDC) system can be operated either in constant DC voltage, constant flow (AC active power or DC current) or DC voltage droop control. These control modes can be easily represented as the droop characteristic line with dif......Generally, a voltage-sourced converter (VSC) within a multi-terminal HVDC (MTDC) system can be operated either in constant DC voltage, constant flow (AC active power or DC current) or DC voltage droop control. These control modes can be easily represented as the droop characteristic line...

  15. A Comprehensive Analysis and Hardware Implementation of Control Strategies for High Output Voltage DC-DC Boost Power Converter

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2017-01-01

    Full Text Available Classical DC-DC converters used in high voltage direct current (HVDC power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I and fuzzy logic closed-loop controller to get high and stable output voltage. Complete hardware prototype of EHV is implemented and experimental tasks are carried out with digital signal processor (DSP TMS320F2812. The control algorithms P-I, fuzzy logic and the pulse-width modulation (PWM signals for N-channel MOSFET device are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions.

  16. DC switch power supply for vacuum-arc coatings deposition

    International Nuclear Information System (INIS)

    Zalesskij, D.Yu.; Volkov, Yu.Ya.; Vasil'ev, V.V.; Kozhushko, V.V.; Luchaninov, A.A.; Strel'nitskij, V.E.

    2008-01-01

    Special DC Switch Power Supply for vacuum-arc deposition was developed and tested in the mode of depositing Al and AlN films. Maximum output power was 6 kW, maximum output current - 120 A, open-circuit voltage - 150 V. The Power Supply allows to adjust and stabilize output current in a wide range. Testing of the Power Supply revealed an advantages over the standard 'Bulat-6' power supply, especially for deposition of non-conductive AlN films.

  17. Modeling and Simulation of DC Power Electronics Systems Using Harmonic State Space (HSS) Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    based on the state-space averaging and generalized averaging, these also have limitations to show the same results as with the non-linear time domain simulations. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling......For the efficiency and simplicity of electric systems, the dc based power electronics systems are widely used in variety applications such as electric vehicles, ships, aircrafts and also in homes. In these systems, there could be a number of dynamic interactions between loads and other dc-dc....... Through this method, the required computation time and CPU memory for large dc power electronics systems can be reduced. Besides, the achieved results show the same results as with the non-linear time domain simulation, but with the faster simulation time which is beneficial in a large network....

  18. Lifetime Estimation of DC-link Capacitors in a Single-phase Converter with an Integrated Active Power Decoupling Module

    DEFF Research Database (Denmark)

    Ma, Siyuan; Wang, Haoran; Tang, Junchaojie

    2016-01-01

    In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC-link capa......In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC......-link capacitor capacitance can be decreased. However, few research is about the effect of DC side and AC side decoupling on the DC-link capacitor reliability considering its electro-thermal stresses. This paper presents a quantitative analysis on the lifetime of capacitors with power decoupling circuits...... at the DC side and AC side, respectively. The ripple current spectrum of the capacitors is obtained by double Fourier analysis of a H-bridge inverter with natural sampling PWM modulation. A study case is demonstrated by a 2,000 W H-bridge inverter with 400 V DC-link voltage....

  19. Advanced DC/DC converters

    CERN Document Server

    Luo, Fang Lin

    2003-01-01

    DC/DC conversion techniques have undergone rapid development in recent decades. With the pioneering work of these authors, DC/DC converters have now moved into their sixth generation. This book offers a concise, practical presentation of DC/DC converters, summarizing the spectrum of conversion tecnologies and presentingmany new ideas and more than 100 new topologies. Nowhere else in the literature are DC/DC converters so logically sorted and systematically introduced, and nowhere else can readers find detailed information on prototype topologies that represent a major contribution to modern power engineering. More than 320 figures, 60 tables, and 500 formulae facilitate understand and provide precise data.

  20. Voltage ripple compensation for grid connected electrolyser power supply using small DC link capacitor

    DEFF Research Database (Denmark)

    Török, Lajos; Mathe, Laszlo; Munk-Nielsen, Stig

    2014-01-01

    The purpose of this work was to investigate a three-phase-grid connected power supply using small DC link capacitor for electrolyser application. The hydrogen generation system requires low voltage and high current power supply. Thus the structure of the 3-phase power supply is defined as follows......: a three phase rectification, a small DC-link capacitor and a phase-shifted full-bridge converter with current doubler rectification. Design constraints and control problems are investigated. The advantages and problems caused by the use of small DC link capacitor are presented. The control of the system...

  1. FPGA based control system for -100 kV, 25 A Crowbarless DC power supply

    International Nuclear Information System (INIS)

    Upadhyay, R.; Tripathi, A.; Badapanda, M.K.; Lad, M.

    2015-01-01

    FPGA based digital control system has been developed for -100 kV, 25 A solid state modular crowbarless DC klystron bias power supply of 1 MW, 352.2 MHz RF test stand. The control system has capability to operate this power supply either in CW or pulse mode. Central controller, PSM controller and graphical user interface are key parts of this control system. Central controller monitors the status of various subsystems of this power supply like 11 kV step start unit, four numbers of main transformers each having 44 numbers of secondary windings and 176 numbers of switch power modules for deciding the number of power modules to be put ON and their duty cycles depending on the set output voltage and current. PSM controller sends appropriate control signal to the switch power modules through fibre optic lines and communicates it to the central controller. Linux based graphical user interface has been developed which enables the user to set the operating parameters along with their trip limits and displays the information of critical parameters of this power supply on a local touch screen panel. Provision for remote control and supervision is also provided through a separate PC connected to the main control system via Ethernet. The control system has capability to trip the power supply within 5 μsec in case any parameter exceeds its set limit. Suitable data logging feature is incorporated for offline fault analysis. The control system architecture along with its software protection interlocks are presented in this paper. The performance of the control system has been verified during operation of -100 kV, 25 A DC power supply with 1 MW, 352.2 MHz klystron amplifier. (author)

  2. Performance evaluation of directly photovoltaic powered DC PM (direct current permanent magnet) motor – propeller thrust system

    International Nuclear Information System (INIS)

    Atlam, Ozcan; Kolhe, Mohan

    2013-01-01

    Photovoltaic (PV) powered directly coupled electro-mechanical system has wide applications (e.g. PV powered cooling fans in green houses, PV water pumping system, solar vehicles). The objective of this work is to analyse the operation of directly PV powered DC PM (direct current permanent magnet) motor – propeller system for selection of motor parameters. The performance of such system mainly depends on the incident solar radiation, operating cell temperature, DC motor and propeller load parameters. It is observed that the operating points of the PV DC PM motor – propeller system matches very closely with the maximum power points (MPPs) of the PV array, if the DC PM motor – propeller parameters have been properly selected. It is found that for a specific application of such type of system, matching of torque–speed operating points with respect to the maximum power points of PV array are very important. It is ascertained through results that the DC PM motor's armature resistance, magnetic field constant, starting current to overcome the starting torque and torque coefficient are the main parameters. In designing a PV powered DC PM motor for a specific application, selection of these parameters are important for maximum utilization of the PV array output. The results of this system are useful for designing of directly PV powered DC PM motor's for aerodynamic applications. - Highlights: • We analyse the performance of directly PV powered DC PM motor – propeller system. • We examine PV electro-mechanical system for selection of DC motor parameters. • Matching of torque–speed curve to maximum power points of PV array is important

  3. Power factor correction (PFC) converters feeding brushless DC ...

    African Journals Online (AJOL)

    This paper presents a comprehensive study of power factor correction (PFC) converters for feeding brushless DC (BLDC) motor drive. This work explores various configurations of PFC converters which are classified into five different categories of non-isolated, bridgeless (BL) non-isolated, isolated, BL-isolated PFC ...

  4. Characteristic Analysis of DC Electric Railway Systems with Superconducting Power Cables Connecting Power Substations

    Science.gov (United States)

    Ohsaki, H.; Matsushita, N.; Koseki, T.; Tomita, M.

    2014-05-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  5. Characteristic analysis of DC electric railway systems with superconducting power cables connecting power substations

    International Nuclear Information System (INIS)

    Ohsaki, H; Matsushita, N; Koseki, T; Tomita, M

    2014-01-01

    The application of superconducting power cables to DC electric railway systems has been studied. It could leads to an effective use of regenerative brake, improved energy efficiency, effective load sharing among the substations, etc. In this study, an electric circuit model of a DC feeding system is built and numerical simulation is carried out using MATLAB-Simulink software. A modified electric circuit model with an AC power grid connection taken into account is also created to simulate the influence of the grid connection. The analyses have proved that a certain amount of energy can be conserved by introducing superconducting cables, and that electric load distribution and concentration among the substations depend on the substation output voltage distribution.

  6. PIII Plasma Density Enhancement by a New DC Power Source

    International Nuclear Information System (INIS)

    Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Granda-Gutierrez, E. E.; Piedad-Beneitez, A. de la; Munoz-Castro, A. E.; Valencia A, R.; Barocio, S. R.; Mercado-Cabrera, A.; Pena-Eguiluz, R.

    2006-01-01

    In practical terms, those plasmas produced by a DC voltage power supply do not attain densities above the 108 to 109 cm-3 band. Here we present a power supply, controlled in current and voltage, which has been successfully designed and constructed delivering plasma densities in the orders of 109 - 1010 cm-3. Its experimental performance test was conducted within one toroidal and one cylindrical chambers capable of 29 and 35 litres, respectively, using nitrogen gas. The DC plasma was characterized by a double electric probe. Several physical phenomena present in the PIII process have been keenly investigated including plasma sheath dynamics, interaction of plasma and surface, etc. In this paper we analyze the effect of the implantation voltage, plasma density and pulse time in the PIII average heating power and fluence density

  7. Economic Droop Scheme for Decentralized Power Management in DC Microgrids

    Directory of Open Access Journals (Sweden)

    E. Alizadeh

    2016-12-01

    Full Text Available This paper proposes an autonomous and economic droop control scheme for DC microgrid application. In this method, a cost-effective power sharing technique among various types of DG units is properly adopted. The droop settings are determined based on an algorithm to individually manage the power management without any complicated optimization methods commonly applied in the centralized control method. In the proposed scheme, the system retains all the advantages of the traditional droop method while minimizes the generation costs of the DC microgrid. In the proposed method, all DGs are classified in a sorting rule based on their total generation cost and the reference voltage of their droop equations is then determined. The proposed scheme is applied to a typical DC microgrid consisting of four different types of DGs and a controllable load. The simulation results are presented to verify the effectiveness of the proposed method using MATLAB/SIMULINK software.

  8. Experience from design, prototyping and production of a DC-DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    International Nuclear Information System (INIS)

    Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Preuten, M.; Rauch, M.; Schmitz, S.; Wlochal, M.

    2016-01-01

    The CMS collaboration has adopted a DC-DC conversion powering scheme for the Phase-1 Upgrade of its pixel detector. DC-DC buck converters with a conversion ratio of around 3 are installed on the support structures, outside of the sensitive tracking region, requiring a re-design of the low and high voltage distribution to the pixel modules. After several years of R and D, the project has entered the production phase. A total of 1800 DC-DC converters are being produced, and rigorous quality assurance and control is being employed during the production process. The testing program is outlined, results from mass production are presented and issues that have been encountered are described. In addition, two system level challenges, namely the choice of output voltage in the presence of large, load-dependent voltage drops, and the thermal management required to remove the heat load caused by the DC-DC converters, are discussed

  9. A novel wireless power and data transmission AC to DC converter for an implantable device.

    Science.gov (United States)

    Liu, Jhao-Yan; Tang, Kea-Tiong

    2013-01-01

    This article presents a novel AC to DC converter implemented by standard CMOS technology, applied for wireless power transmission. This circuit combines the functions of the rectifier and DC to DC converter, rather than using the rectifier to convert AC to DC and then supplying the required voltage with regulator as in the transitional method. This modification can reduce the power consumption and the area of the circuit. This circuit also transfers the loading condition back to the external circuit by the load shift keying(LSK), determining if the input power is not enough or excessive, which increases the efficiency of the total system. The AC to DC converter is fabricated with the TSMC 90nm CMOS process. The circuit area is 0.071mm(2). The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz.

  10. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Taniguchi, Haruto; Ueda, Kiyotaka

    1980-01-01

    HVDC transmission directly from a nuclear power plant is expected as one of the bulk power transmission systems from distant power generating area. Successively from the analysis of HVDC transmission from BWR-type nuclear power plant, this report discusses dynamic response characteristics of HVDC transmission (double poles, two circuits) from PWR type nuclear power plant due to dc-line faults (DC-1LG, 2LG) and ac-line faults (3LG) near inverter station. (author)

  11. Loss optimizing low power 50 Hz transformers intended for AC/DC standby power supplies

    DEFF Research Database (Denmark)

    Nielsen, Nils

    2004-01-01

    This paper presents the measured efficiency on selected low power conventional 50 Hz/230 V-AC transformers. The small transformers are intended for use in 1 W@5 V-DC series- or buck-regulated power supplies for standby purposes. The measured efficiency is compared for cheap off-the-self transformer...

  12. Virtual Impedance Based Stability Improvement for DC Microgrids with Constant Power Loads

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Huang, Lipei

    2014-01-01

    DC microgrid provides an efficient way to integrate different kinds of renewable energy sources with DC couplings. In this paper, in order to improve the stability of DC microgrids with constant power loads (CPLs), a virtual impedance based method is proposed. The CPLs have inherent instability....... To validate the stability with the above stabilizers in a DC microgrid with parallel interfacing converters and CPL, the impedance matching approach is employed. The output impedance of the source converter and input impedance of the load are calculated respectively, and the influence of droop control...

  13. Line voltage distortions due to operation of the power supply devices required for plasma heating and magnetic field generation in the W7X thermonuclear fusion experiment

    International Nuclear Information System (INIS)

    Werner, F.

    1997-03-01

    The operation of the W7-X plasma heating devices requires high voltage DC power supplies with a total electrical power of 40 MVA. For this purpose twelve-pulse AC/DC converters are projected. These converters enforce a non sinusoidal line current, whose harmonics are causing corresponding line voltage distortions. To evaluate the extent of these distortions, the reaction of the harmonic currents on the AC line, is investigated by numerical network analysis. This is done for both, the 20 kV-junction point of the converters and the 110 kV-line terminal of the electricity supply company. Furthermore the design of LC series-resonant circuits, projected for power factor correction and damping of the harmonic content of the line voltage, has been verified. The additional operation of the 1.5 MVA magnet power supplies also contributes, even though to a much smaller extent, to the line voltage distortion. The influence of these twelve-pulse AC/DC converters was investigated too. The numerical calculations have been done with the aid of the network simulation program 'Pspice'. In an equivalent circuit the transmission line network and the transformers are represented by their inductances respectively equivalent inductances. The rectifier units are simulated by a number of current sources, producing the current harmonics in amplitude, frequency and phase. The harmonics amplitudes of the plasma heating power supplies are frequency and phase. The harmonics amplitudes of the plasma heating power supplies are measured values given by the manufacturer. For the magnet power supplies, the harmonics are derived from the theoretical step like I(t) current shape by Fourier series decomposition. Due to the action of the LC circuits the achieved characteristic voltage quality values are far below the permissible values corresponding to the recommendations of VDE 0160. (orig.) [de

  14. Study of Power Flow Algorithm of AC/DC Distribution System including VSC-MTDC

    Directory of Open Access Journals (Sweden)

    Haifeng Liang

    2015-08-01

    Full Text Available In recent years, distributed generation and a large number of sensitive AC and DC loads have been connected to distribution networks, which introduce a series of challenges to distribution network operators (DNOs. In addition, the advantages of DC distribution networks, such as the energy conservation and emission reduction, mean that the voltage source converter based multi-terminal direct current (VSC-MTDC for AC/DC distribution systems demonstrates a great potential, hence drawing growing research interest. In this paper, considering losses of the reactor, the filter and the converter, a mathematical model of VSC-HVDC for the load flow analysis is derived. An AC/DC distribution network architecture has been built, based on which the differences in modified equations of the VSC-MTDC-based network under different control modes are analyzed. In addition, corresponding interface functions under five control modes are provided, and a back/forward iterative algorithm which is applied to power flow calculation of the AC/DC distribution system including VSC-MTDC is proposed. Finally, by calculating the power flow of the modified IEEE14 AC/DC distribution network, the efficiency and validity of the model and algorithm are evaluated. With various distributed generations connected to the network at appropriate locations, power flow results show that network losses and utilization of transmission networks are effectively reduced.

  15. DC Vs AC - War Of Currents For Future Power Systems A HVDC Technology Overview

    Directory of Open Access Journals (Sweden)

    Anil K. Rai

    2015-08-01

    Full Text Available DC vs AC discussion began in 1880s with development of first commercial power transmission in Wall Street New York. Later when AC technology came into notice by efforts of inventor and researcher Sir Nicola Tesla soon the advantages of AC transmission and AC devices overtook the DC technology. It was hoped that DC technology had lost battle of currents. Today with researches going on FACTS devices and bulk power transmission HVDC has again gained a reputation in power sector. Solution of this centuries old debate is to develop HVDC systems that assists HVAC systems for better performance stability and control

  16. Simulation analysis of cascade controller for DC-DC bank converter

    International Nuclear Information System (INIS)

    Mahar, M.A.; Abro, M.R.; Larik, A.S.

    2009-01-01

    Power electronic converters are periodic variable structure systems due to their switched operation. During the last few decades several new dc-dc converter topologies have emerged. Buck converter being simple in topology, has recently drawn attraction of many researchers. Basically, a buck converter is highly underdamped system. In order to overcome the developed oscillations in output of this converter, various control techniques have been proposed. However, these techniques are fraught with many drawbacks. This paper focus on a cascade controller based buck topology. Steady state analysis is given in this paper which shows output voltage and inductor current in detail. Dynamic analysis for line and load variation is also presented. The buck topology is implemented and simulated in MATLAB/Simulink. The simulated results are presented. (author)

  17. A novel powering scheme based on DC-DC conversion for the luminosity upgrades of the CMS tracking system at CERN

    International Nuclear Information System (INIS)

    Sammet, Jan

    2014-01-01

    The instantaneous luminosity of the LHC is expected to reach 2 x 10 34 s -1 cm -2 and 5 x 10 34 s -1 cm -2 around the years 2019 and 2024, respectively. After the second upgrade the LHC will be referred to as the High Luminosity LHC (HL-LHC). In order to benefit from the higher luminosities, CMS foresees to upgrade its pixel detector during an extended winter shutdown of the LHC at the end of 2016 and the beginning of 2017. During a long shutdown of the LHC over the years 2022 and 2023, it is foreseen to install a completely new tracking system in CMS. Both upgrades are expected to result in the need to provide more electric current to the detector. However, power losses in cables already contribute 50% to the power consumption of the present tracker and rise with the current squared. Since no more space is available for cables, and thicker cables within the tracking volume spoil the material budget of the detector, new powering schemes are considered mandatory. CMS foresees the use of radiation tolerant DC-DC converters on the front-end to reduce power losses on cables. This thesis describes the new powering scheme of the CMS pixel detector and discusses the options with respect to a new strip tracker. A radiation and magnetic field tolerant DC-DC converter prototype, the PIXV8A, is introduced and the research that led to its development is summarised. The PIXV8A has been developed for the application in the pixel upgrade and is also a first approach for a DC-DC converter for the later upgrade of the CMS tracking system. The PIXV8A makes use of the AMIS4 chip, which has been proven to stay operational for total ionising doses of up to 1 MGy and fluences of up to 10 15 n eq /cm 2 . With an input voltage of 10 V, the PIXV8A converter provides an efficiency of about 80% for output voltages of 2.5 V and 3.0 V. Within this thesis the robustness of the novel powering scheme and the qualification of the PIXV8A are demonstrated in several tests, including system test

  18. Startup experience with the MFTF-B ECRH 100 kV dc power supply

    International Nuclear Information System (INIS)

    Bishop, S.R.; Goodman, R.A.; Wilson, J.H.

    1983-01-01

    One of the 24 Accel dc Power Supplies (ADCPS) originally intended for the Mirror Fusion Test Facility (MFTF-B) Neutral Beam Power Supply (NBPS) System has been converted to provide negative polarity output at 90 kV with a load current of 64 A dc. The load duty cycle is a pulse of 30-seconds duration with a pulse repetition period of five minutes. A new control system has been built which will serve as a prototype for the MFTF-B ADCPS controls, and a test setup was built which will be used to test the ADCPS. The Electron Cyclotron Resonance Heating (ECRH) dc Power Supply (DCPS) has been tested under both no-load and dummy-load conditions, under remote control, without notable problems. Test results indicate that the power supply should be reliable and safe to operate, and will meet the load duty requirements

  19. Startup experience with the MFTF-B ECRH 100 kV dc power supply

    International Nuclear Information System (INIS)

    Bishop, S.R.; Goodman, R.A.; Wilson, J.H.

    1983-01-01

    One of the 24 Accel DC Power Supplies (ADCPS) originally intended for the Mirror Fusion Test Facility (MFTF-B) Neutral Beam Power Supply (NBPS) System has been converted to provide negative polarity output at 90 kV with a load current of 64 A dc. The load duty cycle is a pulse of 30-seconds duration with a pulse repetition period of five minutes. A new control system has been built which will serve as a prototype for the MFTF-B ADCPS controls, and a test setup was built which will be used to test the ADCPS. The Electron Cyclotron Resonance Heating (ECRH) DC Power Supply (DCPS) has been tested under both no-load and dummy-load conditions, under remote control, without notable problems. Test results indicate that the power supply should be reliable and safe to operate, and will meet the load duty requirements

  20. Optimizing efficiency on conventional transformer based low power AC/DC standby power supplies

    DEFF Research Database (Denmark)

    Nielsen, Nils

    2004-01-01

    This article describes the research results for simple and cheap methods to reduce the idle- and load-losses in very low power conventional transformer based power supplies intended for standby usage. In this case "very low power" means 50 Hz/230 V-AC to 5 V-DC@1 W. The efficiency is measured...... on two common power supply topologies designed for this power level. The two described topologies uses either a series (or linear) or a buck regulation approach. Common to the test power supplies is they either are using a standard cheap off-the-shelf transformer, or one, which are loss optimized by very...

  1. Feasibility study on the interconnection of traction and other power line infrastructures; Machbarkeitsstudie zur Verknuepfung von Bahn- und Energieleitungsinfrastrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Lutz [Hannover Univ. (Germany). Inst. fuer Energieversorgung und Hochspannungstechnik; Stephan, Arnd [Technische Univ. Dresden (Germany). Professur Elektrische Bahnen; Weyer, Hartmut [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Deutsches und Internationales Berg- und Energierecht

    2013-06-15

    It was the purpose of the feasibility study to find out if and to what extent the existing transmission route potentials of the 16.7 Hz traction power network (DB Energie GmbH) can be used for the installation of new transmission lines of the standard 50 Hz power supply system. Of importance is here the question if and in which way the integration of new three-phase or DC overhead lines or cable systems in existing traction power routes is technically feasible, and to what extent such interconnection offers a potential for the acceleration of the planning and approval processes. (orig.)

  2. Schenkel circuit and its characteristics. DC power source for NHV ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Toshio; Yamada, Masahiro; Nakazawa, Makoto; Iwamoto, Eiji [Nissin - High Voltage Co. Ltd., Kyoto (Japan)

    1996-12-01

    For DC high voltage source, it is necessary to have sufficient power capacity to suit for electric current capacity required for operational load and further sufficient power stability when adapting it to an ion accelerator. In this paper, outlines of various DC high voltage forming circuits using generally and characteristics of Schenkel type DC source adapted to ion accelerator were described. Characteristics of the NHV Schenkel type DC electric source on actual circuit construction is shown as follows; (1) Whole circuit construction is intended to improve its discharge resistance by assembly with gaps and resistors. (2) Stability caused by geometric shape specific to the Schenkel circuit is improved by adopting integral moldings of aluminum for its structural material. And, (3) Upgrading of cooling effect, and miniaturization and forming heat loss reduction of system are intended by adopting all aluminum to increasing pressure transformer storing tank for countermeasure of vortex current. (G.K.)

  3. Schenkel circuit and its characteristics. DC power source for NHV ion accelerator

    International Nuclear Information System (INIS)

    Kimura, Toshio; Yamada, Masahiro; Nakazawa, Makoto; Iwamoto, Eiji

    1996-01-01

    For DC high voltage source, it is necessary to have sufficient power capacity to suit for electric current capacity required for operational load and further sufficient power stability when adapting it to an ion accelerator. In this paper, outlines of various DC high voltage forming circuits using generally and characteristics of Schenkel type DC source adapted to ion accelerator were described. Characteristics of the NHV Schenkel type DC electric source on actual circuit construction is shown as follows; 1) Whole circuit construction is intended to improve its discharge resistance by assembly with gaps and resistors. 2) Stability caused by geometric shape specific to the Schenkel circuit is improved by adopting integral moldings of aluminum for its structural material. And, 3) Upgrading of cooling effect, and miniaturization and forming heat loss reduction of system are intended by adopting all aluminum to increasing pressure transformer storing tank for countermeasure of vortex current. (G.K.)

  4. Nonlinear control of voltage source converters in AC-DC power system.

    Science.gov (United States)

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Research & Implementation of AC - DC Converter with High Power Factor & High Efficiency

    Directory of Open Access Journals (Sweden)

    Hsiou-Hsian Nien

    2014-05-01

    Full Text Available In this paper, we design and develop a high power factor, high efficiency two-stage AC - DC power converter. This paper proposes a two-stage AC - DC power converter. The first stage is boost active power factor correction circuit. The latter stage is near constant frequency LLC resonant converter. In addition to traditional LLC high efficiency advantages, light-load conversion efficiency of this power converter can be improved. And it possesses high power factor and near constant frequency operating characteristics, can significantly reduce the electromagnetic interference. This paper first discusses the main structure and control manner of power factor correction circuit. And then by the LLC resonant converter equivalent model proceed to circuit analysis to determine the important parameters of the converter circuit elements. Then design a variable frequency resonant tank. The resonant frequency can change automatically on the basis of the load to reach near constant frequency operation and a purpose of high efficiency. Finally, actually design and produce an AC – DC power converter with output of 190W to verify the characteristics and feasibility of this converter. The experimental results show that in a very light load (9.5 W the efficiency is as high as 81%, the highest efficiency of 88% (90 W. Full load efficiency is 87%. At 19 W ~ 190 W power changes, the operating frequency change is only 0.4 kHz (AC 110 V and 0.3 kHz (AC 220 V.

  6. Reduction of dc-link capacitance for three-phase three-wire shunt active power filters

    DEFF Research Database (Denmark)

    Jin, Chi; Tang, Yi; Wang, Peng

    2013-01-01

    . This paper presents the concept of dc-link compensator (DLC) that aims to decouple the harmonic power from the dc-link of APF. With proper system sizing and design, most of the harmonic power can be eliminated by this DLC circuit and very small electrolytic capacitors or even film type capacitors can be used...

  7. Power line communications theory and applications for narrowband and broadband communications over power lines

    CERN Document Server

    Ferreira, Hendrik C; Newbury, John; Swart, Theo G

    2010-01-01

    Power Line Communications (PLC) is a promising emerging technology, which has attracted much attention due to the wide availability of power distribution lines. This book provides a thorough introduction to the use of power lines for communication purposes, ranging from channel characterization, communications on the physical layer and electromagnetic interference, through to protocols, networks, standards and up to systems and implementations. With contributions from many of the most prominent international PLC experts from academia and industry, Power Line Communications brings togeth

  8. Novel composite resonance DC-DC converter with voltage doubler rectifier

    OpenAIRE

    Kato, Hisatsugu; Matsuo, Hirohumi; Eguchi, Masaki; Sakamoto, Yukitaka; Nakaishi, Masaki

    2009-01-01

    This paper deals with a novel composite resonance DC-DC converter with the voltage doubler rectifier, which is developed to be applied to the power conditioner of the photovoltaic generation system. The proposed DC-DC converter has the current and voltage resonance functions. Therefore, the output voltage regulation can be achieved for the large variations of the input voltage and load. Also, this converter has the high power efficiency. The maximum power efficiency 96.1% can be realized.

  9. An improved power control strategy for hybrid AC-DC microgrids

    DEFF Research Database (Denmark)

    Baharizadeh, Mehdi; Karshenas, Hamid Reza; Guerrero, Josep M.

    2018-01-01

    This paper presents a new droop-based control strategy for hybrid microgrids (HMG) with improved power sharing. When ac microgrids (AC-MG) and dc microgrids (DC-MG) are present in a distribution grid, there is an opportunity to interconnect them via an interlinking converter (IC) and form a HMG......, the possibility of participation of IC in AC-MG reactive power adds some complexity to a HMG control system. In this paper, a new decentralized control strategy is presented for a HMG which relies on regulating the voltage magnitude of a common bus in each microgrid. In this regard, new droop characteristics...... for sources across both microgrids as well as IC are proposed. The proposed droop characteristics result in better active/reactive power sharing across both microgrids and at the same time results in better voltage regulation. The derivation of new droop characteristics is thoroughly discussed in this paper...

  10. Frequency Domain Modeling and Simulation of DC Power Electronic Systems Using Harmonic State Space Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    For the efficiency and simplicity of electric systems, the dc power electronic systems are widely used in a variety of applications such as electric vehicles, ships, aircraft and also in homes. In these systems, there could be a number of dynamic interactions and frequency coupling between network...... with different switching frequency or harmonics from ac-dc converters makes that harmonics and frequency coupling are both problems of ac system and challenges of dc system. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling...

  11. A Control Strategy of DC Building Microgrid Connected to the Neighborhood and AC Power Network

    Directory of Open Access Journals (Sweden)

    Thi Thuong Huyen Ma

    2017-05-01

    Full Text Available Recently, the use of DC microgrid distribution system has become more attractive than traditional AC systems due to their energy efficiency and ability to easily integrate with renewable energy sources and batteries. This paper proposes a 500 V DC microgrid which consists of a 20 kWp photovoltaic panel, batteries, and DC loads. A hierarchical control strategy to ensure balance power of the DC microgrid and the maintenance of common DC bus voltage is presented. The capability of exchanging power energy of the microgrid with the power system of neighborhood buildings is also considered. Typical operation modes are simulated in the Matlab/simulink environment to confirm the good performance of the controllers and the efficiency of appropriately controlling the charge–discharge of the battery system. This research is expected to bring benefits to the design and operation of the system, such as reducing the capacity of batteries, increasing the self-supply of buildings, and decreasing the electricity demand from the AC grid.

  12. Stability Enhancement Based on Virtual Impedance for DC Microgrids with Constant Power Loads

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.

    2015-01-01

    In this paper, a converter-based DC microgrid is studied. By considering the impact of each component in DC microgrids on system stability, a multi-stage configuration is employed, which includes the source stage, interface converter stage between buses and common load stage. In order to study th....... It can be seen that by using the proposed stabilizers, the unstable poles induced by the CPLs are forced to move into the stable region. The proposed method is verified by the MATLAB/Simulink model of multi-stage DC microgrids with three distributed power generation units.......In this paper, a converter-based DC microgrid is studied. By considering the impact of each component in DC microgrids on system stability, a multi-stage configuration is employed, which includes the source stage, interface converter stage between buses and common load stage. In order to study...... the overall stability of the above DC microgrid with constant power loads (CPLs), a comprehensive small-signal model is derived by analyzing the interface converters in each stage. The instability issue induced by the CPLs is revealed by using the criteria of impedance matching. Meanwhile, virtual...

  13. DC-Link Compensation Method for Slim DC Link Drives Fed by Soft Grid

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Rosendahl Andersen, Henrik; Lazar, Radu

    2010-01-01

    Slim DC-link PWM (AC) drives for lowperformance applications are emerging on the market. Such drives equipped with a small DC-link capacitance exhibit instability tendencies, if installed on a soft line, giving a degraded performance. The total harmonic distortion (THD) and the partially weighted...... harmonic distortion (PWHD) of the line current are degraded, if resonance between the line impedance and the DC-link capacitance occurs. Likewise, the motor performance is affected negatively giving extra torque ripple, vibration and acoustic-noise emission. This paper proposes a novel DC-link compensation...

  14. Design considerations for high current regulated DC power supplies with reference to 600 kW variable DC power supply

    International Nuclear Information System (INIS)

    Ushakumari; Garud, A.N.; Nadkarni, S.S.

    1980-01-01

    High current regulated dc power supplies find increasing applications in industry and research. The power rating of these supplies vary from few killowatts to megawatts. The general requirements of these supplies for various applications and the techniques used to achieve the desired performance are presented. The design and selection of various circuit blocks namely the rectifier transformer, multiphase rectifier arrangement, SCR paralleling and current sensing techniques, are discussed in detail for a 600 killowatt current controlled supply developed in the Bhabha Atomic Research Centre, Bombay, and used for the thermal studies of reactor components. The power supply incorporates paralleled phase controlled thyristors with a closed loop feedback circuitary to achieve a current stability of 0.1% and smooth output variation from 10 to 100%. (auth.)

  15. Converter Power Density Increase using Low Inductive Integrated DC-link Capacitor/Bus

    DEFF Research Database (Denmark)

    Trintis, Ionut; Franke, Toke; Rannested, Bjørn

    2015-01-01

    The power losses in switching devices have a direct effect on the maximum converter power. For a voltage source converter, the DC-link bus has a major influence on the power loss and safe operating area of the power devices. The Power Ring Film CapacitorTM integrated with an optimized bus structu...

  16. Fixed switching frequency applied in single-phase boost AC to DC converter

    International Nuclear Information System (INIS)

    Chen, T.-C.; Ren, T.-J.; Ou, J.-C.

    2009-01-01

    The fixed switching frequency control for a single-phase boost AC to DC converter to achieve a sinusoidal line current and unity power factor is proposed in this paper. The relation between the line current error and the fixed switching frequency was developed. For a limit line current error, the minimum switching frequency for a boost AC to DC converter can be achieved. The proposed scheme was implemented using a 32-bit digital signal processor TMS320C32. Simulations and experimental results demonstrate the feasibility and fast dynamic response of the proposed control strategy.

  17. Resonance reduction for AC drives with small capacitance in the DC link

    DEFF Research Database (Denmark)

    Máthé, Lászlo; Török, Lajos; Wang, Dong

    2016-01-01

    Pulse Width Modulated AC drives equipped with small DC-link capacitor are becoming an attractive solution for electric drive applications with moderate requirements for shaft dynamic performance. However, when these drives are fed from a weak grid a resonance between the line side impedance...... and the DC-link capacitor appears. Due to this resonance, the THD and the partially weighted harmonic distortion of the line currents are increased, which may rise compatibility problems with the AC line harmonic standards. By using vector control the motor drive is transformed into a constant power load...

  18. Assessment of safety engineering of circuits with dc micromotors

    Energy Technology Data Exchange (ETDEWEB)

    Pavlyuchenko, L.A.; Starchuk, S.E.

    1986-01-01

    Presents an assessment of safety engineering in d.c. micromotors operating as part of actuating devices in mining equipment. These micromotors should have RO (especially explosion proof) protection. The safety engineering should be assessed with an intermittent fault in the power line. Equations are given for calculation of the equivalent inductance of the micromotor circuit with an intermittent power line fault. If the circuit is not intrinsically safe, a diode in the forward direction is recommended for connection in series with the micromotor. If the power line is not intrinsically safe, a diode shunt is recommended. Comparative data for power sources (IBP) and micromotors (DPM, DPR, with permanent magnets) are given in tables. 4 refs.

  19. dc Arc Fault Effect on Hybrid ac/dc Microgrid

    Science.gov (United States)

    Fatima, Zahra

    The advent of distributed energy resources (DER) and reliability and stability problems of the conventional grid system has given rise to the wide spread deployment of microgrids. Microgrids provide many advantages by incorporating renewable energy sources and increasing the reliability of the grid by isolating from the main grid in case of an outage. AC microgrids have been installed all over the world, but dc microgrids have been gaining interest due to the advantages they provide over ac microgrids. However the entire power network backbone is still ac and dc microgrids require expensive converters to connect to the ac power network. As a result hybrid ac/dc microgrids are gaining more attention as it combines the advantages of both ac and dc microgrids such as direct integration of ac and dc systems with minimum number of conversions which increases the efficiency by reducing energy losses. Although dc electric systems offer many advantages such as no synchronization and no reactive power, successful implementation of dc systems requires appropriate protection strategies. One unique protection challenge brought by the dc systems is dc arc faults. A dc arc fault is generated when there is a gap in the conductor due to insulation degradation and current is used to bridge the gap, resulting in an arc with very high temperature. Such a fault if it goes undetected and is not extinguished can cause damage to the entire system and cause fires. The purpose of the research is to study the effect of the dc arc fault at different locations in the hybrid ac/dc microgrid and provide insight on the reliability of the grid components when it is impacted by arc faults at various locations in the grid. The impact of dc arc fault at different locations on the performance of the PV array, wind generation, and constant power loads (CPL) interfaced with dc/dc converters is studied. MATLAB/Simulink is used to model the hybrid ac/dc microgrid and arc fault.

  20. Six switches solution for single-phase AC/DC/AC converter with capability of second-order power mitigation in DC-link capacitor

    DEFF Research Database (Denmark)

    Liu, Xiong; Wang, Peng; Loh, Poh Chiang

    2011-01-01

    This paper proposes an approach for DC-link second-order harmonic power cancellation in single-phase AC/DC/AC converter with reduced number of switches. The proposed six-switch converter has two bridges with three switches in each of them, where the middle switch in each bridge is shared by the A...

  1. DESIGN OPTIMIZATION OF RESONANT DC-DC CONVERTERS

    OpenAIRE

    Belqasem Aljafari

    2016-01-01

    Resonant DC/DC converters are the class of converters, which have L-C resonant tank serving as a major part of the power conversion process. The fundamental concept of the resonant converter is that the circulating energy in an L-C resonant circuit is manageable by changing the operating frequency, and therefore the converter can condition the input power to the desired output voltage. The development in power conversion technology is steady demand for high power efficiency and high power den...

  2. Development of an On-Line Self-Tuning FPGA-PID-PWM Control Algorithm Design for DC-DC Buck Converter in Mobile Applications

    Directory of Open Access Journals (Sweden)

    Ahmed Sabah Al-Araji

    2017-08-01

    Full Text Available This paper presents a new development of an on-line hybrid self-tuning control algorithm of the Field Programmable Gate Array - Proportional Integral Derivative - Pulse Width Modulation (FPGA-PID-PWM controller for DC-DC buck converter which is used in battery operation of mobile applications. The main goal in this work is to propose structure of the hybrid Bees-PSO tuning control algorithm which has a capability of quickly and precisely searching in the global regions in order to obtain optimal gain parameters for the proposed controller to generate the best voltage control action to achieve the desired performance of the Buck converter output. Matlab simulation results and Xilinx development tool Integrated Software Environment (ISE experimental work show the robustness and effectiveness of the proposed on-line hybrid Bees-PSO tuning control algorithm in terms of obtaining smooth and unsaturated state voltage control action and minimizing the tracking voltage error of the Buck converter output. Moreover, the fitness evaluation number is reduced.

  3. An Efficiency-Optimized Isolated Bidirectional DC-DC Converter with Extended Power Range for Energy Storage Systems in Microgrids

    Directory of Open Access Journals (Sweden)

    Xiaolong Shi

    2012-12-01

    Full Text Available This paper proposes a novel extended-single-phase shift (ESPS control strategy of isolated bidirectional full-bridge DC-DC converters (IBDCs which are a promising alternative as a power electronic interface in microgrids with an additional function of galvanic isolation. Based on the mathematical models of ESPS control under steady-state conditions, detailed theoretical and experimental analyses of IBDC under ESPS control are presented. Compared with conventional single-phase-shift (CSPS control, ESPS control can greatly improve the efficiency of IBDCs in microgrids through decreasing current stress and backflow power considerably over a wide input and output voltage range under light and medium loads. In addition, ESPS control only needs to adjust one single phase-shift angel to control transmission power, thus it retains implementation simplicity in comparison with dual-phase-shift (DPS control for microgrid applications. Furthermore, an efficiency-optimized modulation scheme based on ESPS and CSPS control is developed in the whole power range of IBDC for power distribution in microgrids. A 10 kW IBDC prototype is constructed and the experimental results validate the effectiveness of the proposed control strategy, showing that the proposed strategy can enhance the overall efficiency up to 30%.

  4. The Development and Demonstration of a 360m/10 kA HTS DC Power Cable

    Science.gov (United States)

    Xiao, Liye

    With the quick development of renewable energy, it is expected that the electric power from renewable energy would be the dominant one for the future power grid. Due to the specialty of the renewable energy, the HVDC power transmission would be very useful for the transmission of electric power from renewable energy. DC power cable made of High Tc Superconductor (HTS) would be a possible alternative for the construction of HVDC power transmission system. In this chapter, we report the development and demonstration of a 360 m/10 kA HTS DC power cable and the test results.

  5. Gun power source for electron gun of 3 MeV DC accelerator

    International Nuclear Information System (INIS)

    Dewangan, S.; Sharma, D.K.; Nanu, K.

    2011-01-01

    In DC electron beam accelerator electron gun is situated at high voltage terminal which requires constant power irrespective of beam energy. Floating power source is required for gun. This paper describes the scheme of static gun power source derived from parallel coupled voltage multiplier column. (author)

  6. An Integrated Multifunctional Bidirectional AC/DC and DC/DC Converter for Electric Vehicles Applications

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2016-06-01

    Full Text Available This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs. The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for motor drive system and battery-charging system with a power pulsation reduction circuit. Simulation results in MATLAB/Simulink and experiments on a 30-kW motor drive and 3.3-kW AC/DC charging prototype validate the performance of the proposed technology. In addition, power losses, efficiency comparison and thermal stress for the integrated charger are illustrated. The results of the analyses show the validity of the advanced integrated charger for electric vehicles.

  7. Comparative Analysis of Semiconductor Power Losses of Galvanically Isolated Quasi-Z-Source and Full-Bridge Boost DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Kosenko Roman

    2015-07-01

    Full Text Available This paper compares semiconductor losses of the galvanically isolated quasi-Z-source converter and full-bridge boost DC-DC converter with active clamping circuit. Operation principle of both converters is described. Short design guidelines are provided as well. Results of steady state analysis are used to calculate semiconductor power losses for both converters. Analytical expressions are derived for all types of semiconductor power losses present in these converters. The theoretical results were verified by means of numerical simulation performed in the PSIM simulation software. Its add-on module “Thermal module” was used to estimate semiconductor power losses using the datasheet parameters of the selected semiconductor devices. Results of calculations and simulation study were obtained for four operating points with different input voltage and constant input current to compare performance of the converters in renewable applications, like photovoltaic, where input voltage and power can vary significantly. Power loss breakdown is detailed and its dependence on the converter output power is analyzed. Recommendations are given for the use of the converter topologies in applications with low input voltage and relatively high input current.

  8. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    Science.gov (United States)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  9. Generation-Side Power Scheduling in a Grid-Connected DC Microgrid

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Meng, Lexuan

    2015-01-01

    In this paper, a constrained mixed-integer programming model for scheduling the active power supplied by the generation units in storage-based DC microgrids is presented. The optimization problem minimizes operating costs taking into account a two-stage mode operation of the energy storage system...... so that a more accurate model for optimization of the microgrid operation can be obtained. The model is used in a particular grid-connected DC microgrid that includes two renewable energy sources and an energy storage system which supply a critical load. The results of the scheduling process...

  10. Research on DC-RF superconducting photocathode injector for high average power FELs

    International Nuclear Information System (INIS)

    Zhao Kui; Hao Jiankui; Hu Yanle; Zhang Baocheng; Quan Shengwen; Chen Jiaer; Zhuang Jiejia

    2001-01-01

    To obtain high average current electron beams for a high average power Free Electron Laser (FEL), a DC-RF superconducting injector is designed. It consists of a DC extraction gap, a 1+((1)/(2)) superconducting cavity and a coaxial input system. The DC gap, which takes the form of a Pierce configuration, is connected to the 1+((1)/(2)) superconducting cavity. The photocathode is attached to the negative electrode of the DC gap. The anode forms the bottom of the ((1)/(2)) cavity. Simulations are made to model the beam dynamics of the electron beams extracted by the DC gap and accelerated by the superconducting cavity. High quality electron beams with emittance lower than 3 π-mm-mrad can be obtained. The optimization of experiments with the DC gap, as well as the design of experiments with the coaxial coupler have all been completed. An optimized 1+((1)/(2)) superconducting cavity is in the process of being studied and manufactured

  11. A Novel Multilevel DC - AC Converter from Green Energy Power Generators Using Step-Square Waving and PWM Technique

    Science.gov (United States)

    Fajingbesi, F. E.; Midi, N. S.; Khan, S.

    2017-06-01

    Green energy sources or renewable energy system generally utilize modular approach in their design. This sort of power sources are generally in DC form or in single cases AC. Due to high fluctuation in the natural origin of this energy (wind & solar) source they are stored as DC. DC power however are difficult to transfer over long distances hence DC to AC converters and storage system are very important in green energy system design. In this work we have designed a novel multilevel DC to AC converter that takes into account the modular design of green energy systems. A power conversion efficiency of 99% with reduced total harmonic distortion (THD) was recorded from our simulated system design.

  12. Synchronized Pulsed dc - dc Converter as Maximum Power Position Tracker with Wide Load and Insolation Variation for Stand Alone PV System

    International Nuclear Information System (INIS)

    Hardik, P. Desai; Ranjan Maheshwari

    2011-01-01

    This paper investigates the interest focused on employing parallel connected dc-dc converter with high tracking effectiveness under wide variation in environmental conditions (Insolation) and wide load variation. dc-dc converter is an essential part of the stand alone PV system. Paper also presents an approach on how duty cycle for maximum power position (MPP) is adjusted by taking care of varying load conditions and without iterative steps. Synchronized PWM pulses are employed for the converter. High tracking efficiency is achieved with continuous input and inductor current. In this approach, the converter can he utilized in buck as well in boost mode. The PV system simulation was verified and experimental results were in agreement to the presented scheme. (authors)

  13. A direct power conversion topology for grid integrations of hybrid AC/DC resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng

    2012-01-01

    and modulation schemes are proposed to extract the commanded current from the input ac/dc sources to the grid and guarantee high quality ac/dc inputs and ac output current waveforms with unity power factors. The proposed modulation scheme for sinusoidal outputs of the VMC is mathematically proved...

  14. Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhaohui; Cho, Eou-Sik [Department of Electronics Engineering, Kyungwon University, San 65, Bokjung-dong, Soojung-gu, Seongnam city, Kyunggi-do, 461-701 (Korea, Republic of); Kwon, Sang Jik, E-mail: sjkwon@kyungwon.ac.kr [Department of Electronics Engineering, Kyungwon University, San 65, Bokjung-dong, Soojung-gu, Seongnam city, Kyunggi-do, 461-701 (Korea, Republic of)

    2011-09-01

    In this paper, we reported the effect of the power and the working pressure on the molybdenum (Mo) films deposited using an in-line direct current (DC) magnetron sputtering system. The electrical and the structural properties of Mo film were improved by increasing DC power from 1 to 3 kW. On the other side, the resistivity of the Mo films became higher with the increasing working pressure. However, the adhesion property was improved when the working pressure was higher. In this work, in order to obtain an optimal Mo film as a back metal contact of Cu(In,Ga)Se{sub 2} (CIGS) solar cells, a bilayer Mo film was formed through the different film structures depending on the working pressure. The first layer was formed at a high pressure of 12 mTorr for a better adhesion and the second layer was formed at a low pressure of 3 mTorr for a lower resistivity.

  15. Simulation and analysis of an isolated full-bridge DC/DC boost converter operating with a modified perturb and observe maximum power point tracking algorithm

    Directory of Open Access Journals (Sweden)

    Calebe A. Matias

    2017-07-01

    Full Text Available The purpose of the present study is to simulate and analyze an isolated full-bridge DC/DC boost converter, for photovoltaic panels, running a modified perturb and observe maximum power point tracking method. The zero voltage switching technique was used in order to minimize the losses of the converter for a wide range of solar operation. The efficiency of the power transfer is higher than 90% for large solar operating points. The panel enhancement due to the maximum power point tracking algorithm is 5.06%.

  16. Gate Driver Circuit of Power Electronic Switches with Reduced Number of Isolated DC/DC Converter for a Switched Reluctance Motor

    International Nuclear Information System (INIS)

    Memon, A.A.

    2013-01-01

    This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is also significant that required number of isolation converters is much less than the switches used in converter. In addition, a simple logic circuit has been presented for producing the gate signals at correct phase sequence which is compared with the gated signals directly obtained from the encoder of an existing machine. (author)

  17. A Single-Phase Current Source Solar Inverter with Constant Instantaneous Power, Improved Reliability, and Reduced-Size DC-Link Filter

    Science.gov (United States)

    Bush, Craig R.

    This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is greatly reduced; b) the absence of low frequency ripple enables significantly reduced size pass components to achieve necessary DC-link stiffness and c) improved maximum power point tracking (MPPT) performance is readily achieved due to the tightened current ripple even with reduced-size passive components. The proposed topology does not utilize any electrolytic capacitors. Instead an inductor is used as the DC-link filter and reliable AC film capacitors are utilized for the filter and auxiliary capacitor. The proposed topology has a life expectancy on par with PV panels. The proposed modulation technique can be used for any current source inverter where an unbalanced three-phase operation is desires such as active filters and power controllers. The proposed topology is ready for the next phase of microgrid and power system controllers in that it accepts reactive power commands. This work presents the proposed topology and its working principle supported by with numerical verifications and hardware results. Conclusions and future work are also presented.

  18. An integrated low-voltage rated HTS DC power system with multifunctions to suit smart grids

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian Xun, E-mail: jxjin@uestc.edu.cn [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Center of Applied Superconductivity and Electrical Engineering, School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China); Chen, Xiao Yuan [School of Engineering, Sichuan Normal University, Chengdu 610101 (China); Qu, Ronghai; Fang, Hai Yang [School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Xin, Ying [Center of Applied Superconductivity, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2015-03-15

    Highlights: • A novel LVDC HTS power transmission network is presented. • An integrated power system is achieved by using HTS DC cable and SMES. • DC superconducting cable is verified to achieve self-acting fault current limitation. • SMES is verified to achieve fast-response buffering effect under a power fluctuation. • SMES is verified to achieve favorable load voltage protection effect under a fault. - Abstract: A low-voltage rated DC power transmission network integrated with superconducting cables (SCs) and superconducting magnetic energy storage (SMES) devices has been studied with analytic results presented. In addition to the properties of loss-less and high current transportation capacity, the effectively integrated system is formed with a self-acting fault current limitation feature of the SC and a buffering effect of the SMES to power fluctuations. The results obtained show that the integrated system can achieve high-quality power transmission under common power fluctuation conditions with an advanced self-protection feature under short circuit conditions, which is identified to suit especially the smart grid applications.

  19. Characterising and modelling extended conducted electromagnetic interference in densely packed DC-DC converter

    CSIR Research Space (South Africa)

    Grobler, Inus

    2013-09-01

    Full Text Available . The military specified DC-DC converters are applicable, spanning from 100 W handheld power managers up to 2 kW DC-DC battery chargers. Circuit layout high frequency effects as well as high frequency impedances of the power components were characterised...

  20. Ultra-high Efficiency DC-DC Converter using GaN Devices

    DEFF Research Database (Denmark)

    Ramachandran, Rakesh

    2016-01-01

    properties of GaN devices can be utilized in power converters to make them more compact and highly efficient. This thesis entitled “Ultra-high Efficiency DC-DC Converter using GaN devices” focuses on achieving ultra-high conversion efficiency in an isolated dc-dc converter by the optimal utilization of Ga...... for many decades. However, the rate of improvement slowed as the silicon power materials asymptotically approached its theoretical bounds. Compared to Si, wideband gap materials such as Silicon Carbide (SiC) and Gallium Nitride (GaN) are promising semiconductors for power devices due to their superior...... in this thesis. Efficiency measurements from the hardware prototype of both the topologies are also presented in this thesis. Finally, the bidirectional operation of an optimized isolated dc-dc converter is presented. The optimized converter has achieved an ultra-high efficiency of 98.8% in both directions...

  1. Integrated Three-Voltage-Booster DC-DC Converter to Achieve High Voltage Gain with Leakage-Energy Recycling for PV or Fuel-Cell Power Systems

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2015-09-01

    Full Text Available In this paper, an integrated three-voltage-booster DC-DC (direct current to direct current converter is proposed to achieve high voltage gain for renewable-energy generation systems. The proposed converter integrates three voltage-boosters into one power stage, which is composed of an active switch, a coupled-inductor, five diodes, and five capacitors. As compared with conventional high step-up converters, it has a lower component count. In addition, the features of leakage-energy recycling and switching loss reduction can be accomplished for conversion efficiency improvement. While the active switch is turned off, the converter can inherently clamp the voltage across power switch and suppress voltage spikes. Moreover, the reverse-recovery currents of all diodes can be alleviated by leakage inductance. A 200 W prototype operating at 100 kHz switching frequency with 36 V input and 400 V output is implemented to verify the theoretical analysis and to demonstrate the feasibility of the proposed high step-up DC-DC converter.

  2. Milliwatt dc/dc Inverter

    Science.gov (United States)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  3. Power flow control strategy in distribution network for dc type distributed energy resource at load bus

    International Nuclear Information System (INIS)

    Hanif, A.; Choudhry, M.A.

    2013-01-01

    This research work presents a feed forward power flow control strategy in the secondary distribution network working in parallel with a DC type distributed energy resource (DER) unit with SPWM-IGBT Voltage Source Converter (VSC). The developed control strategy enables the VSC to be used as power flow controller at the load bus in the presence of utility supply. Due to the investigated control strategy, power flow control from distributed energy resource (DER) to common load bus is such that power flows to the load without facing any power quality problem. The technique has an added advantage of controlling power flow without having a dedicated power flow controller. The SPWM-IGBT VSC is serving the purpose of dc-ac converter as well as power flow controller. Simulations for a test system using proposed power flow control strategy are carried out using SimPower Systems toolbox of MATLAB at the rate and Simulink at the rate. The results show that a reliable, effective and efficient operation of DC type DER unit in coordination with main utility network can be achieved. (author)

  4. Development of a green mode DC/DC converter available to portable nuclear instrument

    International Nuclear Information System (INIS)

    Gao Feiyan; Wu Longxiong; Tan Wei; Tang Yaogeng

    2010-01-01

    A green mode DC/DC converter was developed which suitable to the portable nuclear instrument which is powered by battery and is sometime at stand-by mode. Some updated control approaches such as pseudo-resonant type power supply control and synchronous rectification were adopted to makethe DC/DC converter operate with low power consumption and high efficiency. The test results the battery can be prolonged with this converter. (authors)

  5. Field Trial on a Rack-mounted DC Power Supply System with 80-Ah Lithium-ion Batteries

    Science.gov (United States)

    Matsushima, Toshio

    Using an industrial lithium-ion battery that has higher energy density than conventional valve-regulated lead-acid batteries, a rack-mounted DC-power-supply system was assembled and tested at a base transceiver station (BTS) offering actual services. A nominal output voltage and maximum output current of the system is 53.5V and 20A, respectively. An 80-Ah lithium-ion battery composed of 13 cells connected in series was applied in the system and maintained in a floating charge method. The DC-power-supply system was installed in a 19-inch power rack in the telecommunications equipment box at BTS. The characteristics of the 80Ah lithium-ion battery, specifications of the DC-power-supply system and field-test results were shown in this paper.

  6. Model, Characterization, and Analysis of Steady-State Security Region in AC/DC Power System with a Large Amount of Renewable Energy

    Directory of Open Access Journals (Sweden)

    Zhong Chen

    2017-08-01

    Full Text Available A conventional steady-state power flow security check only implements point-by-point assessment, which cannot provide a security margin for system operation. The concept of a steady-state security region is proposed to effectively tackle this problem. Considering that the commissioning of the increasing number of HVDC (High Voltage Direct Current and the fluctuation of renewable energy have significantly affected the operation and control of a conventional AC system, the definition of the steady-state security region of the AC/DC power system is proposed in this paper based on the AC/DC power flow calculation model including LCC/VSC (Line Commutated Converter/Voltage Sourced Converter-HVDC transmission and various AC/DC constraints, and hence the application of the security region is extended. In order to ensure that the proposed security region can accurately provide global security information of the power system under the fluctuations of renewable energy, this paper presents four methods (i.e., a screening method of effective boundary surfaces, a fitting method of boundary surfaces, a safety judging method, and a calculation method of distances and corrected distance between the steady-state operating point and the effective boundary surfaces based on the relation analysis between the steady-state security region geometry and constraints. Also, the physical meaning and probability analysis of the corrected distance are presented. Finally, a case study is demonstrated to test the feasibility of the proposed methods.

  7. Long distance transmission of bulk power: the EHV-UHV DC challenge

    Energy Technology Data Exchange (ETDEWEB)

    Clerici, A; Valtorta, G

    1994-12-31

    This paper deals with technical and economical analysis of transmission of powers in the range from 1000 to 5000 MW and distances included between 1000 to 4000 km. The advantages of adoption of UHV DC transmission are evident especially for the longest distances and the largest power levels considered. (author) 4 refs., 9 figs.

  8. Design and Analysis of Two-Phase Boost DC-DC Converter

    OpenAIRE

    Taufik Taufik; Tadeus Gunawan; Dale Dolan; Makbul Anwari

    2010-01-01

    Multiphasing of dc-dc converters has been known to give technical and economical benefits to low voltage high power buck regulator modules. A major advantage of multiphasing dc-dc converters is the improvement of input and output performances in the buck converter. From this aspect, a potential use would be in renewable energy where power quality plays an important factor. This paper presents the design of a 2-phase 200W boost converter for battery charging application. Analysis of results fr...

  9. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Ohtani, Yuusuke; Miyata, Toshihiro; Kuboi, Takeshi

    2007-01-01

    A newly developed Al-doped ZnO (AZO) thin-film magnetron-sputtering deposition technique that decreases resistivity, improves resistivity distribution, and produces high-rate depositions has been demonstrated by dc magnetron-sputtering depositions that incorporate rf power (dc+rf-MS), either with or without the introduction of H 2 gas into the deposition chamber. The dc+rf-MS preparations were carried out in a pure Ar or an Ar+H 2 (0%-2%) gas atmosphere at a pressure of 0.4 Pa by adding a rf component (13.56 MHz) to a constant dc power of 80 W. The deposition rate in a dc+rf-MS deposition incorporating a rf power of 150 W was approximately 62 nm/min, an increase from the approximately 35 nm/min observed in dc magnetron sputtering with a dc power of 80 W. A resistivity as low as 3x10 -4 Ω cm and an improved resistivity distribution could be obtained in AZO thin films deposited on substrates at a low temperature of 150 deg. C by dc+rf-MS with the introduction of hydrogen gas with a content of 1.5%. This article describes the effects of adding a rf power component (i.e., dc+rf-MS deposition) as well as introducing H 2 gas into dc magnetron-sputtering preparations of transparent conducting AZO thin films

  10. Engineering Design of the ITER AC/DC Power Supplies

    International Nuclear Information System (INIS)

    Oh, B. H.; Lee, K. W.; Hwang, C. K.; Jin, J. T.; Chang, D. S.; Kim, T. S.

    2009-02-01

    To design high power pulse power supplies, especially in huge power supplies have not designed till now, it is necessary to analyze a system's characteristics and relations with another systems as well as to know high voltage, high current control technologies. Contents of this project are; - Study for the engineering designs changed recently by ITER Organization(IO) and writing specifications for the power supplies to reduce project risk. - Detailed analysis of the AC/DC Converters and writing subtask reports on the Task Agreement. - Study for thyristor numbers, DCR's specifications for Korea-China sharing meetings. - Study for the grounding systems of the ITER power supply system. The results may used as one of reference for practical designs of the high power coil power supplies and also may used in various field such as electroplating, plasma arc furnaces, electric furnaces

  11. In-Containment Signal Conditioning and Transmission via Power Lines within High Dose Rate Areas of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Steffen; Weigel, Robert; Koelpin, Alexander [Institute for Electronics Engineering, University of Erlangen-Nuremberg, Cauerstr. 9, 91058 Erlangen (Germany); Dennerlein, Juergen; Janke, Iryna; Weber, Johannes [AREVA GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany)

    2015-07-01

    Signal conditioning and transmission for sensor systems and networks within the containment of nuclear power plants (NPPs) still poses a challenge to engineers, particularly in the case of equipment upgrades for existing plants, temporary measurements, decommissioning of plants, but also for new builds. This paper presents an innovative method for efficient and cost-effective instrumentation within high dose rate areas inside the containment. A transmitter-receiver topology is proposed that allows simultaneous, unidirectional point-to-point transmission of multiple sensor signals by superimposing them on existing AC or DC power supply cables using power line communication (PLC) technology. Thereby the need for costly installation of additional cables and containment penetrations is eliminated. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter is designed to operate in harsh environment within the containment during full plant operation. Hardware modularity of the transmitter allows application specific tradeoffs between redundancy and channel bandwidth. At receiver side in non-radiated areas, signals are extracted from the power line, demodulated, and provided either in analog or digital output format. Laboratory qualification tests and field test results within a boiling water reactor (BWR) are validating the proof of concept of the proposed system. (authors)

  12. Robust Power Decoupling Control Scheme for DC Side Split Decoupling Capacitor Circuit with Mismatched Capacitance in Single Phase System

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2016-01-01

    dc capacitor to realize power decoupling, but the conventional power decoupling control scheme for this half-bridge circuit is developed with equal storage capacitances, which may vary in practice and degrade the ac and dc performance. The intention of this paper is to quantify ac and dc...... imperfections when storage mismatch occurs, which may break the standard requirement such as IEEE 1547. As a consequence, a robust control scheme is then proposed for half-bridge circuit, which realized power decoupling by generating second order harmonic voltage on the split dc decoupling capacitor instead...

  13. Communication-Theoretic Model of Power Talk for a Single-Bus DC Microgrid

    DEFF Research Database (Denmark)

    Angjelichinoski, Marko; Stefanovic, Cedomir; Popovski, Petar

    2016-01-01

    Power talk is a method for communication among voltage control sources (VSCs) in DC microgrids (MGs), achieved through variations of the supplied power that is incurred by modulation of the parameters of the primary control. The physical medium upon which the communication channel is established...

  14. IGBT Based DC/DC Converter

    Directory of Open Access Journals (Sweden)

    M. Akherraz

    1997-12-01

    Full Text Available This paper presents an in-depth analytical and experimental investigation of an indirect DC-DC converter. The DC-AC conversion is a full bridge based on IGBT power modules, and the AC-DC conversion is done via a high  frequency AC link and a first diode bridge. The AC link, which consists of snubbing capacitors and a variable air-gap transformer, is analytically designed to fulfill Zero Voltage commutation requirement. The proposed converter is simulated using PSPICE and a prototype is designed built and tested in the laboratory. PSPICE simulation and experimental results are presented and compared.

  15. Universal and inductorless DC/DC converter for multi-output power supplies in sensor and actuator networks

    Science.gov (United States)

    Saponara, Sergio; Ciarpi, Gabriele

    2017-05-01

    This work proposes a universal and inductorless DC/DC converter that can be used for a wide input range, from few V to 60 V, to regulate output voltages from 5 V down to 1 V in Sensor and Actuator Network nodes. The proposed converter has been developed within the Athenis3D European project. It is composed by a cascade of multiple switching capacitor stages, with a proper skip-mode control to implement both step-down and step-up converting ratios, thus regulating all input sources to a voltage of about 6 V. These switching stages are further cascaded with linear regulators, which can provide stable output voltages down to 1 V. The multi-output regulator has been realized as a single-chip in a low-cost 0.35 μm CMOS technology. It is available as a naked die or in a ceramic package. The only needed external components are surface mount capacitors, which can be integrated on top of the naked chip die, creating a 3D structure, using trench capacitors embedded in a passive interposing layer. This way the size of the power management unit is further minimized. An advantage of the proposed converter is that it isn't optimized for a particular input voltage, therefore it can be used with no constant input power, like power harvesting systems (e.g. solar cells, wind and water turbines) and very disturbed power supplies.

  16. Modelling and control of three-phase grid-connected power supply with small DC-link capacitor for electrolysers

    DEFF Research Database (Denmark)

    Török, Lajos; Máthé, Lászlo; Nielsen, Carsten Karup

    2016-01-01

    These days electrolyzers are becoming more and more interesting due to the high demand for energy storage in form of hydrogen for renewable power generation using fuel cells. The design of a power supply for such a system is complex especially when the DC-link capacitance is reduced....... By substituting the complex switching model of the power supply with a simplified one, the system dynamics can be better observed. The resonances caused by the small DC link capacitor and grid side inductance can be easier analyzed. A feed forward compensation method is proposed based on the simplified model......-forward compensation signal is created, canceling in such a way the resonance introduced by the grid inductance and the DC-link capacitor from the feed-forward loop. The theoretical work has been validated through experiments on a 5 kW DC power supply used for electrolyser application....

  17. Load Flow Analysis of Hybrid AC-DC Power System with Offshore Wind Power

    DEFF Research Database (Denmark)

    Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei

    2017-01-01

    The offshore wind power has received immense attention because of higher wind speed and lower opposition for construction. A wide range of combinations of high-voltage ACDC transmission have been proposed for integrating offshore wind farms and long-distance power transmission. This paper...... is to model such hybrid AC-DC systems including the interfacing converters, which have several control parameters that can change the load flow of the hybrid systems. Then, the paper proposes a Load Flow algorithm based on the Newton-Raphson method, which covers three different section types...

  18. Characteristics of a four element gyromagnetic nonlinear transmission line array high power microwave source

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J. M., E-mail: jared.johnson@ttu.edu; Reale, D. V.; Garcia, R. S.; Cravey, W. H.; Neuber, A. A.; Dickens, J. C.; Mankowski, J. J. [Center for Pulsed Power and Power Electronics Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Krile, J. T. [Department of Electromagnetics and Sensor Systems, Naval Surface Warfare Center - Dahlgren Division, Dahlgren, Virginia 22448 (United States)

    2016-05-15

    In this paper, a solid-state four element array gyromagnetic nonlinear transmission line high power microwave system is presented as well as a detailed description of its subsystems and general output capabilities. This frequency agile S-band source is easily adjusted from 2-4 GHz by way of a DC driven biasing magnetic field and is capable of generating electric fields of 7.8 kV/m at 10 m correlating to 4.2 MW of RF power with pulse repetition frequencies up to 1 kHz. Beam steering of the array at angles of ±16.7° is also demonstrated, and the associated general radiation pattern is detailed.

  19. Protection devices in the transmission grids, German practice. Typical protection concepts in Germany's power transmission lines; Schutzsysteme im Uebertragungsnetz, deutsche Praxis. Typische Schutzkonzepte im deutschen Uebertragungsnetz

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Hans-Joachim [Siemens AG, Nuernberg (Germany). Sektor Energy, Energy Automation; Ludwig, Andrea [50 Hertz Transmission GmbH, Berlin (Germany). Schutztechnik, Anlagenmanagement; Kuehn, Holger [Tennet TSO GmbH, Bayreuth (Germany). Schutztechnik, Assetmanagement/Umspannwerke; Oechsle, Fred [EnBW Regional AG, Stuttgart (Germany). Netzschutz, Netzservice - Projekte Strom

    2011-04-18

    The contribution presents typical protection concepts for power grids. Solutions for power plant feed-in, bus bar, transmission lines and coupling transformer are explained. General information is provided on triggering concepts, on the design of d.c. power supply, selection of current inverters, and other subjects.

  20. A single-phase PWM controlled AC to DC converter based on control of unity displacement power factor

    OpenAIRE

    Funabiki, Shigeyuki

    1990-01-01

    A modified pulse-width modulation (PWM) technique that improves the displacement power factor and the input power factor of a single-phase AC to DC converter is discussed. The modified converter is shown to have a high input power factor and allows the of DC voltage from zero to more than the maximum value of the source voltage. The displacement power factor is unity, and the input power factor is almost unity in the wide range of current command

  1. Simulating and Testing a DC-DC Half-Bridge SLR Converter

    Science.gov (United States)

    2013-06-01

    future pulse power demands with ship power, a large bank of capacitors or similar rapid discharge source is required. If capacitors are charged...Single Pulsed Avalanche Energy (j) I" Avalanche Current (i) E,, Repetilive Avalanche Energy (i) dv/dt Peak Diode Recovery dv/dt ® Po Total Power...SLR), battery charging, DC-DC, pulse power, power electronics, SLR converter 15. NUMBER OF PAGES 119 16. PRICE CODE 17. SECURITY CLASSIFICATION

  2. Interaction between MHD generator and DC-AC power conversion system

    International Nuclear Information System (INIS)

    Tanaka, D.

    1982-01-01

    Transient characteristics of an MHD power generating system including a DC-AC inverter are analyzed using a time-dependent quasi-one-dimensional approximation. The generator model considered is Faraday type of U-25 class with heavy-oil and air combustion gas. It is found that a short-circuited fault of the invertor may become more serious than an open-circuited fault, resulting in significant gas velocity reduction. An open-circuited fault, if retained for more than 5-8 ms, can substantially increase the gas velocity at the upstream end of the fault region. A protection system composed of a fast-acting DC circuit-breaker and an emergency load resistance is proposed. The switching speed of the DC breaker must be about 500 microsec to stop a pressure increase, resulting, for example, from the short-circuiting of 20 electrode pairs, before it reaches 120% of the initial level

  3. A Novel PPFHB Bidirectional DC-DC Converter for Supercapacitor Application

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.

    2009-01-01

    This paper presents a novel bidirectional DC-DC converter for the supercapacitor application. In the proposed converter, push-pull forward with half bridge (PPFHB) voltage doubler structure is used to reduce the number of the power switches and get higher voltage gain. Based on phase-shift modula......This paper presents a novel bidirectional DC-DC converter for the supercapacitor application. In the proposed converter, push-pull forward with half bridge (PPFHB) voltage doubler structure is used to reduce the number of the power switches and get higher voltage gain. Based on phase...

  4. Maximum power point tracking for photovoltaic applications by using two-level DC/DC boost converter

    Science.gov (United States)

    Moamaei, Parvin

    Recently, photovoltaic (PV) generation is becoming increasingly popular in industrial applications. As a renewable and alternative source of energy they feature superior characteristics such as being clean and silent along with less maintenance problems compared to other sources of the energy. In PV generation, employing a Maximum Power Point Tracking (MPPT) method is essential to obtain the maximum available solar energy. Among several proposed MPPT techniques, the Perturbation and Observation (P&O;) and Model Predictive Control (MPC) methods are adopted in this work. The components of the MPPT control system which are P&O; and MPC algorithms, PV module and high gain DC-DC boost converter are simulated in MATLAB Simulink. They are evaluated theoretically under rapidly and slowly changing of solar irradiation and temperature and their performance is shown by the simulation results, finally a comprehensive comparison is presented.

  5. Design and performance of PEP dc-power systems

    International Nuclear Information System (INIS)

    Jackson, T.

    1981-03-01

    The PEP Magnet Power Supply System represents a significant departure from previous technology with the goal of improved performance at lower cost. In nineteen of the magnet families around the ring, Chopper power supplies are used. The many choppers are powered from two 2 MW dc supplies, and control the average power to the various magnet loads by pulse-width modulation at a 2 kilohertz repetition rate. Each chopper utilizes SCR's for switching, and stores sufficient capacitive energy for turn-off on command. Most of the energy is recirculated, resulting in high-efficiency. The two kilohertz chopping rate allows a one kilohertz unity-gain bandwidth in the current-regulator loop, and this wide bandwidth, coupled with low drift components in the error-detection system, provides a high-performance system. The PEP system has also shown that the chopper system is economical compared to standard multi-pulse controlled-rectifier

  6. Isolated step-down DC -DC converter for electric vehicles

    Science.gov (United States)

    Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.

    2018-02-01

    Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.

  7. Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed

    Science.gov (United States)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  8. Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system

    Science.gov (United States)

    Lin, Bor-Ren

    2018-04-01

    This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.

  9. Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.

  10. Enhancement of Voltage Stability of DC Smart Grid During Islanded Mode by Load Shedding Scheme

    Science.gov (United States)

    Nassor, Thabit Salim; Senjyu, Tomonobu; Yona, Atsushi

    2015-10-01

    This paper presents the voltage stability of a DC smart grid based on renewable energy resources during grid connected and isolated modes. During the islanded mode the load shedding, based on the state of charge of the battery and distribution line voltage, was proposed for voltage stability and reservation of critical load power. The analyzed power system comprises a wind turbine, a photovoltaic generator, storage battery as controllable load, DC loads, and power converters. A fuzzy logic control strategy was applied for power consumption control of controllable loads and the grid-connected dual active bridge series resonant converters. The proposed DC Smart Grid operation has been verified by simulation using MATLAB® and PLECS® Blockset. The obtained results show the effectiveness of the proposed method.

  11. Monitoring dc stray current corrosion at sheet pile structures

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2012-01-01

    Steel is discarded by railway owners as a material for underground structures near railway lines, due to uncertainty over increased corrosion by DC stray currents stemming from the traction power system. This paper presents a large scale field test in which stray currents interference of a sheet

  12. Line-Interactive Transformerless Uninterruptible Power Supply (UPS with a Fuel Cell as the Primary Source

    Directory of Open Access Journals (Sweden)

    Muhammad Iftikhar

    2018-03-01

    Full Text Available This paper presents line-interactive transformerless Uninterruptible Power Supply (UPS with a fuel cell as the prime energy source. The proposed UPS consists of three major parts (i.e., an output inverter, a unidirectional DC–DC converter, and a battery charger/discharger. Non-isolated topologies of both the unidirectional converter and battery charger/discharger ensure transformerless operation of the UPS system. A new topology of high gain converter is employed for boosting the low voltage of the fuel cell to a higher DC link voltage, with minimum semiconductor count, and high efficiency. A high-gain battery charger/discharger realizes the bidirectional operation between the DC link and the battery bank. Besides, it regulates the DC link voltage during the cold start of fuel cells and keeps the battery bank voltage to only 24 V. A new inverter control scheme is introduced that regulates the output voltage and minimizes the total harmonic distortion for non-linear loading condition. The proposed control scheme integrates proportional-resonant control with slide mode control, which improves the controller’s performance in transient conditions. The proposed UPS system is validated by developing a 1-kVA experimental prototype.

  13. A modular approach for RFX D.C. power supplies

    International Nuclear Information System (INIS)

    Bolognani, S.; Ciscato, D.; Tenti, P.

    1981-01-01

    A modular approach to the realization of D.C. Power Supplies of the Reverse Field Pinch Experiment (RFX) is presented. A basic convertor module configuration is proposed which enables a high flexibility of the power supply system to be obtained, as required to cope with the plasma behaviour uncertainties. The basic convertor module rating has been selected to meet all the expected load requirements and a preliminary design of the convertor has been carried out for evaluating the technical and economical feasibility of the system. Different fault conditions have been analyzed and protective devices have been devised accordingly. Finally simulated profiles of the active and reactive power drawn from the AC mains are reported. (author)

  14. Overview of Multi-DC-Bus Solutions for DC Microgrids

    DEFF Research Database (Denmark)

    Ricchiuto, D.; Mastromauro, R.A.; Liserre, Marco

    2013-01-01

    DC Microgrids have recently received a lot of attention in the last years due to high penetration of renewable energy sources as well as distributed energy storage systems. In the future DC microgrids could be preferable respect to AC microgrids in terms of redundancy since multi-DC-Bus solutions...... could provide a continuative power supply to the loads. An overview of Multi-DC-Bus solutions is presented in this paper. The performances are compared on the basis of possible DC microgrid configurations, redundancy, different DC voltage levels....

  15. Bi-Directional DC-DC Converter for PHEV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  16. Coordinated frequency control from offshore wind power plants connected to multi terminal DC system considering wind speed variation

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Altin, Müfit; Hansen, Anca Daniela

    2017-01-01

    A coordinated fast primary frequency control scheme from offshore wind power plants (OWPPs) integrated to a three terminal high voltage DC (HVDC) system is proposed in this study. The impact of wind speed variation on the OWPP active power output and thus on the AC grid frequency and DC grid...... the active power support from OWPP with a ramp rate limiter and (iii) An alternative method for the wind turbine overloading considering rotor speed. The effectiveness of the proposed control scheme is demonstrated on a wind power plant integrated into a three terminal HVDC system developed in DIg......SILIENT PowerFactory. The results show that the proposed coordinated frequency control method performs effectively at different wind speeds and minimises the secondary effects on frequency and DC voltage....

  17. Design of an Input-Parallel Output-Parallel LLC Resonant DC-DC Converter System for DC Microgrids

    Science.gov (United States)

    Juan, Y. L.; Chen, T. R.; Chang, H. M.; Wei, S. E.

    2017-11-01

    Compared with the centralized power system, the distributed modularized power system is composed of several power modules with lower power capacity to provide a totally enough power capacity for the load demand. Therefore, the current stress of the power components in each module can then be reduced, and the flexibility of system setup is also enhanced. However, the parallel-connected power modules in the conventional system are usually controlled to equally share the power flow which would result in lower efficiency in low loading condition. In this study, a modular power conversion system for DC micro grid is developed with 48 V dc low voltage input and 380 V dc high voltage output. However, in the developed system control strategy, the numbers of power modules enabled to share the power flow is decided according to the output power at lower load demand. Finally, three 350 W power modules are constructed and parallel-connected to setup a modular power conversion system. From the experimental results, compared with the conventional system, the efficiency of the developed power system in the light loading condition is greatly improved. The modularized design of the power system can also decrease the power loss ratio to the system capacity.

  18. An Integrated Multifunctional Bidirectional AC/DC and DC/DC Converter for Electric Vehicles Applications

    OpenAIRE

    Liwen Pan; Chengning Zhang

    2016-01-01

    This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs). The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for m...

  19. Sliding-mode control of single input multiple output DC-DC converter

    Science.gov (United States)

    Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang

    2016-10-01

    Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.

  20. Power Flow Analysis for Low-Voltage AC and DC Microgrids Considering Droop Control and Virtual Impedance

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay Kumar; Savaghebi, Mehdi

    2017-01-01

    In the low-voltage (LV) ac microgrids (MGs), with a relatively high R/X ratio, virtual impedance is usually adopted to improve the performance of droop control applied to distributed generators (DGs). At the same time, LV dc MG using virtual impedance as droop control is emerging without adequate...... power flow studies. In this paper, power flow analyses for both ac and dc MGs are formulated and implemented. The mathematical models for both types of MGs considering the concept of virtual impedance are used to be in conformity with the practical control of the DGs. As a result, calculation accuracy...... is improved for both ac and dc MG power flow analyses, comparing with previous methods without considering virtual impedance. Case studies are conducted to verify the proposed power flow analyses in terms of convergence and accuracy. Investigation of the impact to the system of internal control parameters...

  1. Development of ATC for High Speed and High Density Commuter Line

    Science.gov (United States)

    Okutani, Tamio; Nakamura, Nobuyuki; Araki, Hisato; Irie, Shouji; Osa, Hiroki; Sano, Minoru; Ikeda, Keigo; Ozawa, Hiroyuki

    A new ATC (Automatic Train Control) system has been developed with solutions to realize short train headway by assured braking utilizing digital data transmission via rails; the digital data for the ATP (Automatic Train Protection) function; and to achieve EMC features for both AC and DC sections. The DC section is of the unprecedented DC traction power supply system utilizing IGBT PWM converter at all DC substations. Within the AC section, train traction force is controlled by PWM converter/inverters. The carrier frequencies of the digital data signals and chopping frequency of PWM traction power converters on-board are decided via spectral analysis of noise up to degraded mode cases of equipment. Developed system was equipped to the Tukuba Express Line, new commuter line of Tokyo metropolitan area, and opened since Aug. 2005.

  2. Perancangan Zeta Converter yang dilengkapi Power Factor Correction pada Aplikasi Pengaturan Kecepatan Motor Brushless DC

    Directory of Open Access Journals (Sweden)

    Adhika Prajna Nandiwardhana

    2017-01-01

    Full Text Available Penggunaan motor brushless DC telah banyak digunakan dalam berbagai bidang seperti peralatan rumah tangga maupun industri dikarenakan motor ini memiliki struktur yang sederhana, efisiensi dan torsi yang tinggi, serta menggunakan konsep komutasi elektris yang berbeda dari motor DC lainnya. Namun pengoperasian pada umumnya yang menggunakan sumber AC, penyearah serta inverter membuat tingginya nilai harmonisa arus (THD sebesar 73,33% dan power factor sebesar 0,803 dimana nilai ini kurang baik dalam pengaplikasiannya. Pada penelitian ini akan dikaji mengenai proses power factor correction yang mereduksi harmonisa arus (THD sumber AC dengan menggunakan zeta converter dalam pengaplikasian motor brushless DC, serta pengoperasian motor dengan mengamati respon motor terhadap kecepatan referensi yang berubah-ubah dan mengamati kestabilan motor terhadap pembebanan yang bervariasi. Dalam menerapkan metode yang dilakukan pada penelitian ini, pengoperasian motor brushless DC yang telah dirancang dapat bekerja dengan baik meliputi respon motor yang dapat mengikuti kecepatan referensi yang berubah-ubah, serta kestabilan motor dalam mempertahankan kecepatannya pada pembebanan yang bervariasi. Proses power factor correction dapat meningkatkan kualitas daya pada berbagai kecepatan dan mode penerapan yang berbeda-beda, dimana peningkatan tersebut membuktikan kinerja yang baik dalam sistem ini dan memiliki nilai kualitas daya yang baik.

  3. Superconducting energy stabilizer with charging and discharging DC-DC converters

    International Nuclear Information System (INIS)

    Kim, S.H.; Kostecki, E.L.; DeWinkel, C.C.

    1992-01-01

    This patent describes a superconducting energy stabilizer having multiple load connections and employing DC-DC conversion for storing energy in a superconducting inductive energy storage device having a first end and a second end, and for releasing the stored energy from the superconducting inductive energy storage device to a load or loads or to a utility or an industrial electrical distribution system, the superconducting energy stabilizer having multiple load connections and employing DC-DC conversion. It comprises: energy storage cell means for supplying energy to the load, discharging DC-DC converter means for releasing energy from the superconducting inductive energy storage device to the energy storage cell means, the discharging DC-DC converter means having input terminals, output terminals, and a discharging control line means for carrying signals controlling the operation of the discharging DC-DC converter means, one of the input terminals of the discharging DC-DC converter means coupled to the first end of the superconducting energy storage device

  4. Coupled-Inductor-Based Aalborg Inverter With Input DC Energy Regulation

    DEFF Research Database (Denmark)

    Wang, Houqing; Wu, Weimin; Chung, Henry Shu-hung

    2018-01-01

    Due to the global environmental issues and energy crisis, the injection of renewable energy sources (RESs) into the power system is continuously increasing. As the interface between RESs and power grid, grid-tied inverters using MOSFET switches, without traditional line frequency transformers, show...... some potential advantages, in terms of low cost, high efficiency, and lightweight and small size. Among several proposed configurations, the Aalborg inverter was proposed as a new family of high efficiency MOSFET-switch-based hybrid source inverters. For a conventional “half bridge” type Aalborg...... inverter, due to the imbalance of two independent dc sources, the input dc energies may not be fully utilized, which may reduce the efficiency of whole system. In order to extract the maximum energy from two independent dc sources, a coupled-inductor-based “half bridge” type Aalborg inverter is proposed...

  5. In-Containment Signal Acquisition and Data Transmission via Power Lines within High Dose Areas of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Mueller Steffen; Wibbing Sascha; Weigel Robert; Koelpin Alexander; Dennerlein, Juergen; Janke, Iryna; Weber, Johannes

    2015-01-01

    Signal acquisition and data transmission for innovative sensor systems and networks inside the containment of nuclear power plants (NPPs) is still a challenge with respect to safety, performance, reliability, availability, and costs. This especially applies to equipment upgrades for existing plants, special measurements, but also for new builds. This paper presents a novel method for efficient and cost-effective sensor signal acquisition and data transmission via power lines, in order to cope with the disadvantages of common system architectures that often suffer from poor signal integrity due to raw data transmissions via long cables, huge efforts and costs for installation, and low flexibility with respect to maintenance and upgrades. A transmitter-receiver architecture is proposed that allows multiplexing of multiple sensor inputs for unidirectional point-to-point transmission by superimposing information signals on existing AC or DC supply lines, but also on active and inactive sensor wires, or spare cables, using power line communication (PLC) technology. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter hardware is designed to operate in harsh environment within the containment during full plant operation. The system's modular approach allows application specific trade-offs between redundancy and throughput regarding data transmission, as well as various sensor input front-ends which are compatible with state of the art systems. PLC technology eliminates the need for costly installation of additional cables and wall penetrations, while providing a complementary and diverse communication technology for upgrades of existing systems. At the receiver side in low dose areas, signals are extracted from the power line, demodulated, and de-multiplexed, in order to regain the original sensor signal information and provide it either in analog or digital output format. Successful laboratory qualification tests, field trails

  6. In-Containment Signal Acquisition and Data Transmission via Power Lines within High Dose Areas of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller Steffen; Wibbing Sascha; Weigel Robert; Koelpin Alexander [Institute for Electronics Engineering, University of Erlangen-Nuremberg (Germany); Dennerlein, Juergen; Janke, Iryna; Weber, Johannes [AREVA GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany)

    2015-07-01

    Signal acquisition and data transmission for innovative sensor systems and networks inside the containment of nuclear power plants (NPPs) is still a challenge with respect to safety, performance, reliability, availability, and costs. This especially applies to equipment upgrades for existing plants, special measurements, but also for new builds. This paper presents a novel method for efficient and cost-effective sensor signal acquisition and data transmission via power lines, in order to cope with the disadvantages of common system architectures that often suffer from poor signal integrity due to raw data transmissions via long cables, huge efforts and costs for installation, and low flexibility with respect to maintenance and upgrades. A transmitter-receiver architecture is proposed that allows multiplexing of multiple sensor inputs for unidirectional point-to-point transmission by superimposing information signals on existing AC or DC supply lines, but also on active and inactive sensor wires, or spare cables, using power line communication (PLC) technology. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter hardware is designed to operate in harsh environment within the containment during full plant operation. The system's modular approach allows application specific trade-offs between redundancy and throughput regarding data transmission, as well as various sensor input front-ends which are compatible with state of the art systems. PLC technology eliminates the need for costly installation of additional cables and wall penetrations, while providing a complementary and diverse communication technology for upgrades of existing systems. At the receiver side in low dose areas, signals are extracted from the power line, demodulated, and de-multiplexed, in order to regain the original sensor signal information and provide it either in analog or digital output format. Successful laboratory qualification tests, field trails

  7. Full range ZVS DC-DC converter

    International Nuclear Information System (INIS)

    Upadhyay, Rinki; Badapanda, M.K.; Hannurkar, P.R.

    2011-01-01

    A 500 V, 24 Amp DC-DC converter with digital signal processor (DSP) based control and protection has been designed, fabricated and tested. Its power circuit consists of IGBT based single phase inverter bridge, ferrite transformer and diode rectifier. All IGBTs in the inverter bridge are operated in zero voltage switching (ZVS) mode to minimize switching losses thereby increasing the efficiency of the converter significantly. The efficiency of this converter is measured to be greater than 97% at full load. In a conventional full bridge inverter, typically ZVS is achieved under full load condition while at light load ZVS is lost. An auxiliary LC circuit has been intentionally incorporated in this converter to achieve ZVS even at light loaded conditions. Detailed simulation of the converter circuit is carried out and crucial waveforms have been presented in this paper. Microchip make dsPIC30F2020 DSP is employed to provide phase shifted PWMs to IGBTs in the inverter bridge. All the crucial parameters are also monitored by this DSP and in case of any unfavorable conditions, the converter is tripped off. Suitable experiments were carried out in this DC-DC converter under different loaded conditions and a close match between the simulated and experimental results were obtained. Such DC-DC converters can be connected in series or parallel for the development of solid state modular power supplies for various applications. (author)

  8. Using PBL to Improve Educational Outcomes and Student Satisfaction in the Teaching of DC/DC and DC/AC Converters

    Science.gov (United States)

    Martinez-Rodrigo, Fernando; Herrero-De Lucas, Luis Carlos; de Pablo, Santiago; Rey-Boue, Alexis B.

    2017-01-01

    This paper examines the question of how to use project-based learning to increase student performance and satisfaction in a power electronics course addressing the topics of dc/dc and dc/ac converters, the assembly of a dc/dc converter, and the use of a commercial speed drive. A detailed presentation of the methodology is shown, and the results…

  9. Virtual resistance-based control strategy for DC link regeneration protection and current sharing in uninterruptible power supply

    DEFF Research Database (Denmark)

    Lu, Jinghang; Guan, Yajuan; Savaghebi, Mehdi

    2017-01-01

    To address the DC link voltage regeneration issue in parallel Uninterruptible Power Supply (UPS) system, a DC link voltage protection (DCVP) method through online virtual resistance regulation is proposed. The proposed control strategy is able to protect the DC link from overvoltage that may...... trigger the protection mechanism of the UPS system. Moreover, a current sharing control strategy by regulating the virtual resistance is proposed to address the circulating current caused by the active power feeding. Finally, the feasibility of the proposed method is verified by experimental results from...

  10. Distributed Primary and Secondary Power Sharing in a Droop-Controlled LVDC Microgrid with Merged AC and DC Characteristics

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Loh, Poh Chiang

    2018-01-01

    In an ac microgrid, a common frequency exists for coordinating active power sharing among droop-controlled sources. A common frequency is absent in a dc microgrid, leaving only the dc source voltages for coordinating active power sharing. That causes sharing error and poorer voltage regulation in...

  11. TID and Displacement Damage Effects in Vertical and Lateral Power MOSFETs for Integrated DC-DC Converters

    CERN Document Server

    Faccio, F; Michelis, S; Faccio, Federico; Fuentes, C; Allongue, B; Sorge, R; Orlandi, S

    2010-01-01

    TID and displacement damage effects are studied for vertical and lateral power MOSFETs in five different technologies in view of the development of radiation-tolerant fully integrated DC-DC converters. Investigation is pushed to the very high level of radiation expected for an upgrade to the LHC experiments. TID induces threshold voltage shifts and, in n-channel transistors, source-drain leakage currents. Wide variability in the magnitude of these effects is observed. Displacement damage increases the on-resistance of both vertical and lateral high-voltage transistors. In the latter case, degradation at high particle fluence might lead to a distortion of the output characteristics curve. HBD techniques to limit or eliminate the radiation-induced leakage currents are successfully applied to these high-voltage transistors, but have to be used carefully to avoid consequences on the breakdown voltage.

  12. Efficiency and hardware comparison of analog control-based and digital control-based 70 W two-stage power factor corrector and DC-DC converters

    DEFF Research Database (Denmark)

    Török, Lajos; Munk-Nielsen, Stig

    2011-01-01

    A comparison of an analog and a digital controller driven 70 W two-stage power factor corrector converter is presented. Both controllers are operated in average current-mode-control for the PFC and peak current control for the DC-DC converter. Digital controller design and converter modeling...... is described. Results show that digital control can compete with the analog one in efficiency, PFC and THD....

  13. Multi Bus DC-DC Converter in Electric Hybrid Vehicles

    Science.gov (United States)

    Krithika, V.; Subramaniam, C.; Sridharan, R.; Geetha, A.

    2018-04-01

    This paper is cotncerned with the design, simulation and fabrication of the prototype of a Multi bus DC- DC converter operating from 42V DC and delivering 14V DC and 260V DC. As a result, three DC buses are interconnected through a single power electronic circuitry. Such a requirement is energized in the development of a hybrid electric automobile which uses the technology of fuel cell. This is implemented by using a Bidirectional DC-DC converter configuration which is ideally suitable for multiple outputs with mutual electrical isolation. For the sake of reduced size and cost of step-up transformer, selection of a high frequency switching cycle at 10 KHz was done.

  14. A study of DC-DC converters with MCT's for arcjet power supplies

    Science.gov (United States)

    Stuart, Thomas A.

    1994-01-01

    Many arcjet DC power supplies use PWM full bridge converters with large arrays of parallel FET's. This report investigates an alternative supply using a variable frequency series resonant converter with small arrays of parallel MCT's (metal oxide semiconductor controlled thyristors). The reasons for this approach are to: increase reliability by reducing the number of switching devices; and decrease the surface mounting area of the switching arrays. The variable frequency series resonant approach is used because the relatively slow switching speed of the MCT precludes the use of PWM. The 10 kW converter operated satisfactorily with an efficiency of over 91 percent. Test results indicate this efficiency could be increased further by additional optimization of the series resonant inductor.

  15. Experimental Investigation of the Corona Discharge in Electrical Transmission due to AC/DC Electric Fields

    Directory of Open Access Journals (Sweden)

    Fuangpian Phanupong

    2016-01-01

    Full Text Available Nowadays, using of High Voltage Direct Current (HVDC transmission to maximize the transmission efficiency, bulk power transmission, connection of renewable power source from wind farm to the grid is of prime concern for the utility. However, due to the high electric field stress from Direct Current (DC line, the corona discharge can easily be occurred at the conductor surface leading to transmission loss. Therefore, the polarity effect of DC lines on corona inception and breakdown voltage should be investigated. In this work, the effect of DC polarity and Alternating Current (AC field stress on corona inception voltage and corona discharge is investigated on various test objects, such as High Voltage (HV needle, needle at ground plane, internal defect, surface discharge, underground cable without cable termination, cable termination with simulated defect and bare overhead conductor. The corona discharge is measured by partial discharge measurement device with high-frequency current transformer. Finally, the relationship between supply voltage and discharge intensity on each DC polarity and AC field stress can be successfully determined.

  16. Power conditioner without isolation transformer; Toransuresu power conditioner no shohin kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okado, C; Itami, T; Kimoto, K [Toshiba Corp., Tokyo (Japan)

    1996-10-27

    A light-weight downsized and high efficiency transformer-less type 4 kW power conditioner (inverter) has been developed. This power conditioner insures the system interconnection protection by monitoring the voltage of two single-phase three-line circuits. The power conditioner has weight of 17.5 kg and efficiency of 94%. Potential fluctuation of photovoltaic cells due to the switching of power devices at the inverter was reduced. Output capacity was reduced in the low input voltage range. Outflow of DC component was prevented in high accuracy by usually correcting the zero point drift of detector, and by using the current detector with excellent linearity. To detect the DC ground fault, and to trip the output side breaker locating at the ground fault current pass, a zero phase converter detection circuit has been developed, by which the DC component can be detected at the DC input side. As a result of performance verification, the efficiency, power factor, EMI level, protection of outflow of DC component, protection of ground fault, protection of single operation detection, and noise level were satisfied. This system is prospective for the diffusion of photovoltaic power generation in the future. 3 refs., 8 figs., 1 tab.

  17. Modeling, Stability Analysis and Active Stabilization of Multiple DC-Microgrids Clusters

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    ), and more especially during interconnection with other MGs, creating dc MG clusters. This paper develops a small signal model for dc MGs from the control point of view, in order to study stability analysis and investigate effects of CPLs and line impedances between the MGs on stability of these systems....... This model can be also used to synthesis and study dynamics of control loops in dc MGs and also dc MG clusters. An active stabilization method is proposed to be implemented as a dc active power filter (APF) inside the MGs in order to not only increase damping of dc MGs at the presence of CPLs but also...... to improve their stability while connecting to the other MGs. Simulation results are provided to evaluate the developed models and demonstrate the effectiveness of proposed active stabilization technique....

  18. Design of a high power, resonant converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    This paper presents a design procedure and loss estimation for a high power, medium voltage series resonant converter (entitled SRC#), intended for application in megawatt medium-voltage DC wind turbines. The converter is operated with a novel method of operation, entitled pulse removal technique...

  19. Power Talk

    DEFF Research Database (Denmark)

    Liu, Hongpeng; Yang, Yongheng; Loh, Poh Chiang

    2016-01-01

    In this paper, a novel communication strategy called Power Talk is introduced to realize the power line communication among the Voltage Source Converters (VSC) of DC MicroGrids (MGs). Each VSC transmits information by changing the control parameters, and receives information by observing the local...

  20. Precharge strategies for isolated modular DC-DC converters under two different start-up conditions

    DEFF Research Database (Denmark)

    Zhang, Yi; Wang, Huai; Li, Binbin

    2017-01-01

    The isolated modular DC-DC converter (IMDCC) is a new topology designed to connect high-voltage direct current (HVDC) lines with different voltage levels, which ties two DC grids by using two modular multilevel converters (MMCs) via a medium-frequency transformer. Due to the large value of capaci......The isolated modular DC-DC converter (IMDCC) is a new topology designed to connect high-voltage direct current (HVDC) lines with different voltage levels, which ties two DC grids by using two modular multilevel converters (MMCs) via a medium-frequency transformer. Due to the large value...... of capacitance in the IMDCC, proper precharge strategies before the start-up are significant for the safety and reliability of the whole system. This paper presents two closed-loop precharge control strategies to fully charge the sub-module (SM) capacitors of the IMDCC, considering two different start...

  1. Integrated Three-Port DC-DC Converter for Photovoltaic (PV) Battery Stand-alone Systems

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    of solar energy. Moreover, a novel transformer configuration enables variable turns ratio controlled by the phase between the two current excitations subjected to the primary windings, allowing a wider input/output range. 1 kW experimental prototype has been built to demonstrate a wellmanaged power flow......Several power sources such as PV solar arrays and battery are often used to manage the power flow for a photovoltaic (PV) based stand-alone power system due to the fluctuation nature of solar energy resource, and deliver a continuous power to the users in an appropriate form. Traditionally, three...... different single-input single-output (SISO) dc/dc converters would have been used. To reduce the cost and improve the power density of the system, an integrated three-port isolated dc/dc converter is proposed in this paper. It can realize all functions of the energy delivery due to the fluctuation nature...

  2. UAV Low Altitude Photogrammetry for Power Line Inspection

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2017-01-01

    Full Text Available When the distance between an obstacle and a power line is less than the discharge distance, a discharge arc can be generated, resulting in the interruption of power supplies. Therefore, regular safety inspections are necessary to ensure the safe operation of power grids. Tall vegetation and buildings are the key factors threatening the safe operation of extra high voltage transmission lines within a power line corridor. Manual or laser intensity direction and ranging (LiDAR based inspections are time consuming and expensive. To make safety inspections more efficient and flexible, a low-altitude unmanned aerial vehicle (UAV remote-sensing platform, equipped with an optical digital camera, was used to inspect power line corridors. We propose a semi-patch matching algorithm based on epipolar constraints, using both the correlation coefficient (CC and the shape of its curve to extract three dimensional (3D point clouds for a power line corridor. We use a stereo image pair from inter-strip to improve power line measurement accuracy by transforming the power line direction to an approximately perpendicular to epipolar line. The distance between the power lines and the 3D point cloud is taken as a criterion for locating obstacles within the power line corridor automatically. Experimental results show that our proposed method is a reliable, cost effective, and applicable way for practical power line inspection and can locate obstacles within the power line corridor with accuracy better than ±0.5 m.

  3. SCM Handbooks for dc-to-dc Converters

    Science.gov (United States)

    Lee, F.; Mohmoud, M.; Yu, Y.

    1984-01-01

    Two documents aid in design of control modules for dc-to-dc converters. Features of SCM include: Adaptive stability, power component stress limiting, implementation of various control laws, unified design approach. Analysis and quidelines contained in handbooks enable engineer to design SCM circuit and confidently predict resulting overall performance.

  4. Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    interface to the grid. In power electronics, the converter efficiency is characterized at fixed operating voltage for various output power. This type of characterization is not suitable for fuel cells, since as the power from the fuel cell increases, the cell voltage decreases. This paper analyses how......Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power...... the fuel cell I-V characteristics influences the power electronics converter efficiency and their consequence on the overall system. A loaddependent efficiency curve is presented based on experimental results from a 6 kW dc-dc converter prototype including the most suitable control strategy which maximizes...

  5. Quasiperiodicity and Torus Breakdown in a Power Electronic DC/DC Converter

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai; Soukhoterin, Evgeniy; Mosekilde, Erik

    2007-01-01

    This paper discusses the mechanisms of torus formation and torus destruction in a dc/dc converter with relay control and hysteresis. We establish a chart of the dynamical modes in the input voltage versus load resistance parameter plane. This chart displays several different torus bifurcations...

  6. Optimal Power Flow for resistive DC Network : A Port-Hamiltonian approach

    NARCIS (Netherlands)

    Benedito, Ernest; del Puerto-Flores, D.; Doria-Cerezo, A.; Scherpen, Jacquelien M.A.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    This paper studies the optimal power flow problem for resistive DC networks. The gradient method algorithm is written in a port-Hamiltonian form and the stability of the resulting dynamics is studied. Stability conditions are provided for general cyclic networks and a solution, when these conditions

  7. Auxiliary resonant DC tank converter

    Science.gov (United States)

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  8. Coordinated Control of Multiterminal DC Grid Power Injections for Improved Rotor-Angle Stability Based on Lyapunov Theory

    DEFF Research Database (Denmark)

    Eriksson, Robert

    2014-01-01

    The stability of an interconnected ac/dc system is affected by disturbances occurring in the system. Disturbances, such as three-phase faults, may jeopardize the rotor-angle stability and, thus, the generators fall out of synchronism. The possibility of fast change of the injected powers...... by the multiterminal dc grid can, by proper control action, enhance this stability. This paper proposes a new time optimal control strategy for the injected power of multiterminal dc grids to enhance the rotor-angle stability. The controller is time optimal, since it reduces the impact of a disturbance as fast...

  9. Chaos analysis and chaotic EMI suppression of DC-DC converters

    CERN Document Server

    Zhang, Bo

    2014-01-01

    Introduces chaos theory, its analytical methods and the means to apply chaos to the switching power supply design DC-DC converters are typical switching systems which have plenty of nonlinear behaviors, such as bifurcation and chaos. The nonlinear behaviors of DC-DC converters have been studied heavily over the past 20 years, yet researchers are still unsure of the practical application of bifurcations and chaos in switching converters. The electromagnetic interference (EMI), which resulted from the high rates of changes of voltage and current, has become a major design criterion in DC-DC co

  10. Performance of 22.4-kW nonlaminated-frame dc series motor with chopper controller. [a dc to dc voltage converter

    Science.gov (United States)

    Schwab, J. R.

    1979-01-01

    Performance data obtained through experimental testing of a 22.4 kW traction motor using two types of excitation are presented. Ripple free dc from a motor-generator set for baseline data and pulse width modulated dc as supplied by a battery pack and chopper controller were used for excitation. For the same average values of input voltage and current, the motor power output was independent of the type of excitation. However, at the same speeds, the motor efficiency at low power output (corresponding to low duty cycle of the controller) was 5 to 10 percentage points lower on chopped dc than on ripple free dc. The chopped dc locked-rotor torque was approximately 1 to 3 percent greater than the ripple free dc torque for the same average current.

  11. DC grid for home applications

    Science.gov (United States)

    Elangovan, D.; Archana, R.; Jayadeep, V. J.; Nithin, M.; Arunkumar, G.

    2017-11-01

    More than fifty percent Indian population do not have access to electricity in daily lives. The distance between the power generating stations and the distribution centers forms one of the main reasons for lack of electrification in rural and remote areas. Here lies the importance of decentralization of power generation through renewable energy resources. In the present world, electricity is predominantly powered by alternating current, but most day to day devices like LED lamps, computers and electrical vehicles, all run on DC power. By directly supplying DC to these loads, the number of power conversion stages was reduced, and overall system efficiency increases. Replacing existing AC network with DC is a humongous task, but with power electronic techniques, this project intends to implement DC grid at a household level in remote and rural areas. Proposed work was designed and simulated successfully for various loads amounting to 250 W through appropriate power electronic convertors. Maximum utilization of the renewable sources for domestic and commercial application was achieved with the proposed DC topology.

  12. Investigation of DC-DC Boost Converter for Reliability of Operational Planning

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Ashouri, Mani; Silva, Filipe Miguel Faria da

    2018-01-01

    of the interests related to reliability is the power semiconductor switches, which are the most vulnerable elements. The failure of one-power switches can reduce the system reliability. Interleaved technique for DC-DC converters is a redundant strategy to improve the reliability, but at the cost of increasing...

  13. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Kyu, E-mail: power@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Kwangmin; Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of)

    2015-11-15

    Highlights: • A 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC transmission system. • The 400 mH class HTS DC reactor was connected to real power network via the HVDC system. • The DC current flowed in HTS DC reactor has several harmonic components and it was analyzed using FFT. - Abstract: High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  14. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    International Nuclear Information System (INIS)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-01-01

    Highlights: • A 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC transmission system. • The 400 mH class HTS DC reactor was connected to real power network via the HVDC system. • The DC current flowed in HTS DC reactor has several harmonic components and it was analyzed using FFT. - Abstract: High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  15. Coordinated Control Scheme for Ancillary Services from Offshore Wind Power Plants to AC and DC Grids

    DEFF Research Database (Denmark)

    Sakamuri, Jayachandra N.; Altin, Müfit; Hansen, Anca Daniela

    2016-01-01

    This paper proposes a new approach of providing ancillary services to AC and DC grids from offshore wind power plants (OWPPs), connected through multi-terminal HVDC network. A coordinated control scheme where OWPP’s AC grid frequency modulated according to DC grid voltage variations is used...... to detect and provide the ancillary service requirements of both AC and DC grids, is proposed in this paper. In particular, control strategies for onshore frequency control, fault ridethrough support in the onshore grid, and DC grid voltage control are considered. The proposed control scheme involves only...

  16. Controlled Compact High Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Postolati V.

    2016-04-01

    Full Text Available Nowadays modern overhead transmission lines (OHL constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL, appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced achievements in design solutions, including towers and insulation, together with interconnection schemes and control systems. Results of comprehensive research and development in relation to 110–500kV compact controlled power transmission lines together with theoretical basis, substantiation, and methodological approaches to their practical application are presented in the present paper.

  17. MPPT algorithm test on a photovoltaic emulating system constructed by a DC power supply and an indoor solar panel

    International Nuclear Information System (INIS)

    Zhou, Z.; Holland, P.M.; Igic, P.

    2014-01-01

    Highlights: • A novel PV emulator is constructed by using conventional solar panels with a DC power supply. • The proposed PV emulator is cost-effectiveness, relatively easy implementation. • The proposed PV emulator avoids the bandwidth problem associated with electronics PV emulators. • Indoor testing of MPPT algorithms and power converters avoids the dependency on solar irradiation. • The PV emulating system has been used for testing a P and O MPPT algorithm and a boost dc converter. - Abstract: In this paper a novel photovoltaic (PV) emulating scheme for testing maximum power point tracking (MPPT) algorithms and PV inverters has been proposed. It is constructed by the parallel connection of conventional solar panels with a DC power supply operating in current source mode. The advantages of the proposed scheme are cost-effectiveness, relatively easy implementation and indoor testing of MPPT algorithms and power converters avoiding weather and time of day dependency on solar irradiation levels. Furthermore, the proposed PV emulator avoids the bandwidth problem associated with the dc converter based PV emulating systems. Detailed circuit connection, parameters, electrical characteristics and mathematical model of the PV emulator are presented and discussed. Proposed PV emulating system has been used to test a boost DC/DC converter controlled by Perturb and Observe (P and O) MPPT algorithm. Test results confirmed the effectiveness of the proposed PV emulation system and all achieved results correspond well to the original designed values

  18. Estimation of Faults in DC Electrical Power System

    Science.gov (United States)

    Gorinevsky, Dimitry; Boyd, Stephen; Poll, Scott

    2009-01-01

    This paper demonstrates a novel optimization-based approach to estimating fault states in a DC power system. Potential faults changing the circuit topology are included along with faulty measurements. Our approach can be considered as a relaxation of the mixed estimation problem. We develop a linear model of the circuit and pose a convex problem for estimating the faults and other hidden states. A sparse fault vector solution is computed by using 11 regularization. The solution is computed reliably and efficiently, and gives accurate diagnostics on the faults. We demonstrate a real-time implementation of the approach for an instrumented electrical power system testbed, the ADAPT testbed at NASA ARC. The estimates are computed in milliseconds on a PC. The approach performs well despite unmodeled transients and other modeling uncertainties present in the system.

  19. Performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX

    Science.gov (United States)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Irwanto, M.; Leow, W. Z.; Amelia, A. R.

    2017-09-01

    A research has been conducted to find the optimum combination for DC fan air cooling system of photovoltaic (PV) panel. During normal operation of PV panel, it is estimated that only 15 % of solar radiation is converted into electrical energy. Meanwhile, the rest of the solar radiation is converted into heat energy which affects the performance of the PV panel. Therefore, the aim of this research is to investigate the performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX. The effect of airflow configuration of DC fan has been investigated. This is to analyze whether the airflow circulation of DC fan cause a change towards the maximum temperature of PV panel. Besides, the impact of varying number of DC fans attached at the back of PV panel is evaluated. The result of airflow circulation of DC fan has been discussed. Meanwhile, with the increment number of DC fans, the PV panel temperature drops significantly. As a conclusion, the optimum number of DC fans is two with the combination of inlet airflow.

  20. D.C. side active filter for high stability accelerator magnet power supplies

    International Nuclear Information System (INIS)

    Singh, Yash Pal; Thakurta, A.C.; Kotaiah, S.

    2006-01-01

    Accelerator d.c, magnets have to produce a highly stable magnetic field which in turn needs highly stable d.c. current sources to energise them. Indus-II Q4 and Q5 power supplies are SCR based power supplies wherein the rectified voltage is fed to a passive filter to reduce the ripple voltage. The output of the passive filter still contains some ripple particularly on the low frequency side. The design and the test results of an active filter module have been discussed wherein the low frequency attenuation can be very effectively taken care of by allowing this to be absorbed in a coupling transformer put after the passive filter. Considerable size reduction has been achieved by using switching techniques. Low frequency attenuation has been made quite a simple task. This filter also helps in handling transients from input. (author)

  1. High-Voltage DC-DC Converter Topology for PV Energy Utilization - Investigation and Implementation

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Blaabjerg, Frede; Wheeler, Patrick

    2017-01-01

    This paper exploited the utilization of photovoltaic (PV) energy system with high-voltage (HV) output DC-DC converter. Classical boost converters are used for both renewable energy integration and HV applications, but limited by reducing output/efficiency in performance. Moreover, as parasitic...... elements suppress the power transfer ratio, converter needs to maximize the PV energy utilization. This investigation study focused to include additional parasitic elements (voltage-lift technique) to a standard DC-DC buck converter and to overcome all the above drawbacks to maximize the PV power...

  2. High-Efficiency Photovoltaic System Using Partially-Connected DC-DC Converter

    Science.gov (United States)

    Uno, Masatoshi; Kukita, Akio; Tanaka, Koji

    Power conversion electronics for photovoltaic (PV) systems are desired to operate as efficiently as possible to exploit the power generated by PV modules. This paper proposes a novel PV system in which a dc-dc converter is partially connected to series-connected PV modules. The proposed system achieves high power-conversion efficiency by reducing the passing power and input/output voltages of the converter. The theoretical operating principle was experimentally validated. Resultant efficiency performances of the proposed and conventional systems demonstrated that the proposed system was more efficient in terms of power conversion though the identical converter was used for the both systems.

  3. Control strategy and hardware implementation for DC–DC boost power circuit based on proportional–integral compensator for high voltage application

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2015-06-01

    Full Text Available For high-voltage (HV applications, the designers mostly prefer the classical DC–DC boost converter. However, it lacks due to the limitation of the output voltage by the gain transfer ratio, decreased efficiency and its requirement of two sensors for feedback signals, which creates complex control scheme with increased overall cost. Furthermore, the output voltage and efficiency are reduced due to the self-parasitic behavior of power circuit components. To overcome these drawbacks, this manuscript provides, the theoretical development and hardware implementation of DC–DC step-up (boost power converter circuit for obtaining extra output-voltage high-performance. The proposed circuit substantially improves the high output-voltage by voltage-lift technology with a closed loop proportional–integral controller. This complete numerical model of the converter circuit including closed loop P-I controller is developed in simulation (Matlab/Simulink software and the hardware prototype model is implemented with digital signal processor (DSP TMS320F2812. A detailed performance analysis was carried out under both line and load regulation conditions. Numerical simulation and its verification results provided in this paper, prove the good agreement of the circuit with theoretical background.

  4. A Wireless Power Sharing Control Strategy for Hybrid Energy Storage Systems in DC Microgrids

    DEFF Research Database (Denmark)

    Yang, Jie; Jin, Xinmin; Wu, Xuezhi

    2017-01-01

    In order to compensate multiple time scales power fluctuation resulted from distributed energy resources and loads, hybrid energy storage systems are employed as the buffer unit in DC microgrid. In this paper, a wireless hierarchical control strategy is proposed to realize power sharing between...

  5. Booster main magnet power supply, present operation and potential future upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Bajon, E.; Bannon, M.; Marneris, I.; Danowski, G.; Sandberg, J.; Savatteri, S.

    2011-03-28

    The Brookhaven Booster Main Magnet Power Supply (MMPS) is a 24 pulse thyristor control supply, rated at 5500 Amps, +/-2000 Volts, or 3000 Amps, +/-6000 Volts. The power supply is fed directly from the power utility and the peak magnet power is 18 MWatts. This peak power is seen directly at the incoming ac line. This power supply has been in operation for the last 18 years. This paper will describe the present topology and operation of the power supply, the feedback control system and the different modes of operation of the power supply. Since the power supply has been in operation for the last 18 years, upgrading this power supply is essential. A new power supply topology has been studied where energy is stored in capacitor banks. DC to DC converters are used to convert the dc voltage stored in the capacitor banks to pulsed DC voltage into the magnet load. This enables the average incoming power from the ac line to be constant while the peak magnet power is pulsed to +/- 18 MWatts. Simulations and waveforms of this power supply will be presented.

  6. Operation and control of a DC-grid offshore wind farm under DC transmission system faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2013-01-01

    . Consequently, the protection and control strategies of dc systems need to be established. This paper studies a dc-grid offshore wind farm, where the wind power collection system and power transmission system adopt dc technology. In this paper, the redundancy of the HVDC transmission system under faults...... is studied, and a fault ridethrough strategy for the dc-grid offshore wind farm is proposed. The proposed strategy can effectively minimize the impacts of the power transmission system disturbance on the offshore wind farm, and on the ac grid. A dc-grid offshore wind farm example is simulated with PSCAD....../EMTDC, and the results validate the feasibility of the presented redundancy configuration and operation approach, and the fault ridethrough control strategy....

  7. Application of Distributed DC/DC Electronics in Photovoltaic Systems

    Science.gov (United States)

    Kabala, Michael

    In a typical residential, commercial or utility grade photovoltaic (PV) system, PV modules are connected in series and in parallel to form an array that is connected to a standard DC/AC inverter, which is then connected directly to the grid. This type of standard installation; however, does very little to maximize the energy output of the solar array if certain conditions exist. These conditions could include age, temperature, irradiance and other factors that can cause mismatch between PV modules in an array that severely cripple the output power of the system. Since PV modules are typically connected in series to form a string, the output of the entire string is limited by the efficiency of the weakest module. With PV module efficiencies already relatively low, it is critical to extract the maximum power out of each module in order to make solar energy an economically viable competitor to oil and gas. Module level DC/DC electronics with maximum power point (MPP) tracking solves this issue by decoupling each module from the string in order for the module to operate independently of the geometry and complexity of the surrounding system. This allows each PV module to work at its maximum power point by transferring the maximum power the module is able to deliver directly to the load by either boosting (stepping up) the voltage or bucking (stepping down) the voltage. The goal of this thesis is to discuss the development of a per-module DC/DC converter in order to maximize the energy output of a PV module and reduce the overall cost of the system by increasing the energy harvest.

  8. Transmission Lines or Poles, Electric - VOLUSIA COUNTY MAJOR POWER LINES (Arcs)

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Volusia County Power Line data was aggregated by using parcel data and visual inspection of 2005 aerial photography to determine centerline of Power Lines Right of...

  9. Control of the DC-DC Converter used into Energy Generation System

    International Nuclear Information System (INIS)

    Bizon, Nicu; Oproescu, Mihai

    2006-01-01

    This paper presents an investigation of the DC-DC Converter controller used into Energy Generation System. The full bridge is used into an Energy Generation System (EGS) as second power interface between the energy source and the high DC bus. The simulation results show that the DC-DC Converter behavior can be improved using a well designed PI control surface. The used Simulink models for the EGS blocks and some design considerations are presented, too. (authors)

  10. A study on DC hybrid three-phase fault current limiting interrupter for a power distribution system

    International Nuclear Information System (INIS)

    Shao, Hongtian; Satoh, Tomoyuki; Yamaguchi, Mitsugi; Fukui, Satoshi; Ogawa, Jun; Satoh, Takao; Ishikawa, Hiroyuki

    2005-01-01

    For the purpose of protecting electric power system, many researches and developments of fault current limiters are being performed. The authors studied a dc hybrid three-phase fault current limiting interrupter (FCLI) composed of a superconducting reactor and an S/N transition element, connected in series each other. The dc hybrid type fault current limiting interrupter can limit a fault current by means of the inductance of high temperature superconducting (HTS) coil together with the normal transition of HTS bulk material (HTSB). In the case of an accident, the normal transition of the bulk material can be accelerated by the magnetic field of the HTS coil. In this paper, the dc hybrid type fault current limiting interrupter for 5.5 km long 6.6 kV-600 A power distribution system is analyzed, and performances of fault current limitation and interruption are confirmed. Moreover, a reclosing operation is discussed for this power distribution system

  11. Sheppard-Taylor Isolated High Boost DC-DC Converter

    DEFF Research Database (Denmark)

    Chub, Andrii; Siwakoti, Yam Prasad; Vinnikov, Dmitri

    2017-01-01

    This paper presents a new galvanically isolated step-up dc-dc converter intended for low-power but high step-up applications. The proposed converter is capable of regulating output voltage within a wide range of the input voltage or load variations. In contrast to competitors, the converter can...

  12. Experimental Results of a DC Bus Voltage Level Control for a Load-Controlled Marine Current Energy Converter

    Directory of Open Access Journals (Sweden)

    Johan Forslund

    2015-05-01

    Full Text Available This paper investigates three load control methods for a  marine current energy converter using a vertical axis current  turbine (VACT mounted on a permanent magnet synchronous generator  (PMSG. The three cases are; a fixed AC load, a fixed pulse width  modulated (PWM DC load and DC bus voltage control of a DC  load. Experimental results show that the DC bus voltage control  reduces the variations of rotational speed by a factor of 3.5 at the cost  of slightly increased losses in the generator and transmission lines.  For all three cases, the tip speed ratio \\(\\lambda\\ can be kept close to  the expected \\(\\lambda_{opt}\\. The power coefficient is estimated to be  0.36 at \\(\\lambda_{opt}\\; however, for all three cases, the average  extracted power was about \\(\\sim 19\\\\%. A maximum power point  tracking (MPPT system, with or without water velocity measurement,  could increase the average extracted power.

  13. Transmission Line Adapted Analytical Power Charts Solution

    Science.gov (United States)

    Sakala, Japhet D.; Daka, James S. J.; Setlhaolo, Ditiro; Malichi, Alec Pulu

    2017-08-01

    The performance of a transmission line has been assessed over the years using power charts. These are graphical representations, drawn to scale, of the equations that describe the performance of transmission lines. Various quantities that describe the performance, such as sending end voltage, sending end power and compensation to give zero voltage regulation, may be deduced from the power charts. Usually required values are read off and then converted using the appropriate scales and known relationships. In this paper, the authors revisit this area of circle diagrams for transmission line performance. The work presented here formulates the mathematical model that analyses the transmission line performance from the power charts relationships and then uses them to calculate the transmission line performance. In this proposed approach, it is not necessary to draw the power charts for the solution. However the power charts may be drawn for the visual presentation. The method is based on applying derived equations and is simple to use since it does not require rigorous derivations.

  14. Design and implementation of a low-cost maximization power conversion system for brushless DC generator

    Directory of Open Access Journals (Sweden)

    Abolfazl Halvaei Niasar

    2017-12-01

    Full Text Available This paper presents a simple and low-cost method to capture maximum power throughput of permanent magnet brushless DC (BLDC generator. Conventional methods of rectification are based on passive converters, and because the current waveform cannot be controlled as ideal waveform, a highly distorted current is drawn from brushless generator. It leads to lower power factor and reduces the efficiency and power per ampere capability. So, in this study an active six-witch power converter is employed and based on the phase back-EMF voltage, an optimum current waveform is generated. The phase currents are controlled inphase to phase voltages and their magnitudes are adjusted to regulate the DC-link voltage. Proposed control theory is verified by simulations for BLDC generator and permanent magnet synchronous generator (PMSG. Moreover, some experimental results are given to demonstrate the theoretical and simulation results.

  15. Controller for a High-Power, Brushless dc Motor

    Science.gov (United States)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  16. Natural radiation focused by power lines: new evidence

    Energy Technology Data Exchange (ETDEWEB)

    Hopwood, Anthony

    1992-11-01

    Scientists searching for a mechanism to explain increases in the incidence of cancer among those living in close proximity to power lines could have been looking in the wrong place. New evidence suggests that instead of trying to find an as yet unproven cellular reaction to the presence of the power-line's magnetic fields, researchers should investigate power lines as concentrators of potentially damaging natural sky radiation. If accepted, a clear link between a known biological cell damage mechanism and power lines will have been established, triggering a reassessment of the independent studies recording statistical increases in cancer incidence around power lines. The evidence stems from recordings showing concentrations of background solar radiation under power lines - a direction of enquiry prompted by a chance observation made during a British Astronomical Association experiment. (Author).

  17. Modelling and Control Design of a Dual Buck-Boost AC/DC Converter Used in the DC Nano-Grid

    DEFF Research Database (Denmark)

    Wu, Weimin; Liu, Yuan; Wang, Houqing

    2016-01-01

    Due to widely used DC characterized loads and more distributed power generation sources, the DC Nano-grid becomes more and more popular and seen as an alternative to the AC-grid in future. For the safety considerations, the DC Nano-grid should provide reliable grounding for the residential loads...... like the low voltage AC power system. In this paper, a dual Buck-Boost AC/DC converter for use in the united grounding configuration based DC Nano-grid with three terminal outputs is proposed. It will be much easy to construct an efficient DC Nano-grid based on the existing low AC power system by using...

  18. Decentralized DC Microgrid Monitoring and Optimization via Primary Control Perturbations

    Science.gov (United States)

    Angjelichinoski, Marko; Scaglione, Anna; Popovski, Petar; Stefanovic, Cedomir

    2018-06-01

    We treat the emerging power systems with direct current (DC) MicroGrids, characterized with high penetration of power electronic converters. We rely on the power electronics to propose a decentralized solution for autonomous learning of and adaptation to the operating conditions of the DC Mirogrids; the goal is to eliminate the need to rely on an external communication system for such purpose. The solution works within the primary droop control loops and uses only local bus voltage measurements. Each controller is able to estimate (i) the generation capacities of power sources, (ii) the load demands, and (iii) the conductances of the distribution lines. To define a well-conditioned estimation problem, we employ decentralized strategy where the primary droop controllers temporarily switch between operating points in a coordinated manner, following amplitude-modulated training sequences. We study the use of the estimator in a decentralized solution of the Optimal Economic Dispatch problem. The evaluations confirm the usefulness of the proposed solution for autonomous MicroGrid operation.

  19. TOPOLOGICAL REVIEW AND ANALYSIS OF DC-DC BOOST CONVERTERS

    Directory of Open Access Journals (Sweden)

    V. INDRA GANDHI

    2017-06-01

    Full Text Available DC voltage boost up is essential in numerous applications; especially considering Photovoltaic (PV based renewable power generation system. The conventional DC-DC boost converter is the most admired configuration for this scheme, even if the converter efficiency is restricted at duty cycle near to maximum value. In order to find solution to the problem and improve its conversion capability, many converter configurations have been implemented so far. With this circumstance, this research work proposes to give overview of a few most imperative research works related to DC-DC boost converters. Some configurations are covered and classified basically based on the application. The major benefits and disadvantages related to the available techniques are also briefly conveyed. At last, a proper evaluation is recognized among the important types of DC-DC boost converters in terms of efficiency, number of components, and stability.

  20. A Dual-Buck–Boost AC/DC Converter for DC Nanogrid With Three Terminal Outputs

    DEFF Research Database (Denmark)

    Wu, Weimin; Wang, Houqing; Liu, Yuan

    2017-01-01

    Due to the widely used dc characterized loads and more distributed power generation sources, the dc nanogrid becomes more and more popular, and it is seen as an alternative to the ac grid. For safety considerations, the dc nanogrid should provide reliable grounding for the residential loads...... such as the low-voltage ac power system. There are three typical grounding configurations for a dc nanogrid: the united grounding, the unidirectional grounding, and the virtual isolated grounding. Each grounding configuration has its own specifications to ac/dc converters. In this paper, a dual-buck-boost ac/dc...... converter for use in the united-grounding-configuration-based dc nanogrid with three terminal outputs is proposed. The working principle of this converter is presented in detail through analyzing the equivalent circuits. Experiments are carried out to verify the theoretical analysis....

  1. E-beam high voltage switching power supply

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.

  2. E-beam high voltage switching power supply

    International Nuclear Information System (INIS)

    Shimer, D.W.; Lange, A.C.

    1997-01-01

    A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360 degree/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs

  3. Floating high step-down stacked dc-dc converter based on buck-boost cells

    NARCIS (Netherlands)

    Tibola, G.; Duarte, J.L.; Blinov, A.

    2015-01-01

    In some high power dc-dc applications, where high voltage is present, a converter with high step-down ratio is required in order to provide an isolated low power auxiliary supply. This requirement represents a challenge and many topologies are currently being researched. The analysis of a

  4. Y-Source Boost DC/DC Converter for Distributed Generation

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2015-01-01

    This paper introduces a versatile Y-source boost dc/dc converter intended for distributed power generation, where high gain is often demanded. The proposed converter uses a Y-source impedance network realized with a tightly coupled three-winding inductor for high voltage boosting that is presently...

  5. Open- and Short-Circuit Fault Identification for a Boost dc/dc Converter in PV MPPT Systems

    Directory of Open Access Journals (Sweden)

    Diego R. Espinoza Trejo

    2018-03-01

    Full Text Available This paper proposes a fault identification system for short and open-circuit switch faults (SOCSF for a dc/dc converter acting as a Maximum Power Point Tracker (MPPT in Photovoltaic (PV systems. A closed-loop operation is assumed for the boost dc/dc converter. A linearizing control plus a Proportional-Derivative (PD controller is suggested for PV voltage regulation at the maximum power point (MPP. In this study, the SOCSF are modeled by using an additive fault representation and the fault identification (FI system is synthesized departing from a Luenberger observer. Hence, an FI signal is obtained, which is insensitive to irradiance and load current changes, but affected by the SOCSF. For FI purposes, only the sensors used in the control system are needed. Finally, an experimental evaluation is presented by using a solar array simulator dc power supply and a boost dc/dc converter of 175 W in order to validate the ideas this study exposes.

  6. Numerical Calculation of Overhead Power Lines Dynamics

    Directory of Open Access Journals (Sweden)

    Gogola Roman

    2016-11-01

    Full Text Available This paper contains results of transient analysis of airflow around the ACSR power line cross-section in unsymmetric multi-span. The forces applied to the power line are obtained from CFD simulations, where the wind induced vibration is studied. Effect of these forces to the maximal displacement of the power line and the maximal mechanical forces in the points of attachment are studied and evaluated.

  7. An Active Damping Technique for Small DC-Link Capacitor Based Drive System

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Lu, Kaiyuan

    2013-01-01

    A small dc-link capacitor based drive system shows instability when it is operated with large input line inductance at operating points with high power. This paper presents a simple, new active damping technique that can stabilize effectively the drive system at unstable operating points, offering...

  8. Investigations of DC power supplies with optoelectronic transducers and RF energy converters

    Science.gov (United States)

    Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.

    2016-04-01

    Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.

  9. Design and development of microcontroller based programmable ramp generator for AC-DC converter for simulating decay power transient in experimental facility for nuclear power plants

    International Nuclear Information System (INIS)

    Srivastava, Gaurava Deep; Kulkarni, R.D.

    2015-01-01

    In nuclear power plants, fuel is subjected to a wide range of power and temperature transients during normal and abnormal conditions. The reactor setback and step-back power pattern, fast temperature profile occurred during Loss of Coolant Accident and decay power followed by shutdown of power plant are the typical transients in nuclear power plant. For a variety of reactor engineering and reactor safety related study, one needs to simulate these transients in experimental facility. In experimental facilities, high response AC-DC converters are used to handle these power and temperature transients safely in a controlled manner for generating a database which is utilized for design of thermal hydraulic system, development of computer codes, study of reliability of reactor safety system, etc. for nuclear power plants. The paper presents the methodology developed for simulating the typical reactor decay power transient in an experimental facility. The design and simulation of AC-DC power electronic converter of 3 MW capacity is also presented. The microcontroller based programmable ramp generator is designed and hardware implemented for feeding reference voltage to the closed loop control system of AC-DC converter for obtaining the decay power profile at the converter output. The typical decay power transient of the nuclear power plant is divided into several small power ramps for simulating the transient. The signal corresponding to each power ramp is generated by programmable ramp generator and fed to the comparator for generating control signal for the converter. The actual decay power transient obtained from the converter is compared with the theoretical decay power transient. (author)

  10. Final design of the Korean AC/DC converters for the ITER coil power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong-Seok, E-mail: jsoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Choi, Jungwan; Suh, Jae-Hak; Choi, Jihyun [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Lee, Lacksang; Kim, Changwoo; Park, Hyungjin; Jo, Seongman; Lee, Seungyun; Hwang, Kwangcheol; Liu, Hyoyol [Dawonsys Corp., Siheung 429-450 (Korea, Republic of); Hong, Ki-Don; Sim, Dong-Joon; Lee, Jang-Soo [Hyosung Corp., Gongdeok-Dong, Seoul 121-720 (Korea, Republic of); Lee, Eui-Jae; Kwon, Yang-Hae; Lee, Dae-Yeol; Ko, Ki-Won; Kim, Jong-Min [Mobiis Corp., Yangjae-dong, Seoul 137-888 (Korea, Republic of); Song, Inho [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); and others

    2015-10-15

    The final design of the ITER TF, CS, CC and VS AC/DC converters has been completed to implement ITER requirements following the detailed design and refinements of the preliminary design. The number of parallel thyristors and the rating of fuses are coordinated to keep those devices within the explosion limit even under most severe fault conditions. The impedance of the converter transformer has been optimized taking into account the energization inrush current, short circuit current, reactive power consumption and the available DC voltage. To ensure system integrity, AC/DC converters are mechanically divided into transformers, AC busbars, 6-pulse bridges, DC interconnecting busbars and DC reactors, and then all subsystems are decoupled by flexible links. To provide stable real time network communication down to the converters, a one GbE link is deployed between master controllers and local controllers. IEEE 1588 is implemented to the embedded controllers for precision time synchronization. This paper describes the detailed solutions implemented in the final design for the ITER AC/DC converters with R&D results of converter prototypes.

  11. Economic power schedule and transactive energy through an intelligent centralized energy management system for a DC residential distribution system

    DEFF Research Database (Denmark)

    Yue, Jingpeng; Hu, Zhijian; Li, Chendan

    2017-01-01

    Direct current (DC) residential distribution systems (RDS) consisting of DC living homes will be a significant integral part of future green transmission. Meanwhile, the increasing number of distributed resources and intelligent devices will change the power flow between the main grid...... (CEMS), but also a control approach to implement and ensure DG output voltages to various DC buses in a DC RDS. Based on data collection, prediction and a certain objectives, the expert system in a CEMS can work out the optimization schedule, after this, the voltage droop control for steady voltage...... is aligned with the command of the unit power schedule. In this work, a DC RDS is used as a case study to demonstrate the process, the RDS is associated with unit economic models, and a cost minimization objective is proposed that is to be achieved based on the real-time electrical price. The results show...

  12. Apparatus and Method for Communication over Power Lines

    Science.gov (United States)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor); Greer, III, Lawrence C. (Inventor); Nappier, Jennifer M. (Inventor)

    2017-01-01

    An apparatus and method are provided for communicating over power lines. The apparatus includes a coupling modem that is situated between a power line and a device. The coupling modem is configured to demodulate a signal received from the power line into a sine signal and a cosine signal. The coupling modem is also configured to modulate a communicated bit stream received from the device into a transmitted signal in order to impose the transmitted signal onto the power line.

  13. 3D Power Line Extraction from Multiple Aerial Images

    Directory of Open Access Journals (Sweden)

    Jaehong Oh

    2017-09-01

    Full Text Available Power lines are cables that carry electrical power from a power plant to an electrical substation. They must be connected between the tower structures in such a way that ensures minimum tension and sufficient clearance from the ground. Power lines can stretch and sag with the changing weather, eventually exceeding the planned tolerances. The excessive sags can then cause serious accidents, while hindering the durability of the power lines. We used photogrammetric techniques with a low-cost drone to achieve efficient 3D mapping of power lines that are often difficult to approach. Unlike the conventional image-to-object space approach, we used the object-to-image space approach using cubic grid points. We processed four strips of aerial images to automatically extract the power line points in the object space. Experimental results showed that the approach could successfully extract the positions of the power line points for power line generation and sag measurement with the elevation accuracy of a few centimeters.

  14. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    Science.gov (United States)

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  15. Determination of input/output characteristics of full-bridge AC/DC/DC converter for arc welding

    OpenAIRE

    Stefanov, Goce; Karadzinov, Ljupco; Sarac, Vasilija; Cingoski, Vlatko; Gelev, Saso

    2016-01-01

    This paper describes the design and practical implementation of AC/DC/DC converter in mode of arc welding. An analysis of the operation of AC/DC/DC converter and its input/output characteristics are determined with computer simulations. The practical part is consisted of AC/DC/DC converter prototype for arc welding with output power of 3 kW and switching frequency of 64 kHz. The operation of AC/DC/DC converter is validated with experimental measurements.

  16. Impute DC link (IDCL) cell based power converters and control thereof

    Science.gov (United States)

    Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad

    2016-04-26

    Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.

  17. Periodically Swapping Modulation (PSM) Strategy for Three-Level (TL) DC/DC Converter with Balanced Switch Currents

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2018-01-01

    The asymmetrical modulation strategy is widely used in various types of three-level (TL) DC/DC converters, while the current imbalance among the power switches is one of the important issues. In this paper, a novel periodically swapping modulation (PSM) strategy is proposed for balancing the power...... switches’ currents in various types of TL DC/DC converters. In the proposed PSM strategy, the driving signals of the switch pairs are swapped periodically, which guarantees that the currents through the power switches are kept balanced in every two switching periods. Therefore, the proposed PSM...... strategy can effectively improve the reliability of the converter by balancing the power losses and thermal stresses among the power switches. The operation principle and performances of the proposed PSM strategy are analyzed in detail. Finally, the simulation and experimental results are presented...

  18. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  19. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    Science.gov (United States)

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  20. Optimal Power Flow Modelling and Analysis of Hybrid AC-DC Grids with Offshore Wind Power Plant

    DEFF Research Database (Denmark)

    Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei

    2017-01-01

    In order to develop renewables based energy systems, the installation of the offshore wind power plants (WPPs) is globally encouraged. However, wind power generation is intermittent and uncertain. An accurate modelling and evaluation reduces investment and provide better operation. Hence......, the wind power production level also plays a major role in a hybrid system on transmission loss evaluation. The developed model is tested in Low, Medium and High wind power production levels to determine the objective function of the OPF solution. MATLAB Optimization Toolbox and MATLAB script are used......, it is essential to develop a suitable model and apply optimization algorithms for different application scenarios. The objective of this work is to develop a generalized model and evaluate the Optimal Power Flow (OPF) solutions in a hybrid AC/DC system including HVDC (LCC based) and offshore WPP (VSC based...

  1. A test of a 2 Tesla superconducting transmission line magnet system

    International Nuclear Information System (INIS)

    Piekarz, Henryk; Carcagno, Ruben; Claypool, Brad; Foster, George W.; Hays, Steven L.; Huang, Yuenian; Kashikhin, Vladimir; Malamud, Ernest; Mazur, Peter O.; Nehring, Roger; Oleck, Andrew; Rabehl, Roger; Schlabach, Phil; Sylvester, Cosmore; Velev, Gueorgui; Volk, James; Wake, Masayoshi

    2005-01-01

    Superconducting transmission line magnet test system for an injector accelerator of a staged VLHC proton-proton colliding beam accelerator has been built and operated at Fermilab. The 1.5 m long, twin-aperture, combined function dipole magnet of 2 Tesla field is excited by a single turn 100 kA transmission line superconductor. The 100 kA dc current is generated using dc-dc switching converters powered by a bulk 240 kW supply. A pair of horizontally placed conventional leads facilitates transfer of this current to the magnet transmission line superconductor operating at liquid helium temperature. Fabrication of magnet components and magnet assembly work are described. The magnet test system and its operation are presented, and the performance is summarized

  2. A test of a 2 Tesla superconducting transmission line magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Piekarz, Henryk; Carcagno, Ruben; Claypool, Brad; Foster, George W.; Hays, Steven L.; Huang, Yuenian; Kashikhin, Vladimir; Malamud, Ernest; Mazur, Peter O.; Nehring,; Oleck, Andrew; Rabehl, Roger; Schlabach, Phil; Sylvester, Cosmore; Velev, Gueorgui; Volk, James; /Fermilab; Wake, Masayoshi; /KEK, Tsukuba

    2005-09-01

    Superconducting transmission line magnet test system for an injector accelerator of a staged VLHC proton-proton colliding beam accelerator has been built and operated at Fermilab. The 1.5 m long, twin-aperture, combined function dipole magnet of 2 Tesla field is excited by a single turn 100 kA transmission line superconductor. The 100 kA dc current is generated using dc-dc switching converters powered by a bulk 240 kW supply. A pair of horizontally placed conventional leads facilitates transfer of this current to the magnet transmission line superconductor operating at liquid helium temperature. Fabrication of magnet components and magnet assembly work are described. The magnet test system and its operation are presented, and the performance is summarized.

  3. Very High Frequency Resonant DC/DC Converters for LED Lighting

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...... with 40 V input and 15 V output are made. The simulation shows possibility of achieving efficiency up to 87 % even with a HEXFET Power MOSFET. Three prototypes of the simulated converter are implemented showing good correlation with simulations. The prototypes have efficiencies up to 84 % and power...

  4. Direct current power delivery system and method

    Science.gov (United States)

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  5. Modeling, Control and Protection of Low-Voltage DC Microgrids

    OpenAIRE

    Salomonsson, Daniel

    2008-01-01

    Current trends in electric power consumption indicate an increasing use of dc in end-user equipment, such as computers and other electronic appliances used in households and offices. With a dc power system, ac/dc conversion within these loads can be avoided, and losses reduced. AC/DC conversion is instead centralized, and by using efficient, fully controllable power-electronic interfaces, high power quality for both ac and dc systems during steady state and ac grid disturbances can be obtaine...

  6. Dynamic Assessment of COTS Converters-based DC Integrated Power Systems in Electric Ships

    DEFF Research Database (Denmark)

    Francés, Airán; Anvari-Moghaddam, Amjad; Diaz, Enrique Rodriguez

    2018-01-01

    , power electronics play a key role in linking the different elements of the power architecture. Moreover, the transition towards a dc distribution, which has already been established in other applications, is being regarded as a promising alternative to ease the integration of renewable sources......-level controllers, design protections or assess the compliance of the system dynamics with the standards. Experimental results are included in order to validate the proposed method....

  7. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.

    2017-01-01

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross

  8. Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters

    Science.gov (United States)

    2018-01-01

    Visible light communication (VLC) based on solid-state lighting (SSL) is a promising option either to supplement or to substitute existing radio frequency (RF) wireless communication in indoor environments. VLC systems take advantage of the fast modulation of the visible light that light emitting diodes (LEDs) enable. The switching-mode dc-to-dc converter (SMCdc-dc) must be the cornerstone of the LED driver of VLC transmitters in order to incorporate the communication functionality into LED lighting, keeping high power efficiency. However, the new requirements related to the communication, especially the high bandwidth that the LED driver must achieve, converts the design of the SMCdc-dc into a very challenging task. In this work, three different methods for achieving such a high bandwidth with an SMCdc-dc are presented: increasing the order of the SMCdc-dc output filter, increasing the number of voltage inputs, and increasing the number of phases. These three strategies are combinable and the optimum design depends on the particular VLC application, which determines the requirements of the VLC transmitter. As an example, an experimental VLC transmitter based on a two-phase buck converter with a fourth-order output filter will demonstrate that a bandwidth of several hundred kilohertz (kHz) can be achieved with output power levels close to 10 W and power efficiencies between 85% and 90%. In conclusion, the design strategy presented allows us to incorporate VLC into SSL, achieving high bit rates without damaging the power efficiency of LED lighting. PMID:29642455

  9. Pulsed-DC selfsputtering of copper

    International Nuclear Information System (INIS)

    Wiatrowski, A; Posadowski, W M; Radzimski, Z J

    2008-01-01

    At standard magnetron sputtering conditions (argon pressure ∼0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (∼550W/cm 2 ). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%

  10. Pulsed-DC selfsputtering of copper

    Science.gov (United States)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-03-01

    At standard magnetron sputtering conditions (argon pressure ~0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (~550W/cm2). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%.

  11. Voltage regulated hybrid DC power source using supercapacitors as energy storage device

    International Nuclear Information System (INIS)

    Ayad, Mohamed-Yacine; Pierfederici, Serge; Rael, Stephane; Davat, Bernard

    2007-01-01

    The management of embedded electrical energy needs a storage system with high dynamic performances in order to shave transient power peaks and to compensate for the intrinsic limitations of the main source. The use of supercapacitors for this storage system is quite suitable because of appropriate electrical characteristics (huge capacitance, weak series resistance, high specific energy, high specific power), direct storage (energy ready for use) and easy control by power electronic conversion. This paper deals with the conception and realisation of a voltage regulated hybrid DC power source using supercapacitors as an auxiliary storage device. Here, we present the structure, control principle and results associated with experimental validation. Our interest will be focused on the management of transient power peaks

  12. Voltage regulated hybrid DC power source using supercapacitors as energy storage device

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, Mohamed-Yacine; Pierfederici, Serge; Rael, Stephane; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Centre National de la Recherche Scientifique (Unite Mixte de Recherche 7037), 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy (France)

    2007-07-15

    The management of embedded electrical energy needs a storage system with high dynamic performances in order to shave transient power peaks and to compensate for the intrinsic limitations of the main source. The use of supercapacitors for this storage system is quite suitable because of appropriate electrical characteristics (huge capacitance, weak series resistance, high specific energy, high specific power), direct storage (energy ready for use) and easy control by power electronic conversion. This paper deals with the conception and realisation of a voltage regulated hybrid DC power source using supercapacitors as an auxiliary storage device. Here, we present the structure, control principle and results associated with experimental validation. Our interest will be focused on the management of transient power peaks. (author)

  13. Design and implementation of co-operative control strategy for hybrid AC/DC microgrids

    Science.gov (United States)

    Mahmud, Rasel

    This thesis is mainly divided in two major sections: 1) Modeling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper

  14. Verification of Safety Margins of Battery Banks Capacity of Class 1E DC System in a Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lukman, Abdulrauf; Zhu, Oon-Pyo

    2015-01-01

    According to Ref 'Station blackout (SBO) is generally a plant condition with complete loss of all alternating current (AC) power from off-site sources, from the main generator and from standby AC power sources important to safety to the essential and nonessential switchgear buses. Direct current (DC) power supplies and uninterruptible AC power supplies may be available as long as batteries can supply the loads, alternate AC power supplies are available'. The above IAEA document indicated the importance of batteries during SBO. Prior to the Fukushima accident, most batteries might be designed with coping capability of four hours. However, the accident showed the need for the coping capability to be increased to at least eight hours. The purpose of this research is to verify the safety capacity margin of the nuclear qualified battery banks of class 1E DC system and test the response to SBO using the load profile of a Korean design nuclear power plant (NPP). The capacity margins of class 1E batteries of DC power system batteries in a nuclear power plant were determined using the load profile of the plant. It was observed that if appropriate manufacturer Kt data are not available, the accuracy of the battery capacity might not be accurately calculated. The result obtained shows that the batteries have the coping capability of two hours for channel A and B, and eight hours for channel C and D. Also capacity margin as show in figure show a reasonable margin for each batteries of the DC system

  15. Harmonizing power cables and power lines. Harmonisierung der Starkstromkabel und -leitungen

    Energy Technology Data Exchange (ETDEWEB)

    Heinhold, L [Siemens A.G., Erlangen (Germany, F.R.); Retzlaff, E; Warner, A [Verband Deutscher Elektrotechniker (VDE) e.V., Frankfurt am Main (Germany, F.R.)

    1976-01-01

    The article gives a summarizing view of the present level of harmonization in the field of power cables and lines. Special attention is paid to problems referring to using harmonized designs for flexible lines and using lines for solid layout with PVC and rubber insulation in the German standards DIN 57281/VDE 0281 and DIN 57282/VDE 0282 and problems of taking the types used until today out of use. A general view of the power lines fully harmonized is given and a harmonization-labelling (common labelling) for cables and lines is described.

  16. Raman Channel Temperature Measurement of SiC MESFET as a Function of Ambient Temperature and DC Power

    Science.gov (United States)

    Ponchak, George E.; Eldridge, Jeffrey J.; Krainsky, Isay L.

    2009-01-01

    Raman spectroscopy is used to measure the junction temperature of a Cree SiC MESFET as a function of the ambient temperature and DC power. The carrier temperature, which is approximately equal to the ambient temperature, is varied from 25 C to 450 C, and the transistor is biased with VDS=10V and IDS of 50 mA and 100 mA. It is shown that the junction temperature is approximately 52 and 100 C higher than the ambient temperature for the DC power of 500 and 1000 mW, respectively.

  17. Active superconducting DC fault current limiter based on flux compensation

    International Nuclear Information System (INIS)

    Shi Jing; Tang Yuejin; Wang, Chen; Zhou Yusheng; Li Jingdong; Ren Li; Chen Shijie

    2006-01-01

    With the extensive application of DC power systems, suppression of DC fault current is an important subject that guarantees system security. This paper presents an active superconducting DC fault current limiter (DC-SFCL) based on flux compensation. The DC-SFCL is composed of two superconducting windings wound on a single iron core, the primary winding is in series with DC power system, and the second winding is connected with AC power system through a PWM converter. In normal operating state, the flux in the iron core is compensated to zero, and the SFCL has no influence on DC power system. In the case of DC system accident, through regulating the active power exchange between the SFCL's second winding and the AC power system, the current on the DC side can be limited to different level complying with the system demand. Moreover, the PWM converter that interface the DC system and AC system can be controlled as a reactive power source to supply voltage support for the AC side, which has little influence on the performance of SFCL. Using MATLAB SIMULINK, the mathematic model of the DC-SFCL is created, simulation results validate the dynamics of system, and the performance of DC-SFCL is confirmed

  18. Modeling, Analysis and Control of Different DC-DC Converter Topologies for Photo Voltaic Emulator

    Directory of Open Access Journals (Sweden)

    Mohammad Tauquir Iqbal

    2016-05-01

    Full Text Available This paper presents the modeling, analysis and control of different DC-DC converter topologies to emulate the photovoltaic (PV system. A PV emulator is basically a DC-DC converter having same electrical characteristics that of solar PV panel.  The emulator helps to achieve real characteristics of PV system in a better way in an environment where using actual PV systems can produce inconsistent results due to variation in weather conditions. The paper describes different types of DC-DC converters like buck, Resonant and Quasi Resonant Converter. The complete system is modelled in MATLAB® Simulink SimPowerSystem software package. The Simulation results obtained from the MATLAB® Simulink SimPowerSystem software package for different topologies under steady and dynamic conditions are analyzed and presented. An evaluation table is also presented at the end of the paper, presenting the effectiveness of each topology.

  19. Experience from design, prototyping and production of a DC–DC conversion powering scheme for the CMS Phase-1 Pixel Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Lutz, E-mail: Lutz.Feld@cern.ch; Karpinski, Waclaw; Klein, Katja; Lipinski, Martin; Preuten, Marius; Rauch, Max; Schmitz, Stefan; Wlochal, Michael

    2017-02-11

    The CMS pixel detector will be replaced during the technical stop 2016/2017. To allow the new pixel detector to be powered with the legacy cable plant and power supplies, a novel powering scheme based on DC–DC conversion will be employed. After the successful conclusion of an extensive development and prototyping phase, mass production of 1800 DC–DC converters as well as motherboards and other power PCBs has now been completed. This contribution reviews the lessons learned from the development of the power system for the Phase-1 pixel detector, and summarizes the experience gained from the production phase.

  20. Single Phase Passive Rectification Versus Active Rectification Applied to High Power Stirling Engines

    Science.gov (United States)

    Santiago, Walter; Birchenough, Arthur G.

    2006-01-01

    Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.

  1. Analysis of payload bay magnetic fields due to dc power multipoint and single point ground configurations

    Science.gov (United States)

    Lawton, R. M.

    1976-01-01

    An analysis of magnetic fields in the Orbiter Payload Bay resulting from the present grounding configuration (structure return) was presented and the amount of improvement that would result from installing wire returns for the three dc power buses was determined. Ac and dc magnetic fields at five points in a cross-section of the bay are calculated for both grounding configurations. Y and Z components of the field at each point are derived in terms of a constant coefficient and the current amplitude of each bus. The dc loads assumed are 100 Amperes for each bus. The ac noise current used is a spectrum 6 db higher than the Orbiter equipment limit for narrowband conducted emissions. It was concluded that installing return wiring to provide a single point ground for the dc Buses in the Payload Bay would reduce the ac and dc magnetic field intensity by approximately 30 db.

  2. Electric Power Transmission Lines

    Data.gov (United States)

    Department of Homeland Security — Transmission Lines are the system of structures, wires, insulators and associated hardware that carry electric energy from one point to another in an electric power...

  3. Power conditioning for large dc motors for space flight applications

    Science.gov (United States)

    Veatch, Martin S.; Anderson, Paul M.; Eason, Douglas J.; Landis, David M.

    1988-01-01

    The design and performance of a prototype power-conditioning system for use with large brushless dc motors on NASA space missions are discussed in detail and illustrated with extensive diagrams, drawings, and graphs. The 5-kW 8-phase parallel module evaluated here would be suitable for use in the Space Shuttle Orbiter cargo bay. A current-balancing magnetic assembly with low distributed inductance permits high-speed current switching from a low-voltage bus as well as current balancing between parallel MOSFETs.

  4. Research on power equalization using a low-loss DC-DC chopper for lithium-ion batteries in electric vehicle

    Science.gov (United States)

    Wei, Y. W.; Liu, G. T.; Xiong, S. N.; Cheng, J. Z.; Huang, Y. H.

    2017-01-01

    In the near future, electric vehicle is entirely possible to replace traditional cars due to its zero pollution, small power consumption and low noise. Lithium-ion battery, which owns lots of advantages such as lighter and larger capacity and longer life, has been widely equipped in different electric cars all over the world. One disadvantage of this energy storage device is state of charge (SOC) difference among these cells in each series branch. If equalization circuit is not allocated for series-connected batteries, its safety and lifetime are declined due to over-charge or over-discharge happened, unavoidably. In this paper, a novel modularized equalization circuit, based on DC-DC chopper, is proposed to supply zero loss in theory. The proposed circuit works as an equalizer when Lithium-ion battery pack is charging or discharging or standing idle. Theoretical analysis and control method have been finished, respectively. Simulation and small scale experiments are applied to verify its real effect.

  5. A market power model with price caps and compact DC power flow constraints

    Energy Technology Data Exchange (ETDEWEB)

    Zuwei Yu [Purdue University, West Lafayette, IN (United States). School of Industrial Engineering

    2003-05-01

    This paper presents a spatial gaming model with price caps for deregulated electricity markets. There has been heated debate on price caps that have been enforced in deregulated electricity markets. Opponents argue that price caps may send wrong economic signals while advocates argue that price caps are good for damping market power. This paper does not intend to take a stand in the argument. Given the fact that price caps are enforced in several deregulated regional electricity markets in the US, a logical step is to reflect this reality in gaining modeling. However, current gaining models have not included any price cap formulation. This paper is the first one to address the issue. DC power flow equations are used for representing the spatial nature of an electrical network. An algorithm is proposed to find a generalized Nash equilibrium under the enforcement of price caps based on the Kuhn-Tucker Vector Optimization Theorem. Case studies show the successful application of the model. The conclusion is that market power impact can be reduced under appropriate price caps. (author)

  6. Magnetically coupled high-gain Y-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    A new form of magnetically coupled DC/DC converter is proposed for medium power applications (250 W to 2 kW), requiring a high-voltage gain, short inductive charging time and galvanic isolation. The proposed converter can be realised using a unique Y-source impedance network and a two-switch push...

  7. RF-superimposed DC and pulsed DC sputtering for deposition of transparent conductive oxides

    International Nuclear Information System (INIS)

    Stowell, Michael; Mueller, Joachim; Ruske, Manfred; Lutz, Mark; Linz, Thomas

    2007-01-01

    Transparent conductive oxide films are widely used materials for electronic applications such as flat panel displays and solar cells. The superposition of DC and pulsed DC power by a certain fraction of RF power was applied to deposit indium tin oxide films. This technique allows an additional tuning of different parameters relevant to film growth, and yields high quality films even under kinetically limited conditions. A long-term stable RF/DC process could be realized by using different combinations of standard power supply components, which includes a fully reliable arc handling system for both the RF and DC generators. The effectiveness of the arc handling system is illustrated by the current and voltage behavior recorded for actual arcing events. The resistivity of indium tin oxide films is strongly influenced by the respective sputtering mode. The best resistivity values of 145-148 μΩ cm were obtained by RF-superimposed pulsed DC sputtering at a pulse frequency between 100 and 200 kHz and a substrate temperature as low as 140 deg. C. In addition, the films were extremely smooth with a surface roughness of 1-2.5 nm

  8. DC Microgrids—Part II

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Lu, Xiaonan; Quintero, Juan Carlos Vasquez

    2016-01-01

    distribution applications such as traction, telecom, vehicular and distributed power systems can be classified under DC MG framework and ongoing development and expansion of the field is largely influenced by concepts used over there. This paper aims firstly to shed light on the practical design aspects of DC...... MG technology concerning typical power hardware topologies and their suitability for different emerging smart grid applications. Then, an overview of the state of the art in DC MG protection and grounding is provided. Owing to the fact that there is no zero current crossing, an arc that appears upon...

  9. Circuit description of unipolar DC-to-DC converters for APS storage ring quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    McGhee, D.G.

    1993-01-01

    This paper describes the control, interlock, and power circuits for 680 unipolar switch mode DC-to-DC converters used to regulate the Advanced Photon Sources (APS's) storage ring quadrupole and sextupole magnet currents. Quadrupole current stability is ± 6x10 -5 and the sextupole current stability is ±3x10 -4 . The stability is obtained with pulse width modulation, operating at a switching frequency of 20kHz with full current switching. The converters are housed in 200 cabinets located on top of the storage ring tunnel. Raw DC power is distributed from 80 AC-to-DC power supplies, four at each of 20 locations around the storage ring. Voltages, currents, and temperatures are computer monitored and logged for the converters and magnets. All converters and magnets are water cooled with the flow and pressure monitored at the inlet and outlet of groups. Water is interlocked with the raw power supplies and not the individual converters

  10. Stray current induced corrosion in lightning rod cables of 525 kV power lines towers: a case study

    International Nuclear Information System (INIS)

    Wojcicki, F. R.; Negrisoli, M. E. M.; Franco, C. V.

    2003-01-01

    With the growth of several areas in modern society, the necessity to generate and carry electrical energy to big cities has greatly increased. Cables supported by power towers with galvanized steel foundation usually carry energy. As the foundations are underground they may cause high rates of corrosion. These are usually detected by a conventional potential measurement using a Cu/CuSO 4 reference electrode. It is believed that corrosion results from stray currents that flow through the ground to close the loop between neighboring towers. Stray currents originate in the lightning rod cables of the power line towers, induced by the strong electromagnetic and electric fields of the energized power lines. The intensity and direction of those currents were measured, indicating substantial values of both their AC and DC components. The potential of the tower ground system, measured in the perpendicular direction of the main axis of the power line, was plotted as a function of the distance to the tower base. The results clearly indicated the tendency to corrosive attack in the anodic towers as reflected by the slope of the plot, whereas no signs of corrosion could be found in the reverse slope, confirming the visual inspection of the foundation. The profile of the potential plots could be changed providing the electric insulation of the lightning rod cable. (Author) 8 refs

  11. Series-Connected High Frequency Converters in a DC Microgrid System for DC Light Rail Transit

    Directory of Open Access Journals (Sweden)

    Bor-Ren Lin

    2018-01-01

    Full Text Available This paper studies and presents a series-connected high frequency DC/DC converter connected to a DC microgrid system to provide auxiliary power for lighting, control and communication in a DC light rail vehicle. Three converters with low voltage and current stresses of power devices are series-connected with single transformers to convert a high voltage input to a low voltage output for a DC light rail vehicle. Thus, Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs with a low voltage rating and a turn-on resistance are adopted in the proposed circuit topology in order to decrease power losses on power switches and copper losses on transformer windings. A duty cycle control with an asymmetric pulse-width modulation is adopted to control the output voltage at the desired voltage level. It is also adopted to reduce switching losses on MOSFETs due to the resonant behavior from a leakage inductor of an isolated transformer and output capacitor of MOSFETs at the turn-on instant. The feasibility and effectiveness of the proposed circuit have been verified by a laboratory prototype with a 760 V input and a 24 V/60 A output.

  12. Design and implementation of a low-cost maximization power conversion system for brushless DC generator

    OpenAIRE

    Abolfazl Halvaei Niasar; AmirHossein Sabbaghean

    2017-01-01

    This paper presents a simple and low-cost method to capture maximum power throughput of permanent magnet brushless DC (BLDC) generator. Conventional methods of rectification are based on passive converters, and because the current waveform cannot be controlled as ideal waveform, a highly distorted current is drawn from brushless generator. It leads to lower power factor and reduces the efficiency and power per ampere capability. So, in this study an active six-witch power converter is employe...

  13. Mini-Uav LIDAR for Power Line Inspection

    Science.gov (United States)

    Teng, G. E.; Zhou, M.; Li, C. R.; Wu, H. H.; Li, W.; Meng, F. R.; Zhou, C. C.; Ma, L.

    2017-09-01

    Light detection and ranging (LIDAR) system based on unmanned aerial vehicles (UAVs) recently are in rapid advancement, meanwhile portable and flexible mini-UAV-borne laser scanners have been a hot research field, especially for the complex terrain survey in the mountains and other areas. This study proposes a power line inspection system solution based on mini-UAV-borne LIDAR system-AOEagle, developed by Academy of Opto-Electronics, Chinese Academy of Sciences, which mounted on a Multi-rotor unmanned aerial vehicle for complex terrain survey according to real test. Furthermore, the point cloud data was explored to validate its applicability for power line inspection, in terms of corridor and line laser point clouds; deformation detection of power towers, etc. The feasibility and advantages of AOEagle have been demonstrated by the promising results based on the real-measured data in the field of power line inspection.

  14. Design of an AC/DC power supply for telecom applications

    Energy Technology Data Exchange (ETDEWEB)

    Suntio, T.; Vallittu, P.; Laurinen, T.; Ikonen, M. [Efore Oy, Espoo (Finland)

    1997-12-31

    Typical Telecom uninterruptible power supply system (UPS) comprises of parallel connected rectifiers and storage batteries supplying DC power for Telecom switching systems on fixed or mobile telephone networks. The requirement is most often of total uninterruptibility meaning high reliability and availability performance as a vital design and development goal. The Telecom systems must also meet stringent noise emission and immunity requirements stipulated by EMC and Low Voltage Directives, European Telecommunications Standard Institute (ETSI) as well as other global and local standards depending on the area they are to be used. This paper will describe in practice the vital features the rectifiers should contain as well as presents results from a practical equipment of 48 V, 500 W. (orig.) 27 refs.

  15. DIAGNOSTIC/PROGNOSTIC EXPERIMENTS FOR CAPACITOR DEGRADATION AND HEALTH MONITORING IN DC-DC CONVERTERS

    Data.gov (United States)

    National Aeronautics and Space Administration — Studying and analyzing the ageing mechanisms of electronic components avionics in systems such as the GPS and INAV are of critical importance. In DC-DC power...

  16. Fundamental study of bulk power HVDC transmission

    International Nuclear Information System (INIS)

    1981-01-01

    Study on the HVDC power transmission have been conducted since 1956. Shinshinano-Frequency Changer had been operated at first on 1977, as our home product, and Hokkaido-Honshu DC transmission also realized at 1979. Research and Development of the bulk power HVDC have been promoted by the UHV transmission special committee in our Institute from 1980. This paper is a comprehensive report published in the parts of operating control, insulation of DC line and countermeasure of fault current, and interferences in order to contribute for planning, design and operating of the UHV DC transmission in future. (author)

  17. Elk and plants thrive near power lines

    Energy Technology Data Exchange (ETDEWEB)

    Lustre, L.

    1997-11-01

    Butterflies and elk gather in clearings near power line right-of-ways and on the edges of such clearings, where the wild flowers and plants that have widely disappeared as a result of intensive farming and subsurface drainage of fields have found a good habitat. Ornamental coniferous trees, various herbs and assorted berries do well and can be harvested near power lines from woodland clearings once thought unfit for cultivation. IVS, the nationwide network company, takes part in many projects aiming both to increase productive utilization of land areas under power lines and to promote biodiversity

  18. A Novel Quasi-SEPIC High-Voltage Boost DC-DC Converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; N. Soltani, Mohsen; Blaabjerg, Frede

    2017-01-01

    This paper proposes a modified coupled-inductor SEPIC dc-dc converter for low power and high voltage gain applications such as for piezoelectric drive systems. The converter uses the same components as of SEPIC converter with an additional diode. Compared to conventional topologies with similar...... voltage gain expression, the proposed topology uses less components to achieve same or even higher voltage gain. This helps to design a very compact and light weight converter with higher power density at lower cost. Due to brevity, the principle of operation, theoretical analysis and comparison supported...

  19. Transient analysis of the output short-circuit fault of high power and high voltage DC power supply

    International Nuclear Information System (INIS)

    Yang Zhigang; Zhang Jian; Huang Yiyun; Hao Xu; Sun Haozhang; Guo Fei

    2014-01-01

    The transient conditions of output short-circuit fault of high voltage DC power supply was introduced, and the energy of power supply injecting into klystron during the protection process of three-electrode gas switch were analyzed and calculated in detail when klystron load happening electrode arc faults. The results of calculation and simulation are consistent with the results of the experiment. When the output short-circuit fault of high voltage power supply occurs, switch can be shut off in the microsecond, and the short circuit current can be controlled in 200 A. It has verified the rapidity and reliability of the three-electrode gas switch protection, and it has engineering application value. (authors)

  20. Area-Efficiency Trade-Offs in Integrated Switched-Capacitor DC-DC Converters

    DEFF Research Database (Denmark)

    Spliid, Frederik Monrad; Larsen, Dennis Øland; Knott, Arnold

    2016-01-01

    This paper analyzes the relationship between efficiency and chip area in a fully integrated switched capacitor voltage divider dc-dc converter implemented in 180nm-technology and a 1/2 topology. A numerical algorithm for choosing the optimal sizes of individual components, in terms of power loss...

  1. Active power line conditioners design, simulation and implementation for improving power quality

    CERN Document Server

    Revuelta, Patricio Salmeron; Litrán, Salvador Pérez

    2015-01-01

    Active Power Line Conditioners: Design, Simulation and Implementation for Improving Power Quality presents a rigorous theoretical and practical approach to active power line conditioners, one of the subjects of most interest in the field of power quality. Its broad approach offers a journey that will allow power engineering professionals, researchers, and graduate students to learn more about the latest landmarks on the different APLC configurations for load active compensation. By introducing the issues and equipment needs that arise when correcting the lack of power quality in power grids

  2. Method and apparatus to provide power conversion with high power factor

    Energy Technology Data Exchange (ETDEWEB)

    Perreault, David J.; Lim, Seungbum; Otten, David M.

    2017-05-23

    A power converter circuit rectifies a line voltage and applies the rectified voltage to a stack of capacitors. Voltages on the capacitors are coupled to a plurality of regulating converters to be converted to regulated output signals. The regulated output signals are combined and converted to a desired DC output voltage of the power converter. Input currents of the regulating converters are modulated in a manner that enhances the power factor of the power converter.

  3. Wide-Range Adaptive RF-to-DC Power Converter for UHF RFIDs

    KAUST Repository

    Ouda, Mahmoud H.

    2016-07-27

    A wide-range, differential, cross-coupled rectifier is proposed with an extended dynamic range of input RF power that enables wireless powering from varying distances. The proposed architecture mitigates the reverse-leakage problem in conven- tional, cross-coupled rectifiers without degrading sensitivity. A prototype is designed for UHF RFID applications, and is imple- mented using 0.18 μ m CMOS technology. On-chip measurements demonstrate a sensitivity of − 18 dBm for 1 V output over a 100 k Ω load and a peak RF-to-DC power conversion efficiency of 65%. A conventional, fully cross-coupled rectifier is fabricated along- side for comparison and the proposed rectifier shows more than 2 × increase in dynamic range and a 25% boosting in output voltage than the conventional rectifier

  4. Analytical Comparison of Dual-Input Isolated dc-dc Converter with an ac or dc Inductor for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mira Albert, Maria del Carmen; Andersen, Michael A. E.

    2017-01-01

    This paper presents two configurations of dualinput (DI) or three-port (TPC) isolated dc-dc converters for hybrid renewable energy systems such as photovoltaics and batteries. These two converters are derived by integrating an interleaved boost converter and a single-active bridge converter...... and control perspective, distinct in operation principles, voltage/power transfer functions, loss distributions, soft-switching constraints, and power efficiency under the same operating conditions. Moreover, the inductor design differs greatly between these two cases. In this paper, a comprehensive...

  5. Analysis of a high power, resonant DC-DC converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    This paper is introducing a new method of operation for a series resonant converter, with intended application in megawatt high-voltage DC wind turbines. Compared to a frequency controlled series resonant converter operated in sub resonant mode, the method (entitled pulse removal technique) allows...

  6. Bird nesting on an Athabasca power line structure

    International Nuclear Information System (INIS)

    Stedwill, R.J.

    1989-01-01

    SaskPower has recently completed its 400 km Athabasca power line, and is evaluating the predicted environmental impact of the line on the resident population of bald eagles and other raptors. During construction of the line, five major types of impact associated with the line were addressed. Minor route adjustments were made to by-pass nests of bald eagles and osprey to minimize impact of construction on breeding. The proximity of the power line to cliff faces and the north shore of lake Athabasca was maximized, and frequency of stream crossings and proximity to rapids were minimized. Route adjustments were made to ensure that the line was at least 1.6 km from bald eagle nest sites. As structures of the main 115 kV power line allow a minimum separation between conductors and grounded spars of 1.6 m, and between conductors of 4.6 m, electrocution was not considered to be a significant risk. However, on the 25 kV power line in regions of known bald eagle activity and in close proximity to bodies of water, provision was made for special structures to allow birds to perch without danger of electrocution. It was concluded that the resident population of raptors will probably be enhanced, particularly in areas not previously utilized. 8 refs., 5 figs

  7. Integrated-Circuit Controller For Brushless dc Motor

    Science.gov (United States)

    Le, Dong Tuan

    1994-01-01

    Generic circuit performs commutation-logic and power-switching functions for control of brushless dc motor. Controller includes commutation-logic and associated control circuitry, power supply, and inverters containing power transistors. Major advantages of controller are size, weight, and power consumption can be made less than other brushless-dc-motor controllers.

  8. On-line calculation of 3-D power distribution

    International Nuclear Information System (INIS)

    Park, Y. H.; In, W. K.; Park, J. R.; Lee, C. C.; Auh, G. S.

    1996-01-01

    The 3-D power distribution synthesis scheme was implemented in Totally Integrated Core Operation Monitoring System (TICOMS), which is under development as the next generation core monitoring system. The on-line 3-D core power distribution obtained from the measured fixed incore detector readings is used to construct the hot pin power as well as the core average axial power distribution. The core average axial power distribution and the hot pin power of TICOMS were compared with those of the current digital on-line core monitoring system, COLSS, which construct the core average axial power distribution and the pseudo hot pin power. The comparison shows that TICOMS results in the slightly more accurate core average axial power distribution and the less conservative hot pin power. Therefore, these results increased the core operating margins. In addition, the on-line 3-D power distribution is expected to be very useful for the core operation in the future

  9. A Four-Phase High Voltage Conversion Ratio Bidirectional DC-DC Converter for Battery Applications

    Directory of Open Access Journals (Sweden)

    Li-Kun Xue

    2015-06-01

    Full Text Available This study presents a four-phase interleaved high voltage conversion ratio bidirectional DC-DC converter circuit based on coupled inductors and switched capacitors, which can eliminate the defects of conventional high voltage conversion ratio bidirectional DC-DC converters in terms of high-voltage/current stress, less efficiency and low-power limitation. Parallel channels are used to reduce current stress at the low-voltage side and series connected switched capacitors are used to enlarge voltage conversion ratio, reduce voltage stress and achieve auto current sharing. This paper proposes the operation principle, feature analysis and optimization design considerations. On this basis the objectives of high voltage conversion ratio, low voltage/current stress, high power density, high efficiency and high-power applications can be achieved. Some experimental results based on a 500 W prototype converter (24 V to 48 V at low-voltage side, 400 V at high-voltage side are given to verify the theoretical analysis and the effectiveness of the proposed converter.

  10. Circuit for Communication over DC Power Line Using High Temperature Electronics

    Science.gov (United States)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)

    2014-01-01

    A high temperature communications circuit includes a power conductor for concurrently conducting electrical energy for powering circuit components and transmitting a modulated data signal, and a demodulator for demodulating the data signal and generating a serial bit stream based on the data signal. The demodulator includes an absolute value amplifier for conditionally inverting or conditionally passing a signal applied to the absolute value amplifier. The absolute value amplifier utilizes no diodes to control the conditional inversion or passing of the signal applied to the absolute value amplifier.

  11. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  12. On-Line Tracking Controller for Brushless DC Motor Drives Using Artificial Neural Networks

    Science.gov (United States)

    Rubaai, Ahmed

    1996-01-01

    A real-time control architecture is developed for time-varying nonlinear brushless dc motors operating in a high performance drives environment. The developed control architecture possesses the capabilities of simultaneous on-line identification and control. The dynamics of the motor are modeled on-line and controlled using an artificial neural network, as the system runs. The control architecture combines the experience and dependability of adaptive tracking systems with potential and promise of the neural computing technology. The sensitivity of real-time controller to parametric changes that occur during training is investigated. Such changes are usually manifested by rapid changes in the load of the brushless motor drives. This sudden change in the external load is simulated for the sigmoidal and sinusoidal reference tracks. The ability of the neuro-controller to maintain reasonable tracking accuracy in the presence of external noise is also verified for a number of desired reference trajectories.

  13. Considerations of Physical Design and Implementation for 5 MHz-100 W LLC Resonant DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Akinori Hariya

    2016-01-01

    Full Text Available Recently, high power-density, high power-efficiency, and wide regulation range isolated DC-DC converters have been required. This paper presents considerations of physical design and implementation for wide regulation range MHz-level LLC resonant DC-DC converters. The circuit parameters are designed with 3–5 MHz-level switching frequency. Also, the physical parameters and the size of the planar transformer are optimized by using derived equations and finite element method (FEM with Maxwell 3D. Some experiments are done with prototype LLC resonant DC-DC converter using gallium nitride high electron mobility transistors (GaN-HEMTs; the input voltage is 42–53 V, the reference output voltage is 12 V, the load current is 8 A, the maximum switching frequency is about 5 MHz, the total volume of the circuit is 4.1 cm3, and the power density of the prototype converter is 24.4 W/cc.

  14. AUTOMATIC RAILWAY POWER LINE EXTRACTION USING MOBILE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2016-06-01

    Full Text Available Research on power line extraction technology using mobile laser point clouds has important practical significance on railway power lines patrol work. In this paper, we presents a new method for automatic extracting railway power line from MLS (Mobile Laser Scanning data. Firstly, according to the spatial structure characteristics of power-line and trajectory, the significant data is segmented piecewise. Then, use the self-adaptive space region growing method to extract power lines parallel with rails. Finally use PCA (Principal Components Analysis combine with information entropy theory method to judge a section of the power line whether is junction or not and which type of junction it belongs to. The least squares fitting algorithm is introduced to model the power line. An evaluation of the proposed method over a complicated railway point clouds acquired by a RIEGL VMX450 MLS system shows that the proposed method is promising.

  15. Comparison of solar panel cooling system by using dc brushless fan and dc water

    International Nuclear Information System (INIS)

    Irwan, Y M; Leow, W Z; Irwanto, M; M, Fareq; Hassan, S I S; Amelia, A R; Safwati, I

    2015-01-01

    The purpose of this article is to discuss comparison of solar panel cooling system by using DC brushless fan and DC water pump. Solar photovoltaic (PV) power generation is an interesting technique to reduce non-renewable energy consumption and as a renewable energy. The temperature of PV modules increases when it absorbs solar radiation, causing a decrease in efficiency. A solar cooling system is design, construct and experimentally researched within this work. To make an effort to cool the PV module, Direct Current (DC) brushless fan and DC water pump with inlet/outlet manifold are designed for constant air movement and water flow circulation at the back side and front side of PV module representatively. Temperature sensors were installed on the PV module to detect temperature of PV. PIC microcontroller was used to control the DC brushless fan and water pump for switch ON or OFF depend on the temperature of PV module automatically. The performance with and without cooling system are shown in this experiment. The PV module with DC water pump cooling system increase 3.52%, 36.27%, 38.98%in term of output voltage, output current, output power respectively. It decrease 6.36 °C compare than to PV module without DC water pump cooling system. While DC brushless fan cooling system increase 3.47%, 29.55%, 32.23%in term of output voltage, output current, and output power respectively. It decrease 6.1 °C compare than to PV module without DC brushless fan cooling system. The efficiency of PV module with cooling system was increasing compared to PV module without cooling system; this is because the ambient temperature dropped significantly. The higher efficiency of PV cell, the payback period of the system can be shorted and the lifespan of PV module can also be longer. (paper)

  16. MEDOW - Multi-terminal DC Grid for Offshore Wind, Final report

    DEFF Research Database (Denmark)

    A DC grid based on multi-terminal voltage-source converter is a newly emerging technology, which is particularly suitable for the connection of offshore wind farms. Multi-terminal DC grids will be the key technology for the European offshore ‘Super Grid’. In the project, DC power flow, DC relaying...... protection, steady state operation, dynamic stability, fault-ride through capability, and impacts of DC grids on the operation of AC grids and power market were studied. Systematic comparison of DC grid topologies and stability control strategies was carried out, and DC grids for offshore wind power...

  17. Application of Multi-Objective Human Learning Optimization Method to Solve AC/DC Multi-Objective Optimal Power Flow Problem

    Science.gov (United States)

    Cao, Jia; Yan, Zheng; He, Guangyu

    2016-06-01

    This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.

  18. Computer Simulation of Phase Shifted Series Resonant DC to DC Converter

    Directory of Open Access Journals (Sweden)

    P. PARVATHY

    2016-01-01

    Full Text Available This paper deals with digital simulation of phase shifted series resonant DC to DC converter using Matlab Simulink. The Simulink models for open loop and closed loop systems are developed and they are used for simulation studies. This converter is capable of producing ripple free DC output. Switching losses and switching stresses are reduced by using soft switching. This converter has advantages like high power density and low switching losses. Theoretical predictions are well supported by the simulation results.

  19. On-line Monitoring System for Power Transformers

    Directory of Open Access Journals (Sweden)

    Alexandru HOTEA

    2016-12-01

    Full Text Available Power transformers are the most important and expensive equipment from the electricity transmission system, so it is very important to know the real state of health of such equipment in every moment. De-energizing the power transformer accidentally due to internal defects can generate high costs. Annual maintenance proved to be ineffective in many cases to determine the internal condition of the equipment degradation due to faults rapidly evolving. An On-line Monitoring System for Power Transformers help real-time condition assessment and to detect errors early enough to take action to eliminate or minimize them. After abnormality detected, it is still important to perform full diagnostic tests to determine the exact condition of the equipment. On-line monitoring systems can help increase the level of availability and reliability of power transformers and lower costs of accidental interruption. This paper presents cases studies on several power transformers equipped with on-line monitoring systems from Transelectrica substation.

  20. On-grid and Off-grid Operation of Multi-Input Single-Output DC/DC Converter based Fuel Cell Generation System

    Directory of Open Access Journals (Sweden)

    Noroozian

    2009-06-01

    Full Text Available This paper presents the modeling and simulation of a proton exchange membrane fuel cell (PEMFC generation system for off-grid and on-grid operation and configuration. A fuel cell DG system consists of a fuel cell power plant, a DC/DC converter and a DC/AC inverter. The dynamic model for fuel cell array and its power electronic interfacing are presented also a multi-input single output (MISO DC/DC converter and its control scheme is proposed and analyzed. This DC/DC converter is capable of interfacing fuel cell arrays to the DC/AC inverter. Also the mathematical model of the inverter is obtained by using average technique. Then the novel control strategy of DC/AC inverter for different operating conditions is demonstrated. The simulation results show the effectiveness of the suggested control systems under both on-grid and off-grid operation modes.

  1. On-line efficiency optimization of a synchronous reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, Thierry; Razik, Hubert; Rezzoug, Abderrezak [Groupe de Recherche en Electrotechnique et Electronique de Nancy, GREEN, CNRS-UMR 7037, Universite Henri Poincare, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2007-04-15

    This paper deals with an on-line optimum-efficiency control of a synchronous reluctance motor drive. The input power minimization control is implemented with a search controller using Fibonacci search algorithm. It searches the optimal reference value of the d-axis stator current for which the input power is minimum. The input power is calculated from the measured dc-bus current and dc-bus voltage of the inverter. A rotor-oriented vector control of the synchronous reluctance machine with the optimization efficiency controller is achieved with a DSP board (TMS302C31). Experimental results are presented to validate the proposed control methods. It is shown that stability problems can appear during the search process. (author)

  2. Four Quadrants Integrated Transformers for Dual-input Isolated DC-DC Converters

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Zhang, Zhe; Andersen, Michael A. E.

    2012-01-01

    A common limitation of power coupling effect in some known multiple-input dc-dc converters has been addressed in many literatures. In order to overcome this limitation, a new concept for decoupling the primary windings in the integrated multiple-winding transformers based on 3-dimensional (3D...... perpendicular primary windings, a name of “four quadrants integrated transformers” (FQIT) is therefore given to the proposed construction. Since the two primary windings are uncoupled, the FQIT allows the two input power stages to transfer the energy into the output load simultaneously or at any...

  3. SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, Laura D [ORNL; Zhu, Lizhi [Ballard Power Systems/Siemens VDO

    2007-07-01

    The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.

  4. Introduction to electrical power and power electronics

    CERN Document Server

    Patel, Mukund R

    2012-01-01

    Power Generation, Distribution, and Utilization AC Power Fundamentals Common Aspects of Power Equipments AC Generator AC and DC Motors Transformer Power Cable Power Distribution Fault Current Analysis System ProtectionEconomic Use of PowerElectrochemical BatteryPower Electronics and Motor Drives Power Electronics Devices DC-DC Converters AC-DC-AC Converters Variable-Frequency Drives Quality of Power Power Converter CoolingAppendixIndex

  5. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2017-10-24

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross-coupled rectifier, the proposed design offers 3.2× the dynamic range. It is also highly sensitive and requires −18 dBm of input power to produce a 1 V-output voltage when operating with a 100 kΩ load. Furthermore, the proposed design offers an open circuit sensitivity of −23.4 dBm and a peak power conversion efficiency of 67%.

  6. Comparative evaluation of bidirectional dual active bridge DC-DC converter variants

    NARCIS (Netherlands)

    Sfakianakis, G.; Everts, J.; Huisman, H.; Lomonova, E.A.

    2016-01-01

    For the realization of DC-DC converters in automotive industry, the Dual Active Bridge (DAB) converter seems to be a promising choice because of its soft-switching and high-power-density capability. Contrary to the traditional 3 level - 3 level (3-3L) DAB, a 3 level - 5 level (3-5L) DAB can operate

  7. Analysis of impact of “strong DC and weak AC” on receiving-end power system

    Science.gov (United States)

    Wang, Qiang; Li, Tianran; Yang, Pengcheng

    2018-02-01

    The rapid development of UHVDC transmission project has brought abundant power supply to the receiving-end power system area, but also many security and stability problems. This paper summarizes four elements that affect the strength of AC system, and then simulates the most basic two-terminal single-pole UHV transmission system by MATLAB/Simulink. It analyses the impact of receiving-end AC power system strength on real-time power, frequency and voltage. Finally, in view of operation risk of “strong DC and weak AC”, this paper puts forward three countermeasures.

  8. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  9. Fuzzy Controlled Parallel AC-DC Converter for PFC

    Directory of Open Access Journals (Sweden)

    M Subba Rao

    2011-01-01

    Full Text Available Paralleling of converter modules is a well-known technique that is often used in medium-power applications to achieve the desired output power by using smaller size of high frequency transformers and inductors. In this paper, a parallel-connected single-phase PFC topology using flyback and forward converters is proposed to improve the output voltage regulation with simultaneous input power factor correction (PFC and control. The goal of the control is to stabilize the output voltage of the converter against the load variations. The paper presents the derivation of fuzzy control rules for the dc/dc converter circuit and control algorithm for regulating the dc/dc converter. This paper presents a design example and circuit analysis for 200 W power supply. The proposed approach offers cost effective, compact and efficient AC/DC converter by the use of parallel power processing. MATLAB/SIMULINK is used for implementation and simulation results show the performance improvement.

  10. Modeling and Control of the Distributed Power Converters in a Standalone DC Microgrid

    Directory of Open Access Journals (Sweden)

    Xiaodong Lu

    2016-03-01

    Full Text Available A standalone DC microgrid integrated with distributed renewable energy sources, energy storage devices and loads is analyzed. To mitigate the interaction among distributed power modules, this paper describes a modeling and control design procedure for the distributed converters. The system configuration and steady-state analysis of the standalone DC microgrid under study are discussed first. The dynamic models of the distributed converters are then developed from two aspects corresponding to their two operating modes, device-regulating mode and bus-regulating mode. Average current mode control and linear compensators are designed accordingly for each operating mode. The stability of the designed system is analyzed at last. The operation and control design of the system are verified by simulation results.

  11. Decoupling of fluctuating power in single-phase systems through a symmetrical half-bridge circuit

    DEFF Research Database (Denmark)

    Tang, Yi; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    Single-phase AC/DC or DC/AC systems inherently subject to harmonic disturbance which is caused by the well-known double line frequency ripple power. This issue can be eased through the installation of bulky electrolytic capacitors in the dc-link, but such passive filtering approach may inevitably...

  12. Secure and robust authentication for DC MicroGrids based on power talk communication

    DEFF Research Database (Denmark)

    Angjelichinoski, Marko; Danzi, Pietro; Stefanovic, Cedomir

    2017-01-01

    We propose a novel framework for secure and reliable authentication of Distributed Energy Resources to the centralized secondary/tertiary control system of a DC MicroGrid (MG), networked using the IEEE 802.11 wireless interface. The key idea is to perform the authentication using power talk...... - a powerline communication technique executed by the primary control loops of the power electronic converters. In addition, the scheme also promotes direct and active participation of the control system in the authentication process, a feature not commonly encountered in current networked control systems...

  13. POWER CONTROL OF A BIDIRECTIONAL DC BUS FOR FUEL CELLS APPLICATIONS CONTROL DE POTENCIA DE UN BUS DC BIDIRECCIONAL PARA APLICACIONES DE PILAS DE COMBUSTIBLE CONTROLE DE POTÊNCIA DE UM ÔNIBUS DC BIDIRECIONAL PARA APLICAÇÕES DE PILHAS DE COMBUSTÍVE

    Directory of Open Access Journals (Sweden)

    Andrés Fernando Restrepo

    2012-12-01

    Full Text Available This paper proposes a power system for fuel cell applications able to transfer energy from the power source to the load, and to charge an auxiliary storage device using regenerative power flows generated by the load. The solution is based on a closed loop bidirectional DC/DC converter, where additional devices have been also designed to experimentally test the solution in a safe and realistic environment: a fuel cell emulator and an electronic load.Este artículo propone un sistema de potencia para aplicaciones de pilas de combustible capaz de transferir energía de la fuente de potencia a la carga y de cargar un sistema de almacenamiento con flujos regenerativos de potencia desde la carga. La solución está basada en un convertidor bidireccional DC/DC en lazo cerrado. Además, se presentan dispositivos auxiliares diseñados para evaluar experimentalmente la solución en un entorno seguro y realista: un emulador de pila de combustible y una carga electrónica.Este artigo propõe um sistema de potência para aplicações de pilhas de combustível capaz de transferir energia da fonte de potência à carga e de carregar um sistema de armazenamento com fluxos regenerativos de potência desde a carga. A solução está baseada em um conversor bidirecional DC/DC em laço fechado. Ademais, apresentam-se dispositivos auxiliares desenhados para avaliar experimentalmente a solução em um meio seguro e realista: um emulador de pilha de combustível e uma carga eletrônica.

  14. Distributed maximum power point tracking in photovoltaic applications: active bypass DC/DC converter

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Ramos-Paja

    2012-01-01

    Full Text Available Se propone una estructura de desvío activo para maximizar la producción de potencia en sistemas fotovoltaicos bajo condiciones irregulares de operación, comparando su eficiencia con soluciones individuales y distribuidas basadas en convertidores DC/DC convencionales. Los análisis y simulaciones realistas demuestran las ventajas del nuevo convertidor de desvío activo sobre soluciones basadas en convertidores Boost, Buck y Buck-Boost.

  15. Design and application of the high-voltage DC power-supply control system based on PLC

    International Nuclear Information System (INIS)

    Huang Yiyun; Zheng Guanghua; Wu Junshuan; Yang Chunsheng; Hu Huaichuan

    2002-03-01

    The design and application of A kind of high-voltage DC power-supply control system based on PLC is referred, in addition, KingView is used to monitor the system in real time and manage the man-machine conversation ideally

  16. Transition towards DC micro grids: From an AC to a hybrid AC and DC energy infrastructure

    Directory of Open Access Journals (Sweden)

    Evi Ploumpidou

    2017-12-01

    Full Text Available Our electricity is predominantly powered by alternating current (AC, ever since the War of Currents ended in the favor of Nicola Tesla at the end of the 19th century. However, lots of the appliances we use, such as electronics and lights with light-emitting diode (LED technology, work internally on direct current (DC and it is projected that the number of these appliances will increase in the near future. Another contributor to the increase in DC consumption is the ongoing electrification of mobility (Electric Vehicles (EVs. At the same time, photovoltaics (PV generate DC voltages, while the most common storage technologies also use DC. In order to integrate all these appliances and technologies to the existing AC grid, there is a need for converters which introduce power losses. By distributing DC power to DC devices instead of converting it to AC first, it is possible to avoid substantial energy losses that occur every time electricity is converted. This situation initiated the concept for the implementation of the DC-Flexhouse project. A prototype DC installation will be developed and tested in one of the buildings of the developing living lab area called the District of Tomorrow (De Wijk van Morgen which is located in Heerlen, the Netherlands. A neighborhood cooperative (Vrieheide cooperatie is also part of the consortium in order to address the aspect of social acceptance. Although DC seems to be a promising solution for a more sustainable energy system, the business case is still debatable due to both technology- and market-related challenges. The current energy infrastructure is predominantly based on AC, manufacturers produce devices based on AC standards and people are using many AC products across a long life span. This Smart Energy Buildings & Cities (SEB&C PDEng project is a contribution to the DC-Flexhouse project. The aim is to analyze the challenges in the transition to DC micro grids, assess the market potential of DC

  17. EVALUATING DEGREE OF ACTIVE POWER LOSSES REDUCTION IN THE ELECTRIC POWER LINES WITH REACTIVE POWER COMPENSATION

    Directory of Open Access Journals (Sweden)

    V. N. Radkevich

    2016-01-01

    Full Text Available The paper considers evaluation procedure for the degree of active power losses reduction in the power transmission lines under 1 kV and 6–10 kV of the systems of electric power supply of industrial enterprises with compensating installations mounted at the side of the customer. The capacitor installations conform to the applied voltage level and factor in dielectric losses in the capacitors. The voltage at the compensating device terminal changes from 0.95 to 1.05 of the capacitors nominal voltage. The study did not account for reactive power losses in the line, nor did it for its charge capacity, conditioned by relative shortness of the cable lines generally operating in the mains of industrial enterprises. For this reason, the quantities of reactive power being consumed and generated by the transmission line are negligible and do not significantly affect the reactive power flux. The researchers obtain functional relations that allow estimating the degree of power loss reduction in the transmission line factoring in its explicit initial data. They perform mathematical analysis of the obtained functional relations and study the function by means of derivatives. The function extremum points are found as well as the intervals of its increment and decrement. A graphical research of the obtained functional relation is performed. It is ascertained that reduction of the active power losses is contingent on the line and the capacitor-installation engineering factors, the electrical energy consumer reactive load value as well as the voltage applied to the capacitor installation. The functional relations presented in the article can be employed in scoping calculation necessary for decision making on the reactive power compensation in systems of the industrial facilities electric power supply. Their account will allow a more accurate estimate of technical and economic effect of the capacitor bank installation in the electrical mains under 1 kV and 6

  18. Control of hybrid AC/DC microgrid under islanding operational conditions

    DEFF Research Database (Denmark)

    Ding, G.; Gao, F.; Zhang, S.

    2014-01-01

    This paper presents control methods for hybrid AC/DC microgrid under islanding operation condition. The control schemes for AC sub-microgrid and DC sub-microgrid are investigated according to the power sharing requirement and operational reliability. In addition, the key control schemes...... of interlinking converter with DC-link capacitor or energy storage, which will devote to the proper power sharing between AC and DC sub-microgrids to maintain AC and DC side voltage stable, is reviewed. Combining the specific control methods developed for AC and DC sub-microgrids with interlinking converter......, the whole hybrid AC/DC microgrid can manage the power flow transferred between sub-microgrids for improving on the operational quality and efficiency....

  19. Local digital control of power electronic converters in a dc microgrid based on a-priori derivation of switching surfaces

    Science.gov (United States)

    Banerjee, Bibaswan

    In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes

  20. Operation and Power Flow Control of Multi-Terminal DC Networks for Grid Integration of Offshore Wind Farms Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Rodrigo Teixeira Pinto

    2012-12-01

    Full Text Available For achieving the European renewable electricity targets, a significant contribution is foreseen to come from offshore wind energy. Considering the large scale of the future planned offshore wind farms and the increasing distances to shore, grid integration through a transnational DC network is desirable for several reasons. This article investigates a nine-node DC grid connecting three northern European countries — namely UK, The Netherlands and Germany. The power-flow control inside the multi-terminal DC grid based on voltage-source converters is achieved through a novel method, called distributed voltage control (DVC. In this method, an optimal power flow (OPF is solved in order to minimize the transmission losses in the network. The main contribution of the paper is the utilization of a genetic algorithm (GA to solve the OPF problem while maintaining an N-1 security constraint. After describing main DC network component models, several case studies illustrate the dynamic behavior of the proposed control method.

  1. Conceptual design of DC power supplies for FFHR superconducting magnet

    International Nuclear Information System (INIS)

    Chikaraishi, Hirotaka

    2012-01-01

    The force-free helical reactor (FFHR) is a helical-type fusion reactor whose design is being studied at the National Institute for Fusion Science. The FFHR will use three sets of superconducting coils to confine the plasma. It is not a fusion plasma experimental device, and the magnetic field configuration will be optimized for burning plasma. This paper introduces a conceptual design for a dc power system to excite the superconducting coils of the FFHR. In this design, the poloidal coils are divided into a main part, which generates a magnetic field for steady-state burning, and a control part, which is used in the ignition process to control the magnetic axis. The feasibility of this configuration was studied using the Large Helical Device coil parameters, and the coil voltages required to sweep the magnetic axis were calculated. It was confirmed that the axis sweep could be performed without a high output voltage from the main power supply. Finally, the power supply ratings for the FFHR were estimated from the stored magnetic energy. (author)

  2. DC-bus voltage control of grid-connected voltage source converter by using space vector modulated direct power control under unbalanced network conditions

    DEFF Research Database (Denmark)

    Xiao, Lei; Huang, Shoudao; Lu, Kaiyuan

    2013-01-01

    Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load. In this......Unbalanced grid voltage will cause large dc-bus voltage ripple and introduce high harmonic current components on the grid side. This will severely threaten the safety of the grid-connected voltage source converter (VSC) and consequently, affect the healthy operation condition of the load....... In this study, a new proportional-integral-resonant (PI-RES) controller-based, space vector modulated direct power control topology is proposed to suppress the dc-bus voltage ripple and in the same time, controlling effectively the instantaneous power of the VSC. A special ac reactive power reference component...... is introduced in the controller, which is necessary in order to reduce the dc-bus voltage ripple and active power harmonics at the same time. The proposed control topology is implemented in the lab. Simulation and experimental results are provided to validate its performance and the analysis presented...

  3. Power Loss Analysis and Comparision of DC and AC Side Decoupling Module in a H-bridge Inverter

    DEFF Research Database (Denmark)

    Ma, Siyuan; Wang, Haoran; Zhu, Guorong

    2016-01-01

    perspective. The analytical power loss models are derived based on the operation principles of the active power decoupling methods. A comparative study is performed based on a 500 W single-phase H-bridge inverter study case with 400 V DC-link voltage level. The results provide a guideline to justify whether...

  4. Operating characteristic analysis of a 400 mH class HTS DC reactor in connection with a laboratory scale LCC type HVDC system

    Science.gov (United States)

    Kim, Sung-Kyu; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Lee, Sangjin

    2015-11-01

    High temperature superconducting (HTS) devices are being developed due to their advantages. Most line commutated converter based high voltage direct current (HVDC) transmission systems for long-distance transmission require large inductance of DC reactor; however, generally, copper-based reactors cause a lot of electrical losses during the system operation. This is driving researchers to develop a new type of DC reactor using HTS wire. The authors have developed a 400 mH class HTS DC reactor and a laboratory scale test-bed for line-commutated converter type HVDC system and applied the HTS DC reactor to the HVDC system to investigate their operating characteristics. The 400 mH class HTS DC reactor is designed using a toroid type magnet. The HVDC system is designed in the form of a mono-pole system with thyristor-based 12-pulse power converters. In this paper, the investigation results of the HTS DC reactor in connection with the HVDC system are described. The operating characteristics of the HTS DC reactor are analyzed under various operating conditions of the system. Through the results, applicability of an HTS DC reactor in an HVDC system is discussed in detail.

  5. Guest Editorial Special Issue on Structured DC Microgrids

    DEFF Research Database (Denmark)

    Guerrero, Josep M.; Tan, Don F. D.

    2017-01-01

    With the development of dc coupled devices, such as photovoltaic generations, batteries, supercapacitors, LEDs, computers, and electronics equipment, low-voltage dc distribution networks, structured dc microgrids are emerging as a natural platform to integrate renewable energy sources. However...... in either series/parallel, forming a number of dc busses with different voltage levels. Recently, with the advance of new dc power technologies, several ongoing standards, alliances, and initiatives are bringing the possibility of developing future homes, offices, buildings, campuses, datacenters, ships......, satellites, aircrafts, and other electrical power systems to operate totally or dominantly in dc. Research is being carried out in both the system and component levels of modeling, control, and stability of structured dc microgrids. New high-efficiency topologies and protections are also key nontrivial...

  6. Analysis and Controller Design of a Universal Bidirectional DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Kou-Bin Liu

    2016-06-01

    Full Text Available In this paper, first the operating principles of a non-isolated universal bidirectional DC-DC converter are studied and analyzed. The presented power converter is capable of operating in all power transferring directions in buck/boost modes. Zero voltage switching can be achieved for all the power switches through proper modulation strategy design, therefore, the presented converter can achieve high efficiency. To further improve the efficiency, the relationship between the phase-shift angle and the overall system efficiency is analyzed in detail, an adaptive phase-shift (APS control method which determines the phase-shift value between gating signals according to the load level is then proposed. As the modulation strategy is a software-based solution, there is no requirement for additional circuits, therefore, it can be implemented easily and instability and noise susceptibility problems can be reduced. To validate the correctness and the effectiveness of the proposed method, a 300 W prototyping circuit is implemented and tested. A low cost dsPIC33FJ16GS502 digital signal controller is adopted in this paper to realize the power flow control, DC-bus voltage regulation and APS control. According to the experimental results, a 12.2% efficiency improvement at light load and 4.0% efficiency improvement at half load can be achieved.

  7. Maximum Power Point Tracking for Brushless DC Motor-Driven Photovoltaic Pumping Systems Using a Hybrid ANFIS-FLOWER Pollination Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Neeraj Priyadarshi

    2018-04-01

    Full Text Available In this research paper, a hybrid Artificial Neural Network (ANN-Fuzzy Logic Control (FLC tuned Flower Pollination Algorithm (FPA as a Maximum Power Point Tracker (MPPT is employed to amend root mean square error (RMSE of photovoltaic (PV modeling. Moreover, Gaussian membership functions have been considered for fuzzy controller design. This paper interprets the Luo converter occupied brushless DC motor (BLDC-directed PV water pump application. Experimental responses certify the effectiveness of the suggested motor-pump system supporting diverse operating states. The Luo converter, a newly developed DC-DC converter, has high power density, better voltage gain transfer and superior output waveform and can track optimal power from PV modules. For BLDC speed control there is no extra circuitry, and phase current sensors are enforced for this scheme. The most recent attempt using adaptive neuro-fuzzy inference system (ANFIS-FPA-operated BLDC directed PV pump with advanced Luo converter, has not been formerly conferred.

  8. A new on-chip all-digital three-phase full-bridge dc/ac power inverter with feedforward and frequency control techniques.

    Science.gov (United States)

    Chen, Jiann-Jong; Kung, Che-Min

    2010-09-01

    The communication speed between components is far from satisfactory. To achieve high speed, simple control system configuration, and low cost, a new on-chip all-digital three-phase dc/ac power inverter using feedforward and frequency control techniques is proposed. The controller of the proposed power inverter, called the shift register, consists of six-stage D-latch flip-flops with a goal of achieving low-power consumption and area efficiency. Variable frequency is achieved by controlling the clocks of the shift register. One advantage regarding the data signal (D) and the common clock (CK) is that, regardless of the phase difference between the two, all of the D-latch flip-flops are capable of delaying data by one CK period. To ensure stability, the frequency of CK must be six times higher than that of D. The operation frequency of the proposed power inverter ranges from 10 Hz to 2 MHz, and the maximum output loading current is 0.8 A. The prototype of the proposed circuit has been fabricated with TSMC 0.35 μm 2P4M CMOS processes. The total chip area is 2.333 x 1.698 mm2. The three-phase dc/ac power inverter is applicable in uninterrupted power supplies, cold cathode fluorescent lamps, and motors, because of its ability to convert the dc supply voltage into the three-phase ac power sources.

  9. Power conditioning unit for photovoltaic power systems

    Science.gov (United States)

    Beghin, G.; Nguyen Phuoc, V. T.

    Operational features and components of a power conditioning unit for interconnecting solar cell module powers with a utility grid are outlined. The two-stage unit first modifies the voltage to desired levels on an internal dc link, then inverts the current in 2 power transformers connected to a vector summation control to neutralize harmonic distortion up to the 11th harmonic. The system operates in parallel with the grid with extra inductors to absorb line-to-line voltage and phase differences, and permits peak power use from the PV array. Reactive power is gained internally, and a power system controller monitors voltages, frequencies, and currents. A booster preregulator adjusts the input voltage from the array to provide voltage regulation for the inverter, and can commutate 450 amps. A total harmonic distortion of less than 5 percent is claimed, with a rating of 5 kVA, 50/60 Hz, 3-phase, and 4-wire.

  10. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Steigerwald, Robert L; Sabate, Juan A; Chi, Song; McCann, Adam J; Zhang, Li; Mueller, Frank

    2012-09-01

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements

  11. Benchmark of AC and DC Active Power Decoupling Circuits for Second-Order Harmonic Mitigation in Kilowatt-Scale Single-Phase Inverters

    DEFF Research Database (Denmark)

    Qin, Zian; Tang, Yi; Loh, Poh Chiang

    2016-01-01

    efficiency and high power density is identified and comprehensively studied, and the commercially available film capacitors, the circuit topologies, and the control strategies adopted for active power decoupling are all taken into account. Then, an adaptive decoupling voltage control method is proposed...... to further improve the performance of dc decoupling in terms of efficiency and reliability. The feasibility and superiority of the identified solution for active power decoupling together with the proposed adaptive decoupling voltage control method are finally verified by both the simulation and experimental......This paper presents the benchmark study of ac and dc active power decoupling circuits for second order harmonic mitigation in kW scale single-phase inverters. First of all, a brief comparison of recently reported active power decoupling circuits is given, and the best solution that can achieve high...

  12. Pulsed dc self-sustained magnetron sputtering

    International Nuclear Information System (INIS)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-01-01

    The magnetron sputtering has become one of the commonly used techniques for industrial deposition of thin films and coatings due to its simplicity and reliability. At standard magnetron sputtering conditions (argon pressure of ∼0.5 Pa) inert gas particles (necessary to sustain discharge) are often entrapped in the deposited films. Inert gas contamination can be eliminated during the self-sustained magnetron sputtering (SSS) process, where the presence of the inert gas is not a necessary requirement. Moreover the SSS process that is possible due to the high degree of ionization of the sputtered material also gives a unique condition during the transport of sputtered particles to the substrate. So far it has been shown that the self-sustained mode of magnetron operation can be obtained using dc powering (dc-SSS) only. The main disadvantage of the dc-SSS process is its instability related to random arc formation. In such case the discharge has to be temporarily extinguished to prevent damaging both the magnetron source and power supply. The authors postulate that pulsed powering could protect the SSS process against arcs, similarly to reactive pulsed magnetron deposition processes of insulating thin films. To put this concept into practice, (i) the high enough plasma density has to be achieved and (ii) the type of pulsed powering has to be chosen taking plasma dynamics into account. In this article results of pulsed dc self-sustained magnetron sputtering (pulsed dc-SSS) are presented. The planar magnetron equipped with a 50 mm diameter and 6 mm thick copper target was used during the experiments. The maximum target power was about 11 kW, which corresponded to the target power density of ∼560 W/cm 2 . The magnetron operation was investigated as a function of pulse frequency (20-100 kHz) and pulse duty factor (50%-90%). The discharge (argon) extinction pressure level was determined for these conditions. The plasma emission spectra (400-410 nm range) and deposition

  13. Radiated electromagnetic emissions of DC-DC converters

    International Nuclear Information System (INIS)

    Feld, L; Jussen, R; Karpinski, W; Klein, K; Sammet, J; Wlochal, M

    2010-01-01

    For the CMS tracker at SLHC a new powering scheme is considered to be mandatory to allow the detector to provide at least the same performance as today at the LHC. The baseline solution of CMS foresees the use of DC-DC converters to provide larger currents with smaller losses. An important component of most converters are inductors which, however, tend to radiate the switching noise generated by the converter. The emissions of different inductors have been measured and simulated, the coil design has been optimized and noise susceptibility measurements, with present CMS hardware, have been performed. This article summarizes the results.

  14. Analysis of Electric Vehicle DC High Current Conversion Technology

    Science.gov (United States)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  15. Single-stage three-phase AC to DC conversion with isolation and Bi-directional power flow

    NARCIS (Netherlands)

    Vermulst, B.J.D.; Duarte, J.L.; Wijnands, C.G.E.; Lomonova, E.A.

    2014-01-01

    An approach for three-phase AC to DC conversion is proposed, which consists of a single-stage while offering galvanic isolation, soft-switching, bi-directional power flow and a significant reduction of inductive and capacitive energy storage. Two elements enable this approach, namely a neutral

  16. Lowest of AC-DC power output for electrostrictive polymers energy harvesting systems

    Science.gov (United States)

    Meddad, Mounir; Eddiai, Adil; Hajjaji, Abdelowahed; Guyomar, Daniel; Belkhiat, Saad; Boughaleb, Yahia; Chérif, Aida

    2013-11-01

    Advances in technology led to the development of electronic circuits and sensors with extremely low electricity consumption. At the same time, structural health monitoring, technology and intelligent integrated systems created a need for wireless sensors in hard to reach places in aerospace vehicles and large civil engineering structures. Powering sensors with energy harvesters eliminates the need to replace batteries on a regular basis. Scientists have been forced to search for new power source that are able to harvested energy from their surrounding environment (sunlight, temperature gradients etc.). Electrostrictive polymer belonging to the family of electro-active polymers, offer unique properties for the electromechanical transducer technology has been of particular interest over the last few years in order to replace conventional techniques such as those based on piezoelectric or electromagnetic, these materials are highly attractive for their low-density, with large strain capability that can be as high as two orders of magnitude greater than the striction-limited, rigid and fragile electroactive ceramics. Electrostrictive polymers sensors respond to vibration with an ac output signal, one of the most important objectives of the electronic interface is to realize the required AC-DC conversion. The goal of this paper is to design an active, high efficiency power doubler converter for electrostrictive polymers exclusively uses a fraction of the harvested energy to supply its active devices. The simulation results show that it is possible to obtain a maximum efficiency of the AC-DC converter equal to 80%. Premiliminary experimental measurements were performed and the results obtained are in good agreement with simulations.

  17. SSP Technology Investigation of a High-Voltage DC-DC Converter

    Science.gov (United States)

    Pappas, J. A.; Grady, W. M.; George, Patrick J. (Technical Monitor)

    2002-01-01

    The goal of this project was to establish the feasibility of a high-voltage DC-DC converter based on a rod-array triggered vacuum switch (RATVS) for the Space Solar Power system. The RATVS has many advantages over silicon and silicon-carbide devices. The RATVS is attractive for this application because it is a high-voltage device that has already been demonstrated at currents in excess of the requirement for an SSP device and at much higher per-device voltages than existing or near-term solid state switching devices. The RATVS packs a much higher specific power rating than any solid-state device and it is likely to be more tolerant of its surroundings in space. In addition, pursuit of an RATVS-based system would provide NASA with a nearer-term and less expensive power converter option for the SSP.

  18. Modeling particle emission and power flow in pulsed-power driven, nonuniform transmission lines

    Directory of Open Access Journals (Sweden)

    Nichelle Bruner

    2008-04-01

    Full Text Available Pulsed-power driven x-ray radiographic systems are being developed to operate at higher power in an effort to increase source brightness and penetration power. Essential to the design of these systems is a thorough understanding of electron power flow in the transmission line that couples the pulsed-power driver to the load. In this paper, analytic theory and fully relativistic particle-in-cell simulations are used to model power flow in several experimental transmission-line geometries fielded on Sandia National Laboratories’ upgraded Radiographic Integrated Test Stand [IEEE Trans. Plasma Sci. 28, 1653 (2000ITPSBD0093-381310.1109/27.901250]. Good agreement with measured electrical currents is demonstrated on a shot-by-shot basis for simulations which include detailed models accounting for space-charge-limited electron emission, surface heating, and stimulated particle emission. Resonant cavity modes related to the transmission-line impedance transitions are also shown to be excited by electron power flow. These modes can drive oscillations in the output power of the system, degrading radiographic resolution.

  19. Design of PI Controlled Non Isolated Bidirectional DC to DC Converter for Electric Vehicle Application

    Science.gov (United States)

    Geetha, A.; Subramani, C.; Thamizh Thentral, T. M.; Krithika, V.; Usha, S.

    2018-04-01

    Non isolated Bidirectional DC-DC Converter (NIBDDC) is a good interface between DC source and inverter Fed induction motor drive. This paper deals with comparison between open loop and PI controlled Bidirectional DC to DC Converter Inverter System (BDDCIS). The modelling and control of BDDC is becomes an important issue. Open loop BDDCIS and closed loop PI controlled BDDCIS are designed, modelled and simulated using Matlab- simulink and their results are presented. The investigations indicate superior performance of PI controlled BDDCIS. The proposed BDDCIS has advantages like bidirectional power transfer ability, reduced hardware count and improved dynamic response.

  20. DC Microgrids Scoping Study. Estimate of Technical and Economic Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Swift, Gregory William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chatzivasileiadis, Spyridon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tschudi, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Glover, Steven [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Starke, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Jianhui [Argonne National Lab. (ANL), Argonne, IL (United States); Yue, Meng [Brookhaven National Lab. (BNL), Upton, NY (United States); Hammerstrom, Donald [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-23

    Microgrid demonstrations and deployments are expanding in US power systems and around the world. Although goals are specific to each site, these microgrids have demonstrated the ability to provide higher reliability and higher power quality than utility power systems and improved energy utilization. The vast majority of these microgrids are based on AC power transfer because this has been the traditionally dominant power delivery scheme. Independently, manufacturers, power system designers and researchers are demonstrating and deploying DC power distribution systems for applications where the end-use loads are natively DC, e.g., computers, solid-state lighting, and building networks. These early DC applications may provide higher efficiency, added flexibility, reduced capital costs over their AC counterparts. Further, when onsite renewable generation, electric vehicles and storage systems are present, DC-based microgrids may offer additional benefits. Early successes from these efforts raises a question - can a combination of microgrid concepts and DC distribution systems provide added benefits beyond what has been achieved individually?

  1. A Novel Dual-input Isolated Current-Fed DC-DC Converter for Renewable Energy System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2010-01-01

    In this paper, a novel isolated current-fed DC-DC converter (boost-type) with two input power sources based on multi-transformer structure, which is suitable for fuel cells and super-capacitors hybrid energy system, is proposed and designed. With particular transformer windings connection strategy...

  2. Low cost concepts to reduce the voltage ripple of the DC power supply

    International Nuclear Information System (INIS)

    Cheng, Y.; Liu, K.B.

    1993-01-01

    If the gain of current feedback is low, the short term stability of magnet power supply will be affected by a soft power line. Typically, the step-charge and the imbalance of the three phase power line cause the most serious voltage ripple. Usually, the voltage feedback with a coupling transformer is considered to reduce the voltage ripple. However, for the high current power supply, the space and cooling problem of the coupling transformer become inconvenient. In this paper, the authors suggest to use the toroidal core with the compensation winding, working like a DCCT, as the coupling transformer. Then, a high speed detector of the AC line level is developed. It restricts the voltage ripple passing to the coupling transformer. These methods have the advantage of small size, low power consumption and low cost

  3. An offshore wind farm with dc grid connection and its performance under power system transients

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2011-01-01

    by disconnections. This paper presents a transient performance study of an offshore wind farm with HVDC transmission for grid connection, where the wind turbines in the offshore wind farm are also connected with dc collection network. A power-reduction control strategy (PRCS) for transient performance improvement...

  4. Development of DC active filter for high magnetic field stable power supply

    International Nuclear Information System (INIS)

    Wang Lei; Liu Xiaoning

    2008-01-01

    The DC active filter (DAF), with very low current ripple, of the stable power supply system of high magnetic field device is developed by using the PWM and parallel active power filter technique. Due to the PWM control technique, the required DAF current can be obtained and the current ripple can be compensated by means of monitoring the load voltage, and the current ripple becomes very low by adjusting the load voltage. The simulation and analysis show that this system can respond to the reference quickly and is effective in suppressing the harmonics, especially the low-order harmonics. The feasibility of the proposed scheme is proved on the equipment built in the laboratory. (authors)

  5. Environmental impacts of power plants and transmission lines in power system planning

    International Nuclear Information System (INIS)

    Miracapillo, C.; Moreschini, G.; Rome Univ. 'La Sapienza'

    1992-01-01

    This paper deals with a criterion to assess the environmental impacts of power plants and transmission lines in power system planning. First, the effects of hydro-plants, thermal plants and transmission lines are reviewed. Then, a number of methods for the evaluation of the environmental impacts of civil and industrial plants are described. A new criterion is proposed to introduce the evaluation of the environmental impact and related costs into methods for power system planning. Finally, the criterion is applied to a simple case

  6. Communication Characteristics of Faulted Overhead High Voltage Power Lines at Low Radio Frequencies

    Directory of Open Access Journals (Sweden)

    Nermin Suljanović

    2017-11-01

    Full Text Available This paper derives a model of high-voltage overhead power line under fault conditions at low radio frequencies. The derived model is essential for design of communication systems to reliably transfer information over high voltage power lines. In addition, the model can also benefit advanced systems for power-line fault detection and classification exploiting the phenomenon of changed conditions on faulted power line, resulting in change of low radio frequency signal propagation. The methodology used in the paper is based on the multiconductor system analysis and propagation of electromagnetic waves over the power lines. The model for the high voltage power line under normal operation is validated using actual measurements obtained on 400 kV power line. The proposed model of faulted power lines extends the validated power-line model under normal operation. Simulation results are provided for typical power line faults and typical fault locations. Results clearly indicate sensitivity of power-line frequency response on different fault types.

  7. Reliability study of high gain DC-DC converters based on RRPP I-IIA ...

    Indian Academy of Sciences (India)

    J DIVYA NAVAMANI

    2018-05-10

    May 10, 2018 ... Energy Storage Modules (ESM), Propulsion Motor Mod- ules (PMM) and ... All Electric Ship (AES) is the best way to power all the loads in the ship ... also used to derive quadratic step down DC-DC converters. [6]. The attractive ...... Exhibition on Ecological Vehicles and Renewable Energies,. TamilNadu ...

  8. On the modelling of linear-assisted DC-DC voltage regulators for photovoltaic solar energy systems

    Science.gov (United States)

    Martínez-García, Herminio; García-Vílchez, Encarna

    2017-11-01

    This paper shows the modelling of linear-assisted or hybrid (linear & switching) DC/DC voltage regulators. In this kind of regulators, an auxiliary linear regulator is used, which objective is to cancel the ripple at the output voltage and provide fast responses for load variations. On the other hand, a switching DC/DC converter, connected in parallel with the linear regulator, allows to supply almost the whole output current demanded by the load. The objective of this topology is to take advantage of the suitable regulation characteristics that series linear voltage regulators have, but almost achieving the high efficiency that switching DC/DC converters provide. Linear-assisted DC/DC regulators are feedback systems with potential instability. Therefore, their modelling is mandatory in order to obtain design guidelines and assure stability of the implemented power supply system.

  9. Loss Modelling and Experimental Verification of A 98.8% Efficiency Bidirectional Isolated DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Ramachandran Rakesh

    2017-01-01

    In this paper, design and implementation of an ultra-high efficiency isolated bi-directional dc-dc converter utilizing GaN devices is presented. Loss modelling of the GaN converter is also included in this paper. The converter has achieved a maximum measured efficiency of 98.8% in both directions of power flow, using the same power components. Hardware prototype of the converter along with the measured efficiency curve is also presented in this paper.

  10. Enhancing the Capacity of the AC Distribution System Using DC Interlinks - A Step Towards Future DC Grid

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Guerrero, Josep M.; Teodorescu, Remus

    2015-01-01

    The development of distributed generation system and electric vehicles is bound to strain the distribution network. A typical radial distribution feeder suffers from the voltage fluctuation and feeder overload in the presence of a large amount of variable renewable generation. This paper presents...... a concept of enhancing the power handling capacity of distribution networks using dc grid interconnections. Control of both the active and reactive power exchange between the ac feeder and the interconnecting power converter has been proposed for the voltage regulation at the ac feeder terminal. Besides......, the dc grid interconnection also allows the introduction of a common storage system which can be shared by the connected ac feeders, and the dc grid connection to other renewable energy resources. The increased power handling capacity and improved voltage profile of the ac distribution feeder using...

  11. Discharge Characteristic of VHF-DC Superimposed Magnetron Sputtering System

    Science.gov (United States)

    Toyoda, Hirotaka; Fukuoka, Yushi; Fukui, Takashi; Takada, Noriharu; Sasai, Kensuke

    2014-10-01

    Magnetron plasmas are one of the most important tools for sputter deposition of thin films. However, energetic particles from the sputtered target such as backscattered rare gas atoms or oxygen negative ions from oxide targets sometimes induce physical and chemical damages as well as surface roughening to the deposited film surface during the sputtering processes. To suppress kinetic energy of such particles, superposition of RF or VHF power to the DC power has been investigated. In this study, influence of the VHF power superposition on the DC target voltage, which is important factor to determine kinetic energy of high energy particles, is investigated. In the study, 40 MHz VHF power was superimposed to an ITO target and decrease in the target DC voltage was measured as well as deposited film deposition properties such as deposition rate or electrical conductivity. From systematic measurement of the target voltage, it was revealed that the target voltage can be determined by a very simple parameter, i.e., a ratio of VHF power to the total input power (DC and VHF powers) in spite of the DC discharge current. Part of this work was supported by ASTEP, JST.

  12. Family of Step-up DC/DC Converters with Fast Dynamic Response for Low Power Applications

    DEFF Research Database (Denmark)

    N. Soltani, Mohsen; Mostaan, Ali; Siwakoti, Yam Prasad

    2016-01-01

    This study presents a family of novel step-up DC/DC converters which do not have a right half plane zero in their transfer function resulting in faster dynamic behaviour of the converters under the load variation. In addition, the voltage stress on all the active switches and diodes is as low...

  13. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    International Nuclear Information System (INIS)

    Fernandez, Luis M.; Garcia, Pablo; Garcia, Carlos Andres; Jurado, Francisco

    2011-01-01

    Research highlights: → Hybrid electric power system for a real surface tramway. → Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. → New control strategy for the energy management of the tramway. → Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  14. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Luis M., E-mail: luis.fernandez@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Pablo, E-mail: pablo.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Carlos Andres, E-mail: carlosandres.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Jurado, Francisco, E-mail: fjurado@ujaen.e [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, No. 28. 23700 Linares (Jaen) (Spain)

    2011-05-15

    Research highlights: {yields} Hybrid electric power system for a real surface tramway. {yields} Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. {yields} New control strategy for the energy management of the tramway. {yields} Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  15. Multi-level cascaded DC/DC converters for PV applications

    Directory of Open Access Journals (Sweden)

    Ahmed A.A. Hafez

    2015-12-01

    Full Text Available A robust multi-level cascaded DC/DC system for Photovoltaic (PV application is advised in this article. There are three PV generators, each is coupled to a half-bridge buck cell. Each PV-generator–buck-converter channel is controlled such that maximum power is captured independently under different irradiation and temperature levels. The system operation under normal and abnormal conditions was comprehensively investigated. Internal Model Control (IMC technique was adopted for tuning the controllers. An elaborate switching modulation strategy was used to reduce the current ripple and inductor size, while maintaining high efficiency. Annotative, simple and robust remedial strategies were proposed to mitigate different anticipated faults. Comprehensive simulation results in Matlab environment were illustrated for corroborating the performance of the advised cascaded DC/DC system under normal/abnormal conditions. The proposed system enjoys the merits of independency, reduced volumetric dimensions and improved efficiency. Furthermore, the system is inherently fault-tolerant.

  16. A New Sliding Mode Controller for DC/DC Converters in Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    M. Sarvi

    2013-01-01

    Full Text Available DC/DC converters are widely used in many industrial and electrical systems. As DC/DC converters are nonlinear and time-variant systems, the application of linear control techniques for the control of these converters is not suitable. In this paper, a new sliding mode controller is proposed as the indirect control method and compared to a simple direct control method in order to control a buck converter in photovoltaic applications. The solar arrays are dependent power sources with nonlinear voltage-current characteristics under different environmental conditions (insolation and temperature. From this point of view, the DC/DC converter is particularly suitable for the application of the sliding mode control in photovoltaic application, because of its controllable states. Simulations are performed in Matlab/Simulink software. The simulation results are presented for a step change in reference voltage and input voltage as well as step load variations. The simulations results of proposed method are compared with the conventional PID controller. The results show the good performance of the proposed sliding mode controller. The proposed method can be used for the other DC/DC converter.

  17. Gas tube-switched high voltage DC power converter

    Science.gov (United States)

    She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul

    2018-05-15

    A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.

  18. Coordination Control Strategy for AC/DC Hybrid Microgrids in Stand-Alone Mode

    Directory of Open Access Journals (Sweden)

    Dwi Riana Aryani

    2016-06-01

    Full Text Available Interest in DC microgrids is rapidly increasing along with the improvement of DC power technology because of its advantages. To support the integration process of DC microgrids with the existing AC utility grids, the form of hybrid AC/DC microgrids is considered for higher power conversion efficiency, lower component cost and better power quality. In the system, AC and DC portions are connected through interlink bidirectional AC/DC converters (IC with a proper control system and power management. In the stand-alone operation mode of AC/DC hybrid microgrids, the control of power injection through the IC is crucial in order to maintain the system security. This paper mainly deals with a coordination control strategy of IC and a battery energy storage system (BESS converter under stand-alone operation. A coordinated control strategy for the IC, which considers the state of charge (SOC level of BESS and the load shedding scheme as the last resort, is proposed to obtain better power sharing between AC and DC subgrids. The scheme will be tested with a hybrid AC/DC microgrid, using the tool of the PSCAD/EMTDC software.

  19. Improvement of In-Flight Alumina Spheroidization Process Using a Small Power Argon DC-RF Hybrid Plasma Flow System by Helium Mixture

    Science.gov (United States)

    Takana, Hidemasa; Jang, Juyong; Igawa, Junji; Nakajima, Tomoki; Solonenko, Oleg P.; Nishiyama, Hideya

    2011-03-01

    For the further improvement of in-flight alumina spheroidization process with a low-power direct-current radiofrequency (DC-RF) hybrid plasma flow system, the effect of a small amount of helium gas mixture in argon main gas and also the effect of increasing DC nozzle diameter on powder spheroidization ratio have been experimentally clarified with correlating helium gas mixture percentage, plasma enthalpy, powder in-flight velocity, and temperature. The alumina spheroidization ratio increases by helium gas mixture as a result of enhancement of plasma enthalpy. The highest spheroidization ratio is obtained by 4% mixture of helium in central gas with enlarging nozzle diameter from 3 to 4 mm, even under the constant low input electric power given to a DC-RF hybrid plasma flow system.

  20. Current Mode Control for LLC Series Resonant DC-to-DC Converters

    OpenAIRE

    Jinhaeng Jang; Syam Kumar Pidaparthy; Byungcho Choi

    2015-01-01

    Conventional voltage mode control only offers limited performance for LLC series resonant DC-to-DC converters experiencing wide variations in operational conditions. When the existing voltage mode control is employed, the closed-loop performance of the converter is directly affected by unavoidable changes in power stage dynamics. Thus, a specific control design optimized at one particular operating point could become unacceptable when the operational condition is varied. This paper presents a...