WorldWideScience

Sample records for dbsa doped polyaniline

  1. Morphological studies of DBSA-doped polyaniline/PVC blends.

    Science.gov (United States)

    Afzal, Asma Binat; Akhtar, Muhammad Javed; Ahmad, Maqsood

    2010-01-01

    Solution blending technique has been used to synthesize dodecylbenzenesulfonic acid (DBSA)-doped polyaniline (PAND)/poly-vinyl chloride (PVC) blends by two methods, namely redoping method (PANDR/PVC blends) and aqueous polymerization method (PANDA/PVC blends). PANDR/PVC blends show improved mechanical properties as compared to PANDA/PVC blends, which show brittle nature of the films. However, by increasing concentration of PANDR in the PVC matrix, PANDR/PVC blend films are becoming more rigid due to increases in the modulus of elasticity. Irradiation of blend samples by electron beam used during scanning electron microscopy (SEM) analyses has changed the morphology of PANDA/PVC blend films due to dehydrochlorination of free PVC, whereas PANDR/PVC blends remain unaffected during irradiation by electron beam.

  2. Comparative studies on the corrosion protection effect of DBSA-doped polyaniline prepared from in situ emulsion polymerization in the presence of hydrophilic Na+-MMT and organophilic organo-MMT clay platelets

    International Nuclear Information System (INIS)

    Chang, K.-C.; Lai, M.-C.; Peng, C.-W.; Chen, Y.-T.; Yeh, J.-M.; Lin, C.-L.; Yang, J.-C.

    2006-01-01

    A series of polyaniline (PANI)/Na + -montmorillonite (MMT) clay and PANI/organo-MMT nanocomposite materials have been successfully prepared by in situ emulsion polymerization in the presence of inorganic nanolayers of hydrophilic Na + -MMT clay or organophilic organo-MMT clay with DBSA and KPS as surfactant and initiator, respectively. The as-synthesized Na + -PCN and organo-PCN materials were characterized and compared by Fourier transformation infrared (FTIR) spectroscopy, wide-angle powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Na + -PCN materials in the form of coatings with low loading of Na + -MMT clay (e.g., 3 wt.%, CLAN3) on cold-rolled steel (CRS) were found much superior in corrosion protection over those of organo-PCN materials with same clay loading based on a series of electrochemical measurements of corrosion potential, polarization resistance, corrosion current and impedance spectroscopy in 5 wt.% aqueous NaCl electrolyte. The molecular weights of PANI extracted from PCN materials and neat PANI were determined by gel permeation chromatography (GPC) with NMP as eluant. Effects of material composition on the gas permeability, optical properties and electrical conductivity of neat PANI and a series of PCN materials, in the form of free-standing film, solution and powder-pressed pellet, were also studied by gas permeability analyzer (GPA), ultraviolet-vis spectra and four-point probe technique, respectively

  3. Thermal Conductivity and Specific Heat Capacity of Dodecylbenzenesulfonic Acid-Doped Polyaniline Particles—Water Based Nanofluid

    Directory of Open Access Journals (Sweden)

    Tze Siong Chew

    2015-07-01

    Full Text Available Nanofluid has attracted great attention due to its superior thermal properties. In this study, chemical oxidative polymerization of aniline was carried out in the presence of dodecylbenzenesulfonic acid (DBSA as a dopant. Particles of DBSA-doped polyaniline (DBSA-doped PANI with the size range of 15 to 50 nm were obtained, as indicated by transmission electron microscope (TEM. Results of ultra violet-visible (UV-Vis absorption and Fourier transform infrared (FTIR spectroscopies as well as thermogravimetric analysis showed that PANI nanoparticles were doped with DBSA molecules. The doping level found was 36.8%, as calculated from elemental analysis data. Thermal conductivity of water was enhanced by 5.4% when dispersed with 1.0 wt% of DBSA-PANI nanoparticles. Specific heat capacity of water-based nanofluids decreased with increasing amount of DBSA-PANI nanoparticles.

  4. Role of mesoscopic morphology in charge transport of doped polyaniline

    Science.gov (United States)

    Mukherjee, A. K.; Menon, Reghu

    2002-02-01

    In doped polyaniline (PANI), the charge transport properties are determined by mesoscopic morphology, which in turn is controlled by the molecular recognition interactions among polymer chain, dopant and solvent Molecular recognition plays a significant role in chain conformation and charge delocalization. The resistivity of PANI doped by camphor sulfonic acid (CSA)/2-acrylo-amido-1-propane sulfonic acid (AMPSA)/dodecyl benzene sulfonic acid (DBSA) is around 0.02 W cm. PANI-CSA and PANI-AMPSA show a metallic positive temperature coefficient of resistivity above 150 K, with a finite value of conductivity at 1.4 K; whereas, PANI-DBSA shows hopping transport at low temperatures. The magnetoresistance is positive (negative) for PANI-CSA (PANI-AMPSA); and PANI-DBSA has a large positive MR. The behavior of MR suggests subtle variations in mesoscopic morphology between PANI-CSA and PANI-AMPSA.

  5. Ammonia Sensing by PANI-DBSA Based Gas Sensor Exploiting Kelvin Probe Technique

    Directory of Open Access Journals (Sweden)

    Anju Yadav

    2015-01-01

    Full Text Available Dodecyl benzene sulfonic acid (DBSA doped polyaniline (PANI-DBSA has been synthesized by chemical oxidative polymerization of aniline monomer in the presence of DBSA. The UV-visible spectroscopy and X-ray diffraction measurements confirm the formation of PANI and its doping by DBSA. SEM images show the formation of submicron size rod shaped PANI particles. A vibrating capacitor based ammonia gas sensor was prepared by spin coating PANI-DBSA film over copper (Cu substrate. The sensor exploited Kelvin probe technique to monitor contact potential difference between PANI and Cu as a function of time and ammonia concentration. Upon exposure to 30 ppm ammonia, the sensor displays response time of 329 s, recovery time of 3600 s, and sensitivity value of 1.54 along with good repeatability.

  6. Flexible, all-organic ammonia sensor based on dodecylbenzene sulfonic acid-doped polyaniline films

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G. [Dipartimento di Chimica Industriale e Ingegneria dei Materiali, Universita degli Studi di Messina (Italy); Arena, A.; Donato, N.; Latino, M.; Saitta, G. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universita degli Studi di Messina (Italy); Bonavita, A. [Dipartimento di Chimica Industriale e Ingegneria dei Materiali, Universita degli Studi di Messina (Italy); Neri, G., E-mail: neri@ingegneria.unime.i [Dipartimento di Chimica Industriale e Ingegneria dei Materiali, Universita degli Studi di Messina (Italy)

    2010-09-30

    A stable chlorobenzene dispersion of conducting polyaniline (PANI) has been obtained by doping emeraldine base with dodecylbenzene sulfonic acid (DBSA) and studied by spectrophotometric measurements in the UV-vis-IR range. The electrical properties of PANI: DBSA films obtained from the above dispersion have been investigated under different temperature and relative humidity conditions. All-organic chemoresistive devices have been developed by spin-coating the PANI: DBSA dispersion on flexible substrates, and then by depositing electrodes on the top, from a carbon nanotube conducting ink. Sensing tests performed under exposition to calibrated amounts of ammonia reveal that these simple and inexpensive sensors are able to detect ammonia at room temperature in a reliable way, with a sensitivity linearly related to concentration in the range between 5 ppm and 70 ppm.

  7. Enhancement of corrosion protection effect in mechanochemically synthesized Polyaniline/MMT clay nanocomposites

    Directory of Open Access Journals (Sweden)

    N. Kalaivasan

    2017-02-01

    Full Text Available Nanocomposite material that consists of DBSA (dodecylbenzensulfonic acid doped polyaniline (PANI was prepared by solvent free mechanochemical intercalation method. Organic aniline monomer was first intercalated into the interlayer regions of Na-MMT (sodium montmorillonite clay hosts and followed by one-step oxidative polymerization. The as synthesized polyaniline clay nanocomposites were treated with DBSA to get PANI-DBSA clay nanocomposites. PANI-DBSA clay nanocomposites in the form of coatings at different concentrations of DBSA on C45 steel were found much superior in corrosion protection over those of conventional polyaniline, based on the series of electrochemical measurement of corrosion potential, polarization resistance and corrosion current in 3.5% aqueous NaCl electrolyte. UV–visible spectroscopy, FT-IR and SEM studies confirm the formation of intercalated polyaniline clay nanocomposites inside the clay nanolayers.

  8. Construction and Study of Hetreojunction Solar Cell Based on Dodecylbenzene Sulfonic Acid-Doped Polyaniline/n-Si

    Directory of Open Access Journals (Sweden)

    I. Morsi

    2012-01-01

    Full Text Available Polyaniline/n-type Si heterojunctions solar cell are fabricated by spin coating of soluble dodecylbenzene sulfonic acid (DBSA-doped polyaniline onto n-type Si substrate. The electrical characterization of the Al/n-type Si/polyaniline/Au (Ag structure was investigated by using current-voltage (I-V, capacitance-voltage (C-V, and impedance spectroscopy under darkness and illumination. The photovoltaic cell parameters, that is, open-circuit voltage (oc, short-circuit current density (sc, fill factor (FF, and energy conversion efficiency (η were calculated. The highest sc, oc, and efficiency of these heterojunctions obtained using PANI-DBSA as a window layer (wideband gap and Au as front contact are 1.8 mA/cm2, 0.436 V, and 0.13%, respectively. From Mott-Schottky plots, it was found that order of charge carrier concentrations is 3.5×1014 and 1.0×1015/cm3 for the heterojunctions using Au as front contact under darknessness and illumination, respectively. Impedance study of this type of solar cell showed that the shunt resistance and series resistance decreased under illumination.

  9. DC conductivity and spectroscopic studies of polyaniline doped with ...

    Indian Academy of Sciences (India)

    :1, 1:2 and 2:1 (w/w) for chemi- cal doping to enhance the conductivity of synthesized polyaniline (PANI). The doping of polyaniline is carried out using tetrahydrofuran as a solvent. Doped samples are characterized using various techniques ...

  10. BF3-doped polyaniline: A novel conducting polymer

    Indian Academy of Sciences (India)

    Abstract. We review the unusual structural, transport and magnetic properties of highly conducting polyaniline, doped with boron trifluoride. Our studies establish the unique conducting state of this system, which is in distinct contrast with the conventional proton-doped polyaniline samples.

  11. Synthesis of H2SO4 doped polyaniline film by potentiometric method

    Indian Academy of Sciences (India)

    H2SO4 doped polyaniline films were synthesized in aqueous acidic media. The polyaniline film deposited on platinum electrode exhibits highest conductivity. The conductivity of each H2SO4 doped polyaniline sample was determined by the four-probe technique. The current–voltage curve exhibits that polyaniline sample ...

  12. Estudo Reológico de Tintas de Poliuretano Contendo PAni-DBSA Aplicadas como Materiais Absorvedores de Microondas (8-12 GHz Rheological Study of Paints Based on Polyurethane and PAni-DBSA and its Application as Microwave Absorbing Materials (8 - 12 GHz

    Directory of Open Access Journals (Sweden)

    Rogério S. Biscaro

    2002-10-01

    Full Text Available Neste trabalho preparou-se tintas condutoras baseadas em blendas de poliuretano contendo polianilina em diferentes proporções. Estudou-se as influências do método de dopagem da polianilina (PAni e do tempo de processamento da mistura no comportamento reológico da tinta. Verificou-se que a dopagem, com o ácido dodecilbenzeno sulfônico (DBSA, por processamento reativo (PAni-DBSA-pr afetou, de maneira mais acentuada, a viscosidade da tinta devido, principalmente, ao excesso de ácido dopante presente nessa amostra. Esse efeito foi observado pelas análises reológicas devido às alterações nos valores de viscosidade complexa, controlando-se o tempo de repouso das misturas. Medidas espectrofotométricas na região do infravermelho foram realizadas para verificar a ocorrência de interações entre os componentes da mistura (o poliuretano e a polianilina, constatando-se que, possivelmente, não ocorreram ligações químicas, mas somente interações físicas. Observou-se também que, amostras contendo 15% (m/m de PAni-DBSA-pr absorveram aproximadamente 48% da radiação eletromagnética incidente (8-12 GHz, indicando a viabilidade do uso desta tinta como material absorvedor de radiação.In this work, conducting paints based on blends of polyurethane and polyaniline in different proportions were prepared. The effects of both, polyaniline doping method and the blend processing time on the paint rheological behavior were evaluated. It was observed that the doping of the polyaniline with dodecylbenzene sulphonic acid (DBSA by reactive processing (PAni-DBSA-pr altered the paint complex viscosity due to the excess of the DBSA used in that doping process. This effect was observed during the rheological analyses by controlling the resting time of the prepared samples. FTIR analyses were carried out to verify possible interactions among the components of the mixture (polyurethane and polyaniline, suggesting that no chemical reactions occurred, but

  13. Cobalt nanoparticles doped emaraldine salt of polyaniline: A promising room temperature magnetic semiconductor

    Science.gov (United States)

    Hatamie, Shadie; Kulkarni, M. V.; Kulkarni, S. D.; Ningthoujam, R. S.; Vatsa, R. K.; Kale, S. N.

    2010-12-01

    Incorporation of magnetic nanoparticles in polymers with organic functional groups working as semiconducting substrate is of immense interest in the field of dilute magnetic semiconductors (DMS) and spintronics. In this article we report on synthesis and evaluation of dilutely doped (0-10 wt%) cobalt nanoparticles in emaraldine salt (ES) of polyaniline in the presence of dodecyl benzene sulfonic acid (DBSA) and p-toluene sulfonic acid (p-TSA) using a sonochemical-assisted-reduction approach as a possible DMS candidate. The X-ray diffraction pattern and high resolution transmission electron microscopy (HRTEM) image show the ES to be polycrystalline, in which 10 nm sized Co nanoparticles get embedded in its FCC structural form. From Fourier transform infrared (FT-IR) and UV-visible (UV-vis) spectroscopy studies, it is predicted that cobalt particles get electrostatically bound to the specific SO3- ion sites of ES, thereby modifying torsional degrees of freedom of the system. The applied field dependent magnetization study shows that the sample exhibits hysteresis loop with a minimal doping of 3 wt% of Co nanoparticles and increases with the amount of Co nanoparticles in ES due to dipolar interaction. The electron transport data show that with increase in Co wt% there is a gradual shift from ohmic to non-ohmic response to the sample bias, accompanied by opening of electrical hysteresis and an increased resistance. The non-linear response of higher doped systems has been attributed to the combination of direct and Fowler-Nordheim tunneling phenomena in these systems. Persistence of optical and transport properties of the polymer, with an introduction of magnetic moment in the system, envisages the system to be a fine magnetic semiconductor.

  14. BF3-doped polyaniline: A novel conducting polymer

    Indian Academy of Sciences (India)

    During the past two decades, both fundamental and applied research in conducting polymers has grown enormously [1]. Polyaniline (PANI) owing to its ease of synthe- sis, remarkable environmental stability, and high conductivity in the doped form, has remained one of the most thoroughly studied conducting polymers.

  15. DC conductivity and spectroscopic studies of polyaniline doped with ...

    Indian Academy of Sciences (India)

    study shows structural modifications in functional groups with doping in PANI. Photoluminescence spectra exhibit emission properties of the samples. Keywords. Polyaniline; D.C. conductivity; UV-visible; XRD; FTIR; PL. 1. Introduction. Polymers are typically utilized in electrical, optical and electronic devices as insulators ...

  16. Electrical transport crossovers and thermopower in doped polyaniline conducting polymer

    Science.gov (United States)

    Brault, D.; Lepinoy, M.; Limelette, P.; Schmaltz, B.; Tran Van, F.

    2017-12-01

    We report on both the electrical and thermoelectric transport properties as a function of temperature in polyaniline doped with camphor sulfonic acid (CSA) for a wide range of CSA doping. A transport crossovers diagram illustrating metallic and insulating like behaviors is proposed and seems to result from the interplay between charge doping and disorder. In particular, the one half doping not only leads to an optimal electrical conductivity reaching 120 S/cm at 300 K but also the lowest thermopower slope. The measured thermopower appears closely related to the metallic onset in agreement with a metallic origin of its linear temperature dependence.

  17. Polyaniline micro-rods based heterojunction solar cell: Structural and photovoltaic properties

    Science.gov (United States)

    Sönmezoǧlu, Savaş; Taş, Recep; Akın, Seçkin; Can, Muzaffer

    2012-12-01

    The present paper reports the fabrication and photovoltaic characterization of pure and dodecyl benzene sulfonic acid (DBSA)-doped polyaniline (PAni) micro-rods polymer/n-Si heterojunction solar cells, and also the morphological and structural properties of pure and micro-rods PAni doping with DBSA. The device shows a strong photovoltaic behavior with a maximum open-circuit voltage Voc of 0.83 V, a short-circuit current Jsc of 14.72 mA cm-2, fill factor FF of 0.54 resulting in an estimated device efficiency η of 6.13% under simulated solar light with the intensity of 100 mW/cm2. The results indicate that the Au/DBSA-doped PAni micro-rods/n-Si heterojunction structure might be promising for the solar cell applications.

  18. Mistura PAni.DBSA/SBS Obtida por Polimerização "In Situ": Propriedades Elétrica, Dielétrica e Dinâmico-Mecânica PAni.DBSA/SBS blends prepared from "in situ" polymerization: electric, dielectric and dynamic-mechanical properties

    Directory of Open Access Journals (Sweden)

    María E. Leyva

    2002-01-01

    Full Text Available Misturas elastoméricas condutoras de eletricidade envolvendo copolímero tribloco poli(estireno-b-butadieno-b-estireno (SBS e polianilina dopada com ácido dodecilbenzenosulfônico (Pani.DBSA foram obtidas por polimerização "in situ". Os filmes obtidos por moldagem por compressão mostraram baixo limiar de percolação, apresentando valores de condutividade semelhantes aos encontrados para o polímero condutor puro com cerca de 20 % em massa de Pani.DBSA. A caracterização das misturas por análise termodinâmico-mecânica (DMTA evidenciou uma ligeira interação da Pani.DBSA com ambas fases do copolímero SBS. Na região borrachosa, o módulo da mistura aumenta com o aumento do conteúdo de Pani. No entanto, existe uma progressiva queda no fator de amortecimento ("damping" com o aumento da concentração de Pani. A energia de ativação, Ea, do processo de transição vítreo-borrachoso de ambas fases do SBS foi calculada, utilizando a equação de Arrhenius com os dados obtidos tanto por DMTA como por análise termodielétrica (DETA. A caracterização dielétrica não proporcionou informações a respeito da localização da Pani.DBSA na matriz de SBS. No entanto, observou-se o fenômeno de polarização interfacial entre a Pani e o SBS. Uma morfologia do tipo microtubos foi observada para Pani.DBSA na mistura SBS/Pani.DBSA, utilizando-se a técnica de microscopia eletrônica de varredura.Conducting rubbery blends of styrene-butadiene-styrene (SBS triblock copolymer and polyaniline doped with dodecylbenzenesulfonic acid (Pani.DBSA were produced by "in situ" polymerization. The films obtained by compression-molding display low percolation threshold with conductivity values similar to that found for pure Pani.DBSA with only 20 wt% of Pani.DBSA in the SBS/Pani.DBSA blend. The dynamic-mechanical characterization demonstrated that PAni.DBSA presents a slight interaction with both phases of the SBS copolymer. In the rubbery region, the modulus

  19. Photothermal ablation of cancer cells using self-doped polyaniline nanoparticles.

    Science.gov (United States)

    Hong, Yoochan; Cho, Wonseok; Kim, Jeonghun; Hwng, Seungyeon; Lee, Eugene; Heo, Dan; Ku, Minhee; Suh, Jin-Suck; Yang, Jaemoon; Kim, Jung Hyun

    2016-05-06

    Water-stable confined self-doping polyaniline nanocomplexes are successfully fabricated by nano-assembly using lauric acid both as a stabilizer and as a localized dopant. In particular, the colloidal stability of the polyaniline nanocomplexes in neutral pH and the photothermal potential by near-infrared light irradiation are characterized. We demonstrate that confined self-doping polyaniline nanocomplexes as a photothermal nanoagent are preserved in the doped state even at a neutral pH. Finally, confined self-doping polyaniline nanocomplexes aided by lauric acid are successfully applied for the photothermal ablation of cancer cells.

  20. Effect of High Temperature on the Electrochemical and Optical Properties of Emeraldine Salt Doped with DBSA and Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Salma Gul

    2015-01-01

    Full Text Available A comprehensive study of thermally treated polyaniline in its emeraldine salt form is presented here. It offers an understanding of the thermal stability of the polymer. Emeraldine salt was prepared by a novel emulsion polymerization pathway using dodecylbenzene sulfonic acid and sulfuric acid together as dopants. The effect of temperature and heating rate on the degradation of this emeraldine salt was studied via thermogravimetric analysis. The thermally analyzed sample was collected at various temperatures, that is, 250, 490, 500, and 1000°C. The gradual changes in the structure of the emeraldine salt were followed through cyclic voltammetry, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy. Results demonstrate that emeraldine salt shows high thermal stability up to 500°C. This is much higher working temperature for the use of emeraldine salt in higher temperature applications. Further heat treatment seems to induce deprotonation in emeraldine salt. Cyclic voltammetry and ultraviolet-visible spectroscopy revealed that complete deprotonation takes place at 1000°C where it loses its electrical conductivity. It is interesting to note that after the elimination of the dopants, the basic backbone of emeraldine salt was not destroyed. The results reveal that the dopants employed have a stability effect on the skeleton of emeraldine salt.

  1. Optical study on doped polyaniline composite films

    International Nuclear Information System (INIS)

    Li, G; Zheng, P; Wang, N L; Long, Y Z; Chen, Z J; Li, J C; Wan, M X

    2004-01-01

    Localization driven by disorder has a strong influence on the conducting properties of conducting polymers. Some authors hold the opinion that disorder in the material is homogeneous and that the conducting polymer is a disordered metal close to the Anderson-Mott metal-insulator (MI) transition, while others treat the disorder as inhomogeneous and have the opinion that conducting polymers are a composite of ordered metallic regions and disordered insulating regions. The morphology of conducting polymers is an important factor that has an influence on the type and extent of disorder. Different protonic acids used as dopants and moisture have influence on the polymer chain arrangement and interchain interactions. We performed optical reflectance measurements on several PANI-CSA/PANI-DBSA composite films with different dopant ratios and moisture contents. Optical conductivity and the real part of the dielectric function are calculated by Kramers-Kronig (KK) relations. σ 1 (ο) and ε 1 (ο) deviate from the simple Drude model in the low frequency range and the tendencies of the three sample are different and non-monotonic. The localization modified Drude model (LMD) in the framework of the Anderson-Mott theory cannot give a good fit to the experimental data. By introducing the distribution of relaxation time into the LMD, reasonable fits for all three samples are obtained. This result supports the inhomogeneous picture

  2. Dielectric loss property of strong acids doped polyaniline (PANi)

    Science.gov (United States)

    Amalia, Rianti; Hafizah, Mas Ayu Elita; Andreas, Manaf, Azwar

    2018-04-01

    In this study, strong acid doped polyaniline (PANi) has been successfully fabricated through the chemical oxidative polymerization process with various polymerization times. Nonconducting PANi resulting from the polymerization process at various polymerization times were then doped by a strong acid HClO4 to generate dielectric properties. Ammonium Persulfate (APS) as an initiator was used during Polymerization process to develop dark green precipitates which then called Emeraldine Base Polyaniline (PANi-EB). The PANi-EB was successively doped by strong acid HClO4 with dopant and PANi ratio 10:1 to enhance the electrical conductivity. The conductivity of doped PANi was evaluated by Four Point Probe. Results of evaluation showed that the conductivity values of HClO4 doped PANi were in the range 337-363 mS/cm. The dielectric properties of doped PANi were evaluated by Vector Network Analyzer (VNA) which suggested that an increase in the permittivity value in the conducting PANi. It is concluded that PANi could be a potential candidate for electromagnetic waves absorbing materials.

  3. Molecular modeling of protonic acid doping of emeraldine base polyaniline for chemical sensors

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, C.K.Y.; Ye, H.; Leung, S.Y.Y.; Zhang, G.

    2012-01-01

    We proposed a molecular modeling methodology to study the protonic acid doping of emeraldine base polyaniline which can used in gas detection. The commercial forcefield COMPASS was used for the polymer and protonic acid molecules. The molecular model, which is capable of representing the polyaniline

  4. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S., E-mail: kbooksh@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States)

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  5. Effect of HCl doping on optoelectrical and LPG sensing properties of nanostructured polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Upadhye, Deepak S., E-mail: deepaksu22@gmail.com; Huse, Nanasaheb P.; Sharma, Ramphal, E-mail: rps.phy@gmail.com [Thin Film and Nanotechnology Laboratory, Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (India)

    2016-05-06

    Nanostructure Polyaniline thin films doped with 0.5 M, 0.7 M, and 1 M of HCL were synthesized by simple and inexpensive chemical oxidative polymerization technique at room temperature. All prepared thin films of Polyaniline were characterized by optical absorbance study by UV-visible spectroscopy. The absorbance spectrum of Polyaniline shows three fundamental peaks at 356, 419 and 820 nm with increase in absorption intensity. The electrical study shows magnitude of resistance of HCL doped Polyaniline is dependent on doping level. Furthermore, the thin film of Polyaniline was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents irregular granular morphology. In order to investigate LPG sensing properties, I-V characteristics of the Polyaniline films doped with 0.5 M, 0.7 M, and 1 M of HCL were recorded at room temperature in presence of air and 100 ppm of LPG. The observed values of sensitivity found to be 7.21%, 9.85% and 17.46 % for 0.5 M, 0.75 M, and 1.0 M of HCL doped Polyaniline thin films respectively.

  6. Synthesis of H2SO4 doped polyaniline film by potentiometric method

    Indian Academy of Sciences (India)

    Unknown

    Synthesis of H2SO4 doped polyaniline film by potentiometric method. P D GAIKWAD, D J SHIRALE, V K GADE, ... transition from insulator to semiconductor when doped with oxidizing or reducing agent (Kobayashi et ... protonation (doping) and many other physical–chemical properties are connected to the presence of ...

  7. Ammonia gas sensing behavior of tanninsulfonic acid doped polyaniline-TiO₂ composite.

    Science.gov (United States)

    Bairi, Venu Gopal; Bourdo, Shawn E; Sacre, Nicolas; Nair, Dev; Berry, Brian C; Biris, Alexandru S; Viswanathan, Tito

    2015-10-16

    A highly active tannin doped polyaniline-TiO₂ composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO₂ in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO₂. Scanning electron microscopy (SEM) along with energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO₂ and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm) of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO₂ composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.

  8. The work function of doped polyaniline nanoparticles observed by Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Park, Jinsung; Jang, Kuewhan; Na, Sungsoo; Bang, Doyeon; Haam, Seungjoo; Yang, Jaemoon

    2012-01-01

    The work function of polyaniline nanoparticles in the emeraldine base state was determined by Kelvin probe force microscopy to be ∼270 meV higher than that of similar nanoparticles in the emeraldine salt state. Normal tapping mode atomic force microscopy could not be used to distinguish between the particles due to their similar morphologies and sizes. Moreover, other potential measurement systems, such as using zeta potentials, were not suitable for the measurement of surface charges of doped nanoparticles due to their encapsulation by interfering chemical groups. Kelvin probe force microscopy can be used to overcome these limitations and unambiguously distinguish between the bare and doped polyaniline nanoparticles. (paper)

  9. Synthesis and optical characterization of acid-doped polyaniline thin ...

    African Journals Online (AJOL)

    Polyaniline has attracted much interest among researchers because of its reasonably good conductivity, stability, ease of preparation, affordability and redox properties compared to other organic compounds. In this work, Polyaniline (PANI) thin films were synthesized by chemical oxidative polymerization of aniline in the ...

  10. Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials.

    Science.gov (United States)

    Mondal, Sanjoy; Rana, Utpal; Malik, Sudip

    2015-08-11

    Graphene quantum dot-doped polyaniline composites have been prepared by the chemical oxidation of aniline. Synthesized novel fibrous composites show an excellent specific capacitance value of ∼1044 F g(-1) at a current density of 1 A g(-1) as well as moderate cyclic stability with a retention of life time of 80.1% after 3000 cycles.

  11. Molecular modeling of the conductivity changes of the emeraldine base polyaniline due to protonic acid doping

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, C.K.Y.; Zhang, G.

    2012-01-01

    We propose a molecular modeling strategy, which is capable of predicting the conductivity change of emeraldine base polyaniline polymer due to different degree of protonic acid doping. The method is comprised of two key steps: (1) generating the amorphous unit cells with given number of polymer

  12. New nanocomposites of polystyrene with polyaniline doped with lauryl sulfuric acid

    Science.gov (United States)

    Pud, A. A.; Nikolayeva, O. A.; Vretik, L. O.; Noskov, Yu. V.; Ogurtsov, N. A.; Kruglyak, O. S.; Fedorenko, E. A.

    2017-08-01

    This work is concentrated on synthesis and investigation of new core-shell nanocomposites of polystyrene (PS) with doped polyaniline (PANI). The latex containing PS nanoparticles with sizes of 15-30 nm was prepared by microemulsion polymerization of styrene in water media. The PS/PANI nanocomposites were synthesized by chemical oxidative polymerization of aniline in the PS latex media in a presence of lauryl sulfuric acid (LSA), which served as both dopant and plasticizer. The real content of PANI in the synthesized nanocomposites was determined by UV-Vis spectroscopy method. The composition of the nanocomposites and oxidation state of the doped polyaniline were characterized by FTIR spectroscopy. The core-shell morphology of the nanocomposite nanoparticles was proved by transmission and scanning electron microscopy. It was found that conductivity and thermal behavior in air of these nanocomposites not only nonlinearly depended on the doped polyaniline content but also were strongly effected both by plasticizing properties of the acid-dopant and presence of the polyaniline shell. A possibility of application of these nanocomposites as sensor materials has been demonstrated.

  13. New nanocomposites of polystyrene with polyaniline doped with lauryl sulfuric acid.

    Science.gov (United States)

    Pud, A A; Nikolayeva, O A; Vretik, L O; Noskov, Yu V; Ogurtsov, N A; Kruglyak, O S; Fedorenko, E A

    2017-08-15

    This work is concentrated on synthesis and investigation of new core-shell nanocomposites of polystyrene (PS) with doped polyaniline (PANI). The latex containing PS nanoparticles with sizes of 15-30 nm was prepared by microemulsion polymerization of styrene in water media. The PS/PANI nanocomposites were synthesized by chemical oxidative polymerization of aniline in the PS latex media in a presence of lauryl sulfuric acid (LSA), which served as both dopant and plasticizer. The real content of PANI in the synthesized nanocomposites was determined by UV-Vis spectroscopy method. The composition of the nanocomposites and oxidation state of the doped polyaniline were characterized by FTIR spectroscopy. The core-shell morphology of the nanocomposite nanoparticles was proved by transmission and scanning electron microscopy. It was found that conductivity and thermal behavior in air of these nanocomposites not only nonlinearly depended on the doped polyaniline content but also were strongly effected both by plasticizing properties of the acid-dopant and presence of the polyaniline shell. A possibility of application of these nanocomposites as sensor materials has been demonstrated.

  14. The effect of material composition of 3-dimensional graphene oxide and self-doped polyaniline nanocomposites on DNA analytical sensitivity.

    Science.gov (United States)

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Wang, Xinxing; Nan, Fuxin; Jiao, Kui

    2015-09-01

    Until now, morphology effects of 2-dimensional or 3-dimensional graphene nanocomposites and the effect of material composition on the biosensors have been rarely reported. In this paper, the various nanocomposites based on graphene oxide and self-doped polyaniline nanofibres for studying the effect of morphology and material composition on DNA sensitivity were directly reported. The isolation and dispersion of graphene oxide were realized via intercalated self-doped polyaniline and ultrasonication, where the ultrasonication prompts the aggregates of graphite oxide to break up and self-doped polyaniline to diffuse into the stacked graphene oxide. Significant electrochemical enhancement has been observed due to the existence of self-doped polyaniline, which bridges the defects for electron transfer and, in the mean time, increases the basal spacing between graphene oxide sheets. Different morphologies can result in different ssDNA surface density, which can further influence the hybridization efficiency. Compared with 2-dimensional graphene oxide, self-doped polyaniline and other morphologies of nanocomposites, 3-dimensional graphene oxide-self-doped polyaniline nanowalls exhibited the highest surface density and hybridization efficiency. Furthermore, the fabricated biosensors presented the broad detection range with the low detection limit due to the specific surface area, a large number of electroactive species, and open accessible space supported by nanowalls. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Ammonia Gas Sensing Behavior of Tanninsulfonic Acid Doped Polyaniline-TiO2 Composite

    Directory of Open Access Journals (Sweden)

    Venu Gopal Bairi

    2015-10-01

    Full Text Available A highly active tannin doped polyaniline-TiO2 composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO2 in TANIPANI matrix. UV-Visible and infrared spectroscopy studies provided information about the electronic interactions among tannin, polyaniline, and TiO2. Scanning electron microscopy (SEM along with energy dispersive X-ray spectroscopy (EDS and atomic force microscopy (AFM surface analysis techniques were used to investigate the metal oxide dispersions inside polyaniline matrix. Gas sensors were prepared by spin coating solutions of TANIPANI-TiO2 and TANIPANI composites onto glass slides. Sensors were tested at three different concentrations (20 ppm, 40 ppm, and 60 ppm of ammonia gas at ambient temperature conditions by measuring the changes in surface resistivity of the films with respect to time. Ammonia gas sensing plots are presented showing the response values, response times and recovery times. The TANIPANI-TiO2 composite exhibited better response and shorter recovery times when compared to TANIPANI control and other polyaniline composites that have been reported in the literature. For the first time a proposed mechanism of gas sensing basing on the polaron band localization and its effects on the gas sensing behavior of polyaniline are reported.

  16. Ionic liquid-doped polyaniline and its redox activities in the zwitterionic biological buffer MOPS

    International Nuclear Information System (INIS)

    Qu, Ke; Zeng, Xiangqun

    2016-01-01

    The electropolymerization of aniline in several common imidazolium-based ionic liquids has been accomplished successfully with the potentiodynamic method. Considering the fact that imidazolium-based ionic liquids are acidic, they have been selected as the electrolyte for the electropolymerization of aniline, eliminating the usage of extra inorganic or organic acids. The ionic liquids not only serve as the reaction media, exerting the unique favorable π-π interactions between the imidazolium rings and benzene rings of aniline monomer or the growing polymer, but also act as the dopants to render different properties to the resulting polyaniline. Among the tested imidazolium-based ionic liquids, [BMIM][BF 4 ], [BMIM][PF 6 ], [BMIM][NTf 2 ], [EMIM][ES] and [HMIM][FAP], polyaniline doped by the hydrophilic ionic liquid [BMIM][BF 4 ] displays the good electrochemical responses in the biologically important MOPS (3-(N-Morpholino)-propanesulfonic acid) solution with 2.34 × 10 −3 M of sulfuric acid additive. NMR, UV–vis and electrochemical impedance experiments were performed to further characterize the polyaniline/[BMIM][BF 4 ] composite. In contrast, polyaniline that is doped by the hydrophobic ionic liquid [BMIM][PF 6 ] is electroactive in the MOPS solution in the absence of the acid additive, with a pH of 5, extending the working pH range of polyaniline, which is typically electroactive in the solutions with the pH values less than 3. It is suggested that the effective hydrogen bonding interactions between BF 4 anion and water facilitate its hydrolysis in the microenvironment of the polymer backbone to provide the acidic protons, which are beneficial to the adjustment of the microenvironments of the polyaniline system and thus renders its observed well-resolved reversible pair of redox peaks in the MOPS solution. PF 6 anion, on the other hand, with its larger size and less basicity, has the weaker interaction with water, thus releasing the protons in a relatively

  17. Polyaniline synthesized with functionalized sulfonic acids for blends manufacture

    Directory of Open Access Journals (Sweden)

    Mara Joelma Raupp Cardoso

    2007-12-01

    Full Text Available Polyaniline (PAni, an electronic conductive polymer, has poor mechanical properties, such as low tensile, compressive and flexural strength that render PAni a non-ideal material to be processed for practical applications. Desired properties of polyaniline can be enhanced by mixing it with a polymer that has good mechanical properties. In this work, PAni was synthesised using functionalized sulfonic acids like camphorsulfonic acid (CSA and dodecilbenzene sulfonic acid (DBSA in order to promote PAni doping and improve its solubility, making possible conductive blends manufacture. The different forms of PAni were characterized by infra-red spectroscopy, thermal analysis, scanning electron microscopy and conductivity measurements. A conductive blend composed of PAni/DBSA and lower density polyethylene (LDPE was obtained via solubilization method and its thermal, morphological and electrical properties were investigated. Concentrations as low as 5 wt. (% of PAni was able to lead to electrical conductivities of PAni/LDPE blends in the range of 10-3 S.cm-1, showing great potential to be used in antistatic packing, electromagnetic shielding, anti-corrosion shielding or as a semiconductor.

  18. Electrical and spectroscopic characterization of polyaniline-polyvinyl chloride (PANI-PVC) blends doped with sodium thiosulphate

    International Nuclear Information System (INIS)

    Ameen, Sadia; Ali, Vazid; Zulfequar, M.; Mazharul Haq, M.; Husain, M.

    2008-01-01

    Polyaniline is doped with sodium thiosulphate in aqueous tetrahydrofuran (THF) and the blended films have been prepared by changing the amount of doped polyaniline (PANI) in the fixed amount of polyvinyl chloride (PVC). The electrical conductivity of various samples of polyaniline-polyvinyl chloride (PANI-PVC) blends has been studied to see the effect of dopant in the temperature range 300-400 K. Mott's parameters are used to explain the conduction mechanism. Different parameters such as pre-exponential factor (σ 0 ), activation energy (ΔE) and T 0 have also been calculated to see the effect of chemical doping. The crystallinity of the blends is explained on the basis of T 0 . The calculated values of T 0 show that crystallinity increases with an increase of doped PANI in PANI-PVC blends. Fourier transform-infrared (FTIR) spectroscopy is done to explore the nature and interaction of dopant into the polymeric chain

  19. Doping dependence of electrical and thermal conductivity of nanoscale polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin Jiezhu; Wang Qing [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Haque, M A [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-05-26

    We performed simultaneous characterization of electrical and thermal conductivity of 55 nm thick polyaniline (PANI) thin films doped with different levels of camphor sulfonic acids (CSAs). The effect of the doping level is more pronounced on electrical conductivity than on thermal conductivity of PANIs, thereby greatly affecting their ratio that determines the thermoelectric efficiency. At the 60% (the molar ratio of CSA to phenyl-N repeat unit of PANI) doping level, PANI exhibited the maximum electrical and thermal conductivity due to the formation of mostly delocalized structures. Whereas polarons are the charge carriers responsible for the electrical conduction, phonons are believed to play a dominant role in the heat conduction in nanoscale doped PANI thin films.

  20. Properties of the Surface Layer of Thin Films of Polyaniline Doped With Phosphoric Acid

    Directory of Open Access Journals (Sweden)

    Almedina Modrić-Šahbazović

    2016-08-01

    Full Text Available This study deals with estimation of the surface free energy of thin films of polyaniline doped with phosphoric acid, by measuring contact angles. Synthesis of polyaniline (PANI with phosphoric acid (PA was performed at room temperature of 20°C, and at 0°C. Thin films were obtained by means of a spin coater, applying the synthetized mixture on a glass substrate. By measuring the contact angle, first between ethylene glycol and a film and then between distilled water and a film, we thus calculated the polar, dispersion and total surface free energy. It was proved and demonstrated that the surface free energy depends on the temperature at which the solution (from which the thin films are obtained later was synthesized.

  1. BF3-doped polyaniline: A novel conducting polymer

    Indian Academy of Sciences (India)

    A detailed procedure for the synthesis of PANI and doping with BF3 has been previously reported [2]. The sample was characterized for complete doping us- ing routine spectroscopic techniques, like UV–visible absorption, FTIR and 11B magic-angle-spinning (MAS) NMR spectroscopy. For the four-probe conductivity. 135 ...

  2. Removal of Anionic Dyes from Water by Potash Alum Doped Polyaniline: Investigation of Kinetics and Thermodynamic Parameters of Adsorption.

    Science.gov (United States)

    Patra, Braja N; Majhi, Deola

    2015-06-25

    Polyaniline was synthesized by the oxidative polymerization method by using ammonium persulfate as an oxidant. The positive charge in the backbone of the polymer was generated by using Potash alum as a dopant. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray fluorescence (XRF), and X-ray diffraction (XRD) techniques were used for characterization of doped polyaniline. The doped polyaniline can be used for selective adsorption of various dyes (selectively sulfonated dyes) from aqueous solution. Adsorption studies regarding the effect of contact time, initial dye concentration, pH, doses of adsorbent, and temperature on adsorption kinetics were investigated. The influence of other anions like Cl(-), NO3(-), and SO4(2-) on the adsorption density of dyes onto doped polyaniline was also explored. Langmuir isotherm and pseudo-second-order kinetics were found to be the most appropriate models to describe the removal of anionic dyes from water through adsorption. Thermodynamic parameters such as free energy (ΔG(0)), enthalpy (ΔH(0)), and entropy (ΔS(0)) changes were also evaluated. The interaction of dyes with doped polyaniline was also investigated by FTIR and UV spectroscopy.

  3. Optical and electrical studies of vanadium pentoxide doped polyaniline composite

    Science.gov (United States)

    Niranjana, M.; Yesappa, L.; Ashokkumar, S. P.; Vijeth, H.; Chapi, Sharanappa; Raghu, S.; Devendrappa, H.

    2017-05-01

    Polyaniline and its composites at different compositions of Vanadium pentoxide (PCV3 and PCV5) were prepared by simple in-situ chemical polymerization method. The composites were characterized using UV/Vis spectrophotometer and impedance analyzer of frequency range from 20Hz to 1MHz at room temperature. The UV-Vis absorption exhibits the red shift in the visible region and direct optical band gap was found to decrease from 2.72eV to 2.65eV with increasing the V2O5 concentration. The electrical conductivity and dielectric constant results vary with frequency. The maximum electrical conductivity obtained is for PCV5 and these polymer composites are prominent candidates for super capacitor and optoelectronics display etc.

  4. Secondary doping in polyaniline layers coated on multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhou Yi

    2015-01-01

    Full Text Available HC1 doped coaxial polyaniline/multiwalled carbon nanotubes (MWCNTs nanocomposites were first prepared by in–situ chemical polymerization of aniline monomers in the presence of MWCNTs with less structural defects. P-toluene sulfonic acid (TSA and 5-sulfosalicylic acid dihydrate (SSA redoped PANI/MWCNT nanocomposites were achieved after the as-prepared nanocomposites were treated by ammonia respectively. The redoped nanocomposites were characterized by field emission scanning electron microscopy, transmission electron microscopy, fourier transform infrared spectroscopy, Raman, X–ray diffraction, thermogravimetric analysis and cyclic voltammetry, respectively. The results indicated that the thermal stability and electrochemical behaviour of TSA doped PANI/MWCNT nanocomposites were better than that of SSA doped PANI/MWCNT nanocomposites.

  5. An asymmetric Zn//Ag doped polyaniline microparticle suspension flow battery with high discharge capacity

    Science.gov (United States)

    Wu, Sen; Zhao, Yongfu; Li, Degeng; Xia, Yang; Si, Shihui

    2015-02-01

    In this study, the effect of oxygen on the potential of reduced polyaniline (PANI) was investigated. In order to enhance the air oxidation of reduced PANI, several composites of PANI doped with co-catalysts were prepared, and a reasonable flow Zn//PANI suspension cell system was designed to investigate the discharge capacity of obtained PANI composite microparticle suspension cathodes. Compared with PANI doped with Cu2+, La+, Mn2+ and zinc protoporphyrin, Ag doped PANI composite at 0.90 weight percent doping of Ag gave the highest value of discharge capacity for the half-cell potential from the initial value to -0.20 V (vs. SCE). A comparison study on the electrochemical properties of both PANI and Ag doped PANI microparticle suspension was done by using cyclic voltammetry, AC Impedance. Due to partial utilization of Zn//air fuel cell, the discharge capacity for Ag doped PANI reached 470 mA h g-1 at the current density of 20 mA cm-2. At 15 mA cm-2, the discharge capacity even reached up to 1650 mA h g-1 after 220 h constant current discharge at the final discharge voltage of 0.65 V. This work demonstrates an effective and feasible approach toward obtaining high energy and power densities by a Zn//Ag-doped PANI suspension flow battery system combined with Zn//air fuel cell.

  6. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    Energy Technology Data Exchange (ETDEWEB)

    Puthirath, Anand B.; Varma, Sreekanth J.; Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682022 (India); Methattel Raman, Shijeesh [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Cochin, Kerala 682022 (India)

    2016-04-18

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  7. DC conductivity and spectroscopic studies of polyaniline doped with ...

    Indian Academy of Sciences (India)

    Doped samples are characterized using various techniques such as – characteristics, UV-visible spectroscopy, X-ray diffractometry (XRD), FTIR and photoluminescence (PL) studies. A significant enhancement in d.c. conductivity has been observed with the introduction of binary dopant. UV-visible study shows that ...

  8. Quartz crystal microbalance and spectroscopy measurements for acid doping in polyaniline films

    Directory of Open Access Journals (Sweden)

    Mohamad M Ayad and Eman A Zaki

    2008-01-01

    Full Text Available We investigated the doping of thin polyaniline (PANI films, prepared by the chemical oxidation of aniline, with different acids. The initial step in the investigation is the preparation of PANI films from aqueous hydrochloric acid solution. This is followed by dedoping with ammonia to obtain a PANI base, which is subsequently doped with strong acids (e.g. hydrochloric, sulfuric, phosphoric and trichloroacetic acids and with a weak acid (acetic acid. The dopant weight fraction (w, which is connected with the gain of mass during the doping of PANI, was determined in situ using a quartz crystal microbalance (QCM. The behavior of PANI upon doping with different anions derived from strong acids indicates that both proton and the anion uptake into the polymer chains occur sharply, rapidly, completely, and reversibly. However the uptake in the case in acetic acid is characterized by slow diffusion. The doping was studied at different concentrations of acetic acid. A second cycle of dedoping–redoping was also performed. The kinetics of the doping reaction is dominated by Fickian diffusion kinetics. The diffusion coefficients (D of the dopant ions into the PANI chains were determined using the QCM and by UV–Vis absorption spectroscopy in the range of (0.076–1.64× 10−15 cm2 s−1. It was found that D in the second cycle of doping is larger than that evaluated from the first cycle of doping for high concentrations of acetic acid. D for the diffusion and for the dopant ion expulsion from the PANI chains was also determined during the redoping process. It was found that D for acetic acid ions in the doping process is larger than that calculated for the dedoping process.

  9. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Karray, Fekri [Laboratoire des materiaux Ceramiques Composites et Polymeres, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Kassiba, Abdelhadi, E-mail: kassiba@univ-lemans.fr [Institute of Molecules and Materials of Le Mans (I3M), UMR-CNRS 6283, Universite du Maine, 72085 Le Mans (France)

    2012-06-15

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  10. Cu(II) doped polyaniline nanoshuttles for multimodal tumor diagnosis and therapy.

    Science.gov (United States)

    Lin, Min; Wang, Dandan; Li, Shuyao; Tang, Qi; Liu, Shuwei; Ge, Rui; Liu, Yi; Zhang, Daqi; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2016-10-01

    Nanodevices for multimodal tumor theranostics have shown great potentials for noninvasive tumor diagnosis and therapy, but the libraries of multimodal theranostic building blocks should be further stretched. In this work, Cu(II) ions are doped into polyaniline (Pani) nanoshuttles (NSs) to produce Cu-doped Pani (CuPani) NSs, which are demonstrated as new multimodal building blocks to perform tumor theranostics. The CuPani NSs are capable of shortening the longitudinal relaxation (T1) of protons under magnetic fields and can help light up tumors in T1-weighted magnetic resonance imaging. In addition, the released Cu(II) ions from CuPani NSs lead to cytotoxicity, showing the behavior of chemotherapeutic agent. The good photothermal performance of CuPani NSs also makes them as photothermal agents to perform thermochemotherapy. By combining near-infrared laser irradiation, a complete tumor ablation is achieved and no tumor recurrence is observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Efficient photocatalytic decolorization of some textile dyes using Fe ions doped polyaniline film on ITO coated glass substrate.

    Science.gov (United States)

    Haspulat, Bircan; Gülce, Ahmet; Gülce, Handan

    2013-09-15

    In this study, the photocatalytic decolorization of four commercial textile dyes with different structures has been investigated using electrochemically synthesized polyaniline and Fe ions doped polyaniline on ITO coated glass substrate as photocatalyst in aqueous solution under UV irradiation for the first time. Scanning electron microscopy, atomic force microscopy, FT-IR spectra, UV-vis spectroscopy measurements were used to characterize the electrochemically synthesized polymer film photocatalyst. Film hydrophilicity was assessed from contact angle measurements. The results show that both of the polymer films exhibit good photocatalytic performance. Surprisingly, it was determined that by using Fe(II) ions during polymerization, it is possible to modify the surface roughness and wettability of the produced polyaniline films which favors their photocatalytic activity in water-based solutions. All four of the used dyes (methylene blue, malachite green, methyl orange and methyl red) were completely decolorizated in 90 min of irradiation under UV light by using Fe ions doped polyaniline at the dye concentration of 1.5 × 10(-5)M, while the decolorization of those dyes were between 43% and 83% by using polyaniline as photocatalyst. Hence, it may be a viable technique for the safe disposal of textile wastewater into waste streams. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Photo-catalytic properties of doped or substituted polyaniline-coated Fe3O4 nanoparticles

    Science.gov (United States)

    Zhang, Fan; Song, Weijie; Zhao, Zongshan; Cheng, Yang

    2014-10-01

    In this work, doped and substituted polyaniline (PANI)-coated Fe3O4 nanoparticles were synthesized. The diameter of Fe3O4 core was 430 nm, and the thickness of PANI shell was 20 nm. Their photo-catalytic properties for methyl orange were investigated under natural light illumination. The photo-catalytic activity sequence of three doped PANI/Fe3O4 nanoparticles is as follows: iodine doping > without doping > graphite powder doping. This should be due to the difference of structure, conductivity, and band gap resulting from the dopants. The photo-catalytic activity of five substituted PANI/Fe3O4 nanoparticles followed the order of poly(1,2-diaminobenzene) > poly( o-toluidine) > poly(1,3-diaminobenzene) > PANI > polydiphenylamine. The effects of steric hindrance, activated ability, and conjugation of the substituents on the photo-catalytic properties were discussed. The ESR results suggested that O2 and H2O2 dissolved in the solutions were important factors on the photo-degradation, and the ·OH generated via h+-mediated pathway was the key oxidizing substance.

  13. Influence of SnO2 nanoparticles on the relaxation dynamics of the conductive processes in polyaniline

    Science.gov (United States)

    Biswas, Swarup; Bhattacharya, Subhratanu

    2017-10-01

    The effect of stannic oxide (SnO2) nanoparticles on the electrical conductivity relaxation and distribution of relaxation times within the 4-Dodecylbenzenesulfonic acid (DBSA) doped polyaniline (Pani) was investigated using electrical impedance spectroscopy. A temperature dependent Kohlrausch-Williams-Watts (KWW) type temporal relaxation function in the time domain was generated from the analysis of the frequency dependence of the dielectric modulus (imaginary component). The thermal evolution of the characteristics parameters of the KWW function was evaluated and using these parameters the temperature dependent average conductivity relaxation time and associated macroscopic conductivity of different samples were estimated. The study revealed that SnO2 nanoparticles within the polyaniline matrix induced faster relaxation of charge carriers that essentially enhanced the conductivity of the nanocomposite. The observed phenomena were well supported by the observed improvement of the localization length of the charge carriers within the nanocomposite.

  14. Atmospheric Pressure Plasma Polymerization Synthesis and Characterization of Polyaniline Films Doped with and without Iodine.

    Science.gov (United States)

    Park, Choon-Sang; Jung, Eun Young; Kim, Dong Ha; Kim, Do Yeob; Lee, Hyung-Kun; Shin, Bhum Jae; Lee, Dong Ho; Tae, Heung-Sik

    2017-11-06

    Although polymerized aniline (polyaniline, PANI) with and without iodine (I₂) doping has already been extensively studied, little work has been done on the synthesis of PANI films using atmospheric pressure plasma (APP) deposition. Therefore, this study characterized pure and I₂-doped PANI films synthesized using an advanced APP polymerization system. The I₂ doping was conducted ex-situ and using an I₂ chamber method following the APP deposition. The pure and I₂-doped PANI films were structurally analyzed using field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and time of flight secondary ion mass spectrometry (ToF-SIMS) studies. When increasing the I₂ doping time, the plane and cross-sectional SEM images showed a decrease in the width and thickness of the PANI nanofibers, while the AFM results showed an increase in the roughness and grain size of the PANI films. Moreover, the FT-IR, XPS, and ToF-SIMS results showed an increase in the content of oxygen-containing functional groups and C=C double bonds, yet decrease in the C-N and C-H bonds when increasing the I₂ doping time due to the reduction of hydrogen in the PANI films via the I₂. To check the suitability of the conductive layer for polymer display applications, the resistance variations of the PANI films grown on the interdigitated electrode substrates were also examined according to the I₂ doping time.

  15. Atmospheric Pressure Plasma Polymerization Synthesis and Characterization of Polyaniline Films Doped with and without Iodine

    Directory of Open Access Journals (Sweden)

    Choon-Sang Park

    2017-11-01

    Full Text Available Although polymerized aniline (polyaniline, PANI with and without iodine (I2 doping has already been extensively studied, little work has been done on the synthesis of PANI films using atmospheric pressure plasma (APP deposition. Therefore, this study characterized pure and I2-doped PANI films synthesized using an advanced APP polymerization system. The I2 doping was conducted ex-situ and using an I2 chamber method following the APP deposition. The pure and I2-doped PANI films were structurally analyzed using field emission scanning electron microscope (FE-SEM, atomic force microscope (AFM, X-ray Diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, and time of flight secondary ion mass spectrometry (ToF-SIMS studies. When increasing the I2 doping time, the plane and cross-sectional SEM images showed a decrease in the width and thickness of the PANI nanofibers, while the AFM results showed an increase in the roughness and grain size of the PANI films. Moreover, the FT-IR, XPS, and ToF-SIMS results showed an increase in the content of oxygen-containing functional groups and C=C double bonds, yet decrease in the C–N and C–H bonds when increasing the I2 doping time due to the reduction of hydrogen in the PANI films via the I2. To check the suitability of the conductive layer for polymer display applications, the resistance variations of the PANI films grown on the interdigitated electrode substrates were also examined according to the I2 doping time.

  16. Controlling the optical properties of polyaniline doped by boric acid particles by changing their doping agent and initiator concentration

    Science.gov (United States)

    Cabuk, Mehmet; Gündüz, Bayram

    2017-12-01

    In this study, polyaniline doped by boric acid (PAni:BA) conducting polymers were chemically synthesized by oxidative polymerization method using (NH4)2S208 (APS) as initiator. Pani:BA conducting polymers were synthesized by using two different APS/aniline molar ratios as 1:1 and 2:1. Their results were compared with PAni doped by HCl (PAni) conducting polymer. Structural properties of the PAni, PAni:BA (1:1) and PAni:BA (2:1) conducting polymers were characterized by using FTIR, SEM, TGA, particle size and apparent density measurements. Effects of doping agents and initiator concentrations on optical properties were investigated in detail. The optoelectronic parameters such as absorption band edge, molar extinction coefficient, direct allowed band gap, refractive index, optical conductance and electrical conductance of the PAni, PAni:BA (1:1) and PAni:BA (2:1) were determined. The absorption band edge and direct allowed band gap of PAni were decreased with doping BA and increasing APS ratio. Also, the refractive index values of the materials were calculated from experimental results and compared with obtained results from Moss, Ravindra, Herve-Vandamme, Reddy and Kumar-Singh relations.

  17. Reversible CO2 adsorption by an activated nitrogen doped graphene/polyaniline material.

    Science.gov (United States)

    Kemp, K Christian; Chandra, Vimlesh; Saleh, Muhammad; Kim, Kwang S

    2013-06-14

    For effective adsorption of carbon dioxide (CO2), we investigate a porous N functionalized graphene adsorbent produced by the chemical activation of a reduced graphene oxide/polyaniline composite. The N-doped graphene composite is microporous with a maximum BET surface area of 1336 m(2) g(-1). It shows a highly reversible maximum CO2 storage capacity of 2.7 mmol g(-1) at 298 K and 1 atm (5.8 mmol g(-1) at 273 K and 1 atm). The N-doped graphene shows good stability during recycling with only an initial decrease of 10% (3-2.7 mmol g(-1)) in adsorption capacity before attaining a cycling equilibrium. The adsorbance capacity is correlated with N content × pore volume or N content × surface area. Given that there is no proper correlation parameter, these factors can be used to increase the CO2 adsorption capacity of N-doped graphene materials for practical utility. The as synthesized material also displays selectivity towards CO2 adsorption compared to H2, N2, Ar or CH4. The as formed material shows that graphene can be uniformly N-doped using the presented synthetic method.

  18. Enhanced microwave absorption properties of Ni-doped ordered mesoporous carbon/polyaniline nanocomposites

    International Nuclear Information System (INIS)

    Wang, Liuding; Wu, Hongjing; Shen, Zhongyuan; Guo, Shaoli; Wang, Yiming

    2012-01-01

    Highlights: ► OMC-Ni/PANI nanocomposites were prepared by in situ polymerization method. ► The effective absorption bandwidth was 4.7 GHz for OMC-Ni0.15/PANI. ► OMC-Ni/PANI showed excellent microwave absorption with respect to OMC-Ni. ► This effect could be mainly attributed to the improvement of impendence matching. - Abstract: We propose and demonstrate a new scheme to improve microwave absorption property through polyaniline (PANI)-functionalized Ni-doped ordered mesoporous carbon (OMC) by in situ polymerization method. The polymer-functionalized nanocomposites, embedding polyaniline within ordered mesoporous carbon, exhibit strong and broadband microwave absorption due to its better dielectric loss characteristic. OMC-Ni0.15/PANI exhibits an effective absorption bandwidth (i.e., reflection loss (RL) ≤ −10 dB) of 4.7 GHz and an absorption peak of −51 dB at 9.0 GHz. The absorption peak intensity and position can be tuned by controlling the thickness of the coating.

  19. Elaboration of m-cresol polyamide12/ polyaniline composite films for antistatic applications

    Science.gov (United States)

    Mezdour, D.; Tabellout, M.; Sahli, S.; Bardeau, J.-F.

    2013-12-01

    The present work deals with the preparation of transparent antistatic films from an extreme dilution of an intrinsically conducting polymer (ICP) with not coloured polymers. Our approach is based on the chemical polymerization of a very thin layer of Polyaniline (PANI) around particles of an insulating polymer (PA12). Films were obtained by dissolving the synthesized core-shell particles in m-Cresol. The electric property and structure relationships were investigated by using dielectric relaxation spectroscopy, X-ray diffraction and micro-Raman spectroscopy. Composite films exhibited a well established dc conductivity over all the frequency range for 10 wt. % of PANI concentration related to the conductive properties of the PANI clusters. X-ray diffraction data show broader and lower intensity of PA12 peaks when increasing PANI content, probably due to the additional doping effect of m- cresol. The doping of PA12/PANI films with Dodecyl benzene sulfonic acid (DBSA) was unequivocally verified by Raman spectroscopy.

  20. One-Step Electrochemical Polymerization of Polyaniline Flexible Counter Electrode Doped by Graphene

    Directory of Open Access Journals (Sweden)

    Qi Qin

    2016-01-01

    Full Text Available To improve the photoelectric property of polyaniline (PANI counter electrode using for flexible dye-sensitized solar cell (DSSC, graphene (GN was doped in PANI films covered on flexible conducting substrate by one-step electrochemical method, and then GN/PANI composites are characterized by scanning electron microscope (SEM, fourier transform infrared spectroscopy (FTIR, four probe instrument, and so on. The results show that PANI particles can be electrodeposited on the surface of GN sheets as the potential rising to 2.0 V. This formed unique PANI-GN-PANI lamellar structure owing to the strong interaction of conjugated π electron between GN and PANI results in the superior conductivity and catalytic performance of GN/PANI electrode. The maximum conversion efficiency of dye-sensitized solar cell with this counter electrode reaches 4.31%, which is much higher than that of GN-free PANI counter electrode.

  1. Comparative studies of the structure, morphology and electrical conductivity of polyaniline weakly doped with chlorocarboxylic acids

    International Nuclear Information System (INIS)

    Gmati, Fethi; Fattoum, Arbi; Bohli, Nadra; Dhaoui, Wadia; Mohamed, Abdellatif Belhadj

    2007-01-01

    We report the results of studies on two series of polyaniline (PANI), doped with dichloroacetic (DCA) and trichloroacetic (TCA) acids, respectively, at various doping rates and obtained by the in situ polymerization method. Samples were characterized by x-ray diffraction, scanning electron microscopy and conductivity measurements. The direct current (dc) and alternating current (ac) electrical conductivities of PANI salts have been investigated in the temperature range 100-310 K and frequency range 7-10 6 Hz. The results of this study indicate better chain ordering and higher conductivity for PANI doped with TCA. The dc conductivity of all samples is suitably fitted to Mott's three-dimensional variable-range hopping (VRH) model. Different Mott parameters such as characteristic temperature T 0 , density of states at the Fermi level (N(E F )), average hopping energy (W) and the average hopping distance (R) have been evaluated. The dependence of such values on the dopant acid used is discussed. At high frequencies, the ac conductivity follows the power law σ ac (ω,T) A(T)ω s(T,ω) , which is characteristic for charge transport in disordered materials by hopping or tunnelling processes. The observed increase in the frequency exponent s with temperature suggests that the small-polaron tunnelling model best describes the dominant ac conduction mechanism. A direct correlation between conductivity, structure and morphology was obtained in our systems

  2. High yield and facile microwave-assisted synthesis of conductive H{sub 2}SO{sub 4} doped polyanilines

    Energy Technology Data Exchange (ETDEWEB)

    Gizdavic-Nikolaidis, Marija R., E-mail: m.gizdavic@auckland.ac.nz [School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand); Faculty of Physical Chemistry, Studentski Trg 12-16, PO Box 137, 11001, Belgrade (Serbia); Jevremovic, Milutin M. [Public Company Nuclear Facilities of Serbia, 12-14 Mike Petrovica Alasa, Vinca, 11351, Belgrade (Serbia); Milenkovic, Maja [Faculty of Physical Chemistry, Studentski Trg 12-16, PO Box 137, 11001, Belgrade (Serbia); Allison, Morgan C. [School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand); Stanisavljev, Dragomir R. [Faculty of Physical Chemistry, Studentski Trg 12-16, PO Box 137, 11001, Belgrade (Serbia); Bowmaker, Graham A. [School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand); Zujovic, Zoran D. [School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 (New Zealand); MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140 (New Zealand); Institute of General and Physical Chemistry, Studentski Trg 12-16, 11001, Belgrade (Serbia)

    2016-04-15

    The microwave-assisted synthesis of polyaniline (PANI) was performed using ammonium persulphate (APS) as oxidizing agent in 0.5 M–2.5 M concentration range of aqueous sulphuric acid (H{sub 2}SO{sub 4}) at 93 W applied microwave power of 10 min duration. The microwave (MW) synthesized PANIs had 3 times higher yield in comparison to PANI samples prepared using a classical method, CS (0 W MW power) at the same temperature for 10 min synthesis duration period. Fourier Transform Infrared (FTIR) and UV–Vis spectroscopies confirmed the formation of PANI structure in all products. The influence of H{sub 2}SO{sub 4} acid dopant on the spin concentration of MW and CS H{sub 2}SO{sub 4} doped PANI samples were examined by EPR spectroscopy, while the morphological characteristics were investigated by using scanning electron microscopy (SEM). XRD results showed amorphous phases in both MW and CS H{sub 2}SO{sub 4} doped PANI samples. Conductivity measurements revealed ∼1.5 times higher conductivity values for MW H{sub 2}SO{sub 4} doped PANI samples in comparison with PANI samples prepared by the CS method under same condition. The influence of sulfate anion in comparison to chloride anion as a dopant on morphological, dopant levels and conductivity properties of MW PANI samples were also investigated. - Highlights: • Nanoporous microwave synthesized doped polyanilines as chemical sensor material. • Morphology and physical properties of polyanilines depend on acid concentration. • Spin concentration is determined by the nature of the polyaniline synthesis.

  3. Antibody conjugated glycine doped polyaniline nanofilms as efficient biosensor for atrazine

    Science.gov (United States)

    Bhardwaj, Sanjeev K.; Sharma, Amit L.; Kim, Ki-Hyun; Deep, Akash

    2017-12-01

    Atrazine is an important member of triazine family of pesticides. The development of its detection methods gained great attention due to the potential health risks associated with its contamination in various media including water, soil, and food. The contamination of atrazine in drinking water beyond the legal permissible limit of EPA (e.g. 3 ng ml-1) may cause various damages to living organisms (e.g. heart, urinary, and limb defects). In this research, we discuss the potential significance of a highly sensitive conductometric immunosensor for sensing the atrazine pesticide. To this end, electrochemical assembly of glycine doped polyaniline (PAni) nanofilms on silicon (Si) substrate was built and modified further with anti-atrazine antibodies. The herein developed immunosensor offered highly sensitive detection of atrazine with a low detection limit of 0.07 ng ml-1. The proposed biosensor was simple in design with excellent performance in terms of its sensitivity, stability and specificity. Highlights •Glycine doped PAni nanofilms have been electropolymerized on Silicon substrates. •Functionality of the above thin films provides opportunity to develop an immunosensing platform. •Highly sensitive and specific detection of atrazine has been realized over a wide concentration range with a LOD of 0.07 ng ml-1. Novelty statement Atrazine is a widely used pesticide in the agriculture sector. It is highly recommended to develop simple biosensing systems for enabling the prospect of routine monitoring. The present research for the first time proposes the design of a glycine doped PAni based simple and highly effective biosensor for the atrazine pesticide. The doping of glycine has easily generated functional groups on the nano-PAni material for further convenient immobilization of anti-atrazine antibodies. The proposed sensor can be highlighted with advantages like ease of fabrication, use of environment friendly functionalization agent, specificity, wide

  4. Three-dimensional N-doped graphene/polyaniline composite foam for high performance supercapacitors

    Science.gov (United States)

    Zhu, Jun; Kong, Lirong; Shen, Xiaoping; Chen, Quanrun; Ji, Zhenyuan; Wang, Jiheng; Xu, Keqiang; Zhu, Guoxing

    2018-01-01

    Three-dimensional (3D) graphene aerogel and its composite with interconnected pores have aroused continuous interests in energy storage field owning to its large surface area and hierarchical pore structure. Herein, we reported the preparation of 3D nitrogen-doped graphene/polyaniline (N-GE/PANI) composite foam for supercapacitive material with greatly improved electrochemical performance. The 3D porous structure can allow the penetration and diffusion of electrolyte, the incorporation of nitrogen doping can enhance the wettability of the active material and the number of active sites with electrolyte, and both the N-GE and PANI can ensure the high electrical conductivity of total electrode. Moreover, the synergistic effect between N-GE and PANI materials also play an important role on the electrochemical performance of electrode. Therefore, the as-prepared composite foam could deliver a high specific capacitance of 528 F g-1 at 0.1 A g-1 and a high cyclic stability with 95.9% capacitance retention after 5000 charge-discharge cycles. This study provides a new idea on improving the energy storage capacity of supercapacitors by using 3D graphene-based psedocapacitive electrode materials.

  5. Coaxially Aligned Polyaniline Nanofibers Doped with 3-Thiopheneacetic Acid through Interfacial Polymerization

    Directory of Open Access Journals (Sweden)

    Lixia Zhang

    2011-01-01

    Full Text Available Coaxially aligned polyaniline (PANI nanofibers doped with 3-thiopheneacetic acid (TAA were chemically synthesized by the interfacial polymerization of aniline in the presence of TAA, using iron (III chloride hexahydrate (FeCl3·6H2O as the oxidant. The morphology, crystallinity, room temperature conductivity, and coaxial alignment of the PANI-TAA nanofibers were highly dependent on the organic solvent used for the interfacial polymerization, the oxidant, and also the molar ratio of the aniline to TAA. Hexane, diethyl ether, dichloromethane, chloroform, and acetone were used as the organic solvents, and chloroform proved to be the best solvent for the formation of PANI-TAA nanofibers. The redox potential of the oxidant is the key to controlling the morphology and diameter of the PANI-TAA nanofibers. The use of FeCl3 as the oxidant leads to the formation of thin (∼50 nm PANI-TAA nanofibers, which increased in length, crystallinity, conductivity, and coaxial alignment as the molar ratio of TAA to aniline was increased from 0.1 : 1 to 1 : 1. By comparison, only granular PANI was obtained when ammonium persulfate (APS, which has a higher redox potential, was used as the oxidant. The doping function of TAA in the PANI-TAA nanofibers was confirmed by means of FTIR and UV-Visible spectroscopy.

  6. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber

    International Nuclear Information System (INIS)

    Qiu, Shihui; Chen, Cheng; Cui, Mingjun; Li, Wei; Zhao, Haichao; Wang, Liping

    2017-01-01

    Highlights: • Self-dopedpolyaniline (SPANi) with good conductivity and dispersibility in water was copolymerized by aniline and its derivative. • Environmental friendly SPANi/epoxy composite coating with remarkable anti-corrosion performance was prepared. • The corrosion product of pure epoxy or composite coating was characterized by X-ray diffraction pattern and scanning electron microscope (SEM). - Abstract: Self-doped sulfonated polyaniline (SPANi) nanofiber was synthesized by the copolymerization of 2-aminobenzenesulfonic acid (ASA) and aniline via a rapid mixing polymerization approach. The chemical structure of SPANi was investigated by the Fourier-transform infrared (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), UV–vis spectra and X-ray diffraction (XRD) pattern. The as-prepared SPANi nanofibers had 45 nm average diameter and length up to 750 nm as measured by scanning electron microscope (SEM) and transmission electron microscope (TEM). The self-doped SPANi nanofiber possessed excellent aqueous solubility, good conductivity (0.11 S/cm) and reversible redox activity, making it suitable as a corrosion inhibitor for waterborne coatings. The prepared SPANi/waterborne epoxy composite coatings exhibited remarkably improved corrosion protection compared with pure waterborne epoxy coating as proved by the polarization curves and electrochemical impedance spectroscopy (EIS). The passivation effect of SPANi nanofiber and the corrosion products beneath the epoxy coatings immersed in 3.5% NaCl solution as a function of time were also investigated in this study.

  7. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Shihui [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211 (China); Chen, Cheng; Cui, Mingjun [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Li, Wei [Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211 (China); Zhao, Haichao, E-mail: zhaohaichao@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201 (China)

    2017-06-15

    Highlights: • Self-dopedpolyaniline (SPANi) with good conductivity and dispersibility in water was copolymerized by aniline and its derivative. • Environmental friendly SPANi/epoxy composite coating with remarkable anti-corrosion performance was prepared. • The corrosion product of pure epoxy or composite coating was characterized by X-ray diffraction pattern and scanning electron microscope (SEM). - Abstract: Self-doped sulfonated polyaniline (SPANi) nanofiber was synthesized by the copolymerization of 2-aminobenzenesulfonic acid (ASA) and aniline via a rapid mixing polymerization approach. The chemical structure of SPANi was investigated by the Fourier-transform infrared (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), UV–vis spectra and X-ray diffraction (XRD) pattern. The as-prepared SPANi nanofibers had 45 nm average diameter and length up to 750 nm as measured by scanning electron microscope (SEM) and transmission electron microscope (TEM). The self-doped SPANi nanofiber possessed excellent aqueous solubility, good conductivity (0.11 S/cm) and reversible redox activity, making it suitable as a corrosion inhibitor for waterborne coatings. The prepared SPANi/waterborne epoxy composite coatings exhibited remarkably improved corrosion protection compared with pure waterborne epoxy coating as proved by the polarization curves and electrochemical impedance spectroscopy (EIS). The passivation effect of SPANi nanofiber and the corrosion products beneath the epoxy coatings immersed in 3.5% NaCl solution as a function of time were also investigated in this study.

  8. A united event grand canonical Monte Carlo study of partially doped polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Byshkin, M. S., E-mail: mbyshkin@unisa.it, E-mail: gmilano@unisa.it; Correa, A. [Modeling Lab for Nanostructure and Catalysis, Dipartimento di Chimica e Biologia and NANOMATES, University of Salerno, 84084, via Ponte don Melillo, Fisciano Salerno (Italy); Buonocore, F. [ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome (Italy); Di Matteo, A. [STMicroelectronics, Via Remo de Feo, 1 80022 Arzano, Naples (Italy); IMAST Scarl Piazza Bovio 22, 80133 Naples (Italy); Milano, G., E-mail: mbyshkin@unisa.it, E-mail: gmilano@unisa.it [Modeling Lab for Nanostructure and Catalysis, Dipartimento di Chimica e Biologia and NANOMATES, University of Salerno, 84084, via Ponte don Melillo, Fisciano Salerno (Italy); IMAST Scarl Piazza Bovio 22, 80133 Naples (Italy)

    2013-12-28

    A Grand Canonical Monte Carlo scheme, based on united events combining protonation/deprotonation and insertion/deletion of HCl molecules is proposed for the generation of polyaniline structures at intermediate doping levels between 0% (PANI EB) and 100% (PANI ES). A procedure based on this scheme and subsequent structure relaxations using molecular dynamics is described and validated. Using the proposed scheme and the corresponding procedure, atomistic models of amorphous PANI-HCl structures were generated and studied at different doping levels. Density, structure factors, and solubility parameters were calculated. Their values agree well with available experimental data. The interactions of HCl with PANI have been studied and distribution of their energies has been analyzed. The procedure has also been extended to the generation of PANI models including adsorbed water and the effect of inclusion of water molecules on PANI properties has also been modeled and discussed. The protocol described here is general and the proposed United Event Grand Canonical Monte Carlo scheme can be easily extended to similar polymeric materials used in gas sensing and to other systems involving adsorption and chemical reactions steps.

  9. SrTiO3 Nanocube-Doped Polyaniline Nanocomposites with Enhanced Photocatalytic Degradation of Methylene Blue under Visible Light

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-02-01

    Full Text Available The present study highlights the facile synthesis of polyaniline (PANI-based nanocomposites doped with SrTiO3 nanocubes synthesized via the in situ oxidative polymerization technique using ammonium persulfate (APS as an oxidant in acidic medium for the photocatalytic degradation of methylene blue dye. Field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, UV–Vis spectroscopy, Brunauer–Emmett–Teller analysis (BET and Fourier transform infrared spectroscopy (FTIR measurements were used to characterize the prepared nanocomposite photocatalysts. The photocatalytic efficiencies of the photocatalysts were examined by degrading methylene blue (MB under visible light irradiation. The results showed that the degradation efficiency of the composite photocatalysts that were doped with SrTiO3 nanocubes was higher than that of the undoped polyaniline. In this study, the effects of the weight ratio of polyaniline to SrTiO3 on the photocatalytic activities were investigated. The results revealed that the nanocomposite P-Sr500 was found to be an optimum photocatalyst, with a 97% degradation efficiency after 90 min of irradiation under solar light.

  10. γ-Fe{sub 2}O{sub 3}/polyaniline-lonidamine prepared by doping/dedoping method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Han; Zhang, Li; Kan, Jinqing, E-mail: jqkan@yzu.edu.cn

    2014-05-01

    A new conductive superparamagnetic nanocomposite, γ-Fe{sub 2}O{sub 3}/polyaniline-lonidamine (γ-Fe{sub 2}O{sub 3}/PANI-LND), was synthesized successfully by two-step doping method. The properties of γ-Fe{sub 2}O{sub 3}/PANI-LND were tested by FT-IR, X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and cyclic voltammetry (CV). The results show that the particle size of γ-Fe{sub 2}O{sub 3}/PANI-LND with stable electric conductivity and high electrochemical activity was approximately 40 nm, and the optimal molar ratio of n{sub LND}:n{sub γ-Fe{sub 2O{sub 3/PANI}}} was 1:1 for the synthesis of γ-Fe{sub 2}O{sub 3}/PANI-LND. The γ-Fe{sub 2}O{sub 3}/PANI-LND could be concentrated in a magnetic field and located to the region of interest, which meant to potentially provide effective treatment of tumor cells with less therapeutic doses and side-effects. - Highlights: • γ-Fe{sub 2}O{sub 3}/polyaniline-lonidamine synthesized by the doping-dedoping of polyaniline. • The composite has superparamagnet, good conductivity and electrochemical activity. • The composite can be concentrated by applying magnetic field. • The γ-Fe{sub 2}O{sub 3}/polyaniline-lonidamine can kill Madin–Darby Canine Kidney (MDCK)

  11. AFM study of the supramolecular transformation of polyaniline and polyaniline/carbon nanotubes composite upon doping with dodecylbenzenesulfonic acid in the presence of a solvent

    Science.gov (United States)

    Lobov, I. A.; Davletkildeev, N. A.; Sokolov, D. V.

    2017-10-01

    In this work, we present a new approach for the formation of conducting polyaniline and polyaniline/carbon nanotube composite films with well-developed surface morphology. This approach consists in combined influence of solvent and dopant on the base form of the polymer film. The morphology of the films has been studied by atomic force microscopy. It has been found that polyaniline films possess the fiber structure, and polyaniline/carbon nanotube composite films have the island-like structure.

  12. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance.

    Science.gov (United States)

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-02-12

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g(-1) is realized for the optimised case of binary doping over the entire range of 1 A g(-1) to 40 A g(-1) with stability of 500 cycles at 40 A g(-1). Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.

  13. Polyaniline Derived N-Doped Carbon-Coated Cobalt Phosphide Nanoparticles Deposited on N-Doped Graphene as an Efficient Electrocatalyst for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Ma, Jingwen; Wang, Min; Lei, Guangyu; Zhang, Guoliang; Zhang, Fengbao; Peng, Wenchao; Fan, Xiaobin; Li, Yang

    2018-01-01

    The development of highly efficient and durable non-noble metal electrocatalysts for the hydrogen evolution reaction (HER) is significant for clean and renewable energy research. This work reports the synthesis of N-doped graphene nanosheets supported N-doped carbon coated cobalt phosphide (CoP) nanoparticles via a pyrolysis and a subsequent phosphating process by using polyaniline. The obtained electrocatalyst exhibits excellent electrochemical activity for HER with a small overpotential of -135 mV at 10 mA cm -2 and a low Tafel slope of 59.3 mV dec -1 in 0.5 m H 2 SO 4 . Additionally, the encapsulation of N-doped carbon shell prevents CoP nanoparticles from corrosion, exhibiting good stability after 14 h operation. Moreover, the as-prepared electrocatalyst also shows outstanding activity and stability in basic and neutral electrolytes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Corrosion Protection Properties and Mechanism of Epoxy/Acetic Acid-Doped Polyaniline Coating on Magnesium Alloy.

    Science.gov (United States)

    Jin, Tao; Wang, Yanmin; Yin, Hong; Hao, Xiaojuan

    2018-07-01

    Poly(amidoamine)(PAMAM)/epoxy/acetic acid-doped polyaniline (PAni) coatings were successfully prepared and coated on magnesium alloy substrates. X-ray diffraction pattern, Fourier transform infrared spectroscopy, scanning electron microscopy technique were used to characterize the composition and morphology of acetic acid-doped PAni and composite coatings. The effect of the usage amount of doped PAni on the corrosion protection performance was evaluated with electrochemical measurement in 3.5 wt.% NaCl solutions. Tafel and electrochemical impedance spectroscopy analysis revealed that the addition of 1.0 wt.% doped PAni provided the superior corrosion protection properties. The corrosion protection mechanism was investigated by using electron probe microanalysis test and theoretical physical model. The doped PAni could obviously shrink the pits and made epoxy resin matrix denser by cross-linking and hydrogen bonding. The composite coatings exhibited better corrosion protection properties compared to pure epoxy coating. The in situ generated corrosion products provided anodic corrosion inhibition due to the easier penetration of acetate ions, and better physical barrier mechanism was promoted by the addition of doped PAni.

  15. Magnetic nanocomposite of self-doped polyaniline-graphene as a novel sorbent for solid-phase extraction.

    Science.gov (United States)

    Mehdinia, Ali; Esfandiarnejad, Reyhaneh; Jabbari, Ali

    2015-01-01

    This work is the first study on the extraction efficiency of self-doped polyaniline that is immobilized on the graphene-modified magnetic nanoparticles. The new material was used as a sorbent for the magnetic solid-phase extraction of methyl-, propyl-, and butylparabens. The use of graphene provides a high surface area and prevents aggregation of the nanoparticles. The self-doped polyaniline also provides multifunctionality, high extraction capacity, and chemical stability even in the basic medium. The parabens were acetylated for determination by gas chromatography with flame ionization detection. The effects of monomer ratio, extraction solvent, sorbent amount, sample volume, desorption solvent volume, adsorption and desorption times, and sample ionic strength were optimized. Preconcentration factors obtained were from 190 to 310. The detection limits of the method were <2.8 μg/L. Linear ranges of the method were 5-2000 μg/L for propyl and butyl parabens, and 10-2000 μg/L for methyl paraben. The method was applied for the determination of the parabens in cosmetic products and extraction recoveries were 89-101% with RSDs ≤7.9%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Facile synthesis of aluminium doped zinc oxide-polyaniline hybrids for photoluminescence and enhanced visible-light assisted photo-degradation of organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India); Ghosh, Amrita; Mondal, Anup [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India); Kargupta, Kajari [Department of Chemical Engineering, Jadavpur University, Kolkata 700032, West Bengal (India); Ganguly, Saibal [Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, NH 17 B Bypass Road, Zuarinagar, Sancoale, Goa 403726 (India); Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal (India)

    2017-04-30

    Graphical abstract: The present work focuses on the synergistic effect of a novel hybrid hetero structure (n-type aluminum doped zinc oxide and p-type polyaniline), combining both sol-gel and in-situ oxidative polymerization method and studying its photoluminescence (PL), photocatalytic, electrochemical impedance spectroscopy (EIS), linear scan voltammetry (LSV) and photocurrent properties. - Highlights: • Aluminium doped zinc oxide-polyaniline (PAZ) hybrids were prepared by polymerization of aniline using aluminium doped zinc oxide nanorod templates. • The hybrids were used as visible light photocatalysts for methyl orange (MO) and rose bengal (RB) dye degradation. • First order rate constants of the photocatalytic process were evaluated as 1.77 × 10{sup −2} min{sup −1} and 2.61 × 10{sup −2} min{sup −1} for MO and RB dyes respectively. • Photoluminescence and electrochemical properties were in accord with the photocatalytic performance of the hybrid. - Abstract: The emergence of organic-inorganic photoactive materials has led to marked progress in the field of heterogeneous visible-light photocatalysis. Visible-light active aluminium doped zinc oxide-polyaniline (PAZ) hybrid was prepared employing in-situ oxidative polymerization of polyaniline (PANI) in the presence of aluminium doped zinc oxide (AlZnO) nanorods, synthesized via sol-gel route. The compositions, structural and optical properties of the synthesized hybrids were characterized. Among various samples, the 22 wt% aluminium doped zinc oxide-polyaniline (PAZ 3) hybrid show the best photocatalytic action for the degradation of methyl orange (MO) and rose bengal (RB) dyes under visible-light illumination, even after repeated use. The performance of the photocatalytic process was determined by the first order rate constant, 1.77 × 10{sup −2} min{sup −1} and 2.61 × 10{sup −2} min{sup −1} for MO and RB dyes, respectively. Scavenger test was used to determine the role of active

  17. A Room Temperature Nitric Oxide Gas Sensor Based on a Copper-Ion-Doped Polyaniline/Tungsten Oxide Nanocomposite

    Science.gov (United States)

    Wang, Shih-Han; Shen, Chi-Yen; Su, Jian-Ming; Chang, Shiang-Wen

    2015-01-01

    The parts-per-billion-level nitric oxide (NO) gas sensing capability of a copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu2+/PANI/WO3) film coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface morphology, dopant distribution, and electric properties were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect measurements, respectively. The Cu2+/PANI/WO3 film exhibited high NO gas sensitivity and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases. PMID:25811223

  18. Direct ink writing of 3D conductive polyaniline structures and rheological modelling

    Science.gov (United States)

    Holness, F. Benjamin; Price, Aaron D.

    2018-01-01

    The intractable nature of conjugated polymers (CP) leads to practical limitations in the fabrication of CP-based transducers having complex three-dimensional geometries. Conventional CP device fabrication processes have focused primarily on thin-film deposition techniques; this study explores novel additive manufacturing processes specifically developed for CP with the ultimate goal of increasing the functionality of CP sensors and actuators. Herein we employ automated polymer paste extrusion processes for the direct ink writing of 3D conductive polyaniline (PANI) structures. Realization of these structures was enabled through a modified fused filament fabrication delta robot equipped with an integrated polymer paste extruder to fabricate high-resolution 3D conductive PANI structures. The required processability of PANI was achieved by means of a counterion-induced thermal doping method. The effect of thermal doping on the PANI-DBSA paste by means of a constitutive relationship to describe the paste flow as a function of the thermal doping time is explored. This relationship is incorporated within a flow model to predict the extruded track width as a function of various process parameters including: print speed, gauge pressure, nozzle diameter, and pre-extrusion thermal doping time.

  19. Membrane electrode assembly with doped polyaniline interlayer for proton exchange membrane fuel cells under low relative humidity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cindrella, L. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States); Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015 (India); Kannan, A.M. [Fuel Cell Research Lab, Engineering Technology Department, Arizona State University, Mesa, AZ 85212 (United States)

    2009-09-05

    A membrane electrode assembly (MEA) was designed by incorporating an interlayer between the catalyst layer and the gas diffusion layer (GDL) to improve the low relative humidity (RH) performance of proton exchange membrane fuel cells (PEMFCs). On the top of the micro-porous layer of the GDL, a thin layer of doped polyaniline (PANI) was deposited to retain moisture content in order to maintain the electrolyte moist, especially when the fuel cell is working at lower RH conditions, which is typical for automotive applications. The surface morphology and wetting angle characteristics of the GDLs coated with doped PANI samples were examined using FESEM and Goniometer, respectively. The surface modified GDLs fabricated into MEAs were evaluated in single cell PEMFC between 50 and 100% RH conditions using H{sub 2} and O{sub 2} as reactants at ambient pressure. It was observed that the MEA with camphor sulfonic acid doped PANI interlayer showed an excellent fuel cell performance at all RH conditions including that at 50% at 80 C using H{sub 2} and O{sub 2}. (author)

  20. Facile synthesis of aluminium doped zinc oxide-polyaniline hybrids for photoluminescence and enhanced visible-light assisted photo-degradation of organic contaminants

    Science.gov (United States)

    Mitra, Mousumi; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-04-01

    The emergence of organic-inorganic photoactive materials has led to marked progress in the field of heterogeneous visible-light photocatalysis. Visible-light active aluminium doped zinc oxide-polyaniline (PAZ) hybrid was prepared employing in-situ oxidative polymerization of polyaniline (PANI) in the presence of aluminium doped zinc oxide (AlZnO) nanorods, synthesized via sol-gel route. The compositions, structural and optical properties of the synthesized hybrids were characterized. Among various samples, the 22 wt% aluminium doped zinc oxide-polyaniline (PAZ 3) hybrid show the best photocatalytic action for the degradation of methyl orange (MO) and rose bengal (RB) dyes under visible-light illumination, even after repeated use. The performance of the photocatalytic process was determined by the first order rate constant, 1.77 × 10-2 min-1 and 2.61 × 10-2 min-1 for MO and RB dyes, respectively. Scavenger test was used to determine the role of active species and accordingly a mechanism was proposed. Electrochemical impedance spectroscopy and linear scan voltammetry under dark and visible-light irradiation also established the visible-light activity of the PAZ hybrid due to decrease in the electron transfer resistance that resulted in an enhancement in photocurrent. The significant enhancement of photo degradation may be attributed to the efficiency of charge separation, induced by synergistic effect between an organic conductor PANI and an inorganic semiconductor AlZnO. Owing to its superior photo electrochemical performance and photocatalytic degradation, aluminium doped zinc oxide-polyaniline (PAZ) hybrid offers stable and efficient organic-inorganic hybrid hetero-structures in near future.

  1. The role of pressure in the electrical transport of doped plasticized polyanilines

    Energy Technology Data Exchange (ETDEWEB)

    Fier, I.; Walmsley, L. [Departamento de Fisica, IGCE, UNESP Rio Claro, Rio Claro (Brazil); Djurado, D.; Pron, A.; Travers, J.P. [Structure et Proprietes d' Architectures Moleculaires UMR5819 (CEA-CNRS-UJF), INAC/SPrAM, CEA Grenoble (France)

    2012-05-15

    The behaviour of dc longitudinal and transverse conductivity in self-assembled plastdoped films of polyaniline has been studied over the range of 9 K to 320 K, under different applied mechanical pressures. We observe a progressive evolution of the conductivity picture as the applied pressure is increased, especially in the transverse direction, where the conductivity tends to lower as the pressure is increased. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Enhancement removal of tartrazine dye using HCl-doped polyaniline and TiO2-decorated PANI particles

    Science.gov (United States)

    Elsayed, M. A.; Gobara, Mohamed

    2016-08-01

    HCl-doped polyaniline (HCl-PANI) and titanium dioxide decorated with polyaniline (TiO2-decorated PANI) with different TiO2:PANI ratios were chemically prepared and utilized for the removal of tartrazine (TZ) dye from a synthetic aqueous solution. The mechanism of preparation of the sample suggested that aniline was adsorbed on the TiO2 surface before the polymerization process took place. Samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy and x-ray diffraction. The results showed that HCl-PANI and TiO2-decorated PANI have an amorphous structure. The thermal stability of the prepared samples was characterized using thermo-gravimetric (TG) analysis. HCl-PANI is stable up to 200 °C and the relative weight per cent of PANI in the TiO2-decorated PANI was 20, 25, 40 and 45%. The removal activity of TiO2-decorated PANI via TZ azo dye was investigated under UV light irradiations and compared with HCl-PANI and TiO2 particles. The results indicated the superiority of the TiO2-decorated PANI over pure HCl-PANI and TiO2. However, the excessive PANI percentage tends to form a relatively thick layer, and even aggregates on the surface of TiO2. This hinders the migration of excited electrons from the outer PANI layer to the inner TiO2 particles, which consequently leads to a decrease in the removal efficiency. A possible mechanism for the removal oxidative degradation is also mentioned.

  3. Mixed doping of polyaniline with iron(III) chloride in the presence of hexafluoroacetylacetone: chemical and structural consequences

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowski, Krzysztof [Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland); Lab. de Physique des Metaux Synthetiques, UMR CEA/CNRS/Universite Joseph Fourier 5819, SI3M/DRFMC CEA Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Kulszewicz-Bajer, Irena [Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland); Genoud, Francoise [Lab. de Physique des Metaux Synthetiques, UMR CEA/CNRS/Universite Joseph Fourier 5819, SI3M/DRFMC CEA Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France)]. E-mail: fgenoud@cea.fr; Oddou, Jean-Louis [Laboratoire de Physicochimie des Metaux en Biologie, UMR CEA/CNRS/Universite Joseph Fourier 5155, Departement Reponse et Dynamique Cellulaires, CEA/Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Pron, Adam [Lab. de Physique des Metaux Synthetiques, UMR CEA/CNRS/Universite Joseph Fourier 5819, SI3M/DRFMC CEA Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2005-07-15

    Sequential doping of polyaniline base in the oxidation state of emeraldine (abbreviated as PANI) first with iron(III) chloride and then treated with hexafluoroacetylacetone (HFAA) is described. The results obtained by using a combination of spectroscopic techniques (UV-vis-NIR, mass spectroscopy, Moessbauer effect spectroscopy, EPR) unequivocally show that complete Lewis acid-type complexation of PANI with FeCl{sub 3} occurs only in the solid state, i.e. after removal of the solvent. In the solution an equilibrium is established between PANI complexed with FeCl{sub 3} and FeCl{sub 3} complexed with nitromethane. The addition of HFAA to the solution, being in equilibrium, transforms Lewis acid doped PANI into mixed doped polymer, which upon casting and solvent removal gives a solid material of a general formula: PANI(FeCl{sub 3}){sub x}(HCl){sub y}(HFAA){sub z}. In this compound FeCl{sub 3} is complexed with amine nitrogens, imine nitrogens are protonated with HCl. HFAA, dispersed in the polymer matrix, serves as a plasticizer. The determined chemical constitution is a direct consequence of the reaction of HFAA with FeCl{sub 3} complexed on PANI imine sites to give HCl and iron(III) hexafluoroacetylacetonate. The former protonates the imine sites whereas the latter is removed from the system by extended pumping as proved by mass spectroscopy. Moessbauer spectra unequivocally show that FeCl{sub 3} complexed on amine sites remains intact. Films of PANI(FeCl{sub 3}){sub x}(HCl){sub y}(HFAA){sub z} show room temperature conductivity of ca. 3 x 10{sup -3} S cm{sup -1} and improved mechanical properties as compared with PANI complexed solely with FeCl{sub 3} due to HFAA plasticizing effects.

  4. Glucose biosensor based on three dimensional ordered macroporous self-doped polyaniline/Prussian blue bicomponent film.

    Science.gov (United States)

    Chen, Xiaojun; Chen, Zixuan; Tian, Rong; Yan, Wei; Yao, Cheng

    2012-04-20

    In this paper, a three dimensional ordered macroporous self-doped polyaniline/Prussian blue (3DOM SPAN/PB) bicomponent film was fabricated via the inverted crystal template technique using step-by-step electrodeposition. In this bicomponent film, PB not only acted as a redox mediator, but also presented increased stability in neutral or weak alkaline solution by the protection of SPAN layer on the top. A novel glucose biosensor was fabricated based on the large active surface area and excellent conductivity possessed by the 3DOM SPAN/PB film. The applying experimental conditions of the glucose biosensor have been optimized. Under the optimal conditions, the biosensor showed a wide linear range over three orders of magnitude in glucose concentrations (from 2 to 1600 μM) and a low detection limit of 0.4 μM. Moreover, the biosensor exhibited short response time, high selectivity and excellent operation stability, which can be applied to detect the blood sugar in real samples without any pretreatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Nitrogen-doped 3D reduced graphene oxide/polyaniline composite as active material for supercapacitor electrodes

    Science.gov (United States)

    Liu, Zhisen; Li, Dehao; Li, Zesheng; Liu, Zhenghui; Zhang, Zhiyuan

    2017-11-01

    A facile strategy for the fabrication of a nitrogen-doped 3D reduced graphene oxide (N-3D-rGO) macroporous structure is proposed in this paper. The proposed strategy used polystyrene microspheres as the templates and melamine as the nitrogen source. Using β-MnO2 as the oxidant, the as-prepared N-3D-rGO was then composited with polyaniline (PANI) nanowires (denoted as N-3D-rGO/PANI-B). The structure, morphology, and electrochemical properties of the composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, charge-discharge test, and electrochemical impedance spectroscopy. Results revealed that the N-3D-rGO/PANI-B composite has a better specific capacity than the composites prepared with 3D-rGO as the support material and peroxydisulfate as the oxidant. These results suggested that N-3D-rGO/PANI-B has potential applications in supercapacitors.

  6. Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization-hydrothermal route: Preparation and microwave-absorbing properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chunming; Jiang, Junjun; Liu, Xiaohua; Yin, Chengjie; Deng, Cuifen

    2016-04-15

    Polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} (RE=La, Ce, Y, x=0.05–0.25) nanocomposites were successfully synthesized by a novel coordination-oxidative polymerization-hydrothermal method, and doped by sulfosalicylic acid. The resultant nanocomposites were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) and electromagnetic measurements. The composites mainly showed nanofibers with a diameter of ca. 70 nm and a length longer than 2 μm. The surface of composites was uniformly covered with numerous nanoparticles with an average size of ca. 10–20 nm. Microwave absorption properties of polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} nanocomposites doped with La ion were found to be better than those doped with Ce and Y ions. For the polyaniline/CoLa{sub x}Fe{sub 2−x}O{sub 4} nanocomposite, the optimal microwave absorption performance is at x=0.15, that is, the mass ratio of La in CoLa{sub x}Fe{sub 2−x}O{sub 4} is 7.5%, with the conductivity of the composite about 0.833 S/cm. Furthermore, when the layer thickness is 2 mm, the maximum reflection loss achieves the maximum number of −42.65 dB at 15.91 GHz with a bandwidth of 6.14 GHz above −10 dB loss, suggesting that these nanocomposites are excellent in microwave absorbing capacity. - Graphical abstract: Scheme PAn/CoRE{sub x}Fe{sub 2−x}O{sub 4} nanocomposites prepared via a novel coordination-oxidative polymerization-hydrothermal route. - Highlights: • An organic–inorganic hybrid―polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} (RE=La, Ce, Y, x=0.05–0.25) nanocomposites was prepared via a novel coordination-oxidative polymerization-hydrothermal route. • The as-prepared polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} nanocomposites exhibit excellent microwave absorbing performance compared with the composites prepared by using conventional method. • The novel method reported in this work could

  7. Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid-glycine co-doped polyaniline.

    Science.gov (United States)

    Mo, Xi; Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke

    2015-04-09

    Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption-electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid-glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption-reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO4(-). Eventually, the stability of RVC/PANI-SA-GLY was proven relatively satisfactory. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Electrical conductivity retention and electrochemical activity of CSA doped graphene/gold nanoparticle@ polyaniline composites

    Directory of Open Access Journals (Sweden)

    Md. Akherul Islam

    2016-08-01

    Full Text Available This paper reports the synthesis of CTAB mediated CSA doped PANI and GN/GNP@ PANI composite nanofibers. The as synthesized composite nanofibers were examined by TEM, SEM, XRD, Raman spectroscopy; UV–visible diffused reflectance spectroscopy and TGA. The CTAB mediated CSA doped composite nanofibers showed 59% higher DC electrical conductivity at ambient temperature than that of PANI, which might be due to the enhancement in the mobility of the charge carriers and reduction in hopping distance in the composite system. The CTAB mediated CSA doped composite nanofibers compared to PANI was observed to be showing enhanced DC electrical conductivity retention after various cycles of heating, suggesting an enhancement in thermal stability of the composite structure, which could be attributed to the synergistic effect of GN, GNP and PANI. Additionally, the composite nanofibers showed greater electrochemical activity and better capacitive performance and reduced optical bandgap than that of PANI.

  9. Magnetic and electromagnetic properties of Pr doped strontium ferrite/polyaniline composite film

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Li, Yuqing; Wang, Yan, E-mail: wangyan287580632@126.com

    2014-11-15

    This paper reported three acid (including hydrochloric acid HCl, p-toluenesulfonic acid PTS and D-camphor-10-acid CSA) doped SrPr{sub 0.2}Fe{sub 11.8}O{sub 19}/PANI composite film and the HCl–PANI film prepared by a sol–gel method and in-situ oxidative polymerization. The characteristics of the film phase structure, surface morphology, conductivity and magnetic and electromagnetic properties were studied by using XRD, XPS, FESEM, four-probe tester, VSM and Vector Network Analyzer. The resistivity of organic acid doped composite films is higher than that of the HCl doped one. The saturation and remanent magnetization of PTS and HCl doped composite films are greater than the CSA-doped one; however, the coercivity of the three acid doped composite films is basically 5546 Oe. The saturation magnetization, remanent magnetization and coercivity of SrPr{sub 0.2}Fe{sub 11.8}O{sub 19} film are greater than those of the SrPr{sub 0.2}Fe{sub 11.8}O{sub 19}–PANI composite film. In the frequency range of 8–12 GHz, the dielectric loss of HCl–PANI film is the maximum, and the dielectric loss of SrPr{sub 0.2}Fe{sub 11.8}O{sub 19} film is the minimum; the magnetic loss of the four films is in descending order as SrPr{sub 0.2}Fe{sub 11.8}O{sub 19} film, PrSrM/(HCl–PANI) composite film, PrSrM/(CSA–PANI) and HCl–PANI film. - Highlights: • Synthesizing three acid doped SrPr{sub 0.2}Fe{sub 11.8}O{sub 19}/PANI composite films. • By sol–gel method and in-situ oxidative polymerization. • With excellent magnetic and electromagnetic properties. • The particular coating structure of PANI and Sr-ferrite. • Great interest for magnetic material and microwave absorbers.

  10. A Doped Polyaniline Modified Electrode Amperometric Biosensor for Gluconic Acid Determination in Grapes

    Science.gov (United States)

    Albanese, Donatella; Malvano, Francesca; Sannini, Adriana; Pilloton, Roberto; Di Matteo, Marisa

    2014-01-01

    In winemaking gluconic acid is an important marker for quantitative evaluation of grape infection by Botrytis cinerea. A screen-printed amperometric bienzymatic sensor for the determination of gluconic acid based on gluconate kinase (GK) and 6-phospho-D-gluconate dehydrogenase (6PGDH) coimmobilized onto polyaniline/poly (2-acrylamido-2-methyl-1-propanesulfonic acid; PANI-PAAMPSA) is reported in this study. The conductive polymer electrodeposed on the working electrode surface allowed the detection of NADH at low potential (0.1 V) with a linear range from 4 × 10−3 to 1 mM (R2 = 0.99) and a sensitivity of 419.44 nA·mM−1. The bienzymatic sensor has been optimized with regard to GK/6PGDH enzymatic unit ratio and ATP/NADP+ molar ratio which resulted equal to 0.33 and 1.2, respectively. Under these conditions a sensitivity of 255.2 nA·mM−1, a limit of detection of 5 μM and a Relative Standard Deviation (RSD) of 4.2% (n = 5) have been observed. Finally, the biosensor has been applied for gluconic acid measurements in must grape samples and the matrix effect has been taken into consideration. The results have been compared with those obtained on the same samples with a commercial kit based on a spectrophotometric enzyme assay and were in good agreement, showing the capability of the bienzymatic PANI-PAAMPSA biosensor for gluconic acid measurements and thus for the evaluation of Botrytis cinerea infection in grapes. PMID:24960084

  11. Self-doping of polyaniline prepared with the FeCl3/H2O2 system and the origin of the Raman band of emeraldine salt at around 1375 cm−1

    Czech Academy of Sciences Publication Activity Database

    Bláha, Michal; Zedník, J.; Vohlídal, J.

    2015-01-01

    Roč. 64, č. 12 (2015), s. 1801-1807 ISSN 0959-8103 R&D Projects: GA ČR(CZ) GAP205/12/0911 Institutional support: RVO:61389013 Keywords : polyaniline * partial self-doping * polarons Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.414, year: 2015

  12. Rod-like polyaniline supported on three-dimensional boron and nitrogen-co-doped graphene frameworks for high-performance supercapacitors

    Science.gov (United States)

    Liao, Kexuan; Gao, Jialu; Fan, Jinchen; Mo, Yao; Xu, Qunjie; Min, Yulin

    2017-12-01

    In this work, novel three-dimensional (3D) boron and nitrogen-co-doped three-dimensional (3D) graphene frameworks (BN-GFs) supporting rod-like polyaniline (PANI) are facilely prepared and used as electrodes for high-performance supercapacitors. The results demonstrated that BN-GFs with tuned electronic structure can not only provide a large surface area for rod-like PANI to anchor but also effectively facilitate the ion transfer and charge storage in the electrode. The PANI/BN-GF composite with wrinkled boron and nitrogen-co-doped graphene sheets interconnected by rod-like PANI exhibits excellent capacitive properties with a maximum specific capacitance of 596 F/g at a current density of 0.5 A/g. Notably, they also show excellent cycling stability with more than 81% capacitance retention after 5000 charge-discharge cycles.

  13. Exploring properties of polyaniline-SDS dispersion: a rheological approach.

    Science.gov (United States)

    Gangopadhyay, Rupali

    2009-10-15

    The paper describes steady and dynamic rheological characterization of a system in which polyaniline (PAn) is dispersed in aqueous medium by the effect of a surfactant sodium dodecyl sulphate (SDS). During polymerization of aniline in SDS medium, large and agglomerated micelle-polymer structures are formed (supported by TEM and DLS) resulting in high viscosity of the medium. On application of steady shear micellar entanglements are ruptured and the system exhibits yield properties followed by shear thinning. From the frequency dependence of storage and loss modulii (G' and G'') it seems that the system behaves more like a viscous fluid rather than an elastic liquid. Carrying out the same experiments on another dispersion in which PAn is stabilized by dodecyl benzenesulphonic acid (DBSA), very different viscoelastic response was received. DBSA molecules become counter-ions to PAn chains and this way large and interconnected PAn-DBSA structures are formed by mutual sharing of DBSA anions and PAn chains. This system therefore, exhibits gel like properties and encounters a gel to sol transition at larger deformation. Detailed studies have established that PAn-SDS is a stabilized dispersion that resembles entangled polymeric solutions to some extent while PAn-DBSA is a partially flocculated system. Therefore, rheological response of the system is mainly governed by the mutual orientation of PAn with respect to the micelles rather than the individual properties of the components. None of these systems, however, follow the established Maxwell's model and a single relaxation time is not obtained. Rather, Rouse model of multiple relaxation times is partially applicable to PAn-SDS dispersion.

  14. Magnetic field dependence of the magnetic susceptibility and the specific heat of the doped plasticized polyaniline (PANI-DB3EPSA){sub 0.5}

    Energy Technology Data Exchange (ETDEWEB)

    Djurado, D; Pron, A; Jacquot, J F; Travers, J P [Structure et Proprietes d' Architectures Moleculaires UMR5819 (CEA-CNRS-UJF), INAC/SPrAM and INAC/SCIB, CEA Grenoble, 17 rue des Martyrs, 38054-Grenoble-cedex9 (France); Adriano, C; Vargas, J M; Pagliuso, P G; Rettori, C [Instituto de Fisica ' Gleb Wataghin' , UNICAMP, CEP 13083-970, Campinas, SP (Brazil); Lesseux, G G; Fier, I; Walmsley, L, E-mail: walmsley@rc.unesp.br [Departamento de Fisica, Instituto de Geociencias e Ciencias Exatas, Universidade Estadual Paulista, Caixa Postal 178, CEP 13500-970, Rio Claro, Sao Paulo (Brazil)

    2011-05-25

    Specific heat, magnetization and electron spin resonance (ESR) data obtained from a self-standing film of the doped plasticized polyaniline (PANI-DB3EPSA){sub 0.5} are shown. No long range magnetic order has been observed at zero magnetic field, above 2 K. For a magnetic field of 3.3 kOe applied perpendicular to the plane of the film, a clear signature of an induced ordered state can be seen in the specific heat data and ESR also reveals this antiferromagnetic order. An electronic contribution is detected from ESR, magnetization and specific heat; however, for T {<=} 5 K, the specific heat data show the existence of a gap. Magnetization data also show a low temperature dominant Curie behaviour which cannot be seen from ESR, probably due to a very large linewidth, suggesting short range correlations among spin 1/2 polarons.

  15. High conductivity graphene-like MoS{sub 2}/polyaniline nanocomposites and its application in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin, E-mail: jinwang@hfut.edu.cn [School of Chemical Engineering, Hefei University of Technology, Hefei 23009 (China); Wu, Zongchao [School of Chemical Engineering, Hefei University of Technology, Hefei 23009 (China); Hu, Kunhong [Department of Chemical and Materials Engineering, Hefei University, Hefei 230022 (China); Chen, Xiangying [School of Chemical Engineering, Hefei University of Technology, Hefei 23009 (China); Yin, Huabing [Department of Electronics and Electrical Engineering, University of Glasgow, G12 8QQ (United Kingdom)

    2015-01-15

    Highlights: • A facile synthesis method of MoS{sub 2}/PANI intercalated nanocomposites is developed. • There is synergistic effect between PANI and MoS{sub 2} layer in the MoS{sub 2}/PANI composites. • Intercalation is benefit for electrons transportation and conductivity increase. • The well-defined MoS{sub 2}/PANI have good specific capacitances and long cyclic life. - Abstract: High conductivity nanocomposites of molybdenum disulfide (MoS{sub 2})/polyaniline (PANI) were prepared via direct intercalation of aniline monomer and doped with dodecyl benzene sulfonic acid (DBSA). The intercalated interaction between PANI and MoS{sub 2} improves the conductivity and thermal stability of MoS{sub 2}/PANI nanocomposites with the increasing fraction of MoS{sub 2}. The conductivity and maximum weight loss velocity temperature of PANI/MoS{sub 2}-38 sample are 2.38 S cm{sup −1} and 353 °C, respectively. This architecture is also advantageous for enhancing the capacitance properties and cyclic stabilities of MoS{sub 2}/PANI electrodes. In comparison to the specific capacitance of 131 F/g and 42% retained capacitance over 600 cycles of PANI electrode, the MoS{sub 2}/PANI-38 electrode provides a specific capacitance up to 390 F/g and 86% retained capacitance over 1000 cycles. Thus it provides an improved capacitance method which synergistically combines pseudocapacitance and double-layer capacitance for supercapacitor electrodes.

  16. Minimization of contact resistance between metal and polymer by surface doping

    International Nuclear Information System (INIS)

    Mukherjee, A K; Thakur, A K; Takashima, W; Kaneto, K

    2007-01-01

    The technique of surface doping is used to reduce the contact resistance between Au and poly(3-hexylthiophen-2,5-diyl) (P3HT) in Au(bottom)/P3HT/Au(top) sandwich type cells. To implement this technique, dodecyl benzene sulfonic acid (DBSA) is found to be an effective bulky dopant of P3HT as confirmed by four probe conductivity measurements, absorption and photoluminescence spectra. Sandwich cells treated with DBSA showed electrical short due to diffusion of DBSA across the P3HT film in Au(bottom)/DBSA/P3HT/DBSA/Au(top) sandwich cells, which confirms that DBSA is not immobilized at the surface. To restrict DBSA primarily at the surface, an aqueous solution of poly(ethylenedioxy thiophene) stabilized in poly(styrene sulfonic acid) (PEDOT : PSS) is utilized to make an emulsion with DBSA. The application of this emulsion at the top and bottom Au/P3HT interface has resulted in a decrease of contact resistance by nearly four orders of magnitude

  17. Minimization of contact resistance between metal and polymer by surface doping

    Science.gov (United States)

    Mukherjee, A. K.; Thakur, A. K.; Takashima, W.; Kaneto, K.

    2007-03-01

    The technique of surface doping is used to reduce the contact resistance between Au and poly(3-hexylthiophen-2,5-diyl) (P3HT) in Au(bottom)/P3HT/Au(top) sandwich type cells. To implement this technique, dodecyl benzene sulfonic acid (DBSA) is found to be an effective bulky dopant of P3HT as confirmed by four probe conductivity measurements, absorption and photoluminescence spectra. Sandwich cells treated with DBSA showed electrical short due to diffusion of DBSA across the P3HT film in Au(bottom)/DBSA/P3HT/DBSA/Au(top) sandwich cells, which confirms that DBSA is not immobilized at the surface. To restrict DBSA primarily at the surface, an aqueous solution of poly(ethylenedioxy thiophene) stabilized in poly(styrene sulfonic acid) (PEDOT : PSS) is utilized to make an emulsion with DBSA. The application of this emulsion at the top and bottom Au/P3HT interface has resulted in a decrease of contact resistance by nearly four orders of magnitude.

  18. Determination of Cd2+ and Pb2+ Based on Mesoporous Carbon Nitride/Self-Doped Polyaniline Nanofibers and Square Wave Anodic Stripping Voltammetry

    Directory of Open Access Journals (Sweden)

    Chang Zhang

    2016-01-01

    Full Text Available The fabrication and evaluation of a glassy carbon electrode (GCE modified with self-doped polyaniline nanofibers (SPAN/mesoporous carbon nitride (MCN and bismuth for simultaneous determination of trace Cd2+ and Pb2+ by square wave anodic stripping voltammetry (SWASV are presented here. The morphology properties of SPAN and MCN were characterized by transmission electron microscopy (TEM, and the electrochemical properties of the fabricated electrode were characterized by cyclic voltammetry (CV. Experimental parameters, such as deposition time, pulse potential, step potential, bismuth concentration and NaCl concentration, were optimized. Under the optimum conditions, the fabricated electrode exhibited linear calibration curves ranging from 5 to 80 nM for Cd2+ and Pb2+. The limits of detection (LOD were 0.7 nM for Cd2+ and 0.2 nM for Pb2+ (S/N = 3. Additionally, the repeatability, reproducibility, anti-interference ability and application were also investigated, and the proposed electrode exhibited excellent performance. The proposed method could be extended for other heavy metal determination.

  19. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites.

    Science.gov (United States)

    Wang, Yongguang; Tang, Shaochun; Vongehr, Sascha; Syed, Junaid Ali; Wang, Xiangyu; Meng, Xiangkang

    2016-02-17

    Improving the solubility of conductive polymers to facilitate processing usually decreases their conductivity, and they suffer from poor cycling stability due to swelling-shrinking during charging cycles. We circumvent these problems with a novel preparation method for nitrogen-doped graphene (NG) enhanced polyacrylic acid/polyaniline (NG-PAA/PANI) composites, ensuring excellent processibility for scalable production. The content of PANI is maximized under the constraint of still allowing defect-free coatings on filaments of carbon cloth (CC). The NG content is then adjusted to optimize specific capacitance. The optimal CC electrodes have 32 wt.% PANI and 1.3 wt.% NG, thus achieving a high capacitance of 521 F/g at 0.5 F/g. A symmetric supercapacitor made from 20 wt.% PANI CC electrodes has more than four times the capacitance (68 F/g at 1 A/g) of previously reported flexible capacitors based on PANI-carbon nanotube composites, and it retains the full capacitance under large bending angles. The capacitor exhibits high energy and power densities (5.8 Wh/kg at 1.1 kW/kg), a superior rate capability (still 81% of the 1 A/g capacitance at 10 A/g), and long-term electrochemical stability (83.2% retention after 2000 cycles).

  20. Fabrication of 3D lawn-shaped N-doped porous carbon matrix/polyaniline nanocomposite as the electrode material for supercapacitors

    Science.gov (United States)

    Zhang, Xiuling; Ma, Li; Gan, Mengyu; Fu, Gang; Jin, Meng; Lei, Yao; Yang, Peishu; Yan, Maofa

    2017-02-01

    A facile approach to acquire electrode materials with prominent electrochemical property is pivotal to the progress of supercapacitors. 3D nitrogen-doped porous carbon matrix (PCM), with high specific surface area (SSA) up to 2720 m2 g-1, was obtained from the carbonization and activation of the nitrogen-enriched composite precursor (graphene/polyaniline). Then 3D lawn-shaped PCM/PANI composite was obtained by the simple in-situ polymerization. The morphology and structure of these resulting composites were characterized by combining SEM and TEM measurements, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) spectroscopy analyses and Raman spectroscope. The element content of all samples was evaluated using CHN analysis. The results of electrochemical testing indicated that the PCM/PANI composite displays a higher capacitance value of 527 F g-1 at 1 A g-1 compared to 338 F g-1 for pure PANI, and exhibits appreciable rate capability with a retention of 76% at 20 A g-1 as well as fine long-term cycling performance (with 88% retention of specific capacitance after 1000 cycles at 10 A g-1). Simultaneously, the excellent capacitance performance coupled with the facile synthesis of PCM/PANI indicates it is a promising electrode material for supercapacitors.

  1. Aptameric Recognition-Modulated Electroactivity of Poly(4-Styrenesolfonic Acid)-Doped Polyaniline Films for Single-Shot Detection of Tetrodotoxin

    Science.gov (United States)

    Fomo, Gertrude; Waryo, Tesfaye T.; Sunday, Christopher E.; Baleg, Abd A.; Baker, Priscilla G.; Iwuoha, Emmanuel I.

    2015-01-01

    The work being reported is the first electrochemical sensor for tetrodotoxin (TTX). It was developed on a glassy carbon electrodes (C) that was modified with poly(4-styrenesolfonic acid)-doped polyaniline film (PANI/PSSA). An amine-end functionalized TTX-binding aptamer, 5′-NH2-AAAAATTTCACACGGGTGCCTCGGCTGTCC-3′ (NH2-Apt), was grafted via covalent glutaraldehyde (glu) cross-linking. The resulting aptasensor (C//PANI+/PSSA-glu-NH2-Apt) was interrogated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in sodium acetate buffer (NaOAc, pH 4.8) before and after 30 min incubation in standard TTX solutions. Both CV and EIS results confirmed that the binding of the analyte to the immobilized aptamer modulated the electrochemical properties of the sensor: particularly the charge transfer resistance (Rct) of the PANI+/PSSA film, which served as a signal reporter. Based on the Rct calibration curve of the TTX aptasensor, the values of the dynamic linear range (DLR), sensitivity and limit of detection (LOD) of the sensor were determined to be 0.23–1.07 ng·mL−1 TTX, 134.88 ± 11.42 Ω·ng·mL−1 and 0.199 ng·mL−1, respectively. Further studies are being planned to improve the DLR as well as to evaluate selectivity and matrix effects in real samples. PMID:26370994

  2. Synthesis and Performance of Highly Stable Star-Shaped Polyaniline Electrochromic Materials with Triphenylamine Core

    Science.gov (United States)

    Xiong, Shanxin; Li, Shuaishuai; Zhang, Xiangkai; Wang, Ru; Zhang, Runlan; Wang, Xiaoqin; Wu, Bohua; Gong, Ming; Chu, Jia

    2018-02-01

    The molecular architecture of conducting polymers has a significant impact on their conjugated structure and electrochemical properties. We have investigated the influence of star-shaped structure on the electrochemical and electrochromic properties of polyaniline (PANI). Star-shaped PANI (SPANI) was prepared by copolymerization of aniline with triphenylamine (TPA) using an emulsion polymerization method. With addition of less than 4.0 mol.% TPA, the resulting SPANI exhibited good solubility in xylene with dodecylbenzenesulfonic acid (DBSA) as doping acid. The structure and thermal stability of the SPANI were characterized using Fourier-transform infrared spectroscopy, Raman spectroscopy, and thermogravimetric analysis, and the electrochemical behavior was analyzed by cyclic voltammetry (CV). The electrochromic properties of SPANI were tested using an electrochemical workstation combined with an ultraviolet-visible (UV-Vis) spectrometer. The results show that, with increasing TPA loading, the thermal stability of SPANI increased. With addition of 4.0 mol.% TPA, the weight loss of SPANI was 36.9% at 700°C, much lower than the value of 71.2% for PANI at the same temperature. The low oxidation potential and large enclosed area of the CV curves indicate that SPANI possesses higher electrochemical activity than PANI. Enhanced electrochromic properties including higher optical contrast and better electrochromic stability of SPANI were also obtained. SPANI with 1.6 mol.% TPA loading exhibited the highest optical contrast of 0.71, higher than the values of 0.58 for PANI, 0.66 for SPANI-0.4%, or 0.63 for SPANI-4.0%. Overdosing of TPA resulted in slow switching speed due to slow ion transport in short branched chains of star-shaped PANI electrochromic material. Long-term stability testing confirmed that all the SPANI-based devices exhibited better stability than the PANI-based device.

  3. p-toluene sulfonic acid doped polyaniline carbon nanotube composites: synthesis via different routes and modified properties

    Directory of Open Access Journals (Sweden)

    ASHOK K. SHARMA

    2013-04-01

    Full Text Available Composites of polyaniline and carbon nanotube (CNT were prepared by in-situ chemical polymerization method using various aniline concentrations in the initial polymerization solution with p-toluene sulfonic acid (PTS as secondary dopant and mechanical mixing of the PANI and CNT using different weight ratios of PANI and CNTs. The structural characterizations of the composites were done by Fourier transform infrared (FTIR and Ultra violet visible spectroscopy (UV-Visible. Scanning electron microscopy (SEM was used to characterize the surface morphology of the composites. It was found that the composites prepared by in-situ chemical polymerization had smoother surface morphology in comparison to the composites obtained by mechanical mixing. The capacitive studies reveal that the in-situ composite has synergistic effect and the specific capacitance of the composite calculated from cyclic voltammogram (CV was 385.1 F/g. Thermal studies indicate that the composites are stable as compared to PANI alone showing that the CNT contributes towards thermal stability in the PANI-CNT composites.

  4. Direct measurement of colloidal interactions between polyaniline surfaces in a uv-curable coating formulation

    DEFF Research Database (Denmark)

    Jafarzadeh, Shadi; Claesson, Per M.; Pan, Jinshan

    2014-01-01

    The interactions between polyaniline particles and polyaniline surfaces in polyester acrylate resin mixed with 1,6-hexanediol diacrylate monomer have been investigated using contact angle measurements and the atomic force microscopy colloidal probe technique. Polyaniline with different characteri......The interactions between polyaniline particles and polyaniline surfaces in polyester acrylate resin mixed with 1,6-hexanediol diacrylate monomer have been investigated using contact angle measurements and the atomic force microscopy colloidal probe technique. Polyaniline with different...... cantilever and a pressed pellet of either hydrophilic or hydrophobic polyaniline powders, in resins of various polymer:monomer ratios. A short-range purely repulsive interaction was observed between hydrophilic polyaniline (doped with phosphoric acid) surfaces in polyester acrylate resin. In contrast...

  5. Polyaniline nano-composites with large negative dielectric permittivity

    Directory of Open Access Journals (Sweden)

    Chia-Hung Hsieh

    2012-03-01

    Full Text Available Two polyaniline (PANI/polymer nano-composites exhibiting huge negative dielectric permittivity have been synthesized for the first time. These novel chemical processes open a new approach for fabrication of the negative index materials (NIMs, since most of the NIMs prepared today are obtained by a structural approach – by putting together two structured materials that exhibit separately a negative permittivity and a negative permeability. We found the negative permittivity of these nano-composites is a function of the content of the dopant (i.e., PANI as well as of the frequency. The generation of huge negative permittivity can be rationalized by the well-dispersed PANI-DBSA nano-particles which form a pseudo-continuous conductive pathway in these nano-composites.

  6. Synthesis of nitrogen-doped mesoporous carbon from polyaniline with an F127 template for high-performance supercapacitors

    Science.gov (United States)

    Xin, Guoxiang; Wang, Yanhui; Jia, Shaopei; Tian, Pengfei; Zhou, Shuyu; Zang, Jianbing

    2017-11-01

    N-doped mesoporous carbons (N-MCs) were synthesized via the oxypolymerization of aniline with a Pluronic F127 template, sintering at 850 °C in N2 atmosphere, and activation in a KOH solution. The contrast experiments were carried out without the addition of F127 and the obtained sample was defined as N-Cs. The Brunaner-Emmett-Teller measurement, pore size distribution measurements, transmission electron microscopy, and X-ray photoelectron spectroscopy of N-MCs and N-Cs were performed. The specific areas of the N-MCs and N-Cs reached 721 and 394 m2 g-1, respectively. The specific capacitances of the N-MCs and N-Cs were as high as 318 and 106 F g-1 at 0.2 A g-1. The cycle life of N-MCs at different current densities was above 96% after 5000 cycles of charging and discharging, indicating that the N-MCs had excellent cycle stability.

  7. Asymmetric supercapacitors utilizing highly porous metal-organic framework derived Co3O4 nanosheets grown on Ni foam and polyaniline hydrogel derived N-doped nanocarbon electrode materials

    Science.gov (United States)

    Fan, Xin; Chen, Weiliang; Pang, Shuhua; Lu, Wei; Zhao, Yu; Liu, Zheng; Fang, Dong

    2017-12-01

    In the present work, asymmetric supercapacitors (ASCs) are assembled using a highly conductive N-doped nanocarbon (NDC) material derived from a polyaniline hydrogel as a cathode, and Ni foam covered with flower-like Co3O4 nanosheets (Co3O4-Ni) prepared from a zeolitic imidazolate metal-organic framework as a single precursor serves as a high gravimetric capacitance anode. At a current of 0.2 A g-1, the Co3O4-Ni electrode provides a gravimetric capacitance of 637.7 F g-1, and the NDC electrode provides a gravimetric capacitance of 359.6 F g-1. The ASC assembled with an optimal active material loading operates within a wide potential window of 0-1.1 V, and provides a high areal capacitance of 25.7 mF cm-2. The proposed ASC represents a promising strategy for designing high-performance supercapacitors.

  8. Electrical and mechanical properties of crosslinked polyanilines

    Energy Technology Data Exchange (ETDEWEB)

    Oka, O. (Technical Research Lab., Tomoegawa Paper Co., Ltd., Shizuoka (Japan)); Kiyohara, O. (Technical Research Lab., Tomoegawa Paper Co., Ltd., Shizuoka (Japan)); Morita, S. (Dept. of Electronic Engineering, Osaka Univ., Suita (Japan)); Yoshino, K. (Dept. of Electronic Engineering, Osaka Univ., Suita (Japan))

    1993-03-22

    Crosslinked polyanilines were prepared by three different methods, and their electrical and mechanical properties were evaluated. The first method is to crosslink between the main chains of polyaniline by heating. The second is to crosslink by forming hydrogen bond between polyanilines (being a gel state) and crystallization. The last is tc crosslink at the N-position of polyanilines using isocyanate terminated 1,2-polybutadiene as a crosslinking agent. Every crosslinked polyaniline obtained form a self-standing film, and the films show increase of about ten orders of magnitude in the electric conductivity by doping and decrease in the activation energy. Especially, these tendencies are remarkable in the film prepared from the gel state (the second method). The conductivity of the film prepared from the third method is in the same level with the other films in spite of containing polybutadiene 33wt% in the film. In all films, the temperature dependence of dynamic modulus is very small. Particularly, the modulus of the film firmed from the second method is less dependent on temperature in the range of -150 C to 350 C. (orig.)

  9. Development of Conducting Polyaniline/ Poly(Lactic Acid) Nanofibers by Electrospinning

    Science.gov (United States)

    Ultrafine fibers consisting of blends of polyaniline doped with p-toluene sulfonic acid and poly(L-lactic acid) were prepared by electrospinning. The presence of polyaniline resulted in fibers with diameters as thin as 100– 200 nm and a significant reduction of bead formation. These fibers were visu...

  10. Synthesis of nanostructured polyaniline

    Science.gov (United States)

    Surwade, Sumedh P.

    The organization of my thesis is as follows: (a) Chapter III describes the synthesis of bulk quantities of polyaniline nanofibers in one step using a simple and versatile high ionic strength aqueous system (HCl/NaCl) that permits the use of pure H2O2 as a mild oxidant without any added metal or enzyme catalyst. Polyaniline nanofibers obtained are highly conducting, sigma˜1--5 S/cm, and spectroscopically similar to conventional polyaniline synthesized using stronger oxidants. The synthesis method is further extended to the synthesis of oligoanilines of controlled molecular weight, e.g., aniline tetramer, octamer, and hexadecamer. Microns long tetramer nanofibers are synthesized using this method. (b) Chapter IV describes the mechanism of nanofiber formation in polyaniline. It is proposed that the surfaces such as the walls of the reaction vessel and/or intentionally added surfaces play a dramatic role in the evolution of nanofibrillar morphology. Nucleation sites on surfaces promote the accumulation of aniline dimer that reacts further to yield aniline tetramer, which (surprisingly) is entirely in form of nanofibers and whose morphology is transcribed to the bulk by a double heterogeneous nucleation mechanism. This unexpected phenomenon could form the basis of nanofiber formation in all classes of precipitation polymerization systems. (c) Chapter V is the mechanistic study on the formation of oligoanilines during the chemical oxidation of aniline in weakly acidic, neutral or basic media using peroxydisulfate oxidant. It is proposed that the reaction proceeds via the intermediacy of benzoquinone monoimine that is formed as a result of a Boyland-Sims rearrangement of aniline. The initial role of peroxydisulfate is to provide a pathway for the formation of benzoquinone monoimine intermediate that is followed by a conjugate Michael-type addition reaction with aniline or sulfated anilines. The products isolated in pH 2.5--10.0 buffers are intermediate species at various

  11. Structure and morphology of the polyaniline / polyethylene terephthalate / polyaniline films

    OpenAIRE

    Hnizdyukh, Yulya; Zastavs?ka, Galyna; Yatsyshyn, ?ykhaylo

    2013-01-01

    It was investigated the possibility of the modifying of polyethylene \\ terephtalate films substrates by polyaniline during chemical oxidative polycondensation under the different concentrations of aniline in 0.5 M citrate acid aqueous solution. Structure and morphology of bilateral polyaniline films on polyethylene terephtalate substrates (polyaniline / polyethylene terephtalate / polyaniline) has been studied by UVvisible and FTIR spectroscopy, X-ray diffraction analysis, optical microscopy ...

  12. Compósitos de borracha natural com polianilina Composites of natural rubber with polyaniline

    Directory of Open Access Journals (Sweden)

    Patrini D. Galiani

    2007-06-01

    Full Text Available Compósitos de borracha natural (Hevea brasiliensis-BN/polianilina - PANI, com diferentes composições foram obtidos através da polimerização por emulsão do monômero anilina na presença da BN e do ácido dodecilbenzeno sulfônico (DBSA. Filmes finos e homogêneos foram obtidos por prensagem a quente. Os compósitos foram caracterizados por condutividade elétrica, FTIR, UV-vis-NIR, DSC e difração de raios X. Compósito com condutividade elétrica cerca de 14 ordens de grandeza maior que a BN foi obtido. Este alto valor de condutividade é atribuído à formação da PANI no estado dopado no compósito, que foi verificado através das técnicas de UV-vis-NIR e FTIR. Os resultados obtidos com a técnica de DSC e difratometria de raios X indicaram que os polímeros são imiscíveis e que a presença da borracha não altera significantemente a fase cristalina da PANI-DBSA no compósito.In this work composites with different compositions were obtained from natural rubber (Hevea brasiliensis (NR and polyaniline (PANI using the emulsion polymerization of aniline in the presence of NR and dodecylbenzenesulfonic acid (DBSA. The samples in film form were obtained by pressing the precipitate at 100 °C for 5 minutes. The composites were characterized by electrical conductivity, Fourier-transform infrared spectroscopy (FTIR, UV-vis-NIR spectroscopy, differential scanning calorimetry (DSC and X ray diffraction. Composites with electrical conductivity about 14 orders of magnitude higher than NR were obtained. The UV-vis-NIR and FTIR spectra showed that PANI-DBSA was formed in the composites, thus making it responsible for their high conductivity. The DSC thermograms indicated that the two polymers are immiscible and X ray diffraction evidenced that NB does not considerably affect PANI-DBSA crystalline phase in the composite.

  13. Prevention of corrosion with polyaniline

    Science.gov (United States)

    MacDiarmid, Alan G. (Inventor); Ahmad, Naseer (Inventor)

    1997-01-01

    Methods for improving the corrosion inhibition of a metal or metal alloy substrate surface are provided wherein the substrate surface is coated with a polyaniline film. The polyaniline film coating is applied by contacting the substrate surface with a solution of polyaniline. The polyaniline is dissolved in an appropriate organic solvent and the solvent is allowed to evaporate from the substrate surface yielding the polyaniline film coating.

  14. Preparation and characterization of a new polyaniline salt with good conductivity and great solubility in dimethyl sulfoxyde

    Directory of Open Access Journals (Sweden)

    Zeghioud Hichem

    2015-01-01

    Full Text Available In this study, we propose a novel conducting and soluble polyaniline salt prepared by chemical polymerization in the presence of new doping agent (IAs. This last is prepared by sulphonation of itaconic acid (IA with concentrated sulphuric acid in THF. The obtained doped polyaniline (PANI-IAs is extremely soluble in dimethyl sulfoxyde (DMSO at room temperature, in which the solubility reach 44 mg mL-1. The conductivity measurement of doped polyaniline powder precipitated in THF as dispersing medium gave a value of 0.13 S cm-1 when the emeraldine base form of polyaniline is fully protonated. The polyaniline salt sample is characterized by thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, X-ray diffraction, UV-Visible spectra and FTIR spectra.

  15. Preparation, electrochemical characterization and charge-discharge of reticulated vitreous carbon/polyaniline composite electrodes

    International Nuclear Information System (INIS)

    Dalmolin, Carla; Biaggio, Sonia R.; Rocha-Filho, Romeu C.; Bocchi, Nerilso

    2009-01-01

    Polyaniline was electrodeposited onto reticulated vitreous carbon - RVC - in order to obtain a tridimensional composite electrode. Three variations of these electrodes were analysed: a small-anion-doped polyaniline (RVC/Pani), a polyanion-doped polyaniline (RVC/PaniPSS) and a bi-layer type formed by an inner layer of the first electrode and an outer layer of the second one (RVC/Pani/PaniPSS). These composites were characterized by cyclic voltammetry, scanning electronic microscopy and electrochemical impedance spectroscopy. Photomicrographies, voltammetric profiles and impedance data pointed to different morphological and electrochemical characteristics for polyaniline doped with small or large anions, and a mixed behavior for the bi-layer electrodes. Charge-discharge tests for these tridimensional (3D) electrodes, employed as the cathode in lithium batteries, indicated better performance for the RVC/Pani electrode. These RVC composites presented higher specific capacities when compared with those obtained for Pani deposited onto bidimensional substrates.

  16. Studies on the synthesis and microwave absorption properties of Fe3 O4/polyaniline FGM

    Science.gov (United States)

    Han, Xiao; Wang, Yuan-Sheng

    2007-12-01

    Electrically conducting polyaniline (PANI)-magnetic oxide (Fe3 O4) composites were synthesized by emulsion polymerization in the presence of dodecyl benzene sulfonic acid (DBSA) as the surfactant and dopant and ammonium persulfate (APS) as the oxidant. Transmission electron microscopy (TEM) indicates that the composite has a magnetic core and an electric shell and the modification has prevented the aggregation of Fe3 O4 nanoparticles effectively. The electromagnetic parameter measurements (ɛ'', ɛ', μ'' and μ') in the range of 2-18 GHz prove that Fe3 O4 in the Fe3 O4/PANI/DBSA is responsible for the electric and ferromagnetic behavior of the composites. As a result, the electromagnetic parameters can be designed by adjusting the content of the Fe3 O4. The microwave absorption of functionally graded material (FGM) was simulated by the computer according to the principle of impedance match and the calculated results agreed quite well with the experimentally measured data (R4 GHz).

  17. Role of mesoscopic morphology in charge transport of doped ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 58; Issue 2. Role of mesoscopic morphology in charge transport of doped polyaniline ... In doped polyaniline (PANI), the charge transport properties are determined by mesoscopic morphology, which in turn is controlled by the molecular recognition interactions among ...

  18. Graphenated tantalum(IV) oxide and poly(4-styrene sulphonic acid)-doped polyaniline nanocomposite as cathode material in an electrochemical capacitor

    CSIR Research Space (South Africa)

    Njomo, N

    2014-05-01

    Full Text Available and then dispersed in acidic media through sonication and entrapped in-situ into the polymeric matrix during the oxidative chemical polymerization of aniline doped with poly(4-styrene sulphonic acid). The oxides and novel polymeric nanocomposite were characterised...

  19. Doping of three-dimensional porous carbon nanotube-graphene-ionic liquid composite into polyaniline for the headspace solid-phase microextraction and gas chromatography determination of alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lulu; Wu, Mian; Feng, Yingying; Zhao, Faqiong; Zeng, Baizhao, E-mail: bzzeng@whu.edu.cn

    2016-12-15

    In this work, ionic liquid (IL, i.e. 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate), carboxyl multiwall carbon nanotubes (MWCNTs) and reduced graphene oxide (rGO) were used to prepare three-dimensional porous material (MWCNTs-rGO-IL) by one-step self-assembly, then it was co-electrodeposited with polyaniline (PANI) on stainless steel wires by cyclic voltammetry. The resulting coating (PANI-MWCNTs-rGO-IL) was characterized by using FT-IR and scanning electron microscopy etc, and it showed porous structure and had high thermal stability. Furthermore, it was found to be very suitable for the headspace solid-phase microextraction of alcohols (i.e. octanol, nonanol, geraniol, decanol, undecanol and dodecanol). By coupling with gas chromatography, wide linear ranges and low limits of detection (i.e. 2.2–28.3 ng L{sup −1}) were obtained for the alcohols. The coating also presented good repeatability and reproducibility; the relative standard deviations for intra-fiber and fiber-to-fiber were less than 5.6% (n = 5) and 7.0% (n = 5) respectively. In addition, the proposed method was successfully applied to the determination of alcohols in tea drinks, and the recoveries for standards added were 85.6–114%. - Highlights: • A three-dimensional porous material (MWCNTs-rGO-IL) was synthesized by self-assembly. • A new PANI-MWCNTs-rGO-IL composite coating was prepared by electrochemical method. • It presented high thermal stability and extraction selectivity for alcohols.

  20. Investigation of the Structure, Optical and Electrical Properties of Lithium Perchlorate Doped Polyaniline Composite: Aloe Vera Used as a Bio-Plasticizer

    Science.gov (United States)

    Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Sharanappa, Chapi; Raghu, S.; Devendrappa, H.

    2017-12-01

    Bio-plasticizer based polyaniline (PANI)/lithium perchlorate (LiClO4) composites were synthesized by the facile in situ method. The composites were characterized using the Fourier transform infrared spectroscopy (FT-IR) to identify the chemical interactions. A band appeared at 1502 cm-1 due to the presence of the -H2CO- group and CH2 scissor mode vibration for the PAL15% composite. This considerable change in the morphology of LiClO4 homogeneous dispersion in a PANI matrix was investigated by scanning electron microscopy (SEM). The UV-Visible absorption (UV-Vis) showed 300-400 nm attributed to the π- π* transition and exhibited a red shift from 535 nm to 617 nm in the visible region, indicating a decrease in band gap. The variations in dielectric constant with the addition of lithium perchlorate (LiClO4) at different temperatures and in the frequency range of 20 Hz-1 MHz were assessed through impedance analysis. The temperature dependent electrical conductivity increased with increasing temperature as well as dopant concentration. High conductivity of 1.41 × 10-3 S/cm corresponding to activation energy of 0.02 eV and 2.95 eV optical band gap for 15 wt.% of LiClO4 concentration was observed. The cyclic voltammetry measurement revealed a typical rectangular shape of the integral area, suggesting that the composite has strong electrochemical strength and is a possible candidate for electrochemical super capacitor and solar cell applications.

  1. A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review.

    Science.gov (United States)

    Ali, Shah R; Parajuli, Rishi R; Balogun, Yetunde; Ma, Yufeng; He, Huixin

    2008-12-18

    Most of the current techniques for in vivo detection of dopamine exploit the ease of oxidation of this compound. The major problem during the detection is the presence of a high concentration of ascorbic acid that is oxidized at nearly the same potential as dopamine on bare electrodes. Furthermore, the oxidation product of dopamine reacts with ascorbic acid present in samples and regenerates dopamine again, which severely limits the accuracy of the detection. Meanwhile, the product could also form a melanin-like insulating film on the electrode surface, which decreases the sensitivity of the electrode. Various surface modifications on the electrode, new materials for making the electrodes, and new electrochemical techniques have been exploited to solve these problems. Recently we developed a new electrochemical detection method that did not rely on direct oxidation of dopamine on electrodes, which may naturally solve these problems. This approach takes advantage of the high performance of our newly developed poly(anilineboronic acid)/carbon nanotube composite and the excellent permselectivity of the ion-exchange polymer Nafion. The high affinity binding of dopamine to the boronic acid groups of the polymer affects the electrochemical properties of the polyaniline backbone, which act as the basis for the transduction mechanism of this non-oxidative dopamine sensor. The unique reduction capability and high conductivity of single-stranded DNA functionalized single-walled carbon nanotubes greatly improved the electrochemical activity of the polymer in a physiologically-relevant buffer, and the large surface area of the carbon nanotubes increased the density of the boronic acid receptors. The high sensitivity and selectivity of the sensor show excellent promise toward molecular diagnosis of Parkinson's disease. In this review, we will focus on the discussion of this novel detection approach, the new interferences in this detection approach, and how to eliminate these

  2. Doping of three-dimensional porous carbon nanotube-graphene-ionic liquid composite into polyaniline for the headspace solid-phase microextraction and gas chromatography determination of alcohols

    International Nuclear Information System (INIS)

    Li, Lulu; Wu, Mian; Feng, Yingying; Zhao, Faqiong; Zeng, Baizhao

    2016-01-01

    In this work, ionic liquid (IL, i.e. 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate), carboxyl multiwall carbon nanotubes (MWCNTs) and reduced graphene oxide (rGO) were used to prepare three-dimensional porous material (MWCNTs-rGO-IL) by one-step self-assembly, then it was co-electrodeposited with polyaniline (PANI) on stainless steel wires by cyclic voltammetry. The resulting coating (PANI-MWCNTs-rGO-IL) was characterized by using FT-IR and scanning electron microscopy etc, and it showed porous structure and had high thermal stability. Furthermore, it was found to be very suitable for the headspace solid-phase microextraction of alcohols (i.e. octanol, nonanol, geraniol, decanol, undecanol and dodecanol). By coupling with gas chromatography, wide linear ranges and low limits of detection (i.e. 2.2–28.3 ng L −1 ) were obtained for the alcohols. The coating also presented good repeatability and reproducibility; the relative standard deviations for intra-fiber and fiber-to-fiber were less than 5.6% (n = 5) and 7.0% (n = 5) respectively. In addition, the proposed method was successfully applied to the determination of alcohols in tea drinks, and the recoveries for standards added were 85.6–114%. - Highlights: • A three-dimensional porous material (MWCNTs-rGO-IL) was synthesized by self-assembly. • A new PANI-MWCNTs-rGO-IL composite coating was prepared by electrochemical method. • It presented high thermal stability and extraction selectivity for alcohols.

  3. A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review

    Directory of Open Access Journals (Sweden)

    Rishi R. Parajuli

    2008-12-01

    Full Text Available Most of the current techniques for in vivo detection of dopamine exploit the ease of oxidation of this compound. The major problem during the detection is the presence of a high concentration of ascorbic acid that is oxidized at nearly the same potential as dopamine on bare electrodes. Furthermore, the oxidation product of dopamine reacts with ascorbic acid present in samples and regenerates dopamine again, which severely limits the accuracy of the detection. Meanwhile, the product could also form a melanin-like insulating film on the electrode surface, which decreases the sensitivity of the electrode. Various surface modifications on the electrode, new materials for making the electrodes, and new electrochemical techniques have been exploited to solve these problems. Recently we developed a new electrochemical detection method that did not rely on direct oxidation of dopamine on electrodes, which may naturally solve these problems. This approach takes advantage of the high performance of our newly developed poly(anilineboronic acid/carbon nanotube composite and the excellent permselectivity of the ion-exchange polymer Nafion. The high affinity binding of dopamine to the boronic acid groups of the polymer affects the electrochemical properties of the polyaniline backbone, which act as the basis for the transduction mechanism of this non-oxidative dopamine sensor. The unique reduction capability and high conductivity of single-stranded DNA functionalized single-walled carbon nanotubes greatly improved the electrochemical activity of the polymer in a physiologically-relevant buffer, and the large surface area of the carbon nanotubes increased the density of the boronic acid receptors. The high sensitivity and selectivity of the sensor show excellent promise toward molecular diagnosis of Parkinson's disease. In this review, we will focus on the discussion of this novel detection approach, the new interferences in this detection approach, and how to

  4. PEDOT doped with algal, mammalian and synthetic dopants: polymer properties, protein and cell interactions, and influence of electrical stimulation on neuronal cell differentiation.

    Science.gov (United States)

    Molino, P J; Garcia, L; Stewart, E M; Lamaze, M; Zhang, B; Harris, A R; Winberg, P; Wallace, G G

    2018-03-28

    Poly(3,4-ethylenedioxythiophene) (PEDOT) films were electrochemically polymerised with several synthetic (dodecylbenzosulfonic acid (DBSA)) and biological (dextran sulphate (DS), chondroitin sulphate (CS), alginic acid (ALG) and ulvan (ULV)) dopant anions, and their physical, mechanical and electrochemical properties characterised. PEDOT films incorporating the biological dopants ALG and ULV produced films of the greatest surface roughness (46 ± 5.1 and 31 ± 1.9 nm, respectively), and demonstrated significantly lower shear modulus values relative to all other PEDOT films (2.1 ± 0.1 and 1.2 ± 0.2 MPa, respectively). Quartz crystal microgravimetry was used to study the adsorption of the important extracellular matrix protein fibronectin, revealing protein adsorption to be greatest on PEDOT doped with DS, followed by DBSA, ULV, CS and ALG. Electrical stimulation experiments applying a pulsed current using a biphasic waveform (250 Hz) were undertaken using PEDOT doped with either DBSA or ULV. Electrical stimulation had a significant influence on cell morphology and cell differentiation for PEDOT films with either dopant incorporated, with the degree of branching per cell increased by 10.5× on PEDOT-DBSA and 6.5× on PEDOT-ULV relative to unstimulated cells, and mean neurite length per cell increasing 2.6× and 2.2× on stimulated vs. unstimulated PEDOT-DBSA and PEDOT-ULV, respectively. We demonstrate the cytocompatibility of synthetic and biologically doped PEDOT biomaterials, including the new algal derived polysaccharide dopant ulvan, which, along with DBSA doped PEDOT, is shown to significantly enhance the differentiation of PC12 neuronal cells under electrical stimulation.

  5. Synthesis, characterization, and electrospinning of novel polyaniline-peptide polymers.

    Science.gov (United States)

    Archibong, Edikan; Foster, Alexander; Caldwell, Keirsten; Lita, Adrian; Mochona, Bereket; Mateeva, Nelly

    2016-09-01

    Aniline-peptide (FLDQV, FLDQVC, Dansyl-FLDQV, Dansyl-FLDQVC, and FLDQV-AMC) mixtures underwent oxidative chemical and electrochemical polymerization in excess of aniline. The products of the chemical polymerization were low molecular weight polymers containing more than 70% peptide. Electrochemically polymerized species polyaniline-FLDQV (PANI-FLDQV) consisted mainly of polyaniline units containing about 10% peptide. The solubility of the latter in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) was similar to the camphorsulfonic acid (CSA) doped emeraldine base (PANI-CSA) solubility, however the weight composition of the electrospun fibers produced from the two polymers was significantly different. 2D 1 H- 13 C HSQC analyses were employed to analyze the binding between the aniline and peptide moieties. Binding of peptide to polyaniline is reflected by the appearance of extra cross-peaks which display line broadening between the free polyaniline and the free pentapeptide. Peptides may be chemically bonded to the polymer molecules, but they may also act as doping agents to the nitrogen atoms via hydrogen bonding.

  6. Biocompatibility of polyaniline

    Czech Academy of Sciences Publication Activity Database

    Humpolíček, P.; Kašpárková, V.; Saha, P.; Stejskal, Jaroslav

    2012-01-01

    Roč. 162, 7/8 (2012), s. 722-727 ISSN 0379-6779 R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * biocompatibility Subject RIV: BK - Fluid Dynamics Impact factor: 2.109, year: 2012

  7. Conducting carbonized polyaniline nanotubes

    Czech Academy of Sciences Publication Activity Database

    Mentus, S.; Ciric-Marjanovic, G.; Trchová, Miroslava; Stejskal, Jaroslav

    2009-01-01

    Roč. 20, č. 24 (2009), 245601/1-245601/10 ISSN 0957-4484 R&D Projects: GA ČR GA203/08/0686; GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymers * polyaniline * carbonization Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.137, year: 2009

  8. Castor oil and commercial thermoplastic polyurethane membranes modified with polyaniline: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Junior, Jose Humberto Santos; Meneguzzi, Alvaro; Ferreira, Carlos Arthur, E-mail: jhsajunior@globomail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegtre, RS (Brazil). Dept. de Engenharia de Materiais; Bertuol, Daniel Assumpcao [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Engenharia Quimica; Amado, Franco Dani Rico [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologia

    2013-11-01

    The study of conducting polymeric membranes is decisive in some areas, as in fuel cells and electrodialysis. This work aims the study of membranes using conventional and conductive polymers blends. Two types of polyurethane were used as conventional polymers, commercial thermoplastic polyurethane and polyurethane synthesized from castor oil and 4-4-dicyclohexylmethane isocyanate. Two kinds of conducting polymers were used, polyaniline doped with organic acid and a self doped polyaniline. The polymers and the membranes were characterized by electrical conductivity, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM). The synthesis of the membranes produced was proper, featuring a complete reaction, analyzed by FTIR. The membranes also showed good mechanical properties and thermal stability ( Almost-Equal-To 220 Degree-Sign C). Among the membranes studied, the polyaniline doped with p-toluenesulphonic acid obtained higher thermal and viscoelastic properties. Thus they can be used in separation techniques using membranes. (author)

  9. Castor oil and commercial thermoplastic polyurethane membranes modified with polyaniline: a comparative study

    Directory of Open Access Journals (Sweden)

    José Humberto Santos Almeida Júnior

    2013-01-01

    Full Text Available The study of conducting polymeric membranes is decisive in some areas, as in fuel cells and electrodialysis. This work aims the study of membranes using conventional and conductive polymers blends. Two types of polyurethane were used as conventional polymers, commercial thermoplastic polyurethane and polyurethane synthesized from castor oil and 4-4-dicyclohexylmethane isocyanate. Two kinds of conducting polymers were used, polyaniline doped with organic acid and a self doped polyaniline. The polymers and the membranes were characterized by electrical conductivity, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, dynamic mechanical analysis (DMA and scanning electron microscopy (SEM. The synthesis of the membranes produced was proper, featuring a complete reaction, analyzed by FTIR. The membranes also showed good mechanical properties and thermal stability (≈ 220 °C. Among the membranes studied, the polyaniline doped with p-toluenesulphonic acid obtained higher thermal and viscoelastic properties. Thus they can be used in separation techniques using membranes.

  10. Adhesion, Proliferation and Migration of NIH/3T3 Cells on Modified Polyaniline Surfaces.

    Science.gov (United States)

    Rejmontová, Petra; Capáková, Zdenka; Mikušová, Nikola; Maráková, Nela; Kašpárková, Věra; Lehocký, Marián; Humpolíček, Petr

    2016-09-15

    Polyaniline shows great potential and promises wide application in the biomedical field thanks to its intrinsic conductivity and material properties, which closely resemble natural tissues. Surface properties are crucial, as these predetermine any interaction with biological fluids, proteins and cells. An advantage of polyaniline is the simple modification of its surface, e.g., by using various dopant acids. An investigation was made into the adhesion, proliferation and migration of mouse embryonic fibroblasts on pristine polyaniline films and films doped with sulfamic and phosphotungstic acids. In addition, polyaniline films supplemented with poly (2-acrylamido-2-methyl-1-propanesulfonic) acid at various ratios were tested. Results showed that the NIH/3T3 cell line was able to adhere, proliferate and migrate on the pristine polyaniline films as well as those films doped with sulfamic and phosphotungstic acids; thus, utilization of said forms in biomedicine appears promising. Nevertheless, incorporating poly (2-acrylamido-2-methyl-1-propanesulfonic) acid altered the surface properties of the polyaniline films and significantly affected cell behavior. In order to reveal the crucial factor influencing the surface/cell interaction, cell behavior is discussed in the context of the surface energy of individual samples. It was clearly demonstrated that the lesser the difference between the surface energy of the sample and cell, the more cyto-compatible the surface is.

  11. Conjugated electrical properties of Au nanoparticle–polyaniline network

    Science.gov (United States)

    Usami, Yuki; Otsuka, Yoichi; Naitoh, Yasuhisa; Matsumoto, Takuya

    2017-12-01

    We investigated the electrical properties of a two-dimensional (2D) network consisting of multiple Au nanoparticles (AuNPs) and self-doped polyaniline sulfonate (SPAN). Nonlinear current–voltage (I–V) characteristics with wide variations were observed in the networks. The temperature dependence of the I–V characteristics exhibited a short localization length, suggesting conjugated electronic properties of the AuNP–SPAN network. This result provides a new direction for network-based molecular electronic devices.

  12. Aniline oligomers versus polyaniline

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava

    2012-01-01

    Roč. 61, č. 2 (2012), s. 240-251 ISSN 0959-8103 R&D Projects: GA AV ČR IAA400500905; GA AV ČR IAA100500902; GA ČR GA203/08/0686; GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * anilin e oligomers * anilin e Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.125, year: 2012

  13. Oxidative stability of polyaniline

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Exnerová, Milena; Morávková, Zuzana; Trchová, Miroslava; Hromádková, Jiřina; Prokeš, J.

    2012-01-01

    Roč. 97, č. 6 (2012), s. 1026-1033 ISSN 0141-3910 R&D Projects: GA ČR GA202/09/1626; GA ČR GAP205/12/0911 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : polyaniline * nanotubes * oxidation stability Subject RIV: BK - Fluid Dynamics Impact factor: 2.770, year: 2012

  14. Synthesis, Property Characterization and Photocatalytic Activity of the Polyaniline/BiYTi2O7 Polymer Composite

    OpenAIRE

    Jingfei Luan; Yue Shen; Shu Wang; Ningbin Guo

    2017-01-01

    A new polyaniline/BiYTi2O7 polymer composite was synthesized by chemical oxidation in-situ polymerization method for the first time. The effect of polyaniline doping on structural and catalytic properties of BiYTi2O7 was reported. The structural properties of novel polyaniline/BiYTi2O7 have been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis DRS. The results showed that BiYTi2O7 crystallized well with the pyrochlore-type structure...

  15. Improved photoluminescence property of CTAB assisted polyaniline-AlZnO nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah (India); Kargupta, Kajari [Department of Chemical Engineering, Jadavpur University, Kolkata (India); Ganguly, Saibal [Chemical Engineering department, Universiti Teknology Petronas, Tronoh (Malaysia)

    2015-06-24

    Polyaniline-Al doped ZnO ((PANI-AlZnO:: 70:30) nanocomposite was prepared via in situ chemical oxidative polymerization, while the hexagonal powder of AlZnO was synthesized via sol-gel technique, using Hexadecyltrimethylammonium bromide (CTAB) as a capping agent. The prepared nanocomposite was characterized by High resolution transmission electron microscopy (HRTEM), EDAX, X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectra. The optical property of the nanomaterials is examined by photoluminescence (PL) spectra analysis. The XRD pattern confirms the formation of Al doped ZnO as well as PANI. The HRTEM images of the composite showed the formation of hexagonal AlZnO embedded in polyaniline matrix. EDAX spectrum shows the compositional analysis of the nanocomposite. FTIR spectra confirm the formation of nanocomposite of PANI and hexagonal AlZnO. The PL intensity of the nanocomposite is improved as compared to pure AlZnO.

  16. Tuneable transport properties of swift heavy ion-irradiated PEDOT-DBSA/SnO2 nanocomposites

    Science.gov (United States)

    Sarmah, Smritimala; Kumar, A.

    2013-06-01

    Dodecylbenzenesulfonic acid doped poly (3, 4-etylenedioxythiophene)/SnO 2 nanocomposites were synthesized by the self-assembly method and irradiated with 90 MeV O7+ ions at the fluences of 5×1010, 1×1011, 5×1011 and 1×1012 ions/cm2 using the 15UD Pelletron accelerator under high vacuum. DC conductivity of unirradiated nanocomposites exhibits Mott's 1D variable range hopping (VRH) mechanism. However, there is cross-over to 3D VRH mechanism at higher irradiation fluence of 5×1011 and 1×1012 ions/cm2. There is an enhancement in the electrical conductivity of the nanocomposites upon swift heavy ion irradiation. Current-voltage (I-V) characteristics indicate the formation of Schottky barriers at the interfaces in the nanocomposites.

  17. Direct measurement of colloidal interactions between polyaniline surfaces in a UV-curable coating formulation: the effect of surface hydrophilicity/hydrophobicity and resin composition.

    Science.gov (United States)

    Jafarzadeh, Shadi; Claesson, Per M; Pan, Jinshan; Thormann, Esben

    2014-02-04

    The interactions between polyaniline particles and polyaniline surfaces in polyester acrylate resin mixed with 1,6-hexanediol diacrylate monomer have been investigated using contact angle measurements and the atomic force microscopy colloidal probe technique. Polyaniline with different characteristics (hydrophilic and hydrophobic) were synthesized directly on spherical polystyrene particles of 10 μm in diameter. Surface forces were measured between core/shell structured polystyrene/polyaniline particles (and a pure polystyrene particle as reference) mounted on an atomic force microscope cantilever and a pressed pellet of either hydrophilic or hydrophobic polyaniline powders, in resins of various polymer:monomer ratios. A short-range purely repulsive interaction was observed between hydrophilic polyaniline (doped with phosphoric acid) surfaces in polyester acrylate resin. In contrast, interactions between hydrophobic polyaniline (doped with n-decyl phosphonic acid) were dominated by attractive forces, suggesting less compatibility and higher tendency for aggregation of these particles in liquid polyester acrylate compared to hydrophilic polyaniline. Both observations are in agreement with the conclusions from the interfacial energy studies performed by contact angle measurements.

  18. Photo-control of the electronic states of Iron coordinated to photo-responsive polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Oshida, Kazuyoshi [Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan); Einaga, Yasuaki [Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522 (Japan)]. E-mail: einaga@chem.keio.ac.jp

    2007-05-07

    Fe{sup 3+} doped polyaniline (PANI) films containing azobenzene derivatives in the side chain have been prepared. Photoisomerization of the azobenzene derivative in the PANI films was observed at room temperature. Furthermore, {sup 57}Fe Moessbauer measurements showed that the ligand-metal bond distance and the symmetry around the Fe{sup 3+} were influenced by the photoisomerization.

  19. Electrochemical Quartz Crystal Microbalance Monitoring of the Cyclic Voltammetric Deposition of Polyaniline

    Science.gov (United States)

    Xie, Qingji; Li, Zhili; Deng, Chunyan; Liu, Meiling; Zhang, Youyu; Ma, Ming; Xia, Shaoxi; Xiao, Xiaoming; Yin, Dulin; Yao, Shouzhuo

    2007-01-01

    A real-time, labeled-free and nanogram-sensitive mass sensor, electrochemical quartz crystal microbalance (EQCM) is used to monitor a cyclic voltammetric deposition of polyaniline (PANI). The results determined that the efficiency for PANI deposition and the anion-doping ratio is calculated in one single cyclic voltammetric.

  20. Effect of iodine solutions on polyaniline films

    International Nuclear Information System (INIS)

    Ayad, M.M.; Amer, W.A.; Stejskal, J.

    2009-01-01

    Polyaniline (PANI) emeraldine-base films have been exposed to iodine solutions. The interaction between the films and the iodine solution was studied using the quartz-crystal microbalance (QCM) technique and the UV-visible absorption spectroscopy. The iodine-treated film of emeraldine base was subjected to dedoping process using 0.1 M ammonia solution. The resulting film was exposed again to the previously used iodine solution. Iodine was found to play multiple roles: the ring-iodination of PANI film, the oxidation of PANI to pernigraniline base, and iodine doping to PANI salt. A sensor based on PANI-coated electrode of QCM was developed to monitor the presence of iodine in solution.

  1. Characteristics of Polyaniline Cobalt Supported Catalysts for Epoxidation Reactions

    Science.gov (United States)

    Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław

    2014-01-01

    A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established. PMID:24701183

  2. Synthesis of polyaniline nanotubes through UV light catalytic method

    Directory of Open Access Journals (Sweden)

    Chuanyu Sun

    2015-03-01

    Full Text Available In this study, nitrocellulose (NC fiber blanket prepared by electrostatic spinning method has been used as a template, and copper nitrate (Cu(NO32 as an oxidant to synthesise polyaniline nanotubes doped with heteropolyacid (H4SiW12O40, SiW12 using UV light catalytic method. Infrared spectroscopy (IR, X-ray powder diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM technologies were applied to characterize the prepared samples of polyaniline nanotubes. The results show that the external diameter of the tube is about 200 nm, and the internal diameter about 170 nm. We also give a reasonable speculation and explanation about the formation mechanism of the nanotubes.

  3. Preparation of maghemite and polyaniline nanocomposites assisted by ultrasound

    International Nuclear Information System (INIS)

    Costa, Renata Cerruti da; Souza Junior, Fernando Gomes de

    2014-01-01

    The study of systems constituted by iron oxide nanoparticles and polyaniline has increased in the last years. However, few studies are related to the sonication effect on the preparation of these hybrid materials. In this work the effect of sonication on the properties of maghemite/polyaniline hybrids was studied using experimental design techniques. The materials obtained were studied by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. Samples were also characterized by measuring the electric resistivity and by magnetic force tests. Obtained results show that the increase of the sonication power produces the increase of the doping process and the decrease of the electrical resistivity. The same sonication power produced the destruction of a large amount of the maghemite, leading to lower magnetic forces. (author)

  4. Fabrication and Characterization of Polyaniline/PVA Humidity Microsensors

    Science.gov (United States)

    Yang, Ming-Zhi; Dai, Ching-Liang; Lin, Wei-Yi

    2011-01-01

    This study presents the fabrication and characterization of a humidity microsensor that consists of interdigitated electrodes and a sensitive film. The area of the humidity microsensor is about 2 mm2. The sensitive film is polyaniline doping polyvinyl alcohol (PVA) that is prepared by the sol-gel method, and the film has nanofiber and porous structures that help increase the sensing reaction. The commercial 0.35 μm Complimentary Metal Oxide Semiconductor (CMOS) process is used to fabricate the humidity microsensor. The sensor needs a post-CMOS process to etch the sacrificial layer and to coat the sensitive film on the interdigitated electrodes. The sensor produces a change in resistance as the polyaniline/PVA film absorbs or desorbs vapor. Experimental results show that the sensitivity of the humidity sensor is about 12.6 kΩ/%RH at 25 °C. PMID:22164067

  5. Characteristics of Polyaniline Cobalt Supported Catalysts for Epoxidation Reactions

    Directory of Open Access Journals (Sweden)

    Grzegorz Kowalski

    2014-01-01

    Full Text Available A study of polyaniline (PANI doping with various cobalt compounds, that is, cobalt(II chloride, cobalt(II acetate, and cobalt(II salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established.

  6. Electrochemical synthesis and characterization of chloride doped ...

    Indian Academy of Sciences (India)

    Unknown

    (HCl) by potentiodynamic method in an electrochemical cell and studied by cyclic voltammetry and FTIR techniques. The FTIR spectra confirmed Cl– ion doping in the ... were not hygroscopic whereas chloride doped polyaniline films were found to be highly hygroscopic. Keywords. Conducting polymer; electrochemical ...

  7. Synthesis, properties and aplications of functionalized polyanilines

    OpenAIRE

    Acevedo, Diego F.; Salavagione, Horacio J.; Miras, María C.; Barbero, César A.

    2005-01-01

    Novel functionalized conductive polymers are synthesised using modification reactions of polyaniline: diazonium coupling, nucleophilic addition and N-nitrosation. Diazonium salt coupling with polyaniline renders modified polymers which are soluble in common solvents and electroactive. Nucleophilic addition could also be used to modify polyaniline. Modified polymers produced by addition of thiols, carbanions and arylsulphinic acids are described. The nucleophilic addition of arylsulphinic acid...

  8. Temperature-dependent charge transport mechanisms in carbon sphere/polyaniline composite

    Science.gov (United States)

    Nieves, Cesar A.; Martinez, Luis M.; Meléndez, Anamaris; Ortiz, Margarita; Ramos, Idalia; Pinto, Nicholas J.; Zimbovskaya, Natalya

    2017-12-01

    Charge transport in the temperature range 80 K polyaniline (PANi). PANi was synthesized via the oxidative polymerization of aniline with ammonium peroxydisulfate (APS) in acidic media. The CS/PANi composite was prepared by coating the spheres with a thin polyaniline (PANi) film doped with hydrochloric acid (HCl) in situ during the polymerization process. Temperature dependent conductivity measurements show that three dimensional variable range hopping of electrons between polymeric chains in PANi-filled gaps between CS is the predominant transport mechanism through CS/PANi composites. The high conductivity of the CS/PANi composite makes the material attractive for the fabrication of devices and sensors.

  9. Optical and transport properties of polyaniline films

    International Nuclear Information System (INIS)

    Tzamalis, Georgios

    2002-01-01

    This thesis presents the results of a comprehensive study on the transport and optical properties of polyaniline (PANI) films. The films are derived by protonation (doping) of the emeraldine base form of polyaniline, as synthesized in Durham, with either 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) or 10-camphorsulfonic acid. Thus, two distinct PANI systems are obtained: PANI-CSA and PANI-AMPSA. The variation of the doping level can affect the metallic properties of the final system, so that samples close to the boundary as well as samples at either side of a disorder induced metal-insulator can be obtained. The relation between the doping level and the degree of disorder, along with the existence of an inherently metallic behaviour in PANI, are investigated through a series of experiments. Temperature dependent dc conductivity measurements ranging from 10-295 K are performed using a closed loop helium cryostat under dynamic vacuum (∼10 -5 mbar). From the conductivity data curves, typical fingerprints of the metallic behaviour are detected for certain samples and an initial estimate of the degree of disorder is implicitly attained. More specific information regarding the microscopic contributions to the transport mechanisms is obtained via low temperature (down to 1.5 K) magnetoconductance measurements on selected samples. The magnetic field dependence of conductivity for fields up to 14 T is measured and the suitability of the localization-interaction model for the understanding of the transport mechanism in PANI is examined. Infrared reflectivity (20-9000 cm -1 ) measurements on samples of both PANI systems are performed. The experimental configuration permits the determination of the sample's absolute reflectivity. The optical constants are deduced from Kramers-Kronig analysis of the reflectivity data. Typical features of metallic behaviour are examined and analysed in the context of the localization modified Drude model. The results are shown to be

  10. Effects of aniline concentrations on the electrical and mechanical properties of polyaniline polyvinyl alcohol blends

    Directory of Open Access Journals (Sweden)

    J. Bhadra

    2017-07-01

    Full Text Available In this work, we present an exclusive study on the effect of the feeding ratio of the monomer (aniline on the structural, thermal, mechanical and electrical properties of polyaniline (PANI polyvinyl alcohol (PVA blends. The films obtained from the blends are characterised to determine their surface properties and structural morphology (elemental analysis, SEM and FTIR, thermal properties (TGA and DSC and optical properties (UV–Vis spectroscopy. We study the effects of aniline on the mechanical and electrical properties of the composites by performing tensile, four probe and A.C. conductivity measurements, respectively. The SEM images reveal a heterogeneous distribution of conductive PANI particles in the continuous PVA matrix. During this experiment, the tensile strength of the blend films is maintained with an increase in the amount of aniline (up to 25 wt%, and this behaviour is attributed to intermolecular hydrogen bonding between PANI and PVA in the presence of the surfactant DBSA. The potential attraction of the experiment lies in the nature of the conductivity (of the blend films, which is found to increase from 10−8 to 10−3 S/cm with a percolation threshold of 0.78 wt%.

  11. Antioxidant activity and haemolysis prevention efficiency of polyaniline nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Somik; Kumar, A [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India); Saikia, Jyoti P; Konwar, B K, E-mail: ask@tezu.ernet.in [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India)

    2010-01-29

    Polyaniline (PAni) nanofibers have been synthesized by interfacial polymerization using hydrochloric acid (HCl) and camphor sulfonic acid (CSA) as dopants. The powder x-ray diffraction pattern of bulk polyaniline reveals ES I structure and has been indexed in a pseudo-orthorhombic lattice. The broadening of (110) reflection in the nanofiber samples has been analysed in terms of domain length and strain using a convolution method employing a Voigt function. The increase in d spacing for the (110) reflection in HCl-doped PAni nanofibers have been assigned to the change in structural conformation due to the increase in the tilt angle of the polymer chain, which is also evident from microRaman spectra. UV-vis spectra of the PAni nanofibers exhibit a remarkable blueshift in the absorption bands attributed to {pi}-{pi}{sup *} and {pi}-polaron band transitions indicating a reduction in particle size, which is also observed in TEM micrographs. The antioxidant activity of the polyaniline nanofiber samples has been investigated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay by employing UV-visible spectroscopy. It has also been observed that polyaniline nanofibers are able to protect the haemolysis of red blood cells (RBCs) from cytotoxic agents, namely H{sub 2}O{sub 2}. The observed enhancement in the antioxidant and haemolysis prevention activity of the PAni nanofibers as compared to bulk has been attributed to the reduction in particle size and changes in structural conformation, as evident from TEM, XRD and microRaman spectroscopy.

  12. Advanced Synthesis of Conductive Polyaniline Using Laccase as Biocatalyst.

    Science.gov (United States)

    de Salas, Felipe; Pardo, Isabel; Salavagione, Horacio J; Aza, Pablo; Amougi, Eleni; Vind, Jesper; Martínez, Angel T; Camarero, Susana

    2016-01-01

    Polyaniline is a conductive polymer with distinctive optical and electrical properties. Its enzymatic synthesis is an environmentally friendly alternative to the use of harsh oxidants and extremely acidic conditions. 7D5L, a high-redox potential laccase developed in our lab, is the biocatalyst of choice for the synthesis of green polyaniline (emeraldine salt) due to its superior ability to oxidize aniline and kinetic stability at the required polymerization conditions (pH 3 and presence of anionic surfactants) as compared with other fungal laccases. Doses as low as 7.6 nM of 7D5L catalyze the polymerization of 15 mM aniline (in 24 h, room temperature, 7% yield) in the presence of different anionic surfactants used as doping templates to provide linear and water-soluble polymers. Aniline polymerization was monitored by the increase of the polaron absorption band at 800 nm (typical for emeraldine salt). Best polymerization results were obtained with 5 mM sodium dodecylbenzenesulfonate (SDBS) as template. At fixed conditions (15 mM aniline and 5mM SDBS), polymerization rates obtained with 7D5L were 2.5-fold the rates obtained with commercial Trametes villosa laccase. Moreover, polyaniline yield was notably boosted to 75% by rising 7D5L amount to 0.15 μM, obtaining 1g of green polyaniline in 1L-reaction volume. The green polymer obtained with the selected system (7D5L/SDBS) holds excellent electrochemical and electro-conductive properties displayed in water-dispersible nanofibers, which is advantageous for the nanomaterial to be readily cast into uniform films for different applications.

  13. Electrospinning of Polyaniline/Poly(Lactic Acid) Ultrathin Fibers: Process and Statistical Modeling using a Non-Gaussian Approach

    Science.gov (United States)

    Fibers of poly(lactic acid) (PLA) blended with p-toluenesulfonic acid-doped polyaniline, PAni.TSA, were obtained by lectrospinning, following a factorial design which was used mainly to study the effect of four process parameters (PLA solution concentration, PAni solution concentration, applied volt...

  14. Explosive hazards in polyaniline chemistry

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Bober, Patrycja; Trchová, Miroslava; Prokeš, J.

    2017-01-01

    Roč. 71, č. 2 (2017), s. 387-392 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyaniline * oxidation of aniline * safety hazards Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  15. In situ polymerized polyaniline films

    Czech Academy of Sciences Publication Activity Database

    Riede, A.; Helmdstedt, M.; Sapurina, I.; Stejskal, Jaroslav

    2002-01-01

    Roč. 248, č. 2 (2002), s. 413-418 ISSN 0021-9797 R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : polyaniline * conducting polymer * thin films Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.466, year: 2002

  16. Nanostructured metal-polyaniline composites

    Science.gov (United States)

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2010-08-31

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  17. Sorption of mercury on chemically synthesized polyaniline

    International Nuclear Information System (INIS)

    Remya Devi, P.S.; Verma, R.; Sudersanan, M.

    2006-01-01

    Sorption of inorganic mercury (Hg 2+ ) and methyl mercury, on chemically synthesized polyaniline, in 0.1-10N HCl solutions has been studied. Hg 2+ is strongly sorbed at low acidities and the extent of sorption decreases with increase in acidity. The sorption of methyl mercury is very low in the HCl concentration range studied. Sorption of Hg 2+ on polyaniline in 0.1-10N LiCl and H 2 SO 4 solutions has also been studied. The analysis of the data indicates that the sorption of Hg 2+ depends on the degree of protonation of polyaniline and the nature of mercury(II) chloride complexes in solution. X-ray photoelectron spectroscopy analysis (XPS) of polyaniline sorbed with mercury show that mercury is bound as Hg 2+ . Sorbed mercury is quantitatively eluted from polyaniline with 0.5N HNO 3 . Polyaniline can be used for separation and pre-concentration of inorganic mercury from aqueous samples. (author)

  18. Rheology of Polyaniline Dispersions in Acrylic Resin

    OpenAIRE

    PLESU, Nicoleta; LIESCU, Smaranda; ILIA, Gheorghe

    2006-01-01

    Acrylic dispersions based on polyaniline were obtained and characterised. The polyaniline was obtained by chemical polymerisation of aniline in different organic acid containing phosphorous, in the presence of ammonium-peroxidisulphate as oxidant agent. The blends were obtained by mechanical dispersion of polyaniline in commercially available acrylic resin. The flow behaviour of these dispersions at different shear rates was studied. Furthermore, the resulting acrylic dispersions w...

  19. Characteristics of polyaniline electropolymerized in camphor sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.R. Jr. [Instituto de Quimica de Sao Carlos/DFQ/USP, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Malmonge, J.A. [Instituto de Fisica de Sao Carlos/DFCM/USP, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Conceicao Silva, A.J.G. [Instituto de Fisica de Sao Carlos/DFCM/USP, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Motheo, A.J. [Instituto de Quimica de Sao Carlos/DFQ/USP, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Mascarenhas, Y.P. [Instituto de Fisica de Sao Carlos/DFCM/USP, C.P. 369, 13560-970, Sao Carlos, SP (Brazil); Mattoso, L.H.C. [Instituto de Fisica de Sao Carlos/DFCM/USP, C.P. 369, 13560-970, Sao Carlos, SP (Brazil)

    1995-03-01

    Polyaniline was electropolymerized by cyclic voltammetry in the presence of camphor sulfonic acid (CSA), and the resulting film was characterized by solubility tests, UV-Vis absorption, electron microscopy, X-ray diffraction and conductivity measurements. The use of the functionalized acid - CSA - made it possible to obtain the as-electropolymerized polymer (in the doped state) soluble in organic solvents such as m-cresol and chloroform. The UV-Vis spectra of PAni-CSA in m-cresol presented a free-carrier tail commencing at 1000nm which may be attributed to secondary doping due to conformational changes of the polymer chains. After treatment with m-cresol the film exhibited an increase of conductivity reaching ca. 100S/cm. (orig.)

  20. An electron conductive polymer, poly-aniline, in gas separation: optimisation of transport properties by alternated acid-base treatment

    International Nuclear Information System (INIS)

    Rebattet, Laurence

    1994-01-01

    The objective of this research thesis is to study the variation of gas permeation properties of poly-aniline during a doping/de-doping/re-doping cycle, and to study the evolution of the separation power of this polymer. Scanning electronic microscopy is used to study the microstructure and more particularly how the doping agent is distributed within the polymer. Permeabilities, diffusion coefficients, sorption solubilities and interaction energies are measured by using coupled permeation and micro-gravimetry-calorimetry methods. A range of gases (H 2 , O 2 , CO 2 , N 2 , CH 4 ) is analysed [fr

  1. Chemical synthesis and characterization of highly soluble conducting polyaniline in the mixtures of common solvents

    Directory of Open Access Journals (Sweden)

    Zeghioud Hichem

    2015-01-01

    Full Text Available This work presents the synthesis and characterization of soluble and conducting polyaniline PANI-PIA according to chemical polymerization route. This polymerization pathway leads to the formation of poly(itaconic acid doped polyaniline salts, which are highly soluble in a number of mixtures between organic common polar solvents and water, the solubility reaches 4 mg mL-1. The effect of synthesis parameters such as doping level on the conductivity and the study of solubility and other properties of the resulting PANI salts were also undertaken. The maximum of conductivity was found equal to 2.48×10-4 S cm-1 for fully protonated PANI-EB. In addition, various characterizations of the synthesized materials were also done with the help of viscosity measurements, UV-vis spectroscopy, XRD, FTIR and finally TGA for the thermal properties behaviour.

  2. Permeable polyaniline articles for gas separation

    Science.gov (United States)

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2004-09-28

    Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers polyaniline solutions were found to disintegrate during the IP process.

  3. Carbon dioxide sensing with sulfonated polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Bent, van der J.; Marcelis, A.T.M.; Tong, H.D.; Rijn, van C.J.M.

    2012-01-01

    The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO2) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO2 gas.

  4. Pressure Dependence of the Electrical Resistivity in Polymer Polyaniline

    Directory of Open Access Journals (Sweden)

    Daihui Huang

    2013-01-01

    Full Text Available Polyaniline (PAN was prepared by using a technique of chemical synthesis to obtain the insulating emeraldine base form. And then PAN was doped with toluenesulfonic acid (TSA, HCl, or camphor sulfonic acid (CSA to protonate it into conducting salt form. The morphologies and electrical property of PAN under atmospheric pressure were investigated. Subsequently, the high pressure using a Bridgman anvil cell was applied on the doped PAN, and the effect of high pressure on the properties of doped PAN was analyzed. At normal pressure, the conductivity of PAN increases as the PH value increases. While at high pressures, the conductivity of PAN increases, and then it becomes independent of pressure. The results indicate that the conductivity of PAN is related to the presence of the polaron band, and the doped PAN under high pressure will be enhanced strongly in conductivity because of overlap of polaron band and π band. However, with the further increase of the applied pressure, scattering mechanisms of carriers limit the conductivity of PAN.

  5. Synthesis, Property Characterization and Photocatalytic Activity of the Polyaniline/BiYTi2O7 Polymer Composite

    Directory of Open Access Journals (Sweden)

    Jingfei Luan

    2017-02-01

    Full Text Available A new polyaniline/BiYTi2O7 polymer composite was synthesized by chemical oxidation in-situ polymerization method for the first time. The effect of polyaniline doping on structural and catalytic properties of BiYTi2O7 was reported. The structural properties of novel polyaniline/BiYTi2O7 have been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis DRS. The results showed that BiYTi2O7 crystallized well with the pyrochlore-type structure, stable cubic crystal system by space group Fd3m. The lattice parameter or band gap energy of BiYTi2O7 was found to be a = 10.2132 Å or 2.349 eV, respectively. The novel polyaniline/BiYTi2O7 polymer composite possessed higher catalytic activity compared with BiYTi2O7 or nitrogen doped TiO2 for photocatalytic degradation of Azocarmine G under visible light irradiation. Additionally, the Azocarmine G removal efficiency was boosted from 3.0% for undoped BiYTi2O7 to 78.0% for the 10% polyaniline-modified BiYTi2O7, after only 60 min of reaction. After visible light irradiation for 330 min with polyaniline/BiYTi2O7 polymer composite as photocatalyst, complete removal and mineralization of Azocarmine G was observed. The photocatalytic degradation of Azocarmine G followed first-order reaction kinetics. Ultimately, the promoter action of H2O2 for photocatalytic degradation of AG with BiYTi2O7 as catalyst in the wastewater was discovered.

  6. Synthesis, Property Characterization and Photocatalytic Activity of the Novel Composite Polymer Polyaniline/Bi2SnTiO7

    Directory of Open Access Journals (Sweden)

    Yunjun Yang

    2012-03-01

    Full Text Available A novel polyaniline/Bi2SnTiO7 composite polymer was synthesized by chemical oxidation in-situ polymerization method and sol-gel method for the first time. The structural properties of novel polyaniline/Bi2SnTiO7 have been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray spectrometry. The lattice parameter of Bi2SnTiO7 was found to be a = 10.52582(8 Å. The photocatalytic degradation of methylene blue was realized under visible light irradiation with the novel polyaniline/Bi2SnTiO7 as catalyst. The results showed that novel polyaniline/Bi2SnTiO7 possessed higher catalytic activity compared with Bi2InTaO7 or pure TiO2 or N-doped TiO2 for photocatalytic degradation of methylene blue under visible light irradiation. The photocatalytic degradation of methylene blue with the novel polyaniline/Bi2SnTiO7 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01504 or 0.00333 min−1. After visible light irradiation for 220 minutes with novel polyaniline/Bi2SnTiO7 as catalyst, complete removal and mineralization of methylene blue was observed. The reduction of the total organic carbon, the formation of inorganic products, SO42− and NO3−, and the evolution of CO2 revealed the continuous mineralization of methylene blue during the photocatalytic process. The possible photocatalytic degradation pathway of methylene blue was obtained under visible light irradiation.

  7. Synthesis, property characterization and photocatalytic activity of the novel composite polymer polyaniline/Bi2SnTiO7.

    Science.gov (United States)

    Yang, Yunjun; Luan, Jingfei

    2012-03-06

    A novel polyaniline/Bi(2)SnTiO(7 )composite polymer was synthesized by chemical oxidation in-situ polymerization method and sol-gel method for the first time. The structural properties of novel polyaniline/Bi(2)SnTiO(7) have been characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray spectrometry. The lattice parameter of Bi(2)SnTiO(7) was found to be a = 10.52582(8) Å. The photocatalytic degradation of methylene blue was realized under visible light irradiation with the novel polyaniline/Bi(2)SnTiO(7) as catalyst. The results showed that novel polyaniline/Bi(2)SnTiO(7 )possessed higher catalytic activity compared with Bi(2)InTaO(7) or pure TiO(2) or N-doped TiO(2) for photocatalytic degradation of methylene blue under visible light irradiation. The photocatalytic degradation of methylene blue with the novel polyaniline/Bi(2)SnTiO(7) or N-doped TiO(2) as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01504 or 0.00333 min(-1). After visible light irradiation for 220 minutes with novel polyaniline/Bi(2)SnTiO(7 )as catalyst, complete removal and mineralization of methylene blue was observed. The reduction of the total organic carbon, the formation of inorganic products, SO(4)2- and NO(3-), and the evolution of CO(2) revealed the continuous mineralization of methylene blue during the photocatalytic process. The possible photocatalytic degradation pathway of methylene blue was obtained under visible light irradiation.

  8. Fabrication of Biosensor Based on Polyaniline/Gold Nanorod Composite

    Directory of Open Access Journals (Sweden)

    Uğur Tamer

    2011-01-01

    Full Text Available This present paper describes a new approach to fabricate a new amperometric sensor for the determination of glucose. Polyaniline (PANI film doped with colloidal gold nanorod particles has been used to immobilize glucose oxidase by glutaraldehyde. The polyaniline/gold nanorod composite structure gave an excellent matrix for enzyme immobilization due to the large specific surface area and higher electroactivity. The composite has been characterized by cyclic voltammetry (CV, scanning electron microscopy (SEM, and surface-enhanced Raman spectroscopy (SERS. The SERS spectrum of the surface-immobilized glucose oxidase and the spectrum of the native enzyme indicate that the main feature of the native structure of glucose oxidase was conserved after being immobilized on the polymer matrix. The amperometric response was measured as a function of concentration of glucose at a potential of 0.6 V versus Ag/AgCl in 0.1 M phosphate buffer at pH 6.4. Linear range of the calibration curve was from 17.6 μM to 1 mM with a sensitivity of 13.8 μA⋅mM−1⋅cm−2 and a limit of detection (LOD of 5.8 μM. The apparent Michaelis-Menten constant KM was calculated as 1.0 mM and the response time was less than 3 seconds.

  9. Novel microstructure in spin coated polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Deepak; Dutta, V [Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India)

    2007-05-08

    Polyaniline (Pani) thin films doped with camphor sulfonic acid (CSA) have been deposited on glass substrates using the spin coating technique. Pani is chemically synthesized by an oxidation method at {approx}0 deg. C. Pani-CSA films show a hexagonal structure in scanning electron micrographs, which occurs due to the crystalline growth of CSA. A dense hexagonal structure is visible for film deposited at 800 rpm, but it becomes sparser as the revolutions per minute are increased (1200, 1500 and 2000 rpm). Electronic transition of quinoid units cause an absorption shoulder at {approx}900 nm for films deposited at 1200, 1500 and 2000 rpm, which is not observed for film deposited at 800 rpm.

  10. Polyaniline (PANi based electrode materials for energy storage and conversion

    Directory of Open Access Journals (Sweden)

    Huanhuan Wang

    2016-09-01

    Full Text Available Polyaniline (PANi as one kind of conducting polymers has been playing a great role in the energy storage and conversion devices besides carbonaceous materials and metallic compounds. Due to high specific capacitance, high flexibility and low cost, PANi has shown great potential in supercapacitor. It alone can be used in fabricating an electrode. However, the inferior stability of PANi limits its application. The combination of PANi and other active materials (carbon materials, metal compounds or other polymers can surpass these intrinsic disadvantages of PANi. This review summarizes the recent progress in PANi based composites for energy storage/conversion, like application in supercapacitors, rechargeable batteries, fuel cells and water hydrolysis. Besides, PANi derived nitrogen-doped carbon materials, which have been widely employed as carbon based electrodes/catalysts, are also involved in this review. PANi as a promising material for energy storage/conversion is deserved for intensive study and further development.

  11. Synthesis and characterization of polyaniline and polyaniline - Carbon nanotubes nanostructures for electrochemical supercapacitors

    Science.gov (United States)

    Bavio, Marcela A.; Acosta, Gerardo G.; Kessler, Teresita

    2014-01-01

    Nanostructures of polyaniline (PANI) and PANI with embedded carbon nanotubes (CNT) were synthesized through a chemical method of self-organization. An oxidative polymerization process was performed in the monomer acid solution with the presence of a surfactant and the addition of multi-walled CNT. The CNT were added with and without pretreatment, CNTf and CNTnf, respectively. Furthermore, ammonium persulfate and sodium dodecyl sulfate were incorporated to the reaction solution as dispersant and oxidizing agents, respectively. Different nanostructures such as nanoparticles or nanotubes were obtained depending on the CNT added, and characterized by scanning electron microscopy, transmission electron microscopy, UV-vis spectroscopy, infrared spectroscopy and electrochemical techniques. Spectroscopy results showed variations in the observed bands of the synthetized nanostructures attributed to changes in the molecular structures, to the state of doped PANI reached during polymerization and to the stabilization of these links by hydrogen bridge interactions. PANI and PANI-CNT composites were evaluated by electrochemical techniques to test their behavior in relation to supercapacitors properties. PANI-CNTf nanocomposites displayed improved capacitive properties in H2SO4 solutions, namely 1744 F g-1at 2 A g-1. Also, the specific capacitance was strongly influenced by the developed morphologies. These characteristics point to their feasible application as supercapacitors materials.

  12. Activated polyaniline-based carbon nanoparticles for high performance supercapacitors

    International Nuclear Information System (INIS)

    Zhou, Jin; Zhu, Tingting; Xing, Wei; Li, Zhaohui; Shen, Honglong; Zhuo, Shuping

    2015-01-01

    Polyaniline (PANI) nanoparticles have been prepared by disperse polymerization of aniline in the presence of poly(4-styrenesulfonate). The PANI nanoparticles are further subjected to pyrolysis treatment and chemical-activation to prepare the activated nitrogen-doped carbon nanoparticles (APCNs). The porosity, structure and nitrogen-doped surface chemistry are analyzed by a varies of means, such as scanning electron microscopy, transition electron microscopy, N 2 sorption, X-ray diffraction and X-ray photoelectron spectroscopy. The capacitive performance of the APCNs materials are test in 6 M KOH electrolyte. Benefitting from the abundant micropores with short length, large specific surface area, hierarchical porosity and heteroatom-doped polar pore surface, the APCNs materials exhibit v exhibit very high specific capacitance up to 341 F g −1 , remarkable power capability and excellent long-term cyclic stability (96.6% after 10 000 cycles). At 40 A g −1 , APCN-2 carbon shows a capacitance of 164 F g −1 , responding to a high energy and power densities of 5.7 Wh kg −1 and 10 000 W kg −1

  13. Synthesis of fly ash cenosphere/polyaniline and mullite/polyaniline core–shell composites

    International Nuclear Information System (INIS)

    Wang, Wei; Li, Qin; Wang, Bing; Xu, Xiao-Tian; Zhai, Jian-Ping

    2012-01-01

    The fly ash cenospheres (FACs) were pretreated with γ-aminopropyltriethoxy silane (APS), and the outward amino groups are favorable to the following in situ growth of polyaniline as a conducting polymer layer on the surfaces of FACs to form FAC/polyaniline core–shell structural composites. Mullite/polyaniline composites were also fabricated by further converting the FACs to mullite. The as-prepared samples were characterized by zeta potential measurements, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, as well as thermogravimetric analyses. The results of this study indicate that FACs can be successfully modified by APS, and that due to the action of APS, uniform and continuous polymer layer in the FAC/polyaniline composites was obtained under the given in situ polymerization condition. After dipping in 2.0% HF solution for 1h, the FAC cores changed into porous mullite so as to prepare mullite/polyaniline composites. -- Highlights: ► Silane agent is used for effective adhesion between fly ash cenospheres and polyaniline. ► The FAC/polyaniline core–shell composite is fabricated. ► The mullite/polyaniline composites with a porous core structure is also prepared. ► Dipping in 2.0% HF solution for 1h, the FAC cores changed into porous mullite.

  14. Electrorheology of polyaniline, carbonized polyaniline, and their core-shell composites

    Czech Academy of Sciences Publication Activity Database

    Sedlacik, M.; Pavlinek, V.; Mrlik, M.; Morávková, Zuzana; Hajná, Milena; Trchová, Miroslava; Stejskal, Jaroslav

    2013-01-01

    Roč. 101, 15 June (2013), s. 90-92 ISSN 0167-577X R&D Projects: GA ČR GA202/09/1626 Institutional support: RVO:61389013 Keywords : polyaniline * carbonization * carbonized polyaniline Subject RIV: BK - Fluid Dynamics Impact factor: 2.269, year: 2013

  15. Oxidatively stable polyaniline:polyacid electrodes for electrochemical energy storage.

    Science.gov (United States)

    Jeon, Ju-Won; Ma, Yuguang; Mike, Jared F; Shao, Lin; Balbuena, Perla B; Lutkenhaus, Jodie L

    2013-06-28

    Conjugated polymers, such as polyaniline, have been widely explored as sensors, electrodes, and conductive fillers. As an electrode material in electrochemical energy storage systems, polyaniline can be subject to irreversible oxidation that reduces cycle life and electrode capacity, thus, limiting its widespread application. Here we present a simple route to produce and prepare polyaniline-based electrodes that are oxidatively stable up to 4.5 V vs. Li/Li(+). The route uses a polyacid to stabilize the fully oxidized pernigraniline salt form of polyaniline, which is normally highly unstable as a homopolymer. The result is an organic electrode of exceptionally high capacity, energy density, power density, and cycle life. We demonstrate that the polyaniline:polyacid electrode stores 230 mA h g(-1) of polyaniline for over 800 cycles, far surpassing homopolymer polyaniline under equivalent conditions. This approach provides a highly stable, electrochemically reversible replacement for conventional polyaniline.

  16. Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing.

    Science.gov (United States)

    Song, Edward; Choi, Jin-Woo

    2013-08-07

    One dimensional polyaniline nanowire is an electrically conducting polymer that can be used as an active layer for sensors whose conductivity change can be used to detect chemical or biological species. In this review, the basic properties of polyaniline nanowires including chemical structures, redox chemistry, and method of synthesis are discussed. A comprehensive literature survey on chemiresistive/conductometric sensors based on polyaniline nanowires is presented and recent developments in polyaniline nanowire-based sensors are summarized. Finally, the current limitations and the future prospect of polyaniline nanowires are discussed.

  17. Gamma- and electron dose response of the electrical conductivity of polyaniline based polymer blends

    International Nuclear Information System (INIS)

    Sevil, U.A.; Gueven, O.; Slezsak, I.

    2002-01-01

    Complete text of publication follows. Conducting polymers, also known as 'synthetic metals' have been the subject of widespread investigations over the past decade due to their very promising characteristics. Polyaniline (PANI) holds a special position among conducting polymers in that its most highly conducting doped form can be reached by protonic acid doping or oxidative doping. It was published earlier, that the electrical conductivity of some polyaniline based polymer composites increases to a significant extent when irradiated to gamma, electron or UV radiation. The aim of the present study was to measure the high frequency conductivity of blended films of PANI with poly(vinylchloride), PVC, and chlorinated poly(propylene) irradiated in air to different doses. In order to find the most suitable composition od these composites the mass percentage of PANI within the PPCl and PVC matrix was changed between 5 - 30%. These samples were then gamma irradiated and the induced electrical conductivity was measured in the 1 kHz - 1 MHz frequency range to determine the most sensitive evaluation conditions. After selecting both the most suitable measuring conditions as well as the blend compositions the dose response of the chosen samples was determined in the dose range of 10 - 250 kGy. With respect to potential dosimetry application the effect of electron irradiation, the effect of irradiation temperature and the stability of the irradiated samples have also been investigated

  18. Blood coagulation and platelet adhesion on polyaniline films.

    Science.gov (United States)

    Humpolíček, Petr; Kuceková, Zdenka; Kašpárková, Věra; Pelková, Jana; Modic, Martina; Junkar, Ita; Trchová, Miroslava; Bober, Patrycja; Stejskal, Jaroslav; Lehocký, Marián

    2015-09-01

    Polyaniline is a promising conducting polymer with still increasing application potential in biomedicine. Its surface modification can be an efficient way how to introduce desired functional groups and to control its properties while keeping the bulk characteristics of the material unchanged. The purpose of the study was to synthetize thin films of pristine conducting polyaniline hydrochloride, non-conducting polyaniline base and polyaniline modified with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA) and investigate chosen parameters of their hemocompatibility. The modification was performed either by introduction of PAMPSA during the synthesis or by reprotonation of polyaniline base. The polyaniline hydrochloride and polyaniline base had no impact on blood coagulation and platelet adhesion. By contrast, the polyaniline reprotonated with PAMPSA completely hindered coagulation thanks to its interaction with coagulation factors Xa, Va and IIa. The significantly lower platelets adhesion was also found on this surface. Moreover, this film maintains its conductivity at pH of 6, which is an improvement in comparison with standard polyaniline hydrochloride losing most of its conductivity at pH of 4. Polyaniline film with PAMPSA introduced during synthesis had an impact on platelet adhesion but not on coagulation. The combined conductivity, anticoagulation activity, low platelet adhesion and improved conductivity at pH closer to physiological, open up new possibilities for application of polyaniline reprotonated by PAMPSA in blood-contacting devices, such as catheters or blood vessel grafts. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Small Angle Neutron Scattering (SANS) characterization of electrically conducting polyaniline nanofiber/polyimide nanocomposites

    International Nuclear Information System (INIS)

    Hopkins, Alan R.; Tomczak, Sandra J.; Vij, Vandana; Jackson, Andrew J.

    2011-01-01

    Nanocomposites of polyaniline nanofibers and polyimide were fabricated and studied using small angle neutron scattering (SANS). The immiscible nature of the conformationally dissimilar polyaniline nanofiber and polyimide host is established by a series of experiments involving neutron scattering. Based on these techniques, we conclude that the crystal structure of the polyimides is not disrupted, and that there is no mixing between the two components on a molecular level. The morphology of the conducting salt component was analyzed by SANS data and was treated by two common models: Debye–Bueche (D–B) and inverse power law (IPL). Due to deviations in the linear curve fitting over a large scattering range, neither the D-B nor the IPL model could be used to characterize the size and shape of all PANI-0.5-CSA (polyaniline camphor sulfonic acid doped polymer)/polyimide blend systems. At 1 and 2% concentration, the D–B model suggested salt domains between 20 and 70 Å with fractal geometries implied by the IPL model. As salt concentrations increased to 5%, the structures were observed to change, but there is no simple structural model that provides a suitable basis for comparison.

  20. Small Angle Neutron Scattering (SANS) characterization of electrically conducting polyaniline nanofiber/polyimide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Alan R., E-mail: alan.r.hopkins@aero.org [Aerospace Corporation, Space Materials Lab, Micro/Nano Technology Dept, Polymers Section, M2/242, Los Angeles, CA 90009-2957 (United States); Tomczak, Sandra J. [AFRL/RZSM Materials Application Branch, Space and Missile Propulsion Division 10 East Saturn Blvd., Bldg. 8451, Edwards Air Force Base, CA 93524 (United States); Vij, Vandana [ERC. Inc., AFRL/PRSM, Edwards AFB, CA (United States); Jackson, Andrew J. [National Institute of Standards and Technology (NIST) Center for Neutron Research, 100 Bureau Drive, Stop 6102, Gaithersburg, MD 20899-6102 (United States)

    2011-12-30

    Nanocomposites of polyaniline nanofibers and polyimide were fabricated and studied using small angle neutron scattering (SANS). The immiscible nature of the conformationally dissimilar polyaniline nanofiber and polyimide host is established by a series of experiments involving neutron scattering. Based on these techniques, we conclude that the crystal structure of the polyimides is not disrupted, and that there is no mixing between the two components on a molecular level. The morphology of the conducting salt component was analyzed by SANS data and was treated by two common models: Debye-Bueche (D-B) and inverse power law (IPL). Due to deviations in the linear curve fitting over a large scattering range, neither the D-B nor the IPL model could be used to characterize the size and shape of all PANI-0.5-CSA (polyaniline camphor sulfonic acid doped polymer)/polyimide blend systems. At 1 and 2% concentration, the D-B model suggested salt domains between 20 and 70 A with fractal geometries implied by the IPL model. As salt concentrations increased to 5%, the structures were observed to change, but there is no simple structural model that provides a suitable basis for comparison.

  1. High thermoelectric figure of merit in nanocrystalline polyaniline at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Chandrani; Kumar, Ashok, E-mail: ask@tezu.ernet.in, E-mail: okram@csr.res.in [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784 028 (India); Kuo, Yung-Kang [Department of Physics, National Dong-Hwa University, Hualien 974, Taiwan (China); Okram, Gunadhor Singh, E-mail: ask@tezu.ernet.in, E-mail: okram@csr.res.in [Electrical Transport Laboratory, UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India)

    2014-09-29

    Thermoelectric coolers with figure of merit (ZT) close to unity at low temperatures are the need of the hour with new advances in high temperature superconductors, superconducting microelectronic circuits, quantum computers, and photonics. Here, we demonstrate that the conducting polymer polyaniline (Pani) doped with camphor sulfonic acid synthesized in semi-crystalline nanostructures, possesses a giant Seebeck effect at low temperatures. The resulting enormously large Seebeck coefficient (up to 0.6 V/K) combined with an intrinsically low electrical conductivity and thermal conductivity give rise to a ZT = 0.77 at 45 K and ZT = 2.17 at 17 K.

  2. polyaniline

    Indian Academy of Sciences (India)

    Administrator

    ; AC conductivity. 1. Introduction. In recent times, conjugated polymers have been recog- nized as an attractive area of research interest among research community due to its salient features for electri- cal, optical and thermal properties.

  3. Role of mesoscopic morphology in charge transport of doped ...

    Indian Academy of Sciences (India)

    In doped polyaniline (PANI), the charge transport properties are determined by mesoscopic morphology, which in turn is controlled by the molecular recognition interactions among polymer chain, dopant and solvent. Molecular recognition plays a significant role in chain conformation and charge delocalization.

  4. Role of mesoscopic morphology in charge transport of doped ...

    Indian Academy of Sciences (India)

    Abstract. In doped polyaniline (PANI), the charge transport properties are determined by meso- scopic morphology, which in turn is controlled by the molecular recognition interactions among polymer chain, dopant and solvent. Molecular recognition plays a significant role in chain confor- mation and charge delocalization.

  5. Ionic liquid – Assisted emulsion polymerization of aniline in organic medium

    Energy Technology Data Exchange (ETDEWEB)

    Calheiros, Loan F. [Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas, 21941-598, Rio de Janeiro (Brazil); Soares, Bluma G., E-mail: bluma@metalmat.ufrj.br [Universidade Federal do Rio de Janeiro, PEMM-COPPE, Centro de Tecnologia, 21941-972, Rio de Janeiro (Brazil); Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas, 21941-598, Rio de Janeiro (Brazil); Barra, Guilherme M.O. [Universidade Federal de Santa Catarina, Mechanical Engineering Department, Florianópolis, SC (Brazil); Livi, Sébastien [Université de Lyon, F-69003, Lyon (France); INSA Lyon, F-69621, Villeurbanne (France); CNRS, UMR 5223, Ingénierie des Matériaux Polymères (France)

    2016-08-15

    Polyaniline doped with dodecylbenzene sulfonic acid (PAni.DBSA) with different conductivities and morphologies was prepared by inverted emulsion polymerization, in toluene using ammonium peroxydisulfate as the oxidizing agent, in the presence of two different imidazolium – based ionic liquids, such as, 1-methyl-3-butyl imidazolium tetrafluorate (bmim.BF{sub 4}) and 1-(11-carboxyundecyl)-3-methylimidazolium bromide (mimC{sub 10}COOH.Br). The influence of ionic liquid on the morphology and particle size of formed PAni.DBSA samples was investigated by field emission - scanning electron microscopy (FEG-SEM) and dynamic light scattering (DLS) measurements. Ultraviolet–visible measurements were also employed to confirm the structure of the conducting polymer. PAni.DBSA samples were also characterized by thermogravimetric analysis, cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). PAni.DBSA samples prepared in the presence of ionic liquids have shown improved dispersability in epoxy resin as indicated by optical micrograph. - Highlights: • Imidazolium-based ionic liquids as soft templates for polyaniline synthesis. • PAni with higher conductivity and different morphologies was achieved in the presence of IL. • Good IL/aniline salt interaction resulted in confinement inside PAni particles. • IL confinement confirmed by TGA and XPS analyses. • Excellent dispersability of PAni. DBSA prepared with ionic liquids, in epoxy matrix.

  6. Stem cell differentiation on conducting polyaniline

    Czech Academy of Sciences Publication Activity Database

    Humpolíček, P.; Radaszkiewicz, K. A.; Kašpárková, V.; Stejskal, Jaroslav; Trchová, Miroslava; Kuceková, Z.; Vičarová, H.; Pacherník, Jiří; Lehocký, M.; Minařík, A.

    2015-01-01

    Roč. 5, č. 84 (2015), s. 68796-68805 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 ; RVO:68081707 Keywords : conducting polymer * polyaniline * biocompatibility Subject RIV: CD - Macromolecular Chemistry; BO - Biophysics (BFU-R) Impact factor: 3.289, year: 2015

  7. Polyaniline prepared in ethylene glycol or glycerol

    Czech Academy of Sciences Publication Activity Database

    Konyushenko, Elena; Reynaud, S.; Pellerin, V.; Trchová, Miroslava; Stejskal, Jaroslav; Sapurina, I.

    2011-01-01

    Roč. 52, č. 9 (2011), s. 1900-1907 ISSN 0032-3861 R&D Projects: GA AV ČR IAA400500905; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.438, year: 2011

  8. Influence of conductive electroactive polymer polyaniline on ...

    Indian Academy of Sciences (India)

    †Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208 016, India. MS received 14 April 2012; revised 2 August 2012. Abstract. Conductive electroactive polymer polyaniline is utilized to substitute conductive additive acetylene black in the LiMn1·95Al0·05O4 cathode for lithium ion ...

  9. Antibacterial properties of polyaniline-silver films

    Czech Academy of Sciences Publication Activity Database

    Kuceková, Z.; Kašpárková, V.; Humpolíček, P.; Ševčíková, P.; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1103-1108 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : polyaniline * silver * antibacterial properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.193, year: 2013

  10. Investigation of electrochemical actuation by polyaniline nanofibers

    Science.gov (United States)

    Mehraeen, Shayan; Alkan Gürsel, Selmiye; Papila, Melih; Çakmak Cebeci, Fevzi

    2017-09-01

    Polyaniline nanofibers have shown promising electrical and electrochemical properties which make them prominent candidates in the development of smart systems employing sensors and actuators. Their electrochemical actuation potential is demonstrated in this study. A trilayer composite actuator based on polyaniline nanofibers was designed and fabricated. Cross-linked polyvinyl alcohol was sandwiched between two polyaniline nanofibrous electrodes as ion-containing electrolyte gel. First, electrochemical behavior of a single electrode was studied, showing reversible redox peak pairs in 1 M HCl using a cyclic voltammetry technique. High aspect ratio polyaniline nanofibers create a porous network which facilitates ion diffusion and thus accelerates redox reactions. Bending displacement of the prepared trilayer actuator was then tested and reported under an AC potential stimulation as low as 0.5 V in a variety of frequencies from 50 to 1000 mHz, both inside 1 M HCl solution and in air. Decay of performance of the composite actuator in air is investigated and it is reported that tip displacement in a solution was stable and repeatable for 1000 s in all selected frequencies.

  11. Influence of conductive electroactive polymer polyaniline on ...

    Indian Academy of Sciences (India)

    Lithium ion batteries; polyaniline; LiMn1·95Al0·05O4; percolation theory; electrochemical performances. 1. ... silver (Son et al 2004; Zhou et al 2008), aluminum (Li and ... C for 12 h in air. Conduc- tive electroactive polymer, PAn, was synthesized by a chemi- cal oxidative method as described elsewhere (Fan et al. 2011).

  12. Polyaniline. Thin films and colloidal dispersions

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Sapurina, I.

    2005-01-01

    Roč. 77, č. 5 (2005), s. 815-826 ISSN 0033-4545 R&D Projects: GA MŠk ME 539; GA AV ČR IAA4050313 Grant - others:IUPAC project 2002-019-1-400 Keywords : polyaniline * thin films * dispersions Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.679, year: 2005

  13. Organic nanocolloidal polyaniline dispersions containing fullerene

    Czech Academy of Sciences Publication Activity Database

    Sapurina, I. Yu.; Stejskal, Jaroslav; Trchová, Miroslava; Hlavatá, Drahomíra; Biryulin, Yu.

    2006-01-01

    Roč. 14, 2-3 (2006), s. 447-455 ISSN 1536-383X R&D Projects: GA AV ČR IAA4050313; GA AV ČR IAA400500504 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * fullerene * nanostructure Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.462, year: 2006

  14. Effect of iodine solutions on polyaniline films

    Czech Academy of Sciences Publication Activity Database

    Ayad, M. M.; Amer, W. A.; Stejskal, Jaroslav

    2009-01-01

    Roč. 517, č. 21 (2009), s. 5969-5973 ISSN 0040-6090 R&D Projects: GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * films * quartz-crystal microbalance Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.727, year: 2009

  15. Preparation of maghemite and polyaniline nanocomposites assisted by ultrasound; Preparo de nanocompositos de maghemita e polianilina assistido por ultrassom

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Renata Cerruti da; Souza Junior, Fernando Gomes de, E-mail: fernando_gomes@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Macromoleculas Professora Eloisa Mano. Lab. de Biopolimeros e Sensores

    2014-06-01

    The study of systems constituted by iron oxide nanoparticles and polyaniline has increased in the last years. However, few studies are related to the sonication effect on the preparation of these hybrid materials. In this work the effect of sonication on the properties of maghemite/polyaniline hybrids was studied using experimental design techniques. The materials obtained were studied by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. Samples were also characterized by measuring the electric resistivity and by magnetic force tests. Obtained results show that the increase of the sonication power produces the increase of the doping process and the decrease of the electrical resistivity. The same sonication power produced the destruction of a large amount of the maghemite, leading to lower magnetic forces. (author)

  16. Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing

    OpenAIRE

    Song, Edward; Choi, Jin-Woo

    2013-01-01

    One dimensional polyaniline nanowire is an electrically conducting polymer that can be used as an active layer for sensors whose conductivity change can be used to detect chemical or biological species. In this review, the basic properties of polyaniline nanowires including chemical structures, redox chemistry, and method of synthesis are discussed. A comprehensive literature survey on chemiresistive/conductometric sensors based on polyaniline nanowires is presented and recent developments in...

  17. Modifying sulfomethylated alkali lignin by horseradish peroxidase to improve the dispersibility and conductivity of polyaniline

    Science.gov (United States)

    Yang, Dongjie; Huang, Wenjing; Qiu, Xueqing; Lou, Hongming; Qian, Yong

    2017-12-01

    Pine and wheat straw alkali lignin (PAL and WAL) were sulfomethylated to improve water solubility, polymerized with horseradish peroxidase (HRP) to improve the molecular weight (Mw) and applied to dope and disperse polyaniline (PANI). The structural effect of lignin from different origins on the reactivities of sulfomethylation and HRP polymerization was investigated. The results show that WAL with less methoxyl groups and lower Mw have higher reactivity in sulfomethylation (SWAL). More phenolic hydroxyl groups and lower Mw benefit the HRP polymerization of sulfomethylated PAL (SPAL). Due to the natural three-dimensional aromatic structure and introduced sulfonic groups, SPAL and SWAL could effectively dope and disperse PANI in water by π-π stacking and electrostatic interaction. HRP modified SPAL (HRP-SPAL) with much higher sulfonation degree and larger Mw significantly increased the conductivity and dispersibility of lignin/PANI composites.

  18. Optical and Electrical Studies of Polyaniline/ZnO Nanocomposite

    Directory of Open Access Journals (Sweden)

    Manawwer Alam

    2013-01-01

    Full Text Available Polyaniline (Pani/ZnO nanocomposite with diameter 40–50 nm was successfully fabricated by coprecipitation method of ZnO via in situ polymerization of Pani. X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, fourier transformation infrared (FT-IR, UV-Vis absorption spectra, thermogravimetric analysis (TGA, and electrical properties were studied. HRTEM studies showed that the prepared ZnO nanoparticles were uniformly dispersed and highly stabilized throughout the polymer chain and formed uniform metal oxide-conducting polymer nanocomposite material. UV-Vis spectra of Pani/ZnO nanocomposite were studied to investigate the optical behavior after doping the ZnO nanoparticle into the polymer matrix. The inclusion of ZnO nanoparticle gives rise to the red shift of π-π* transition of Pani. The nanocomposite was found to be thermally stable upto 130°C and showed conductivity value of 3.0×10−2 Scm−1.

  19. Visible luminescence in polyaniline/(gold nanoparticle) composites

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Renata F. S. [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Santos, Clecio G. dos [Instituto de Educacao, Ciencia e Tecnologia de Pernambuco (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil)

    2013-01-15

    We describe the use of solution chemistry methods to prepare polyaniline/(gold nanoparticles)-PANI/AuNPs-composites as colloidal particles that exhibit an intense green fluorescence after excitation in the ultraviolet region. Measurements of the relative fluorescence quantum yield indicate that the intensity of the observed luminescence of these nanocomposites is a few orders of magnitude higher than the corresponding fluorescence of either the isolated polymer or the pure AuNPs. Hence, cooperative effects between the conducting polymer chains and the metallic particles must dominate the emission behavior of these materials. Transmission electron microscopy reveals the existence of metal nanoparticle aggregates with sizes in the 2-3 nm range dispersed in the polymer matrix. By implementing an experimental planning, we have been able to change the preparation parameters so as to vary in a controlled manner the intensity and the profile of the luminescence spectrum as well as the size and aggregation characteristics of the colloidal particles. We also show that when the pH of the medium is varied, the dielectric properties (such as the degree of conductivity) of the PANI/AuNPs colloidal solutions and the intensity of their luminescence change in a consistent manner. Due to the polycation nature of the doped PANI chains, we suggest that these composites may find interesting applications as fluorescent markers of biologic molecules.

  20. Polyaniline/Carbon nanotube Electrochromic Films: Electrochemical Polymerization and characterization

    Science.gov (United States)

    Li, Xiao-Xia; Zhao, Liang; Ma, De-Yue; Zeng, Yu-Run

    2018-02-01

    Polyaniline/Carbon nanotube (PANI/CNT) composite films doped with dodecyl-benzene sulfonic acid were synthesized by cyclic voltammetry on an ITO-coated glass substrate. FTIR, XRD and electrochemical analyzer were used to characterize the micro-morphology, chemical structure, crystallinity and electrochromic behavior of the films, respectively. The effect of CNT content on the properties of the films was investigated. Results show that the introducing CNTs make aniline polymerize easier than before. Within a range, the conductivity and crystallinity of PANI/CNT composites improves with CNT content increasing. The electrochromic device made from the PAN/CNT film with a CNT content of 2.5wt% presents a reflectance contrast of 38.8%, a mean response time of 2.3s and a coloration efficiency of 386.4cm2/C at 540nm. The PAN/CNT film shows better electrochromic behaviors due to some interaction between CNTs and the PANI backbones than PANI film.

  1. Adsorption of Chromium from Aqueous Solution Using Polyaniline

    Directory of Open Access Journals (Sweden)

    Majid Riahi Samani

    2011-10-01

    Full Text Available New group of polymers have been synthesized that are conductive of electricity so they are called conducting polymers. One of the most conducting polymers is "polyaniline". In the present study, polyaniline was synthesized by oxidizing aniline monomer under strongly acidic conditions using potassium iodate as an initiator of oxidative polymerization. Synthesized polyaniline as a powder used as an adsorbent to remove chromium from aqueous solution. Experiments were conducted in batch mode with variables such as amount of polyaniline, chromium solution pH and adsorbtion isotherms. Due to presence of Cr (III in solution after using polyaniline, removal mechanism is the combination of surface adsorption and reduction. It seems that polyaniline reduces the Cr(VI to Cr(III and adsorbs the Cr(III and a part of remaining  Cr(VI. It is well known that nitrogen atom in compounds of amine derivative makes co-ordinate bond with positive charge of metals due to the presence of electron in sp3 orbital of nitrogen. The majority of total chromium removal  occurred at 30minute for polyaniline  and the optimum  time for  hexavalent chromium  removal was about 5 min. Polyaniline has the maximum total cheomiume removal at pH, 3-9. The maximum hexavalent chromium removal occurred at acidic pH for polyanilines. The equilibrium adsorption data for polyaniline fitted both Freundlich’s and Langmuir’s isotherms. This research shows that polyaniline can be used as an adsorbent  for removal chromium from aqueous solution.

  2. Electrical conductivity of polyaniline doped PVC–PMMA polymer ...

    Indian Academy of Sciences (India)

    (PS) and poly(methyl methacrylate) (PMMA) has already been reported ... charge current (TSDC) study of polyblends of PS and. PMMA. Belsare and ... density is, therefore, of great importance. The X-ray dif- fractogram (XRD) shows that the crystallinity is almost negligible showing the sample is amorphous. 2. Experimental.

  3. Electrical conductivity of polyaniline doped PVC–PMMA polymer

    Indian Academy of Sciences (India)

    methyl methacrylate) (PMMA) thin films has been measured by studying the – characteristics at various temperatures in the range 323–363 K. The results are presented in the form of – characteristics and analysis has been made by ...

  4. synthesis and optical characterization of acid-doped polyaniline thin ...

    African Journals Online (AJOL)

    HOD

    biological sensors, actuators, micro electronic devices, etc. It is a good material for applications in photocells, transducers, circuit boards, rechargeable batteries, .... with Silver Nanoparticles”, Advances in Materials. Physics and Chemistry,Vol. 2, pp 75-81, 2012. [5] Fernando, J., and Vedhi, C.,“Synthesis, Spectral and.

  5. Electrical conductivity of polyaniline doped PVC–PMMA polymer ...

    Indian Academy of Sciences (India)

    and sensitive methods for studying the polymer structure. (Ferraro and Walkar 1965; Kimura and Kajiwara 1998). The interest in organic and polymeric semiconductors has arisen, particularly because of their electrophotographic and solar cell applications. Many synthetic polymers (Danno et al 1983; Kumar et al 1985) like ...

  6. Studies on biphenyl disulphonic acid doped polyanilines: Synthesis ...

    Indian Academy of Sciences (India)

    zed protonic acids, such as camphorsulfonic acid, dodecyl- benzene sulfonic acid, para-toluene sulfonic acid, benzene sulfonic acid, sulfanilic acid, sulfamic acid, octyl-benzene sulfonic acid, sulfosalicylic acid or methane sulfonic acid as dopants (Epstein et al 1987; Li et al 1987; Dhawan and Trivedi 1991, 1992; Kobayashi ...

  7. Electrical conductivity of polyaniline doped PVC–PMMA polymer ...

    Indian Academy of Sciences (India)

    methyl methacrylate) (PMMA) thin films has been measured by studying the – characteristics at various temperatures in the range 323–363 K. The results are presented in the form of – characteristics and analysis has been made by ...

  8. The carbonization of thin polyaniline films

    Czech Academy of Sciences Publication Activity Database

    Morávková, Zuzana; Trchová, Miroslava; Exnerová, Milena; Stejskal, Jaroslav

    2012-01-01

    Roč. 520, č. 19 (2012), s. 6088-6094 ISSN 0040-6090 R&D Projects: GA AV ČR IAA400500905; GA AV ČR IAA100500902; GA ČR GAP205/12/0911 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : polyaniline * thin films * infrared spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.604, year: 2012

  9. Influence of conductive electroactive polymer polyaniline on ...

    Indian Academy of Sciences (India)

    Conductive electroactive polymer polyaniline is utilized to substitute conductive additive acetylene black in the LiMn1.95Al0.05O4 cathode for lithium ion batteries. Results show that LiMn1.95Al0.05O4 possesses stable structure and good performance. Percolation theory is used to optimize the content of conductive additive ...

  10. FTIR study of polyaniline-fullerene complex

    Czech Academy of Sciences Publication Activity Database

    Trchová, M.; Sapurina, I.; Hlavatá, Drahomíra; Prokeš, J.; Stejskal, Jaroslav

    2001-01-01

    Roč. 121, 1-3 (2001), s. 1117-1118 ISSN 0379-6779. [International Conference on Science and Technology of Synthetic Metals. Gastein, 15.07.2000-21.07.2000] R&D Projects: GA AV ČR IAA4050907; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : infrared spectroscopy * X-ray diffraction * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.158, year: 2001

  11. Polyaniline composites with fullerene C60

    Czech Academy of Sciences Publication Activity Database

    Sapurina, I. Yu.; Gribanov, A. V.; Mokeev, M. V.; Zgonnik, V. N.; Trchová, M.; Stejskal, Jaroslav

    2002-01-01

    Roč. 44, č. 3 (2002), s. 574-575 ISSN 1063-7834. [International Workshop: Fullerenes and Atomic Clusters /5./. St. Petersburg, 02.06.2001-06.06.2001] R&D Projects: GA ČR GA202/02/0698; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : polyaniline-fullerene composites Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.600, year: 2002

  12. Partially sulfonated polyaniline: conductivity and spectroscopic study

    Czech Academy of Sciences Publication Activity Database

    Bláha, Michal; Suchánková, A.; Watzlová, E.; Prokeš, J.; Pop-Georgievski, Ognen

    2017-01-01

    Roč. 71, č. 2 (2017), s. 329-338 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-00270S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : polyaniline * aniline * orthanilic acid Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  13. The reaction of polyaniline with iodine

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava; Blinova, Natalia V.; Konyushenko, Elena; Reynaud, S.; Prokeš, J.

    2008-01-01

    Roč. 49, č. 1 (2008), s. 180-185 ISSN 0032-3861 R&D Projects: GA MŠk ME 847; GA AV ČR IAA4050313; GA AV ČR IAA400500504 Grant - others:Eco-net project(FR) 16256SA Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * iodine Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.331, year: 2008

  14. UV Light Induces Dedoping of Polyaniline

    Directory of Open Access Journals (Sweden)

    Yuki Kaitsuka

    2016-01-01

    Full Text Available UV (Ultra-Violet light-driven change in optical absorption of polyaniline (PANI is reported. Irradiation of UV light to PANI/camphor sulfonic acid prepared by electrochemical polymerization allows dedoping of the PANI. Especially, UV light irradiation in the presence of a radical trap agent effectively reduces (dedoping the PANI. The result in this study is quite simple; however, this may be a first report for light-induced dedoping (color change of a conductive polymer.

  15. Polyaniline-based optical ammonia detector

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2002-01-01

    Electronic absorption spectroscopy of a polyaniline film deposited on a polyethylene surface by chemical oxidation of aniline monomer at room temperature was used to quantitatively detect ammonia gas. The present optical ammonia gas detector was found to have a response time of less than 15 s, a regeneration time of less than 2 min. at room temperature, and a detection limit of 1 ppm (v/v) for ammonia, with a linear dynamic range from 180 ppm to 18,000 ppm.

  16. Humidity sensing behaviour of polyaniline/magnesium chromate ...

    Indian Academy of Sciences (India)

    'in situ' polymerization of polyaniline (PANI) was carried out in the presence of magnesium chromate (MgCrO4) to synthesize PANI/ceramic (MgCrO4) composite. These prepared composites were characterized by XRD, FTIR and SEM, which confirm the presence of MgCrO4 in polyaniline matrix. The temperature ...

  17. Flexible diode of polyaniline/ITO heterojunction on PET substrate

    Science.gov (United States)

    Bera, A.; Deb, K.; Kathirvel, V.; Bera, T.; Thapa, R.; Saha, B.

    2017-10-01

    Hybrid organic-inorganic heterojunction between polyaniline and ITO film coated on flexible polyethylene terephthalate (PET) substrate has been prepared through vapor phase polymerization process. Polaron and bipolaron like defect states induced hole transport and exceptional mobility makes polyaniline a noble hole transport layer. Thus a p-n junction has been obtained between the hole transport layer of polyaniline and highly conductive n-type layer of ITO film. The synthesis process was carried out using FeCl3 as polymerizing agent in the oxidative chemical polymerization process. The prepared polyaniline has been found to be crystalline on characterization through X-ray diffraction measurement. X-ray photoelectron spectroscopic measurements were done for compositional analysis of the prepared film. The UV-vis-NIR absorbance spectra obtained for polyaniline shows the characteristics absorbance as observed for highly conductive polyaniline and confirms the occurrence of partially oxidized emeraldine form of polyaniline. The energy band gap of the polyaniline has been obtained as 2.52 eV, by analyzing the optical transmittance spectra. A rectifying behavior has been observed in the electrical J-V plot, which is of great significance in designing polymer based flexible electronic devices.

  18. Adsorption and reduction: combined effect of polyaniline emeraldine ...

    Indian Academy of Sciences (India)

    Distilled water was used for all the experiments. 2.2 Synthesis of polyaniline. Polyaniline emeraldine salt (PANI (ES)) was synthesized by chemical oxidative polymerization method. In this method,. 5 g aniline was dissolved in 150 ml of 1 HCl and stirred in an ice bath for 1 h. 12.25 g APS was dissolved in 50 ml of 1 M HCl.

  19. Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava; Brožová, Libuše; Prokeš, J.

    2009-01-01

    Roč. 63, č. 1 (2009), s. 77-83 ISSN 0366-6352 R&D Projects: GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * conductivity * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.791, year: 2009

  20. The reduction of silver nitrate with various polyaniline salts to polyaniline-silver composites

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava; Kovářová, Jana; Brožová, Libuše; Prokeš, J.

    2009-01-01

    Roč. 69, č. 2 (2009), s. 86-90 ISSN 1381-5148 R&D Projects: GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * silver Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.461, year: 2009

  1. Novel function of polyaniline for biological environments: Cultivation of paramecium in the presence of polyaniline

    Science.gov (United States)

    Goto, Hiromasa

    2014-03-01

    The reduced form of polyaniline (PANI, emeraldine base) functions as water purification to extend the lives of paramecia. The emeraldine base can absorb discharged waste from the planktons such as nitrogenous compounds and salts. This is a new function of π-conjugated polymers for micro-organisms.

  2. Novel function of polyaniline for biological environments: Cultivation of paramecium in the presence of polyaniline

    International Nuclear Information System (INIS)

    Goto, Hiromasa

    2014-01-01

    The reduced form of polyaniline (PANI, emeraldine base) functions as water purification to extend the lives of paramecia. The emeraldine base can absorb discharged waste from the planktons such as nitrogenous compounds and salts. This is a new function of π-conjugated polymers for micro-organisms

  3. Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing

    Czech Academy of Sciences Publication Activity Database

    Lobotka, P.; Kunzo, P.; Kováčová, E.; Vávra, I.; Križanová, O.; Smatko, V.; Stejskal, Jaroslav; Konyushenko, Elena; Omastová, M.; Špitálský, Z.; Mičušík, M.; Krupa, I.

    2011-01-01

    Roč. 519, č. 12 (2011), s. 4123-4127 ISSN 0040-6090 Institutional research plan: CEZ:AV0Z40500505 Keywords : gas sensor * polyaniline thin film * nanocomposite Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.890, year: 2011

  4. Effect of dopant ions on piezo-response of polyaniline-poly(vinylidine flouride) blends

    Science.gov (United States)

    Radhakrishnan, S.; Kar, Swarendu B.

    2002-11-01

    Electromechanical sensors and actuators are important for robotic and aerospace applications. Among various material, poly(vinylidene fluoride) ir its co-polymers are known to exhibit high piezosensitivity. However, due to their higher electrical resistivity the input impedance of subsequent signal processign circuits is required to be very high. A novel technique to decrease the impedance would be blending PVDF with conducting polyaniline (PANI) but without affecting the piezosensitivyt of PVDF. Polyaniline (PANI) was synthesized by well known standard chemical route using dopants HCl and dodecyl benzene sulfonic acid. These PANI powder were blended with PVDF which was first dissolved in DMAc at 50 degrees C to which were added requisite amounts of two types of PANI ranging from 2 to 25 wt percent, stirred for 24 hours to form a homogeneous mixture which was cast in glass petri-dish, followed by complete solvent evaporation at 50 degrees C and then drying under vacuum for 24 hours to give films of PANI-PVDF blends. The piezo-sensitivity of these blends was measured before and after poling in electrical field. The sensitivity factor was dependent on the composition, type of dopant as well as the electric polarization of the blend. The HCl doped PANI blends in PVDF were highly piezo-sensitive than other blend compositions. These various results have been explained on the basis of compatibility, discrete domain formation, nonlinear conduction process for charge transport, orientation of dipoles, and trapping of space charge at inter-domain sites.

  5. Dielectric and conductivity properties of composite polyaniline/polyurethane network

    Science.gov (United States)

    Liang, C.; Gest, J.; Leroy, G.; Carru, J.-C.

    2013-09-01

    In this work, we present the dielectric characterization of polyaniline/polyurethane composite. The samples consisting of 0.5%, 1%, and 5% of polyaniline were deposited on glass fiber, and the measurements were performed in a frequency range of 20 Hz to 20 GHz. The results showed a dielectric relaxation strongly dependent on the concentration of polyaniline. This phenomenon is explained by a theoretical model. In this model, we assume that the alternative conductivity of the polymer network systems is due to conducting clusters whose lengths followed a Gaussian distribution. Depending on their size and the frequency of the excitation signal, the clusters showed a resistive or capacitive effect.

  6. Immobilization of Peroxidase onto Magnetite Modified Polyaniline

    Directory of Open Access Journals (Sweden)

    Eduardo Fernandes Barbosa

    2012-01-01

    Full Text Available The present study describes the immobilization of horseradish peroxidase (HRP on magnetite-modified polyaniline (PANImG activated with glutaraldehyde. After the optimization of the methodology, the immobilization of HRP on PANImG produced the same yield (25% obtained for PANIG with an efficiency of 100% (active protein. The optimum pH for immobilization was displaced by the effect of the partition of protons produced in the microenvironment by the magnetite. The tests of repeated use have shown that PANImG-HRP can be used for 13 cycles with maintenance of 50% of the initial activity.

  7. Biolithography: Slime mould patterning of polyaniline

    Science.gov (United States)

    Berzina, Tatiana; Dimonte, Alice; Adamatzky, Andrew; Erokhin, Victor; Iannotta, Salvatore

    2018-03-01

    Slime mould Physarum polycephalum develops intricate patterns of protoplasmic networks when foraging on a non-nutrient substrates. The networks are optimised for spanning larger spaces with minimum body mass and for quick transfer of nutrients and metabolites inside the slime mould's body. We hybridise the slime mould's networks with conductive polymer polyaniline and thus produce micro-patterns of conductive networks. This unconventional lithographic method opens new perspectives in development of living technology devices, biocompatible non-silicon hardware for applications in integrated circuits, bioelectronics, and biosensing.

  8. Immobilization of Peroxidase onto Magnetite Modified Polyaniline

    Science.gov (United States)

    Barbosa, Eduardo Fernandes; Molina, Fernando Javier; Lopes, Flavio Marques; García-Ruíz, Pedro Antonio; Caramori, Samantha Salomão; Fernandes, Kátia Flávia

    2012-01-01

    The present study describes the immobilization of horseradish peroxidase (HRP) on magnetite-modified polyaniline (PANImG) activated with glutaraldehyde. After the optimization of the methodology, the immobilization of HRP on PANImG produced the same yield (25%) obtained for PANIG with an efficiency of 100% (active protein). The optimum pH for immobilization was displaced by the effect of the partition of protons produced in the microenvironment by the magnetite. The tests of repeated use have shown that PANImG-HRP can be used for 13 cycles with maintenance of 50% of the initial activity. PMID:22489198

  9. Electrochemical capacity fading of polyaniline electrode in supercapacitor: An XPS analysis

    Directory of Open Access Journals (Sweden)

    Jinxing Deng

    2017-04-01

    Full Text Available To understand the electrochemical capacity fading of the polyaniline (PANI electrodes in supercapacitors, for the first time, their chemical structure change during electrochemical cycles was traced with XPS analysis after the HCl doped PANI electrodes were subjected to the cyclic voltammetry test in 1.0 M H2SO4 electrolyte for different cycle numbers. The results showed that the chlorine disappeared in the electrode surface, while the surface element contents of sulfur and oxygen increased with the electrochemical cycles increased. It demonstrated that the hydrolytic degradation of the PANI chains and exchange of dopant occurred during the electrochemical cycling, causing the fading in the mechanical and electrochemical performance of the PANI electrodes. This understanding should lead to better design of the conductive polymer-based energy storage devices.

  10. Green Synthesis of Novel Polyaniline Nanofibers: Application in pH Sensing

    Directory of Open Access Journals (Sweden)

    Shivani Tanwar

    2015-10-01

    Full Text Available An optically active polyaniline nanomaterial (PANI-Nap, doped with (S-naproxen, was developed and evaluated as a potent pH sensor. We synthesized the material in one pot by the addition of the dopant, (S-naproxen, prior to polymerization, followed by the addition of the oxidizing agent (ammonium persulfate that causes polymerization of the aniline. This green chemistry approach allowed us to take only 1 h to produce a water-soluble and stable nanomaterial. UV-visible spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray photoelectron spectroscopy (XPS were used to characterize the designed nanomaterial. This nanomaterial exhibited excellent pH sensing properties and showed long term stability (up to one month without loss of sensor performance.

  11. Protective Performance of Polyaniline-Sulfosalicylic Acid/Epoxy Coating for 5083 Aluminum

    Science.gov (United States)

    Liu, Suyun; Liu, Li; Meng, Fandi; Li, Ying; Wang, Fuhui

    2018-01-01

    Epoxy coatings incorporating different content of sulfosalicylic acid doped polyaniline (PANI-SSA) have been investigated for corrosion protection of 5083 aluminum alloy in 3.5% NaCl solution. The performance of the coatings is studied using a combination of electrochemical impedance spectroscopy (EIS), open circuit potential (OCP), gravimetric tests, adhesion tests, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the content of PANI-SSA not only affects the coating compactness and the transportation of aggressive medium, but also has a significant influence on the-based aluminum. The coating with 2 wt. % PANI-SSA exhibits the best corrosion inhibition due to its good protective properties and the formation of a complete PANI-SSA induced oxide layer. PMID:29438304

  12. Protective Performance of Polyaniline-Sulfosalicylic Acid/Epoxy Coating for 5083 Aluminum.

    Science.gov (United States)

    Liu, Suyun; Liu, Li; Meng, Fandi; Li, Ying; Wang, Fuhui

    2018-02-13

    Epoxy coatings incorporating different content of sulfosalicylic acid doped polyaniline (PANI-SSA) have been investigated for corrosion protection of 5083 aluminum alloy in 3.5% NaCl solution. The performance of the coatings is studied using a combination of electrochemical impedance spectroscopy (EIS), open circuit potential (OCP), gravimetric tests, adhesion tests, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the content of PANI-SSA not only affects the coating compactness and the transportation of aggressive medium, but also has a significant influence on the-based aluminum. The coating with 2 wt. % PANI-SSA exhibits the best corrosion inhibition due to its good protective properties and the formation of a complete PANI-SSA induced oxide layer.

  13. Networked Pd (core) @ polyaniline (shell) composite: Highly electro-catalytic ability and unique selectivity

    Science.gov (United States)

    Xia, Youyi; Liu, Ning; Sun, Ling; Xu, Hao; Gao, Hong; Lu, Taofeng

    2018-01-01

    A networked composite (Pd@PANI), which is self-assemblied freely from Pd (core) @polyaniline (shell) nanoparticles, has been prepared successfully by a facilely one-step approach. Owing to the conductive environment and acid-doped behavior provided by PANI, the composite exhibits highly catalytic ability in the reaction involving acidic reactants. For instance, in the HCOOH electro-oxidation, 9.16 times of specific activity (comparing with that when using commercial Pd/C catalyst) is observed. Meanwhile, the as-prepared product is unable to catalyze some other systems like the electro-oxidation of C2H5OH, showing novel and unique selectivity. Those would open up new routes for synthesizing high-performance Pd-based catalysts, and could also shed some light on synthesizing new types of selective catalysts.

  14. Conductivity enhancement of surface-polymerized polyaniline films via control of processing conditions

    Science.gov (United States)

    Park, Chung Hyoi; Jang, Sung Kyu; Kim, Felix Sunjoo

    2018-01-01

    We investigate a fast and facile approach for the simultaneous synthesis and coating of conducting polyaniline (PANI) onto a substrate and the effects of processing conditions on the electrical properties of the fabricated films. Simultaneous polymerizing and depositing on the substrate forms a thin film with the average thickness of 300 nm and sheet resistance of 304 Ω/sq. Deposition conditions such as polymerization time (3-240 min), temperature (-10 to 40 °C), concentrations of monomer and oxidant (0.1-0.9 M), and type of washing solvents (acetone, water, and/or HCl solution) affect the film thickness, doping state, absorption characteristics, and solid-state nanoscale morphology, therefore affecting the electrical conductivity. Among the conditions, the surface-polymerized PANI film deposited at room temperature with acetone washing showed the highest conductivity of 22.2 S/cm.

  15. Perspectives on State-of-the-Art Carbon Nanotube/Polyaniline and Graphene/Polyaniline Composites for Hybrid Supercapacitor Electrodes.

    Science.gov (United States)

    Srikanth, Vadali V S S; Ramana, Gedela Venkata; Kumar, Puttapati Sampath

    2016-03-01

    Supercapacitors are attractive alternative energy storage sources. They offer high energy/power density with other characteristics like fast discharge/charge time, long operation stability, safety etc. In a supercapacitor, working electrode material is the principal constituent. At present there are numerous electrode materials (with properties) suitable for their use in hybrid type supercapacitors. Carbon/polyaniline (PANi) composites are one class of such electrode materials. Here, perspectives on state-of-the-art carbon/PANi composites namely carbon nanotube/polyaniline and graphene/polyaniline composites expedient as hybrid type supercapacitor electrode materials will be presented.

  16. Elastomeric Conducting Polyaniline Formed Through Topological Control of Molecular Templates.

    Science.gov (United States)

    Ding, Hangjun; Zhong, Mingjiang; Wu, Haosheng; Park, Sangwoo; Mohin, Jacob W; Klosterman, Luke; Yang, Zhou; Yang, Huai; Matyjaszewski, Krzysztof; Bettinger, Christopher John

    2016-06-28

    A strategy for creating elastomeric conducting polyaniline networks is described. Simultaneous elastomeric mechanical properties (E 10 S cm(-1)) are achieved via molecular templating of conjugated polymer networks. Diblock copolymers with star topologies processed into self-assembled elastomeric thin films reduce the percolation threshold of polyaniline synthesized via in situ polymerization. Block copolymer templates with star topologies produce elastomeric conjugated polymer composites with Young's moduli ranging from 4 to 12 MPa, maximum elongations up to 90 ± 10%, and electrical conductivities of 30 ± 10 S cm(-1). Templated polyaniline films exhibit Young's moduli up to 3 orders of magnitude smaller compared to bulk polyaniline films while preserving comparable bulk electronic conductivity. Flexible conducting polymers have prospective applications in devices for energy storage and conversion, consumer electronics, and bioelectronics.

  17. Synthesis of chiral polyaniline films via chemical vapor phase polymerization

    DEFF Research Database (Denmark)

    Chen, J.; Winther-Jensen, B.; Pornputtkul, Y.

    2006-01-01

    methods, such as cyclic voltammetry (CV), UV- vis spectroscopy, four- point probe conductivity measurement, Raman spectroscopy, circular dichroism spectroscopy, and scanning electron microscopy. The polyaniline films grown by this method not only showed high electrochemical activity, supported by CV...

  18. Polyaniline-Derived Ordered Mesoporous Carbon as an Efficient Electrocatalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Kai Wan

    2015-06-01

    Full Text Available Nitrogen-doped ordered mesoporous carbon was synthesized by using polyaniline as the carbon source and SBA-15 as the template. The microstructure, composition and electrochemical behavior were extensively investigated by the nitrogen sorption isotherm, X-ray photoelectron spectroscopy, cyclic voltammetry and rotating ring-disk electrode. It is found that the pyrolysis temperature yielded a considerable effect on the pore structure, elemental composition and chemical configuration. The pyrolysis temperature from 800 to 1100 °C yielded a volcano-shape relationship with both the specific surface area and the content of the nitrogen-activated carbon. Electrochemical tests showed that the electrocatalytic activity followed a similar volcano-shape relationship, and the carbon catalyst synthesized at 1000 °C yielded the best performance. The post-treatment in NH3 was found to further increase the specific surface area and to enhance the nitrogen doping, especially the edge-type nitrogen, which favored the oxygen reduction reaction in both acid and alkaline media. The above findings shed light on electrocatalysis and offer more strategies for the controllable synthesis of the doped carbon catalyst.

  19. Structural, thermal and electrical characterizations of multiwalled carbon nanotubes and polyaniline composite

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kamal, E-mail: singhkamal204@gmail.com; Garg, Leena; Singh, Jaspal [Department of Applied Sciences, Chandigarh University, Gharuan, Mohali (India); Kumar, Sanjeev [Applied Sciences Department, PEC University of Technology, Chandigarh (India); Sharma, Amit L. [Central Scientific Instrumentation Organization, Sector 30, Chandigarh (India)

    2016-05-06

    The undoped and doped composite of MWNTs (Multiwalled Carbon Nanotubes) with PANI (/Polyaniline) was prepared by chemical oxidative polymerization. The MWNTs/PANI composites have been characterized by using various techniques like Thermogravometric Analysis (TGA), Fourier transform infrared (FT-IR) spectrometer and Field emission scanning electron microscope (FE-SEM) and conductivity measurement by using two probe method. TGA results has shown that thermal stability followed the pattern undoped MWNTs/PANI composite < doped MWNTs/PANI composite. FE-SEM micrographs demonstrated the morphological changes on the surface of MWNTs as a result of composite formation. Fourier transformed infrared (FT-IR) spectra ascertained the formation of the composite. Study of electrical characteristics demonstrated that the doped MWNTs/PANI composite (1.2 × 10{sup 1} Scm{sup −1}) have better conductivity than the undoped MWNTs/PANI composite (10{sup −4} Scm{sup −1}). These CNTs based polymeric composites are of great importance in developing new nano-scale devices for future chemical, mechanical and electronic applications.

  20. Mechanically driven activation of polyaniline into its conductive form.

    Science.gov (United States)

    Baytekin, Bilge; Baytekin, H Tarik; Grzybowski, Bartosz A

    2014-07-01

    Mechanical treatment of polymers produces surface cations and anions which, as demonstrated here for the first time, can drive chemical reactions. In particular, it is shown that such a mechanical treatment transforms nonconductive polyaniline into its conductive form. These results provide a mechanical means of patterning conductive polymers and also coating small polymer objects with conductive polyaniline films preventing accumulation of static electricity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. COVALENT IMMOBILIZATION OF INVERTASE ON EPOXY-ACTIVATED POLYANILINE FILMS

    Directory of Open Access Journals (Sweden)

    Loredana Vacareanu

    2013-08-01

    Full Text Available The growing interest in manufacturing and use of biosensors is their rapid and selective detection of the target analyte. The immobilization of the enzymes, onto the appropriate matrix is the key-step in the construction of biosensing devices, considerably affecting its performance. In this study, new polyaniline bearing epoxy groups was synthesized by electrochemical polymerization reactions, as adherent, green film deposited on electrode surface, and was further used as immobilization matrix for invertase enzyme. The immobilization was carried out by condensation reactions between the amino groups of the enzyme molecules and the epoxy groups of polyaniline film. The covalent attachment was achieved by simple immersing the epoxy-activated polyaniline in acetate buffer solution (10 mM, pH 6.0 containing 2mg/mL invertase, for 24 h at 4 ºC, by continuous stirring. The polyaniline films thus obtained were analyzed before and after the invertase attachment, by using FT-IR spectroscopy and SEM microscopy. The presence of the invertase was evaluated by measuring their activity, using UV-Vis spectroscopy, in the presence of a known amount of sucrose as a substrate. These tests, performed for three times under the same conditions, revealed that even after five washes of the polyaniline /invertase electrode to remove the unbounded enzyme, the enzyme remain attached on the polyaniline film, being able to hydrolyze the sucrose presented in the assay solutions.

  2. Polyaniline cryogels: Biocompatibility of novel conducting macroporous material.

    Science.gov (United States)

    Humpolíček, Petr; Radaszkiewicz, Katarzyna Anna; Capáková, Zdenka; Pacherník, Jiří; Bober, Patrycja; Kašpárková, Věra; Rejmontová, Petra; Lehocký, Marián; Ponížil, Petr; Stejskal, Jaroslav

    2018-01-09

    Polyaniline cryogel is a new unique form of polyaniline combining intrinsic electrical conductivity and the material properties of hydrogels. It is prepared by the polymerization of aniline in frozen poly(vinyl alcohol) solutions. The biocompatibility of macroporous polyaniline cryogel was demonstrated by testing its cytotoxicity on mouse embryonic fibroblasts and via the test of embryotoxicity based on the formation of beating foci within spontaneous differentiating embryonic stem cells. Good biocompatibility was related to low contents of low-molecular-weight impurities in polyaniline cryogel, which was confirmed by liquid chromatography. The adhesion and growth of embryonic stem cells, embryoid bodies, cardiomyocytes, and neural progenitors prove that polyaniline cryogel has the potential to be used as a carrier for cells in tissue engineering or bio-sensing. The surface energy as well as the elasticity and porosity of cryogel mimic tissue properties. Polyaniline cryogel can therefore be applied in bio-sensing or regenerative medicine in general, and mainly in the tissue engineering of electrically excitable tissues.

  3. Synthesis, characterization and antibacterial activity of polyaniline/Pt-Pd nanocomposite.

    Science.gov (United States)

    Boomi, Pandi; Prabu, Halliah Gurumallesh; Mathiyarasu, Jayaraman

    2014-01-24

    Pt colloid and Pt-Pd colloid, pristine polyaniline, polyaniline/Pt nanocomposite and polyaniline/Pt-Pd nanocomposite were synthesized by simple chemical method. They were characterized by UV-Vis, FT-IR, XRD, TGA, SEM, HR-SEM and HR-TEM with EDAX techniques. The results proved that there is a strong interaction between metal nanoparticles (Pt-Pd) and polyaniline chains. This interaction creates changes in the backbone chain of polyaniline/Pt-Pd nanocomposite when compared to pristine polyaniline. The synthesized materials were evaluated for antibacterial activity, minimal inhibitory concentration and minimal bactericidal concentration. The results indicated that the nanocomposites exhibited improved antibacterial activity when compared to pristine polyaniline and individual metal colloids. This is the first report on the chemical synthesis of polyaniline/Pt-Pd nanocomposite, which exhibits antibacterial activity at micro molar concentration levels. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Electromagnetic radiation absorbers and modulators comprising polyaniline

    Science.gov (United States)

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid

    1992-01-01

    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  5. Synthesis and electrical properties of polyaniline/iota-carrageenan biocomposites.

    Science.gov (United States)

    Vega-Rios, Alejandro; Olmedo-Martínez, Jorge L; Farías-Mancilla, Bárbara; Hernández-Escobar, Claudia A; Zaragoza-Contreras, E Armando

    2014-09-22

    Polyaniline/iota-carrageenan (ι-CGN) biocomposites were synthesized via in situ methodology using ammonium persulfate as the oxidizing agent. Both ionic (band at 1131 cm(-1)) and hydrogen bond (bands at 2500 and 3500 cm(-1)) interactions between polyaniline and ι-CGN were determined by infrared spectroscopy. Such intermolecular interactions provided the biocomposites with a cross-linked structure that provided the materials with hydrogel behavior. Biocomposite electro-conductivity, determined by the 4-probe technique, was in the range of semiconductors (10(-3) to 10(-2) S cm(-1)); whereas electro-activity, assessed by cyclic voltammetry, showed the oxidation-reduction transitions typical of polyaniline. Based on the properties of polyaniline and ι-CGN, some applications for the new materials in the field of biosensor design, electrochemical capacitors, or tissue engineering scaffolds are possible. It is worth saying that both electro-conductive and electro-active properties of polyaniline/ι-CGN biocomposites are reported here for the first time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Synthesis of Polyaniline-Coated Graphene Oxide@SrTiO3 Nanocube Nanocomposites for Enhanced Removal of Carcinogenic Dyes from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2016-09-01

    Full Text Available The present investigation highlights the synthesis of polyaniline (PANI-coated graphene oxide doped with SrTiO3 nanocube nanocomposites through facile in situ oxidative polymerization method for the efficient removal of carcinogenic dyes, namely, the cationic dye methylene blue (MB and the anionic dye methyl orange (MO. The presence of oxygenated functional groups comprised of hydroxyl and epoxy groups in graphene oxide (GO and nitrogen-containing functionalities such as imine groups and amine groups in polyaniline work synergistically to impart cationic and anionic nature to the synthesised nanocomposite, whereas SrTiO3 nanocubes act as spacers aiding in segregation of GO sheets, thereby increasing the effective surface area of nanocomposite. The synthesised nanocomposites were characterised by field emission scanning electron microscopy (FESEM, transmission electron microscopy (TEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, and Fourier transform infrared spectroscopy (FTIR. The adsorption efficiencies of graphene oxide (GO, PANI homopolymer, and SrTiO3 nanocubes-doped nanocomposites were assessed by monitoring the adsorption of methylene blue and methyl orange dyes from aqueous solution. The adsorption efficiency of nanocomposites doped with SrTiO3 nanocubes were found to be of higher magnitude as compared with undoped nanocomposite. Moreover, the nanocomposite with 2 wt % SrTiO3 with respect to graphene oxide demonstrated excellent adsorption behaviour with 99% and 91% removal of MB and MO, respectively, in a very short duration of time.

  7. Preparation and Properties of Fibrous Fe3O4/Polyaniline Nanocomposites.

    Science.gov (United States)

    Wang, Li; Zhang, Xin

    2015-04-01

    By using inorganic Fe3O4 nanoparticles as nucleation sites, Fe3O4/polyaniline magnetic nanocomposites are successfully synthesized by chemical oxidative polymerization method. The morphology and properties of Fe3O4/polyaniline nanocomposites are characterized by XRD, FTIR, TEM, DSC, TG and VSM. XRD, FTIR and DSC jointly indicate that the composites comprise Fe3O4 and polyaniline. TEM micrographs indicate that the Fe3O4 magnetic nanoparticles have an average diameter less than 20 nm and achieve better property of dispersion after composited with polyaniline. With the content of polyaniline increasing, Fe3O4/polyaniline composites change from aggregated particles to fibers. Fibrous composites achieve excellent thermal stability and attractive polyaniline content dependence of magnetism. TG analyses reveal that apparent weight loss of the fibrous composite appears at higher temperature than the granular Fe3O4/polyaniline composite does. With the increasing of the content of polyaniline, the magnetism of Fe3O4/polyaniline composite change from ferromagnetism to paramagnetism, while the magnetization decreases firstly and then increases. The formation of fibrous Fe3O4/polyaniline composite is favorable for the magnetization.

  8. Conductive cotton prepared by polyaniline in situ polymerization using laccase.

    Science.gov (United States)

    Zhang, Ya; Dong, Aixue; Wang, Qiang; Fan, Xuerong; Cavaco-Paulo, Artur; Zhang, Ying

    2014-09-01

    The high-redox-potential catalyst laccase, isolated from Aspergillus, was first used as a biocatalyst in the oxidative polymerization of water-soluble conductive polyaniline, and then conductive cotton was prepared by in situ polymerization under the same conditions. The polymerization of aniline was performed in a water dispersion of sodium dodecylbenzenesulfonate (SDBS) micellar solution with atmospheric oxygen serving as the oxidizing agent. This method is ecologically clean and permits a greater degree of control over the kinetics of the reaction. The conditions for polyaniline synthesis were optimized. Characterizations of the conducting polyaniline and cotton were carried out using Fourier transform infrared spectroscopy, UV-vis spectroscopy, cyclic voltammetry, the fabric induction electrostatic tester, and the far-field EMC shielding effectiveness test fixture.

  9. Investigation of ferrites properties with polyaniline layer in anticorrosive coatings

    Science.gov (United States)

    Brodinová, J.; Stejskal, J.; Kalendová, A.

    2007-05-01

    The presented paper is devoted to pigments of various chemical compositions and particles morphology surface-modified by polyaniline layer as corrosion inhibitors to coatings. They were synthetized of pigments on the spinel base, ferrites with contents of Zn, Mg and Ca cations with isometric and nonisometric forms of primary particles. These pigments were surface-modified with electrically conductive polymer, polyaniline, by the oxidative polymerization of aniline. The surface composition of coated pigments was characterized by Fourier transform infrared (FTIR) spectrum and scanning electron microscopy (SEM). For testing the properties of pigments prepared, the model coatings compositions were formulated using solvent-based alkyd resin. On the tested samples, corrosive tests were performed. The present research has shown that the presence of polyaniline has better efficiency in protection against corrosion than spinel-type pigments alone in the selected alkyd resin.

  10. Structural and electrical properties of polyaniline/silver nanocomposites

    International Nuclear Information System (INIS)

    Afzal, Asma B; Akhtar, M J; Nadeem, M; Ahmad, M; Hassan, M M; Yasin, T; Mehmood, M

    2009-01-01

    Polyaniline (PANI)/Ag nanocomposites were prepared by separate synthesis of silver nanoparticles by inert gas condensation, incorporating in the 1-methyl-2-pyrrolidinone (NMP) solution of polyaniline emeraldine base (PANIEB) and then cast into films at 120 deg. C. X-ray diffraction confirmed the presence of ∼67 nm silver nanoparticles in the polyaniline matrix. From the thermogravimetric analysis it is observed that the nanocomposite films have a higher degradation temperature than the pure PANI film. Scanning electron microscopy showed a uniform distribution, with spherical and granular morphology for low concentration of Ag nanoparticles, whereas for higher concentration (1.0% Ag) nanorods are formed. The impedance spectroscopic studies of NMP plasticized nanocomposite films suggest microphase separation into reduced and oxidized repeat units. Incorporation of silver nanoparticles in PANI reduces the charge trapping centres and increases the conducting channels, which causes a tenfold decrease in the real part of impedance.

  11. Spectrophotometric determination of caffeine using polyaniline films

    International Nuclear Information System (INIS)

    Monlinong, Jason Paul C.; Portilla, Ma. Cristina B.; Agustin, Katrina Jane D.; Pascual, Cherrie B.

    2015-01-01

    Polyaniline (PANI) films were fabricated by chemical oxidative polymerization of aniline monomers using ammonium persulfate (APS). The effects of varying oxidant concentration, oxidant solvent and washing solution in the PANI film deposition were first evaluated. 0.250 M APS in 0.200 M HCl and 0.200 M aniline in 0.200 M HCl were used to produce the emeraldine PANI (green) films which were deposited onto commercially available acctate films. The fabricated PANI film acts as an optical sensor baed on its redox-dependent switching of polyaniline from emeraldine (green) to pernigranilline (blue) form. The change in absorbance of blue PANI films immerse in caffeine-containing solution vs green fabricated PANI films were utilized in analysis of caffeine at 829 nm using a UV-VIS spectrophotometer. Repeatable results were obtained in intra-branch and inter-branch repeatability studies, with coefficient of variation (CV) values ranging rom 9.8-13.9% and 5.1-14.5%, respectively. Linear response was obtained over the concentration of 10.0-50.0 μg/mL. The limit of detection (LOD) and limit of quantitation (LOQ) were determined to be 2.5 and 8.5μg/mL, respectively. The obtained % recovery values of caffeine spiked in aqueous solution ranged from 84.9-107%. Three pharmaceutical formulations containing 20.0 or 25.0 μg/Ml caffeine where analyzed using PANI films by external calibration method. The obtained average caffeine values were 25.2 mg/tablet, 22.4 mg/tablet and 15.4 mg/capsule for Fevadol®, Fevergan® and Alaxan®FR, respectively. These values were 77.0% to 101% of the label claims. Human urine samples spiked with caffeine were also analyzed, after sample pre-treatment. Obtained percent recovery values ranged from 79.1 to 105%. This method demonstrated the potential of laboratory-fabricated PANI films as a low-cost rapid, reliable, simple and accurate method for caffeine quantification in pharmaceutical and clinical specimens. (author)

  12. Synthesis and characterization of the polyaniline dopant Schiff base

    Directory of Open Access Journals (Sweden)

    Mirian Y. Matsumoto

    2012-06-01

    Full Text Available The Schiff base, N-salicilidenoanilina was used as dopant to induce polymerization of aniline and thus preparing polyaniline (PAni. The different conditions of preparation, including Schiff base structure, and the dosage of acidity reaction medium, were investigated to discuss the influence of these conditions relative conductivity of the resulting samples. The products were also characterized by Fourier transform infrared (FTIR, ultraviolet-visible (UV-Vis, electrochemical impedance spectroscopy (EIE. The results showed the synthesis conditions play an important in the formation and the final properties of the polyaniline

  13. Electrochemical properties of polyaniline-modified sodium vanadate nanomaterials

    International Nuclear Information System (INIS)

    Reddy Channu, V.S.; Holze, Rudolf; Yeo, In-Hyeong; Mho, Sun-il; Kalluru, Rajamohan R.

    2011-01-01

    Sodium vanadate nanomaterials were synthesized at different pH-values of a sodium hydroxide solution of vanadium pentoxide. Polyaniline-modified sodium vanadate nanomaterials were prepared at room temperature and at 3 C by a chemical polymerization method. The crystal structure and phase purity of the samples have been examined by powder XRD. The samples were identified as HNaV 6 O 16 .4H 2 O and Na 1.1 V 3 O 7.9 . The electrochemical measurements show that polyaniline-modified sodium vanadate hydrated nanomaterials provide higher current density than the sodium vanadate nanomaterials. (orig.)

  14. Preparation and characterization of exfoliated polyaniline/montmorillonite nanocomposites

    International Nuclear Information System (INIS)

    Narayanan, Binitha N.; Koodathil, Ranjana; Gangadharan, Tripti; Yaakob, Zahira; Saidu, Femina K.; Chandralayam, Soumini

    2010-01-01

    Transition metal ions were exchanged with the interlamellar cations of montmorillonite clays and polymerization of aniline was done within the layers. The delaminated clay layers upon ion exchange resulted in exfoliated polyaniline/clay nanocomposite formation which has profound effects on polymer structure, properties and electrical conduction mechanisms. Here we offer polyaniline (PANI)/montmorillonite exfoliated nanocomposite synthesized through a simple, cheap route which need not require complicated and less economical organophilic modification. The prepared composites were characterized using XRD, FTIR, and TG/DTA to prove exfoliation.

  15. Preparation and characterization of exfoliated polyaniline/montmorillonite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Binitha N., E-mail: binithann@yahoo.co.i [Department of Chemistry, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad 679306, Kerala (India); Department of Chemical and Process Engineering, Faculty of Engineering, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Koodathil, Ranjana; Gangadharan, Tripti [Department of Chemistry, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad 679306, Kerala (India); Yaakob, Zahira [Department of Chemical and Process Engineering, Faculty of Engineering, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Saidu, Femina K.; Chandralayam, Soumini [Department of Chemistry, Sree Neelakanta Government Sanskrit College, Pattambi, Palakkad 679306, Kerala (India)

    2010-04-15

    Transition metal ions were exchanged with the interlamellar cations of montmorillonite clays and polymerization of aniline was done within the layers. The delaminated clay layers upon ion exchange resulted in exfoliated polyaniline/clay nanocomposite formation which has profound effects on polymer structure, properties and electrical conduction mechanisms. Here we offer polyaniline (PANI)/montmorillonite exfoliated nanocomposite synthesized through a simple, cheap route which need not require complicated and less economical organophilic modification. The prepared composites were characterized using XRD, FTIR, and TG/DTA to prove exfoliation.

  16. Electromechanical behavior of polyaniline/poly (vinyl alcohol) blend films under static, dynamic and time-dependent strains

    International Nuclear Information System (INIS)

    Akhilesan, S; Lakshmana Rao, C; Varughese, S

    2014-01-01

    We report on the experimentally observed electrical conductivity enhancement in polyaniline/poly (vinyl alcohol) blend films under uniaxial tensile loading. Polyaniline (PANI) is an intrinsically conducting polymer, which does not form stretchable free-standing films easily and hence its electromechanical characterization is a challenge. Blending of PANI with other insulating polymers is a good choice to overcome the processability problem. We report the electromechanical response of solution blended and HCl doped PANI/PVA blends subjected to uniaxial, static, dynamic and time-dependent tensile loading. The demonstrated viscoelastic and morphological contributions of the component polymers to the electrical conductivity behavior in these blends could lead to interesting applications in strain sensors and flexible electronics. The reversibility of the electromechanical response under dynamic strain is found to increase in blends with higher PANI content. Time-dependent conductivity studies during mechanical stress relaxation reveal that variations in the micro-domain ordering and the relative relaxation rate of the individual polymer phases can give rise to interesting electrical conductivity changes in PANI blends. From morphological and electrical conductivity studies, we show that PANI undergoes primary and secondary agglomeration behavior in these blends that contributes to the changes in conductivity behavior during the deformation. A 3D variable range hopping (VRH) process, which uses a deformable core and shell concept based on blend morphology analysis, is used to explain the experimentally observed electromechanical behavior. (papers)

  17. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Wenya [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zhou, Qun, E-mail: zhq@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Li, Shuangshuang [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Zhao, Wei; Li, Na [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); Zheng, Junwei, E-mail: jwzheng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, and Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2015-10-30

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  18. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    International Nuclear Information System (INIS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-01-01

    Highlights: • Gold nanoparticles assembled on electrodes are incorporated into polyaniline film. • Composite film electrodes exhibit synergistic effect on electrocatalytic oxidation. • Ascorbic acid and dopamine can be detected simultaneously on composite electrodes. - Abstract: Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  19. Efficient in situ synthetic routes of polyaniline/poly(vinyl alcohol)/TiO2 nanocomposites using gamma irradiation

    Science.gov (United States)

    Afify, T. A.; Ghazy, O. A.; Saleh, H. H.; Ali, Z. I.

    2018-02-01

    Gamma radiation was used to prepare nanocomposites based on polyaniline/titanium dioxide (PANI/TiO2) or polyaniline/poly (vinyl alcohol)/titanium dioxide (PANI/PVA/TiO2). It was found that PANI/TiO2 in the form of nanocomposite as shown by the UV/vis spectroscopy. This was through the appearance and shift of two absorption peaks at 340 and 598 nm. The SEM micrographs of the PANI/TiO2 nanocomposites showed a fibrous morphology before the treatment with HCl. The TiO2 nanoparticles are clearly seen to be precipitated on the PANI fibers and the morphology changed towards the sheets shape with highly distribution on PANI surface. The transmission electron microscopy (TEM) image confirms the fibrous shape of the PANI and spherical shape of TiO2 nanoparticles. The XRD study showed a several diffraction patterns of TiO2 nanoparticles confirming the PANI/TiO2 and PANI/PVA/TiO2 nanocomposites. The FT-IR analysis indicated that there is an interfacial interaction existed between the PANI and its inorganic counterpart of TiO2 nanoparticles. The dielectric constant of the PANI/PVA showed the lowest values and was increased by either doping with TiO2 or increasing irradiation dose.

  20. Solid-State Synthesis of Polyaniline/Single-Walled Carbon Nanotubes: A Comparative Study with Polyaniline/Multi-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Adalet Rahman

    2012-07-01

    Full Text Available The polyaniline/single-walled carbon nanotubes (PANI/SWNTs composites with a content of SWNTs varying from 8 wt% to 32 wt% were synthesized using a solid-state synthesis method. The structure and morphology of the samples were characterized by fourier transform infrared (FTIR spectra, ultraviolet-visible (UV-vis absorption spectra, X-ray diffraction (XRD and transmission electron microscopy (TEM. The electrochemical performances of the composites were investigated by galvanostatic charge–discharge and cycling stability measurements. The structure and properties of PANI/SWNTs were compared with those of PANI/multi-walled carbon nanotubes (PANI/MWNTs prepared under the same polymerization conditions. The results from FTIR and UV-vis spectra showed that the composites with SWNTs displayed a higher oxidation and doping degree than pure PANI, which is similar to that of PANI/MWNTs. The morphological studies revealed that PANI/SWNTs did not display any rod-like and granular-like features, which appeared in PANI/MWNTs. The galvanostatic charge–discharge measurements indicated that the specific capacitance of PANI/SWNTs is not higher than that of PANI/MWNTs, but the PANI/SWNTs exhibited higher cycling stability and more stable electrochemical behavior in neutral and alkaline electrolytes than PANI/MWNTs.

  1. Blood coagulation and platelet adhesion on polyaniline films

    Czech Academy of Sciences Publication Activity Database

    Humpolíček, P.; Kuceková, Z.; Kašpárková, V.; Pelková, J.; Modic, M.; Junkar, I.; Trchová, Miroslava; Bober, Patrycja; Stejskal, Jaroslav; Lehocký, M.

    2015-01-01

    Roč. 133, 1 September (2015), s. 278-285 ISSN 0927-7765 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : polyaniline * poly(2-acrylamido-2-methyl-1-propanesulfonic acid) * hemocompatibility Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.902, year: 2015

  2. Raman spectroscopy of polyaniline and oligoaniline thin films

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Morávková, Zuzana; Bláha, Michal; Stejskal, Jaroslav

    2014-01-01

    Roč. 122, 10 March (2014), s. 28-38 ISSN 0013-4686 R&D Projects: GA ČR GAP205/12/0911 Institutional support: RVO:61389013 Keywords : conducting polymer * polyaniline * anilin e oligomers Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.504, year: 2014

  3. The chemical and colloidal stability of polyaniline dispersions

    Czech Academy of Sciences Publication Activity Database

    Blinova, Natalia V.; Sapurina, I.; Klimovič, J.; Stejskal, Jaroslav

    2005-01-01

    Roč. 88, č. 3 (2005), s. 428-434 ISSN 0141-3910 R&D Projects: GA AV ČR(CZ) IAA4050313; GA MŠk(CZ) ME 539 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * colloids Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.749, year: 2005

  4. Structural and conductivity changes during the pyrolysis of polyaniline base

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Matějka, P.; Brodinová, J.; Kalendová, A.; Prokeš, J.; Stejskal, Jaroslav

    2006-01-01

    Roč. 91, č. 1 (2006), s. 114-121 ISSN 0141-3910 R&D Projects: GA AV ČR IAA4050313; GA AV ČR IAA400500504 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * conductivity Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.174, year: 2006

  5. Synthesis of polyaniline/ZrO2 nanocomposites and their ...

    Indian Academy of Sciences (India)

    Different methods are being employed to synthesize polyaniline, such as template method [13], seeding method [14], interfacial polymeriza- tion [15] rapid mixing reaction [16], dilute polymerization. [17] and electrochemical method [18]. Among these synthe- sis methods, interfacial polymerization has achieved more. ∗.

  6. Gravure-printed ammonia sensor based on organic polyaniline colloids

    Czech Academy of Sciences Publication Activity Database

    Syrový, T.; Kuberský, P.; Sapurina, Irina; Pretl, S.; Bober, Patrycja; Syrová, L.; Hamáček, A.; Stejskal, Jaroslav

    2016-01-01

    Roč. 225, 31 March (2016), s. 510-516 ISSN 0925-4005 R&D Projects: GA MŠk(CZ) LH14199; GA TA ČR(CZ) TE01020022 Institutional support: RVO:61389013 Keywords : ammonia gas * polyaniline * conducting polymer Subject RIV: CG - Electrochemistry Impact factor: 5.401, year: 2016

  7. Thermal analysis of polyaniline poly(N-vinylpyrrolidone)-stabilized dispersions

    Czech Academy of Sciences Publication Activity Database

    Peřinka, N.; Držková, M.; Hajná, Milena; Jašúrek, B.; Šulcová, P.; Syrový, T.; Kaplanová, M.; Stejskal, Jaroslav

    2014-01-01

    Roč. 116, č. 2 (2014), s. 589-595 ISSN 1388-6150 R&D Projects: GA TA ČR TE01020022 Institutional support: RVO:61389013 Keywords : polyaniline * poly(N-vinylpyrrolidone) * dispersion Subject RIV: CG - Electrochemistry Impact factor: 2.042, year: 2014

  8. Conductivity, impurity profile, and cytotoxicity of solvent-extracted polyaniline

    Czech Academy of Sciences Publication Activity Database

    Kašpárková, V.; Humpolíček, P.; Stejskal, Jaroslav; Kopecká, J.; Kuceková, Z.; Moučka, R.

    2016-01-01

    Roč. 27, č. 2 (2016), s. 156-161 ISSN 1042-7147 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : polyaniline * Soxhlet extraction * purification Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.907, year: 2016

  9. Synthesis and characterization of polyaniline-hexaferrite composites

    Energy Technology Data Exchange (ETDEWEB)

    Khursheed, Tooba [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Islam, M.U., E-mail: dr.misbahulislam@bzu.edu.pk [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Asif Iqbal, M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); College of E & ME, National University of Science and Technology, Islamabad (Pakistan); Ali, Irshad, E-mail: irshadalibzu@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Shakoor, Abdul [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Awan, M.S. [Center for Micro and Nano Devices Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Iftikhar, Aisha [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Azhar Khan, Muhammad [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Naeem Ashiq, Muhammad [Institute of Chemical Science, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2015-11-01

    Polyaniline was synthesized by chemical polymerization using aniline as monomer, and Y-type hexaferrite with composition (Co{sub 2}Mn{sub 2}Sr{sub 1.66}Nd{sub 0.4}Fe{sub 10}O{sub 22}) was prepared by co-precipitation assisted by surfactant. Three composites of Polyaniline with different ferrite ratios were prepared by mechanical blending. The synthesized samples were characterized by X-Ray diffraction, Scanning electron microscopy and electrical measurements. The XRD analysis reveals that no second phase was observed in Y-type hexagonal ferrite. In PANI-Ferrite composites, significant changes in resistivity, real and imaginary part of complex permittivity were observed with the increase of ferrite in the polyaniline matrix. At low frequencies the magnitude of dielectric constant and complex permittivity is high with few relaxation peaks. AC conductivity of PANI-Ferrite composites increase with the increase of frequency following Jonscher law. The resistivity and activation energy were found to show similar behavior. - Highlights: • Co{sub 2}Mn{sub 2}Sr{sub 1.66}Nd{sub 0.4}Fe{sub 10}O{sub 22} was prepared by co-precipitation. • Polyaniline was synthesized by chemical polymerization. • AC conductivity increase with the increase of frequency. • The resistivity and activation energy were found to show similar behavior.

  10. Application of polyaniline dispersions by means of screen printing

    Czech Academy of Sciences Publication Activity Database

    Držková, M.; Peřinka, N.; Hajná, Milena; Kaplanová, M.; Stejskal, Jaroslav

    2013-01-01

    Roč. 19, č. 2013 (2013), s. 257-268 ISSN 1211-5541 R&D Projects: GA TA ČR TE01020022 Institutional support: RVO:61389013 Keywords : polyaniline * colloids * screen printing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  11. In-situ polymerized polyaniline films 3. Film formation

    Czech Academy of Sciences Publication Activity Database

    Sapurina, I.; Riede, A.; Stejskal, Jaroslav

    2001-01-01

    Roč. 123, č. 3 (2001), s. 503-507 ISSN 0379-6779 R&D Projects: GA AV ČR IAA4050907; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : polyaniline * oxidative polymerization * thin films Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.158, year: 2001

  12. Preparation of intercalated polyaniline/clay nanocomposite and its

    Indian Academy of Sciences (India)

    Intercalated composite of polyaniline and clay has been reported. The composite was prepared by in situ polymerization of aniline within the layers of `illite' clay. The composite was characterized for its structural, spectral, and microscopic properties. At higher level of loading the layered structure of composite breaks ...

  13. Synthesis of polyaniline/ZrO 2 nanocomposites and their ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Synthesis of polyaniline/ZrO 2 nanocomposites and their performance in AC conductivity and electrochemical supercapacitance. B P PRASANNA D N AVADHANI H B MURALIDHARA K CHAITRA VINNY ROSE THOMAS M REVANASIDDAPPA N ...

  14. Metal oxide/polyaniline nanocomposites: Cluster size and ...

    Indian Academy of Sciences (India)

    Wintec

    report preliminary results on the magnetic properties of self standing sheets prepared using γ-Fe2O3 and. NiFe2O4 nanoparticles and conducting polymers. Keywords. Metal oxide/polyaniline nanocomposites; structural properties; magnetic properties. 1. Introduction. The diverse properties of magnetic nanoparticle systems.

  15. Preparation of intercalated polyaniline/clay nanocomposite and its ...

    Indian Academy of Sciences (India)

    Administrator

    At higher level of loading the layered structure of compo- site breaks forming exfoliated composite, revealing well-defined nanosized dendritic morphology of polyani- line. Keywords. Polyaniline; illite; nanocomposite; exfoliated composite. 1. Introduction. Inorganic–organic nanostructured materials have become a field of ...

  16. Application of polyaniline/manganese dioxide composites for ...

    Indian Academy of Sciences (India)

    Abstract. The kinetics of catalytic degradation of acid blue 25 dye (AB-25) by hydrogen peroxide using polyaniline/manganese dioxide (PANI/MnO2) composites was investigated. To optimize the degradation kinetics of the dye, several parameters have been varied: parameters varied during the preparation of PANI/MnO2 ...

  17. Polypyrrole and polyaniline prepared with cerium(IV) sulfate oxidant

    Czech Academy of Sciences Publication Activity Database

    Omastová, M.; Mosnáčková, K.; Trchová, Miroslava; Konyushenko, Elena; Stejskal, Jaroslav; Fedorko, P.; Prokeš, J.

    2010-01-01

    Roč. 160, 7-8 (2010), s. 701-707 ISSN 0379-6779 R&D Projects: GA AV ČR IAA400500905; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : polypyrrole * polypyrrole base * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.871, year: 2010

  18. Structure and properties of polyaniline interacting with H-phosphonates

    Czech Academy of Sciences Publication Activity Database

    Bláha, Michal; Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana; Zujovic, Z. D.; Filippov, Sergey K.; Prokeš, J.; Pilař, Jan; Stejskal, Jaroslav

    2017-01-01

    Roč. 232, October (2017), s. 79-86 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA17-04109S Institutional support: RVO:61389013 Keywords : conducting polymers * polyaniline * H-phosphonate Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.435, year: 2016

  19. Self assembled polyaniline 12-tungstophosphate micro/nanostructures

    Czech Academy of Sciences Publication Activity Database

    Ciric-Marjanovic, G.; Holclajtner-Antunovic, I.; Mentus, S.; Bajuk-Bogdanovic, D.; Jesic, D.; Manojlovic, D.; Trifunovic, S.; Stejskal, Jaroslav

    2010-01-01

    Roč. 160, 13/14 (2010), s. 1463-1473 ISSN 0379-6779 R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * 12-Tungstophosphoric acid * nanorods Subject RIV: BK - Fluid Dynamics Impact factor: 1.871, year: 2010

  20. The influence of compression pressure on transport properties of polyaniline

    Czech Academy of Sciences Publication Activity Database

    Prokeš, J.; Varga, M.; Křivka, I.; Rudajevová, A.; Stejskal, Jaroslav

    2011-01-01

    Roč. 21, č. 13 (2011), s. 5038-5045 ISSN 0959-9428 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * conductivity Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.968, year: 2011

  1. Conductivity of flowing polyaniline suspensions in electric field

    Czech Academy of Sciences Publication Activity Database

    Stěnička, M.; Pavlínek, V.; Sáha, P.; Blinova, Natalia V.; Stejskal, Jaroslav; Quadrat, Otakar

    2008-01-01

    Roč. 286, č. 12 (2008), s. 1403-1409 ISSN 0303-402X R&D Projects: GA ČR GA202/06/0419 Institutional research plan: CEZ:AV0Z40500505 Keywords : electrorheology * polyaniline * conducting polymer Subject RIV: JI - Composite Materials Impact factor: 1.736, year: 2008

  2. Nanostructured metal-polyaniline composites and applications thereof

    Science.gov (United States)

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2012-10-02

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  3. Preparation of intercalated polyaniline/clay nanocomposite and its ...

    Indian Academy of Sciences (India)

    Intercalated composite of polyaniline and clay has been reported. The composite was prepared by in situ polymerization of aniline within the layers of `illite' clay. The composite was characterized for its structural, spectral, and microscopic properties. At higher level of loading the layered structure of composite breaks ...

  4. Synthesis, characterization and magnetic properties of polyaniline/γ ...

    Indian Academy of Sciences (India)

    Conducting polyaniline/-Fe2O3 (PANI/FE) composites have been synthesized using an in situ deposition technique by placing fine-graded -Fe2O3 in a polymerization mixture of aniline. The composites are characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD) and infrared (IR) spectroscopy ...

  5. Potentiometric study of polyaniline film synthesized with various ...

    Indian Academy of Sciences (India)

    The potentiometric study of polyaniline (PANI) film synthesized with dopants viz. polyvinyl sulfonic acid (PVS), -toluene sulfonic acid (TS), dodecyl benzene sulfonic acid (DBS) and composite-dopants viz. PVS–TS and PVS–DBS, has been carried out. The synthesized PANI films were characterized by electrochemical ...

  6. Ultrasensitive immunoassay based on electrochemical measurement of enzymatically produced polyaniline.

    Science.gov (United States)

    Lai, Guosong; Zhang, Haili; Tamanna, Tasnuva; Yu, Aimin

    2014-02-04

    A novel ultrasensitive immunoassay method was developed based on the electrochemical measurement of polyaniline, which was catalytically produced by horseradish peroxidase-functionalized gold nanoparticle (HRP-Au NP) probe at an immunosensor. The immunosensor was prepared step-wise by first modifying the electrode with reduced graphene oxide (rGO)/Au NPs nanocomposite followed by the immobilization of capture antibodies on its surface. After performing a sandwich immunoreaction, the quantitatively captured HRP-Au NP nanoprobes could catalyze oxidation of aniline to produce electroactive polyaniline on the immunosensor surface. The electrochemical measurement of polyaniline enabled a novel detection strategy for HRP-based immunoassay. Both the signal amplification of the HRP-Au NP nanoprobe and the electron transfer acceleration of rGO/Au NPs on the immunosensor surface greatly improved the detection sensitivity of the immunoassay method. With the use of human IgG as a model analyte, this method showed a wide linear range over 4 orders of magnitude with a detection limit of 9.7 pg/mL. In addition, the immunosensor had low cost, satisfactory reproducibility and stability, and acceptable reliability. The relatively positive potential range for the polyaniline measurement completely excluded the conventional interference from dissolved oxygen. Thus, this method provides a promising potential for practical applications.

  7. Nanocomposites of natural rubber and polyaniline-modified cellulose nanofibrils

    Science.gov (United States)

    Cellulose nanofibrils (CNF) were isolated from cotton microfibrils (CM) by acid hydrolysis and coated with polyaniline (PANI) by in situ polymerization of aniline onto CNF in the presence of hydrochloride acid and ammonium peroxydisulfate to produce CNF/PANI. Nanocomposites of natural rubber (NR) re...

  8. Colloidal polyaniline dispersions: antibacterial activity, cytotoxicity and neutrophil oxidative burst.

    Science.gov (United States)

    Kucekova, Zdenka; Humpolicek, Petr; Kasparkova, Vera; Perecko, Tomas; Lehocký, Marián; Hauerlandová, Iva; Sáha, Petr; Stejskal, Jaroslav

    2014-04-01

    Polyaniline colloids rank among promising application forms of this conducting polymer. Cytotoxicity, antibacterial activity, and neutrophil oxidative burst tests were performed on cells treated with colloidal polyaniline dispersions. The antibacterial effect of colloidal polyaniline against gram-positive and gram-negative bacteria was most pronounced for Bacillus cereus and Escherichia coli, with a minimum inhibitory concentration of 3,500 μg mL(-1). The data recorded on human keratinocyte (HaCaT) and a mouse embryonic fibroblast (NIH/3T3) cell lines using an MTT assay and flow cytometry indicated a concentration-dependent cytotoxicity of colloid, with the absence of cytotoxic effect at around 150 μg mL(-1). The neutrophil oxidative burst test then showed that colloidal polyaniline, in concentrations <150 μg mL(-1), was not able to stimulate the production of reactive oxygen species in neutrophils and whole human blood. However, it worked efficiently as a scavenger of those already formed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Size variation of polyaniline nanoparticles dispersed in polyvinyl ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. We report the preparation of polyaniline (PANI) nanoparticles dispersed in polyvinyl alcohol. (PVA) matrix. From SEM picture it is seen that the particle sizes vary from 100–20 nm. Also with increase in. PVA content the stability of dispersion is found to increase. Apart from SEM, spin cast films of PANI in PVA.

  10. Purification of a conducting polymer, polyaniline, for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Hajná, Milena; Kašpárková, V.; Humpolíček, P.; Zhigunov, Alexander; Trchová, Miroslava

    2014-01-01

    Roč. 195, September (2014), s. 286-293 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : biocompatibility * conducting polymer * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.252, year: 2014

  11. Polyaniline cryogels: Biocompatibility of novel conducting macroporous material

    Czech Academy of Sciences Publication Activity Database

    Humpolíček, P.; Radaszkiewicz, K. A.; Capáková, Z.; Pacherník, J.; Bober, Patrycja; Kašpárková, V.; Rejmontová, P.; Lehocký, M.; Ponížil, P.; Stejskal, Jaroslav

    2018-01-01

    Roč. 8, 09 January (2018), s. 1-12, č. článku 135. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA17-05095S Institutional support: RVO:61389013 Keywords : polyaniline * cryogel * biocompatibility Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.259, year: 2016

  12. Oxidation of aniline: polyaniline granules, nanotubes and oligoaniline microspheres

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Sapurina, I.; Trchová, Miroslava; Konyushenko, Elena

    2008-01-01

    Roč. 41, č. 10 (2008), s. 3530-3536 ISSN 0024-9297 R&D Projects: GA ČR GA202/06/0419; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * nanotube Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.407, year: 2008

  13. Metal–polyaniline nanofibre composite for supercapacitor applications

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The aim of the present work is to increase the electrical conductivity and specific capacitance of the polyaniline (PANi) nanofibres by introducing the metallic nanostructures. Herein, metal nanoparticle- incorporated PANi nanofibres were prepared from interfacially synthesized PANi nanofibres as seeds. In the.

  14. Role of polyaniline morphology in Pd particles dispersion. Hydrogenation of alkynes in the presence of Pd-polyaniline catalysts

    Czech Academy of Sciences Publication Activity Database

    Kosydar, R.; Goral, M.; Drelinkiewicz, A.; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1087-1095 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyaniline * palladium * hydrogenation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.193, year: 2013

  15. High-Performance Supercapacitor Electrode Based on Buckypaper/Polyaniline Composite

    Science.gov (United States)

    Tran, Toan Phuoc; Do, Quyet Huu

    2017-10-01

    Polyaniline (PANI) was coated on carbon nanotubes within a nanoporous sheet (buckypaper) by in situ electrochemical polymerization. The chemical structure and morphology of the polyaniline and the resulting composites were studied. This work shows a strong effect of aniline concentration and buckypaper soaking time on the synthesis of polyaniline. Outstanding composite areal and gravimetric capacitances of 54 F/cm2 and 400 F g-1, respectively, could be achieved at high weight loading of PANI.

  16. Small Angle Neutron Scattering (SANS) Characterization of Electrically Conducting Polyaniline Nanofiber/Polyimide Nanocomposites

    Science.gov (United States)

    2011-10-25

    Electrically Conducting 5b. GRANT NUMBER Polyaniline Nanofiber/Polyimide Nanocomposites 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Alan R. Hopkins, Sandra J...Thin Solid Films 14. ABSTRACT Nanocomposites of polyaniline nanofibers and polyimide were fabricated and studied using small angle neutron...scattering (SANS). The immiscible nature of the conformationally dissimilar polyaniline nanofiber and polyimide host is established by a series of

  17. Morphology-dependent enhancement of the pseudocapacitance of template-guided tunable polyaniline nanostructures

    KAUST Repository

    Chen, Wei

    2013-07-25

    Polyaniline is one of the most investigated conducting polymers as supercapacitor material for energy storage applications. The preparation of nanostructured polyaniline with well-controlled morphology is crucial to obtaining good supercapacitor performance. We present here a facile chemical process to produce polyaniline nanostructures with three different morphologies (i.e., nanofibers, nanospheres, and nanotubes) by utilizing the corresponding tunable morphology of MnO2 reactive templates. A growth mechanism is proposed to explain the evolution of polyaniline morphology based on the reactive templates. The morphology-induced improvement in the electrochemical performance of polyaniline pseudocapacitors is as large as 51% due to the much enhanced surface area and the porous nature of the template-guided polyaniline nanostructures. In addition, and for the first time, a redox-active electrolyte is applied to the polyaniline pseudocapacitors to achieve significant enhancement of pseudocapacitance. Compared to the conventional electrolyte, the enhancement of pseudocapacitance in the redox-active electrolyte is 49%-78%, depending on the specific polyaniline morphology, reaching the highest reported capacitance of 896 F/g for polyaniline full cells so far. © 2013 American Chemical Society.

  18. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Deb, K.; Bera, A.; Saha, B., E-mail: biswajit.physics@gmail.com [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Bhowmik, K. L. [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Department of Chemistry, Bir Bikram Memorial College, Agartala, West Tripura 799004 (India); Chattopadhyay, K. K. [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-05-23

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  19. Synthesis and characterization of polyaniline/Ag-Pt nanocomposite for improved antibacterial activity.

    Science.gov (United States)

    Boomi, Pandi; Prabu, Halliah Gurumallesh; Mathiyarasu, Jayaraman

    2013-03-01

    Polyaniline, polyaniline/Ag-Pt nanocomposite and bimetal (Ag-Pt) colloidal solution were chemically synthesized and characterized by UV-vis, XRD, FT-IR, TGA, HRSEM with EDAX and HRTEM techniques. The results reveal that there was a strong interaction between Ag-Pt nanocomposite and polyaniline chains. This interaction makes only small changes in the backbone chain of polyaniline/Ag-Pt nanocomposite when compared with polyaniline. TGA result revealed greater thermal stability of the composite. HRSEM images showed pebble like morphology for polyaniline/Ag-Pt nanocomposite. The average grain size of Ag-Pt nanoparticle was found to be 2-5 nm, which is confirmed by HRTEM analysis. The polyaniline and polyaniline/Ag-Pt nanocomposite were tested for antibacterial activity. The composite showed improved inhibition efficiency with a maximum zone diameter of 30 ± 1.25 mm against Staphylococcus aureus. This is the first report on the synthesis and its antibacterial activity of polyaniline/Ag-Pt nanocomposite. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A polyaniline based intrinsically conducting coating for corrosion protection of structural steels.

    Science.gov (United States)

    Pan, Tongyan; Wang, Zhaoyang

    2013-11-01

    Among the various corrosion protection strategies for structural steels, coating techniques provide the most cost-effective protection and have been used as the primary mode of corrosion protection. Existing coating techniques however have been used mainly for their barrier capability and therefore all have a limited service life due to oxidation aging, electrolytic degradation, or various inadvertent defects and flaws occurred in and after coating applications. This work investigated the anti-corrosion potential of a π-conjugated polymer-polyaniline (PANi), which was doped into an intrinsically conducting polymer and then included in a two-layer coating system as a primer layer. To achieve a long service life, the primer layer was made by mixing the conductive PANi in a waterborne poly-vinyl butyral solution to provide strong adhesion to steel surface, and then topcoated with a layer of elastomer-modified polyethylene to obtain extra mechanical and barrier protections. Two ASTM standard tests were conducted to evaluate the corrosion durability and tensile adhesion of the two-layer system, in which the system demonstrated superior performance. The Scanning Kelvin Probe Force Microscopy (SKPFM) was used to provide the microscopic evidences for the outstanding performance. Copyright © 2013 Wiley Periodicals, Inc.

  1. Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application

    International Nuclear Information System (INIS)

    Sarker, Ashis K.; Hong, Jongdal

    2014-01-01

    In this article, we described about the preparation and electrochemical properties of a flexible energy storage system based on a plastic polyethylene terephthalate (PET) substrate. The PET treated with UV/ozone was fabricated with multilayer films composed of 30 polyaniline (PANi)/graphene oxide (GO) bilayers using layerby-layer assembly of positively charged PANi and negatively charged GO. The conversion of GO to the reduced graphene oxide (RGO) in the multilayer film was achieved using hydroiodic acid vapor at 100 .deg. C, whereby PANi structure remained nearly unchanged except a little reduction of doping state. Cyclic voltammetry and charge/discharge curves of 30 PANi/RGO bilayers on PET substrate (shorten to PANi-RGO 30 /PET) exhibited an excellent volumetric capacitance, good cycling stability, and rapid charge/discharge rates despite no use of any metal current collectors. The specific capacitance from charge/discharge curve of the PANi-RGO 30 /PET electrode was found to be 529 F/cm 3 at a current density of 3 A/cm 3 , which is one of the best values yet achieved among carbon-based materials including conducting polymers. Furthermore, the intrinsic electrical resistance of the PANi-RGO 30 /PET electrodes varied within 20% range during 200 bending cycles at a fixed bend radius of 2.2 mm, indicating the increase in their flexibility by a factor of 225 compared with the ITO/PET electrode

  2. High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response.

    Science.gov (United States)

    Saini, Parveen; Arora, Manju; Gupta, Govind; Gupta, Bipin Kumar; Singh, Vidya Nand; Choudhary, Veena

    2013-05-21

    Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4-18 GHz) network analysis of these composites shows exceptional microwave shielding response with absorption dominated total shielding effectiveness (SET) value of -71.5 dB (blockage of more than 99.99999% of incident radiation) which is the highest value reported in the literature. Such a high attenuation level, which critically depends on the fraction of BaTiO3 is attributed to optimized dielectric and electrical attributes. This demonstrates the possibility of using these materials in stealth technology and for making futuristic radar absorbing materials (RAMs).

  3. Design and fabrication of conductive polyaniline transducers via computer controlled direct ink writing

    Science.gov (United States)

    Holness, F. Benjamin; Price, Aaron D.

    2017-04-01

    The intractable nature of the conjugated polymer (CP) polyaniline (PANI) has largely limited PANI-based transducers to monolithic geometries derived from thin-film deposition techniques. To address this limitation, we have previously reported additive manufacturing processes for the direct ink writing of three-dimensional electroactive PANI structures. This technology incorporates a modified delta robot having an integrated polymer paste extrusion system in conjunction with a counter-ion induced thermal doping process to achieve these 3D structures. In this study, we employ an improved embodiment of this methodology for the fabrication of functional PANI devices with increasingly complex geometries and enhanced electroactive functionality. Advances in manufacturing capabilities achieved through the integration of a precision pneumatic fluid dispenser and redesigned high-pressure end-effector enable extrusion of viscous polymer formulations, improving the realizable resolutions of features and deposition layers. The integration of a multi-material dual-extrusion end-effector has further aided the fabrication of these devices, enabling the concurrent assembly of passive and active structures, which reduces the limitations on device geometry. Subsequent characterization of these devices elucidates the relationships between polymer formulation, process parameters, and device design such that electromechanical properties can be tuned according to application requirements. This methodology ultimately leads to the improved manufacturing of electroactive polymer-enabled devices with high-resolution 3D features and enhanced electroactive performance.

  4. 160 MeV Ni12+ ion irradiation effects on the dielectric properties of polyaniline nanotubes

    International Nuclear Information System (INIS)

    Hazarika, J.; Nath, Chandrani; Kumar, A.

    2012-01-01

    We report on the dielectric properties and a.c. conductivity studies of CSA doped polyaniline nanotubes. Nanotubes of 47–100 nm diameter, were synthesized by the self-assembly method and irradiated using Ni 12+ ions of 160 MeV energy with fluences of 1 × 10 10 , 5 × 10 10 , 1 × 10 11 and 3 × 10 11 ions/cm 2 . X-ray diffraction studies reveal an increase in the degree of crystallinity and consequently, the extent of order of the nanotubes with increasing fluence, but show a lower degree of crystallinity at higher fluence. The decrease in d-spacing for the (100) reflections with fluence is ascribed to the decrease in the tilt angle of the aligned polymer chains. A significant change was seen after irradiation in dielectric and electrical properties which may be correlated with the increased carrier concentration and structural modifications in the polymer films. The surface conductivity of films increases with increasing fluence, which also decreases at higher fluence. The a.c. conduction mechanism for the nanotubes could be explained in terms of correlated barrier hopping model. The existence of polarons as the major charge carriers in the present nanotube system was confirmed by the low values of polaron binding energy, found to decrease with fluence. The hopping distance increases with fluence indicating that the hopping probability increases with fluence.

  5. Preparation and electrochemical characterization of polyaniline functionalized copper bridges carbon nanotube for supercapacitor applications.

    Science.gov (United States)

    Giri, Soumen; Das, Chapal Kumar

    2014-08-01

    Supercapacitor is an alternative power source due to its high energy density, fast charge/discharge time, low level of heating, safety, long-term operation stability. MWCNTs are used for supercapacitor applications due to their unique properties, structure, high surface area. In the present work nanocomposites were prepared from Cu modified MWCNTs (binary) from which ternary composite also prepared with HCI doped polyaniline (PANI). Cu modified MWCNTs were prepared by the reduction of copper sulphate with sodium borohydride in basic medium. The uniform coating of polymer, upon the Cu modified MWCNTs, was evidenced from the field emission scanning electron microscopic (FESEM) and high resolution transmission electron microscopic (HRTEM) images. The modification of MWCNTs with Cu, was confirmed from the X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. Cyclic voltammetry (CV) measurement and charge discharge test shows higher capacitance for the ternary composites (264 F/g) compared to the binary system (125 F/g). The cyclic stability and retention of specific capacitance also shows the better result for ternary system.

  6. Exploration of Solvent Effects On Morphology of Polyaniline & Other Polymer Films Deposited Through RIR-MAPLE

    Science.gov (United States)

    Barraza, Enrique; Stiff-Roberts, Adrienne

    Through the use of aromatic solvents with varying numbers of hydroxyl and methyl moieties, there is an opportunity to positively impact morphology of polymer films deposited through emulsion-based Resonant-Infrared Matrix-Assisted Pulsed Laser Evaporation (RIR-MAPLE). These more complex solvents may result in smaller emulsified particles within the target, such that smoother films are achieved. We hypothesize the amphiphilic nature of polymers, like doped Polyaniline, requires a solvent with the same solubility to form a stable emulsion target. Control over the emulsion and resulting film properties can yield beneficial device properties, like low contact resistance. Our hypothesis is also tested against hydrophobic polymers, like P3HT, which have been deposited successfully using RIR-MAPLE with chlorobenzenes as the solvent family. We propose that the addition of hydroxyl moieties to the aromatic ring of the solvent should also yield more control over the film morphology. Atomic force microscopy, UV-Vis absorbance, and dark current density-voltage measurements of the resulting films will be reported, as well as a discussion of how these results relate to previously understood paradigms in RIR-MAPLE deposition.

  7. Polyaniline-lignosulfonate/epoxy coating for corrosion protection of AA2024-T3

    International Nuclear Information System (INIS)

    Gupta, G.; Birbilis, N.; Cook, A.B.; Khanna, A.S.

    2013-01-01

    Highlights: ► Synthesis of corrosion resistant, adherent Pani-LGS coating. ► 5% Pani-LGS/epoxy shows highest corrosion protection values after 30 days immersion. ► Higher corrosion protection was due to barrier effect and anodic protection. ► A mechanism for the corrosion protection is presented. - Abstract: Corrosion protection arising from epoxy coatings incorporating lignosulfonate-doped polyaniline (Pani-LGS) upon AA2024-T3 was studied in 0.6 M NaCl. Synthesized Pani-LGS particles were investigated using TEM, FTIR, TGA and conductivity, whilst coatings were also physically examined using SEM. The coating performance was studied using a combination of potentiodynamic polarisation, EIS, FTIR spectroscopy and X-ray photoelectron spectroscopy. The performance of Pani-LGS/epoxy blends is discussed more generally, with tests revealing that on exposure to 0.6 M NaCl solution for 30 days, a 5 wt% Pani-LGS/epoxy coating resulted in low levels of corrosion. A mechanism for the postulated mode of corrosion protection is presented.

  8. Humidity Sensing Properties of Surface Modified Polyaniline Metal Oxide Composites

    Directory of Open Access Journals (Sweden)

    S. C. Nagaraju

    2014-01-01

    Full Text Available Polyaniline- (PANI praseodymium Oxide (Pr2O3 composites have been synthesized by in situ polymerization method with different weight percentages. The synthesized composites have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The temperature dependent conductivity shows that the conductivity is due to the hopping of polarons and bipolarons. These composites show negative thermal coefficient (α behavior as a function of temperature, which is characteristic behavior of semiconducting materials. Sensor studies have been carried out by two-probe method and found that the sensitivity increases with increase in % RH. It is noticed that stability increase is due to the presence of Pr2O3 in polyaniline up to 30 wt%. A fast recovery and response time along with high sensitivity make these composites suitable for humidity sensors.

  9. Characterization of an hrp-aox-polyaniline-graphite composite biosensor

    Directory of Open Access Journals (Sweden)

    Ana Carolina O. Santana

    2014-12-01

    Full Text Available Nowadays there is an increasing demand to develop new and robust biosensors in order to detect low concentrations of different chemicals, in practical and small devices, giving fast and confident responses. The electrode material was a polyaniline-graphite-epoxy composite (PANI/GEC. Alcohol oxidase (AOX and horseradish peroxidase (HRP enzymes were immobilized and the responses were tested by cyclic voltammetry. The conductivities for the composites of graphite/polyaniline were determined. The cyclic voltammograms allowed detecting ethanol in pure diluted samples in a range from 0.036 to 2.62 M. Differential scanning calorimetry (DSC and thermal gravimetry analysis (TGA were used to verify the thermal characteristics of the composites (0, 10, 20, 30 and 100 % of graphite. The Imax value was determined for the dual enzyme biosensor (0.0724 mA, and the Kapp m  as 1.41 M (with R2 =0.9912.

  10. Polyaniline and polypyrrole: A comparative study of the preparation

    Czech Academy of Sciences Publication Activity Database

    Blinova, Natalia V.; Stejskal, Jaroslav; Trchová, Miroslava; Prokeš, J.; Omastová, M.

    2007-01-01

    Roč. 43, č. 6 (2007), s. 2331-2341 ISSN 0014-3057 R&D Projects: GA AV ČR IAA4050313; GA AV ČR IAA400500504; GA MŠk ME 847 Grant - others:VEGA(SK) 2/7103/27 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * polypyrrole Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.248, year: 2007

  11. Polyaniline Conducting Electroactive Polymers Thermal and Environmental Stability Studies

    OpenAIRE

    Ansari, Reza; Keivani, M. B.

    2006-01-01

    In the current studies, polyaniline (PANi) was prepared both chemical and electrochemically in the presence of different bronsted acids from aqueous solutions. The effect of thermal treatment on electrical conductivity, and thermal stability of the PANi conducting polymers were investigated using 4-point probe and TGA techniques respectively. It was found that polymer prepared by CV method is more thermally stable than those prepared by the other electrochemical techniques. In this paper we h...

  12. Synthesis and structural characterization of polyaniline/cobalt chloride composites

    Energy Technology Data Exchange (ETDEWEB)

    Asha, E-mail: arana5752@gmail.com [Department of Basic and Applied Sciences, Bhagat Phool Singh Mahilla Vishwavidyalaya, Khanpur Kalan, Sonipat-131305 (India); Goyal, Sneh Lata; Kishore, Nawal [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar-125001 (India)

    2016-05-23

    Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl{sub 2}.6H{sub 2}O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.

  13. Adsorption and reduction: combined effect of polyaniline emeraldine ...

    Indian Academy of Sciences (India)

    In this study, we have reported the removal of Cr(VI) ions by polyaniline (PANI) particles from aqueous medium. PANI in its emeraldine salt (ES) form can interact with Cr(VI), which is present as HCrO 4 − in two ways. The adsorption of HCrO 4 − ions due to the electrostatic interaction between partially positively charged ...

  14. Phase transitions of polyaniline induced by electrochemical treatment

    Czech Academy of Sciences Publication Activity Database

    Tomšík, Elena; Konefal, Magdalena; Kohut, Olena; Ivanko, Iryna; Hromádková, Jiřina; Zhigunov, Alexander; Steinhart, Miloš

    2018-01-01

    Roč. 219, č. 7 (2018), s. 1-5, č. článku 1700627. ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA15-14791S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : pseudocapacitors * polyaniline * high charge-discharge rate Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.500, year: 2016

  15. Airplane dopes and doping

    Science.gov (United States)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  16. Processible conducting nanoscale cylinders due to self-organized polyaniline supra molecules

    NARCIS (Netherlands)

    Kosonen, H; Valkama, S; Ruokolainen, J; Knaapila, M; Torkkeli, M; Serimaa, R; Monkman, AP; ten Brinke, G; Ikkala, O

    2003-01-01

    Polyaniline sulphonates contain hydrogen bonding acceptor sites, which allow construction of supramolecules and self-organized structures. Here we have characterized the phase behavior of complexes of polyaniline, camphorsulphomc acid (CSA) and 4-hexylresorcinol (tires), PANI(CSA)(x)(Hres)(y), using

  17. Characterizations and Cr (VI) adsorption properties of polyaniline/filter-paper composite

    DEFF Research Database (Denmark)

    Li, Xiaoqiang; Liu, Wanwan; Li, Mengjuan

    2014-01-01

    Polyaniline/filter-paper (PANI/FP) composite was prepared by in situ polymerization of polyaniline onto FP and subsequently evaluated for the removal of Cr (VI) from aqueous solution. Scanning electron microscopy and Fourier-transform infrared were used to investigate the morphology and physicoch...

  18. A new approach for the synthesis of polyaniline with separated reactants

    Czech Academy of Sciences Publication Activity Database

    Blinova, Natalia V.; Trchová, Miroslava; Stejskal, Jaroslav

    2009-01-01

    Roč. 5, č. 9 (2009), s. 83 ISSN 1336-7242. [Zjazd chemikov /61./. 07.09.2009-11.09.2009, Tatranské Matliare, Vysoké Tatry] Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * membrane * gelatin gel * polyaniline-polystyrene composite Subject RIV: CD - Macromolecular Chemistry

  19. Determination of the dopant weight fraction in polyaniline films using a quartz-crystal microbalance

    Czech Academy of Sciences Publication Activity Database

    Ayad, M. M.; Zaki, E. A.; Stejskal, Jaroslav

    2007-01-01

    Roč. 515, č. 23 (2007), s. 8381-8385 ISSN 0040-6090 R&D Projects: GA AV ČR IAA4050313 Institutional research plan: CEZ:AV0Z40500505 Keywords : dopant weight fraction * polyaniline * polyaniline film Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.693, year: 2007

  20. Preparation of Polyaniline/Filter-paper Composite for Removal of Coomassie Brilliant Blue

    DEFF Research Database (Denmark)

    Liu, Wanwan; Li, Xiaoqiang; Li, Mengjuan

    2015-01-01

    Polyaniline/filter-paper (PANI/FP) composite was prepared by in-situ polymerization of polyaniline onto filter-paper and subsequently evaluated for the removal of Coomassie brilliant blue (CBB) from aqueous solution. Scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier...

  1. Forcefields based molecular modeling on the mechanical and physical properties of emeraldine base polyaniline

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, K.Y.; Zhang, G.Q.

    2010-01-01

    Molecular dynamics (MD) and molecular mechanical (MM) analysis are carried out to provide reliable and accurate model for emeraldine base polyaniline. This study validate the forcefields and model with the physical and mechanical properties of the polyaniline. The temperature effects on non-bond

  2. Study of sodium clay modification through polyaniline polymerization

    International Nuclear Information System (INIS)

    Saade, Wesley; Pinto, Camila P.; Becker, Daniela; Dalmolin, Carla

    2015-01-01

    The synthesis of hybrids nanocomposites, such as polyaniline/montmorillonite (Pani/MMT), combines the processability and electrical conductivity of this polymer with the mechanical properties of a ceramic material bringing a multitude of new possibilities for use in high-tech, consumer and industry. With this in mind, we sought to characterize and modify sodium clay through polymerization of polyaniline. The characterization was carried out by X-ray diffraction, infrared spectroscopy by Fourier transformed (FTIR) and spectroscopy by impedance. Through the XRD analysis, it could be inferred that there was a interplanar displacement from 12,4Å (pure sodium montmorillonite) to 15,6Å due to the cation exchange of Na + ions by the anilinium ions, allowing the polymerization interspersed with Pani MMT platelets. By FTIR analysis, presences of the characteristic functional groups of both compounds are detected in the synthesized nanocomposite. Through conductivity and impedance tests it is concluded that the addition of polyaniline decreases the resistive behavior of clay and the electrical conduction becomes possible. (author)

  3. Electrical and Dielectric Properties of Polyaniline and Polyaniline/Montmorillonite Nanocomposite Prepared by Solid Reaction Using Spectroscopy Impedance

    Directory of Open Access Journals (Sweden)

    Imene Bekri-Abbes

    2015-01-01

    Full Text Available The combination of two components with uniform distribution in nanoscale is expected to facilitate wider applications of the material. In this study, polyaniline (PAn and polyaniline/montmorillonite (Mt nanocomposite were prepared by solid reaction using persulfate of ammonium as oxidant. The phase composition and morphology of the nanocomposite were characterized by FTIR, UV-visible spectroscopy, X-ray diffractometer, thermal gravimetric analysis, and scanning electron microscopy. The electrical and dielectric properties were determined using spectroscopy impedance. The analysis of UV-visible and FTIR spectroscopy demonstrated that aniline chloride has been polymerized into PAn in its conducting emeraldine form. Thermogravimetric analysis suggested that PAn chains intercalated in the clay host are more thermally stable than those of free PAn prepared by solid-solid reaction. Electrical measurements were carried out using the complex impedance technique in the frequency range of 10−2 to 104 Hz at different temperatures. The ac conductivity data of different nanocomposites were analyzed as a function of frequency and temperature. It has been found that the incorporation of inorganic clay phase into polyaniline matrix has an effect on the electrical and dielectric properties of the nanomaterial.

  4. Dye-sensitized solar cell from polyaniline-ZnS nanotubes and its characterization through impedance spectroscopy.

    Science.gov (United States)

    Shit, Arnab; Chatterjee, Shreyam; Nandi, Arun K

    2014-10-07

    Polyaniline (PANI)-zinc sulphide (ZnS) nanocomposites (PAZs) are synthesized by polymerizing aniline in the presence of acetic acid with different concentrations of ZnS nanoparticles (NPs). FESEM and TEM images indicate the nanotube morphology of PANI and ZnS NPs remain adhered to the nanotube surface, but at higher ZnS concentration the nanotube morphology is lost. UV-vis spectra indicate PANI is in the doped state and the doping increases with an increase in ZnS concentration. Fluorescence intensity passes through a minimum with ZnS content and the dc-conductivity of the composites gradually increases with an increase in ZnS NP concentration. The I-V plot of PAZ composites indicates that the photocurrent is higher than that of the dark current at each voltage, and the device exhibits reversible turning "on" and "off" by switching the white light illumination "on" and "off". Dye-sensitized solar cells fabricated with PAZ composites display a reasonably higher power conversion efficiency (η = 3.38%) than pure ZnS NPs. An attempt is made to shed light on the operating mechanism of the DSSC from the impedance data using a Cole-Cole plot by drawing an equivalent circuit illustrating the different electronic and ionic transport processes within the cell.

  5. Micro-Raman studies of swift heavy ion irradiation induced structural and conformational changes in polyaniline nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Somik [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India); Kumar, A., E-mail: ask@tezu.ernet.i [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India)

    2010-09-15

    Polyaniline (PAni) nanofibers doped with camphor sulfonic acid have been irradiated with 90 MeV O{sup 7+} ions at different fluences (3 x 10{sup 10}-1 x 10{sup 12} ions/cm{sup 2}) using a 15UD Pelletron accelerator under ultra-high vacuum. XRD studies reveal a decrease in the domain length and an increase in the strain upon SHI irradiation. The increase in d-spacing corresponding to the (1 0 0) reflection of PAni nanofibers with increasing irradiation fluence has been attributed to the increase in the tilt angle of the chains with respect to the (a, b) basal plane of PAni. Decrease in the integral intensity upon SHI irradiation indicates amorphization of the material. Micro-Raman ({mu}R) studies confirm amorphization of the PAni nanofibers and also show that the PAni nanofibers get de-doped upon SHI irradiation. {mu}R spectroscopy also reveals a benzenoid to quinoid transition in the PAni chain upon SHI irradiation. TEM results show that the size of PAni nanofibers decreases with the increase in irradiation fluence, which has been attributed to the fragmentation of PAni nanofibers in the core of amorphized tracks caused by SHI irradiation.

  6. New Anti-Corrosive Coatings with Resin-Bonded Polyaniline and Related Electroactive Groups

    Science.gov (United States)

    Weil, Edward D.

    1997-01-01

    It is already known that polyaniline (an electroactive polymer) functions as a corrosion inhibitor for steel and in view of the fact that it is known to perform in the presence of hydrochloric acid, it has been considered likely that it may be useful to NASA for protecting launch structures at KSC which are exposed to not only continual ocean-side salt spray but also to hydrochloric acid at the times that solid-fuel boosters are fired. The currently used zinc-rich silicate-bonded coating is not wholly protective against the hydrochloric acid. Water pollution from zinc salts is another concern. Other earlier and concurrent NASA sponsored projects have been focussed on polyaniline specifically. Our project, administered for NASA by Dr. K. Thompson of KSC and these more-specifically polyaniline-related projects are included in a CRADA coordinated by Dr. F. Via of Akzo Nobel. A parallel project at Polytechnic under Prof K. Levon concentrated more specifically on polyaniline with various dopants. Our exploratory project reported herein was aimed at broadening the range of such corrosion inhibitors, to give protective paint compounders a wider latitude for adding corrosion inhibitors having polyaniline-like performance, and thus we diverged in several probing directions from polyaniline. Our working hypothesis was that physical variants of polyaniline, such as supported formulations on pigments or carriers, and chemical variants of polyaniline, including those having no electroconductive character, may have enhanced anticorrosion activity. We also hypothesized that small (non-polymeric) molecules having structures related to those occurring in polyaniline, may be active as corrosion inhibitors. We did preliminary testing, using an ASTM salt spray method at a nearby commercial paint testing laboratory. Our most interesting findings were that a non-electroconductive meta-isomer of polyaniline showed some corrosion activity, suggesting that the features of the polyaniline

  7. Acompanhamento do Processamento de Elastômeros Condutores por Microscopia Eletrônica de Varredura Evaluation of a Conductive Elastomer Processing Using Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Roselena Faez

    2001-09-01

    Full Text Available Neste trabalho, o elastômero EPDM foi misturado à Polianilina (PAni a qual foi dopada com ácido dodecilbenzeno sulfônico (DBSA na razão molar 1:3. A mistura de EPDM contendo 40%(m/m de PAni-(DBSA3 foi realizada em um misturador interno de dois rotores, acessório do reômetro Haake Rheocord 90, a 150°C e 30 rpm. Foram recolhidas amostras em 5, 10, 20, 30 e 40 min de processamento e a morfologia foi avaliada por MEV. A análise microscópica da superfície da amostra mostrou fases completamente distintas em função do tempo de mistura, passando de uma estrutura de duas fases compacta (5 min até o aparecimento de uma estrutura "tipo esponja" (30 e 40 min. Estas diferenças afetam as propriedades do material como, por exemplo, o comportamento de absorção de radiação eletromagnética de materiais absorvedores de radiação (MARE.In this work the EPDM elastomer was mixed with Polyaniline (PAni doped with dodecilbenzene sulfonic acid (DBSA using a molar ratio of 1:3 of PAni:DBSA. The EPDM mixture with 40%(w/w of PAni-(DBSA3 was carried out using an internal mixer chamber with two rotors coupled to a Haake Rheocord 90 at 150°C and 30 rpm. Aliquots were taken during the processing time of 5, 10, 20, 30 and 40 min, and the morphology was evaluated by SEM. The morphology of the blends markedly changes as a function of processing time, from a compact, at 5 min to a sponge-like morphology at 30 and 40 min. These differences influence the material properties, such as electromagnetic radiation absorption of radar absorbing materials (RAM.

  8. Facile Synthesis of Polyaniline Nanotubes Using Self-Assembly Method Based on the Hydrogen Bonding: Mechanism and Application in Gas Sensing

    Directory of Open Access Journals (Sweden)

    Changqing Yin

    2017-10-01

    Full Text Available Based on hydrogen bonding, the highly uniform polyaniline (PANI nanotubes were synthesized by self-assembly method using citric acid (CA as the dopant and the structure-directing agent by optimizing the molar ratio of CA to aniline monomer (Ani. Synthesis conditions like reaction temperature and mechanical stirring were considered to explore the effects of hydrogen bonding on the morphologies. The effects of CA on the final morphology of the products were also investigated. The as-synthesized CA doped polyaniline (PANI nanomaterials were further deposited on the plate electrodes for the test of gas sensing performance to ammonia (NH3. The sensitivity to various concentrations of NH3, the repeatability, and the stability of the sensors were also tested and analyzed. As a result, it was found that the PANI nanomaterial synthesized at the CA/Ani molar ratio of 0.5 has highly uniform tubular morphology and shows the best sensing performance to NH3. It makes the PANI nanotubes a promising material for high performance gas sensing to NH3.

  9. Sorption and Diffusion of Water Vapor and Carbon Dioxide in Sulfonated Polyaniline as Chemical Sensing Materials

    Directory of Open Access Journals (Sweden)

    Qiuhua Liang

    2016-04-01

    Full Text Available A hybrid quantum mechanics (QM/molecular dynamics (MD simulation is performed to investigate the effect of an ionizable group (–SO3−Na+ on polyaniline as gas sensing materials. Polymers considered for this work include emeraldine base of polyaniline (EB-PANI and its derivatives (Na-SPANI (I, (II and (III whose rings are partly monosubstituted by –SO3−Na+. The hybrid simulation results show that the adsorption energy, Mulliken charge and band gap of analytes (CO2 and H2O in polyaniline are relatively sensitive to the position and the amounts of –SO3−Na+, and these parameters would affect the sensitivity of Na-SPANI/EB-PANI towards CO2. The sensitivity of Na-SPANI (III/EB-PANI towards CO2 can be greatly improved by two orders of magnitude, which is in agreement with the experimental study. In addition, we also demonstrate that introducing –SO3−Na+ groups at the rings can notably affect the gas transport properties of polyaniline. Comparative studies indicate that the effect of ionizable group on polyaniline as gas sensing materials for the polar gas molecule (H2O is more significant than that for the nonpolar gas molecule (CO2. These findings contribute in the functionalization-induced variations of the material properties of polyaniline for CO2 sensing and the design of new polyaniline with desired sensing properties.

  10. Composite membranes prepared from cation exchange membranes and polyaniline and their transport properties in electrodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Sata, Tshikatsu; Ishii, Yuuko; Kawamura, Kohei; Matsusaki, Koji [Yamaguchi Univ., Ube City, Yamaguchi (Japan). Dept. of Applied Chemistry and Chemical Engineering

    1999-02-01

    A cation exchange membrane was modified with polyaniline by polymerizing aniline with ammonium peroxodisulfate on the membrane surfaces, producing a membrane with polyaniline layers on both surfaces or a membrane with a single polyaniline layer on the surface. The modified membranes, composite membranes, showed sodium ion permselectivity in electrodialysis compared with divalent cations at an optimum polymerization time. The electronic conductivity of dry membranes showed a maximum (ca. 5 {times} 10{sup {minus}3} S/cm) at the same polymerization time as the time to attain a maximum value of the sodium ion permselectivity. Because emeraldine-based polyaniline is conductive and has a cationic charge, the sodium ion permselectivity is based on the difference in the electrostatic repulsion forces of the cationic charge on the membrane surface of a desalting side to divalent cations and sodium ions. In fact, the selective permeation of sodium ions appeared only when the layer faced the desalting side of the membrane, and was affected by dissociation of polyaniline. Further oxidized polyaniline, pernigraniline-based polyaniline, did not affect the permselectivity between cations, and the diffusion coefficient of neutral molecules, urea, increased with increasing polymerization time. Sodium ion permselectivity was maintained with repeated electrodialysis.

  11. Synthesis and characterization of polyaniline and poly(aniline-co-o-nitroaniline using vibrational spectroscopy

    Directory of Open Access Journals (Sweden)

    Kuestan A. Ibrahim

    2017-05-01

    Full Text Available Due to the advantages of material abundance and synthetic simplicity, polyaniline can be used as a high capacity cathode material. However, its practical application in battery has been hindered by poor electrochemical utilization and cycling instability. To solve these problems, we synthesized the Polyaniline-co-o-nitroaniline aniline. The copolymers were synthesized for 1:1 and 1:4 M ratios of aniline and o-nitroaniline in acidic medium using ammonium persulfate as oxidant and their properties were compared with that of polyaniline. The prepared samples have been characterized using number of techniques including Raman spectroscopy, FTIR, UV–vis, and conductivity. The polymers showed less electrical conductivity than polyaniline. Unlike polyaniline, the presence of nitro group caused higher frequency dependence of electrical conductivity. The FTIR bands at 1560, 1306 and 1148 cm−1 are corresponding to the polyaniline salt. The Raman band observed in the range of 1100–1140 cm−1 is the characteristic of conductive polyaniline and is due to the charge delocalization on the polymer backbone.

  12. The sorption of influenza viruses and antibiotics on carbon nanotubes and polyaniline nanocomposites

    International Nuclear Information System (INIS)

    Ivanova, V T; Ilyna, M V; Kurochkina, Y E; Katrukha, G S; Timofeeva, A V; Baratova, L A; Sapurina, I Yu; Ivanov, V F

    2011-01-01

    The decontamination of the solutions from micropatogens and drug delivery are the important problems of modern life. It was shown that carbon nanotubes, polyaniline and their composites can interact with antibiotics-polypeptides and some viruses (pandemic strain of influenza viruses A(H1N1)v circulated in Russia in 2009-2010. During a short time drug and viruses can be absorbed by polyaniline and removed from aqueous solutions at the normal conditions. Polyaniline composites can be useful for the preparation of drug delivery and virus control filters and also in biotechnology for the improvement the methods of antibiotics purification.

  13. The sorption of influenza viruses and antibiotics on carbon nanotubes and polyaniline nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, V T; Ilyna, M V; Kurochkina, Y E [D.I. Ivanovsky Research Institute of Virology RAMS, Gamaleya st, 16, Moscow 123098 (Russian Federation); Katrukha, G S [G.F.Gause Institute of New Antibiotics RAMS, Moscow 119021 (Russian Federation); Timofeeva, A V; Baratova, L A [A.N. Belozersky Research Institute for Physico-Chemical Biology, M.V.Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Sapurina, I Yu [Institute of Macromolecular Compounds RAS, 199004, St. Petersburgr. Bolshoy Pr.31 (Russian Federation); Ivanov, V F, E-mail: valivanova1946@mail.ru [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky prospect, 31, Moscow 119991 (Russian Federation)

    2011-04-01

    The decontamination of the solutions from micropatogens and drug delivery are the important problems of modern life. It was shown that carbon nanotubes, polyaniline and their composites can interact with antibiotics-polypeptides and some viruses (pandemic strain of influenza viruses A(H1N1)v circulated in Russia in 2009-2010. During a short time drug and viruses can be absorbed by polyaniline and removed from aqueous solutions at the normal conditions. Polyaniline composites can be useful for the preparation of drug delivery and virus control filters and also in biotechnology for the improvement the methods of antibiotics purification.

  14. Fabrication and characterization of stearic acid/polyaniline composite with electrical conductivity as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Wang, Yi; Ji, Hui; Shi, Huan; Zhang, Ting; Xia, TianDong

    2015-01-01

    Highlights: • Stearic acid/polyaniline composite PCM with electrical conductivity was fabricated. • Stearic acid acted as thermal energy storage media and doping acid. • Latent heats of SA/PANI are as high as the same type composites. • Improved electrical conductivity of capsules is 0.7042 S cm −1 . - Abstract: This paper presents the experimental investigation on the thermal properties and electrical conductivity of the new microencapsulated phase change material by entrapping of stearic acid (SA) into PANI (polyaniline) shell through self-assembly method. Experimental results reveal that PANI nuclei grew on the surface of SA, and then copied its original morphological structure and finally exhibited peony flower-like morphology. The two components have good compatibility and have no chemical reaction both in the process of fabrication and subsequent use, while hydrogen bondings between the imino groups and carboxyl groups exist. The maximum mass fraction of stearic acid loaded in SA/PANI is determined as high as 62.1 wt% without seepage of melted SA from capsules. Due to the secondary doping with carboxyl group, the composite phase change material embedded with SA exhibits improved electrical conductivity from 0.3968 S cm −1 to 0.7042 S cm −1 when compared to PANI. The phase change temperatures and latent heats of SA/PANI are measured to be 55.6 °C and 113.02 J/g for melting and, 50.8 °C and 112.58 J/g for freezing, respectively. TG analysis test revealed that the prepared SA/PANI composite PCM has high thermal durability in working temperature range. Moreover, the results of DSC, FT-IR, TG, conductivity investigation and thermal cycling test are all show that the thermal reliability and electrical conductivity of the SA/APNI have imperceptible changes. In total, the additional electrical conductivity, high heat storage potential and good thermal reliability and stability facilitated SA/PANI to be considered as a viable candidate for thermal

  15. Synthesis of a novel electrode material containing phytic acid-polyaniline nanofibers for simultaneous determination of cadmium and lead ions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hui; Zhu, Wencai; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 (China); Liu, Xiuyu [Shandong Academy of Sciences, Jinan, 250114 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 (China)

    2016-12-01

    The development of nanostructured conducting polymers based materials for electrochemical applications has attracted intense attention due to their environmental stability, unique reversible redox properties, abundant electron active sites, rapid electron transfer and tunable conductivity. Here, a phytic acid doped polyaniline nanofibers based nanocomposite was synthesized using a simple and green method, the properties of the resulting nanomaterial was characterized by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). A glassy carbon electrode modified by the nanocomposite was evaluated as a new platform for the simultaneous detection of trace amounts of Cd{sup 2+} and Pb{sup 2+} using differential pulse anodic stripping voltammetry (DPASV). The synergistic contribution from PANI nanofibers and phytic acid enhances the accumulation efficiency and the charge transfer rate of metal ions during the DPASV analysis. Under the optimal conditions, good linear relationships were obtained for Cd{sup 2+} in a range of 0.05–60 μg L{sup −1}, with the detection limit (S/N = 3) of 0.02 μg L{sup −1}, and for Pb{sup 2+} in a range of 0.1–60 μg L{sup −1}, with the detection limit (S/N = 3) of 0.05 μg L{sup −1}. The new electrode was successfully applied to real water samples for simultaneous detection of Cd{sup 2+} and Pb{sup 2+} with good recovery rates. Therefore, the new electrode material may be a capable candidate for the detection of trace levels of heavy metal ions. - Highlights: • One-dimensional phytic acid doped polyaniline nanofibers were prepared. • Phytic acid based nanocomposite was used to detect metal ions for the first time. • Detection limits for Cd and Pb using DPASV were 0.02 and 0.05 μg L{sup −1}, respectively. • Cd and Pb in real water samples were measured with satisfactory results.

  16. Hybrid materials of kaolinite clay with polypyrrole and polyaniline.

    Science.gov (United States)

    Burridge, Kerstin A; Johnston, James H; Borrmann, Thomas

    2009-12-01

    Composites of the alumino silicate mineral kaolinite, with the conducting polymers polypyrrole and polyaniline have been successfully synthesised. In doing so hybrid materials have been produced in which the high surface area of the mineral is retained, whilst also incorporating the desired chemical and physical properties of the polymer. Scanning electron microscopy shows polypyrrole coatings to comprise of individual polymer spheres, approximately 10 to 15 nm in diameter. The average size of the polymer spheres of polyaniline was observed to be approximately 5 nm in diameter. These spheres fuse together in a continuous sheet to coat the kaolinite platelets in their entirety. The reduction of silver ions to metallic silver nanoparticles onto the redox active surface of the polymers has also been successful, and thus imparts anti-microbial properties to the hybrid materials. This gives rise to further applications requiring the inhibition of microbial growth. The chemical and physical characterization of the hybrid materials has been undertaken through scanning electron microscopy, energy dispersive spectroscopy, electrical conductivity, cyclic voltammetry, X-ray diffraction, infra red spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis and the testing of their anti-microbial activity.

  17. Assembly of polyaniline nanotubes by interfacial polymerization for corrosion protection.

    Science.gov (United States)

    Oueiny, C; Berlioz, S; Perrin, F X

    2016-02-07

    Polyaniline (PANI) was synthesized by the oxidation of aniline with ammonium peroxydisulfate as an oxidant in an immiscible organic/aqueous biphasic system and with decylphosphonic acid (DPA) or benzylphosphonic acid (BPA) in the aqueous phase. Nanofibers of aniline oligomers were produced using BPA in the aqueous phase while high quality polyaniline nanotubes were produced using DPA in the aqueous phase. PANI nanotubes have a outer diameter 160-240 nm, an inner diameter of 50-100 nm and a length of the order of several μm. The understanding of the formation of PANI nanotubes was examined by isolation of reaction intermediates and their ex situ characterization by atomic force microscopy. The roles of BPA and DPA on the morphology formation of the PANI nanostructures were discussed. A nanofibrillar template produced by aniline oligomers was found to guide the growth of PANI to nanotubular morphology. PANI nanotubes are thus not derived from DPA vesicles. Preliminary corrosion tests exhibit high corrosion protection efficiency of PANI nanotubes because of their high surface area and corrosion inhibitive properties of DPA dopant.

  18. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 µA·cm-2·mM-1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. Keywords: electrochemical deposition, sulfonated graphene oxide, urease

  19. Characterization of Chemically Synthesized Polyaniline-Polyvinylchloride-Montmorillonite Nanocomposite

    Directory of Open Access Journals (Sweden)

    Arefeh Tabatabaei

    2015-06-01

    Full Text Available Polyaniline-montmorillonite (PANI-MMT nanocomposite was synthesized by chemical polymerization of aniline in the presence of montmorillonite (MMT nanostructures. The triple hybrid of polyaniline-polyvinylchloridemontmorillonite (PANI-PVC-MMT was prepared by mixing of the synthesized PANIMMT nanocomposite with a solution of polyvinylchloride (PVC in tetrahydrofurane (THF. In addition, PANI-PVC composite was prepared by mixing of pure synthesized PANI and PVC solution in THF. To investigate the mechanical properties, the PANIPVC composite and PANI- PVC-MMT nanocomposite films were prepared with 5, 10 and 15 wt% of pure PANI and PANI-MMT  nanocomposite, respectively. The results showed that the PANI- PVC-MMT nanocomposite film having 10 wt% of PANIMMT nanocomposite displayed the best mechanical properties. Therefore, it was chosen as optimum film and its physico-chemical properties were characterized. The cyclic voltammetry (CV technique confirmed that the triple hybrid of PANI-PVCMMT nanocomposite was electroactive. Also, Fourier transform infrared (FTIR spectroscopy and scanning electron microscopy (SEM techniques were used to characterize the composition and structure of the PANI-PVC-MMT triple hybrid nanocomposite. X- Ray diffraction (XRD technique showed an intercalated structure for the PANI-PVC-MMT nanocomposite. The thermal stability improvement of the PANI-PVC-MMT nanocomposite in comparison with the pure PVC was established by thermogravimetric analysis (TGA.

  20. Flexible conductive nanocellulose combined with silicon nanoparticles and polyaniline.

    Science.gov (United States)

    Park, Minsung; Lee, Dajung; Shin, Sungchul; Kim, Hyun-Joong; Hyun, Jinho

    2016-04-20

    Here we describe a unique conductive bacterial cellulose (BC) composite with silicon nanoparticles (SiNPs) and polyaniline. BC was used as a template for binding SiNPs resulting in a very promising anode material for Li-ion rechargeable batteries that showed a high specific capacity. The surfaces of the SiNPs were modified with phytic acid to enhance the binding of aniline monomer to the surface. A conformal coating of polyaniline (PANi) was formed on the modified SiNPs by in situ polymerization of aniline monomers. We also found that the phytic acid on the SiNPs was critical to ensure encapsulation of SiNPs with PANi. In addition, the phosphoric acid-tagged surface of the SiNPs enhanced the adhesion of SiNPs to the BC fibers. The resulting three dimensional network of BC was flexible and provided stress dissipation in the conductive BC composites. Flexural testing of conductive BC composites showed stable electrical conductivity even after repetitive bending over 100 times. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Fabrication of conductive gelatin methacrylate-polyaniline hydrogels.

    Science.gov (United States)

    Wu, Yibo; Chen, Yong X; Yan, Jiahan; Quinn, David; Dong, Ping; Sawyer, Stephen W; Soman, Pranav

    2016-03-01

    Hydrogels with inherently conductive properties have been recently developed for tissue engineering applications, to serve as bioactive scaffolds to electrically stimulate cells and modulate their function. In this work, we have used interfacial polymerization of aniline monomers within gelatin methacrylate (GelMA) to develop a conductive hybrid composite. We demonstrate that as compared to pure GelMA, GelMA-polyaniline (GelMA-Pani) composite has similar swelling properties and compressive modulus, comparable cell adhesion and spreading responses, and superior electrical properties. Additionally, we demonstrate that GelMA-Pani composite can be printed in complex user-defined geometries using digital projection stereolithography, and will be useful in developing next-generation bioelectrical interfaces. We report the fabrication of a conductive hydrogel using naturally-derived gelatin methyacrylate (GelMA) and inherently conductive polyaniline (Pani). This work is significant, as GelMA-Pani composite has superior electrical properties as compared to pure Gelma, all the while maintaining biomimetic physical and biocompatible properties. Moreover, the ability to fabricate conductive-GelMA in complex user-defined micro-geometries, address the significant processing challenges associated with all inherently conductive polymers including Pani. The methodology described in this work can be extended to several conductive polymers and hydrogels, to develop new biocompatible electrically active interfaces. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Science.gov (United States)

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm−2·mM−1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. PMID:26346240

  3. Polyaniline Nanofibers: Their Amphiphilicity and Uses for Pickering Emulsions and On-Demand Emulsion Separation.

    Science.gov (United States)

    Zhou, Ping; Li, Jing; Yang, Wenwen; Zhu, Lihua; Tang, Heqing

    2018-02-27

    The wetting property of nanomaterials is of great importance to both fundamental understanding and potential applications. However, the study on the intrinsic wetting property of nanomaterials is interfered by organic capping agents, which are often used to lower the surface energy of nanomaterials and avoid their irreversible agglomeration. In this work, the wetting property of the nanostructured polyaniline that requires no organic capping agents is investigated. Compared to hydrophilic granular particulates, polyaniline nanofibers are amphiphilic and have an excellent capability of creating Pickering emulsions at a wide range of pH. It is suggested that polyaniline nanofibers can be easily wetted by water and oil. Furthermore, the amphiphilic polyaniline nanofibers as building blocks can be used to construct filtration membranes with a small pore size. The wetting layer of the continuous phase of emulsions in the porous nanochannels efficiently prevents the permeation of the dispersed phase, realizing high-efficiency on-demand emulsion separation.

  4. Spectral imaging method for studying Physarum polycephalum growth on polyaniline surface.

    Science.gov (United States)

    Dimonte, A; Fermi, F; Berzina, T; Erokhin, V

    2015-08-01

    The features of spectrophotometric scanner, generally exploited in the artwork field, are here considered in a non-conventional context to characterize the networks created by Physarum polycephalum slime mold during its motion on glass substrates covered with polyaniline: a polymer that varies its color and conductive properties according to the redox state. The used technique allowed the investigation of the effects coming out from the interaction between P. polycephalum and polyaniline. Thus, the contactless method of the analysis of polyaniline conductivity state resulted from the slime mold metabolism was suggested. Indeed, it is here demonstrated that P. polycephalum can modify properties of polyaniline due to its internal activity in contact zones. Copyright © 2015. Published by Elsevier B.V.

  5. ROOM TEMPERATURE BULK AND TEMPLATE-FREE SYNTHESIS OF LEUCOEMARLDINE POLYANILINE NANOFIBERS

    Science.gov (United States)

    Herein, we describe a simple strategy for the bulk and template-free synthesis of reduced leucoemarldine polyaniline nanofibers size ranging from as low as 10 nm to 50 nm without the use of any reducing agents at room temperature.

  6. Application of Thin Films of Polyaniline and Polypyrrole in Novel Light-Emitting Devices

    National Research Council Canada - National Science Library

    MacDiarmid, A

    1997-01-01

    Light-emitting electroluminescent devices are described in which the conjugated light emitting polymer is separated from one or both of the device electrodes by a film of non-conducting polyaniline...

  7. Surface and charge transport characterization of polyaniline-cellulose acetate composite membranes.

    Science.gov (United States)

    Qaiser, Asif A; Hyland, Margaret M; Patterson, Darrell A

    2011-02-24

    This study elucidates the charge transport processes of polyaniline (PANI) composite membranes and correlates them to the PANI deposition site and the extent of PANI surface layering on the base microporous membranes. PANI was deposited either as a surface layer or inside the pores of cellulose acetate microporous membranes using various in situ chemical polymerization techniques. The extent of PANI layering at the surface of the base membrane and its oxidation and doping states were characterized using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). PANI deposition on the membranes showed a strong dependence on the polymerization technique and polymerization time within a single technique. In XPS, the deconvolution of C 1s and N 1s core-level spectra of the composite membranes was used to quantify the extent of PANI layering at the surface along with its oxidation and doping states. PANI incompletely covered the surface of the base microporous membranes for all the employed techniques. However, the extent of the layering increased with the polymerization time in a particular technique. The charge transport through the bulk membrane and charge transfer at the membrane/electrode interface were studied by electrochemical impedance spectroscopy (EIS). The data were analyzed using the equivalent circuit modeling technique. The modeling parameters revealed that PANI deposition at the surface enhanced the interfacial charge transfer but the process depended on the extent of the surface coverage of the membrane. In addition, the charge transport in the bulk membrane depended on the PANI intercalation level, which varied depending on the polymerization technique employed. In addition, the EIS of electrolyte-soaked membranes was also conducted to evaluate the effects of PANI deposition site on charge transport in the presence of an electrolyte. PANI layering at the pore walls of the base membrane from diaphragmatic polymerization

  8. Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect

    Science.gov (United States)

    Bongiovanni Abel, Silvestre; Yslas, Edith I.; Rivarola, Claudia R.; Barbero, Cesar A.

    2018-03-01

    Polyaniline nanoparticles (PANI-NPs) were easily obtained applying the solvent displacement method by using N-methylpyrrolidone (NMP) as good solvent and water as poor solvent. Different polymers such as polyvinylpyrrolidone (PVP), chondroitin sulfate (ChS), polyvinyl alcohol (PVA), and polyacrylic acid (PAA) were used as stabilizers. Dynamic light scattering and scanning electron microscopy corroborated the size and morphology of the formed NPs. It was demonstrated that the size of nanoparticles could be controlled by setting the concentration of PANI in NMP, the NMP to water ratio, and the stabilizer’s nature. The functionalization and fluorescence of NPs were checked by spectroscopic techniques. Since polyaniline show only weak intrinsic luminescence, fluorescent groups were linked to the polyaniline chains prior to the nanoparticle formation using a linker. Polyaniline chains were functionalized by nucleophilic addition of cysteamine trough the thiol group thereby incorporating pendant primary aliphatic amine groups to the polyaniline backbone. Then, dansyl chloride (DNS-Cl), which could act as an extrinsic chromophore, was conjugated to the amine pendant groups. Later, the functionalized polyaniline was used to produce nanoparticles by solvent displacement. The optical and functional properties of fluorescent nanoparticles (F-PANI-NPs) were determined. F-PANI-NPs in the conductive state (pH < 4) are able to absorb near infrared radiation (NIR) creating a photothermal effect in an aqueous medium. Thus, multifunctional nanoparticles are obtained. The application of NIR on a F-PANI-NPs dispersion in contact with Pseudomonas aeruginosa causes bacterial death. Therefore, the F-PANI-NPs could be tracked and applied to inhibit different diseases caused by pathogenic microorganisms and resistant to antibiotics as well as a new disinfection method to surgical materials.

  9. Optimization of multiroute synthesis for polyaniline-barium ferrite composites

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ghzaiel, Tayssir, E-mail: tayssir.ben-ghzaiel@satie.ens-cachan.fr [Université de Tunis El Manar Faculté des Sciences de Tunis, UR11ES18 Unité de Recherche de Chimie Minérale Appliquée, 2092, Tunis (Tunisia); SATIE, ENS Cachan, CNRS, Université Paris-Saclay, 61 av du Président Wilson, F-94230, Cachan (France); Dhaoui, Wadia [Université de Tunis El Manar Faculté des Sciences de Tunis, UR11ES18 Unité de Recherche de Chimie Minérale Appliquée, 2092, Tunis (Tunisia); Pasko, Alexander; Mazaleyrat, Frédéric [SATIE, ENS Cachan, CNRS, Université Paris-Saclay, 61 av du Président Wilson, F-94230, Cachan (France)

    2016-08-15

    A comparative study of physicochemical and magnetic properties of Polyaniline-BaFe{sub 12}O{sub 19} composites prepared by Solid-Based Polymerization (SBP) and by Aqueous-Based Polymerization (ABP) is carried out. The composites obtained by the latter method underwent a grinding to study the influence of shear stress. Thus, in a systematic approach, an investigation of stirring effect was done by synthesizing these composites using aqueous-based polymerization but without mechanical stirring. Different mass ratio of BaFe{sub 12}O{sub 19} was used to explore their impact on composites properties. X-ray diffraction, FTIR, SEM, TGA, conductivity and vibrating sample magnetometer measurements were performed. Structural and morphological investigations confirmed the presence of polyaniline and barium hexaferrite phase, which were in interaction in the composites regardless the polymerization route. The powder obtained by solid-based pathway revealed distinct particles with uniform distribution for various compositions (wt. %) of BaFe{sub 12}O{sub 19} in Pani, while the composites obtained by aqueous-based polymerization presented agglomerated nanostructures. Thermogravimetric analysis exhibited an improved thermal stability for Pani-BaFe{sub 12}O{sub 19} obtained by solid-based route. The electric conductivity has displayed decreasing trend of DC conductivity with the increase of BaFe{sub 12}O{sub 19} particles in the polymer matrix. Magnetic studies showed a ferromagnetic behaviour for all composites. The saturation magnetization monotonously increased with the increasing of BaFe{sub 12}O{sub 19} amount. The magnetic properties of the powders were mainly related to the hexaferrite loading which was determined using measured magnetic data. These results revealed that magnetization saturation was dependant of volume fraction of ferrite in the composites which was significantly affected by the reaction medium and mechanical stirring. The powders obtained by solid

  10. 160 MeV Ni{sup 12+} ion irradiation effects on the dielectric properties of polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, J.; Nath, Chandrani [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India); Kumar, A., E-mail: ask@tezu.ernet.in [Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam (India)

    2012-10-01

    We report on the dielectric properties and a.c. conductivity studies of CSA doped polyaniline nanotubes. Nanotubes of 47-100 nm diameter, were synthesized by the self-assembly method and irradiated using Ni{sup 12+} ions of 160 MeV energy with fluences of 1 Multiplication-Sign 10{sup 10}, 5 Multiplication-Sign 10{sup 10}, 1 Multiplication-Sign 10{sup 11} and 3 Multiplication-Sign 10{sup 11} ions/cm{sup 2}. X-ray diffraction studies reveal an increase in the degree of crystallinity and consequently, the extent of order of the nanotubes with increasing fluence, but show a lower degree of crystallinity at higher fluence. The decrease in d-spacing for the (100) reflections with fluence is ascribed to the decrease in the tilt angle of the aligned polymer chains. A significant change was seen after irradiation in dielectric and electrical properties which may be correlated with the increased carrier concentration and structural modifications in the polymer films. The surface conductivity of films increases with increasing fluence, which also decreases at higher fluence. The a.c. conduction mechanism for the nanotubes could be explained in terms of correlated barrier hopping model. The existence of polarons as the major charge carriers in the present nanotube system was confirmed by the low values of polaron binding energy, found to decrease with fluence. The hopping distance increases with fluence indicating that the hopping probability increases with fluence.

  11. Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band

    Directory of Open Access Journals (Sweden)

    Avanish Pratap Singh

    2011-06-01

    Full Text Available β–Naphthalene sulphonic acid (β–NSA doped polyaniline (PANI–flyash (FA composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37–21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D–VRH model. SEM images demonstrate that β–NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ′- iɛ″ and permeability (μ*=μ′- iμ″ of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21 using theoretical calculations given in Nicholson–Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 – 12.4 GHz & Ku–Band (12.4 – 18 GHz frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.

  12. Structure and properties of polyaniline nanocomposite coatings containing gold nanoparticles formed by low-energy electron beam deposition

    Science.gov (United States)

    Wang, Surui; Rogachev, A. A.; Yarmolenko, M. A.; Rogachev, A. V.; Xiaohong, Jiang; Gaur, M. S.; Luchnikov, P. A.; Galtseva, O. V.; Chizhik, S. A.

    2018-01-01

    Highly ordered conductive polyaniline (PANI) coatings containing gold nanoparticles were prepared by low-energy electron beam deposition method, with emeraldine base and chloroauric acid used as target materials. The molecular and chemical structure of the layers was studied by Fourier transform infrared, Raman, UV-vis and X-ray photoelectron spectroscopy. The morphology of the coatings was investigated by atomic force and transmission electron microscopy. Conductive properties were obtained by impedance spectroscopy method and scanning spreading resistance microscopy mode at the micro- and nanoscale. It was found that the emeraldine base layers formed from the products of electron-beam dispersion have extended, non-conductive polymer chains with partially reduced structure, with the ratio of imine and amine groups equal to 0.54. In case of electron-beam dispersion of the emeraldine base and chloroauric acid, a protoemeraldine structure is formed with conductivity 0.1 S/cm. The doping of this structure was carried out due to hydrochloric acid vapor and gold nanoparticles formed by decomposition of chloroauric acid, which have a narrow size distribution, with the most probable diameter about 40 nm. These gold nanoparticles improve the conductivity of the thin layers of PANI + Au composite, promoting intra- and intermolecular charge transfer of the PANI macromolecules aligned along the coating surface both at direct and alternating voltage. The proposed deposition method of highly oriented, conductive nanocomposite PANI-based coatings may be used in the direct formation of functional layers on conductive and non-conductive substrates.

  13. Nonlinear optical properties of polyaniline and poly (o-toluidine) composite thin films with multi walled carbon nano tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraja, K.K. [National University of Science and Technology “MISiS”, Leninskii pr. 4, Moscow 119049 (Russian Federation); Pramodini, S. [Department of Physics, School of Engineering and Technology, Jain University, Jakkasandra Post, Bengaluru 5621112, Karnataka (India); Poornesh, P., E-mail: poorneshp@gmail.com [Nonlinear Optics Research Laboratory, Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, Karnataka (India); Telenkov, M.P. [National University of Science and Technology “MISiS”, Leninskii pr. 4, Moscow 119049 (Russian Federation); Kityk, I.V. [Electrical Engineering Department, Czestochowa University Technology, Czestochowa (Poland)

    2017-05-01

    We report the improved third-order nonlinear optical properties of polyaniline and poly (o-toluidine) with different doping concentrations of multi walled carbon nano tube (MWCNTs) composite thin films investigated using z-scan technique and continuous wave He–Ne laser at 633 nm wavelength was used as source of excitation. Thin films were prepared by spin coating technique on glass substrate. The structural properties of the composite films were analysed by X-ray diffraction studies and the characteristic peaks corresponding to MWCNTs and polymers have been observed. The surface morphology of the deposited films was analysed using scanning electron microscopy and it confirms that the polymer in the composites has been coated on the MWCNTs homogeneously. The z-scan results reveal that the films exhibit reverse saturable absorption and self-defocusing nonlinearity. The third-order nonlinear optical susceptibility χ{sup (3)} is found to be of the order of 10{sup −3} esu. Also, optical power limiting and clamping experiment was performed. The clamping values increases with increase in concentration and the lowest clamping observed for composite films are 1 mW and 0.7 mW.

  14. Humidity Sensing Behavior of Polyaniline / Strontium Arsenate Composites

    Directory of Open Access Journals (Sweden)

    Machappa T.

    2009-08-01

    Full Text Available The response of conducting Polyaniline (PANI / Ceramic (Sr3(AsO42 composites system to air moisture environment is studied. The conducting PANI and its composites are prepared by in situ polymerization technique. These prepared samples were characterized by XRD, FTIR & SEM, which confirms crystallinity, composite formation and porosity of the samples. The temperature dependent conductivity measurement shows the thermally activated behavior, where the conductivity increases with increase in temperature. The decrease in electrical resistance with change in relative humidity (RH over broad range (ranging between 20 to 95 % is due to the increase in surface electrical conductivity resulting from moisture absorption and due to capillary condensation of water causing increase in conductivity within the sensing materials.

  15. Polyaniline/clay conducting nanocomposite for use in protecting coatings

    International Nuclear Information System (INIS)

    Baldissera, Alessandra F.; Souza, Joiani F.; Auad, Priscila; Ferreira, Carlos A.

    2011-01-01

    Nanomaterials have been shown highly promising materials for various technological applications. In engineering, may be noted the polymer nanocomposites, which are a new class of composite materials, where a nanoclay, or charge with nanometric dimensions, is dispersed in a polymer matrix at low concentration or volume. The clays are more common and when added in quantities less than 5% in the nanocomposites, cause a significant increase in these properties, such as mechanical, optical, magnetic barrier, and especially permeability and flammability. In this context, this work aimed at obtaining the polymeric nanocomposites of polyaniline (PAni) with different commercial clays (Cloisite Na + , 10A, 15A, 20A and 30B). The preparation of PAni-MMT nanocomposites was performed by in situ polymerization of aniline in acidic (HCl). Electrical conductivity measurements, FT-IR, TGA and X- ray diffraction were some of the techniques used to characterize the nanocomposites. (author)

  16. Green Synthesis and Characterization of Carbon Nanotubes/Polyaniline Nanocomposites

    Directory of Open Access Journals (Sweden)

    Van Hoa Nguyen

    2015-01-01

    Full Text Available Carbon nanotubes/polyaniline (CNT/PANI nanocomposites were synthesized by the interfacial polymerization of aniline in the presence of CNTs using two green solvents, water and an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], as the two phases. The formation and incorporation of PANI on the surface of the CNTs were confirmed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy. The analyses showed that the surface of the CNTs was coated with different morphologies of thin PANI layers depending on whether a HCl or HNO3 solution was used. The thermal stability of the composites was much better than that of the bare CNTs and pure PANI. The as-prepared composites were also used to modify the nickel foam electrodes for characterization of the electrochemical properties.

  17. Polyaniline-deposited porous carbon electrode for supercapacitor

    International Nuclear Information System (INIS)

    Chen, W.-C.; Wen, T.-C.; Teng, H.

    2003-01-01

    Electrodes for supercapacitors were fabricated by depositing polyaniline (PANI) on high surface area carbons. The chemical composition of the PANI-deposited carbon electrode was determined by X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical properties of electrodes. An equivalent circuit was proposed to successfully fit the EIS data, and the significant contribution of pseudocapacitance from PANI was thus identified. A comparative analysis on the electrochemical properties of bare-carbon electrodes was also conducted under similar conditions. The performance of the capacitors equipped with the resulting electrodes in 1 M H 2 SO 4 was evaluated by constant current charge-discharge cycling within a potential range from 0 to 0.6 V. The PANI-deposited electrode exhibits high specific capacitance of 180 F/g, in comparison with a value of 92 F/g for the bare-carbon electrode

  18. Synthesis and characterization of polyaniline as emeraldine salt

    Energy Technology Data Exchange (ETDEWEB)

    Gawri, Isha; Khatta, Swati; Singh, K. P.; Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India)

    2016-05-06

    Polyaniline in emeraldine salt (PANI-ES) form was successfully synthesized by oxidative polymerization of aniline using ammonium peroxidisulphate as oxidant in the presence of hydrochloric acid as catalyst under ice bath condition. The as prepared powdered sample was characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Using XRD, the average crystalline size was found to be 5.63 nm and d-spacing corresponding to crystalline peak 2θ = 25.08° had come out to be 4.2 Å. Also FTIR absorption spectra showed all the characteristics bands of PANI –ES. The ohmic contact between the PANI-ES film and the substrate was confirmed by Current-Voltage (I-V) characterization.

  19. Microstructure, interparticle interactions and magnetotransport of manganite-polyaniline nanocomposites

    International Nuclear Information System (INIS)

    Romero, Mariano; Faccio, Ricardo; Pardo, Helena; Tumelero, Milton A.; Campos Plá Cid, Cristiani; Pasa, André A.; Mombrú, Álvaro W.

    2016-01-01

    In this report, we present the study on the microstructure and interparticle interactions of manganite-polyaniline nanocomposites using grazing incidence small angle X-ray scattering (SAXS). In order to determine the nanoparticles mean diameter and correlation distances, data analysis was performed using the Guinier and Beaucage fits, in good agreement with transmission electron microscopy and X-ray diffraction analysis. The analysis of the interference functions revealed the existence of attractive interactions between nanoparticles. The nanocomposites with higher manganite concentration showed best fitting using the sticky hard sphere approximation. A weakening in the attractive interaction with increasing the dilution of nanoparticles in the polymer matrix was observed until a critical volume fraction (ϕ c  ∼ 0.4) is reached, upon which the hard sphere approximation showed best fitting. The interaction potentials were estimated at room temperature revealing a decrease in the depth and width of the square well with increasing nanoparticle dilution. Coercive field and remanent magnetization showed a decrease with increasing polymer addition suggesting the declining of dipole–dipole interactions, in agreement with SAXS analysis. Magnetoresistance also showed an enhancement that could be probably associated to the decrease in the dipole–dipole interactions between ferromagnetic La 2/3 Sr 1/3 MnO 3 (LSMO) nanoparticles at a critical separation distance in these nanocomposites. - Highlights: • A SAXS study on the microstructure of manganite-polyaniline nanocomposites is reported. • We report the presence of attractive interactions for the composites with higher concentration in manganite. • Interparticle dipole–dipole interactions were estimated by means of the SAXS interference function. • Coercive field and remanent magnetization studies showed agreement with SAXS analysis. • Magnetotransport showed an enhancement in relation to the decrease of

  20. Microstructure, interparticle interactions and magnetotransport of manganite-polyaniline nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Mariano; Faccio, Ricardo; Pardo, Helena [Centro NanoMat/Cryssmat Lab, DETEMA, Facultad de Química, Universidad de la República (Uruguay); Centro Interdisciplinario de Nanotecnología, Química y Física de Materiales, Espacio Interdisciplinario, Universidad de la República (Uruguay); Tumelero, Milton A. [Laboratorio de filmes finos e superficies, Departamento de Física, Universidad Federal de Santa Catarina, Florianópolis (Brazil); Campos Plá Cid, Cristiani [Laboratorio Central de Microscopia Electronica, Universidad Federal de Santa Catarina, Florianópolis (Brazil); Pasa, André A. [Laboratorio de filmes finos e superficies, Departamento de Física, Universidad Federal de Santa Catarina, Florianópolis (Brazil); Laboratorio Central de Microscopia Electronica, Universidad Federal de Santa Catarina, Florianópolis (Brazil); Mombrú, Álvaro W., E-mail: amombru@fq.edu.uy [Centro NanoMat/Cryssmat Lab, DETEMA, Facultad de Química, Universidad de la República (Uruguay); Centro Interdisciplinario de Nanotecnología, Química y Física de Materiales, Espacio Interdisciplinario, Universidad de la República (Uruguay)

    2016-03-01

    In this report, we present the study on the microstructure and interparticle interactions of manganite-polyaniline nanocomposites using grazing incidence small angle X-ray scattering (SAXS). In order to determine the nanoparticles mean diameter and correlation distances, data analysis was performed using the Guinier and Beaucage fits, in good agreement with transmission electron microscopy and X-ray diffraction analysis. The analysis of the interference functions revealed the existence of attractive interactions between nanoparticles. The nanocomposites with higher manganite concentration showed best fitting using the sticky hard sphere approximation. A weakening in the attractive interaction with increasing the dilution of nanoparticles in the polymer matrix was observed until a critical volume fraction (ϕ{sub c} ∼ 0.4) is reached, upon which the hard sphere approximation showed best fitting. The interaction potentials were estimated at room temperature revealing a decrease in the depth and width of the square well with increasing nanoparticle dilution. Coercive field and remanent magnetization showed a decrease with increasing polymer addition suggesting the declining of dipole–dipole interactions, in agreement with SAXS analysis. Magnetoresistance also showed an enhancement that could be probably associated to the decrease in the dipole–dipole interactions between ferromagnetic La{sub 2/3}Sr{sub 1/3}MnO{sub 3} (LSMO) nanoparticles at a critical separation distance in these nanocomposites. - Highlights: • A SAXS study on the microstructure of manganite-polyaniline nanocomposites is reported. • We report the presence of attractive interactions for the composites with higher concentration in manganite. • Interparticle dipole–dipole interactions were estimated by means of the SAXS interference function. • Coercive field and remanent magnetization studies showed agreement with SAXS analysis. • Magnetotransport showed an enhancement in relation to

  1. Corrosion Prevention of Cold Rolled Steel Using Water Dispersible Lignosulfonic Acid Doped Polyaniline

    Science.gov (United States)

    Viswanathan, Tito (Inventor)

    2007-01-01

    The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated x-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of solfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.

  2. Synthesis of H2SO4 doped polyaniline film by potentiometric method

    Indian Academy of Sciences (India)

    Unknown

    probe method permits measurements of the resis- tivity in the samples having wide variety of shapes, including the resistivity of small volume within bigger semiconductor. The present work deals with the conductivity measurements.

  3. Simple fabrication of a sensitive hydrogen peroxide biosensor using enzymes immobilized in processable polyaniline nanofibers/chitosan film

    International Nuclear Information System (INIS)

    Du Zhifeng; Li Chengchao; Li Limiao; Zhang Ming; Xu Shoujiang; Wang Taihong

    2009-01-01

    A simple method for polyaniline nanofibers modified glassy carbon electrode was developed. Polyaniline nanofibers (4-toluenesulfonic acid as dopant) were synthesized by interface polymerization. The polyaniline nanofibers had better processability than conventional polyaniline and were easily dispersed in chitosan solution. The mixed dispersion of polyaniline nanofibers and horseradish peroxidase was cast onto the glassy carbon electrode by a drop-coating method. The use of polyaniline nanofibers led to efficient enzyme loading and rapid electron transfer rate between the active centers of enzymes and electrodes. Horseradish peroxidase entrapped in the polyaniline nanofibers/chitosan film could keep its native bioactivity and effectively catalyze the reduction of hydrogen peroxide. The proposed biosensor exhibited good analytical performance due to the benefits of nanostructured polyaniline. This biosensor had a wide linear range of 1 x 10 -5 to 1.5 x 10 -3 M and correlation coefficient of 0.998 (n = 17), with the detection limit of 5 x 10 -7 M based on signal-to-noise ratio of 3.

  4. Simple fabrication of a sensitive hydrogen peroxide biosensor using enzymes immobilized in processable polyaniline nanofibers/chitosan film

    Energy Technology Data Exchange (ETDEWEB)

    Du Zhifeng; Li Chengchao; Li Limiao; Zhang Ming; Xu Shoujiang [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Wang Taihong, E-mail: thwang@hnu.cn [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2009-08-01

    A simple method for polyaniline nanofibers modified glassy carbon electrode was developed. Polyaniline nanofibers (4-toluenesulfonic acid as dopant) were synthesized by interface polymerization. The polyaniline nanofibers had better processability than conventional polyaniline and were easily dispersed in chitosan solution. The mixed dispersion of polyaniline nanofibers and horseradish peroxidase was cast onto the glassy carbon electrode by a drop-coating method. The use of polyaniline nanofibers led to efficient enzyme loading and rapid electron transfer rate between the active centers of enzymes and electrodes. Horseradish peroxidase entrapped in the polyaniline nanofibers/chitosan film could keep its native bioactivity and effectively catalyze the reduction of hydrogen peroxide. The proposed biosensor exhibited good analytical performance due to the benefits of nanostructured polyaniline. This biosensor had a wide linear range of 1 x 10{sup -5} to 1.5 x 10{sup -3} M and correlation coefficient of 0.998 (n = 17), with the detection limit of 5 x 10{sup -7} M based on signal-to-noise ratio of 3.

  5. Electrosynthesis of Polyaniline-TiO2 Nanocomposite Films on Aluminum Alloy 3004 Surface and its Corrosion Protection Performance

    Directory of Open Access Journals (Sweden)

    M. Shabani-Nooshabadi

    2013-03-01

    Full Text Available The direct synthesis of polyaniline-TiO2 nanocomposite coatings on aluminum alloy 3004 (AA3004 surface has been investigated by using the galvanostatic method. The synthesized coatings were characterized by FT-IR, SEM-EDX, SEM and AFM. Optical absorption spectroscopy reveals the formation of the emeraldine oxidation state form of polyaniline-TiO2 nanocomposite. The corrosion performances of polyaniline-TiO2 nanocomposite coatings were investigated in 3.5% NaCl solution by Tafel polarization and Electrochemical Impedance Spectroscopy (EIS methods. The corrosion rate of polyaniline-TiO2 nanocomposite coating on AA3004 was found ∼260 times lower than bare AA3004 and corrosion potentials of these coatings have shifted to more positive potentials (105 mV. The results of this study clearly ascertain that the polyaniline-TiO2 nanocomposite coating has outstanding potential to protect the AA3004 against corrosion in a chloride environment.

  6. Energy dependent saturable and reverse saturable absorption in cube-like polyaniline/polymethyl methacrylate film

    Energy Technology Data Exchange (ETDEWEB)

    Thekkayil, Remyamol [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, C.V. Raman Avenue, Bangalore 560 080 (India); Gopinath, Pramod [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India)

    2014-08-01

    Solid films of cube-like polyaniline synthesized by inverse microemulsion polymerization method have been fabricated in a transparent PMMA host by an in situ free radical polymerization technique, and are characterized by spectroscopic and microscopic techniques. The nonlinear optical properties are studied by open aperture Z-scan technique employing 5 ns (532 nm) and 100 fs (800 nm) laser pulses. At the relatively lower laser pulse energy of 5 μJ, the film shows saturable absorption both in the nanosecond and femtosecond excitation domains. An interesting switchover from saturable absorption to reverse saturable absorption is observed at 532 nm when the energy of the nanosecond laser pulses is increased. The nonlinear absorption coefficient increases with increase in polyaniline concentration, with low optical limiting threshold, as required for a good optical limiter. - Highlights: • Synthesized cube-like polyaniline nanostructures. • Fabricated polyaniline/PMMA nanocomposite films. • At 5 μJ energy, saturable absorption is observed both at ns and fs regime. • Switchover from SA to RSA is observed as energy of laser beam increases. • Film (0.1 wt % polyaniline) shows high β{sub eff} (230 cm GW{sup −1}) and low limiting threshold at 150 μJ.

  7. Preparation of high surface area and high conductivity polyaniline nanoparticles using chemical oxidation polymerization technique

    Science.gov (United States)

    Budi, S.; Yusmaniar; Juliana, A.; Cahyana, U.; Purwanto, A.; Imaduddin, A.; Handoko, E.

    2018-03-01

    In this work, polyaniline nanoparticles were synthesized using a chemical oxidation polymerization technique. The ammonium peroxydisulfate (APS)/aniline ratio, APS dropping time, and polymerization temperature were optimized to increase the surface area and conductivity of the polyaniline.The Fourier-transform infrared (FTIR) spectrum confirmed the formation of emeraldine salt polyaniline. X-ray diffraction (XRD) patterns indicated that amorphous and crystalline phases of the polyaniline were formed with crystallinity less than 40%. Scanning electron microscope (SEM) micrographs showed that the finest nanoparticles with uniform size distribution were obtained at the polymerization temperature of 0°C. A surface area analyzer (SAA) showed that the highest Brunauer-Emmett-Teller surface area (SBET ) of 42.14 m2/gwas obtained from an APS/aniline ratio of 0.75 with a dropping time of 0 s at a polymerization temperature of 0°C. A four-point probe measurement conducted at 75–300K indicated relatively high conductivity of the semiconductor characteristic of the polyaniline.

  8. Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors

    KAUST Repository

    Chen, Wei

    2013-01-01

    A remarkable energy density of 84 W h kg(cell) -1 and a power density of 182 kW kg(cell) -1 have been achieved for full-cell pseudocapacitors using conducting polymer nanotubes (polyaniline) as electrode materials and ionic liquid as electrolytes. The polyaniline nanotubes were synthesized by a one-step in situ chemical polymerization process utilizing MnO2 nanotubes as sacrificial templates. The polyaniline-nanotube pseudocapacitors exhibit much better electrochemical performance than the polyaniline-nanofiber pseudocapacitors in both acidic aqueous and ionic liquid electrolytes. Importantly, the incorporation of ionic liquid with polyaniline-nanotubes has drastically improved the energy storage capacity of the PAni-nanotube pseudocapacitors by a factor of ∼5 times compared to that of the PAni-nanotube pseudocapacitors in the acidic aqueous electrolyte. Furthermore, even after 10000 cycles, the PAni-nanotube pseudocapacitors in the ionic liquid electrolyte maintain sufficient high energy density and can light LEDs for several minutes, with only 30 s quick charge. © 2013 The Royal Society of Chemistry.

  9. Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation.

    Science.gov (United States)

    Nosrati, Rahimeh; Olad, Ali; Maramifar, Roya

    2012-07-01

    ZnO/polyaniline nanocomposite in core-shell structure was prepared by the synthesis and adsorption of polyaniline chains on the structure of ZnO nanoparticles. Fourier transform infrared and ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction patterns, field emission scanning electron microscopy, and transmission electron microscopy were used to characterize the composition and structure of the nanocomposite. The nanocomposite was used as an active photocatalyst for photodegradation and removal of ampicillin in aqueous solution. UV-Vis spectroscopy studies showed that ZnO/polyaniline nanocomposite absorbs visible light irradiation as well as ultraviolet spectrum, and therefore, it can be photoactivated under visible and ultraviolet lights. The photocatalytic activity of ZnO/polyaniline nanocomposite in degradation of ampicillin molecules in aqueous solution under natural sunlight irradiation was evaluated and compared with that of ZnO nanoparticles and pristine polyaniline. The ZnO/polyaniline core-shell nanocomposite exhibited higher photocatalytic activity compared to ZnO nanoparticles and pristine polyaniline. The effect of operating conditions (pH, ZnO/polyaniline nanocomposite dosage, and ampicillin concentration) in the photocatalytic degradation of ampicillin using ZnO/polyaniline nanocomposite was investigated. The optimum conditions for maximum efficiency of ampicillin degradation under 120 min sunlight irradiation were found as 10 mg L(-1) dosage of ZnO/polyaniline nanocomposite, ampicillin concentration of 4.5 mg L(-1), and solution pH = 5. Under optimum operating conditions, degradation efficiency was reached to 41% after 120 min of exposure to the sunlight irradiation.

  10. Building a Novel Chemically Modified Polyaniline/Thermally Reduced Graphene Oxide Hybrid through π-π Interaction for Fabricating Acrylic Resin Elastomer-Based Composites with Enhanced Dielectric Property.

    Science.gov (United States)

    Wu, Sen-Qiang; Wang, Jing-Wen; Shao, Jing; Wei, Lei; Yang, Kai; Ren, Hua

    2017-08-30

    Sustainability urgently demands low dielectric loss and low elastic modulus as fostering high permittivity (Hi-K) conductor/polymer composites. This work introduces a ternary composite system, consisting of acrylic resin elastomer (AR), chemically modified polyaniline (HBSiPA), and the thermally reduced graphene oxides (TrGOs), for applying to actuators, of which AR was fabricated by free radical polymerization. The unique hybridized graphene (HBSiPA-TrGO) was prepared by a two-step procedure, including the doped polyaniline modified by the hyperbranched polysiloxane via a ring opening reaction, followed by the decoration of HBSiPA on the surface of TrGO, the conductivity of which is desired to be the same as that of graphene. Afterward, diverse filler contents of HBSiPA-TrGO were put into the AR matrix to fabricate composites with the solution casting method and TrGO/AR composites were fabricated as well for comparison. Unlike TrGO, HBSiPA has plenty of polyaniline chain segments that ensure better dispersion of graphene hybrids in the AR, and thus the composites inherit the excellent electrical property of graphene. The permittivity and dielectric loss of the HBSiPA-TrGO/AR composite at 100 Hz are 3.5 and 0.27 times that of the TrGO/AR composite, respectively, when the loading of fillers approaches the percolation threshold (f c ), which originates from the HBSiPA anchored onto the graphene serving as spacer and thus decreases the leakage currents induced by the contact of graphene sheets. Besides, the elastic modulus of 2.83 vol % HBSiPA-TrGO/AR composite was lower than 5 MPa.

  11. Effect of reaction conditions on film morphology of polyaniline composite membranes for gas separation

    KAUST Repository

    Blinova, Natalia V.

    2012-04-21

    Composite membranes combining polyaniline as an active layer with a polypropylene support have been prepared using an in situ deposition technique. The protonated polyaniline layer with a thickness in the range of 90-200 nm was prepared using precipitation, dispersion, or emulsion polymerization of aniline with simultaneous deposition on top of the porous polypropylene support, which was immersed in the reaction mixture. Variables such as temperature, concentration of reagents, presence of steric stabilizers, surfactants, and heteropolyacid were found to control both the formation and the quality of the polyaniline layers. Both morphology and thickness of the layers were characterized using scanning electron microscopy. Selective separation of carbon dioxide from its mixture with methane is used to illustrate potential application of these composite membranes. © 2012 Wiley Periodicals, Inc.

  12. Synthesis of fully and partially sulfonated polyanilines derived from ortanilic acid: An electrochemical and electromicrogravimetric study

    International Nuclear Information System (INIS)

    Cano Marquez, Abraham Guadalupe; Torres Rodriguez, Luz Maria; Montes Rojas, Antonio

    2007-01-01

    The electrochemical polymerization of 2-aminobenzene sulfonic acid, also called ortanilic acid (o-ASA), on a gold electrode precoated with polyaniline (PANI), has been carried out. We proved that the electropolymerization of o-ASA is enhanced on PANI electrodes, resulting in thicker films obtained in aqueous media at room temperature. The electrosynthesized film (P(o-ASA)) was characterized by cyclic voltammetry, FTIR and nuclear magnetic resonance. The compensation of P(o-ASA) charge was evaluated using electrochemical quartz crystal microbalance combined with cyclic voltammetry, which showed that the electroneutralization process mainly involves cations. Additionally, copolymers of aniline and o-ASA were electrosynthesized, using a metallic electrode modified with PANI also as a working electrode. The degree of sulfanation of copolymers has been modulated with the proportions of monomers in the electrosynthesis solution. The studies reveal a more important participation of cations in fully sulfonated polyaniline than in partially sulfonated polyaniline

  13. Preparation, Characterization, and Electrochromic Properties of Nanocellulose-Based Polyaniline Nanocomposite Films.

    Science.gov (United States)

    Zhang, Sihang; Sun, Gang; He, Yongfeng; Fu, Runfang; Gu, Yingchun; Chen, Sheng

    2017-05-17

    On the basis of nanocellulose obtained by acidic swelling and ultrasonication, rodlike nanocellulose/polyaniline nanocomposites with a core-shell structure have been prepared via in situ polymerization. Compared to pure polyaniline, the nanocomposites show superior film-forming properties, and the prepared nanocomposite films demonstrate excellent electrochemical and electrochromic properties in electrolyte solution. Nanocomposite films, especially the one prepared with 40% polyaniline coated nanocomposite, exhibited faster response time (1.5 s for bleaching and 1.0 s for coloring), higher optical contrast (62.9%), higher coloration efficiency (206.2 cm 2 /C), and more remarkable switching stability (over 500 cycles). These novel nanocellulose-based nanorod network films are promising novel electrochromic materials with excellent properties.

  14. Bottom-up synthesis of graphene/polyaniline nanocomposites for flexible and transparent energy storage devices

    Science.gov (United States)

    Souza, Victor H. R.; Oliveira, Marcela M.; Zarbin, Aldo J. G.

    2017-04-01

    An innovative, single-pot synthesis for chemically producing graphene/polyaniline nanocomposites is presented. The method, which is based on chemical reactions at liquid-liquid interfaces, begins with benzene and aniline and ultimately yields nanocomposites as thin films of polyaniline mixed with graphene. These films self-assembled at the water-benzene interface are easily transferable to any kind of ordinary substrates, plastics included. Nanocomposites prepared with different polymer/graphene ratios show differentiated structures and morphologies, resulting in excellent pseudocapacitive behaviors (specific capacitance of 267.2 F cm-3). The construction of all-solid, transparent, and flexible supercapacitor device from this nanocomposite is also presented.

  15. Effect of adsorbed polyaniline on the thermal stability of iron and arsenic oxides

    Directory of Open Access Journals (Sweden)

    Robson Fernandes de Farias

    2000-06-01

    Full Text Available Iron and arsenic oxide grains are coated with the conducting organic polymer polyaniline. The obtained samples were characterized by infrared spectroscopy, SEM, conducting measurements and thermogravimetry. The thermal stability of both oxides are increased. For As2O3 the sublimation temperature is increased from 165ºC in the pure oxide to 206ºC in the polymer modified sample. The pure Fe3O4 sample exhibits sublimation at 780ºC whereas the polyaniline coated oxide is stable until at least 1000ºC.

  16. Conducting Polymeric Hydrogel Electrolyte Based on Carboxymethylcellulose and Polyacrylamide/Polyaniline for Supercapacitor Applications

    Science.gov (United States)

    Suganya, N.; Jaisankar, V.; Sivakumar, E. K. T.

    Conducting polymer hydrogels represent a unique class of materials that possess enormous application in flexible electronic devices. In the present work, conducting carboxymethylcellulose (CMC)-co-polyacrylamide (PAAm)/polyaniline was synthesized by a two-step interpenetrating network solution polymerization technique. The synthesized CMC-co-PAAm/polyaniline with interpenetrating network structure was prepared by in situ polymerization of aniline to enhance conductivity. The molecular structure and morphology of the copolymer hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The novel conducting polymer hydrogels show good electrical and electrochemical behavior, which makes them potentially useful in electronic devices such as supercapacitors, biosensors, bioelectronics, solar cells and memory devices.

  17. Influence of poly(n-isopropylacrylamide)-CNT-polyaniline three-dimensional electrospun microfabric scaffolds on cell growth and viability.

    Science.gov (United States)

    Tiwari, Ashutosh; Sharma, Yashpal; Hattori, Shinya; Terada, Dohiko; Sharma, Ashok K; Turner, Anthony P F; Kobayashi, Hisatoshi

    2013-05-01

    This study investigates the effect on: (1) the bulk surface and (2) the three-dimensional non-woven microfabric scaffolds of poly(N-isopropylacrylamide)-CNT-polyaniline on growth and viability of cells. The poly(N-isopropylacrylamide)-CNT-polyaniline was prepared using coupling chemistry and electrospinning was then used for the fabrication of responsive, non-woven microfabric scaffolds. The electrospun microfabrics were assembled in regular three-dimensional scaffolds with OD: 400-500 μm; L: 6-20 cm. Mice fibroblast cells L929 were seeded on the both poly(N-isopropylacrylamide)-CNT-polyaniline bulk surface as well as non-woven microfabric scaffolds. Excellent cell proliferation and viability was observed on poly(N-isopropylacrylamide)-CNT-polyaniline non-woven microfabric matrices in compare to poly(N-isopropylacrylamide)-CNT-polyaniline bulk and commercially available Matrigel™ even with a range of cell lines up to 168 h. Temperature dependent cells detachment behavior was observed on the poly(N-isopropylacrylamide)-CNT-polyaniline scaffolds by varying incubation at below lower critical solution temperature of poly(N-isopropylacrylamide). The results suggest that poly(N-isopropylacrylamide)-CNT-polyaniline non-woven microfabrics could be used as a smart matrices for applications in tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.

  18. Controlled growth of polyaniline fractals on HOPG through potentiodynamic electropolymerization.

    Science.gov (United States)

    Bhattacharjya, Dhrubajyoti; Mukhopadhyay, Indrajit

    2012-04-10

    Polyaniline (PANI) in fractal dimension has been electrodeposited reproducibly on highly oriented pyrolytic graphite (HOPG) from 0.2 M aniline in 1 M aqueous HCl solution by potentiodynamic sweeping in the range of -0.2 to 0.76 V vs Ag/AgCl at room temperature. Fractal growth of PANI dendrimers is affected by diffusion limited polymerization (DLP) at a sweep rate of 15 mV s(-1) for 43 min. This type of PANI dendrimer is prepared for the first time on such large area HOPG substrate by electrochemical technique using rather simple cell setup. The fractal dimension has been determined by chronoamperometry (CA) and box counting technique and is found to vary from 1.4 to 1.9 with the duration of electropolymerization. The sweep rate, terminal oxidation potential, and the diverse surface anisotropy of the HOPG surface are found to be crucial factors in controlling the growth of such PANI fractals. © 2012 American Chemical Society

  19. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Kleber G. B. [Universidade Federal de Pernambuco, Departamento de Engenharia Mecanica (Brazil); Melo, Etelino F. de [Universidade Federal de Pernambuco, Departamento de Quimica Fundamental (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Departamento de Fisica (Brazil)

    2013-01-15

    We report the synthesis of stable polyaniline nanoparticles (PANI{sub N}Ps) based on the chemical oxidative polymerization of aniline in aqueous solutions of surfactants. Surfactants of three different types-cationic (dodecyltrimethylammonium bromide-DTAB), anionic (sodium dodecyl sulfate-SDS), and non-ionic (Triton X-405-TX-405)-were used. The resulting PANI{sub N}Ps{sub s}urfactant samples were characterized through UV-Vis, fluorescence and Fourier transform infrared spectroscopies, and scanning electronic microscopy (SEM). We have verified that the color of the PANI{sub N}Ps{sub s}urfactant dispersions is affected by a change in the pH of the solution. The PANI-NPs{sub s}urfactant colloidal suspensions in aqueous solution present a surprising high fluorescence quantum yield value (ranging from 1.9 Multiplication-Sign 10{sup -3} to 6.9 Multiplication-Sign 10{sup -3}) that can be controlled as a function of the pH, a fact that we associate to the corresponding protonation degree of the PANI polymeric chains. We suggest that these fluorescent nanocomposites can find important technological applications in different areas such as organic light emitting devices, biosensors, and pigments for coatings.

  20. Polyaniline-CuO hybrid nanocomposite with enhanced electrical conductivity

    Science.gov (United States)

    de Souza, Vânia S.; da Frota, Hidembergue O.; Sanches, Edgar A.

    2018-02-01

    A hybrid nanocomposite based on a polymer matrix constituted of Polyaniline Emeraldine-salt form (PANI-ES) reinforced by copper oxide II (CuO) particles was obtained by in situ polymerization. Structural, morphological and electrical properties of the pure materials and nanocomposite form were investigated. The presence of CuO particles in the nanocomposite material affected the natural alignment of the polymer chains. XRD technique allowed the visualization of the polymer amorphization in the nanocomposite form, suggesting an interaction between both phases. The FTIR spectra confirmed this molecular interaction due to the blue shift of the characteristic absorption peaks of PANI-ES in the nanocomposite form. SEM images revealed that the polymer nanofiber morphology was no longer observed in the nanocomposite. The CuO spherical particles are randomly dispersed in the polymer matrix. The density functional theory plus the Coulomb interaction method revealed a charge transfer from PANI to CuO slab. Moreover, the density of states (DOS) has revealed that the nanocomposite behaves as a metal. In agreement, the electrical conductivity showed an increase of 60% in the nanocomposite material.

  1. Montmorillonite polyaniline nanocomposites: Preparation, characterization and investigation of mechanical properties

    International Nuclear Information System (INIS)

    Soundararajah, Q.Y.; Karunaratne, B.S.B.; Rajapakse, R.M.G.

    2009-01-01

    The interest in clay polymer nanocomposites (CPN) materials, initially developed by researchers at Toyota, has grown dramatically over the last decade. They have attracted great interest, both in industry and in academia, because they often exhibit remarkable improvement in materials' properties when compared with virgin polymer or conventional micro- and macro-composites. These improvements can include high moduli, increased strength and heat resistance, decreased gas permeability and flammability, optical transparency and increased biodegradability of biodegradable polymers. Such enhancement in the properties of nanocomposites occurs mostly due to their unique phase morphology and improved interfacial properties. Because of these enhanced properties they find applications in the fields of electronics, automobile industry, packaging, and construction. This study aims at investigating the mechanical property enhancement of polyaniline (PANI) intercalated with montmorillonite (MMT) clay. The MMT-PANI nanocomposites displayed improved mechanical properties compared to the neat polymer or clay. The enhancement was achieved at low clay content probably due to its exfoliated structure. The increased interfacial areas and improved bond characteristics may attribute to the mechanical property enhancement

  2. Polyaniline modified flexible conducting paper for cancer detection

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Saurabh; Sen, Anindita; Kumar, Suveen; Augustine, Shine; Malhotra, Bansi D., E-mail: bansi.malhotra@gmail.com [Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi 110042 (India); Yadav, Birendra K. [Rajiv Gandhi Cancer Institute and Research Centre, Rohini, Delhi 110085 (India); Mishra, Sandeep [Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Delhi 110042 (India)

    2016-05-16

    We report results of studies relating to the fabrication of a flexible, disposable, and label free biosensing platform for detection of the cancer biomarker (carcinoembryonic antigen, CEA). Polyaniline (PANI) has been electrochemically deposited over gold sputtered paper (Au@paper) for covalent immobilization of monoclonal carcinoembryonic antibodies (anti-CEA). The bovine serum albumin (BSA) has been used for blocking nonspecific binding sites at the anti-CEA conjugated PANI/Au@Paper. The PANI/Au@Paper, anti-CEA/PANI/Au@Paper, and BSA/anti-CEA/PANI/Au@Paper platforms have been characterized using scanning electron microscopy, X-ray diffraction, Fourier transmission infrared spectroscopy, chronoamperometry, and electrochemical impedance techniques. The results of the electrochemical response studies indicate that this BSA/anti-CEA/PANI/Au@paper electrode has sensitivity of 13.9 μA ng{sup −1} ml cm{sup 2}, shelf life of 22 days, and can be used to estimate CEA in the range of 2–20 ng ml{sup −1}. This paper sensor has been validated by detection of CEA in serum samples of cancer patients via immunoassay technique.

  3. Bacteria counting method based on polyaniline/bacteria thin film.

    Science.gov (United States)

    Zhihua, Li; Xuetao, Hu; Jiyong, Shi; Xiaobo, Zou; Xiaowei, Huang; Xucheng, Zhou; Tahir, Haroon Elrasheid; Holmes, Mel; Povey, Malcolm

    2016-07-15

    A simple and rapid bacteria counting method based on polyaniline (PANI)/bacteria thin film was proposed. Since the negative effects of immobilized bacteria on the deposition of PANI on glass carbon electrode (GCE), PANI/bacteria thin films containing decreased amount of PANI would be obtained when increasing the bacteria concentration. The prepared PANI/bacteria film was characterized with cyclic voltammetry (CV) technique to provide quantitative index for the determination of the bacteria count, and electrochemical impedance spectroscopy (EIS) was also performed to further investigate the difference in the PANI/bacteria films. Good linear relationship of the peak currents of the CVs and the log total count of bacteria (Bacillus subtilis) could be established using the equation Y=-30.413X+272.560 (R(2)=0.982) over the range of 5.3×10(4) to 5.3×10(8)CFUmL(-1), which also showed acceptable stability, reproducibility and switchable ability. The proposed method was feasible for simple and rapid counting of bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Polyaniline modified flexible conducting paper for cancer detection

    Science.gov (United States)

    Kumar, Saurabh; Sen, Anindita; Kumar, Suveen; Augustine, Shine; Yadav, Birendra K.; Mishra, Sandeep; Malhotra, Bansi D.

    2016-05-01

    We report results of studies relating to the fabrication of a flexible, disposable, and label free biosensing platform for detection of the cancer biomarker (carcinoembryonic antigen, CEA). Polyaniline (PANI) has been electrochemically deposited over gold sputtered paper (Au@paper) for covalent immobilization of monoclonal carcinoembryonic antibodies (anti-CEA). The bovine serum albumin (BSA) has been used for blocking nonspecific binding sites at the anti-CEA conjugated PANI/Au@Paper. The PANI/Au@Paper, anti-CEA/PANI/Au@Paper, and BSA/anti-CEA/PANI/Au@Paper platforms have been characterized using scanning electron microscopy, X-ray diffraction, Fourier transmission infrared spectroscopy, chronoamperometry, and electrochemical impedance techniques. The results of the electrochemical response studies indicate that this BSA/anti-CEA/PANI/Au@paper electrode has sensitivity of 13.9 μA ng-1 ml cm2, shelf life of 22 days, and can be used to estimate CEA in the range of 2-20 ng ml-1. This paper sensor has been validated by detection of CEA in serum samples of cancer patients via immunoassay technique.

  5. Fabrication of Biosensors Based on Nanostructured Conducting Polyaniline (NSPANI

    Directory of Open Access Journals (Sweden)

    Deepshikha SAINI

    2011-11-01

    Full Text Available In this study, glucose and hydrogen peroxide (H2O2 biosensors based on nanostructured conducting polyaniline (NSPANI (synthesized using sodiumdodecyl sulphate (SDS as structure directing agent were developed. Because of the large specific surface area, excellent conductivity of NSPANI, horseradish peroxidase (HRP and glucose oxidase (GOx could be easily immobilized with high loading and activity. In addition the small dimensions and the high surface-to-volume ratio of the NSCP allow the rapid transmission of electron and enhance current response. The linear dynamic range of optical glucose and H2O2 biosensors is 5–40 mM for glucose and 1–50 mM for H2O2, respectively where as the bulk PANI exhibits linearity between 5-20 mM/l. The miniature optical glucose biosensor also exhibits good reproducibility. The storage stability of optical glucose and H2O2 biosensors is two weeks for glucose and five days for H2O2. The high response value of NSPANI based biosensors as compared to bulk PANI based biosensor reflects higher enzymatic affinity of GOx/NSPANI and HRP/NSPANI with glucose and H2O2 due to biocompatibility, active surface area and high electron communication capability of nanobiopolymer film. In conclusion, the NSPANI based biosensors proposed herein have many advantages such as a low response time, high reproducibility, high sensitivity, stable and wide dynamic range.

  6. Fabrication of biomimetic superhydrophobic surface using hierarchical polyaniline spheres.

    Science.gov (United States)

    Dong, Xiaofei; Wang, Jixiao; Zhao, Yanchai; Wang, Zhi; Wang, Shichang

    2011-06-01

    Wettability and water-adhesion behavior are the most important properties of solid surfaces from both fundamental and practical aspects. Here, the biomimetic superhydrophobic surface was fabricated via a simple coating process using polyaniline (PANI) microspheres which is covered with PANI nanowires as functional component, and poly-vinyl butyral (PVB, poly-vinyl alcohol crosslinked with n-butylaldehyde) as PANI microsphere adhering improvement agent to the substrate. The obtained surface displays superhydrophobic behavior without any modification with low-surface-energy materials such as thiol- or fluoroalkylsilane. The effects of coating process and the content of PANI microspheres on superhydropbobic behavior were discussed. Combine contact angle, water-adhesion measurements, scanning electronic microscopy (SEM) observations with selected areas energy dispersion spectrometer (EDS), the hydrophobic mechanism was proposed. The superhydrophobicity is attributed to a hierarchical morphology of PANI microspheres and the nature of the material itself. In addition, induced by van der Waals forces, the created superhydrophobic surface here shows the strong water-adhesion behavior. The surface has the combination performance of Lotus leaf and gecko's pad. The special wettability would be of great significance to the liquid microtransport in microfluid devices. The experimental results show that the ordinary coating process is a facile approach for fabrication of superhydrophobic surfaces.

  7. Cytotoxicity of Polyaniline Nanomaterial on Rat Celiac Macrophages In Vitro

    Science.gov (United States)

    Li, Xiao-Jun; Zhang, Wei Kevin; Tang, He-Bin

    2014-01-01

    Polyaniline nanomaterial (nPANI) is getting popular in many industrial fields due to its conductivity and stability. The fate and effect of nPANI in the environment is of paramount importance towards its technological applications. In this work, the cytotoxicity of nPANI, which was prepared by rapid surface polymerization, was studied on rat celiac macrophages. Cell viability of macrophages treated with various concentrations of nPANI and different periods ranging from 24 to 72 hours was tested by a MTT assay. Damages of nPANI to structures of macrophages were evaluated according to the exposure level of cellular reactive oxygen species (ROS) and change of mitochondrial membrane potential (MMP). We observed no significant effects of nPANI on the survival, ROS level and MMP loss of macrophages at concentrations up to 1 µg/ml. However, higher dose of nPANI (10 µg/ml or above) induced cell death, changes of ROS level and MMP. In addition, an increase in the expression level of caspase-3 protein and its activated form was detected in a Western blot assay under the high dose exposure of nPANI. All together, our experimental results suggest that the hazardous potential of nPANI on macrophages is time- and dose-dependent and high dose of nPANI can induce cell apoptosis through caspase-3 mediated pathway. PMID:25250578

  8. Physical and structural properties of polyaniline/microcrystalline cellulose nanocomposite

    Science.gov (United States)

    Abdi, Mahnaz M.; Liyana, Rawaida; Tahir, Paridah Md; Heng, Lee Yook; Sulaiman, Yusran; Waheeda, Nur Farhana; Hassan, Nabihah Abu

    2017-12-01

    A composite of Polyaniline/Microcrystalline Cellulose (PAni/MCC) was prepared via a chemical polymerization method in the presence of ammonium persulfate (NH4)2S2O8 as oxidant and cetyltrimethylammonium bromide (CTAB) as a cationic surfactant. The results of FESEM showed that the morphology of nanocomposite depends on the monomer concentration. Wire-like and porous nanostructure was observed for PAni/MCC/CTAB composite that could be suitable for enzyme immobilization and sensor applications. The electrochemical properties of the composites were studied using Cyclic Voltammetry (CV) and it was shown that PAni/MCC/CTAB composite generated a higher current response compared to the pure PAni. The synergy effect of MCC and CTAB on the physical and electrochemical properties of composite resulted in higher electron transferring in PAni/MCC/CTAB. The presence of significant peaks of PAni and MCC in FT-IR spectrum of nanocomposite indicating polymerization of aniline on the surface of MCC. Characteristic peaks of crystalline cellulose were observed at 22.8 and 14.7 2theta in XRD pattern.

  9. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Xu, Jingjing; Lu, Shiyao; Chen, Xu; Wang, Jianan; Zhang, Bo; Zhang, Xinyu; Xiao, Chunhui; Ding, Shujiang

    2017-12-01

    Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

  10. Nitrogen Doped Macroporous Carbon as Electrode Materials for High Capacity of Supercapacitor

    Directory of Open Access Journals (Sweden)

    Yudong Li

    2017-01-01

    Full Text Available Nitrogen doped carbon materials as electrodes of supercapacitors have attracted abundant attention. Herein, we demonstrated a method to synthesize N-doped macroporous carbon materials (NMC with continuous channels and large size pores carbonized from polyaniline using multiporous silica beads as sacrificial templates to act as electrode materials in supercapacitors. By the nice carbonized process, i.e., pre-carbonization at 400 °C and then pyrolysis at 700/800/900/1000 °C, NMC replicas with high BET specific surface areas exhibit excellent stability and recyclability as well as superb capacitance behavior (~413 F ⋅ g−1 in alkaline electrolyte. This research may provide a method to synthesize macroporous materials with continuous channels and hierarchical pores to enhance the infiltration and mass transfer not only used as electrode, but also as catalyst somewhere micro- or mesopores do not work well.

  11. Large enhanced dielectric permittivity in polyaniline passivated core-shell nano magnetic iron oxide by plasma polymerization

    International Nuclear Information System (INIS)

    Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.; Anantharaman, M. R.; Sajeev, U. S.; Nair, Swapna S.; Narayanan, T. N.; Ajayan, P. M.

    2014-01-01

    Commercial samples of Magnetite with size ranging from 25–30 nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed

  12. Nonlinearity exponents in lightly doped conducting polymers

    Science.gov (United States)

    Talukdar, D.; Nandi, U. N.; Bardhan, K. K.; Bof Bufon, C. C.; Heinzel, T.; de, A.; Mukherjee, C. D.

    2011-08-01

    The I-V characteristics of four conducting polymer systems such as doped polypyrrole, poly(3,4-ethylenedioxythiophene), polydiacetylene, and polyaniline in as many physical forms have been investigated at different temperatures, quenched disorder, and magnetic fields. Transport data clearly show the existence of a single electric-field scale in each system. Based upon this observation, a phenomenological scaling analysis is performed, leading to the extraction of a numerical value for a nonlinearity exponent called xM which serves to characterize a set of I-V curves. The conductivity starts deviating from an Ohmic value σ0 above an onset electric field Fo which scales according to Fo˜σ0xM. The electric-field-dependent data are shown to be described by the multistep tunneling model of Glazman-Matveev [JETP 67, 1276 (1988)] in a near-perfect manner over nine orders of magnitude in conductivity and five orders of magnitude in electric field. Furthermore, xM is found to possess both positive and negative values lying between -1/2 and 3/4. There is no theory at present for this exponent. Some issues concerning applicability of the Glatzman-Matveev model are discussed.

  13. Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement

    International Nuclear Information System (INIS)

    Zhu Shibu; Wei Wei; Chen Xiangnan; Jiang Man; Zhou Zuowan

    2012-01-01

    Polyaniline (PANI) hybridized ZnO photoanode for dye-sensitized solar cell (DSSC) was primarily prepared via a two-step process which involved hydrothermal growth of ZnO nanograss on the fluorine-doped tin oxide (FTO) substrate and subsequently chemisorption of PANI on the surfaces of the ZnO nanorods. The PANI hybridized ZnO nanograss films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), and the results indicated that there were chemical interactions between PANI and ZnO. Both pure ZnO nanograss and PANI hybridized ZnO nanograss were applied to DSSC. The results of photoelectrochemical measurement showed that the photocurrent density of PANI (100 mg/L) hybridized ZnO nanograss photoanode was significantly enhanced, and the overall light-conversion efficiency increased by 60%. The electrochemical impedance spectra (EIS) displayed that the electron densities in photoanodes of PANI hybridized ZnO nanograss were larger than that in pure ZnO nanograss. This is ascribed to more effective charge separation and faster interfacial charge transferring occurred in the hybrid photoanode. - Graphical abstract: Operational principle of the DSSC: the introduced hybridizing PANI layer performs effective charge separation and faster interfacial charge transferring. Highlights: ► PANI/ZnO nanograss hybrid materials as photoanode in Dye-sensitized solar cell. ► Photoelectric conversion efficiency after hybridization was enhanced by 60%. ► PANI hybridizing ZnO nanograss induced a rapid charge separation.

  14. A Novel Polyaniline-Coated Bagasse Fiber Composite with Core-Shell Heterostructure Provides Effective Electromagnetic Shielding Performance.

    Science.gov (United States)

    Zhang, Yang; Qiu, Munan; Yu, Ying; Wen, Bianying; Cheng, Lele

    2017-01-11

    A facile route was proposed to synthesize polyaniline (PANI) uniformly deposited on bagasse fiber (BF) via a one-step in situ polymerization of aniline in the dispersed system of BF. Correlations between the structural, electrical, and electromagnetic properties were extensively investigated. Scanning electron microscopy images confirm that the PANI was coated dominantly on the BF surface, indicating that the as-prepared BF/PANI composite adopted the natural and inexpensive BF as its core and the PANI as the shell. Fourier transform infrared spectra suggest significant interactions between the BF and PANI shell, and a high degree of doping in the PANI shell was achieved. X-ray diffraction results reveal that the crystallization of the PANI shell was improved. The dielectric behaviors are analyzed with respect to dielectric constant, loss tangent, and Cole-Cole plots. The BF/PANI composite exhibits superior electrical conductivity (2.01 ± 0.29 S·cm -1 ), which is higher than that of the pristine PANI with 1.35 ± 0.15 S·cm -1 . The complex permittivity, electromagnetic interference (EMI), shielding effectiveness (SE) values, and attenuation constants of the BF/PANI composite were larger than those of the pristine PANI. The EMI shielding mechanisms of the composite were experimentally and theoretically analyzed. The absorption-dominated total EMI SE of 28.8 dB at a thickness of 0.4 mm indicates the usefulness of the composite for electromagnetic shielding. Moreover, detailed comparison of electrical and EMI shielding properties with respect to the BF/PANI, dedoped BF/PANI composite, and the pristine PANI indicate that the enhancement of electromagnetic properties for the BF/PANI composite was due to the improved conductivity and the core-shell architecture. Thus, the composite has potential commercial applications for high-performance electromagnetic shielding materials and also could be used as a conductive filler to endow polymers with electromagnetic shielding

  15. Corrosion inhibition efficiency of organic coatings with content of polyaniline phosphate

    Czech Academy of Sciences Publication Activity Database

    Kalendová, A.; Veselý, D.; Stejskal, Jaroslav; Němec, P.

    2009-01-01

    Roč. 13, č. 3 (2009), s. 295-297 ISSN 1432-8917 Institutional research plan: CEZ:AV0Z40500505 Keywords : pigment * coating * corrosion inhibitor * polyaniline * conducting polymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.723, year: 2009

  16. Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Bober, Patrycja; Kotek, Jiří; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 1020-1027 ISSN 0366-6352 R&D Projects: GA ČR GA202/09/1626; GA AV ČR(CZ) IAAX08240901 Institutional support: RVO:61389013 Keywords : polyaniline * montmorillonite * organic-inorganic composite Subject RIV: JI - Composite Materials Impact factor: 1.193, year: 2013

  17. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav

    2014-01-01

    Roč. 6, č. 2 (2014), s. 942-950 ISSN 1944-8244 R&D Projects: GA ČR GAP205/12/0911; GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyaniline * anilin e oligomers * Raman spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.723, year: 2014

  18. Polyaniline-sodium montmorillonite clay nanocomposites: effect of clay concentration on thermal, structural, and electrical properties

    Czech Academy of Sciences Publication Activity Database

    Kazim, Samrana; Ahmad, S.; Pfleger, Jiří; Pleštil, Josef; Joshi, Y. M.

    2012-01-01

    Roč. 47, č. 1 (2012), s. 420-428 ISSN 0022-2461 R&D Projects: GA MŠk 7E10040 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conductive polymer * montmorillonite Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.163, year: 2012

  19. Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Morávková, Zuzana; Šeděnková, Ivana; Stejskal, Jaroslav

    2012-01-01

    Roč. 66, č. 5 (2012), s. 415-445 ISSN 0366-6352 R&D Projects: GA AV ČR IAA100500902; GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * thin films * spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.879, year: 2012

  20. In-situ prepared polyaniline-silver composites: single- and two-step strategies

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Stejskal, Jaroslav; Trchová, Miroslava; Prokeš, J.

    2014-01-01

    Roč. 122, 10 March (2014), s. 259-266 ISSN 0013-4686 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : composites * conducting polymer * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.504, year: 2014

  1. Conducting polyaniline based cell culture substrate for embryonic stem cells and embryoid bodies

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Humpolíček, P.; Pacherník, J.; Stejskal, Jaroslav; Lindfors, T.

    2015-01-01

    Roč. 5, č. 62 (2015), s. 50328-50335 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : conducting polymer * polyaniline * biocompatibility Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.289, year: 2015

  2. Conformational transition in polyaniline films – spectroscopic and conductivity studies of ageing

    Czech Academy of Sciences Publication Activity Database

    Šeděnková, Ivana; Prokeš, J.; Trchová, Miroslava; Stejskal, Jaroslav

    2008-01-01

    Roč. 93, č. 2 (2008), s. 428-435 ISSN 0141-3910 R&D Projects: GA AV ČR IAA4050313; GA AV ČR IAA400500504 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.320, year: 2008

  3. Polyaniline prepared in the presence of various acids 2. Thermal stability of conductivity

    Czech Academy of Sciences Publication Activity Database

    Prokeš, J.; Stejskal, Jaroslav

    2004-01-01

    Roč. 86, č. 1 (2004), s. 187-195 ISSN 0141-3910 R&D Projects: GA AV ČR IAA4050313 Institutional research plan: CEZ:AV0Z4050913 Keywords : polyaniline * conducting polymer * conductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.685, year: 2004

  4. An Organic Memristive Element Based on Single Polyaniline/Polyamide-6 Fiber

    Science.gov (United States)

    Lapkin, D. A.; Malakhov, S. N.; Demin, V. A.; Chvalun, S. N.

    2017-12-01

    Conducting hybrid polyaniline-coated polyamide-6 fiber has been obtained and used as the basis for an organic memristive element. The proposed device exhibits resistive switching with a continuous character of conductance variation. The results show that the proposed organic memristor can be used for creating three-dimensional stochastic networks based on hybrid nonwoven materials.

  5. Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite

    Czech Academy of Sciences Publication Activity Database

    Ayad, M. M.; Abu El-Nasr, A.; Stejskal, Jaroslav

    Roč. 18, č. 6 ( 2012 ), s. 1964-1969 ISSN 1226-086X R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline nanotubes * silica * composite Subject RIV: BK - Fluid Dynamics Impact factor: 2.145, year: 2012

  6. Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity

    Czech Academy of Sciences Publication Activity Database

    Bláha, Michal; Trchová, Miroslava; Bober, Patrycja; Morávková, Zuzana; Prokeš, J.; Stejskal, Jaroslav

    2017-01-01

    Roč. 194, 15 June (2017), s. 206-218 ISSN 0254-0584 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : aniline * oxidants * polyaniline Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.084, year: 2016

  7. Anticorrosion properties of inorganic pigments surface-modified with a polyaniline phosphate layer

    Czech Academy of Sciences Publication Activity Database

    Kalendová, A.; Veselý, D.; Stejskal, Jaroslav; Trchová, Miroslava

    2008-01-01

    Roč. 63, č. 2 (2008), s. 209-221 ISSN 0300-9440 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * coating Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.375, year: 2008

  8. Properties of proton-conducting nafion-type membranes with nanometer-thick polyaniline surface layers

    Czech Academy of Sciences Publication Activity Database

    Sapurina, I.; Kompan, M.; Malyshkin, V.; Rosanov, V.; Stejskal, Jaroslav

    2009-01-01

    Roč. 45, č. 6 (2009), s. 697-706 ISSN 1023-1935 R&D Projects: GA MŠk ME 847 Institutional research plan: CEZ:AV0Z40500505 Keywords : proton-conducting membranes * Nafion * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.347, year: 2009

  9. Structural, optical and electrical properties of CdS–polyaniline Langmuir–Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nayan Mani, E-mail: nayanmanidas3@gmail.com; Roy, Dhrubojyoti, E-mail: nayanmanidas3@gmail.com; Gupta, P. S. [Department of Applied Physics, Indian School of Mines, Dhanbad-826004 (India); Gupta, M.; Ganesan, V. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore-452017 (India)

    2014-04-24

    Structural, optical and electrical properties study of the cadmium sulphide (CdS) incorporated polyaniline (PANI) thin films with varying layers have been carried out. It is seen that layer variation enhances the particle mean sizes with quenching of photoluminescence and an increase in rectifying nature of current-voltage measurements.

  10. Thermally treated polyaniline/polybenzimidazole blend membranes: structural changes and gas transport properties

    Czech Academy of Sciences Publication Activity Database

    Giel, Verena; Morávková, Zuzana; Peter, Jakub; Trchová, Miroslava

    2017-01-01

    Roč. 537, 1 September (2017), s. 315-322 ISSN 0376-7388 R&D Projects: GA MŠk(CZ) LO1507; GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : polybenzimidazole * polyaniline * thermal treatment Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 6.035, year: 2016

  11. The stability of polyaniline in strongly alkaline and acidic aqueous media

    Czech Academy of Sciences Publication Activity Database

    Brožová, Libuše; Holler, Petr; Kovářová, Jana; Stejskal, Jaroslav; Trchová, Miroslava

    2008-01-01

    Roč. 93, č. 3 (2008), s. 592-600 ISSN 0141-3910 R&D Projects: GA MPO FT-TA2/098; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * stability * conducting polymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.320, year: 2008

  12. Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells

    Czech Academy of Sciences Publication Activity Database

    Wang, C. H.; Chen, C. C.; Hsu, H. C.; Du, H. Y.; Chen, C. P.; Hwang, J. Y.; Chen, L. C.; Shih, H. C.; Stejskal, Jaroslav; Chen, K. H.

    2009-01-01

    Roč. 190, č. 2 (2009), s. 279-284 ISSN 0378-7753 R&D Projects: GA AV ČR IAA4050313 Institutional research plan: CEZ:AV0Z40500505 Keywords : DMFC * methanol crossover * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.792, year: 2009

  13. Synthesis and Characterization of Self-assembled polyaniline nanotubes/silica nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Ciric-Marjanovic, G.; Dragičevic, L.; Milojevic, M.; Mojovic, M.; Mentus, S.; Dojčinovic, B.; Marjanovic, B.; Stejskal, Jaroslav

    2009-01-01

    Roč. 113, č. 20 (2009), s. 7116-7127 ISSN 1520-6106 R&D Projects: GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.471, year: 2009

  14. 3,5-Dinitrosalicylic acid-assisted synthesis of self-assembled polyaniline nanorods

    Czech Academy of Sciences Publication Activity Database

    Janoševic, A.; Ciric-Marjanovic, G.; Marjanovic, B.; Trchová, Miroslava; Stejskal, Jaroslav

    2010-01-01

    Roč. 64, č. 21 (2010), s. 2337-2340 ISSN 0167-577X R&D Projects: GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : FTIR spectroscopy * nanorods * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.120, year: 2010

  15. Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers

    CSIR Research Space (South Africa)

    Bhaumik, M

    2012-02-01

    Full Text Available Polypyrrole-polyaniline (PPy-PANI) nanofibers as adsorbent of Cr(VI) were prepared without template via coupling of propagating PPy+ and PANI+ free radicals by simultaneous polymerization of Py and ANI monomers in presence of FeCl3 oxidant...

  16. Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism

    International Nuclear Information System (INIS)

    Khanna, P.K.; Singh, Narendra; Charan, Shobhit; Viswanath, A. Kasi

    2005-01-01

    Silver/polyaniline nanocomposites are prepared via in situ reduction of silver salt in aniline by mild photolysis performed with 8 W long wavelength (365 nm) and short wavelength (254 nm) radiation from UV lamp. Reduction of the silver salt in aqueous aniline leads to the formation of silver nanoparticles which in turn catalyze oxidation of aniline to polyaniline. Systematic observation of the progress of the reaction by means of absorption spectroscopy revealed that the reaction completes faster under the UV light of 254 nm wavelength than the visible source of 365 nm. The absorption bands of the reaction solution revealed that the bands at about 400-420 nm due to benzonoid ring of the polyaniline are overlapped and red-shifted due to the presence of nano-silver in powdered state. A slightly broadened X-ray diffraction (XRD) pattern indicating, small particle size (∼30 nm), is consistent with cubic silver. Scanning electron microscopy (SEM) of the nanocomposite showed a uniform size distribution with spherical and granular morphology. Thermogravimetric analysis (TGA) showed that the composites have a higher degradation temperature than polyaniline alone

  17. Enhanced pH stability of conducting polyaniline by reprotonation with perfluorooctanesulfonic acid

    Czech Academy of Sciences Publication Activity Database

    Bober, P.; Lindfors, T.; Pesonen, M.; Stejskal, Jaroslav

    2013-01-01

    Roč. 178, 15 August (2013), s. 52-55 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : hydrophobicity * polyaniline * reprotonation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.222, year: 2013

  18. Thin mesoporous polyaniline films manifesting a water-promoted photovoltaic effect

    Czech Academy of Sciences Publication Activity Database

    Gospodinova, Natalia; Tomšík, Elena; Romanova, J.

    2013-01-01

    Roč. 67, č. 8 (2013), s. 972-978 ISSN 0366-6352 R&D Projects: GA ČR GA202/09/1626 Institutional support: RVO:61389013 Keywords : polyaniline * morphology * photovoltaics Subject RIV: JI - Composite Materials Impact factor: 1.193, year: 2013

  19. Characterization of polyethylene terephthalate/polyaniline blends as potential antioxidant materials

    International Nuclear Information System (INIS)

    Nand, Ashveen V.; Ray, Sudip; Travas-Sejdic, Jadranka; Kilmartin, Paul A.

    2012-01-01

    Highlights: ► Successful incorporation of particulate polyaniline, consisting of nanorods, in PET was achieved. ► Interactions between PET and polyaniline in the blends were characterized using FTIR, XPS, DSC and DMTA. ► Polyaniline introduced free radical scavenging capacity in PET. - Abstract: Polyethylene terephthalate (PET) blends with a nanorod form of polyaniline (NR-PANI), formed by a falling pH synthesis, were prepared by dispersion in a melt of PET at 265 °C. Blends with 1, 2 and 3 wt% NR-PANI loading were prepared. Optical microscopy revealed an even distribution of NR-PANI particles within the PET matrix. The blends were characterized using FTIR, XPS, DSC and DMTA. Melt flow index values suggested hydrolysis of PET chains to lower molecular weight units when NR-PANI was blended. Some PET hydrolysis was also evident from the increasing oxygen to carbon ratios with an increased NR-PANI content in the blends. While the PET glass transition temperature remained relatively unaffected, the degree of PET crystallinity was increased with the addition of NR-PANI. The electrical conductivity as well as the free radical scavenging capacity of PET increased with greater NR-PANI loading in the matrix. The mechanical properties of PET, however, declined with NR-PANI loading suggesting a lack of adequate interfacial adhesion between the NR-PANI particles and the PET matrix.

  20. Interaction of polyaniline film with dibutyl phosphonate versus phosphite: Enhanced thermal stability

    Czech Academy of Sciences Publication Activity Database

    Šeděnková, Ivana; Trchová, Miroslava; Dybal, Jiří; Stejskal, Jaroslav

    2016-01-01

    Roč. 134, December (2016), s. 357-365 ISSN 0141-3910 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : polyaniline * conducting polymer * dibutyl phosphite Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.386, year: 2016

  1. Solid-state reduction of silver nitrate with polyaniline base leading to conducting materials

    Czech Academy of Sciences Publication Activity Database

    Šeděnková, Ivana; Trchová, Miroslava; Stejskal, Jaroslav; Prokeš, J.

    2009-01-01

    Roč. 1, č. 9 (2009), s. 1906-1912 ISSN 1944-8244 R&D Projects: GA AV ČR IAA100500902; GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * conductivity * FTIR spectroscopy * Raman spectroscopy * oxidation * emeraldine Subject RIV: CD - Macromolecular Chemistry

  2. Viscoelastic properties of electrorheological suspensions of core-shell (carbon/polyaniline) particles in silicone oil

    Czech Academy of Sciences Publication Activity Database

    Sedlačík, M.; Almajdalawi, S.; Mrlík, M.; Pavlínek, V.; Saha, P.; Stejskal, Jaroslav

    2013-01-01

    Roč. 412, č. 1 (2013), 012006_1-012006_8 ISSN 1742-6588. [International Conference on Electrorheological Fluids and Magnetorheological Suspensions /13./ - ERMR2012. Ankara, 02.07.2012-06.07.2012] R&D Projects: GA ČR GA202/09/1626 Institutional support: RVO:61389013 Keywords : polyaniline * carbonization * electrorheology Subject RIV: BK - Fluid Dynamics

  3. Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode

    Czech Academy of Sciences Publication Activity Database

    Kašpárková, V.; Humpolíček, P.; Capáková, Z.; Bober, Patrycja; Stejskal, Jaroslav; Trchová, Miroslava; Rejmontová, P.; Junkar, I.; Lehocký, M.; Mozetič, M.

    2017-01-01

    Roč. 157, 1 September (2017), s. 309-316 ISSN 0927-7765 R&D Projects: GA ČR(CZ) GA17-05095S Institutional support: RVO:61389013 Keywords : polyaniline * conducting films * colloidal dispersions Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.887, year: 2016

  4. Characteristics of zinc sulphide nanostructures grown onsilica modified-polyaniline with polymerization time-dependent

    Science.gov (United States)

    Potestas, M.; Alguno, A.; Vequizo, R.; Sambo, B. R.; Odarve, M. K.

    2015-06-01

    Growth of zinc sulphide (ZnS) nanostructures on silica modified-polyaniline (SM- PAni) with polymerization time-dependent was prepared using chemical bath deposition (CBD) technique. The grown samples were characterized by scanning electron microscopy (SEM) equipped with energy dispersive x-ray spectroscopy (EDS) and fourier transform infrared spectroscopy (FTIR). SEM images revealed that polyaniline rod-like nanostructures and ZnS nanospheres were successfully grown. The average diameter of the grown ZnS nanospheres did not significantly change by changing the growth time of the polyaniline. However, ZnS nanospheres grown with longer polymerization time of PAni is less dense and loosely bound as compared to shorter polymerization time of PAni. The less density of ZnS nanostructures with longer polymerization time of PAni may be due to the presence of PAni agglomerates that hinders the growth of ZnS nanospheres. Furthermore, FTIR spectra confirmed that the grown polyaniline is of emeraldine salt oxidation state which is the most conductive state of PAni.

  5. Sensing of silver ions by nanotubular polyaniline film deposited on quartz-crystal in a microbalance

    Czech Academy of Sciences Publication Activity Database

    Ayad, M. M.; Prastomo, N.; Matsuda, A.; Stejskal, Jaroslav

    2010-01-01

    Roč. 160, 1-2 (2010), s. 42-46 ISSN 0379-6779 R&D Projects: GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : quartz-crystal microbalance * polyaniline nanotubes * silver Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.871, year: 2010

  6. Thermal and structural stability of composite systems based on polyaniline deposited on porous polyethylene films

    Czech Academy of Sciences Publication Activity Database

    Elyashevich, G. K.; Sidorovich, A. V.; Smirnov, M. A.; Kuryndin, I. S.; Bobrova, N. V.; Trchová, Miroslava; Stejskal, Jaroslav

    2006-01-01

    Roč. 91, č. 11 (2006), s. 2786-2792 ISSN 0141-3910 Grant - others:Russian Foundation for Basic Research 04-03-32229 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * polyethylene porous films * composites Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.174, year: 2006

  7. Synthesis, transport and dielectric properties of polyaniline/Co3O4 ...

    Indian Academy of Sciences (India)

    TECS

    NH4)2S2O8), hydrochloric acid. (HCl) and cobaltous oxide (CO3O4) (Sigma) were used as received. 0⋅1 mol of aniline was dissolved in 1 M HCl to form polyaniline (PANI). Cobaltous oxide was added to. PANI solution with vigorous stirring in ...

  8. Structural changes in polyaniline near the middle oxidation peak studied by in situ Raman spectroelectrochemistry

    Czech Academy of Sciences Publication Activity Database

    Morávková, Zuzana; Dmitrieva, E.

    2017-01-01

    Roč. 48, č. 9 (2017), s. 1229-1234 ISSN 0377-0486 Institutional support: RVO:61389013 Keywords : polyaniline * resonance Raman spectroelectrochemistry * polaron Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.969, year: 2016

  9. Molybdenum and tungsten disulfides surface-modified with a conducting polymer, polyaniline, for application in electrorheology

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Mrlík, M.; Plachý, T.; Trchová, Miroslava; Kovářová, Jana; Li, Yu

    2017-01-01

    Roč. 120, November (2017), s. 30-37 ISSN 1381-5148 R&D Projects: GA ČR(CZ) GA17-04109S Institutional support: RVO:61389013 Keywords : molybdenum sulfide * polyaniline * conducting polymer Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.151, year: 2016

  10. Corrosion protection by organic coatings containing polyaniline salts prepared by oxidative polymerization

    Czech Academy of Sciences Publication Activity Database

    Kohl, M.; Kalendová, A.; Černošková, E.; Bláha, Michal; Stejskal, Jaroslav; Erben, M.

    2017-01-01

    Roč. 14, č. 6 (2017), s. 1397-1410 ISSN 1945-9645 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : polyaniline * oxidative polymerization * organic coatings Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.557, year: 2016

  11. Spectroscopic study of the highly homogeneous polyaniline film formation on gold support

    Czech Academy of Sciences Publication Activity Database

    Morávková, Zuzana; Stejskal, Jaroslav; Trchová, Miroslava

    2016-01-01

    Roč. 152, 5 January (2016), s. 294-303 ISSN 1386-1425 R&D Projects: GA ČR(CZ) GAP205/12/0911 Institutional support: RVO:61389013 Keywords : polyaniline * thin film * infrared spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.536, year: 2016

  12. Synthesis, transport and dielectric properties of polyaniline/Co 3 O 4 ...

    Indian Academy of Sciences (India)

    Conducting polyaniline/cobaltous oxide composites have been synthesized using in situ deposition technique by placing fine graded/cobaltous oxide in polymerization mixture of aniline. The a.c. conductivity and dielectric properties are studied by sandwiching the pellets of these composites between the silver electrodes.

  13. Single stage batch adsorber design for efficient Eosin yellow removalby polyaniline coated ligno-cellulose

    CSIR Research Space (South Africa)

    Debnath, S

    2015-01-01

    Full Text Available Polyaniline-coated lignin-based adsorbent (PLC) was synthesized and used for uptake of reactive dye eosin yellow (EY) from aqueous solution. The adsorption capability of the adsorbent was found to be more effective than the unmodified adsorbent (LC...

  14. Twin carbons: The carbonization of cellulose or carbonized cellulose coated with a conducting polymer, polyaniline

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Kovářová, Jana; Pfleger, Jiří; Stejskal, Jaroslav; Trchová, Miroslava; Novák, I.; Berek, D.

    2016-01-01

    Roč. 109, November (2016), s. 836-842 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : cellulose * carbon * polyaniline Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.337, year: 2016

  15. Polyaniline/TiO2/kaolinite: The composite material with high electrical anisotropy

    International Nuclear Information System (INIS)

    Tokarský, Jonáš; Neuwirthová, Lucie; Peikertová, Pavlína; Kulhánková, Lenka; Mamulová Kutláková, Kateřina; Matějka, Vlastimil; Čapková, Pavla

    2014-01-01

    Kaolinite–TiO 2 nanocomposite matrix (KATI) coated with polyaniline (PANI) layer has been prepared in powder form and pressed into tablets. The conductivity was studied in dependence on (1) wt.% of TiO 2 in KATI matrix and (2) thermal pre-treatment of KATI matrix. The anisotropy factor α, i.e. the ratio of in-plane conductivity and conductivity in the direction perpendicular to the tablet plane, was found to be very high for PANI/KATI tablet (α is of the order of 10 3 –10 4 ) in comparison with pure PANI tablet (α is of the order of 10 2 ). Structure has been studied using Raman spectroscopy, X-ray diffraction analysis, scanning electron microscopy and molecular modeling. The possibility of using the tablets as a load sensors have been tested and tablets pressed from composites containing calcined KATI seem to be promising material for this purpose. - Graphical abstract: Tablets pressed from powder form of polyaniline/TiO 2 /kaolinite composites exhibit very high electrical anisotropy and were found to be suitable as load sensors. - Highlights: • Kaolinite/TiO 2 /polyaniline composites exhibit very high electrical anisotropy. • Presence of TiO 2 helps polyaniline to fully cover the kaolinite particles. • Tablets pressed from these composites can be used as load sensors. • Calcination of kaolinite/TiO 2 matrix improves the sensing properties

  16. FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Šeděnková, Ivana; Tobolková, E.; Stejskal, Jaroslav

    2004-01-01

    Roč. 86, č. 1 (2004), s. 179-185 ISSN 0141-3910 R&D Projects: GA AV ČR IAA4050313; GA ČR GA202/02/0698 Institutional research plan: CEZ:AV0Z4050913 Keywords : polyaniline * conducting polymer * thin films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.685, year: 2004

  17. Electrorheology of suspensions of variously protonated polyaniline particles under steady and oscillatory shear

    Czech Academy of Sciences Publication Activity Database

    Stěnička, M.; Pavlínek, V.; Sáha, P.; Blinova, Natalia V.; Stejskal, Jaroslav; Quadrat, Otakar

    2010-01-01

    Roč. 20, č. 5 (2010), 55371_1-55371_7 ISSN 1430-6395 R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * electrorheology * steady shear Subject RIV: BK - Fluid Dynamics Impact factor: 0.787, year: 2010

  18. Conductivity of polyaniline/1,2,4-trichlorobenzene composites during freezing and melting transitions

    Czech Academy of Sciences Publication Activity Database

    Vilčáková, J.; Sáha, P.; Quadrat, Otakar; Stejskal, Jaroslav

    2001-01-01

    Roč. 301, 1-4 (2001), s. 29-36 ISSN 0378-4371 R&D Projects: GA AV ČR IAA4050907 Institutional research plan: CEZ:AV0Z4050913 Keywords : conductivity * polyaniline * 1,2,4-trichlorobenzene Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.295, year: 2001

  19. Chemical Oxidative Polymerization of Polyaniline: A Practical Approach for Preparation of Smart Conductive Textiles

    Science.gov (United States)

    Abu-Thabit, Nedal Y.

    2016-01-01

    Electrically conducting polymers are one of the promising alternative materials for technological applications in many interdisciplinary areas, including chemistry, material sciences, and engineering. This experiment was designed for providing undergraduate students with a quick and practical approach for preparation of a polyaniline-conducting…

  20. Electrochemical preparation of Photosystem I-polyaniline composite films for biohybrid solar energy conversion.

    Science.gov (United States)

    Gizzie, Evan A; LeBlanc, Gabriel; Jennings, G Kane; Cliffel, David E

    2015-05-13

    In this work, we report for the first time the entrapment of the biomolecular supercomplex Photosystem I (PSI) within a conductive polymer network of polyaniline via electrochemical copolymerization. Composite polymer-protein films were prepared on gold electrodes through potentiostatic electropolymerization from a single aqueous solution containing both aniline and PSI. This study demonstrates the controllable integration of large membrane proteins into rapidly prepared composite films, the entrapment of such proteins was observed through photoelectrochemical analysis. PSI's unique function as a highly efficient biomolecular photodiode generated a significant enhancement in photocurrent generation for the PSI-loaded polyaniline films, compared to pristine polyaniline films, and dropcast PSI films. A comprehensive study was then performed to separately evaluate film thickness and PSI concentration in the initial polymerization solution and their effects on the net photocurrent of this novel material. The best performing composite films were prepared with 0.1 μM PSI in the polymerization solution and deposited to a film thickness of 185 nm, resulting in an average photocurrent density of 5.7 μA cm(-2) with an efficiency of 0.005%. This photocurrent output represents an enhancement greater than 2-fold over bare polyaniline films and 200-fold over a traditional PSI multilayer film of comparable thickness.

  1. First-principles study of the effect of functional groups on polyaniline backbone

    NARCIS (Netherlands)

    Chen, X.P.; Jiang, J.K.; Liang, Q.H.; Yang, N.; Ye, H.Y.; Cai, M.; Shen, L.; Yang, D.G.; Ren, T.L.

    2015-01-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate

  2. Fabrication of a Polyaniline Ultramicroelectrode via a Self Assembled Monolayer Modified Gold Electrode

    Science.gov (United States)

    Bolat, Gulcin; Kuralay, Filiz; Eroglu, Gunes; Abaci, Serdar

    2013-01-01

    Herein, we report a simple and inexpensive way for the fabrication of an ultramicroelectrode and present its characterization by electrochemical techniques. The fabrication of polyaniline UME involves only two steps: modification of a gold (Au) electrode by self assembled monolayers (SAM) and then electrodeposition of polyaniline film on this thiol-coated Au electrode by using cyclic voltammetry and constant potential electrolysis methods. Two types of self-assembled monolayers (4-mercapto-1-butanol, MB, and 11-mercaptoundecanoic acid, MUA) were used, respectively, to see the effect of chain length on microelectrode formation. Microelectrode fabrication and utility of the surface was investigated by cyclic voltammetric measurements in a redox probe. The thus prepared polyaniline microelectrode was then used for DNA immobilization. Discrimination between double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) was obtained with enhanced electrochemical signals compared to a polyaniline-coated Au electrode. Different modifications on the electrode surfaces were examined using scanning electron microscopy (SEM). PMID:23797740

  3. Synthesis and characterization of novel polypyrrole hybrid nanotubules incorporated with polyaniline spots

    Science.gov (United States)

    Kang, Kyung Seok; Jee, Chan Hyuk; Bae, Ji-Hong; Jung, Hyo Jin; Huh, PilHo

    2017-11-01

    Novel hybrid nanostructures composed of the polypyrrole (PPy) as the void nanotubules and the polyaniline (PANi) as the spots were fabricated using a successive synthetic process. Unique phase-separated morphological properties of PPy-PANi hybrid nano-tubules might be caused by the PANi spots distributed randomly in the PPy matrix.

  4. In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid

    Czech Academy of Sciences Publication Activity Database

    Šeděnková, Ivana; Trchová, Miroslava; Blinova, Natalia V.; Stejskal, Jaroslav

    2006-01-01

    Roč. 515, č. 4 (2006), s. 1640-1646 ISSN 0040-6090 R&D Projects: GA AV ČR IAA4050313; GA AV ČR IAA400500504 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * thin films Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.666, year: 2006

  5. Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base

    Czech Academy of Sciences Publication Activity Database

    Paligová, M.; Vilčáková, J.; Sáha, P.; Křesálek, V.; Stejskal, Jaroslav; Quadrat, Otakar

    2004-01-01

    Roč. 335, 3-4 (2004), s. 421-429 ISSN 0378-4371 R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : polymer composites * short carbon fibers * polyaniline base Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.369, year: 2004

  6. Magnetic nanoparticles coated with polyaniline to stabilize immobilized trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, J. C., E-mail: jackeline-maciel@hotmail.com [Universidade Federal de Roraima (Brazil); Mercês, A. A. D.; Cabrera, M. [Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (Brazil); Shigeyosi, W. T. [Universidade Federal de São Carlos, Departamento de Física (Brazil); Souza, S. D. de; Olzon-Dionysio, M.; Fabris, J. D. [Universidade Federal dos Vales de Jequitinhonha e Mucuri (Brazil); Cardoso, C. A. [Universidade Federal de São Carlos, Departamento de Física (Brazil); Neri, D. F. M. [Universidade Federal do Vale do São Francisco (Brazil); Silva, M. P. C.; Carvalho, L. B. [Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (Brazil)

    2016-12-15

    It is reported the synthesis of magnetic nanoparticles via the chemical co-precipitation of Fe {sup 3+} ions and their preparation by coating them with polyaniline. The electronic micrograph analysis showed that the mean diameter for the nanoparticles is ∼15 nm. FTIR, powder X-ray diffraction and Mössbauer spectroscopy were used to understand the chemical, crystallographic and {sup 57}Fe hyperfine structures for the two samples. The nanoparticles, which exhibited magnetic behavior with relatively high spontaneous magnetization at room temperature, were identified as being mainly formed by maghemite (γFe{sub 2}O{sub 3}). The coated magnetic nanoparticles (sample labeled “mPANI”) presented a real ability to bind biological molecules such as trypsin, forming the magnetic enzyme derivative (sample “mPANIG-Trypsin”). The amount of protein and specific activity of the immobilized trypsin were found to be 13±5 μg of protein/mg of mPANI (49.3 % of immobilized protein) and 24.1±0.7 U/mg of immobilized protein, respectively. After 48 days of storage at 4 {sup ∘}C, the activity of the immobilized trypsin was found to be 89 % of its initial activity. This simple, fast and low-cost procedure was revealed to be a promising way to prepare mPANI nanoparticles if technological applications addressed to covalently link biomolecules are envisaged. This route yields chemically stable derivatives, which can be easily recovered from the reaction mixture with a magnetic field and recyclable reused.

  7. Water absorbed by polyaniline emeraldine tends to organize, forming nanodrops.

    Science.gov (United States)

    Casanovas, Jordi; Canales, Manel; Fabregat, Georgina; Meneguzzi, Alvaro; Alemán, Carlos

    2012-06-21

    Interactions, in terms of both binding energies and microscopic organization, of water molecules absorbed by hydrophilic polyaniline emeraldine base have been investigated using quantum mechanical calculations, molecular dynamics simulation, FTIR spectroscopy, and (1)H NMR. From an enthalpic point of view, water molecules interact more favorably with imine nitrogen atoms than with amine ones, even though the latter are entropically favored with respect to the former because of their two binding sites. Quantum mechanical results show that interaction energies of water molecules reversibly absorbed but organized individually around a binding site range from 3.0 to 6.3 kcal/mol, which is in good agreement with activation energies of 3-5 kcal/mol previously determined by thermodynamic measurements. The irreversible absorption of water to produce C-OH groups in rings of diimine units has been examined considering a three steps process in which water molecules act as both acidic and nucleophilic reagent. Although calculations predict that the whole process is disfavored by 5-8 kcal/mol only, FTIR and (1)H NMR detected the existence of reversibly absorbed water but not of C-OH groups. Both the binding energies and the structural information provided by molecular dynamics simulations have been used to interpret the existence of two types of physisorbed water molecules: (i) those that interact individually with polymer chains and (ii) those immersed in nanodrops that are contained within the polymeric matrix. The binding energies calculated for these two types of water molecules are fully consistent with the thermodynamic activation energies previously reported.

  8. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  9. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    Science.gov (United States)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  10. Nanostructured materials for sensing Pb(II and Cd(II ions: Manganese oxohydroxide versus carbonized polyanilines?

    Directory of Open Access Journals (Sweden)

    Šljukić Biljana

    2013-01-01

    Full Text Available Nanostructured materials including three different carbonized polyanilines and manganese oxyhydroxide were prepared and evaluated as electrode materials for sensing of lead and cadmium ions in aqueous media. Anodic stripping voltammetry results indicated that all prepared materials could be successfully used for determination of these two heavy metal ions. Carbonized polyaniline-based electrodes have higher signal and lower limits of detection (10-7 М compared to manganese oxyhydroxide-based electrode. Among the three studied carbonized polyanilines, the one that was derived from polyaniline precursor produced in the presence of 3,5-dinitrosalicyclic acid showed the highest electrocatalytic activity towards the lead and cadmium oxidation. [Projekat Ministarstva nauke Republike Srbije, br. OI172043 i br. III45014

  11. Synthesis of Various Polyaniline / Clay Nanocomposites Derived from Aniline and Substituted Aniline Derivatives by Mechanochemical Intercalation Method

    Directory of Open Access Journals (Sweden)

    N. Kalaivasan

    2010-01-01

    Full Text Available Polyaniline clay nanocomposite can be prepared by mechano-chemical method in which intercalation of anilinium ion into the clay lattices accomplished by mechanical grinding of sodium montmorillonite (Na+MMT in presence of anilinium hydrochloride at room temperature using mortar & pestle for about 30 min and subsequent grinding with oxidizing agent, ammonium peroxysulfate. The appearance of green colour indicates the formation of polyaniline/clay nanocomposite (PANI/Clay. Similarly aniline derivatives like o-toludine and o-anisidine in the form of HCl salt can form intercalation into the clay lattices. The intercalated aniline derivatives were ground mechanically in presence of oxidizing agent ammonium peroxysulfate lead to formation of substituted polyaniline/ clay nanocomposites. The characteristics of various polyaniline-clay nanocomposites were investigated using UV-Visible, FT-IR, cyclic voltammetry studies.

  12. Effect of surface treatment of pigment particles with polypyrrole and polyaniline phosphate on their corrosion inhibiting properties in organic coatings

    Czech Academy of Sciences Publication Activity Database

    Kalendová, A.; Veselý, D.; Kohl, M.; Stejskal, Jaroslav

    2014-01-01

    Roč. 77, č. 9 (2014), s. 1465-1483 ISSN 0300-9440 Institutional support: RVO:61389013 Keywords : conductive polymer * polypyrrole * polyaniline phosphate Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.358, year: 2014

  13. Core-shell nanostructures of covalently grafted polyaniline multi-walled carbon nanotube hybrids for improved optical limiting.

    Science.gov (United States)

    Remyamol, T; Gopinath, Pramod; John, Honey

    2015-01-01

    Polyaniline multi-walled carbon nanotube (MWCNT) hybrids are synthesized by the in situ polymerization of aniline in the presence of phenylenediamine-functionalized MWCNTs. Along with the aniline monomer, the aniline moiety on the surface of phenylenediamine-functionalized MWCNTs also participates in the polymerization and acts as a covalent bridge between the polyaniline and the MWCNT. The photoluminescence quenching in the hybrid, due to the electron transfer between the polyaniline and the MWCNT, and the resulting improvement in optical limiting are also discussed. The large nonlinear absorption coefficient with the low-limiting threshold of the hybrids compared to polyaniline is attributed to the combined nonlinear optical (NLO) mechanisms and the photo-induced electron transfer interactions.

  14. One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties

    Science.gov (United States)

    Chen, Xiangnan; Meng, Fanchen; Zhou, Zuowan; Tian, Xin; Shan, Liming; Zhu, Shibu; Xu, Xiaoling; Jiang, Man; Wang, Li; Hui, David; Wang, Yong; Lu, Jun; Gou, Jihua

    2014-06-01

    A new method is introduced for the preparation of graphene/polyaniline hybrids using a one-step intercalation polymerization of aniline inside the expanded graphite. The structural and morphological characterizations were performed by X-ray diffraction analysis, transmission electron microscopy and field emission scanning electron microscopy. Both the experimental and first-principles simulated results show that the aniline cation formed by aniline and H+ tends to be drawn towards the electron-enriched zone and to intercalate into the interlayer of graphite. Subsequently, an in situ polymerization leads to the separation of graphite into graphene sheet, resulting from the exothermic effect and more vigorous movements of the chain molecules of polyaniline. The interactions between polyaniline and graphene were confirmed by Fourier transform infrared spectroscopy and Raman spectra. In addition, the graphene/polyaniline hybrid exhibited a breakthrough in the improvement of microwave absorption.A new method is introduced for the preparation of graphene/polyaniline hybrids using a one-step intercalation polymerization of aniline inside the expanded graphite. The structural and morphological characterizations were performed by X-ray diffraction analysis, transmission electron microscopy and field emission scanning electron microscopy. Both the experimental and first-principles simulated results show that the aniline cation formed by aniline and H+ tends to be drawn towards the electron-enriched zone and to intercalate into the interlayer of graphite. Subsequently, an in situ polymerization leads to the separation of graphite into graphene sheet, resulting from the exothermic effect and more vigorous movements of the chain molecules of polyaniline. The interactions between polyaniline and graphene were confirmed by Fourier transform infrared spectroscopy and Raman spectra. In addition, the graphene/polyaniline hybrid exhibited a breakthrough in the improvement of

  15. Facile route to covalently-jointed graphene/polyaniline composite and it’s enhanced electrochemical performances for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hanxun [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Han, Xuebin; Qiu, Feilong [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Yang, Junhe, E-mail: hxqiu@usst.edu.cn [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2016-07-15

    Highlights: • A novel synthetic approach to graphene/polyaniline composite is developed. • Covalently bonds are introduced between graphene and polyaniline. • The composite exhibits great electrochemical property with capacitance of 489 F g{sup −1}. - Abstract: A polyaniline/graphene composite with covalently-bond is synthesized by a novel approach. In this way, graphene oxide is functionalized firstly by introducing amine groups onto the surface with the reduction of graphene oxide in the process and then served as the anchor sites for the growth of polyaniline (PANI) via in-situ polymerization. The composite material is characterized by electron microscopy, the resonant Raman spectra, X-ray diffraction, transform infrared spectroscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the composite are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. With the functionalization process, the graphene/polyaniline composite electrode exhibits remarkably enhanced electrochemical performance with specific capacitance of 489 F g{sup −1} at 0.5 A g{sup −1}, which is superior to those of its individual components. The outstanding electrochemical performance of the hybrid can be attributed to its covalently synergistic effect between graphene and polyaniline, suggesting promising potentials for supercapacitors.

  16. Poly(aniline) nanowires in sol-gel coated ITO: A pH-responsive substrate for planar supported lipid bilayers

    Science.gov (United States)

    Ge, Chenhao; Orosz, Kristina S.; Armstrong, Neal R.; Saavedra, S. Scott

    2011-01-01

    Facilitated ion transport across an artificial lipid bilayer coupled to a solid substrate is a function common to several types of bioelectronic devices based on supported membranes, including biomimetic fuel cells and ion channel biosensors. Described here is fabrication of a pH-sensitive transducer composed of a porous sol-gel layer derivatized with poly(aniline) (PANI) nanowires grown from an underlying planar indium-tin oxide (ITO) electrode. The upper sol-gel surface is hydrophilic, smooth, and compatible with deposition of a planar supported lipid bilayer (PSLB) formed via vesicle fusion. Conducting tip AFM was used to show that the PANI wires are connected to the ITO, which convert this electrode into a potentiometric pH sensor. The response to changes in the pH of the buffer contacting the PANI nanowire/sol-gel/ITO electrode is blocked by the very low ion permeability of the overlying, fluid PSLB. The feasibility of using this assembly to monitor facilitated proton transport across the PSLB was demonstrated by doping the membrane with lipophilic ionophores that respond to a transmembrane pH gradient, which produced an apparent proton permeability several orders of magnitude greater than values measured for undoped lipid bilayers. PMID:21707069

  17. Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI

    International Nuclear Information System (INIS)

    Oliveira Farias, Emanuel Airton de; Corrêa dos Santos, Marianne; Araujo Dionísio, Natália de; Quelemes, Patrick V.; Souza Almeida Leite, José Roberto de; Eaton, Peter; Alves da Silva, Durcilene; Eiras, Carla

    2015-01-01

    Graphical abstract: - Highlights: • LbL films based on PANI and polysaccharides of seaweeds were produced and applied sensors of Cr (VI). - Abstract: This paper proposes a new application for natural polysaccharides (agar and carrageenan), both extracted from the cell wall of red seaweeds. Thin films were prepared by the Layer-by-Layer (LbL) self-assembly technique onto ITO (tin-doped indium oxide), where the polysaccharides of interest were deposited in layers alternating with polyaniline (PANI). The films developed were characterized by cyclic voltammetry (CV), ultraviolet–visible spectroscopy (UV–vis) and atomic force microscopy (AFM). Results showed the presence of agar as well as carrageenan, which improves the electrochemical stability of the conducting polymer in an acid medium. The interactions at the molecular level between PANI and the biopolymers affected the most appropriate sequence of deposition as employed in the process of material immobilization and also influenced the resulting morphology. Among the films studied, the most promising system as regards electrochemical measurements was the ITO/agar/PANI system, which was subsequently employed in the electrochemical detection of chromium (VI)

  18. Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Farias, Emanuel Airton de; Corrêa dos Santos, Marianne; Araujo Dionísio, Natália de; Quelemes, Patrick V.; Souza Almeida Leite, José Roberto de [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eaton, Peter [UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto (Portugal); Alves da Silva, Durcilene [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eiras, Carla, E-mail: eiras@cnpq.br [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Laboratório Interdisciplinar de Materiais Avançados, LIMAV, CCN, UFPI, Teresina, PI 64049-550 (Brazil)

    2015-10-15

    Graphical abstract: - Highlights: • LbL films based on PANI and polysaccharides of seaweeds were produced and applied sensors of Cr (VI). - Abstract: This paper proposes a new application for natural polysaccharides (agar and carrageenan), both extracted from the cell wall of red seaweeds. Thin films were prepared by the Layer-by-Layer (LbL) self-assembly technique onto ITO (tin-doped indium oxide), where the polysaccharides of interest were deposited in layers alternating with polyaniline (PANI). The films developed were characterized by cyclic voltammetry (CV), ultraviolet–visible spectroscopy (UV–vis) and atomic force microscopy (AFM). Results showed the presence of agar as well as carrageenan, which improves the electrochemical stability of the conducting polymer in an acid medium. The interactions at the molecular level between PANI and the biopolymers affected the most appropriate sequence of deposition as employed in the process of material immobilization and also influenced the resulting morphology. Among the films studied, the most promising system as regards electrochemical measurements was the ITO/agar/PANI system, which was subsequently employed in the electrochemical detection of chromium (VI)

  19. Synthesis and Characterization of BaFe12O19/Poly(aniline, pyrrole, ethylene terephthalate) Composites Coatings as Radar Absorbing Material (RAM)

    Science.gov (United States)

    Sasria, Nia; Ardhyananta, H.; Fajarin, R.; Widyastuti

    2017-07-01

    This research shows the processing and design of radar absorbing material (RAM) based on barium hexaferrite (BaM) and poly(aniline, pyrrole, ethylene terephthalate) (PAni,PPy,PET). BaM was prepared by sol gel method with Ni-Zn doping at mole fraction of 0. 4 to obtain soft magnetic material. BaM/(PAni,PPy) composites were synthesized by in-situ polymerization method at ˜0 °C. (BaM/PET) composite was prepared by melt compounding at 220°C. The composites were coated on A-grade AH36 steel using Dallenbach Layer, Salisbury Screen and Jaumann Layer methods with thickness of 2, 4, and 6 mm. The composites were evaluated using XRD, SEM, FTIR, VSM, LCM-meter and VNA. Results showed that doped BaM showed BaNixZnxFe12-2xO19 structure. BaM/(PAni,PPy,PET) composites possessed globular morphology with M-O and C-H bonds. BaNixZnxFe12-2xO19 exhibited the value of Ms and Hc, 56.6 emu/g and 60 Oe respectively. High electrical conductivity of 1.77744 × 10-5 S/cm was achieved of BaM/PAni composite. The maximum reflection loss (RL) was reached at - 48.720 dB and 8.1 GHz for BaM/PAni composite coating with 6 mm thickness at Jaumann Layer. These results indicated that BaM/PAni composite was a soft magnetic material with a high RL value that is suitable for RAM, which used in stealth technology on naval vessels.

  20. Facile Preparation of Graphene/Polyaniline Composite and Its Application for Electrocatalysis Hexavalent Chromium Reduction

    International Nuclear Information System (INIS)

    Yang, Ying; Diao, Mu–he; Gao, Ming–ming; Sun, Xue–fei; Liu, Xian–wei; Zhang, Guo–hui; Qi, Zhen; Wang, Shu–guang

    2014-01-01

    Highlights: • A graphene–polyaniline composite were simply synthesized. • The composite possesses high sensitive response to Cr(VI). • The composite presents exceptional catalytic property toward Cr(VI) reduction. • A base for developing attractive material for wide application was provided. - Abstract: Herein, graphene–polyaniline (GR–PANI) composite were synthesized via a combination of electrochemical polymerization and chemical technique. This in–situ approach allows GR and PANI to combine efficiently and anchor on electrode steadily, and the attractive interactions enable GR–PANI to provide superior electrochemical activities on the basis of their respective functionalities. Detailed electrochemical studies indicate that the GR–PANI possesses high sensitive response to Cr(VI) and presents exceptional electrocatalytic performance toward Cr(VI) reduction, which is attributed to the increasing amount of active sites on the GR–PANI modified electrode and the effective electron transfer behavior on GR–PANI/Cr(VI) interface

  1. Temperature dependent thermoelectric property of reduced graphene oxide-polyaniline composite

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Mousumi, E-mail: mousumimitrabesu@gmail.com; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), Howrah-711103 (India); Kargupta, Kajari, E-mail: karguptakajari2010@gmail.com [Department of Chemical Engineering, Jadavpur University, Kolkata (India); Ganguly, Saibal, E-mail: gangulysaibal2011@gmail.com [Chemical Engineering department, Universiti Teknologi Petronas, Perak, Tronoh (Malaysia)

    2016-05-06

    A composite material of reduced graphene oxide (rG) nanosheets with polyaniline (PANI) protonated by 5-sulfosalicylic acid has been synthesized via in situ oxidative polymerization method. The morphological and spectral characterizations have been done using FESEM and XRD measurements. The thermoelectric (TE) properties of the reduced graphene oxide-polyaniline composite (rG-P) has been studied in the temperature range from 300-400 K. The electrical conductivity and the Seebeck coefficient of rG-P is higher than the of pure PANI, while the thermal conductivity of the composite still keeps much low value ensuing an increase in the dimensionless figure of merit (ZT) in the whole temperature range.

  2. Facile Synthesis of Polyaniline Nanotubes with Square Capillary Using Urea as Template

    Directory of Open Access Journals (Sweden)

    Shuhua Pang

    2017-10-01

    Full Text Available Polyaniline nanotubes were successfully synthesized by a facile in situ chemical oxidative polymerization method using urea as soft template. When the urea/aniline molar ratio is 3:1, the as-prepared nanotubular polyaniline (PANI-3 shows regular and uniform square capillaries, which provides a high electrode/electrolyte contact, easy ion diffusion and enhanced electroactive regions during the electrochemical process, leading to weak internal resistance and improved electrochemical performance. The PANI-3 sample exhibits a high specific capacitance of 405 F/g at current density of 0.2 A/g, and PANI only has a specific capacitance of 263 F/g. At current density of 1 A/g, the capacitance of PANI-3 is still 263 F/g (64.9% of the capacitance at 0.2 A/g. Such a PANI-3 nanotube, with regular and uniform capillary, is a promising electrode material for high-performance supercapacitors.

  3. Electrical properties of conducting loads produced from polyaniline deposited in natural fibers and nanoclays

    International Nuclear Information System (INIS)

    Kosenhoski, Dirlaine; Saade, Wesley; Pinto, Camila P.; Becker, Daniela; Dalmolin, Carla; Pachekoski, Wagner M.

    2015-01-01

    Conducting polymers are known for their excellent magnetic and electrical properties, but they still are an expensive and limited choice to their use as a conducting load for composite materials. An alternative to optimize the electrical conductivity of polymeric composites is the deposition of a conducting polymer on materials already used as loads, as the deposition on natural fibers or the encapsulation of polymeric chains in the voids of host structures. In this work, bananastem fiber and montmorillonite nanoclay (MMT) were used as host structures for polyaniline synthesis in order to produce conducting loads. Samples were characterized by FT-IR and X-Rays Diffraction in order to confirm the formation of polyanilina / bananastem fibers or polyanilina / nanoclays loads. Influence on the electrical properties of the composites were evaluated by Electrochemical Impedance Spectroscopy (EIS), showing the maintenance of the electric conductivity of polyaniline and its potential use as a load for the formation of conducting composites. (author)

  4. Characteristics of polyaniline electrosynthesized in propylene carbonate medium in the presence of di- and trichloroacetic acids

    Directory of Open Access Journals (Sweden)

    Venancio Everaldo C.

    2001-01-01

    Full Text Available In the present work the characterization of polyaniline electrosynthesized in propylene carbonate medium in the presence of di- and trichloroacetic acids was performed using different techniques. The electrochemical response by cyclic voltammetry showed redox processes due to the formation of polaron and bipolaron and polymer degradation. The characterization by infrared and UV-visible spectroscopies indicated that the polymers are in the emeraldine salt form with perchlorate anions incorporated. The films produced with both acids in propylene carbonate media presented a compact morphology as observed by scanning electron microscopy. By testing the polyaniline film produced in selected conditions in a lithium battery environment it was found that it presents a high coulombic efficiency, promising for battery applications.

  5. Waxberry-like carbon@polyaniline microspheres with high-performance microwave absorption

    Science.gov (United States)

    Yu, Lujun; Zhu, Yaofeng; Fu, Yaqin

    2018-01-01

    Polyaniline (PANI) nanorod arrays were facilely grown on the surface of carbon microspheres via a simple dilute polymerization. The as-synthesized carbon@polyaniline nanorod arrays microspheres (C@PANI) show specific waxberry-like shape, and exhibit superior microwave absorption capacities compared with pure PANI and carbon microsphere. The minimum reflection loss (RL) value of C@PANI microspheres reaches -59.6 dB at 15.5 GHz with a thin thickness of 2.2 mm and the effective bandwidth (reflection loss values of less than -10 dB) is as wide as 5.4 GHz (from 12.6 to 18 GHz). The in-depth analyses of the geometrical shape and composition relationship demonstrate that the enhanced microwave absorption properties of C@PANI microspheres was mainly correlate with the unique PANI nanorod arrays and synergistic effect.

  6. Electrochemical model of polyaniline-based memristor with mass transfer step

    International Nuclear Information System (INIS)

    Demin, V.A.; Erokhin, V.V.; Kashkarov, P.K.; Kovalchuk, M.V.

    2015-01-01

    The electrochemical organic memristor with polyaniline active layer is a stand-alone device designed and realized for reproduction of some synapse properties in the innovative electronic circuits, such as the new field-programmable gate arrays or the neuromorphic networks capable for learning. In this work a new theoretical model of the polyaniline memristor is presented. The developed model of organic memristor functioning was based on the detailed consideration of possible electrochemical processes occuring in the active zone of this device including the mass transfer step of ionic reactants. Results of the calculation have demonstrated not only the qualitative explanation of the characteristics observed in the experiment, but also quantitative similarities of the resultant current values. This model can establish a basis for the design and prediction of properties of more complicated circuits and systems (including stochastic ones) based on the organic memristive devices

  7. Influence of Carbon Nanotubes on Thermal Stability of Water-Dispersible Nanofibrillar Polyaniline/Nanotube Composite

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Zhang

    2012-02-01

    Full Text Available Significant influence on the thermal stability of polyaniline (PANI in the presence of multi-walled carbon nanotubes (MWCNTs is reported. By means of in-situ rapid mixing approach, water-dispersible nanofibrillar PANI and composites, consisting of MWCNTs uniformly coated with PANI in the state of emeraldine salt, with a well-defined core-shell heterogeneous structure, were prepared. The de-protonation process in PANI occurs at a lower temperature under the presence of MWCNTs on the polyaniline composite upon thermal treatment. However, it is found that the presence of MWCNTs significantly enhances the thermal stability of PANI’s backbone upon exposure to laser irradiation, which can be ascribed to the core-shell heterogeneous structure of the composite of MWCNTs and PANI, and the high thermal conductivity of MWCNTs.

  8. Preparation and Characterization of Nano-Polyaniline Film on ITO Conductive Glass by Electrochemical Polymerization

    Directory of Open Access Journals (Sweden)

    Qi Qin

    2012-01-01

    Full Text Available Polyaniline (PANI films were synthesized on a conducting ITO glass by potentiostatic techniques to construct a low-cost counter electrode for dye-sensitized solar cell (DSSC. The compact layer, nanoparticles, nanorods- and fibrils were observed on the top of PANI films with different constant potentials by SEM. Then the conductivity test illuminated that a polyaniline film with the highest conductivity was electrodeposited at 1.0 V. Finally, the photoelectric measurement showed that the energy conversion efficiency of DSSC with the PANI electrode was increased with the potential decreasing. And the efficiency of DSSC with PANI counter electrode at 1.0 V was higher than that with Pt electrode, owing to the high surface area, high conductivity, and excellent catalytic activity of PANI electrode. Therefore, the PANI counter electrode with excellent catalytic performance is a potential substitute for platinized electrode to save cost of DSSC.

  9. The adsorption ability of Cr(VI) on sawdust–polyaniline nanocomposite

    International Nuclear Information System (INIS)

    Binh Phan, Thi; Que Do, Ngoc; Thanh Thuy Mai, Thi

    2010-01-01

    The results of this study of sawdust–polyaniline nanocomposite synthesized by a chemical method for Cr(VI) treatment in the environment are presented. Cr(VI) adsorption on a composite was determined by colorimetry. The results showed that sawdust–polyaniline composite synthesized with an aniline:sawdust ratio equal to 0.5 had an adsorption degree of 21.4 mg g −1 and adsorbed nearly 99% of the Cr(VI) after 2 h. The composite could be used for the adsorption of Cr(VI) from waste water. The Cr(VI) adsorption ability of the composite slightly depends on the pH value of the medium. The adsorption is fast during the first half hour and then the rate decreases

  10. A Single Polyaniline Nanofiber Field Effect Transistor and Its Gas Sensing Mechanisms

    Science.gov (United States)

    Chen, Dajing; Lei, Sheng; Chen, Yuquan

    2011-01-01

    A single polyaniline nanofiber field effect transistor (FET) gas sensor fabricated by means of electrospinning was investigated to understand its sensing mechanisms and optimize its performance. We studied the morphology, field effect characteristics and gas sensitivity of conductive nanofibers. The fibers showed Schottky and Ohmic contacts based on different electrode materials. Higher applied gate voltage contributes to an increase in gas sensitivity. The nanofiber transistor showed a 7% reversible resistance change to 1 ppm NH3 with 10 V gate voltage. The FET characteristics of the sensor when exposed to different gas concentrations indicate that adsorption of NH3 molecules reduces the carrier mobility in the polyaniline nanofiber. As such, nanofiber-based sensors could be promising for environmental and industrial applications. PMID:22163969

  11. Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications.

    Science.gov (United States)

    Salunkhe, Rahul R; Hsu, Shao-Hui; Wu, Kevin C W; Yamauchi, Yusuke

    2014-06-01

    We report an effective route for the preparation of layered reduced graphene oxide (rGO) with uniformly coated polyaniline (PANI) layers. These nanocomposites are synthesized by chemical oxidative polymerization of aniline monomer in the presence of layered rGO. SEM, TEM, X-ray photoelectron spectroscopy (XPS), FTIR, and Raman spectroscopy analysis results demonstrated that reduced graphene oxide-polyaniline (rGO-PANI) nanocomposites are successfully synthesized. Because of synergistic effects, rGO-PANI nanocomposites prepared by this approach exhibit excellent capacitive performance with a high specific capacitance of 286 F g(-1) and high cycle reversibility of 94 % after 2000 cycles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mössbauer effect phase determination in iron oxide-polyaniline nanocomposites

    Science.gov (United States)

    Aphesteguy, J. C.; Jacobo, S. E.; Rodríguez Torres, C. E.; Fernández van Raap, M. B.; Sánchez, F. H.

    Mössbauer effect spectroscopy and thermal analysis techniques were applied to characterize polyaniline composites successfully synthesized by embedding Fe oxide nanoparticles (about 10-13 nm) in a polymeric matrix in the presence of dodecyl benzene sulfonic acid and Hel (dopant). Thermal techniques provided quantitative information on iron oxide content and on polyaniline stability and transformations. Mössbauer results indicated that for the whole studied composition range, 3.4 to 100 iron oxide wt.%, composites hold maghemite particles. A preliminary study of the conductivity of the nanocomposites was performed. The largest conductivity was observed for a 8 wt.% maghemite composite where all particles are magnetically unblocked at room temperature within the Mössbauer time window.

  13. Mössbauer effect phase determination in iron oxide polyaniline nanocomposites

    Science.gov (United States)

    Aphesteguy, J. C.; Jacobo, S. E.; Rodríguez Torres, C. E.; Fernández van Raap, M. B.; Sánchez, F. H.

    2007-09-01

    Mössbauer effect spectroscopy and thermal analysis techniques were applied to characterize polyaniline composites successfully synthesized by embedding Fe oxide nanoparticles (about 10 13 nm) in a polymeric matrix in the presence of dodecyl benzene sulfonic acid and HCl (dopant). Thermal techniques provided quantitative information on iron oxide content and on polyaniline stability and transformations. Mössbauer results indicated that for the whole studied composition range, 3.4 to 100 iron oxide wt.%, composites hold maghemite particles. A preliminary study of the conductivity of the nanocomposites was performed. The largest conductivity was observed for a 8 wt.% maghemite composite where all particles are magnetically unblocked at room temperature within the Mössbauer time window.

  14. Sulfonated polyaniline: influence of sulfonation routes on its thermal and structural characteristics

    Directory of Open Access Journals (Sweden)

    Luis Claudio Mendes

    2011-12-01

    Full Text Available In order to study the influence of different sulfonation routes on its thermal and structural properties sulfonated polyaniline (SPAni was prepared. FT-IR revealed that the formation of PAni salt or ring sulfonation depends on the route. UV-visible spectra pointed out that the level of the PAni protonation was dependent on the sulfonation route. A new approach was given for TG/DTG and DSC results correlating different energy levels with the distinguished sulfonation routes. The TG/DTG degradation steps and the amount of the released material corroborated the structural differences of the polyanilines. For each DSC first regime of heating, a broad and intense peak (from -30 to 250 ºC with different level of energy was noticed. That peak could be ascribed to the multiple relaxations and breaking of the PAni intra and inter hydrogen bonds after sulfonation.

  15. On the electrical conductivity of silver-content-controlled polyaniline-silver composites

    Czech Academy of Sciences Publication Activity Database

    Varga, M.; Prokeš, J.; Bober, Patrycja; Stejskal, Jaroslav

    2013-01-01

    Roč. 9, č. 3 (2013), s. 76-83 ISSN 1790-4439. [International Conference on Nanostructured Polymers and Nanocomposites /7./. Prague, 24.04.2012-27.04.2012] R&D Projects: GA AV ČR IAA400500905 Institutional support: RVO:61389013 Keywords : conducting polymer composites * polyaniline * silver Subject RIV: CD - Macromolecular Chemistry http://www.jnpn.org/03,09,03,03.html

  16. Influence of ethanol on the chain-ordering of carbonised polyaniline

    Czech Academy of Sciences Publication Activity Database

    Morávková, Zuzana; Trchová, Miroslava; Tomšík, Elena; Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 919-932 ISSN 0366-6352 R&D Projects: GA ČR GAP205/12/0911; GA ČR GPP108/11/P763; GA ČR GA202/09/1626 Institutional support: RVO:61389013 Keywords : polyaniline * carbonisation * carbon-like material Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.193, year: 2013

  17. Ferromagnetic behaviour of polyaniline-coated multi-wall carbon nanotubes containing nickel nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Konyushenko, Elena; Kazantseva, N. E.; Stejskal, Jaroslav; Trchová, Miroslava; Kovářová, Jana; Sapurina, I.; Tomishko, M. M.

    2008-01-01

    Roč. 320, 3-4 (2008), s. 231-240 ISSN 0304-8853 R&D Projects: GA AV ČR IAA4050313; GA AV ČR IAA400500504; GA MŠk ME 847; GA ČR GA202/06/0419 Institutional research plan: CEZ:AV0Z40500505 Keywords : multi-wall carbon nanotube * conducting polymer * polyaniline coating Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.283, year: 2008

  18. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte

    KAUST Repository

    Chen, Wei

    2013-01-01

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles). This journal is © The Royal Society of Chemistry.

  19. The oxidation of aniline with silver nitrate to polyaniline-silver composites

    Czech Academy of Sciences Publication Activity Database

    Blinova, Natalia V.; Stejskal, Jaroslav; Trchová, Miroslava; Sapurina, I.; Ciric-Marjanovic, G.

    2009-01-01

    Roč. 50, č. 1 (2009), s. 50-56 ISSN 0032-3861 R&D Projects: GA ČR GA202/06/0419; GA ČR GA203/08/0686; GA MŠk ME 847 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * silver * conducting polymer Subject RIV: JI - Composite Materials Impact factor: 3.573, year: 2009

  20. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    OpenAIRE

    Ronghua Wang; Meng Han; Qiannan Zhao; Zonglin Ren; Xiaolong Guo; Chaohe Xu; Ning Hu; Li Lu

    2017-01-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10?20?nm are uniformly composited with GNS by a two-step hydrothermal-a...

  1. The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava; Hromádková, Jiřina; Kovářová, Jana; Kalendová, A.

    2010-01-01

    Roč. 59, č. 7 (2010), s. 875-878 ISSN 0959-8103 R&D Projects: GA AV ČR IAA400500905; GA AV ČR KAN200520704; GA ČR GA203/08/0686; GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * colloids * carbon ization Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.056, year: 2010

  2. Synthesis of conductive doubly filled poly(N-isopropylacrylamide)-polyaniline-SiO2 hydrogels

    Czech Academy of Sciences Publication Activity Database

    Depa, Katarzyna; Strachota, Adam; Šlouf, Miroslav; Brus, Jiří; Cimrová, Věra

    2017-01-01

    Roč. 244, June (2017), s. 616-634 ISSN 0925-4005 R&D Projects: GA MŠk(CZ) LD14010; GA ČR(CZ) GA13-26542S Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 Keywords : PNIPAm hydrogel * polyaniline * silica Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.401, year: 2016

  3. High-rate polyaniline/carbon-cloth electrodes: effect of mass loading on the pseudocapacitive performance

    Czech Academy of Sciences Publication Activity Database

    Tomšík, Elena; Ivanko, Iryna; Kohut, Olena; Hromádková, Jiřina

    2017-01-01

    Roč. 4, č. 11 (2017), s. 2884-2890 ISSN 2196-0216 R&D Projects: GA ČR(CZ) GA15-14791S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : pseudocapacitors * polyaniline * high charge-discharge rate Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.136, year: 2016

  4. [Low-Concentration CO₂ Adsorption on Polyaniline/Zeolite Y Composites].

    Science.gov (United States)

    Liu, Feng-lin; Lu, Xia; Zhang, Hui; Ge, Xin; Liu, Jie; Zhang, Yong-zhen

    2015-12-01

    Three polyaniline (PANI)/zeolite Y composites with different polyaniline loads, PANI-Y-1, PANI-Y-2 and PANI-Y-3, were prepared by in situ chemical oxidation polymerization method using different amounts of aniline. The structural characteristics of these materials were analyzed by FT-IR and nitrogen adsorption experiment. The adsorption and regeneration properties of the composites for low-concentration CO₂ at atmosphere pressure were investigated. Characterization results show that aniline is successfully polymerized in and out side of channels of zeolite Y. The above three materials, whose pores are composed of macropores and mesopores, have specific surface areas of 52, 54 and 35 m2 g -¹, respectively. In addition, a composite with high polyaniline loading has low pore volumes. At 20°C, CO₂ adsorption on the three composites and zeolite Y are well fitted with the Logistic model, and the adsorption amount of CO₂ with initial concentration of 10% follows an order of PANI-Y-2 (2.09 mmol · g⁻¹) > PANI-Y-3 (1.79 mmol · g⁻¹) > PANI-Y-l (1.07 mmol · g⁻¹) > zeolite Y (0.80 mmol · g⁻¹. The adsorption order of the composites is the result of combined effects from polyaniline amount and specific surface area of adsorbents. With concentrations ranging between 2% and 10% CO2 adsorption amount increases when initial concentration is raised. With adsorption temperature changing from 25° to 6°C, low temperature is advantageous to enhancing CO₂ adsorption. For PANI-Y-2, only a low regeneration efficiency of 68% is obtained after four times thermal desorption at 80°C. However, the regeneration efficiency could be increased up to 94% by aqueous ammonia combined with thermal treatment method.

  5. Functional Photoacoustic Imaging of Gastric Acid Secretion Using pH-Responsive Polyaniline Nanoprobes.

    Science.gov (United States)

    Li, Junwei; Xiao, Hong; Yoon, Soon Joon; Liu, Chengbo; Matsuura, Drew; Tai, Wanyi; Song, Liang; O'Donnell, Matthew; Cheng, Du; Gao, Xiaohu

    2016-09-01

    A stomach functional imaging technique based on photoacoustics achieves noninvasive gastric acid secretory assessment utilizing pH-responsive polyaniline nanoprobes. A testing protocol mimicking clinical practice is established using a mouse model. After imaging, the nanoprobes are excreted outside the body without inducing systematic toxicity. Further optimization and translation of this technology can help alleviate patients' suffering and side effects. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sulfonated polyaniline: influence of sulfonation routes on its thermal and structural characteristics

    OpenAIRE

    Mendes,Luis Claudio; Falco,Ana Paula Santiago; Pinho,Magali Silveira; Marques,Priscila Oliveira

    2011-01-01

    In order to study the influence of different sulfonation routes on its thermal and structural properties sulfonated polyaniline (SPAni) was prepared. FT-IR revealed that the formation of PAni salt or ring sulfonation depends on the route. UV-visible spectra pointed out that the level of the PAni protonation was dependent on the sulfonation route. A new approach was given for TG/DTG and DSC results correlating different energy levels with the distinguished sulfonation routes. The TG/DTG degrad...

  7. In-situ polymerized polyaniline films 6. FTIR spectroscopic study of aniline polymerization

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Šeděnková, Ivana; Stejskal, Jaroslav

    2005-01-01

    Roč. 154, 1-3 (2005), s. 1-4 ISSN 0379-6779. [International Conference on Science and Technology of Synthetic Metals. Wollongong, 28.06.2004-02.07.2004] R&D Projects: GA AV ČR(CZ) IAA4050313; GA ČR(CZ) GA202/02/0698 Keywords : polyaniline * thin films * infrared spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.320, year: 2005

  8. Lithium storage performance of carbon nanotubes prepared from polyaniline for lithium-ion batteries

    International Nuclear Information System (INIS)

    Xiang Xiaoxia; Huang Zhengzheng; Liu Enhui; Shen Haijie; Tian Yingying; Xie Hui; Wu Yuhu; Wu Zhilian

    2011-01-01

    Highlights: → Polyaniline nanotube is synthesized by the self-assembly method in aqueous media. → Carbon nanotubes were prepared from polyaniline nanotube by physical activation. → Activation leads to large surface area, and surface nitrogen and oxygen functional groups. → Such physical and chemical properties lead to the good electrochemical properties. → After 20 cycles, a reversible capacity of 728 mAh g -1 was obtained. - Abstract: Carbon nanotubes with large surface area and surface nitrogen and oxygen functional groups are prepared by carbonizing and activating of polyaniline nanotubes, which is synthesized by polymerization of aniline with the self-assembly method in aqueous media. The physicochemical properties of the carbon nanotubes are characterized by scanning electron microscope, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, elemental analyses and X-ray photoelectron spectroscopy measurements. The surface area and pore diameter are 618.9 m 2 g -1 and 3.10 nm. The electrochemical properties of the carbon nanotubes as anode materials in lithium ion batteries are evaluated. At a current density of 100 mA g -1 , the activated carbon nanotube shows an enormously first discharge capacity of about 1370 mAh g -1 and a charge capacity of 907 mAh g -1 . After 20 cycling tests, the activated carbon nanotube retains a reversible capacity of 728 mAh g -1 . These indicate it may be a promising candidate for an anode material for lithium secondary batteries.

  9. Fabrication and capacitive characteristics of conjugated polymer composite p-polyaniline/n-WO{sub 3} heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Amaechi, C.I.; Asogwa, P.U.; Ekwealor, A.B.C. [University of Nigeria, Department of Physics and Astronomy, Nsukka, Enugu State (Nigeria); Osuji, R.U.; Ezema, F.I. [University of Nigeria, Department of Physics and Astronomy, Nsukka, Enugu State (Nigeria); iThemba LABS-National Research Foundation, Nanosciences African Network (NANOAFNET), Somerset West, Western Cape Province (South Africa); University of South Africa (UNISA), UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, Pretoria (South Africa); Maaza, M. [iThemba LABS-National Research Foundation, Nanosciences African Network (NANOAFNET), Somerset West, Western Cape Province (South Africa); University of South Africa (UNISA), UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, Pretoria (South Africa)

    2014-11-15

    A nanocrystalline and porous p-polyaniline/n-WO{sub 3} dissimilar heterojunction at ambient temperature is reported. The high-quality and well-reproducible conjugated polymer composite films have been fabricated by oxidative polymerization of anilinium ion on predeposited WO{sub 3} thin film by chemical bath deposition followed by thermal annealing at 573 K for 1 h. Atomic force microscopy (AFM) analyses reveal a homogenous but irregular cluster of faceted spherically shaped grains with pores. The scanning electron microscopy confirms the porous network of grains, which is in good agreement with the AFM result. The optical absorption analysis of polyaniline/WO{sub 3} hybrid films showed that direct optical transition exist in the photon energy range 3.50-4.00 eV with bandgap of 3.70 eV. The refractive index developed peak at 445 nm in the dispersion region while the high-frequency dielectric constant, ε {sub ∞}, and the carrier concentration to effective mass ratio, N/m{sup *}, was found to be 1.58 and 1.10 x 10{sup 39} cm{sup -3}, respectively. The temperature dependence of electrical resistivity of the deposited films follows the semiconductor behavior while the C-V characteristics (Mott-Schottky plots) show that the flat band potential was -791 and 830 meV/SCE for WO{sub 3} and polyaniline. (orig.)

  10. Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode.

    Science.gov (United States)

    Kašpárková, Věra; Humpolíček, Petr; Capáková, Zdenka; Bober, Patrycja; Stejskal, Jaroslav; Trchová, Miroslava; Rejmontová, Petra; Junkar, Ita; Lehocký, Marián; Mozetič, Miran

    2017-09-01

    Conducting polyaniline can be prepared and modified using several procedures, all of which can significantly influence its applicability in different fields of biomedicine or biotechnology. The modifications of surface properties are crucial with respect to the possible applications of this polymer in tissue engineering or as biosensors. Innovative technique for preparing polyaniline films via in-situ polymerization in colloidal dispersion mode using four stabilizers (poly-N-vinylpyrrolidone; sodium dodecylsulfate; Tween 20 and Pluronic F108) was developed. The surface energy, conductivity, spectroscopic features, and cell compatibility of thin polyaniline films were determined using contact-angle measurement, the van der Pauw method, Fourier-transform infrared spectroscopy, and assay conducted on mouse fibroblasts, respectively. The stabilizers significantly influenced not only the surface and electrical properties of the films but also their cell compatibility. Sodium dodecylsulfate seems preferentially to combine both the high conductivity and good cell compatibility. Moreover, the films with sodium dodecylsulfate were non-irritant for skin, which was confirmed by their in-vitro exposure to the 3D-reconstructed human tissue model. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Recovery of gold from hydrometallurgical leaching solution of electronic waste via spontaneous reduction by polyaniline

    Directory of Open Access Journals (Sweden)

    Yuanzhao Wu

    2017-08-01

    Full Text Available The present study is primarily designed to develop an environmentally-benign approach for the recovery of precious metals, especially gold, from the ever increasingly-discarded electronic wastes (e-waste. By coupling the metal reduction process with an increase in the intrinsic oxidation state of the aniline polymers, and the subsequent re-protonation and reduction of the intrinsically oxidized polymer to the protonated emeraldine (EM salt, polyaniline (PANi films and polyaniline coated cotton fibers are able to recover metallic gold from acid/halide leaching solutions of electronic wastes spontaneously and sustainably. The current technique, which does not require the use of extensive extracting reagents or external energy input, can recover as much as 90% of gold from the leaching acidic solutions. The regeneration of polyaniline after gold recovery, as confirmed by the X-ray photoelectron spectroscopy measurements, promises the continuous operation using the current approach. The as-recovered elemental gold can be further concentrated and purified by incineration in air.

  12. Adsorption of Copper Ion using Acrylic Acid-g-Polyaniline in Aqueous Solution

    Science.gov (United States)

    Kamarudin, Sabariah; Mohammad, Masita

    2018-04-01

    A conductive polymer, polyaniline (PANI) has unique electrical behaviour, stable in the environment, easy synthesis and have wide application in various fields. Modification of PANI in order to improve its adsorption capacity has been done. In this study, the polyaniline-grafted acrylic acid has been prepared and followed by adsorption of copper ion in aqueous solution. Acrylic acid, PANI and acrylic acid-g-polyaniline (Aag-PANI) were characterized by FTIR and SEM to determine its characteristic. The adsorption capacity was investigated to study the removal capacity of Cu ion from aqueous solution. Two parameters were selected which are pH (2, 4 and 6) and initial metal ion concentration (50 mg/L, 100 mg/L and 200 mg/L). The maximum adsorption capacity for PANI and Aag-PANI are 1.7 mg/g and 64.6 mg/g, respectively, at an initial concentration of 100 mg/L. The Langmuir adsorption isotherm model and Freundlich adsorption isotherm model have been used and showed that it is heterolayer adsorption by follows the Freundlich isotherm model.

  13. Highly anisotropic conductivity of tablets pressed from polyaniline-montmorillonite nanocomposite

    International Nuclear Information System (INIS)

    Tokarský, Jonáš; Kulhánková, Lenka; Neuwirthová, Lucie; Mamulová Kutláková, Kateřina; Vallová, Silvie; Stýskala, Vítězslav; Čapková, Pavla

    2016-01-01

    Highlights: • Montmorillonite (MMT) can be intercalated with polyaniline (PANI) chains. • Tablets pressed from PANI/MMT exhibit high anisotropy in electrical conductivity. • Pressure 28MPa is sufficient to reach the anisotropy. • Tablets pressed from pure PANI also exhibit anisotropy in electrical conductivity. - Abstract: Polyaniline-montmorillonite nanocomposite was prepared from anilinium sulfate (precursor) and ammonium peroxodisulfate (oxidizing agent) using simple one-step method. The resulting nanocomposite obtained in powder form has been pressed into tablets using various compression pressures (28–400 MPa). Electrical conductivities of tablets in two perpendicular directions, i.e. direction parallel with the main surface of tablet (σ=) and in orthogonal direction (σ⊥), and corresponding anisotropy factors (i.e., the ratio σ=/σ⊥) have been studied in dependence on compression pressure used during the preparation. Polyaniline-montmorillonite nanocomposite was characterized using X-ray diffraction analysis, raman spectroscopy, transmission electron microscopy, thermogravimetric analysis and molecular modeling which led to the understanding of the internal structure. Measurement of hardness performed on pressed tablets has been also involved. Taking into account the highest value of anisotropy factor reached (σ=/σ⊥ = 490), present study shows a chance to design conductors with nearly two-dimensional conductivity.

  14. Polyaniline nanofibers as a new gamma radiation stabilizer agent for PMMA

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available Polyanilines are reported to exhibit stabilizing effects in rubber mixtures submitted to gamma-irradiation and thermo-oxidative treatment. Such abilities may be explained by their action as radical scavengers. Since radical formation followed by main chain scission is a widely accepted mechanism for radiolytic degradation of PMMA, polyaniline is a promising additive for commercial plastics submitted to radiosterilization processing. In this work, we investigated the ability of polyaniline emeraldine salt nanofibers (PANF-HCl in preventing radiation damage on PMMA matrix. Effects of gamma-irradiation on PMMA/PANF-HCl composites films were assessed by comparison of the variation of viscosity-average molar mass (Mv of PMMA at 25 kGy dose when compared to commercial PMMA films. Samples containing 0.15% PANF-HCl (wt/wt retained 92% of the initial Mv after irradiation while control sample presented 42% of Mv retention. When exposed to 60-200 kGy doses, PANF-HCl embedded into PMMA matrix preserved their oxidation state but started to exhibit mild deprotonation. PANF-HCl nanofibers were characterized by Diffuse Reflection Infrared Fourier Transform Spectroscopy (DRIFTS and Scanning Electronic Microscopy (SEM. PMMA/PANF-HCl composites films were characterized by SEM and UV-VIS spectroscopy.

  15. Effect of CSA Concentration on the Ammonia Sensing Properties of CSA-Doped PA6/PANI Composite Nanofibers

    Directory of Open Access Journals (Sweden)

    Zengyuan Pang

    2014-11-01

    Full Text Available Camphor sulfonic acid (CSA-doped polyamide 6/polyaniline (PA6/PANI composite nanofibers were fabricated using in situ polymerization of aniline under different CSA concentrations (0.02, 0.04, 0.06, 0.08 and 0.10 M with electrospun PA6 nanofibers as templates. The structural, morphological and ammonia sensing properties of the prepared composite nanofibers were studied using scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-IR, four-point probe techniques, X-ray diffraction (XRD and a home-made gas sensing test system. All the results indicated that the CSA concentration had a great influence on the sensing properties of CSA-doped PA6/PANI composite nanofibers. The composite nanofibers doped with 0.02 M CSA showed the best ammonia sensing properties, with a significant sensitivity toward ammonia (NH3 at room temperature, superior to that of the composite nanofibers doped with 0.04–0.10 mol/L CSA. It was found that for high concentrations of CSA, the number of PANI–H+ reacted with NH3 would not make up a high proportion of all PANI–H+ within certain limits. As a result, within a certain range even though higher CSA-doped PA6/PANI nanofibers had better conductivity, their ammonia sensing performance would degrade.

  16. Polyaniline-silver composites prepared by the oxidation of aniline with silver nitrate in solutions of sulfonic acids

    International Nuclear Information System (INIS)

    Bober, Patrycja; Trchova, Miroslava; Prokes, Jan; Varga, Martin; Stejskal, Jaroslav

    2011-01-01

    Aniline was oxidized with silver nitrate in aqueous solutions of sulfonic acids: camphorsulfonic, methanesulfonic, sulfamic, or toluenesulfonic acids. Polyaniline-silver composites were produced slowly in 4 weeks in good yield, except for the reaction, which took place in sulfamic acid solution, where the yield was low. Polyaniline in the emeraldine form was identified with UV-visible, FTIR, and Raman spectra. Thermogravimetric analysis was used to determine the silver content, which was close to the theoretical prediction of 68.9 wt.%. Transmission electron microscopy demonstrated the presence of silver nanoparticles of ca 50 nm average sizes as the dominating species, and hairy polyaniline nanorods having diameter 150-250 nm accompanied them. The highest conductivity of 880 S cm -1 was found with the composite prepared in methanesulfonic acid solution. Its conductivity decreased with temperature increasing in the 70-315 K range, which is typical of metals such as silver. The conductivity of composites prepared in solutions of other acids was lower and increased with increasing temperature. Such dependence is typical of semiconductors, reflecting the dominating role of polyaniline in the conductivity behaviour. It is proposed that interfaces between the polyaniline matrix and dispersed silver nanoparticles play a dominating role in macroscopic level of conductivity.

  17. Prickly polyaniline nano/microstructures as the efficient counter electrode materials for dye-sensitized solar cells

    Science.gov (United States)

    Wang, Guiqiang; Yan, Chao; Zhang, Wei

    2017-12-01

    Two kinds of prickly polyaniline samples, prickly polyaniline nanorods and microgranules, are prepared through the chemically oxidative polymerization method by regulating the concentration of aniline. Scanning electron microscopy images indicate that the diameter of prickly polyaniline nanorods (PPNRs) is about 80 nm and the size of prickly polyaniline microgranules (PPMGs) is about 400 nm. The as-prepared prickly polyaniline samples are subsequently explored as the Pt-free counter electrode materials for dye-sensitized solar cells (DSCs). Electrochemical impedance spectroscopy and cyclic voltammetry measurements demonstrate that PPNR electrode displays superior electrocatalytic activity for the I3 - reduction reaction to PPMG electrode, which can be attributed to the unique prickly nanorod structure that provides abundant electrocatalytic active sites and the fast charge transport pathway simultaneously. As a consequence, the DSC fabricated with PPNR counter electrode achieves a high conversion efficiency of 6.86% under illumination of 100 mW cm-2, which is close to the efficiency of a Pt electrode-based device. This work presents a promising way to develop Pt-free and high-efficiency counter electrode in DSCs.

  18. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering.

    Science.gov (United States)

    Zhao, Xin; Li, Peng; Guo, Baolin; Ma, Peter X

    2015-10-01

    Biomaterials with injectability, conductivity and antibacterial effect simultaneously have been rarely reported. Herein, we developed a new series of in situ forming antibacterial conductive degradable hydrogels using quaternized chitosan (QCS) grafted polyaniline with oxidized dextran as crosslinker. The chemical structures, morphologies, electrochemical property, conductivity, swelling ratio, rheological property, in vitro biodegradation and gelation time of hydrogels were characterized. Injectability was verified by in vivo subcutaneous injection on a Sprague Dawley rat. The antibacterial activity of the hydrogels was firstly evaluated employing antibacterial assay using Escherichia coli and Staphylococcus aureus in vitro. The hydrogels containing polyaniline showed enhanced antibacterial activity compared to QCS hydrogel, especially for hydrogels with 3 wt% polyaniline showing 95 kill% and 90kill% for E. coli and S. aureus, respectively. Compared with QCS hydrogel, the hydrogels with 3 wt% polyaniline still showed enhanced antibacterial activity for E. coli in vivo. The adipose-derived mesenchymal stem cells (ADMSCs) were used to evaluate the cytotoxicity of the hydrogels and hydrogels with polyaniline showed better cytocompatibility than QCS hydrogel. The electroactive hydrogels could significantly enhance the proliferation of C2C12 myoblasts compared to QCS hydrogel. This work opens the way to fabricate in situ forming antibacterial and electroactive degradable hydrogels as a new class of bioactive scaffolds for tissue regeneration applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Dual-shell hollow polyaniline/sulfur-core/polyaniline composites improving the capacity and cycle performance of lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    An, Yanling; Wei, Pan; Fan, Meiqiang, E-mail: fanmeiqiang@126.com; Chen, Da; Chen, Haichao; Ju, QiangJian; Tian, Guanglei; Shu, Kangying

    2016-07-01

    Highlights: • A dual core-shell hPANI/S/PANI composite was prepared in situ synthesis. • Cycle performance of the hPANI/S/PANI composite was enhanced. • The improvement was due to fine sulfur particles wrapped by two PANI films. • Some positive effects were elaborated. - Abstract: In this study, a dual-shell hollow polyaniline/sulfur-core/polyaniline (hPANI/S/PANI) composite was prepared by successively depositing PANI, S, and PANI on the surface of a template silicon sphere. The electrochemical properties of this composite were evaluated using a lithium plate as an anode in lithium/sulfur cells. The hPANI/S/PANI composite showed a discharge capacity of 572.2 mAh g{sup −1} after 214 cycles at 0.1 C, and the Coulombic efficiency was above 87% in the whole charge/discharge cycle. The improved cycle property of the hPANI/S/PANI composite can be ascribed to the fine sulfur particles homogeneously deposited on the PANI surface and sprawled inside the two PANI layers during the charge/discharge cycle. This behavior stabilized the nanostructure of sulfur and enhanced its conductivity.

  20. Doping control in sport

    DEFF Research Database (Denmark)

    Overbye, Marie Birch

    2016-01-01

    Doping testing is a key component enforced by anti-doping authorities to detect and deter doping in sport. Policy is developed to protect athletes' right to participate in doping-free sport; and testing is a key tool to secure this right. Accordingly, athletes' responses to anti-doping efforts.......e., the efforts of stakeholders involved in testing) in their own sport both nationally and worldwide. Moreover, it seeks to identify whether specific factors such as previous experience of testing and perceived proximity of doping have an impact on athletes' perceptions of the testing system. The study comprises...... a web-based questionnaire (N = 645; response rate 43%) and uses qualitative findings to elaborate on and explain quantitative results. Results showed that two-thirds of the athletes reported the national testing programme in their sport to be appropriate. A majority of the athletes who had an opinion...