WorldWideScience

Sample records for dbs premotor rtms

  1. Effects of DBS, premotor rTMS, and levodopa on motor function and silent period in advanced Parkinson's disease

    DEFF Research Database (Denmark)

    Bäumer, Tobias; Hidding, Ute; Hamel, Wolfgang

    2009-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used and highly effective treatment for patients with advanced Parkinson's disease (PD). Repetitive TMS (rTMS) applied to motor cortical areas has also been shown to improve symptoms in PD and modulate motor cortical...... excitability. Here, we compared clinical and neurophysiological effects of STN stimulation with those of 1 Hz rTMS given to the dorsal premotor cortex (PMd) and those following intake of levodopa in a group of PD patients with advanced disease. Ten PD patients were studied on 2 consecutive days before...... and after surgery. Clinical effects were determined using the UPDRS motor score. Motor thresholds, motor-evoked potential (MEP) amplitudes during slight voluntary contraction, and the cortical silent periods (SP) were measured using TMS. Before surgery effects of levodopa and 1 Hz PMd rTMS and after surgery...

  2. Is there potential for repetitive Transcranial Magnetic Stimulation (rTMS) as a treatment of OCD?

    Science.gov (United States)

    Zaman, Rashid; Robbins, Trevor W

    2017-09-01

    Obsessive-Compulsive Disorder (OCD) is a common and highly debilitating psychiatric disorder. Amongst OCD sufferers are a significant number (40-60%) of so-called non-responders who do not fully respond to commonly available treatments, which include medications (Selective Serotonin Reuptake Inhibitors-SSRIs) and cognitive behavior therapy (CBT). Modern 'neuromodulatory' techniques such as Deep Brain Stimulation (DBS), repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS) potentially offer alternative forms of treatment for OCD patients who either do not respond to, or are unable or unwilling to take SSRIs and undergo CBT. Although shown to be effective in treatment resistant OCD, DBS requires invasive neurosurgical procedures with associated risks. On the other hand, rTMS and tDCS are non-invasive forms of treatment, which are largely risk free, but the evidence of their efficacy so far is somewhat limited, with only small number of published studies. In this brief survey we will address the potential of rTMS as a therapeutic tool for OCD and review the published literature on the cortical targets for rTMS used so far. We will also discuss some of the newer variants of rTMS techniques only a few of which have been employed so far, and speculate whether there might be a place for rTMS as a standard treatment in OCD, along side CBT, SSRIs and DBS.

  3. The beneficial effect of a speaker's gestures on the listener's memory for action phrases: The pivotal role of the listener's premotor cortex.

    Science.gov (United States)

    Ianì, Francesco; Burin, Dalila; Salatino, Adriana; Pia, Lorenzo; Ricci, Raffaella; Bucciarelli, Monica

    2018-04-10

    Memory for action phrases improves in the listeners when the speaker accompanies them with gestures compared to when the speaker stays still. Since behavioral studies revealed a pivotal role of the listeners' motor system, we aimed to disentangle the role of primary motor and premotor cortices. Participants had to recall phrases uttered by a speaker in two conditions: in the gesture condition, the speaker performed gestures congruent with the action; in the no-gesture condition, the speaker stayed still. In Experiment 1, half of the participants underwent inhibitory rTMS over the hand/arm region of the left premotor cortex (PMC) and the other half over the hand/arm region of the left primary motor cortex (M1). The enactment effect disappeared only following rTMS over PMC. In Experiment 2, we detected the usual enactment effect after rTMS over vertex, thereby excluding possible nonspecific rTMS effects. These findings suggest that the information encoded in the premotor cortex is a crucial part of the memory trace. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Research with rTMS in the treatment of aphasia

    Science.gov (United States)

    Naeser, Margaret A.; Martin, Paula I; Treglia, Ethan; Ho, Michael; Kaplan, Elina; Bashir, Shahid; Hamilton, Roy; Coslett, H. Branch; Pascual-Leone, Alvaro

    2013-01-01

    This review of our research with rTMS to treat aphasia contains four parts: Part 1 reviews functional brain imaging studies related to recovery of language in aphasia with emphasis on nonfluent aphasia. Part 2 presents the rationale for using rTMS to treat nonfluent aphasia patients (based on results from functional imaging studies). Part 2 also reviews our current rTMS treatment protocol used with nonfluent aphasia patients, and our functional imaging results from overt naming fMRI scans, obtained pre- and post- a series of rTMS treatments. Part 3 presents results from a pilot study where rTMS treatments were followed immediately by constraint-induced language therapy (CILT). Part 4 reviews our diffusion tensor imaging (DTI) study that examined white matter connections between the horizontal, midportion of the arcuate fasciculus (hAF) to different parts within Broca’s area (pars triangularis, PTr; pars opercularis, POp), and the ventral premotor cortex (vPMC) in the RH and in the LH. Part 4 also addresses some of the possible mechanisms involved with improved naming and speech, following rTMS with nonfluent aphasia patients. PMID:20714075

  5. Left Dorsal Premotor Cortex and Supramarginal Gyrus Complement Each Other during Rapid Action Reprogramming

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Bestmann, Sven; Ward, Nick S

    2012-01-01

    The ability to discard a prepared action plan in favor of an alternative action is critical when facing sudden environmental changes. We tested whether the functional contribution of left supramarginal gyrus (SMG) during action reprogramming depends on the functional integrity of left dorsal...... premotor cortex (PMd). Adopting a dual-site repetitive transcranial magnetic stimulation (rTMS) strategy, we first transiently disrupted PMd with "off-line" 1 Hz rTMS and then applied focal "on-line" rTMS to SMG while human subjects performed a spatially precued reaction time (RT) task. Effective on-line r......TMS of SMG but not sham rTMS of SMG increased errors when subjects had to reprogram their action in response to an invalid precue regardless of the type of preceding off-line rTMS. This suggests that left SMG primarily contributes to the on-line updating of actions by suppressing invalidly prepared responses...

  6. Low-frequency transcranial magnetic stimulation over left dorsal premotor cortex improves the dynamic control of visuospatially cued actions

    DEFF Research Database (Denmark)

    Ward, Nick S; Bestmann, Sven; Hartwigsen, Gesa

    2010-01-01

    Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals, we applied 30 min of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate...... the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with the right or left index finger in response to a left- or right-sided target. Subjects were...... that left rPMd and SMG-AIP contribute toward dynamic control of actions and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance....

  7. Motor and non-motor circuitry activation induced by subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson’s disease patients: Intraoperative fMRI for DBS

    Science.gov (United States)

    Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.

    2015-01-01

    Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412

  8. rTMS of the prefrontal cortex has analgesic effects on neuropathic pain in subjects with spinal cord injury.

    Science.gov (United States)

    Nardone, R; Höller, Y; Langthaler, P B; Lochner, P; Golaszewski, S; Schwenker, K; Brigo, F; Trinka, E

    2017-01-01

    Repetitive transcranial magnetic stimulation study. The analgesic effects of repetitive transcranial magnetic stimulation (rTMS) in chronic pain have been the focus of several studies. In particular, rTMS of the premotor cortex/dorsolateral prefrontal cortex (PMC/DLPFC) changes pain perception in healthy subjects and has analgesic effects in acute postoperative pain, as well as in fibromyalgia patients. However, its effect on neuropathic pain in patients with traumatic spinal cord injury (SCI) has not been assessed. Merano (Italy) and Salzburg (Austria). In this study, we performed PMC/DLPFC rTMS in subjects with SCI and neuropathic pain. Twelve subjects with chronic cervical or thoracic SCI were randomized to receive 1250 pulses at 10 Hz rTMS (n=6) or sham rTMS (n=6) treatment for 10 sessions over 2 weeks. The visual analog scale, the sensory and affective pain rating indices of the McGill Pain Questionnaire (MPQ), the Hamilton Depression Rating Scale and the Hamilton Anxiety Rating Scale were used to assed pain and mood at baseline (T0), 1 day after the first week of treatment (T1), 1 day (T2), 1 week (T3) and 1 month (T4) after the last intervention. Subjects who received active rTMS had a statistically significant reduction in pain symptoms in comparison with their baseline pain, whereas sham rTMS participants had a non-significant change in daily pain from their baseline pain. The findings of this preliminary study in a small patient sample suggest that rTMS of the PMC/DLPFC may be effective in relieving neuropathic pain in SCI patients.

  9. Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia.

    Science.gov (United States)

    Lozeron, Pierre; Poujois, Aurélia; Richard, Alexandra; Masmoudi, Sana; Meppiel, Elodie; Woimant, France; Kubis, Nathalie

    2016-01-01

    Dystonias represent a heterogeneous group of movement disorders responsible for sustained muscle contraction, abnormal postures, and muscle twists. It can affect focal or segmental body parts or be generalized. Primary dystonia is the most common form of dystonia but it can also be secondary to metabolic or structural dysfunction, the consequence of a drug's side-effect or of genetic origin. The pathophysiology is still not elucidated. Based on lesion studies, dystonia has been regarded as a pure motor dysfunction of the basal ganglia loop. However, basal ganglia lesions do not consistently produce dystonia and lesions outside basal ganglia can lead to dystonia; mild sensory abnormalities have been reported in the dystonic limb and imaging studies have shown involvement of multiple other brain regions including the cerebellum and the cerebral motor, premotor and sensorimotor cortices. Transcranial magnetic stimulation (TMS) is a non-invasive technique of brain stimulation with a magnetic field applied over the cortex allowing investigation of cortical excitability. Hyperexcitability of contralateral motor cortex has been suggested to be the trigger of focal dystonia. High or low frequency repetitive TMS (rTMS) can induce excitatory or inhibitory lasting effects beyond the time of stimulation and protocols have been developed having either a positive or a negative effect on cortical excitability and associated with prevention of cell death, γ-aminobutyric acid (GABA) interneurons mediated inhibition and brain-derived neurotrophic factor modulation. rTMS studies as a therapeutic strategy of dystonia have been conducted to modulate the cerebral areas involved in the disease. Especially, when applied on the contralateral (pre)-motor cortex or supplementary motor area of brains of small cohorts of dystonic patients, rTMS has shown a beneficial transient clinical effect in association with restrained motor cortex excitability. TMS is currently a valuable tool to improve

  10. Contribution of TMS and rTMS in the understanding of the pathophysiology and in the treatment of dystonia.

    Directory of Open Access Journals (Sweden)

    Pierre Lozeron

    2016-11-01

    Full Text Available Dystonias represent a heterogeneous group of movement disorders responsible for sustained muscle contraction, abnormal postures and muscle twists. It can affect focal or segmental body parts or be generalized. Primary dystonia is the most common form of dystonia but it can also be secondary to metabolic or structural dysfunction, the consequence of a drug’s side-effect or of genetic origin. The pathophysiology is still not elucidated. Based on lesion studies, dystonia has been regarded as a pure motor dysfunction of the basal ganglia loop. However, basal ganglia lesions do not consistently produce dystonia and lesions outside basal ganglia can lead to dystonia; mild sensory abnormalities have been reported in the dystonic limb and imaging studies have shown involvement of multiple other brain regions including the cerebellum and the cerebral motor, premotor and sensorimotor cortices. Transcranial magnetic stimulation (TMS is a non-invasive technique of brain stimulation with a magnetic field applied over the cortex allowing investigation of cortical excitability. Hyperexcitability of contralateral motor cortex has been suggested to be the trigger of focal dystonia. High or low frequency repetitive TMS (rTMS can induce excitatory or inhibitory lasting effects beyond the time of stimulation and protocols have been developed having either a positive or a negative effect on cortical excitability and associated with prevention of cell death, γ-aminobutyric acid (GABA interneurons mediated inhibition and brain-derived neurotrophic factor (BDNF modulation. rTMS studies as a therapeutic strategy of dystonia have been conducted to modulate the cerebral areas involved in the disease. Especially, when applied on the contralateral (pre-motor cortex or supplementary motor area of brains of small cohorts of dystonic patients, rTMS has shown a beneficial transient clinical effect in association with restrained motor cortex excitability. TMS is currently a

  11. Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation.

    Science.gov (United States)

    Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B

    2012-01-18

    Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated in a timely manner. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution, whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation.

  12. Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation

    Science.gov (United States)

    Duque, Julie; Labruna, Ludovica; Verset, Sophie; Olivier, Etienne; Ivry, Richard B.

    2012-01-01

    Top-down control processes are critical to select goal-directed actions in flexible environments. In humans, these processes include two inhibitory mechanisms that operate during response selection: one is involved in solving a competition between different response options, the other ensures that a selected response is initiated timely. Here, we evaluated the role of dorsal premotor cortex (PMd) and lateral prefrontal cortex (LPF) of healthy subjects in these two forms of inhibition by using an innovative transcranial magnetic stimulation (TMS) protocol combining repetitive TMS (rTMS) over PMd or LPF and a single pulse TMS (sTMS) over primary motor cortex (M1). sTMS over M1 allowed us to assess inhibitory changes in corticospinal excitability, while rTMS was used to produce transient disruption of PMd or LPF. We found that rTMS over LPF reduces inhibition associated with competition resolution whereas rTMS over PMd decreases inhibition associated with response impulse control. These results emphasize the dissociable contributions of these two frontal regions to inhibitory control during motor preparation. The association of LPF with competition resolution is consistent with the role of this area in relatively abstract aspects of control related to goal maintenance, ensuring that the appropriate response is selected in a variable context. In contrast, the association of PMd with impulse control is consistent with the role of this area in more specific processes related to motor preparation and initiation. PMID:22262879

  13. Repetitive transcranial magnetic stimulation of the left premotor/dorsolateral prefrontal cortex does not have analgesic effect on central poststroke pain.

    Science.gov (United States)

    de Oliveira, Rogério Adas Ayres; de Andrade, Daniel Ciampi; Mendonça, Melina; Barros, Rafael; Luvisoto, Tatiana; Myczkowski, Martin Luiz; Marcolin, Marco Antonio; Teixeira, Manoel Jacobsen

    2014-12-01

    Central poststroke pain (CPSP) is caused by an encephalic vascular lesion of the somatosensory pathways and is commonly refractory to current pharmacologic treatments. Repetitive transcranial magnetic stimulation (rTMS) of the premotor cortex/dorsolateral prefrontal cortex (PMC/DLPFC) can change thermal pain threshold toward analgesia in healthy subjects and has analgesic effects in acute postoperative pain as well as in fibromyalgia patients. However, its effect on neuropathic pain and in CPSP, in particular, has not been assessed. The aim of this prospective, double-blind, placebo-controlled study was to evaluate the analgesic effect of PMC/DLPFC rTMS in CPSP patients. Patients were randomized into 2 groups, active (a-) rTMS and sham (s-) rTMS, and were treated with 10 daily sessions of rTMS over the left PMC/DLPFC (10 Hz, 1,250 pulses/d). Outcomes were assessed at baseline, during the stimulation phase, and at 1, 2, and 4 weeks after the last stimulation. The main outcome was pain intensity changes measured by the visual analog scale on the last stimulation day compared to baseline. Interim analysis was scheduled when the first half of the patients completed the study. The study was terminated because of a significant lack of efficacy of the active arm after 21 patients completed the whole treatment and follow-up phases. rTMS of the left PMC/DLPFC did not improve pain in CPSP. The aim of this double-blind, placebo-controlled study was to evaluate the analgesic effects of rTMS to the PMC/DLPFC in CPSP patients. An interim analysis showed a consistent lack of analgesic effect, and the study was terminated. rTMS of the PMC/DLPFC is not effective in relieving CPSP. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. Normalizing biased spatial attention with parietal rTMS in a patient with focal hand dystonia

    DEFF Research Database (Denmark)

    Ricci, Raffaella; Salatino, Adriana; Siebner, Hartwig R

    2014-01-01

    We report the following case to highlight the possible relevance of biased spatial attention in focal hand dystonia (FHD). Deficient sensorimotor inhibition is a prominent pathophysiological feature of FHD [1,2]. Low-frequency repetitive Trascranial Magnetic Stimulation (rTMS) over contralateral...... premotor cortex (PMC) can reinforce cortical inhibition and improve motor performance and dystonic symptoms in some patients [3,4]. Here we report the case of a 41-year-old right-handed man (23 years of education) with severe task-dependent FHD, affecting the right hand index and middle fingers....

  15. The Effects of rTMS Combined with Motor Training on Functional Connectivity in Alpha Frequency Band.

    Science.gov (United States)

    Jin, Jing-Na; Wang, Xin; Li, Ying; Jin, Fang; Liu, Zhi-Peng; Yin, Tao

    2017-01-01

    It has recently been reported that repetitive transcranial magnetic stimulation combined with motor training (rTMS-MT) could improve motor function in post-stroke patients. However, the effects of rTMS-MT on cortical function using functional connectivity and graph theoretical analysis remain unclear. Ten healthy subjects were recruited to receive rTMS immediately before application of MT. Low frequency rTMS was delivered to the dominant hemisphere and non-dominant hand performed MT over 14 days. The reaction time of Nine-Hole Peg Test and electroencephalography (EEG) in resting condition with eyes closed were recorded before and after rTMS-MT. Functional connectivity was assessed by phase synchronization index (PSI), and subsequently thresholded to construct undirected graphs in alpha frequency band (8-13 Hz). We found a significant decrease in reaction time after rTMS-MT. The functional connectivity between the parietal and frontal cortex, and the graph theory statistics of node degree and efficiency in the parietal cortex increased. Besides the functional connectivity between premotor and frontal cortex, the degree and efficiency of premotor cortex showed opposite results. In addition, the number of connections significantly increased within inter-hemispheres and inter-regions. In conclusion, this study could be helpful in our understanding of how rTMS-MT modulates brain activity. The methods and results in this study could be taken as reference in future studies of the effects of rTMS-MT in stroke patients.

  16. The effect of rTMS over the inferior parietal lobule on EEG sensorimotor reactivity differs according to self-reported traits of autism in typically developing individuals.

    Science.gov (United States)

    Puzzo, Ignazio; Cooper, Nicholas R; Cantarella, Simona; Fitzgerald, Paul B; Russo, Riccardo

    2013-12-06

    Previous research suggested that EEG markers of mirror neuron system activation may differ, in the normal population as a function of different levels of the autistic spectrum quotient; (AQ). The present study aimed at modulating the EEG sensorimotor reactivity induced by hand movement observation by means of repetitive transcranial magnetic stimulation (rTMS) applied to the inferior parietal lobule. We examined how the resulting rTMS modulation differed in relation to the self-reported autistic traits in the typically developing population. Results showed that during sham stimulation, all participants had significantly greater sensorimotor alpha reactivity (motor cortex-C electrodes) when observing hand movements compared to static hands. This sensorimotor alpha reactivity difference was reduced during active rTMS stimulation. Results also revealed that in the average AQ group at sham there was a significant increase in low beta during hand movement than static hand observation (pre-motor areas-FC electrodes) and that (like alpha over the C electrodes) this difference is abolished when active rTMS is delivered. Participants with high AQ scores showed no significant difference in low beta sensorimotor reactivity between active and sham rTMS during static hand or hand movement observation. These findings suggest that unlike sham, active rTMS over the IPL modulates the oscillatory activity of the low beta frequency of a distal area, namely the anterior sector of the sensorimotor cortex, when participants observe videos of static hand. Importantly, this modulation differs according to the degree of self-reported traits of autism in a typically developing population. © 2013 Elsevier B.V. All rights reserved.

  17. Joint Contribution of Left Dorsal Premotor Cortex and Supramarginal Gyrus to Rapid Action Reprogramming

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Siebner, Hartwig R

    2015-01-01

    human subjects performed a spatially-precued reaction time task. RESULTS: Relative to sham rTMS, effective online perturbation of left PMd significantly impaired both the response speed and accuracy in trials that were invalidly pre-cued and required the subject to reprogram the prepared action......BACKGROUND: The rapid adaptation of actions to changes in the environment is crucial for survival. We previously demonstrated a joint contribution of left dorsal premotor cortex (PMd) and left supramarginal gyrus (SMG) to action reprogramming. However, we did not probe the contribution of PMd...... to the speed and accuracy of action reprogramming and how the functional relevance of PMd changes in the presence of a dysfunctional SMG. OBJECTIVE: This study further dissociated the unique contribution of left PMd and SMG to action reprogramming. Specifically, we tested whether the critical contribution...

  18. Real-Time Prediction of Observed Action Requires Integrity of the Dorsal Premotor Cortex: Evidence From Repetitive Transcranial Magnetic Stimulation.

    Science.gov (United States)

    Brich, Louisa F M; Bächle, Christine; Hermsdörfer, Joachim; Stadler, Waltraud

    2018-01-01

    Studying brain mechanisms underlying the prediction of observed action, the dorsal premotor cortex (PMd) has been suggested a key area. The present study probed this notion using repetitive transcranial magnetic stimulation (rTMS) to test whether interference in this area would affect the accuracy in predicting the time course of object directed actions performed with the right hand. Young and healthy participants observed actions in short videos. These were briefly occluded from view for 600 ms and resumed immediately afterwards. The task was to continue the action mentally and to indicate after each occlusion, whether the action was resumed at the right moment (condition in-time) or shifted. In a first run, single-pulse transcranial magnetic stimulation (sTMS) was delivered over the left primary hand-area during occlusion. In the second run, rTMS over the left PMd was applied during occlusion in half of the participants [experimental group (EG)]. The control group (CG) received sham-rTMS over the same area. Under rTMS, the EG predicted less trials correctly than in the sTMS run. Sham-rTMS in the CG had no effects on prediction. The interference in PMd interacted with the type of manipulation applied to the action's time course occasionally during occlusion. The performance decrease of the EG was most pronounced in conditions in which the continuations after occlusions were too late in the action's course. The present results extend earlier findings suggesting that real-time action prediction requires the integrity of the PMd. Different functional roles of this area are discussed. Alternative interpretations consider either simulation of specific motor programming functions or the involvement of a feature-unspecific predictor.

  19. Disrupting neuronal transmission: Mechanism of DBS?

    Directory of Open Access Journals (Sweden)

    Satomi eChiken

    2014-03-01

    Full Text Available Applying high-frequency stimulation to deep brain rain structure, known as deep brain stimulation (DBS, has now been recognized an effective therapeutic option for a wide range of neurological and psychiatric disorders. DBS targeting the basal ganglia thalamo-cortical loop, especially the internal segment of the globus pallidus, subthalamic nucleus and thalamus, has been widely employed as a successful surgical therapy for movement disorders, such as Parkinson’s disease, dystonia and tremor. However, the neurophysiological mechanism underling the action of DBS remains unclear and is still under debate: does DBS inhibit or excite local neuronal elements? In this review, we will examine this question and propose the alternative interpretation: DBS dissociates inputs and outputs, resulting in disruption of abnormal signal transmission.

  20. Inhibitory stimulation of the ventral premotor cortex temporarily interferes with musical beat rate preference.

    Science.gov (United States)

    Kornysheva, Katja; von Anshelm-Schiffer, Anne-Marike; Schubotz, Ricarda I

    2011-08-01

    Behavioral studies suggest that preference for a beat rate (tempo) in auditory sequences is tightly linked to the motor system. However, from a neuroscientific perspective the contribution of motor-related brain regions to tempo preference in the auditory domain remains unclear. A recent fMRI study (Kornysheva et al. [2010]: Hum Brain Mapp 31:48-64) revealed that the activity increase in the left ventral premotor cortex (PMv) is associated with the preference for a tempo of a musical rhythm. The activity increase correlated with how strongly the subjects preferred a tempo. Despite this evidence, it remains uncertain whether an interference with activity in the left PMv affects tempo preference strength. Consequently, we conducted an offline repetitive transcranial magnetic stimulation (rTMS) study, in which the cortical excitability in the left PMv was temporarily reduced. As hypothesized, 0.9 Hz rTMS over the left PMv temporarily affected individual tempo preference strength depending on the individual strength of tempo preference in the control session. Moreover, PMv stimulation temporarily interfered with the stability of individual tempo preference strength within and across sessions. These effects were specific to the preference for tempo in contrast to the preference for timbre, bound to the first half of the experiment following PMv stimulation and could not be explained by an impairment of tempo recognition. Our results corroborate preceding fMRI findings and suggest that activity in the left PMv is part of a network that affects the strength of beat rate preference. Copyright © 2010 Wiley-Liss, Inc.

  1. Basic mechanisms of rTMS: Implications in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Arias-Carrión Oscar

    2008-04-01

    Full Text Available Abstract Background Basic and clinical research suggests a potential role for repetitive transcranial magnetic stimulation (rTMS in the treatment of Parkinson's disease. However, compared to the growing number of clinical studies on its putative therapeutic properties, the studies on the basic mechanisms of rTMS are surprisingly scarce. Results Animal studies have broadened our understanding of how rTMS affects brain circuits and the causal chain in brain-behavior relationships. The observed changes are thought to be to neurotransmitter release, transsynaptic efficiency, signaling pathways and gene transcription. Furthermore, recent studies suggest that rTMS induces neurogenesis, neuronal viability and secretion of neuroprotective molecules. Conclusion The mechanisms underlying the disease-modifying effects of these and related rTMS in animals are the principle subject of the current review. The possible applications for treatment of Parkinson's disease are discussed.

  2. Effects of prefrontal rTMS on autonomic reactions to affective pictures.

    Science.gov (United States)

    Berger, Christoph; Domes, Gregor; Balschat, Johannes; Thome, Johannes; Höppner, Jacqueline

    2017-02-01

    Repetitive transcranial magnetic stimulation (rTMS) can modulate the excitability of stimulated cortical areas, such as prefrontal areas involved in emotion regulation. Low frequency (LF) rTMS is expected to have inhibitory effects on prefrontal regions, and thereby should disinhibit limbic activity, resulting in enhanced emotional and autonomic reactions. For high frequency (HF) rTMS, the opposite pattern might be assumed. The objective of this study was to determine the effects of different rTMS frequencies applied to the right dlPFC on autonomic functions and on emotional perception. In a crossover design, two groups of 20 healthy young women were either stimulated with one session of LF rTMS (1 Hz) or one session of HF rTMS (10 Hz), compared to sham stimulation. We assessed phasic cardiac responses (PCR), skin conductance reactions (SCR), and emotional appraisal of emotional pictures as well as recognition memory after each rTMS application. After LF rTMS, PCR (heart rate deceleration) during presentation of pictures with negative and neutral valence was significantly increased compared to the presentation of positive pictures. In contrast, the modulatory effect of picture valence and arousal on the cardiac orienting response was absent after HF rTMS. Our results suggest that frontal LF rTMS indirectly activates the ANS via inhibition of the right dlPFC activity, likely by enhancing the sensory processing or attention to aversive and neutral stimuli.

  3. Transcranial direct current stimulation in obsessive-compulsive disorder: emerging clinical evidence and considerations for optimal montage of electrodes.

    Science.gov (United States)

    Senço, Natasha M; Huang, Yu; D'Urso, Giordano; Parra, Lucas C; Bikson, Marom; Mantovani, Antonio; Shavitt, Roseli G; Hoexter, Marcelo Q; Miguel, Eurípedes C; Brunoni, André R

    2015-07-01

    Neuromodulation techniques for obsessive-compulsive disorder (OCD) treatment have expanded with greater understanding of the brain circuits involved. Transcranial direct current stimulation (tDCS) might be a potential new treatment for OCD, although the optimal montage is unclear. To perform a systematic review on meta-analyses of repetitive transcranianal magnetic stimulation (rTMS) and deep brain stimulation (DBS) trials for OCD, aiming to identify brain stimulation targets for future tDCS trials and to support the empirical evidence with computer head modeling analysis. Systematic reviews of rTMS and DBS trials on OCD in Pubmed/MEDLINE were searched. For the tDCS computational analysis, we employed head models with the goal of optimally targeting current delivery to structures of interest. Only three references matched our eligibility criteria. We simulated four different electrodes montages and analyzed current direction and intensity. Although DBS, rTMS and tDCS are not directly comparable and our theoretical model, based on DBS and rTMS targets, needs empirical validation, we found that the tDCS montage with the cathode over the pre-supplementary motor area and extra-cephalic anode seems to activate most of the areas related to OCD.

  4. Real-Time Prediction of Observed Action Requires Integrity of the Dorsal Premotor Cortex: Evidence From Repetitive Transcranial Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Louisa F. M. Brich

    2018-03-01

    Full Text Available Studying brain mechanisms underlying the prediction of observed action, the dorsal premotor cortex (PMd has been suggested a key area. The present study probed this notion using repetitive transcranial magnetic stimulation (rTMS to test whether interference in this area would affect the accuracy in predicting the time course of object directed actions performed with the right hand. Young and healthy participants observed actions in short videos. These were briefly occluded from view for 600 ms and resumed immediately afterwards. The task was to continue the action mentally and to indicate after each occlusion, whether the action was resumed at the right moment (condition in-time or shifted. In a first run, single-pulse transcranial magnetic stimulation (sTMS was delivered over the left primary hand-area during occlusion. In the second run, rTMS over the left PMd was applied during occlusion in half of the participants [experimental group (EG]. The control group (CG received sham-rTMS over the same area. Under rTMS, the EG predicted less trials correctly than in the sTMS run. Sham-rTMS in the CG had no effects on prediction. The interference in PMd interacted with the type of manipulation applied to the action’s time course occasionally during occlusion. The performance decrease of the EG was most pronounced in conditions in which the continuations after occlusions were too late in the action’s course. The present results extend earlier findings suggesting that real-time action prediction requires the integrity of the PMd. Different functional roles of this area are discussed. Alternative interpretations consider either simulation of specific motor programming functions or the involvement of a feature-unspecific predictor.

  5. DBS for Obesity

    Directory of Open Access Journals (Sweden)

    Ruth Franco

    2016-07-01

    Full Text Available Obesity is a chronic, progressive and prevalent disorder. Morbid obesity, in particular, is associated with numerous comorbidities and early mortality. In patients with morbid obesity, pharmacological and behavioral approaches often have limited results. Bariatric surgery is quite effective but is associated with operative failures and a non-negligible incidence of side effects. In the last decades, deep brain stimulation (DBS has been investigated as a neurosurgical modality to treat various neuropsychiatric disorders. In this article we review the rationale for selecting different brain targets, surgical results and future perspectives for the use of DBS in medically refractory obesity.

  6. Rapid mechanisms of DBS in OCD

    NARCIS (Netherlands)

    de Koning, P.P.

    2016-01-01

    Deep brain stimulation (DBS) for therapy-refractory obsessive-compulsive disorder (OCD) patients is capable of improving psychiatric symptoms within seconds to minutes following stimulation initiation. This extraordinary response enticed my interest in exploring the underlying mechanism of DBS for

  7. The CMS DBS query language

    International Nuclear Information System (INIS)

    Kuznetsov, Valentin; Riley, Daniel; Afaq, Anzar; Sekhri, Vijay; Guo Yuyi; Lueking, Lee

    2010-01-01

    The CMS experiment has implemented a flexible and powerful system enabling users to find data within the CMS physics data catalog. The Dataset Bookkeeping Service (DBS) comprises a database and the services used to store and access metadata related to CMS physics data. To this, we have added a generalized query system in addition to the existing web and programmatic interfaces to the DBS. This query system is based on a query language that hides the complexity of the underlying database structure by discovering the join conditions between database tables. This provides a way of querying the system that is simple and straightforward for CMS data managers and physicists to use without requiring knowledge of the database tables or keys. The DBS Query Language uses the ANTLR tool to build the input query parser and tokenizer, followed by a query builder that uses a graph representation of the DBS schema to construct the SQL query sent to underlying database. We will describe the design of the query system, provide details of the language components and overview of how this component fits into the overall data discovery system architecture.

  8. Study of measurement of the alcohol biomarker phosphatidylethanol (PEth) in dried blood spot (DBS) samples and application of a volumetric DBS device.

    Science.gov (United States)

    Beck, Olof; Kenan Modén, Naama; Seferaj, Sabina; Lenk, Gabriel; Helander, Anders

    2018-04-01

    Phosphatidylethanol (PEth) is a group of phospholipids formed in cell membranes following alcohol consumption. PEth measurement in whole blood samples is established as a specific alcohol biomarker with clinical and medico-legal applications. This study further evaluated the usefulness of dried blood spot (DBS) samples collected on filter paper for PEth measurement. Specimens used were surplus volumes of venous whole blood sent for routine LC-MS/MS quantification of PEth 16:0/18:1, the major PEth homolog. DBS samples were prepared by pipetting blood on Whatman 903 Protein Saver Cards and onto a volumetric DBS device (Capitainer). The imprecision (CV) of the DBS sample amount based on area and weight measurements of spot punches were 23-28%. Investigation of the relationship between blood hematocrit and PEth concentration yielded a linear, positive correlation, and at around 1.0-1.5μmol/L PEth 16:0/18:1, the PEth concentration increased by ~0.1μmol/L for every 5% increase in hematocrit. There was a close agreement between the PEth concentrations obtained with whole blood samples and the corresponding results using Whatman 903 (PEth DBS =1.026 PEth WB +0.013) and volumetric device (PEth DBS =1.045 PEth WB +0.016) DBS samples. The CV of PEth quantification in DBS samples at concentrations≥0.05μmol/L were ≤15%. The present results further confirmed the usefulness of DBS samples for PEth measurement. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Dose-dependent effects of theta burst rTMS on cortical excitability and resting-state connectivity of the human motor system.

    Science.gov (United States)

    Nettekoven, Charlotte; Volz, Lukas J; Kutscha, Martha; Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2014-05-14

    Theta burst stimulation (TBS), a specific protocol of repetitive transcranial magnetic stimulation (rTMS), induces changes in cortical excitability that last beyond stimulation. TBS-induced aftereffects, however, vary between subjects, and the mechanisms underlying these aftereffects to date remain poorly understood. Therefore, the purpose of this study was to investigate whether increasing the number of pulses of intermittent TBS (iTBS) (1) increases cortical excitability as measured by motor-evoked potentials (MEPs) and (2) alters functional connectivity measured using resting-state fMRI, in a dose-dependent manner. Sixteen healthy, human subjects received three serially applied iTBS blocks of 600 pulses over the primary motor cortex (M1 stimulation) and the parieto-occipital vertex (sham stimulation) to test for dose-dependent iTBS effects on cortical excitability and functional connectivity (four sessions in total). iTBS over M1 increased MEP amplitudes compared with sham stimulation after each stimulation block. Although the increase in MEP amplitudes did not differ between the first and second block of M1 stimulation, we observed a significant increase after three blocks (1800 pulses). Furthermore, iTBS enhanced resting-state functional connectivity between the stimulated M1 and premotor regions in both hemispheres. Functional connectivity between M1 and ipsilateral dorsal premotor cortex further increased dose-dependently after 1800 pulses of iTBS over M1. However, no correlation between changes in MEP amplitudes and functional connectivity was detected. In summary, our data show that increasing the number of iTBS stimulation blocks results in dose-dependent effects at the local level (cortical excitability) as well as at a systems level (functional connectivity) with a dose-dependent enhancement of dorsal premotor cortex-M1 connectivity. Copyright © 2014 the authors 0270-6474/14/346849-11$15.00/0.

  10. DBS in Treatment of Post-Traumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Angelo Lavano

    2018-01-01

    Full Text Available Post-traumatic stress disorder (PTSD is a debilitating psychiatric condition for which pharmacological therapy is not always solvable. Various treatments have been suggested and deep brain stimulation (DBS is currently under investigation for patients affected by PTSD. We review the neurocircuitry and up-to-date clinical concepts which are behind the use of DBS in posttraumatic stress disorder (PTSD. The role of DBS in treatment-refractory PTSD patients has been investigated relying on both preclinical and clinical studies. DBS for PTSD is in its preliminary phases and likely to provide hope for patients with medical refractory PTSD following the results of randomized controlled studies.

  11. D.B.S. in disordered insulators

    International Nuclear Information System (INIS)

    Bunch, J.M.

    1976-01-01

    These studies were undertaken in order to determine insulator properties for the CTR program. Most of the d.b.s. studies so far have been with various forms of Al 2 O 3 . Some work using fission neutrons and 15-MeV protons along with some high-energy heavy ions is briefly described. Attempts to measure d.b.s. and other electrical properties are mentioned

  12. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression

    International Nuclear Information System (INIS)

    Richieri, Raphaelle; Lancon, Christophe; Boyer, Laurent; Farisse, Jean; Colavolpe, Cecile; Mundler, Olivier; Guedj, Eric

    2011-01-01

    The aim of this study was to determine the predictive value of whole-brain voxel-based regional cerebral blood flow (rCBF) for repetitive transcranial magnetic stimulation (rTMS) response in patients with pharmacoresistant depression. Thirty-three right-handed patients who met DSM-IV criteria for major depressive disorder (unipolar or bipolar depression) were included before rTMS. rTMS response was defined as at least 50% reduction in the baseline Beck Depression Inventory scores. The predictive value of 99m Tc-ethyl cysteinate dimer (ECD) single photon emission computed tomography (SPECT) for rTMS response was studied before treatment by comparing rTMS responders to non-responders at voxel level using Statistical Parametric Mapping (SPM) (p 0.10). In comparison to responders, non-responders showed significant hypoperfusions (p < 0.001, uncorrected) in the left medial and bilateral superior frontal cortices (BA10), the left uncus/parahippocampal cortex (BA20/BA35) and the right thalamus. The area under the curve for the combination of SPECT clusters to predict rTMS response was 0.89 (p < 0.001). Sensitivity, specificity, positive predictive value and negative predictive value for the combination of clusters were: 94, 73, 81 and 92%, respectively. This study shows that, in pharmacoresistant depression, pretreatment rCBF of specific brain regions is a strong predictor for response to rTMS in patients with homogeneous demographic/clinical features. (orig.)

  13. Is there a Premotor Phase of Essential Tremor?

    Directory of Open Access Journals (Sweden)

    Abhishek Lenka

    2017-10-01

    Full Text Available Background: Essential tremor (ET is the most common tremor disorder. In addition to its hallmark feature, kinetic tremor of the upper limbs, patients may have a number of non-motor symptoms and signs (NMS. Several lines of evidence suggest that ET is a neurodegenerative disorder and certain NMS may antedate the onset of tremor. This article comprehensively reviews the evidence for the existence of a "premotor phase" of ET, and discusses plausible biological explanations and implications.Methods: A PubMed search in May 2017 identified articles for this review.Results: The existence of a premotor phase of ET gains support primarily from longitudinal data. In individuals who develop incident ET, baseline (i.e., premotor evaluations reveal greater cognitive dysfunction, a faster rate of cognitive decline, and the presence of a protective effect of education against dementia. In addition, baseline evaluations also reveal more self-reported depression, antidepressant medication use, and shorter sleep duration in individuals who eventually develop incident ET. In cross-sectional studies, certain personality traits and NMS (e.g., olfactory dysfunction also suggest the existence of a premotor phase.Discussion: There is preliminary evidence supporting the existence of a premotor phase of ET. The mechanisms are unclear; however, the presence of Lewy bodies in some ET brains in autopsy studies and involvement of multiple neural networks in ET as evident from the neuroimaging studies, are possible contributors. Most evidence is from a longitudinal cohort (Neurological Disorders of Central Spain: NEDICES; additional longitudinal studies are warranted to gain better insights into the premotor phase of ET.

  14. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression

    Energy Technology Data Exchange (ETDEWEB)

    Richieri, Raphaelle; Lancon, Christophe [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); Boyer, Laurent [La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Department of Public Health, Marseille (France); Farisse, Jean [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); Colavolpe, Cecile; Mundler, Olivier [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Guedj, Eric [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Hopital de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Marseille Cedex 5 (France)

    2011-09-15

    The aim of this study was to determine the predictive value of whole-brain voxel-based regional cerebral blood flow (rCBF) for repetitive transcranial magnetic stimulation (rTMS) response in patients with pharmacoresistant depression. Thirty-three right-handed patients who met DSM-IV criteria for major depressive disorder (unipolar or bipolar depression) were included before rTMS. rTMS response was defined as at least 50% reduction in the baseline Beck Depression Inventory scores. The predictive value of {sup 99m}Tc-ethyl cysteinate dimer (ECD) single photon emission computed tomography (SPECT) for rTMS response was studied before treatment by comparing rTMS responders to non-responders at voxel level using Statistical Parametric Mapping (SPM) (p < 0.001, uncorrected). Of the patients, 18 (54.5%) were responders to rTMS and 15 were non-responders (45.5%). There were no statistically significant differences in demographic and clinical characteristics (p > 0.10). In comparison to responders, non-responders showed significant hypoperfusions (p < 0.001, uncorrected) in the left medial and bilateral superior frontal cortices (BA10), the left uncus/parahippocampal cortex (BA20/BA35) and the right thalamus. The area under the curve for the combination of SPECT clusters to predict rTMS response was 0.89 (p < 0.001). Sensitivity, specificity, positive predictive value and negative predictive value for the combination of clusters were: 94, 73, 81 and 92%, respectively. This study shows that, in pharmacoresistant depression, pretreatment rCBF of specific brain regions is a strong predictor for response to rTMS in patients with homogeneous demographic/clinical features. (orig.)

  15. Deutsche Bibliotheksstatistik (DBS: Konzept, Umsetzung und Perspektiven für eine umfassende Datenbasis zum Bibliothekswesen in Deutschland: 10 Fragen von Bruno Bauer an Ronald M. Schmidt, Leiter der DBS / Deutsche Bibliotheksstatistik (DBS: Concept, implementation and prospect for a comprehensive database on library statistics in Germany: 10 questions interview with Ronald M. Schmidt, head of DBS, by Bruno Bauer

    Directory of Open Access Journals (Sweden)

    Schmidt, Ronald M.

    2008-06-01

    Full Text Available The DBS, Deutsche Bibliotheksstatistik (German Library Statistics, http://www.bibliotheksstatistik.de, reports since 1974. Around 9000 libraries file data on facilities, equipment, holdings, usage, budget and staff.Data collection, evaluation, and presentation today are carried out online only. Aim of DBS is the formation of a national data pool containing statistical data on all types of libraries.The interview informs about the concept of DBS and its differentation of public, university and specialised libraries. It covers at length the increasing important topic of data collection of holdings and usage in digital libraries. The DBS process of data evaluation and publication will be described and connections between DBS and the library benchmark index BIX will be explained. Finally international cooperation options for DBS will be discussed.

  16. DBS-LC-MS/MS assay for caffeine: validation and neonatal application.

    Science.gov (United States)

    Bruschettini, Matteo; Barco, Sebastiano; Romantsik, Olga; Risso, Francesco; Gennai, Iulian; Chinea, Benito; Ramenghi, Luca A; Tripodi, Gino; Cangemi, Giuliana

    2016-09-01

    DBS might be an appropriate microsampling technique for therapeutic drug monitoring of caffeine in infants. Nevertheless, its application presents several issues that still limit its use. This paper describes a validated DBS-LC-MS/MS method for caffeine. The results of the method validation showed an hematocrit dependence. In the analysis of 96 paired plasma and DBS clinical samples, caffeine levels measured in DBS were statistically significantly lower than in plasma but the observed differences were independent from hematocrit. These results clearly showed the need for extensive validation with real-life samples for DBS-based methods. DBS-LC-MS/MS can be considered to be a good alternative to traditional methods for therapeutic drug monitoring or PK studies in preterm infants.

  17. Temperature control at DBS electrodes using a heat sink: experimentally validated FEM model of DBS lead architecture

    Science.gov (United States)

    Elwassif, Maged M.; Datta, Abhishek; Rahman, Asif; Bikson, Marom

    2012-08-01

    There is a growing interest in the use of deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or coupling with an external source (e.g. magnetic resonance imaging) remains poorly understood and methods to mitigate temperature increases are being actively investigated. We developed a heat transfer finite element method (FEM) simulation of DBS incorporating the realistic architecture of Medtronic 3389 leads. The temperature changes were analyzed considering different electrode configurations, stimulation protocols and tissue properties. The heat-transfer model results were then validated using micro-thermocouple measurements during DBS lead stimulation in a saline bath. FEM results indicate that lead design (materials and geometry) may have a central role in controlling temperature rise by conducting heat. We show how modifying lead design can effectively control temperature increases. The robustness of this heat-sink approach over complimentary heat-mitigation technologies follows from several features: (1) it is insensitive to the mechanisms of heating (e.g. nature of magnetic coupling); (2) it does not interfere with device efficacy; and (3) can be practically implemented in a broad range of implanted devices without modifying the normal device operations or the implant procedure.

  18. The relevance of pre-motor symptoms in Parkinson's disease.

    Science.gov (United States)

    Visanji, Naomi; Marras, Connie

    2015-10-01

    Parkinson's disease (PD) has a wide range of non-motor symptoms including; constipation, sleep disturbance, deficits in vision and olfaction, mood disorders and cardiac autonomic dysfunction. Several of these non-motor symptoms can manifest prior to the onset of motor symptoms. Recognizing these pre-motor symptoms may enable early diagnosis of PD. Currently, no single pre-motor symptom is able to predict the development of PD with 100% sensitivity or specificity. Ongoing studies in several independent at-risk cohorts should reveal the potential of combinations of pre-motor symptoms and multi-stage screening strategies to identify individuals at increased risk of PD. PD progression may be governed by a prion-like spread of a-syn throughout the nervous system. Identifying individuals at the earliest stage will likely be critical to preventing the pathological progression of PD, highlighting the relevance of pre-motor symptoms in the future treatment of the disease.

  19. rTMS: A Treatment to Restore Function After Severe TBI

    Science.gov (United States)

    2017-10-01

    Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for...magnetic stimulation (rTMS), which is a non-invasive technique to stimulate the brain. The evidence of therapeutic efficacy from the literature in non-TBI...Transcranial Magnetic Stimulation (rTMS), Traumatic Brain Injury (TBI), Vegetative (VS), Minimally Conscious (MCS) 16. SECURITY CLASSIFICATION OF

  20. The RAI DBS experiment with Olympus

    Science.gov (United States)

    Castelli, Enzo

    The Italian broadcasting network (RAI) has studied the development of a national DBS service in an effort to outline a proposal for a space segment configuration compatible with development of new services, including HDTV. Proposals so far considered feature the integration of RAI's channel on Olympus in a future operational system and after extensive experimental use. Contents of the experimental program are discussed, and need for a broadcasting standard which considers projected introduction of HDTV is noted. The debate between RAI and consumer electronic industries on the use of broadcasting standards is outlined. The position of RAI in the context of HDTV and DBS is defined and the issue of determining the most effective transmission standard during the experimental stage is raised. It is pointed out that, in the absence of new production facilities for HDTV, the maximum quality which MAC will yield will be that of PAL since programs must be produced in PAL and then converted into MAC. Two alternatives for strategy on the use of broadcasting standards for DBS are offered. Finally, technical experiments and a market survey are discussed.

  1. PyDBS: an automated image processing workflow for deep brain stimulation surgery.

    Science.gov (United States)

    D'Albis, Tiziano; Haegelen, Claire; Essert, Caroline; Fernández-Vidal, Sara; Lalys, Florent; Jannin, Pierre

    2015-02-01

    Deep brain stimulation (DBS) is a surgical procedure for treating motor-related neurological disorders. DBS clinical efficacy hinges on precise surgical planning and accurate electrode placement, which in turn call upon several image processing and visualization tasks, such as image registration, image segmentation, image fusion, and 3D visualization. These tasks are often performed by a heterogeneous set of software tools, which adopt differing formats and geometrical conventions and require patient-specific parameterization or interactive tuning. To overcome these issues, we introduce in this article PyDBS, a fully integrated and automated image processing workflow for DBS surgery. PyDBS consists of three image processing pipelines and three visualization modules assisting clinicians through the entire DBS surgical workflow, from the preoperative planning of electrode trajectories to the postoperative assessment of electrode placement. The system's robustness, speed, and accuracy were assessed by means of a retrospective validation, based on 92 clinical cases. The complete PyDBS workflow achieved satisfactory results in 92 % of tested cases, with a median processing time of 28 min per patient. The results obtained are compatible with the adoption of PyDBS in clinical practice.

  2. DBS -- An rlogin multiplexer and output logger for DA systems

    International Nuclear Information System (INIS)

    Oleynik, G.; Appleton, L.; Udumula, L.; Votava, M.

    1994-04-01

    DART Bootstrap Services (dbs) is the first component of run-control for the DART Data Acquisition system -- the DA for the 96' round of experiments at Fermilab -- though it has potential usefulness as a powerful tool in other distributed applications. dbs is an rlogin session multiplexer. It allows a user, running a single program, to start up any number of remote login sessions, feed shell commands to them, and collect their output into a single (or multiple) log files (a server keeps the sessions open and collects their output). From this program, any session can be attached to interactively so it appears just like an rlogin session -- dbs becomes transparent. When finished with this interactive mode, the user can escape back to dbs and attach to a different session if so desired. Among many other useful features, dbs supplies a mechanism for cleanup (deletion) of all processes created under a session, allowing a fresh start

  3. DBS - an rlogin multiplexor and output logger for DA systems

    International Nuclear Information System (INIS)

    Oleynik, G.; Appleton, L.; Udumula, L.; Votava, M.

    1994-01-01

    DART Bootstrap Services (dbs) is the first component of run-control for the DART Data Acquisition system - the DA for the 96' round of experiments at Fermilab - though it has potential usefulness as a powerful tool in other distributed applications, dbs is an rlogin session multiplexer. It allows a user, running a single program, to start up any number of remote login sessions, feed shell commands to them, and collect their output into a single (or multiple) logfiles (a server keeps the sessions open and collects their output). From this program, any session can be attached to interactively so it appears just like an rlogin session - dbs becomes transparent. When finished with this interactive mode, the user can escape back to dbs and attach to a different session if so desired. Among many other useful features, dbs supplies a mechanism for cleanup (deletion) of all processes created under a session, allowing a fresh start

  4. Longitudinal Changes in Depressive Circuitry in Response to Neuromodulation Therapy

    Directory of Open Access Journals (Sweden)

    Yagna Pathak

    2016-07-01

    Full Text Available Background: Major Depressive Disorder (MDD is a public health problem worldwide. There is increasing interest in using non-invasive therapies such as repetitive transcranial magnetic stimulation (rTMS to treat MDD. However, the changes induced by rTMS on neural circuits remain poorly characterized. The present study aims to test whether the brain regions previously targeted by deep brain stimulation (DBS in the treatment of MDD respond to rTMS, and whether functional connectivity measures can predict clinical response.Methods: rTMS (20 sessions was administered to five MDD patients at the left-dorsolateral prefrontal cortex (L-DLPFC over 4 weeks. Magnetoencephalography (MEG recordings and Montgomery-Asberg Depression Rating Scale (MADRS assessments were acquired before, during and after treatment. Our primary measures, obtained with MEG source imaging, were changes in power spectral density (PSD and changes in functional connectivity as measured using coherence.Results: Of the five patients, four met the clinical response criterion (40% or greater decrease in MADRS after four weeks of treatment. An increase in gamma power at the L-DLPFC was correlated with improvement in symptoms. We also found that increases in delta band connectivity between L-DLPFC/amygdala and L-DLPFC/pregenual anterior cingulate cortex (pACC, and decreases in gamma band connectivity between L-DLPFC/subgenual anterior cingulate cortex (sACC, were correlated with improvements in depressive symptoms. Conclusions: Our results suggest that non-invasive intervention techniques, such as rTMS, modulate the ongoing activity of depressive circuits targeted for DBS, and that MEG can capture these changes. Gamma oscillations may originate from GABA-mediated inhibition, which increases synchronization of large neuronal populations, possibly leading to increased long-range functional connectivity. We postulate that responses to rTMS could provide valuable insights into early evaluation

  5. Examining frontotemporal connectivity and rTMS in healthy controls: implications for auditory hallucinations in schizophrenia.

    Science.gov (United States)

    Gromann, Paula M; Tracy, Derek K; Giampietro, Vincent; Brammer, Michael J; Krabbendam, Lydia; Shergill, Sukhwinder S

    2012-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been shown to have clinically beneficial effects in altering the perception of auditory hallucinations (AH) in patients with schizophrenia. However, the mode of action is not clear. Recent neuroimaging findings indicate that rTMS has the potential to induce not only local effects but also changes in remote, functionally connected brain regions. Frontotemporal dysconnectivity has been proposed as a mechanism leading to psychotic symptoms in schizophrenia. The current study examines functional connectivity between temporal and frontal brain regions after rTMS and the implications for AH in schizophrenia. A connectivity analysis was conducted on the fMRI data of 11 healthy controls receiving rTMS, compared with 11 matched subjects receiving sham TMS, to the temporoparietal junction, before engaging in a task associated with robust frontotemporal activation. Compared to the control group, the rTMS group showed an altered frontotemporal connectivity with stronger connectivity between the right temporoparietal cortex and the dorsolateral prefrontal cortex and the angular gyrus. This finding provides preliminary evidence for the hypothesis that normalizing the functional connectivity between the temporoparietal and frontal brain regions may underlie the therapeutic effect of rTMS on AH in schizophrenia.

  6. DBS Programming: An Evolving Approach for Patients with Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Aparna Wagle Shukla

    2017-01-01

    Full Text Available Deep brain stimulation (DBS surgery is a well-established therapy for control of motor symptoms in Parkinson’s disease. Despite an appropriate targeting and an accurate placement of DBS lead, a thorough and efficient programming is critical for a successful clinical outcome. DBS programming is a time consuming and laborious manual process. The current approach involves use of general guidelines involving determination of the lead type, electrode configuration, impedance check, and battery check. However there are no validated and well-established programming protocols. In this review, we will discuss the current practice and the recent advances in DBS programming including the use of interleaving, fractionated current, directional steering of current, and the use of novel DBS pulses. These technological improvements are focused on achieving a more efficient control of clinical symptoms with the least possible side effects. Other promising advances include the introduction of computer guided programming which will likely impact the efficiency of programming for the clinicians and the possibility of remote Internet based programming which will improve access to DBS care for the patients.

  7. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs

    DEFF Research Database (Denmark)

    Pötter-Nerger, Monika; Fischer, Sarah; Mastroeni, Claudia

    2009-01-01

    Transcranial stimulation techniques have revealed homeostatic-like metaplasticity in the hand area of the human primary motor cortex (M1(HAND)) that controls stimulation-induced changes in corticospinal excitability. Here we combined two interventional protocols that induce long-term depression......TMS) of the left dorsal premotor cortex (PMD) was first applied to produce an LTP-like increase (5 Hz rTMS) or LTD-like decrease (1 Hz rTMS) in corticospinal excitability in left M1(HAND) via premotor-to-motor inputs. Following PMD rTMS, paired-associative stimulation (PAS) was applied to the right median nerve...... and left M1(HAND) to induce spike-time-dependent plasticity in sensory-to-motor inputs to left M1(HAND). We adjusted the interstimulus interval to the N20 latency of the median nerve somatosensory-evoked cortical potential to produce an LTP-like increase (PAS(N20+2ms)) or an LTD-like decrease (PAS(N20-5ms...

  8. Comparison of weight changes following unilateral and staged bilateral STN DBS for advanced PD.

    Science.gov (United States)

    Lee, Eric M; Kurundkar, Ashish; Cutter, Gary R; Huang, He; Guthrie, Barton L; Watts, Ray L; Walker, Harrison C

    2011-09-01

    Unilateral and bilateral subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson's disease (PD) result in weight gain in the initial postoperative months, but little is known about the changes in weight following unilateral and staged bilateral STN DBS over longer time intervals. A case-control comparison evaluated weight changes over 2 years in 43 consecutive unilateral STN DBS patients, among whom 25 elected to undergo staged bilateral STN DBS, and 21 age-matched and disease severity matched PD controls without DBS. Regression analyses incorporating age, gender, and baseline weight in case or control were conducted to assess weight changes 2 years after the initial unilateral surgery. Unilateral STN DBS and staged bilateral STN DBS patients gained 3.9 ± 2.0 kg and 5.6 ± 2.1 kg versus their preoperative baseline weight (P < 0.001, respectively) while PD controls without DBS lost 0.8 ± 1.1 kg. Although bilateral STN DBS patients gained 1.7 kg more than unilateral STN DBS patients at 2 years, this difference was not statistically significant (P = 0.885). Although there was a trend toward greater weight gain in staged bilateral STN DBS patients versus unilateral patients, we found no evidence for an equivalent or synergistic increase in body weight following placement of the second DBS electrode.

  9. Functional imaging in pre-motor Parkinson’s disease

    International Nuclear Information System (INIS)

    Arnaldi, D.; Picco, A.; Ferrara, M.; Nobili, F.; Famà, F.; Buschiazzo, A.; Morbelli, S.; De Carli, F.

    2014-01-01

    Several non motor symptoms (NMS) can precede the onset of the classical motor Parkinson’s disease (PD) syndrome. The existence of pre-motor and even pre-clinical PD stages has been proposed but the best target population to be screened to disclose PD patients in a pre-clinical, thus asymptomatic, stage is still matter of debate. The REM sleep behavior disorder (RBD) often affects PD patients at different stages of the disease and could precede the onset of motor symptoms by several years. However, RBD could also precede other synucleinopathies (namely, dementia with Lewy bodies and multisystem atrophy), and less frequently could be related to other neurological conditions or remain idiopathic. Moreover, not all PD patients exhibit RBD. Despite these caveats, RBD probably represents the best feature to disclose pre-motor PD patients given its high-risk of developing a full motor syndrome. Other clinical clues in the premotor stages of PD undergoing active investigation include hyposmia, depression, and autonomic dysfunction. Effective biomarkers are needed in order to improve the diagnostic accuracy in the pre-motor stage of PD, to monitor disease progression and to plan both pharmacological and non-pharmacological intervention. Functional imaging, in particular radionuclide methodologies, has been often used to investigate dopaminergic and non-dopaminergic features as well as cortical functioning in patients with RBD in its idiopathic form (iRBD) and/or associated with PD. Recently, new tracers to image α-synuclein pathologies are under development. Functional imaging in pre-motor PD, and in particular in iRBD, could improve our knowledge about the underlying mechanisms and the neurodegenerative progress of PD

  10. Effect of low frequency rTMS stimulation over lateral cerebellum: a FDG PET study

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Eun Jin; Cho, Sang Soo; Bang, Soong Ae; Park, Hyun Soo; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Several lines of evidence suggested the involvement of cerebellum in cognitive function as well as motor function. Because of the measurement difficulty of functional connectivity, little is known about the underlying mechanism involvement of cerebellum in motor and cognitive function in living human brain. To understand the role of cerebellum within the neural network, we investigated the changes of neuronal activity elicited by the cerebellar repetitive transcranial magnetic stimulation (rTMS). 11 right-handed normal volunteers (age: 23.4{+-}2.5 y;6 males) were studied with FDG PET under two conditions; sham and 1Hz rTMS over left lateral cerebellum. With 10 min inter-block interval, three blocks of rTMS were started with the intravenous injection of [18F]FDG. In each block, 5min rTMS were delivered with an intensity of 90% of the resting motor threshold (RMT). Sham rTMS was delivered with same protocol but the coil was positioned perpendicular to the target area with 50% RMT. PET scans were acquired immediately after the rTMS stimulation. Sham and 1Hz rTMS images compared using paired t-test with SPM2. Inhibited neuronal activity compare to the sham condition were revealed in the stimulated left lateral cerebellum and orbitofrontal gyrus and right motor related areas (S1, SMA and posterior parietal cortex). While enhanced neuronal activity compare to the sham condition were revealed in the bilateral inferior frontal gyri including Broca's area and superior temporal gyrus including primary auditory cortex. Bilateral middle temporal, left precentral and right middle occipital gyri were also showed enhanced neuronal activity. This result showed that rTMS over left lateral cerebellum modulate direct vicinity of the targeted region and a large network of remote interconnected contralateral motor and ipsilateral language related brain regions. Present result provide evidence that cerebellum may contribute to language related cognitive function as well as motor

  11. Effect of low frequency rTMS stimulation over lateral cerebellum: a FDG PET study

    International Nuclear Information System (INIS)

    Yoon, Eun Jin; Cho, Sang Soo; Bang, Soong Ae; Park, Hyun Soo; Kim, Sang Eun

    2007-01-01

    Several lines of evidence suggested the involvement of cerebellum in cognitive function as well as motor function. Because of the measurement difficulty of functional connectivity, little is known about the underlying mechanism involvement of cerebellum in motor and cognitive function in living human brain. To understand the role of cerebellum within the neural network, we investigated the changes of neuronal activity elicited by the cerebellar repetitive transcranial magnetic stimulation (rTMS). 11 right-handed normal volunteers (age: 23.4±2.5 y;6 males) were studied with FDG PET under two conditions; sham and 1Hz rTMS over left lateral cerebellum. With 10 min inter-block interval, three blocks of rTMS were started with the intravenous injection of [18F]FDG. In each block, 5min rTMS were delivered with an intensity of 90% of the resting motor threshold (RMT). Sham rTMS was delivered with same protocol but the coil was positioned perpendicular to the target area with 50% RMT. PET scans were acquired immediately after the rTMS stimulation. Sham and 1Hz rTMS images compared using paired t-test with SPM2. Inhibited neuronal activity compare to the sham condition were revealed in the stimulated left lateral cerebellum and orbitofrontal gyrus and right motor related areas (S1, SMA and posterior parietal cortex). While enhanced neuronal activity compare to the sham condition were revealed in the bilateral inferior frontal gyri including Broca's area and superior temporal gyrus including primary auditory cortex. Bilateral middle temporal, left precentral and right middle occipital gyri were also showed enhanced neuronal activity. This result showed that rTMS over left lateral cerebellum modulate direct vicinity of the targeted region and a large network of remote interconnected contralateral motor and ipsilateral language related brain regions. Present result provide evidence that cerebellum may contribute to language related cognitive function as well as motor control

  12. rTMS in fibromyalgia: a randomized trial evaluating QoL and its brain metabolic substrate.

    Science.gov (United States)

    Boyer, Laurent; Dousset, Alix; Roussel, Philippe; Dossetto, Nathalie; Cammilleri, Serge; Piano, Virginie; Khalfa, Stéphanie; Mundler, Olivier; Donnet, Anne; Guedj, Eric

    2014-04-08

    This double-blind, randomized, placebo-controlled study investigated the impact of repetitive transcranial magnetic stimulation (rTMS) on quality of life (QoL) of patients with fibromyalgia, and its possible brain metabolic substrate. Thirty-eight patients were randomly assigned to receive high-frequency rTMS (n = 19) or sham stimulation (n = 19), applied to left primary motor cortex in 14 sessions over 10 weeks. Primary clinical outcomes were QoL changes at the end of week 11, measured using the Fibromyalgia Impact Questionnaire (FIQ). Secondary clinical outcomes were mental and physical QoL component measured using the 36-Item Short Form Health Survey (SF-36), but also pain, mood, and anxiety. Resting-state [(18)F]-fluorodeoxyglucose-PET metabolism was assessed at baseline, week 2, and week 11. Whole-brain voxel-based analysis was performed to study between-group metabolic changes over time. At week 11, patients of the active rTMS group had greater QoL improvement in the FIQ (p = 0.032) and in the mental component of the SF-36 (p = 0.019) than the sham stimulation group. No significant impact was found for other clinical outcomes. Compared with the sham stimulation group, patients of the active rTMS group presented an increase in right medial temporal metabolism between baseline and week 11 (p FIQ and mental component SF-36 concomitant changes (r = -0.38, p = 0.043; r = 0.51, p = 0.009, respectively). QoL improvement involved mainly affective, emotional, and social dimensions. Our study shows that rTMS improves QoL of patients with fibromyalgia. This improvement is associated with a concomitant increase in right limbic metabolism, arguing for a neural substrate to the impact of rTMS on emotional dimensions involved in QoL. This study provides Class II evidence that rTMS compared with sham rTMS improves QoL in patients with fibromyalgia.

  13. Subject-specific computational modeling of DBS in the PPTg area

    Directory of Open Access Journals (Sweden)

    Laura M. Zitella

    2015-07-01

    Full Text Available Deep brain stimulation (DBS in the pedunculopontine tegmental nucleus (PPTg has been proposed to alleviate medically intractable gait difficulties associated with Parkinson’s disease. Clinical trials have shown somewhat variable outcomes, stemming in part from surgical targeting variability, modulating fiber pathways implicated in side effects, and a general lack of mechanistic understanding of DBS in this brain region. Subject-specific computational models of DBS are a promising tool to investigate the underlying therapy and side effects. In this study, a parkinsonian rhesus macaque was implanted unilaterally with an 8-contact DBS lead in the PPTg region. Fiber tracts adjacent to PPTg, including the oculomotor nerve, central tegmental tract, and superior cerebellar peduncle, were reconstructed from a combination of pre-implant 7T MRI, post-implant CT, and post-mortem histology. These structures were populated with axon models and coupled with a finite element model simulating the voltage distribution in the surrounding neural tissue during stimulation. This study introduces two empirical approaches to evaluate model parameters. First, incremental monopolar cathodic stimulation (20Hz, 90µs pulse width was evaluated for each electrode, during which a right eyelid flutter was observed at the proximal four contacts (-1.0 to -1.4mA. These current amplitudes followed closely with model predicted activation of the oculomotor nerve when assuming an anisotropic conduction medium. Second, PET imaging was collected OFF-DBS and twice during DBS (two different contacts, which supported the model predicted activation of the central tegmental tract and superior cerebellar peduncle. Together, subject-specific models provide a framework to more precisely predict pathways modulated by DBS.

  14. Deutsche Bibliotheksstatistik (DBS): Konzept, Umsetzung und Perspektiven für eine umfassende Datenbasis zum Bibliothekswesen in Deutschland: 10 Fragen von Bruno Bauer an Ronald M. Schmidt, Leiter der DBS / Deutsche Bibliotheksstatistik (DBS): Concept, implementation and prospect for a comprehensive database on library statistics in Germany: 10 questions interview with Ronald M. Schmidt, head of DBS, by Bruno Bauer

    OpenAIRE

    Schmidt, Ronald M.; Bauer, Bruno

    2008-01-01

    The DBS, Deutsche Bibliotheksstatistik (German Library Statistics, http://www.bibliotheksstatistik.de), reports since 1974. Around 9000 libraries file data on facilities, equipment, holdings, usage, budget and staff.Data collection, evaluation, and presentation today are carried out online only. Aim of DBS is the formation of a national data pool containing statistical data on all types of libraries.The interview informs about the concept of DBS and its differentation of public, university an...

  15. Inhibitory rTMS applied on somatosensory cortex in Wilson's disease patients with hand dystonia.

    Science.gov (United States)

    Lozeron, Pierre; Poujois, Aurélia; Meppiel, Elodie; Masmoudi, Sana; Magnan, Thierry Peron; Vicaut, Eric; Houdart, Emmanuel; Guichard, Jean-Pierre; Trocello, Jean-Marc; Woimant, France; Kubis, Nathalie

    2017-10-01

    Hand dystonia is a common complication of Wilson's disease (WD), responsible for handwriting difficulties and disability. Alteration of sensorimotor integration and overactivity of the somatosensory cortex have been demonstrated in dystonia. This study investigated the immediate after effect of an inhibitory repetitive transcranial magnetic stimulation (rTMS) applied over the somatosensory cortex on the writing function in WD patients with hand dystonia. We performed a pilot prospective randomized double-blind sham-controlled crossover rTMS study. A 20-min 1-Hz rTMS session, stereotaxically guided, was applied over the left somatosensory cortex in 13 WD patients with right dystonic writer's cramp. After 3 days, each patient was crossed-over to the alternative treatment. Patients were clinically evaluated before and immediately after each rTMS session with the Unified Wilson's Disease rating scale (UWDRS), the Writers' Cramp Rating Scale (WCRS), a specifically designed scale for handwriting difficulties in Wilson's disease patients (FAR, flow, accuracy, and rhythmicity evaluation), and a visual analog scale (VAS) for handwriting discomfort. No significant change in UWDRS, WCRS, VAS, or FAR scores was observed in patients treated with somatosensory inhibitory rTMS compared to the sham protocol. The FAR negatively correlated with UWDRS (r = -0.6; P = 0.02), but not with the WCRS score, disease duration, MRI diffusion lesions, or with atrophy scores. In our experimental conditions, a single inhibitory rTMS session applied over somatosensory cortex did not improve dystonic writer cramp in WD patients.

  16. Medical image of the week: DBS polysomnogram artifact

    Directory of Open Access Journals (Sweden)

    Shetty S,

    2015-10-01

    Full Text Available A 79-year-old man with known Parkinson’s disease and status post deep brain stimulator (DBS implantation underwent an overnight polysomnogram for clinical suspicion of obstructive sleep apnea. Artifact was seen on the polysomnogram recording (Figures 1 & 2. Patient-related electrical artifacts may be seen from devices such as pacemakers, deep brain stimulators and vagal nerve simulators. Abrupt discontinuation of DBS is associated with a high likelihood of worsening of symptoms in patients with Parkinson’s disease (1. Patients with DBS are most commonly programmed in monopolar mode. Bipolar configuration, forms a short electrical dipole that affects a relatively smaller volume of tissue and generates far less artifact, suggesting that this may be an effective option in a Parkinsonian patient with indications for polysomnography (2.

  17. Autonomy in Depressive Patients Undergoing DBS-Treatment: Informed Consent, Freedom of Will and DBS' Potential to Restore It.

    Science.gov (United States)

    Beeker, Timo; Schlaepfer, Thomas E; Coenen, Volker A

    2017-01-01

    According to the World Health Organization, depression is one of the most common and most disabling psychiatric disorders, affecting at any given time approximately 325 million people worldwide. As there is strong evidence that depressive disorders are associated with a dynamic dysregulation of neural circuits involved in emotional processing, recently several attempts have been made to intervene directly in these circuits via deep brain stimulation (DBS) in patients with treatment-resistant major depressive disorder (MDD). Given the promising results of most of these studies, the rising medical interest in this new treatment correlates with a growing sensitivity to ethical questions. One of the most crucial concerns is that DBS might interfere with patients' ability to make autonomous decisions. Thus, the goal of this article is to evaluate the impact DBS presumably has on the capacity to decide and act autonomously in patients with MDD in the light of the autonomy-undermining effects depression has itself. Following the chronological order of the procedure, special attention will first be paid to depression's effects on patients' capacity to make use of their free will in giving valid Informed Consent. We suggest that while the majority of patients with MDD appear capable of autonomous choices, as it is required for Informed Consent, they might still be unable to effectively act according to their own will whenever acting includes significant personal effort. In reducing disabling depressive symptoms like anhedonia and decrease of energy, DBS for treatment resistant MDD thus rather seems to be an opportunity to substantially increase autonomy than a threat to it.

  18. The Neuroprotective Mechanism of Low-Frequency rTMS on Nigral Dopaminergic Neurons of Parkinson's Disease Model Mice.

    Science.gov (United States)

    Dong, Qiaoyun; Wang, Yanyong; Gu, Ping; Shao, Rusheng; Zhao, Li; Liu, Xiqi; Wang, Zhanqiang; Wang, Mingwei

    2015-01-01

    Background. Parkinson's disease is a neurodegenerative disease in elder people, pathophysiologic basis of which is the severe deficiency of dopamine in the striatum. The purpose of the present study was to evaluate the neuroprotective effect of low-frequency rTMS on Parkinson's disease in model mice. Methods. The effects of low-frequency rTMS on the motor function, cortex excitability, neurochemistry, and neurohistopathology of MPTP-induced Parkinson's disease mice were investigated through behavioral detection, electrophysiologic technique, high performance liquid chromatography-electrochemical detection, immunohistochemical staining, and western blot. Results. Low-frequency rTMS could improve the motor coordination impairment of Parkinson's disease mice: the resting motor threshold significantly decreased in the Parkinson's disease mice; the degeneration of nigral dopaminergic neuron and the expression of tyrosine hydroxylase were significantly improved by low-frequency rTMS; moreover, the expressions of brain derived neurotrophic factor and glial cell line derived neurotrophic factor were also improved by low-frequency rTMS. Conclusions. Low-frequency rTMS had a neuroprotective effect on the nigral dopaminergic neuron which might be due to the improved expressions of brain derived neurotrophic factor and glial cell line-derived neurotrophic factor. The present study provided a theoretical basis for the application of low-frequency rTMS in the clinical treatment and recovery of Parkinson's disease.

  19. Repetitive Transcranial Magnetic Stimulation (rTMS) Therapy in Parkinson Disease: A Meta-Analysis.

    Science.gov (United States)

    Wagle Shukla, Aparna; Shuster, Jonathan J; Chung, Jae Woo; Vaillancourt, David E; Patten, Carolynn; Ostrem, Jill; Okun, Michael S

    2016-04-01

    Several studies have reported repetitive transcranial magnetic stimulation (rTMS) therapy as an effective treatment for the control of motor symptoms in Parkinson disease. The objective of the study is to quantify the overall efficacy of this treatment. Systematic review and meta-analysis. We reviewed the literature on clinical rTMS trials in Parkinson disease since the technique was introduced in 1980. We used the following databases: MEDLINE, Web of Science, Cochrane, and CINAHL. Patients with Parkinson disease who were participating in prospective clinical trials that included an active arm and a control arm and change in motor scores on Unified Parkinson's Disease Rating Scale as the primary outcome. We pooled data from 21 studies that met these criteria. We then analyzed separately the effects of low- and high-frequency rTMS on clinical motor improvements. The overall pooled mean difference between treatment and control groups in the Unified Parkinson's Disease Rating Scale motor score was significant (4.0 points, 95% confidence interval, 1.5, 6.7; P = .005). rTMS therapy was effective when low-frequency stimulation (≤ 1 Hz) was used with a pooled mean difference of 3.3 points (95% confidence interval 1.6, 5.0; P = .005). There was a trend for significance when high-frequency stimulation (≥ 5 Hz) studies were evaluated with a pooled mean difference of 3.9 points (95% confidence interval, -0.7, 8.5; P = .08). rTMS therapy demonstrated benefits at short-term follow-up (immediately after a treatment protocol) with a pooled mean difference of 3.4 points (95% confidence interval, 0.3, 6.6; P = .03) as well as at long-term follow-up (average follow-up 6 weeks) with mean difference of 4.1 points (95% confidence interval, -0.15, 8.4; P = .05). There were insufficient data to statistically analyze the effects of rTMS when we specifically examined bradykinesia, gait, and levodopa-induced dyskinesia using quantitative methods. rTMS therapy in patients with Parkinson

  20. [Treatment of chronic tinnitus with neuronavigated repetitive Transcranial Magnetic Stimulation (rTMS)].

    Science.gov (United States)

    Kleinjung, T; Steffens, T; Langguth, B; Eichhammer, P; Marienhagen, J; Hajak, G; Strutz, J

    2006-06-01

    Idiopathic tinnitus is a frequent and debilitating disorder of largely unknown pathophysiology. Focal brain activation in the auditory cortex has recently been demonstrated in chronic tinnitus. Low-frequency rTMS can reduce cortical hyperexcitability. In 12 patients with chronic tinnitus, fusion of [18F]deoxyglucose-PET and structural MRI (T1, MPRAGE) scans allowed the area of increased metabolic activity in the auditory cortex to be exactly identified; this area was selected as the target for rTMS. A neuronavigational system adapted for TMS positioning enabled the relative positions of the figure-8 coil and the target area to be monitored. Repetitive TMS (110% motor threshold; 1 Hz; 2000 stimuli per day over 5 days) was performed using a placebo-controlled crossover design. A sham coil system was used for the placebo stimulation. Treatment outcome was assessed with a specific tinnitus questionnaire (Goebel and Hiller). In all 12 patients an asymmetrically increased metabolic activation of the gyrus of Heschl was detected. The tinnitus score was significantly improved after 5 days of active rTMS, an effect not seen after placebo stimulation. These preliminary results show that neuronavigated rTMS may improve our understanding and treatment of chronic tinnitus.

  1. [The Problems with Domestic Introduction of rTMS from the Three Viewpoints of Scientific Evidence, Specialty and Social Responsibility].

    Science.gov (United States)

    Shinosaki, Kazuhiro

    2015-01-01

    The domestic introduction of rTMS is expected as a new treatment option for treatment-resistant depression. I discussed some problems with the introduction from three viewpoints : scientific evidence, specialty, and social responsibility. I surveyed scientific evidence for rTMS regarding the action mechanism, effectiveness, side effects, and its positioning in the treatment guidelines. To secure the quality of rTMS treatment, I proposed rTMS guidelines, nurturing of the specialists, and a center hospital plan, and pointed out some medium-term problems after its introduction and the consistency of rTMS treatment and standard depression treatment. From the viewpoint of social responsibility, rTMS treatment should be a medical service covered by health insurance to avoid its misuse. We should prepare to overcome the public suspicion of brain stimulation treatment for mental disease.

  2. 1-Hz rTMS in the treatment of tinnitus: A sham-controlled, randomized multicenter trial.

    Science.gov (United States)

    Landgrebe, Michael; Hajak, Göran; Wolf, Stefan; Padberg, Frank; Klupp, Philipp; Fallgatter, Andreas J; Polak, Thomas; Höppner, Jacqueline; Haker, Rene; Cordes, Joachim; Klenzner, Thomas; Schönfeldt-Lecuona, Carlos; Kammer, Thomas; Graf, Erika; Koller, Michael; Kleinjung, Tobias; Lehner, Astrid; Schecklmann, Martin; Pöppl, Timm B; Kreuzer, Peter; Frank, Elmar; Langguth, Berthold

    Chronic tinnitus is a frequent, difficult to treat disease with high morbidity. This multicenter randomized, sham-controlled trial investigated the efficacy and safety of 1-Hz repetitive transcranial magnetic stimulation (rTMS) applied to the left temporal cortex in patients with chronic tinnitus. Tinnitus patients were randomized to receive 10 sessions of either real or sham 1-Hz-rTMS (2000 stimuli, 110% motor threshold) to the left temporal cortex. The primary outcome was the change in the sum score of the tinnitus questionnaire (TQ) of Goebel and Hiller from baseline to end of treatment. A total of 163 patients were enrolled in the study (real rTMS: 75; sham rTMS: 78). At day 12, the baseline mean of 43.1 TQ points in 71 patients assigned to real rTMS changed by -0.5 points; it changed by 0.5 points from a baseline of 42.1 in 75 patients randomized to sham rTMS (adjusted mean difference between groups: -1.0; 95.19% confidence interval: -3.2 to 1.2; p = 0.36). All secondary outcome measures including measures of depression and quality of life showed no significant differences either (p > 0.11). The number of participants with side-effects or adverse events did not differ between groups. Real 1-Hz-rTMS over the left temporal cortex was well tolerated but not superior compared with sham rTMS in improving tinnitus severity. These findings are in contrast to results from studies with smaller sample sizes and put the efficacy of this rTMS protocol for treatment of chronic tinnitus into question. Controlled Trials: http://www.isrctn.com/ISRCTN89848288. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. rTMS Induced Tinnitus Relief Is Related to an Increase in Auditory Cortical Alpha Activity

    Science.gov (United States)

    Müller, Nadia; Lorenz, Isabel; Langguth, Berthold; Weisz, Nathan

    2013-01-01

    Chronic tinnitus, the continuous perception of a phantom sound, is a highly prevalent audiological symptom. A promising approach for the treatment of tinnitus is repetitive transcranial magnetic stimulation (rTMS) as this directly affects tinnitus-related brain activity. Several studies indeed show tinnitus relief after rTMS, however effects are moderate and vary strongly across patients. This may be due to a lack of knowledge regarding how rTMS affects oscillatory activity in tinnitus sufferers and which modulations are associated with tinnitus relief. In the present study we examined the effects of five different stimulation protocols (including sham) by measuring tinnitus loudness and tinnitus-related brain activity with Magnetoencephalography before and after rTMS. Changes in oscillatory activity were analysed for the stimulated auditory cortex as well as for the entire brain regarding certain frequency bands of interest (delta, theta, alpha, gamma). In line with the literature the effects of rTMS on tinnitus loudness varied strongly across patients. This variability was also reflected in the rTMS effects on oscillatory activity. Importantly, strong reductions in tinnitus loudness were associated with increases in alpha power in the stimulated auditory cortex, while an unspecific decrease in gamma and alpha power, particularly in left frontal regions, was linked to an increase in tinnitus loudness. The identification of alpha power increase as main correlate for tinnitus reduction sheds further light on the pathophysiology of tinnitus. This will hopefully stimulate the development of more effective therapy approaches. PMID:23390539

  4. Enhancement of the photocatalytic activity of TiO2 nanoparticles by surface-capping DBS groups

    International Nuclear Information System (INIS)

    Wang Baiqi; Jing Liqiang; Qu Yichun; Li Shudan; Jiang Baojiang; Yang Libin; Xin Baifu; Fu Honggang

    2006-01-01

    TiO 2 nanoparticles capped with sodium dodecylbenzenesulfonate (DBS) are synthesized by a sol-hydrothermal process using tetrabutyl titanate and DBS as raw materials. The effects of surface-capping DBS on the surface photovoltage spectroscopy (SPS), photoluminescence (PL) and photocatalytic performance of TiO 2 nanoparticles are principally investigated together with their relationships. The results show that the surface of TiO 2 nanoparticles can be well capped by DBS groups while the pH value and added DBS amount are controlled at 5.0 and 2% of TiO 2 mass weight, respectively, and the linkage between DBS groups and TiO 2 surfaces is mainly by means of quasi-sulphonate bond. The intensities of SPS and PL spectra of TiO 2 obviously decrease after DBS-capping, while the activity can greatly increase during the photocatalytic degradation of Rhodamine B (RhB) solution, which are mainly attributed to the electron-withdrawing character of the DBS groups. Moreover, the enhancement of photocatalytic activity of DBS-capped TiO 2 is also related to the increase in the capability for adsorbing RhB

  5. Calretinin as a marker for premotor neurons involved in upgaze in human brainstem

    Directory of Open Access Journals (Sweden)

    Christopher eAdamczyk

    2015-12-01

    Full Text Available Eye movements are generated by different premotor pathways. Damage to them can cause specific deficits of eye movements, such as saccades. For correlative clinico-anatomical post-mortem studies of cases with eye movement disorders it is essential to identify the functional cell groups of the oculomotor system in the human brain by marker proteins. Based on monkey studies, the premotor neurons of the saccadic system can be identified by the histochemical markers parvalbumin and perineuronal nets in humans. These areas involve the interstitial nucleus of Cajal (INC and the rostral interstitial nucleus of the medial longitudinal fascicle (RIMLF, which both contain premotor neurons for upgaze and downgaze. Recent monkey and human studies revealed a selective excitatory calretinin-positive input to the motoneurons mediating upgaze, but not to those for downgaze. Three premotor regions were identified as sources of calretinin input in monkey: y-group, INC and RIMLF. These findings suggest that the expression pattern of parvalbumin and calretinin may help to identify premotor neurons involved in up- or downgaze. In a post-mortem study of five human cases without neurological diseases we investigated the y-group, INC and RIMLF for the presence of parvalbumin and calretinin positive neurons including their co-expression. Adjacent thin paraffin sections were stained for the aggrecan component of perineuronal nets, parvalbumin or calretinin and glutamate decarboxylase. The comparative analysis of scanned thin sections of INC and RIMLF revealed medium-sized parvalbumin positive neurons with and without calretinin coexpression, which were intermingled. The parvalbumin/calretinin positive neurons in both nuclei are considered as excitatory premotor upgaze neurons. Accordingly, the parvalbumin-positive neurons lacking calretinin are considered as premotor downgaze neurons in RIMLF, but may in addition include inhibitory premotor upgaze neurons in the INC as

  6. rTMS in the treatment of drug addiction: an update about human studies.

    Science.gov (United States)

    Bellamoli, Elisa; Manganotti, Paolo; Schwartz, Robert P; Rimondo, Claudia; Gomma, Maurizio; Serpelloni, Giovanni

    2014-01-01

    Drug addiction can be a devastating and chronic relapsing disorder with social, psychological, and physical consequences, and more effective treatment options are needed. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that has been assessed in a growing number of studies for its therapeutic potential in treating addiction. This review paper offers an overview on the current state of clinical research in treating drug addiction with rTMS. Because of the limited research in this area, all studies (including case reports) that evaluated the therapeutic use of rTMS in nicotine, alcohol, or illicit drug addiction were included in this review. Papers published prior to December 2012 were found through an NCBI PubMed search. A total of eleven studies were identified that met review criteria. There is nascent evidence that rTMS could be effective in reducing cocaine craving and nicotine and alcohol craving and consumption and might represent a potential therapeutic tool for treating addiction. Further studies are needed to identify the optimal parameters of stimulation for the most effective treatment of drug addiction, to improve our comprehension of the treatment neurophysiological effects, and to conduct rigorous, controlled efficacy studies with adequate power.

  7. The Neuroprotective Mechanism of Low-Frequency rTMS on Nigral Dopaminergic Neurons of Parkinson’s Disease Model Mice

    Directory of Open Access Journals (Sweden)

    Qiaoyun Dong

    2015-01-01

    Full Text Available Background. Parkinson’s disease is a neurodegenerative disease in elder people, pathophysiologic basis of which is the severe deficiency of dopamine in the striatum. The purpose of the present study was to evaluate the neuroprotective effect of low-frequency rTMS on Parkinson’s disease in model mice. Methods. The effects of low-frequency rTMS on the motor function, cortex excitability, neurochemistry, and neurohistopathology of MPTP-induced Parkinson’s disease mice were investigated through behavioral detection, electrophysiologic technique, high performance liquid chromatography-electrochemical detection, immunohistochemical staining, and western blot. Results. Low-frequency rTMS could improve the motor coordination impairment of Parkinson’s disease mice: the resting motor threshold significantly decreased in the Parkinson’s disease mice; the degeneration of nigral dopaminergic neuron and the expression of tyrosine hydroxylase were significantly improved by low-frequency rTMS; moreover, the expressions of brain derived neurotrophic factor and glial cell line derived neurotrophic factor were also improved by low-frequency rTMS. Conclusions. Low-frequency rTMS had a neuroprotective effect on the nigral dopaminergic neuron which might be due to the improved expressions of brain derived neurotrophic factor and glial cell line-derived neurotrophic factor. The present study provided a theoretical basis for the application of low-frequency rTMS in the clinical treatment and recovery of Parkinson’s disease.

  8. Impact of Repetitive Transcranial Magnetic Stimulation (rTMS on Brain Functional Marker of Auditory Hallucinations in Schizophrenia Patients

    Directory of Open Access Journals (Sweden)

    Sonia Dollfus

    2013-04-01

    Full Text Available Several cross-sectional functional Magnetic Resonance Imaging (fMRI studies reported a negative correlation between auditory verbal hallucination (AVH severity and amplitude of the activations during language tasks. The present study assessed the time course of this correlation and its possible structural underpinnings by combining structural, functional MRI and repetitive Transcranial Magnetic Stimulation (rTMS. Methods: Nine schizophrenia patients with AVH (evaluated with the Auditory Hallucination Rating scale; AHRS and nine healthy participants underwent two sessions of an fMRI speech listening paradigm. Meanwhile, patients received high frequency (20 Hz rTMS. Results: Before rTMS, activations were negatively correlated with AHRS in a left posterior superior temporal sulcus (pSTS cluster, considered henceforward as a functional region of interest (fROI. After rTMS, activations in this fROI no longer correlated with AHRS. This decoupling was explained by a significant decrease of AHRS scores after rTMS that contrasted with a relative stability of cerebral activations. A voxel-based-morphometry analysis evidenced a cluster of the left pSTS where grey matter volume negatively correlated with AHRS before rTMS and positively correlated with activations in the fROI at both sessions. Conclusion: rTMS decreases the severity of AVH leading to modify the functional correlate of AVH underlain by grey matter abnormalities.

  9. Deutsche Bibliotheksstatistik (DBS): Konzept, Umsetzung und Perspektiven für eine umfassende Datenbasis zum Bibliothekswesen in Deutschland : 10 Fragen von Bruno Bauer an Ronald M. Schmidt, Leiter der DBS

    OpenAIRE

    Bauer, Bruno; Schmidt, Ronald M.

    2008-01-01

    The DBS, Deutsche Bibliotheksstatistik (German Library Statistics, http://www.bibliotheksstatistik.de), reports since 1974. Around 9000 libraries file data on facilities, equipment, holdings, usage, budget and staff. Data collection, evaluation, and presentation today are carried out online only. Aim of DBS is the formation of a national data pool containing statistical data on all types of libraries. The interview informs about the concept of DBS and its differentation of public, unive...

  10. Effects of low frequency rTMS treatment on brain networks for inner speech in patients with schizophrenia and auditory verbal hallucinations.

    Science.gov (United States)

    Bais, Leonie; Liemburg, Edith; Vercammen, Ans; Bruggeman, Richard; Knegtering, Henderikus; Aleman, André

    2017-08-01

    Efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) targeting the temporo-parietal junction (TPJ) for the treatment of auditory verbal hallucinations (AVH) remains under debate. We assessed the influence of a 1Hz rTMS treatment on neural networks involved in a cognitive mechanism proposed to subserve AVH. Patients with schizophrenia (N=24) experiencing medication-resistant AVH completed a 10-day 1Hz rTMS treatment. Participants were randomized to active stimulation of the left or bilateral TPJ, or sham stimulation. The effects of rTMS on neural networks were investigated with an inner speech task during fMRI. Changes within and between neural networks were analyzed using Independent Component Analysis. rTMS of the left and bilateral TPJ areas resulted in a weaker network contribution of the left supramarginal gyrus to the bilateral fronto-temporal network. Left-sided rTMS resulted in stronger network contributions of the right superior temporal gyrus to the auditory-sensorimotor network, right inferior gyrus to the left fronto-parietal network, and left middle frontal gyrus to the default mode network. Bilateral rTMS was associated with a predominant inhibitory effect on network contribution. Sham stimulation showed different patterns of change compared to active rTMS. rTMS of the left temporo-parietal region decreased the contribution of the left supramarginal gyrus to the bilateral fronto-temporal network, which may reduce the likelihood of speech intrusions. On the other hand, left rTMS appeared to increase the contribution of functionally connected regions involved in perception, cognitive control and self-referential processing. These findings hint to potential neural mechanisms underlying rTMS for hallucinations but need corroboration in larger samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The national DBS brain tissue network pilot study: need for more tissue and more standardization.

    Science.gov (United States)

    Vedam-Mai, V; Krock, N; Ullman, M; Foote, K D; Shain, W; Smith, K; Yachnis, A T; Steindler, D; Reynolds, B; Merritt, S; Pagan, F; Marjama-Lyons, J; Hogarth, P; Resnick, A S; Zeilman, P; Okun, M S

    2011-08-01

    Over 70,000 DBS devices have been implanted worldwide; however, there remains a paucity of well-characterized post-mortem DBS brains available to researchers. We propose that the overall understanding of DBS can be improved through the establishment of a Deep Brain Stimulation-Brain Tissue Network (DBS-BTN), which will further our understanding of DBS and brain function. The objectives of the tissue bank are twofold: (a) to provide a complete (clinical, imaging and pathological) database for DBS brain tissue samples, and (b) to make available DBS tissue samples to researchers, which will help our understanding of disease and underlying brain circuitry. Standard operating procedures for processing DBS brains were developed as part of the pilot project. Complete data files were created for individual patients and included demographic information, clinical information, imaging data, pathology, and DBS lead locations/settings. 19 DBS brains were collected from 11 geographically dispersed centers from across the U.S. The average age at the time of death was 69.3 years (51-92, with a standard deviation or SD of 10.13). The male:female ratio was almost 3:1. Average post-mortem interval from death to brain collection was 10.6 h (SD of 7.17). The DBS targets included: subthalamic nucleus, globus pallidus interna, and ventralis intermedius nucleus of the thalamus. In 16.7% of cases the clinical diagnosis failed to match the pathological diagnosis. We provide neuropathological findings from the cohort, and perilead responses to DBS. One of the most important observations made in this pilot study was the missing data, which was approximately 25% of all available data fields. Preliminary results demonstrated the feasibility and utility of creating a National DBS-BTN resource for the scientific community. We plan to improve our techniques to remedy omitted clinical/research data, and expand the Network to include a larger donor pool. We will enhance sample preparation to

  12. Network-wise cerebral blood flow redistribution after 20 Hz rTMS on left dorso-lateral prefrontal cortex.

    Science.gov (United States)

    Shang, Yuan-Qi; Xie, Jun; Peng, Wei; Zhang, Jian; Chang, Da; Wang, Ze

    2018-04-01

    The repetitive application of transcranial magnetic stimulation (rTMS) on left dorsolateral prefrontal cortex (DLPFC) has been consistently shown to be beneficial for treating various neuropsychiatric or neuropsychological disorders, but its neural mechanisms still remain unclear. The purpose of this study was to measure the effects of high-frequency left DLPFC rTMS using cerebral blood flow (CBF) collected from 40 young healthy subjects before and after applying 20 Hz left DLPFC rTMS or SHAM stimulations. Relative CBF (rCBF) changes before and after 20 Hz rTMS or SHAM were assessed with paired-t test. The results show that 20 Hz DLPFC rTMS induced CBF redistribution in the default mode network, including increased rCBF in left medial temporal cortex (MTC)/hippocampus, but reduced rCBF in precuneus and cerebellum. Meanwhile, SHAM stimulation didn't produce any rCBF changes. After controlling SHAM effects, only the rCBF increase in MTC/hippocampus remained. Those data suggest that the beneficial effects of high-frequency rTMS may be through a within-network rCBF redistribution. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Neurocognitive Effects of Repetitive Transcranial Magnetic Stimulation (rTMS in Adolescents with Major Depressive Disorder (MDD

    Directory of Open Access Journals (Sweden)

    Christopher A Wall

    2013-12-01

    Full Text Available Objectives: It is estimated that 30% to 40% of adolescents with major depressive disorder (MDD do not receive full benefit from current antidepressant therapies. Repetitive transcranial magnetic stimulation (rTMS is a novel therapy approved by the US FDA to treat adults with MDD. Research suggests rTMS is not associated with adverse neurocognitive effects in adult populations; however, there is no documentation of its neurocognitive effects in adolescents. This is a secondary post hoc analysis of neurocognitive outcome in adolescents who were treated with open label rTMS in two separate studies. Methods: Eighteen patients (mean age, 16.2 ± 1.1 years; 11 females, 7 males with MDD who failed to adequately respond to at least 1 antidepressant agent were enrolled in the studies. Fourteen patients completed all 30 rTMS treatments (5 days/week, 120% of motor threshold, 10 Hz, 3,000 stimulations per session applied to the left dorsolateral prefrontal cortex (L-DLPFC. Depression was rated using the Children’s Depression Rating Scale-Revised (CDRS-R. Neurocognitive evaluation was performed at baseline and after completion of 30 rTMS treatments with the Children’s Auditory Verbal Learning Test (CAVLT and Delis-Kaplan Executive Function System (DKEFS Trail Making Test. Results: Over the course of 30 rTMS treatments, adolescents showed a substantial decrease in depression severity and a statistically significant improvement in memory and delayed verbal recall. Other learning and memory indices and executive function remained intact. Neither participants nor their family members reported clinically meaningful changes in neurocognitive function. Conclusion: These preliminary findings suggest rTMS does not adversely impact neurocognitive functioning in adolescents and may provide subtle enhancement of verbal memory as measured by the CAVLT. Further controlled investigations are warranted to confirm and extend these findings.

  14. Understanding hypnosis metacognitively: rTMS applied to left DLPFC increases hypnotic suggestibility.

    Science.gov (United States)

    Dienes, Zoltan; Hutton, Sam

    2013-02-01

    According to the cold control theory of hypnosis (Dienes and Perner, 2007), hypnotic response occurs because of inaccurate higher order thoughts of intending. The dorsolateral prefrontal cortex (DLPFC) is a region likely involved in constructing accurate higher order thoughts. Thus, disrupting DLPFC with low frequency repetitive transcranial magnetic stimulation (rTMS) should make it harder to be aware of intending to perform an action. That is, it should be easier to respond to a hypnotic suggestion. Twenty-four medium hypnotisable subjects received low frequency rTMS to the left DLPFC and to a control site, the vertex, in counterbalanced order. The hypnotist was blind to which site had been stimulated. Subjects rated how strongly they expected to respond to each suggestion, and gave ratings on a 0-5 scale of the extent to which they experienced the response, for four suggestions (magnetic hands, arm levitation, rigid arm and taste hallucination). The experimenter also rated behavioural response. Low frequency rTMS to the DLPFC rather than vertex increased the degree of combined behavioural and subjective response. Further, subjects did not differ in their expectancy that they would respond in the two conditions, so the rTMS had an effect on hypnotic response above and beyond expectancies. The results support theories, including cold control theory, postulating a component of hypofrontality in hypnotic response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  16. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI

    Directory of Open Access Journals (Sweden)

    Ela B Plow

    2014-04-01

    Full Text Available A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS over the intraparietal sulcus (IPS generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional Magnetic Resonance Imaging (fMRI to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL, lateral IPS (LIPS, and middle occipital gyrus (MoG, showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL, Superior occipital gyrus (SoG, and lingual gyrus, as well as middle temporal areas (MT+, showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, but that of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction.

  17. Turning off artistic ability: the influence of left DBS in art production.

    Science.gov (United States)

    Drago, V; Foster, P S; Okun, M S; Cosentino, F I I; Conigliaro, R; Haq, I; Sudhyadhom, A; Skidmore, F M; Heilman, K M

    2009-06-15

    The influence of Parkinson's disease (PD) as well as deep brain stimulation (DBS) on visual-artistic production of people who have been artists is unclear. We systematically assessed the artistic-creative productions of a patient with PD who was referred to us for management of a left subthalamic region (STN) DBS. The patient was an artist before her disease started, permitting us to analyze changes in her artistic-creative production over the course of the illness and during her treatment with DBS. We collected her paintings from four time periods: Time 1 (Early Pre-Presymptomatic), Time 2 (Later Presymptomatic), Time 3 (Symptomatic), and Time 4 (DBS Symptomatic). A total of 59 paintings were submitted to a panel of judges, who rated the paintings on 6 different artistic qualities including: aesthetics, closure, evocative impact, novelty, representation, technique. Aesthetics and evocative impact significantly declined from Time 2 to Time 4. Representation and technique indicated a curvilinear relationship, with initial improvement from Time 1 to Time 2 followed by a decline from Time 2 to Time 4. These results suggest that left STN/SNR-DBS impacted artistic performances in our patient. The reason for these alterations is not known, but it might be that alterations of left hemisphere functions induce a hemispheric bias reducing the influence the right hemisphere which is important for artistic creativity. The left hemisphere itself plays a critical role in artistic creativity and DBS might have altered left hemisphere functions or altered the mesolimbic system which might have also influenced creativity. Future studies will be required to learn how PD and DBS influence creativity.

  18. Research with Transcranial Magnetic Stimulation in the Treatment of Aphasia

    Science.gov (United States)

    Martin, Paula I; Naeser, Margaret A.; Ho, Michael; Treglia, Ethan; Kaplan, Elina; Baker, Errol H.; Pascual-Leone, Alvaro

    2010-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been used to improve language behavior, including naming, in stroke patients with chronic, nonfluent aphasia. Part 1 of this paper reviews functional imaging studies related to language recovery in aphasia. Part 2 reviews the rationale for using rTMS to treat nonfluent aphasia (based on functional imaging); and presents our current rTMS protocol. We present language results from our rTMS studies, and imaging results from overt naming fMRI scans obtained pre- and post- a series of rTMS treatments. Part 3 presents results from a pilot study where rTMS treatments were followed immediately by constraint-induced language therapy. Part 4 reviews our diffusion tensor imaging study that examined possible connectivity of arcuate fasciculus to different parts of Broca’s area (pars triangularis, PTr; pars opercularis, POp); and to ventral premotor cortex (vPMC). The potential role of mirror neurons in R POp and vPMC in aphasia recovery is discussed. PMID:19818232

  19. Monitoring the onset of neuromuscular blockade with double burst stimulation (DBS).

    Science.gov (United States)

    Gorgias, N; Maidatsi, P; Zaralidou, A; Ourailoglou, V; Fakidou, A; Giala, M

    1998-11-01

    The present study was undertaken to evaluate the suitability of the DBS mode in the determination of the proper time to perform tracheal intubation following cisatracurium muscle relaxation. The DBS3.3 pattern was administered to the ulnar nerve at the wrist in 45 patients paralyzed with cisatracurium 0.15 mg.kg-1 and tracheal intubation was attempted immediately after the disappearance of both palpable contractions of the adductor pollicis. Intubation conditions were assessed with a standard four-graded scoring system and the onset time of the relaxant was determined. Forty-two patients (93%) exhibited acceptable intubation conditions as soon as both responses to DBS were absent and the estimated apparent onset time, according to the stimulation mode applied, was 114.68 +/- 13.2 sec. Our data suggest that disappearance of both palpable responses to DBS3.3 may be used as an accurate predictor of acceptable intubation conditions, following nondepolarizing relaxants such as cisatracurium.

  20. A double-blind, randomized trial of deep repetitive transcranial magnetic stimulation (rTMS) for autism spectrum disorder.

    Science.gov (United States)

    Enticott, Peter G; Fitzgibbon, Bernadette M; Kennedy, Hayley A; Arnold, Sara L; Elliot, David; Peachey, Amy; Zangen, Abraham; Fitzgerald, Paul B

    2014-01-01

    Biomedical treatment options for autism spectrum disorder (ASD) are extremely limited. Repetitive transcranial magnetic stimulation (rTMS) is a safe and efficacious technique when targeting specific areas of cortical dysfunction in major depressive disorder, and a similar approach could yield therapeutic benefits in ASD, if applied to relevant cortical regions. The aim of this study was to examine whether deep rTMS to bilateral dorsomedial prefrontal cortex improves social relating in ASD. 28 adults diagnosed with either autistic disorder (high-functioning) or Asperger's disorder completed a prospective, double-blind, randomized, placebo-controlled design with 2 weeks of daily weekday treatment. This involved deep rTMS to bilateral dorsomedial prefrontal cortex (5 Hz, 10-s train duration, 20-s inter-train interval) for 15 min (1500 pulses per session) using a HAUT-Coil. The sham rTMS coil was encased in the same helmet of the active deep rTMS coil, but no effective field was delivered into the brain. Assessments were conducted before, after, and one month following treatment. Participants in the active condition showed a near significant reduction in self-reported social relating symptoms from pre-treatment to one month follow-up, and a significant reduction in social relating symptoms (relative to sham participants) for both post-treatment assessments. Those in the active condition also showed a reduction in self-oriented anxiety during difficult and emotional social situations from pre-treatment to one month follow-up. There were no changes for those in the sham condition. Deep rTMS to bilateral dorsomedial prefrontal cortex yielded a reduction in social relating impairment and socially-related anxiety. Further research in this area should employ extended rTMS protocols that approximate those used in depression in an attempt to replicate and amplify the clinical response. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance.

    Science.gov (United States)

    Ribeiro, Jéssica Alves; Marinho, Francisco Victor Costa; Rocha, Kaline; Magalhães, Francisco; Baptista, Abrahão Fontes; Velasques, Bruna; Ribeiro, Pedro; Cagy, Mauricio; Bastos, Victor Hugo; Gupta, Daya; Teixeira, Silmar

    2018-03-01

    Spatial working memory has been extensively investigated with different tasks, treatments, and analysis tools. Several studies suggest that low frequency of the repetitive transcranial magnetic stimulation (rTMS) applied to the parietal cortex may influence spatial working memory (SWM). However, it is not yet known if after low-frequency rTMS applied to the superior parietal cortex, according to Pz electroencephalography (EEG) electrode, would change the orientation interpretation about the vertical and horizontal axes coordinates in an SWM task. The current study aims at filling this gap and obtains a better understanding of the low-frequency rTMS effect in SWM. In this crossover study, we select 20 healthy subjects in two conditions (control and 1-Hz rTMS). The subjects performed an SWM task with two random coordinates. Our results presented that low-frequency rTMS applied over the superior parietal cortex may influence the SWM to lead to a larger distance of axes interception point (p low-frequency rTMS over the superior parietal cortex (SPC) changes the SWM performance, and it has more predominance in horizontal axis.

  2. Targeted neural network interventions for auditory hallucinations: Can TMS inform DBS?

    Science.gov (United States)

    Taylor, Joseph J; Krystal, John H; D'Souza, Deepak C; Gerrard, Jason Lee; Corlett, Philip R

    2017-09-29

    The debilitating and refractory nature of auditory hallucinations (AH) in schizophrenia and other psychiatric disorders has stimulated investigations into neuromodulatory interventions that target the aberrant neural networks associated with them. Internal or invasive forms of brain stimulation such as deep brain stimulation (DBS) are currently being explored for treatment-refractory schizophrenia. The process of developing and implementing DBS is limited by symptom clustering within psychiatric constructs as well as a scarcity of causal tools with which to predict response, refine targeting or guide clinical decisions. Transcranial magnetic stimulation (TMS), an external or non-invasive form of brain stimulation, has shown some promise as a therapeutic intervention for AH but remains relatively underutilized as an investigational probe of clinically relevant neural networks. In this editorial, we propose that TMS has the potential to inform DBS by adding individualized causal evidence to an evaluation processes otherwise devoid of it in patients. Although there are significant limitations and safety concerns regarding DBS, the combination of TMS with computational modeling of neuroimaging and neurophysiological data could provide critical insights into more robust and adaptable network modulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning.

    Science.gov (United States)

    Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin

    Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of

  4. Acute rCBF changes in depressed patients receiving repetitive transcranial magnetic stimulation (rTMS)

    International Nuclear Information System (INIS)

    Haindl, W.; Loo, C.; Mitchell, P.; Sachdev, P.; Zheng, X.; Som, S.; Walker, B.

    1999-01-01

    Full text: Electroconvulsant therapy (ECT) is very effective in treatment resistant severe depression with response rates of 70-90%. However, ECT has major limitations including the need for anaesthesia, memory difficulties and public apprehension about its use. Transcranial magnetic stimulation (rTMS) has been used as a diagnostic technique in neurology with recent reports of potential benefit in depressed patients. In this study, 5 patients (3 females, 2 males aged 36-66 years, mean 48.6 years) with major depression underwent SPET brain scanning using a Picker 3000 triple-headed camera. Each patient had a baseline rCBF scan with 500 MBq of 99 Tc m HMPAO injected intravenously during sham rTMS. On the following day, each patient received another 500 MBq of 99 Tc m HMPAo during rTMS to the left dorsolateral prefrontal cortex using a Magstim Super Rapid magnetic stimulator with a 70-mm figure eight coil. The stimulator parameters were 15 Hz, 90% of resting motor threshold, 1 s on 3 s off for 30 trains prior to injection and 15-30 trains following injection. Each patient continued to receive their usual medication during this period. The reconstructed SPET data sets were normalized to the global mean, registered to the Talairach template and analysed using statistical parametric mapping (SPM). Compared with the baseline group, the rTMS group showed a significant perfusion increase in the pre-frontal cortices, especially on the left, and also in the anterior left temporal lobe (P < 0.05). Frontal lobe perfusion reduction is a common finding in depression. This study demonstrates the ability of rTMS to acutely increase frontal lobe perfusion, and therefore a possible mechanism for its therapeutic use as an adjunct to pharmacological therapy or as an alternative to ECT in depression

  5. An evoked auditory response fMRI study of the effects of rTMS on putative AVH pathways in healthy volunteers.

    LENUS (Irish Health Repository)

    Tracy, D K

    2010-01-01

    Auditory verbal hallucinations (AVH) are the most prevalent symptom in schizophrenia. They are associated with increased activation within the temporoparietal cortices and are refractory to pharmacological and psychological treatment in approximately 25% of patients. Low frequency repetitive transcranial magnetic stimulation (rTMS) over the temporoparietal cortex has been demonstrated to be effective in reducing AVH in some patients, although results have varied. The cortical mechanism by which rTMS exerts its effects remain unknown, although data from the motor system is suggestive of a local cortical inhibitory effect. We explored neuroimaging differences in healthy volunteers between application of a clinically utilized rTMS protocol and a sham rTMS equivalent when undertaking a prosodic auditory task.

  6. Evaluation of Sex-Specific Gene Expression in Archived Dried Blood Spots (DBS

    Directory of Open Access Journals (Sweden)

    Scott Jewell

    2012-08-01

    Full Text Available Screening newborns for treatable serious conditions is mandated in all US states and many other countries. After screening, Guthrie cards with residual blood (whole spots or portions of spots are typically stored at ambient temperature in many facilities. The potential of archived dried blood spots (DBS for at-birth molecular studies in epidemiological and clinical research is substantial. However, it is also challenging as analytes from DBS may be degraded due to preparation and storage conditions. We previously reported an improved assay for obtaining global RNA gene expression from blood spots. Here, we evaluated sex-specific gene expression and its preservation in DBS using oligonucleotide microarray technology. We found X inactivation-specific transcript (XIST, lysine-specific demethylase 5D (KDM5D (also known as selected cDNA on Y, homolog of mouse (SMCY, uncharacterized LOC729444 (LOC729444, and testis-specific transcript, Y-linked 21 (TTTY21 to be differentially-expressed by sex of the newborn. Our finding that trait-specific RNA gene expression is preserved in unfrozen DBS, demonstrates the technical feasibility of performing molecular genetic profiling using such samples. With millions of DBS potentially available for research, we see new opportunities in using newborn molecular gene expression to better understand molecular pathogenesis of perinatal diseases.

  7. Verbal Memory Decline following DBS for Parkinson's Disease: Structural Volumetric MRI Relationships.

    Science.gov (United States)

    Geevarghese, Ruben; Lumsden, Daniel E; Costello, Angela; Hulse, Natasha; Ayis, Salma; Samuel, Michael; Ashkan, Keyoumars

    2016-01-01

    Parkinson's disease is a chronic degenerative movement disorder. The mainstay of treatment is medical. In certain patients Deep Brain Stimulation (DBS) may be offered. However, DBS has been associated with post-operative neuropsychology changes, especially in verbal memory. Firstly, to determine if pre-surgical thalamic and hippocampal volumes were related to verbal memory changes following DBS. Secondly, to determine if clinical factors such as age, duration of symptoms or motor severity (UPDRS Part III score) were related to verbal memory changes. A consecutive group of 40 patients undergoing bilateral Subthalamic Nucleus (STN)-DBS for PD were selected. Brain MRI data was acquired, pre-processed and structural volumetric data was extracted using FSL. Verbal memory test scores for pre- and post-STN-DBS surgery were recorded. Linear regression was used to investigate the relationship between score change and structural volumetric data. A significant relationship was demonstrated between change in List Learning test score and thalamic (left, p = 0.02) and hippocampal (left, p = 0.02 and right p = 0.03) volumes. Duration of symptoms was also associated with List Learning score change (p = 0.02 to 0.03). Verbal memory score changes appear to have a relationship to pre-surgical MRI structural volumetric data. The findings of this study provide a basis for further research into the use of pre-surgical MRI to counsel PD patients regarding post-surgical verbal memory changes.

  8. High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS Improves Functional Recovery by Enhancing Neurogenesis and Activating BDNF/TrkB Signaling in Ischemic Rats

    Directory of Open Access Journals (Sweden)

    Jing Luo

    2017-02-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS has rapidly become an attractive therapeutic approach for stroke. However, the mechanisms underlying this remain elusive. This study aimed to investigate whether high-frequency rTMS improves functional recovery mediated by enhanced neurogenesis and activation of brain-derived neurotrophic factor (BDNF/tropomyosin-related kinase B (TrkB pathway and to compare the effect of conventional 20 Hz rTMS and intermittent theta burst stimulation (iTBS on ischemic rats. Rats after rTMS were sacrificed seven and 14 days after middle cerebral artery occlusion (MCAO, following evaluation of neurological function. Neurogenesis was measured using specific markers: Ki67, Nestin, doublecortin (DCX, NeuN and glial fibrillary acidic protein (GFAP, and the expression levels of BDNF were visualized by Western blotting and RT-PCR analysis. Both high-frequency rTMS methods significantly improved neurological function and reduced infarct volume. Moreover, 20 Hz rTMS and iTBS significantly promoted neurogenesis, shown by an increase of Ki67/DCX, Ki67/Nestin, and Ki67/NeuN-positive cells in the peri-infarct striatum. These beneficial effects were accompanied by elevated protein levels of BDNF and phosphorylated-TrkB. In conclusion, high-frequency rTMS improves functional recovery possibly by enhancing neurogenesis and activating BDNF/TrkB signaling pathway and conventional 20 Hz rTMS is better than iTBS at enhancing neurogenesis in ischemic rats.

  9. Callosal connections of dorso-lateral premotor cortex.

    Science.gov (United States)

    Marconi, B; Genovesio, A; Giannetti, S; Molinari, M; Caminiti, R

    2003-08-01

    This study investigated the organization of the callosal connections of the two subdivisions of the monkey dorsal premotor cortex (PMd), dorso-rostral (F7) and dorso-caudal (F2). In one animal, Fast blue and Diamidino yellow were injected in F7 and F2, respectively; in a second animal, the pattern of injections was reversed. F7 and F2 receive a major callosal input from their homotopic counterpart. The heterotopic connections of F7 originate mainly from F2, with smaller contingent from pre-supplementary motor area (pre-SMA, F6), area 8 (frontal eye fields), and prefrontal cortex (area 46), while those of F2 originate from F7, with smaller contributions from ventral premotor areas (F5, F4), SMA-proper (F3), and primary motor cortex (M1). Callosal cells projecting homotopically are mostly located in layers II-III, those projecting heterotopically occupy layers II-III and V-VI. A spectral analysis was used to characterize the spatial fluctuations of the distribution of callosal neurons, in both F7 and F2, as well as in adjacent cortical areas. The results revealed two main periodic components. The first, in the domain of the low spatial frequencies, corresponds to periodicities of cell density with peak-to-peak distances of approximately 10 mm, and suggests an arrangement of callosal cells in the form of 5-mm wide bands. The second corresponds to periodicities of approximately 2 mm, and probably reflects a 1-mm columnar-like arrangement. Coherency and phase analyses showed that, although similar in their spatial arrangements, callosal cells projecting to dorsal premotor areas are segregated in the tangential cortical domain.

  10. Predictive value of dorso-lateral prefrontal connectivity for rTMS response in treatment-resistant depression: A brain perfusion SPECT study.

    Science.gov (United States)

    Richieri, Raphaëlle; Verger, Antoine; Boyer, Laurent; Boucekine, Mohamed; David, Anthony; Lançon, Christophe; Cermolacce, Michel; Guedj, Eric

    2018-05-18

    Previous clinical trials have suggested that repetitive transcranial magnetic stimulation (rTMS) has a significant antidepressant effect in patients with treatment resistant depression (TRD). However, results remain heterogeneous with many patients without effective response. The aim of this SPECT study was to determine before treatment the predictive value of the connectivity of the stimulated area on further rTMS response in patients with TRD. Fifty-eight TRD patients performed a brain perfusion SPECT before high frequency rTMS of the left dorsolateral prefrontal cortex (DLPFC). A voxel based-analysis was achieved to compare connectivity of the left DLPFC in responders and non-responders using inter-regional correlations (p left DLPFC and the right cerebellum in comparison to non-responders, independently of age, gender, severity of depression, and severity of treatment resistance. The area under the curve for the combination of these two SPECT clusters to predict rTMS response was 0.756 (p left DLPFC predicts rTMS response before treatment. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  11. Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in autism.

    Science.gov (United States)

    Sokhadze, Estate; Baruth, Joshua; Tasman, Allan; Mansoor, Mehreen; Ramaswamy, Rajesh; Sears, Lonnie; Mathai, Grace; El-Baz, Ayman; Casanova, Manuel F

    2010-06-01

    In our previous study on individuals with autism spectrum disorder (ASD) (Sokhadze et al., Appl Psychophysiol Biofeedback 34:37-51, 2009a) we reported abnormalities in the attention-orienting frontal event-related potentials (ERP) and the sustained-attention centro-parietal ERPs in a visual oddball experiment. These results suggest that individuals with autism over-process information needed for the successful differentiation of target and novel stimuli. In the present study we examine the effects of low-frequency, repetitive Transcranial Magnetic Stimulation (rTMS) on novelty processing as well as behavior and social functioning in 13 individuals with ASD. Our hypothesis was that low-frequency rTMS application to dorsolateral prefrontal cortex (DLFPC) would result in an alteration of the cortical excitatory/inhibitory balance through the activation of inhibitory GABAergic double bouquet interneurons. We expected to find post-TMS differences in amplitude and latency of early and late ERP components. The results of our current study validate the use of low-frequency rTMS as a modulatory tool that altered the disrupted ratio of cortical excitation to inhibition in autism. After rTMS the parieto-occipital P50 amplitude decreased to novel distracters but not to targets; also the amplitude and latency to targets increased for the frontal P50 while decreasing to non-target stimuli. Low-frequency rTMS minimized early cortical responses to irrelevant stimuli and increased responses to relevant stimuli. Improved selectivity in early cortical responses lead to better stimulus differentiation at later-stage responses as was made evident by our P3b and P3a component findings. These results indicate a significant change in early, middle-latency and late ERP components at the frontal, centro-parietal, and parieto-occipital regions of interest in response to target and distracter stimuli as a result of rTMS treatment. Overall, our preliminary results show that rTMS may prove to

  12. Investigation of DBS electro-oxidation reaction in the aqueous-organic solution of LiClO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Darlewski, Witold [Military University of Technology, Institute of Chemistry, Kaliskiego Street 2, 00-908 Warszawa (Poland); Popiel, Stanislaw, E-mail: spopiel@wat.edu.pl [Military University of Technology, Institute of Chemistry, Kaliskiego Street 2, 00-908 Warszawa (Poland); Nalepa, Tomasz [Department of Defense Affairs of the Ministry of Economy, Plac Trzech Krzyzy 3/5, 00-507 Warszawa (Poland); Gromotowicz, Waldemar [Warsaw Pharmaceutical Plant ' Polfa' S.A., Karolkowa Street 22/24, 01-207 Warszawa (Poland); Szewczyk, Rafal [Department of Biology and Environment Protection, University of Lodz, Pilarskiego Street 14/16, 90-231 Lodz (Poland); Stankiewicz, Romuald [Warsaw University, Department of Physics, Hoza Street 69, 00-681 Warszawa (Poland)

    2010-03-15

    A process of dibutyl sulphide (DBS) electro-oxidation using electrolysis and cyclic voltamperometry was investigated in water-methanol solution using different electrodes (platinum, boron doped diamond, graphite and glassy carbon). Obtained results indicate that the DBS electro-oxidation process is irreversible in voltamperometric conditions. It was shown that during DBS electrolytic oxidation on Pt, at the low anode potential (1.8 V), DBS was oxidized to sulphoxide and sulphone. Electrolysis at higher potential (up to 3.0 V) resulted in complete DBS oxidation and formation of various products, including: butyric acid, sulphuric acid, butanesulphinic acid, butanesulphonic acid, identified using gas chromatography (GC-AED) and mass spectrometry (GC-MS) methods.

  13. Thioredoxin is not a marker for treatment-resistance depression but associated with cognitive function: An rTMS study.

    Science.gov (United States)

    Aydın, Efruz Pirdoğan; Genç, Abdullah; Dalkıran, Mihriban; Uyar, Ece Türkyilmaz; Deniz, İpek; Özer, Ömer Akil; Karamustafalıoğlu, Kayıhan Oğuz

    2018-01-03

    Elevated oxidative stress is known to play an important role in development of depression and cognitive dysfunction. To date, thioredoxin (TRX), an antioxidant protein, has been investigated as a marker for psychiatric disorders such as schizophrenia, bipolar disorder and autism but its relationship with depression is yet to be unknown. The aim of this study is to detect the TRX levels in patients with treatment-resistant depression (TRD), analyse the effect of rTMS (repetitive transcranial magnetic stimulation) application on TRX levels and display the relationship of TRX with cognitive areas. This study included 27 treatment-resistant unipolar depression patients and 29 healthy subjects. Patients were evaluated by Hamilton Depression Scale (HDRS), Hamilton Anxiety Scale (HARS) and Montreal Cognitive Assessment (MoCA) before and after rTMS application. 23 of TRD patients were applied high-frequency rTMS over left DLPFC for 2 to 4weeks and plasma TRX levels of patients and healthy subjects were measured. No significant difference was determined between the TRX levels of patients and healthy subjects (p>0.05). After rTMS application there were significant decrease in severity of depression (pTRX levels of the patients after rTMS application (p>0.005). High language scores of the patients were found to be associated with high TRX levels (pTRX levels cannot be used as a marker for TRD or rTMS treatment in TRD. In spite of this TRX levels have a positive correlation with language functions of the patients of TRD. More extensive studies are required to clarify the mechanism of action of TRX and the effect of TRX on cognitive functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Array elements for a DBS flat-plate antenna

    Science.gov (United States)

    Maddocks, M. C. D.

    1988-07-01

    The introduction of a direct broadcast by satellite (DBS) television service requires suitable receiving antennas to be available. An alternative to the parabolic dish antenna is a flat-plate antenna. The overall design of a circularly-polarized flat-plate antenna which can be mounted flat on the wall of a building has been considered in a companion Report. In this Report various types of elements are investigated and their advantages and disadvantages discussed. The most suitable element for use in a flat-plate array is identified as a linearly-polarized folded-dipole element; its performance is reported here. Linearly-polarized elements are found to perform better than circularly-polarized elements and could be used with a polarization converter to receive the circularly-polarized radiation that would be transmitted by DBS.

  15. rTMS neuromodulation improves electrocortical functional measures of information processing and behavioral responses in autism

    Directory of Open Access Journals (Sweden)

    Estate M Sokhadze

    2014-08-01

    Full Text Available Objectives: Reports in autism spectrum disorders (ASD of a minicolumnopathy with consequent deficits of lateral inhibition help explain observed behavioral and executive dysfunctions. We propose that neuromodulation based on rTMS will enhance lateral inhibition through activation of inhibitory double bouquet interneurons and will be accompanied by improvements in the prefrontal executive functions. Methods: The current study used ERPs in a visual oddball task with illusory figures. We compared clinical, behavioral and electrocortical outcomes in 2 groups of children with autism (TMS, wait-list group [WTL]. We predicted that 18 session long course in autistic patients will have better behavioral and ERP outcomes as compared to age- and IQ-matched wait-list group. We used 18 sessions of 1Hz rTMS applied over the dorso-lateral prefrontal cortex in 27 individuals with ASD diagnosis. The WTL group was comprised of 27 age-matched ASD subjects. Results: Post-TMS evaluations showed decreased irritability and hyperactivity and decreased stereotypic behaviors. Following rTMS we found decreased amplitude and prolonged latency in the fronto-central ERPs to non-targets in the TMS group. These ERP changes along with increased centro-parietal ERPs to targets are indicative of more efficient processing of information post-TMS. Another finding was increased magnitude of error-related negativity (ERN during commission errors. We calculated normative post-error reaction time (RT slowing response in both groups and found that rTMS was accompanied by post-error RT slowing and higher accuracy of responses, whereas the WTL group kept on showing typical for ASD post-error RT speeding and had higher error rate. Conclusion: Results from our study indicate that rTMS improves executive functioning in ASD as evidenced by normalization of ERP responses and behavioral reactions during executive function test, and also by improvements in clinical behavioral evaluations.

  16. Multisensory and Modality Specific Processing of Visual Speech in Different Regions of the Premotor Cortex

    Directory of Open Access Journals (Sweden)

    Daniel eCallan

    2014-05-01

    Full Text Available Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex has been shown to be active during both observation and execution of action (‘Mirror System’ properties, and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI study, participants identified vowels produced by a speaker in audio-visual (saw the speaker’s articulating face and heard her voice, visual only (only saw the speaker’s articulating face, and audio only (only heard the speaker’s voice conditions with varying audio signal-to-noise ratios in order to determine the regions of the premotor cortex involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the fMRI analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and premotor cortex. The left ventral inferior premotor cortex showed properties of multimodal (audio-visual enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the premotor cortex are involved with mapping unimodal (in this case visual sensory features of the speech signal with

  17. Analysis of benzodiazepines and their metabolites using DBS cards and LC-MS/MS.

    Science.gov (United States)

    Lee, Heesang; Park, Yujin; Jo, Jiyeong; In, Sangwhan; Park, Yonghoon; Kim, Eunmi; Pyo, Jaesung; Choe, Sanggil

    2015-10-01

    Dried Blood Spot (DBS) has been used a blood extraction method for inherited metabolic disorder screening since 1960s. With introduction of LC-MS/MS, not only DBS could be used to analysis drugs in small blood volume, but in various fields, such as toxicology, drug therapeutic monitoring, drug diagnostic screening, and illicit drugs. In toxicology field, many drugs (e.g. benzodiazepines, acetaminophen, small molecule drugs) have been tested with DBS. Compared with earlier blood extraction methods (SPE and LLE), DBS has lots of advantages; lower blood volume (less than 50μL), shorter analysis time caused by a more concise analysis procedure and lower cost. We optimized the DBS procedure and LC-MS/MS conditions for 18 benzodiazepines, seven benzodiazepine metabolites, and one z-drug (zolpidem) analysis in blood. 30μL of whole blood was spotted on FTA DMPK card C and dried for 2h in a desiccator. A 6-mm disk was punched and vortexed for 1min in a centrifuge tube with 300μL methanol/acetonitrile mixture (1:1, v/v). After evaporation, redissolved in 100μL mobile phase of LC-MS/MS and 5μL was injected. In the analysis for 26 target compounds in blood, all of the method validation parameters - LLOD, LLOQ, accuracy (intra- and inter-assay), and precision (intra- and inter-assay) - were satisfied with method validation criteria, within 15%. The results of matrix effect, recovery, and process efficiency were good. We developed a fast and reliable sample preparation method using DBS for 26 benzodiazepines, benzodiazepine metabolites, and z-drug (zolpidem). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus.

    Science.gov (United States)

    Kleinjung, Tobias; Eichhammer, Peter; Langguth, Berthold; Jacob, Peter; Marienhagen, Joerg; Hajak, Goeran; Wolf, Stephan R; Strutz, Juergen

    2005-04-01

    The pathophysiologic mechanisms of idiopathic tinnitus remain unclear. Recent studies demonstrated focal brain activation in the auditory cortex of patients with chronic tinnitus. Low-frequency repetitive transcranial magnetic stimulation (rTMS) is able to reduce cortical hyperexcitability. Fusing of the individual PET-scan with the structural MRI-scan (T1, MPRAGE) allowed us to identify exactly the area of increased metabolic activity in the auditory cortex of patients with chronic tinnitus. With the use of a neuronavigational system, this target area was exactly stimulated by the figure 8-shaped magnetic coil. In a prospective study, rTMS (110% motor threshold; 1 Hz; 2000 stimuli/day over 5 days) was performed using a placebo controlled cross-over design. Patients were blinded regarding the stimulus condition. For the sham stimulation a specific sham-coil system was used. Fourteen patients were followed for 6 months. Treatment outcome was assessed with a specific tinnitus questionnaire (Goebel and Hiller). Tertiary referral medical center. Increased metabolic activation in the auditory cortex was verified in all patients. After 5 days of verum rTMS, a highly significant improvement of the tinnitus score was found whereas the sham treatment did not show any significant changes. The treatment outcome after 6 months still demonstrated significant reduction of tinnitus score. These preliminary results demonstrate that neuronavigated rTMS offers new possibilities in the understanding and treatment of chronic tinnitus.

  19. Role of medial premotor areas in action language processing in relation to motor skills.

    Science.gov (United States)

    Courson, Melody; Macoir, Joël; Tremblay, Pascale

    2017-10-01

    The literature reports that the supplementary motor area (SMA) and pre-supplementary motor area (pre-SMA) are involved in motor planning and execution, and in motor-related cognitive functions such as motor imagery. However, their specific role in action language processing remains unclear. In the present study, we investigated the impact of repetitive transcranial magnetic stimulation (rTMS) over SMA and pre-SMA during an action semantic analogy task (SAT) in relation with fine motor skills (i.e., manual dexterity) and motor imagery abilities in healthy non-expert adults. The impact of rTMS over SMA (but not pre-SMA) on reaction times (RT) during SAT was correlated with manual dexterity. Specifically, results show that rTMS over SMA modulated RT for those with lower dexterity skills. Our results therefore demonstrate a causal involvement of SMA in action language processing, as well as the existence of inter-individual differences in this involvement. We discuss these findings in light of neurolinguistic theories of language processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Perceptions of the road transport management system (RTMS): promoting voluntary certification

    CSIR Research Space (South Africa)

    Kamdar, A

    2017-07-01

    Full Text Available infrastructure, improving road safety and increasing productivity. The surveyed views of the road traffic authorities, banks, insurance companies, the RTMS steering committee, and road transport operators provide insights into the perceptions and experiences...

  1. 10 Hz rTMS over right parietal cortex alters sense of agency during self-generated movements

    Directory of Open Access Journals (Sweden)

    Anina eRitterband-Rosenbaum

    2014-06-01

    Full Text Available A large body of fMRI and lesion-literature has provided evidence that the Inferior Parietal Cortex (IPC is important for sensorimotor integration and sense of agency (SoA. We used repetitive transcranial magnetic stimulation (rTMS to explore the role of the IPC during a validated SoA detection task. 12 healthy, right-handed adults were included. The effects of rTMS on subjects’ SoA during self-generated movements were explored. The experiment consisted of 1/3 self-generated movements and 2/3 computer manipulated movements that introduced uncertainty as to whether the subjects were agents of an observed movement. Subjects completed three sessions, in which subjects received online rTMS over the right IPC (active condition, over the vertex (CZ (sham condition or no TMS but a sound-matched control. We found that rTMS over right IPC significantly altered SoA of the non-perturbed movements. Following IPC stimulation subjects were more likely to experience self-generated movements as being externally perturbed compared to the control site (P=0.002 and the stimulation-free control (P=0.042. The data support the importance of IPC activation during sensorimotor comparison in order to correctly determine the agent of movements.

  2. A Meta-Analysis of the Effectiveness of Different Cortical Targets Used in Repetitive Transcranial Magnetic Stimulation (rTMS) for the Treatment of Obsessive-Compulsive Disorder (OCD).

    Science.gov (United States)

    Rehn, Simone; Eslick, Guy D; Brakoulias, Vlasios

    2018-02-09

    Randomised and sham-controlled trials (RCTs) of repetitive transcranial magnetic stimulation (rTMS) in the treatment of obsessive-compulsive disorder (OCD) have yielded conflicting results, which may be due to the variability in rTMS parameters used. We performed an updated systematic review and meta-analysis on the effectiveness of rTMS for the treatment of OCD and aimed to determine whether certain rTMS parameters, such as cortical target, may be associated with higher treatment effectiveness. After conducting a systematic literature review for RCTs on rTMS for OCD through to 1 December 2016 using MEDLINE, PubMed, Web of Science, PsycINFO, Google, and Google Scholar, we performed a random-effects meta-analysis with the outcome measure as pre-post changes in Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores. To determine whether rTMS parameters may have influenced treatment effectiveness, studies were further analysed according to cortical target, stimulation frequency, and length of follow-up. Data were obtained from 18 RCTs on rTMS in the treatment of OCD. Overall, rTMS yielded a modest effect in reducing Y-BOCS scores with Hedge's g of 0.79 (95% CI = 0.43-1.15, p OCD. The therapeutic effects of rTMS also appear to persist post-treatment and may offer beneficial long-term effectiveness. With our findings, it is suggested that future large-scale studies focus on the supplementary motor area and include follow-up periods of 12 weeks or more.

  3. Synthetic Diagnostic for Doppler Backscattering (DBS) Turbulence Measurements based on Full Wave Simulations

    Science.gov (United States)

    Ernst, D. R.; Rhodes, T. L.; Kubota, S.; Crocker, N.

    2017-10-01

    Plasma full-wave simulations of the DIII-D DBS system including its lenses and mirrors are developed using the GPU-based FDTD2D code, verified against the GENRAY ray-tracing code and TORBEAM paraxial beam code. Our semi-analytic description of the effective spot size for a synthetic diagnostic reveals new focusing and defocusing effects arising from the combined effects of the curvature of the reflecting surface and that of the Gaussian beam wavefront. We compute the DBS transfer function from full-wave simulations to verify these effects. Using the synthetic diagnostic, nonlinear GYRO simulations closely match DBS fluctuation spectra with and without strong electron heating, without adjustment or change in normalization, while both GYRO and GENE also match fluxes in all transport channels. Density gradient driven TEMs that are observed by the DBS diagnostic on DIII-D are reproduced by simulations as a band of discrete toroidal mode numbers which intensify during strong electron heating. Work supported by US DOE under DE-FC02-04ER54698 and DE-FG02-08ER54984.

  4. Event-related rTMS at encoding affects differently deep and shallow memory traces.

    Science.gov (United States)

    Innocenti, Iglis; Giovannelli, Fabio; Cincotta, Massimo; Feurra, Matteo; Polizzotto, Nicola R; Bianco, Giovanni; Cappa, Stefano F; Rossi, Simone

    2010-10-15

    The "level of processing" effect is a classical finding of the experimental psychology of memory. Actually, the depth of information processing at encoding predicts the accuracy of the subsequent episodic memory performance. When the incoming stimuli are analyzed in terms of their meaning (semantic, or deep, encoding), the memory performance is superior with respect to the case in which the same stimuli are analyzed in terms of their perceptual features (shallow encoding). As suggested by previous neuroimaging studies and by some preliminary findings with transcranial magnetic stimulation (TMS), the left prefrontal cortex may play a role in semantic processing requiring the allocation of working memory resources. However, it still remains unclear whether deep and shallow encoding share or not the same cortical networks, as well as how these networks contribute to the "level of processing" effect. To investigate the brain areas casually involved in this phenomenon, we applied event-related repetitive TMS (rTMS) during deep (semantic) and shallow (perceptual) encoding of words. Retrieval was subsequently tested without rTMS interference. RTMS applied to the left dorsolateral prefrontal cortex (DLPFC) abolished the beneficial effect of deep encoding on memory performance, both in terms of accuracy (decrease) and reaction times (increase). Neither accuracy nor reaction times were instead affected by rTMS to the right DLPFC or to an additional control site excluded by the memory process (vertex). The fact that online measures of semantic processing at encoding were unaffected suggests that the detrimental effect on memory performance for semantically encoded items took place in the subsequent consolidation phase. These results highlight the specific causal role of the left DLPFC among the wide left-lateralized cortical network engaged by long-term memory, suggesting that it probably represents a crucial node responsible for the improved memory performance induced by

  5. Corticomuscular coherence during hand gripping with DBS and medication in PD patients

    DEFF Research Database (Denmark)

    Sridharan, Kousik Sarathy; Højlund, Andreas; Johnsen, Erik Lisbjerg

    Deep brain stimulation (DBS) effectively alleviates the motor symptoms in Parkinson’s disease (PD) although its effect mechanism is still unclear. CMC is reduced in PD patients but restorable with medication, while DBS variably affects CMC in advanced PD patients. We recorded magnetoencephalography...... (MEG) from six PD patients performing hand gripping during DBS ON and medicated (levodopa, MED ON) conditions and from ten age-matched healthy controls. Participants performed isotonic contractions (hand gripping) with their right hand, and electromyography (EMG) was recorded from the extensor...... digitorum communis muscle with a belly-tendon montage. We calculated the mean-squared coherence between MEG and the rectified EMG signals. For each group and condition, we selected the maximum CMC value in the beta range (13-30 Hz) within the average of an a priori selection of nine left sensorimotor...

  6. Metal nanoparticles in DBS card materials modification

    Science.gov (United States)

    Metelkin, A.; Frolov, G.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    In the recent years the method of collecting and storing Dried Blood Spots (DBS) on special cellulose membrane (paper) has gained wide popularity. But possible damage of biosamples caused by microorganisms in case of their incomplete drying is a disadvantage of the method. It can be overcome by treating sample-collection membranes with colloidal solutions of metal nanoparticles, having antibacterial effect. The team studied antibacterial properties of nonwoven material samples with various coatings (alcohol sols of copper, aluminium, iron, titanium, silver and vanadium nanoparticles). Colloidal solutions of nanoparticles were obtained by means of electroerosion method with further low-temperature plasma condensation. Antibacterial activity of fiberglass and cellulose membrane samples with nanoparticle coatings was studied using B. cereus and plaque bacteria cultures. It was revealed that nanostructured coatings can suppress bacterial activity; in addition they can diffuse from the membrane surface into medium which leads to widening the areas of inhibiting testing cultures’ growth. Thus, membrane materials treatment with alcohol-sols of metal nanoparticles can be seen as promising for conferring antibacterial properties to DBS carriers.

  7. Metal nanoparticles in DBS card materials modification

    International Nuclear Information System (INIS)

    Metelkin, A; Frolov, G; Kuznetsov, D; Kolesnikov, E; Chuprunov, K; Kondakov, S; Osipov, A; Samsonova, J

    2015-01-01

    In the recent years the method of collecting and storing Dried Blood Spots (DBS) on special cellulose membrane (paper) has gained wide popularity. But possible damage of biosamples caused by microorganisms in case of their incomplete drying is a disadvantage of the method. It can be overcome by treating sample-collection membranes with colloidal solutions of metal nanoparticles, having antibacterial effect. The team studied antibacterial properties of nonwoven material samples with various coatings (alcohol sols of copper, aluminium, iron, titanium, silver and vanadium nanoparticles). Colloidal solutions of nanoparticles were obtained by means of electroerosion method with further low-temperature plasma condensation. Antibacterial activity of fiberglass and cellulose membrane samples with nanoparticle coatings was studied using B. cereus and plaque bacteria cultures. It was revealed that nanostructured coatings can suppress bacterial activity; in addition they can diffuse from the membrane surface into medium which leads to widening the areas of inhibiting testing cultures’ growth. Thus, membrane materials treatment with alcohol-sols of metal nanoparticles can be seen as promising for conferring antibacterial properties to DBS carriers. (paper)

  8. HIV-1 viral load measurement in venous blood and fingerprick blood using Abbott RealTime HIV-1 DBS assay.

    Science.gov (United States)

    Tang, Ning; Pahalawatta, Vihanga; Frank, Andrea; Bagley, Zowie; Viana, Raquel; Lampinen, John; Leckie, Gregor; Huang, Shihai; Abravaya, Klara; Wallis, Carole L

    2017-07-01

    HIV RNA suppression is a key indicator for monitoring success of antiretroviral therapy. From a logistical perspective, viral load (VL) testing using Dried Blood Spots (DBS) is a promising alternative to plasma based VL testing in resource-limited settings. To evaluate the analytical and clinical performance of the Abbott RealTime HIV-1 assay using a fully automated one-spot DBS sample protocol. Limit of detection (LOD), linearity, lower limit of quantitation (LLQ), upper limit of quantitation (ULQ), and precision were determined using serial dilutions of HIV-1 Virology Quality Assurance stock (VQA Rush University), or HIV-1-containing armored RNA, made in venous blood. To evaluate correlation, bias, and agreement, 497 HIV-1 positive adult clinical samples were collected from Ivory Coast, Uganda and South Africa. For each HIV-1 participant, DBS-fingerprick, DBS-venous and plasma sample results were compared. Correlation and bias values were obtained. The sensitivity and specificity were analyzed at a threshold of 1000 HIV-1 copies/mL generated using the standard plasma protocol. The Abbott HIV-1 DBS protocol had an LOD of 839 copies/mL, a linear range from 500 to 1×10 7 copies/mL, an LLQ of 839 copies/mL, a ULQ of 1×10 7 copies/mL, and an inter-assay SD of ≤0.30 log copies/mL for all tested levels within this range. With clinical samples, the correlation coefficient (r value) was 0.896 between DBS-fingerprick and plasma and 0.901 between DBS-venous and plasma, and the bias was -0.07 log copies/mL between DBS-fingerprick and plasma and -0.02 log copies/mL between DBS-venous and plasma. The sensitivity of DBS-fingerprick and DBS-venous was 93%, while the specificity of both DBS methods was 95%. The results demonstrated that the Abbott RealTime HIV-1 assay with DBS sample protocol is highly sensitive, specific and precise across a wide dynamic range and correlates well with plasma values. The Abbott RealTime HIV-1 assay with DBS sample protocol provides an

  9. Adjuvant low-frequency rTMS in treating auditory hallucinations in recent-onset schizophrenia: a randomized controlled study investigating the effect of high-frequency priming stimulation.

    Science.gov (United States)

    Ray, Prasenjit; Sinha, Vinod Kumar; Tikka, Sai Krishna

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been found to be effective in reducing frequency and duration of auditory verbal hallucinations (AVH). Priming stimulation, which involves high-frequency rTMS stimulation followed by low-frequency rTMS, has been shown to markedly enhance the neural response to the low-frequency stimulation train. However, this technique has not been investigated in recent onset schizophrenia patients. The aim of this randomized controlled study was to investigate whether the effects of rTMS on AVH can be enhanced with priming rTMS in recent onset schizophrenia patients. Forty recent onset schizophrenia patients completed the study. Patients were randomized over two groups: one receiving low-frequency rTMS preceded by priming and another receiving low-frequency rTMS without priming. Both treatments were directed at the left temporo-parietal region. The severity of AVH and other psychotic symptoms were assessed with the auditory hallucination subscale (AHRS) of the Psychotic Symptom Rating Scales (PSYRATS), the Positive and Negative Syndrome Scale (PANSS) and the Clinical Global Impression (CGI). We found that all the scores of these ratings significantly reduced over time (i.e. baseline through 1, 2, 4 and 6 weeks) in both the treatment groups. We found no difference between the two groups on all measures, except for significantly greater improvement on loudness of AVH in the group with priming stimulation during the follow-ups (F = 2.72; p low-frequency rTMS alone and high-frequency priming of low-frequency rTMS do not elicit significant differences in treatment of overall psychopathology, particularly AVH when given in recent onset schizophrenia patients. Add on priming however, seems to be particularly better in faster reduction in loudness of AVH.

  10. Resection of highly language-eloquent brain lesions based purely on rTMS language mapping without awake surgery.

    Science.gov (United States)

    Ille, Sebastian; Sollmann, Nico; Butenschoen, Vicki M; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2016-12-01

    The resection of left-sided perisylvian brain lesions harbours the risk of postoperative language impairment. Therefore the individual patient's language distribution is investigated by intraoperative direct cortical stimulation (DCS) during awake surgery. Yet, not all patients qualify for awake surgery. Non-invasive language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) has frequently shown a high correlation in comparison with the results of DCS language mapping in terms of language-negative brain regions. The present study analyses the extent of resection (EOR) and functional outcome of patients who underwent left-sided perisylvian resection of brain lesions based purely on rTMS language mapping. Four patients with left-sided perisylvian brain lesions (two gliomas WHO III, one glioblastoma, one cavernous angioma) underwent rTMS language mapping prior to surgery. Data from rTMS language mapping and rTMS-based diffusion tensor imaging fibre tracking (DTI-FT) were transferred to the intraoperative neuronavigation system. Preoperatively, 5 days after surgery (POD5), and 3 months after surgery (POM3) clinical follow-up examinations were performed. No patient suffered from a new surgery-related aphasia at POM3. Three patients underwent complete resection immediately, while one patient required a second rTMS-based resection some days later to achieve the final, complete resection. The present study shows for the first time the feasibility of successfully resecting language-eloquent brain lesions based purely on the results of negative language maps provided by rTMS language mapping and rTMS-based DTI-FT. In very select cases, this technique can provide a rescue strategy with an optimal functional outcome and EOR when awake surgery is not feasible.

  11. A Single Session of rTMS Enhances Small-Worldness in Writer’s Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain Graph

    Directory of Open Access Journals (Sweden)

    Rose D. Bharath

    2017-09-01

    Full Text Available Background and Purpose: Repetitive transcranial magnetic stimulation (rTMS induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI.Method: Simultaneous EEG-fMRI was acquired in duplicate before (R1 and after (R2 a single session of rTMS in 14 patients with Writer’s Cramp (WC. Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI. Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients.Result: A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI (p < 0.05. Multi-modal graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe.Conclusion: Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo. Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not “noise”.

  12. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network.

    Science.gov (United States)

    Battelli, Lorella; Grossman, Emily D; Plow, Ela B

    The interhemispheric competition hypothesis attributes the distribution of selective attention to a balance of mutual inhibition between homotopic, interhemispheric connections in parietal cortex (Kinsbourne 1977; Battelli et al., 2009). In support of this hypothesis, repetitive inhibitory TMS over right parietal cortex in healthy individuals rapidly induces interhemispheric imbalance in cortical activity that spreads beyond the site of stimulation (Plow et al., 2014). Behaviorally, the impacts of inhibitory rTMS may be long delayed from the onset of stimulation, as much as 30 minutes (Agosta et al., 2014; Hubl et al., 2008). In this study, we examine the temporal dynamics of inhibitory rTMS on cortical network integrity that supports sustained visual attention. Healthy individuals received 15 min of 1 Hz offline, inhibitory rTMS (or sham) over left parietal cortex, and then immediately engaged in a bilateral visual tracking task while we recorded brain activity with fMRI. We computed functional connectivity (FC) between three nodes of the attention network engaged by visual tracking: the intraparietal sulcus (IPS), frontal eye fields (FEF) and human MT+ (hMT+). FC immediately and significantly decreased between the stimulation site (left IPS) and all other regions, then recovered to normal levels within 30 minutes. rTMS increased FC between left and right FEF at approximately 36 min following stimulation, and between sites in the unstimulated hemisphere approximately 48 min after stimulation. These findings demonstrate large-scale changes in cortical organization following inhibitory rTMS. The immediate impact of rTMS on connectivity to the stimulation site dovetails with the putative role of interhemispheric balance for bilateral visual sustained attention. The delayed, compensatory increases in functional connectivity have implications for models of dynamic reorganization in networks supporting spatial and nonspatial selective attention, and

  13. Increased facilitatory connectivity from the pre-SMA to the left dorsal premotor cortex during pseudoword repetition

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J

    2013-01-01

    Previous studies have demonstrated that the repetition of pseudowords engages a network of premotor areas for articulatory planning and articulation. However, it remains unclear how these premotor areas interact and drive one another during speech production. We used fMRI with dynamic causal mode...

  14. Lasting modulation effects of rTMS on neural activity and connectivity as revealed by resting-state EEG.

    Science.gov (United States)

    Ding, Lei; Shou, Guofa; Yuan, Han; Urbano, Diamond; Cha, Yoon-Hee

    2014-07-01

    The long-lasting neuromodulatory effects of repetitive transcranial magnetic stimulation (rTMS) are of great interest for therapeutic applications in various neurological and psychiatric disorders, due to which functional connectivity among brain regions is profoundly disturbed. Classic TMS studies selectively alter neural activity in specific brain regions and observe neural activity changes on nonperturbed areas to infer underlying connectivity and its changes. Less has been indicated in direct measures of functional connectivity and/or neural network and on how connectivity/network alterations occur. Here, we developed a novel analysis framework to directly investigate both neural activity and connectivity changes induced by rTMS from resting-state EEG (rsEEG) acquired in a group of subjects with a chronic disorder of imbalance, known as the mal de debarquement syndrome (MdDS). Resting-state activity in multiple functional brain areas was identified through a data-driven blind source separation analysis on rsEEG data, and the connectivity among them was characterized using a phase synchronization measure. Our study revealed that there were significant long-lasting changes in resting-state neural activity, in theta, low alpha, and high alpha bands and neural networks in theta, low alpha, high alpha and beta bands, over broad cortical areas 4 to 5 h after the last application of rTMS in a consecutive five-day protocol. Our results of rsEEG connectivity further indicated that the changes, mainly in the alpha band, over the parietal and occipital cortices from pre- to post-TMS sessions were significantly correlated, in both magnitude and direction, to symptom changes in this group of subjects with MdDS. This connectivity measure not only suggested that rTMS can generate positive treatment effects in MdDS patients, but also revealed new potential targets for future therapeutic trials to improve treatment effects. It is promising that the new connectivity measure

  15. Three and six-month outcome following courses of either ECT or rTMS in a population of severely depressed individuals--preliminary report.

    Science.gov (United States)

    Dannon, Pinhas N; Dolberg, Ornah T; Schreiber, Shaul; Grunhaus, Leon

    2002-04-15

    Recent studies have strengthened the claim that repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for major depression. The longitudinal outcome of TMS-treated patients, however, has not been described. We report on the 3- and 6-month outcomes of a group of patients treated with either electroconvulsive therapy (ECT) (n = 20) or (rTMS) (n = 21). Patients diagnosed with major depressive disorder with or without psychotic features referred for ECT were randomly assigned to receive either ECT or rTMS. Forty-one patients who responded to either treatment constituted the sample. Patients were followed on a monthly basis and outcomes were determined with the Hamilton Rating Scale for Depression-17 items (HRSD) and the Global Assessment of Functioning (GAF) scales. Medications were routinely prescribed. There were no differences in the 6-month relapse rate between the groups. Overall, 20% of the patients relapsed (four from the ECT group and four from the rTMS group). Patients reported equally low and not significantly different scores in the HRSD (ECT group 8.4 +/- 5.6 and TMS group 7.9 +/- 7.1) and the GAF (ECT group 72.8 +/- 12 and TMS group 77.8 +/- 17.1) at the 6-month follow up. Patients treated with rTMS do as well as those treated with ECT at the 3- and 6-month follow-up points. These data suggest that the clinical gains obtained with rTMS last at least as long as those obtained with ECT.

  16. A Lack of Clinical Effect of High-frequency rTMS to Dorsolateral Prefrontal Cortex on Bulimic Symptoms: A Randomised, Double-blind Trial.

    Science.gov (United States)

    Gay, Aurelia; Jaussent, Isabelle; Sigaud, Torrance; Billard, Stephane; Attal, Jerome; Seneque, Maude; Galusca, Bogdan; Van Den Eynde, Frederique; Massoubre, Catherine; Courtet, Philippe; Guillaume, Sebastien

    2016-11-01

    Studies suggest that stimulation of the left dorsolateral prefrontal cortex (DLPFC) reduces food craving in bulimic patients, but evidence supporting repetitive transcranial magnetic stimulation (rTMS) as a therapeutic tool is lacking. We investigated the safety and therapeutic efficacy of an adjunct high-frequency rTMS programme targeting the left DLPFC. Forty-seven women with bulimia nervosa were randomised to a real or sham stimulation group. The real group underwent 10 rTMS sessions, each consisting of 20 trains of 5 seconds with 55-second intervals between trains, at a frequency of 10 Hz. The main outcome was the number of binge episodes in the 15 days following the end of stimulation. Overall, no significant improvement in bingeing and purging symptoms was noted after the programme. rTMS was well tolerated. This suggests that 10 sessions of high-frequency rTMS to the left DLPFC provide no greater benefit than placebo. Future studies should consider methodological issues as well as alternative targets. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  17. Usefulness of Dried Blood Spots (DBS) to perform hepatitis C virus genotyping in drug users in Senegal.

    Science.gov (United States)

    Ndiaye, O; Gozlan, J; Diop-Ndiaye, H; Sall, A S; Chapelain, S; Leprêtre, A; Maynart, M; Gueye, M; Lo, G; Thiam, M; Ba, I; Lacombe, K; Girard, P M; Mboup, S; Kane, C T

    2017-03-01

    The aim of this pilot study was to analyze the Hepatitis C Virus (HCV) genotypes circulating in Senegal among Drug User (DUs), using Dried Blood Spots (DBS) as RNA source for molecular assays. Heroin and/or cocaine users (n = 506) were recruited in Dakar from April to July 2011, using a Respondent Driven Sampling (RDS) method. DBS preparation consisted of five drops of whole blood from finger applied to a Whatman paper card. HCV infection was screened by the detection of anti-HCV antibodies, using a rapid immune-chromatographic test. HCV RNA was quantified on anti-HCV positive DBS, using the Abbott RealTime HCV® Genotyping was performed on DBS with detectable viral load with Versant® HCV Genotype 2.0 Assay (LiPA) and Abbott RealTime HCV Genotype II assay®. Among the 506 participants, 120 were tested as positive for anti-HCV antibodies and their samples were analyzed for HCV RNA viral load and genotype. Out of the 120 DBS tested, HCV RNA was detected on 25 (20.8%). The median viral load was 15,058 IU/ml (ranging from 710 to 766,740 IU/ml). All positive DBS were suitable for the genotyping assay, that showed a predominance of genotype 1 (21/25) including 16 genotypes 1a and 5 genotypes 1b. HCV genotype 1 prevails in a DU population in Dakar. DBS could be useful for HCV RNA genotyping, but optimal storage conditions should required avoiding RNA impairment. Acknowledging this limitation, DBS could be a great interest for detecting and genotyping HCV viremic patients. J. Med. Virol. 89:484-488, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. Equivalent brain SPECT perfusion changes underlying therapeutic efficiency in pharmacoresistant depression using either high-frequency left or low-frequency right prefrontal rTMS.

    Science.gov (United States)

    Richieri, Raphaëlle; Boyer, Laurent; Padovani, Romain; Adida, Marc; Colavolpe, Cécile; Mundler, Olivier; Lançon, Christophe; Guedj, Eric

    2012-12-03

    Functional neuroimaging studies have suggested similar mechanisms underlying antidepressant effects of distinct therapeutics. This study aimed to determine and compare functional brain patterns underlying the antidepressant response of 2 distinct protocols of repetitive transcranial magnetic stimulation (rTMS). 99mTc-ECD SPECT was performed before and after rTMS of dorsolateral prefrontal cortex in 61 drug-resistant right-handed patients with major depression, using high frequency (10Hz) left-side stimulation in 33 patients, and low frequency (1Hz) right-side stimulation in 28 patients. Efficiency of rTMS response was defined as at least 50% reduction of the baseline Beck Depression Inventory score. We compared the whole-brain voxel-based brain SPECT changes in perfusion after rTMS, between responders and non-responders in the whole sample (pleft- and right-stimulation. Before rTMS, the left- and right-prefrontal stimulation groups did not differ from clinical data and brain SPECT perfusion. rTMS efficiency (evaluated on % of responders) was statistically equivalent in the two groups of patients. In the whole-group of responder patients, a perfusion decrease was found after rTMS, in comparison to non-responders, within the left perirhinal cortex (BA35, BA36). This result was secondarily confirmed separately in the two subgroups, i.e. after either left stimulation (p=0.017) or right stimulation (pbrain functional changes associated to antidepressive efficiency, consisting to a remote brain limbic activity decrease within the left perirhinal cortex. However, these results will have to be confirmed in a double-blind randomized trial using a sham control group. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. MDS-UPDRS to assess non-motor symptoms after STN DBS for Parkinson's disease.

    Science.gov (United States)

    Jafari, Nickey; Pahwa, Rajesh; Nazzaro, Jules M; Arnold, Paul M; Lyons, Kelly E

    2016-01-01

    To determine if the non-motor sections of the Movement Disorder Society's (MDS) version of the Unified Parkinson's Disease Rating Scale (UPDRS) could supplement the original UPDRS as a patient completed assessment of changes in non-motor symptoms in Parkinson's disease (PD) patients after bilateral subthalamic nucleus (STN) deep brain stimulation (DBS). Thirty PD patients who underwent bilateral STN DBS were assessed using the total UPDRS and the non-motor sections of the MDS-UPDRS prior to surgery and one year following surgery. This study focuses on non-motor symptoms as assessed by Part I of the UPDRS and Part 1A and 1B of the MDS-UPDRS. One year following surgery, no individual non-motor symptoms or the total mentation score of the UPDRS were significantly changed. In comparison, the MDS-UPDRS showed significant improvements in sleep and urinary problems and a trend towards improvement in anxiety, constipation, daytime sleepiness, fatigue and pain. This study provides evidence that the MDS-UPDRS non-motor sections, when completed by the patients, can supplement the original version of the UPDRS as an effective method of measuring changes in non-motor symptoms after DBS. It also reinforces the benefits of bilateral STN DBS on non-motor symptoms of PD.

  20. Automated DBS microsampling, microscale automation and microflow LC-MS for therapeutic protein PK.

    Science.gov (United States)

    Zhang, Qian; Tomazela, Daniela; Vasicek, Lisa A; Spellman, Daniel S; Beaumont, Maribel; Shyong, BaoJen; Kenny, Jacqueline; Fauty, Scott; Fillgrove, Kerry; Harrelson, Jane; Bateman, Kevin P

    2016-04-01

    Reduce animal usage for discovery-stage PK studies for biologics programs using microsampling-based approaches and microscale LC-MS. We report the development of an automated DBS-based serial microsampling approach for studying the PK of therapeutic proteins in mice. Automated sample preparation and microflow LC-MS were used to enable assay miniaturization and improve overall assay throughput. Serial sampling of mice was possible over the full 21-day study period with the first six time points over 24 h being collected using automated DBS sample collection. Overall, this approach demonstrated comparable data to a previous study using single mice per time point liquid samples while reducing animal and compound requirements by 14-fold. Reduction in animals and drug material is enabled by the use of automated serial DBS microsampling for mice studies in discovery-stage studies of protein therapeutics.

  1. Basic mechanisms of DBS for Parkinson’s disease: computational and experimental studies on neural dynamics

    NARCIS (Netherlands)

    Çağnan, H.

    2010-01-01

    Deep Brain Stimulation (DBS) has become an accepted therapy of last resort for Parkinson’s disease (PD). The acceptance of DBS for the management of PD motor symptoms is based on its success rate and contrasts sharply with ones understanding of the pathophysiology underlying the disease state and

  2. [Hospital production cost of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression].

    Science.gov (United States)

    Etcheverrigaray, F; Bulteau, S; Machon, L O; Riche, V P; Mauduit, N; Tricot, R; Sellal, O; Sauvaget, A

    2015-08-01

    Repetitive transcranial magnetic stimulation (rTMS) is an effective and well-tolerated treatment in resistant depression with mild to moderate intensity. This indication has not yet been approved in France. The cost and medico-economic value of rTMS in psychiatry remains unknown. The aim of this preliminary study was to assess rTMS cost production analysis as an in-hospital treatment for depression. The methodology, derived from analytical accounts, was validated by a multidisciplinary task force (clinicians, public health doctors, pharmacists, administrative officials and health economist). It was pragmatic, based on official and institutional documentary sources and from field practice. It included equipment, staff, and structure costs, to get an estimate as close to reality as possible. First, we estimated the production cost of rTMS session, based on our annual activity. We then estimated the cost of a cure, which includes 15 sessions. A sensitivity analysis was also performed. The hospital production cost of a cure for treating depression was estimated at € 1932.94 (€ 503.55 for equipment, € 1082.75 for the staff, and € 346.65 for structural expenses). This cost-estimate has resulted from an innovative, pragmatic, and cooperative approach. It is slightly higher but more comprehensive than the costs estimated by the few international studies. However, it is limited due to structure-specific problems and activity. This work could be repeated in other circumstances in order to obtain a more general estimate, potentially helpful for determining an official price for the French health care system. Moreover, budgetary constraints and public health choices should be taken into consideration. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Effect of low-frequency rTMS on aphasia in stroke patients: a meta-analysis of randomized controlled trials.

    Directory of Open Access Journals (Sweden)

    Cai-Li Ren

    Full Text Available Small clinical trials have reported that low-frequency repetitive transcranial magnetic stimulation (rTMS might improve language recovery in patients with aphasia after stroke. However, no systematic reviews or meta-analyses studies have investigated the effect of rTMS on aphasia. The objective of this study was to perform a meta-analysis of studies that explored the effects of low-frequency rTMS on aphasia in stroke patients.We searched PubMed, CENTRAL, Embase, CINAHL, ScienceDirect, and Journals@Ovid for randomized controlled trials published between January 1965 and October 2013 using the keywords "aphasia OR language disorders OR anomia OR linguistic disorders AND repetitive transcranial magnetic stimulation OR rTMS". We used fixed- and random-effects models to estimate the standardized mean difference (SMD and a 95% CI for the language outcomes.Seven eligible studies involving 160 stroke patients were identified in this meta-analysis. A significant effect size of 1.26 was found for the language outcome severity of impairment (95% CI = 0.80 to 1.71 without heterogeneity (I2 = 0%, P = 0.44. Further analyses demonstrated prominent effects for the naming subtest (SMD = 0.52, 95% CI = 0.18 to 0.87, repetition (SMD = 0.54, 95% CI = 0.16 to 0.92, writing (SMD = 0.70, 95% CI = 0.19 to 1.22, and comprehension (the Token test: SMD = 0.58, 95% CI = 0.07 to 1.09 without heterogeneity (I2 = 0%. The SMD of AAT and BDAE comprehension subtests was 0.32 (95% CI = -0.08 to 0.72 with moderate heterogeneity (I2 = 32%,P = 0.22. The effect size did not change significantly even when any one trial was eliminated. None of the patients from the 7 included articles reported adverse effects from rTMS.Low-frequency rTMS with a 90% resting motor threshold that targets the triangular part of the right inferior frontal gyrus (IFG has a positive effect on language recovery in patients with aphasia following

  4. The Effects of Different Repetitive Transcranial Magnetic Stimulation (rTMS Protocols on Cortical Gene Expression in a Rat Model of Cerebral Ischemic-Reperfusion Injury.

    Directory of Open Access Journals (Sweden)

    Milos R Ljubisavljevic

    Full Text Available Although repetitive Transcranial Magnetic Stimulation (rTMS in treatment of stroke in humans has been explored over the past decade the data remain controversial in terms of optimal stimulation parameters and the mechanisms of rTMS long-term effects. This study aimed to explore the potential of different rTMS protocols to induce changes in gene expression in rat cortices after acute ischemic-reperfusion brain injury. The stroke was induced by middle cerebral artery occlusion (MCAO with subsequent reperfusion. Changes in the expression of 96 genes were examined using low-density expression arrays after MCAO alone and after MCAO combined with 1Hz, 5Hz, continuous (cTBS and intermittent (iTBS theta-burst rTMS. rTMS over the lesioned hemisphere was given for two weeks (with a 2-day pause in a single daily session and a total of 2400 pulses. MCAO alone induced significant upregulation in the expression of 44 genes and downregulation in 10. Two weeks of iTBS induced significant increase in the expression of 52 genes. There were no downregulated genes. 1Hz and 5Hz had no significant effects on gene expression, while cTBS effects were negligible. Upregulated genes included those involved in angiogenesis, inflammation, injury response and cellular repair, structural remodeling, neuroprotection, neurotransmission and neuronal plasticity. The results show that long-term rTMS in acute ischemic-reperfusion brain injury induces complex changes in gene expression that span multiple pathways, which generally promote the recovery. They also demonstrate that induced changes primarily depend on the rTMS frequency (1Hz and 5Hz vs. iTBS and pattern (cTBS vs. iTBS. The results further underlines the premise that one of the benefits of rTMS application in stroke may be to prime the brain, enhancing its potential to cope with the injury and to rewire. This could further augment its potential to favorably respond to rehabilitation, and to restore some of the loss

  5. The Effects of Different Repetitive Transcranial Magnetic Stimulation (rTMS) Protocols on Cortical Gene Expression in a Rat Model of Cerebral Ischemic-Reperfusion Injury

    Science.gov (United States)

    Ljubisavljevic, Milos R.; Javid, Asma; Oommen, Joji; Parekh, Khatija; Nagelkerke, Nico; Shehab, Safa; Adrian, Thomas E.

    2015-01-01

    Although repetitive Transcranial Magnetic Stimulation (rTMS) in treatment of stroke in humans has been explored over the past decade the data remain controversial in terms of optimal stimulation parameters and the mechanisms of rTMS long-term effects. This study aimed to explore the potential of different rTMS protocols to induce changes in gene expression in rat cortices after acute ischemic-reperfusion brain injury. The stroke was induced by middle cerebral artery occlusion (MCAO) with subsequent reperfusion. Changes in the expression of 96 genes were examined using low-density expression arrays after MCAO alone and after MCAO combined with 1Hz, 5Hz, continuous (cTBS) and intermittent (iTBS) theta-burst rTMS. rTMS over the lesioned hemisphere was given for two weeks (with a 2-day pause) in a single daily session and a total of 2400 pulses. MCAO alone induced significant upregulation in the expression of 44 genes and downregulation in 10. Two weeks of iTBS induced significant increase in the expression of 52 genes. There were no downregulated genes. 1Hz and 5Hz had no significant effects on gene expression, while cTBS effects were negligible. Upregulated genes included those involved in angiogenesis, inflammation, injury response and cellular repair, structural remodeling, neuroprotection, neurotransmission and neuronal plasticity. The results show that long-term rTMS in acute ischemic-reperfusion brain injury induces complex changes in gene expression that span multiple pathways, which generally promote the recovery. They also demonstrate that induced changes primarily depend on the rTMS frequency (1Hz and 5Hz vs. iTBS) and pattern (cTBS vs. iTBS). The results further underlines the premise that one of the benefits of rTMS application in stroke may be to prime the brain, enhancing its potential to cope with the injury and to rewire. This could further augment its potential to favorably respond to rehabilitation, and to restore some of the loss functions. PMID

  6. Should We Expand the Toolbox of Psychiatric Treatment Methods to Include Repetitive Transcranial Magnetic Stimulation (rTMS)? A Meta-Analysis of the Efficacy of rTMS in Psychiatric Disorders

    NARCIS (Netherlands)

    Slotema, Christina W.; Blom, Jan Dirk; Hoek, Hans W.; Sommer, Iris E. C.

    Objective: Repetitive transcranial magnetic stimulation (rTMS) is a safe treatment method with few side effects However, efficacy for various psychiatric disorders is currently not clear Data sources: A literature search was performed from 1966 through October 2008 using PubMed, Ovid Medline, Embase

  7. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke

    Science.gov (United States)

    Johnson, N. N.; Carey, J.; Edelman, B. J.; Doud, A.; Grande, A.; Lakshminarayan, K.; He, B.

    2018-02-01

    Objective. Combining repetitive transcranial magnetic stimulation (rTMS) with brain-computer interface (BCI) training can address motor impairment after stroke by down-regulating exaggerated inhibition from the contralesional hemisphere and encouraging ipsilesional activation. The objective was to evaluate the efficacy of combined rTMS  +  BCI, compared to sham rTMS  +  BCI, on motor recovery after stroke in subjects with lasting motor paresis. Approach. Three stroke subjects approximately one year post-stroke participated in three weeks of combined rTMS (real or sham) and BCI, followed by three weeks of BCI alone. Behavioral and electrophysiological differences were evaluated at baseline, after three weeks, and after six weeks of treatment. Main results. Motor improvements were observed in both real rTMS  +  BCI and sham groups, but only the former showed significant alterations in inter-hemispheric inhibition in the desired direction and increased relative ipsilesional cortical activation from fMRI. In addition, significant improvements in BCI performance over time and adequate control of the virtual reality BCI paradigm were observed only in the former group. Significance. When combined, the results highlight the feasibility and efficacy of combined rTMS  +  BCI for motor recovery, demonstrated by increased ipsilesional motor activity and improvements in behavioral function for the real rTMS  +  BCI condition in particular. Our findings also demonstrate the utility of BCI training alone, as shown by behavioral improvements for the sham rTMS  +  BCI condition. This study is the first to evaluate combined rTMS and BCI training for motor rehabilitation and provides a foundation for continued work to evaluate the potential of both rTMS and virtual reality BCI training for motor recovery after stroke.

  8. Effects of Weekly Low-Frequency rTMS on Autonomic Measures in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Manuel Fernando Casanova

    2014-10-01

    Full Text Available The term autism spectrum disorder (ASD describes a range of conditions characterized by impairments in social interactions, communication, and by restricted and repetitive behaviors. ASD may also present with symptoms suggestive of autonomic nervous system (ANS dysfunction. The objective of this study was to determine the effect of 18 sessions of low frequency repetitive transcranial magnetic stimulation (rTMS on autonomic function in children with ASD by recording electrocardiogram (EKG and electrodermal activity pre-, post- and during each rTMS session. The autonomic measures of interest in this study were R-R cardiointervals in EKG (R-R, time and frequency domain measures of heart rate variability (HRV and skin conductance level (SCL. HRV measures such as R-R intervals, standard deviation of cardiac intervals, pNN50 (percentage of cardiointervals>50 ms different from preceding interval, power of high frequency (HF and low frequency (LF components of HRV spectrum, LF/HF ratio, were then derived from the recorded EKG. We expected that the course of 18 weekly inhibitory low-frequency rTMS applied to the dorsolateral prefrontal cortex (DLPFC would enhance autonomic balance by facilitating frontal inhibition of limbic activity thus resulting in decreased overall heart rate, increased HRV (in a form of increased HF power, decreased LF power (resulting in decreased LF/HF ratio, and decreased SCL. Behavioral evaluations post-18 TMS showed decreased irritability, hyperactivity, stereotype behavior and compulsive behavior ratings while autonomic measures indicated a significant increase in cardiac interval variability and a decrease of tonic SCL. The results suggest that 18 sessions of low frequency rTMS in ASD results in increased cardiac vagal control and reduced sympathetic arousal.

  9. Targeting the brain: considerations in 332 consecutive patients treated by deep brain stimulation (DBS) for severe neurological diseases.

    Science.gov (United States)

    Franzini, Angelo; Cordella, Roberto; Messina, Giuseppe; Marras, Carlo Efisio; Romito, Luigi Michele; Albanese, Alberto; Rizzi, Michele; Nardocci, Nardo; Zorzi, Giovanna; Zekaj, Edvin; Villani, Flavio; Leone, Massimo; Gambini, Orsola; Broggi, Giovanni

    2012-12-01

    Deep brain stimulation (DBS) extends the treatment of some severe neurological diseases beyond pharmacological and conservative therapy. Our experience extends the field of DBS beyond the treatment of Parkinson disease and dystonia, including several other diseases such as cluster headache and disruptive behavior. Since 1993, at the Istituto Nazionale Neurologico "Carlo Besta" in Milan, 580 deep brain electrodes were implanted in 332 patients. The DBS targets include Stn, GPi, Voa, Vop, Vim, CM-pf, pHyp, cZi, Nacc, IC, PPN, and Brodmann areas 24 and 25. Three hundred patients are still available for follow-up and therapeutic considerations. DBS gave a new therapeutic chance to these patients affected by severe neurological diseases and in some cases controlled life-threatening pathological conditions, which would otherwise result in the death of the patient such as in status dystonicus, status epilepticus and post-stroke hemiballismus. The balance of DBS in severe neurological disease is strongly positive even if further investigations and studies are needed to search for new applications and refine the selection criteria for the actual indications.

  10. The Premotor theory of attention: time to move on?

    Science.gov (United States)

    Smith, Daniel T; Schenk, Thomas

    2012-05-01

    Spatial attention and eye-movements are tightly coupled, but the precise nature of this coupling is controversial. The influential but controversial Premotor theory of attention makes four specific predictions about the relationship between motor preparation and spatial attention. Firstly, spatial attention and motor preparation use the same neural substrates. Secondly, spatial attention is functionally equivalent to planning goal directed actions such as eye-movements (i.e. planning an action is both necessary and sufficient for a shift of spatial attention). Thirdly, planning a goal directed action with any effector system is sufficient to trigger a shift of spatial attention. Fourthly, the eye-movement system has a privileged role in orienting visual spatial attention. This article reviews empirical studies that have tested these predictions. Contrary to predictions one and two there is evidence of anatomical and functional dissociations between endogenous spatial attention and motor preparation. However, there is compelling evidence that exogenous attention is reliant on activation of the oculomotor system. With respect to the third prediction, there is correlational evidence that spatial attention is directed to the endpoint of goal-directed actions but no direct evidence that this attention shift is dependent on motor preparation. The few studies to have directly tested the fourth prediction have produced conflicting results, so the extent to which the oculomotor system has a privileged role in spatial attention remains unclear. Overall, the evidence is not consistent with the view that spatial attention is functionally equivalent to motor preparation so the Premotor theory should be rejected, although a limited version of the Premotor theory in which only exogenous attention is dependent on motor preparation may still be tenable. A plausible alternative account is that activity in the motor system contributes to biased competition between different sensory

  11. Inter-individual variability in cortical excitability and motor network connectivity following multiple blocks of rTMS.

    Science.gov (United States)

    Nettekoven, Charlotte; Volz, Lukas J; Leimbach, Martha; Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2015-09-01

    The responsiveness to non-invasive neuromodulation protocols shows high inter-individual variability, the reasons of which remain poorly understood. We here tested whether the response to intermittent theta-burst stimulation (iTBS) - an effective repetitive transcranial magnetic stimulation (rTMS) protocol for increasing cortical excitability - depends on network properties of the cortical motor system. We furthermore investigated whether the responsiveness to iTBS is dose-dependent. To this end, we used a sham-stimulation controlled, single-blinded within-subject design testing for the relationship between iTBS aftereffects and (i) motor-evoked potentials (MEPs) as well as (ii) resting-state functional connectivity (rsFC) in 16 healthy subjects. In each session, three blocks of iTBS were applied, separated by 15min. We found that non-responders (subjects not showing an MEP increase of ≥10% after one iTBS block) featured stronger rsFC between the stimulated primary motor cortex (M1) and premotor areas before stimulation compared to responders. However, only the group of responders showed increases in rsFC and MEPs, while most non-responders remained close to baseline levels after all three blocks of iTBS. Importantly, there was still a large amount of variability in both groups. Our data suggest that responsiveness to iTBS at the local level (i.e., M1 excitability) depends upon the pre-interventional network connectivity of the stimulated region. Of note, increasing iTBS dose did not turn non-responders into responders. The finding that higher levels of pre-interventional connectivity precluded a response to iTBS could reflect a ceiling effect underlying non-responsiveness to iTBS at the systems level. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Abnormal short-latency synaptic plasticity in the motor cortex of subjects with Becker muscular dystrophy: a rTMS study.

    Science.gov (United States)

    Golaszewski, Stefan; Schwenker, Kerstin; Bergmann, Jürgen; Brigo, Francesco; Christova, Monica; Trinka, Eugen; Nardone, Raffaele

    2016-01-01

    We used repetitive transcranial magnetic stimulation (rTMS) to further investigate motor cortex excitability in 13 patients with Becker muscular dystrophy (BMD), six of them with slight mental retardation. RTMS delivered at 5Hz frequency and suprathreshold intensity progressively increases the size of motor evoked potentials (MEPs) in healthy subjects; the rTMS-induced facilitation of MEPs was significantly reduced in the BMD patients mentally retarded or classified as borderline when compared with age-matched control subjects and the BMD patients with normal intelligence. The increase in the duration of the cortical silent period was similar in both patient groups and controls. These findings suggest an altered cortical short-term synaptic plasticity in glutamate-dependent excitatory circuits within the motor cortex in BMD patients with intellectual disabilities. RTMS studies may shed new light on the physiological mechanisms of cortical involvement in dystrophinopathies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Improvements in symptoms following neuronavigated repetitive transcranial magnetic stimulation (rTMS) in severe and enduring anorexia nervosa: findings from two case studies.

    Science.gov (United States)

    McClelland, Jessica; Bozhilova, Natali; Nestler, Steffen; Campbell, Iain C; Jacob, Shirabdi; Johnson-Sabine, Eric; Schmidt, Ulrike

    2013-11-01

    Advances in the treatment of anorexia nervosa (AN) are most likely to arise from targeted, brain-directed treatments, such as repetitive transcranial magnetic stimulation (rTMS). We describe findings from two individuals with treatment-resistant AN who received 19-20 sessions of neuronavigated, high frequency rTMS, applied to the left dorsolateral prefrontal cortex. Within-session measures assessed changes pre-rTMS, post-rTMS in subjective eating disorder (ED) experiences. Weight, ED symptoms and mood were assessed pre-treatment, post-treatment and at 1 month follow-up. In both cases, there was improvement in ED symptomatology and mood after 19-20 sessions of neuronavigated rTMS, and these changes persisted or continued to improve at follow-up. Within sessions, Patient A demonstrated a consistent reduction in subjective ED experiences, and Patient B a reduction in some ED related experiences. These findings suggest that rTMS has potential as an adjunct to the treatment of AN and deserves further study. Copyright © 2013 John Wiley & Sons, Ltd and Eating Disorders Association.

  14. Electrochemical Behaviour of a PPy(DBS)/Polyacrylonitrile (PAN):LITF:EC:PC/ Li Cell

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen

    2006-01-01

    The electrochemical behaviour of Li rechargeable cells with Polypyrrole (PPy) as the cathode material was investigated using cyclic voltammetry. The PPy used was doped with the large surfactant anion dodecyl benzenesulphonate (DBS-). The cells were constructed with PAN:LiTF:EC:PC gel electrolyte...... with Li as anode. The results indicate that during the first reduction, cations are inserted into the PPy film forming LiDBS neutral salt. During the next oxidation/reduction cycles, the mechanism then switches to anion movement. Cyclic voltammetry studies also verified that complete electrochemical...

  15. Pre-motor and motor activities in early handwriting

    OpenAIRE

    van Zwieten, Koos Jaap

    2011-01-01

    Behavioural studies make use of handwritten letters’ characteristics like strokes, roundedness, etcetera. In consequence, Fisher et al. (2010) studying brain activation during rejected love, noticed typical pre-motor activity patterns, as suggested by irregular writing patterns as well, due to basal ganglia dysfunction (Mergl et al., 2004). A short historical text written in a presumably depressed mood was checked on such characteristics in the light of hypothesised finger-, and hand movement...

  16. Faculty Perceptions of Loughborough's Online Reading List System (LORLS) at Dublin Business School (DBS)

    Science.gov (United States)

    O'Neill, Marie; Musto, Lara

    2017-01-01

    Using a mixed methods research approach this study explores faculty perceptions of LORLS at DBS. Data generated by the study will inform advocacy, marketing and training initiatives to promote the platform. The study concludes with a number of deductive and inductive findings. The first is that although DBS faculty are highly predisposed to using…

  17. Low-frequency rTMS with language therapy over a 3-month period for sensory-dominant aphasia: case series of two post-stroke Japanese patients.

    Science.gov (United States)

    Kakuda, Wataru; Abo, Masahiro; Uruma, Go; Kaito, Nobuyoshi; Watanabe, Motoi

    2010-01-01

    To examine the safety and feasibility of therapeutic application of low-frequency repetitive transcranial magnetic stimulation (rTMS) combined with language therapy for post-stroke patients with sensory-dominant aphasia. Two post-stroke Japanese patients with sensory-dominant aphasia were studied. In both patients, 10 sessions of 20-minute low-frequency rTMS with 1 Hz to the Wernicke's area were provided throughout 6-day hospitalization, followed by weekly outpatient rTMS treatment for 3 months. The language therapy was also provided through the period of in- and out-patient treatment. Language function was evaluated using the Token test and the Standard Language Test of Aphasia (SLTA) at the start and end of the in-patient treatment and the end of the outpatient treatment. The therapeutic protocol was well tolerated throughout the in- and out-patient treatments, without any adverse effects. The scores of the Token test and certain sub-categories of SLTA increased in both patients after the in-patient rTMS treatment. Persistent improvement of the score was noted over the 3-month post-discharge period. The proposed protocol of long-term application of low-frequency rTMS to the Wernicke's area and language therapy is considered a safe and feasible therapeutic approach for post-stroke patients with sensory-dominant aphasia.

  18. A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons.

    Science.gov (United States)

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in medicinal leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. Using extracellular recordings from premotor interneurons and voltage-clamp recordings of ipsilateral segmental motor neurons in 69 isolated nerve cords, we assessed the strength and dynamics of premotor inhibitory synaptic output onto the entire ensemble of heart motor neurons and the associated conduction delays in both coordination modes. We conclude that premotor interneurons establish a stereotypical pattern of intersegmental synaptic connectivity, strengths, and dynamics that is invariant across coordination modes, despite wide variations among preparations. These data coupled with a previous description of the temporal pattern of premotor interneuron activity and relative phasing of motor neuron activity in the two coordination modes enable a direct assessment of how premotor interneurons through their temporal pattern of activity and their spatial pattern of synaptic connectivity, strengths, and dynamics coordinate segmental motor neurons into a functional pattern of activity.

  19. Who Can Diagnose Parkinson's Disease First? Role of Pre-motor Symptoms.

    Science.gov (United States)

    Rodríguez-Violante, Mayela; Zerón-Martínez, Rosalía; Cervantes-Arriaga, Amin; Corona, Teresa

    2017-04-01

    In 1817, James Parkinson described the disease which bears his name. The disease was defined as a neurological syndrome characterized by tremor, rigidity, and slowness of movements. Almost one hundred years later, degeneration of neurons in the substantia nigra and low levels of dopamine were identified as the putative cause of the disease, thus the disease remained as a pure neurological disorder. In the late 1990s, non-motor symptoms of the disease began to gain interest because of their clinical relevance, as well as for their potential role in broadening the understanding of the pathophysiological mechanisms involved. In the last decade, focus has shifted to the pre-motor symptoms, those non-motor symptoms that present years before the motor onset of the disease. The main premotor symptoms include rapid eye movement sleep behavior disorder, hyposmia, constipation and depression. Subjects with these symptoms usually are not initially seen by a neurologist, and by the time they are consulted neuronal loss in the substantia nigra is over 50%. This review summarizes the overall relevance of non-motor symptoms, their frequency and their pathophysiological implications. Also, the importance of pre-motor symptoms, and the role of specialists other than neurologists in diagnosing subjects with Parkinson's disease is discussed. Two hundred years after the first description of the disease, it is now evident that Parkinson's disease is a systemic disease and a multispecialty team approach is mandatory. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  20. The angular gyrus and visuospatial attention in decision-making under risk.

    Science.gov (United States)

    Studer, Bettina; Cen, Danlu; Walsh, Vincent

    2014-12-01

    Recent neuroimaging studies on decision-making under risk indicate that the angular gyrus (AG) is sensitive to the probability and variance of outcomes during choice. A separate body of research has established the AG as a key area in visual attention. The current study used repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers to test whether the causal contribution of the AG to decision-making is independent of or linked to the guidance of visuospatial attention. A within-subject design compared decision making on a laboratory gambling task under three conditions: following rTMS to the AG, following rTMS to the premotor cortex (PMC, as an active control condition) and without TMS. The task presented two different trial types, 'visual' and 'auditory' trials, which entailed a high versus minimal demand for visuospatial attention, respectively. Our results showed a systematic effect of rTMS to the AG upon decision-making behavior in visual trials. Without TMS and following rTMS to the control region, decision latencies reflected the odds of winning; this relationship was disrupted by rTMS to the AG. In contrast, no significant effects of rTMS to the AG (or to the PMC) upon choice behavior in auditory trials were found. Thus, rTMS to the AG affected decision-making only in the task condition requiring visuospatial attention. The current findings suggest that the AG contributes to decision-making by guiding attention to relevant information about reward and punishment in the visual environment. Copyright © 2014. Published by Elsevier Inc.

  1. Charting the excitability of premotor to motor connections while withholding or initiating a selected movement

    DEFF Research Database (Denmark)

    Kroeger, Johan; Bäumer, Tobias; Jonas, Melanie

    2010-01-01

    In 19 healthy volunteers, we used transcranial magnetic stimulation (TMS) to probe the excitability in pathways linking the left dorsal premotor cortex and right primary motor cortex and those linking the left and right motor cortex during the response delay and the reaction time period while...... subjects performed a delayed response [symbol 1 (S1) - symbol 2 (S2)] Go-NoGo reaction time task with visual cues. Conditioning TMS pulses were applied to the left premotor or left motor cortex 8 ms before a test pulse was given to the right motor cortex at 300 or 1800 ms after S1 or 150 ms after S2. S1...... coded for right-hand or left-hand movement, and S2 for release or stopping the prepared movement. Conditioning of the left premotor cortex led to interhemispheric inhibition at 300 ms post-S1, interhemispheric facilitation at 150 ms post-S2, and shorter reaction times in the move-left condition...

  2. Right prefrontal rTMS treatment for refractory auditory command hallucinations - a neuroSPECT assisted case study.

    Science.gov (United States)

    Schreiber, Shaul; Dannon, Pinhas N; Goshen, Elinor; Amiaz, Revital; Zwas, Tzila S; Grunhaus, Leon

    2002-11-30

    Auditory command hallucinations probably arise from the patient's failure to monitor his/her own 'inner speech', which is connected to activation of speech perception areas of the left cerebral cortex and to various degrees of dysfunction of cortical circuits involved in schizophrenia as supported by functional brain imaging. We hypothesized that rapid transcranial magnetic stimulation (rTMS), by increasing cortical activation of the right prefrontal brain region, would bring about a reduction of the hallucinations. We report our first schizophrenic patient affected with refractory command hallucinations treated with 10 Hz rTMS. Treatment was performed over the right dorsolateral prefrontal cortex, with 1200 magnetic stimulations administered daily for 20 days at 90% motor threshold. Regional cerebral blood flow changes were monitored with neuroSPECT. Clinical evaluation and scores on the Positive and Negative Symptoms Scale and the Brief Psychiatric Rating Scale demonstrated a global improvement in the patient's condition, with no change in the intensity and frequency of the hallucinations. NeuroSPECT performed at intervals during and after treatment indicated a general improvement in cerebral perfusion. We conclude that right prefrontal rTMS may induce a general clinical improvement of schizophrenic brain function, without directly influencing the mechanism involved in auditory command hallucinations.

  3. MRI-Based Multiscale Model for Electromagnetic Analysis in the Human Head with Implanted DBS

    Directory of Open Access Journals (Sweden)

    Maria Ida Iacono

    2013-01-01

    Full Text Available Deep brain stimulation (DBS is an established procedure for the treatment of movement and affective disorders. Patients with DBS may benefit from magnetic resonance imaging (MRI to evaluate injuries or comorbidities. However, the MRI radio-frequency (RF energy may cause excessive tissue heating particularly near the electrode. This paper studies how the accuracy of numerical modeling of the RF field inside a DBS patient varies with spatial resolution and corresponding anatomical detail of the volume surrounding the electrodes. A multiscale model (MS was created by an atlas-based segmentation using a 1 mm3 head model (mRes refined in the basal ganglia by a 200 μm2 ex-vivo dataset. Four DBS electrodes targeting the left globus pallidus internus were modeled. Electromagnetic simulations at 128 MHz showed that the peak of the electric field of the MS doubled (18.7 kV/m versus 9.33 kV/m and shifted 6.4 mm compared to the mRes model. Additionally, the MS had a sixfold increase over the mRes model in peak-specific absorption rate (SAR of 43.9 kW/kg versus 7 kW/kg. The results suggest that submillimetric resolution and improved anatomical detail in the model may increase the accuracy of computed electric field and local SAR around the tip of the implant.

  4. Use of finger-prick dried blood spots (fpDBS) and capillary electrophoresis for carbohydrate deficient transferrin (CDT) screening in forensic toxicology.

    Science.gov (United States)

    Bertaso, Anna; Sorio, Daniela; Vandoros, Anthula; De Palo, Elio F; Bortolotti, Federica; Tagliaro, Franco

    2016-10-01

    Continued progress in chronic alcohol abuse investigation requires the development of less invasive procedures for screening purposes. The application of finger-prick and related dried blood spots (fpDBS) for carbohydrate deficient transferrin (CDT) detection appears suitable for this aim. Therefore, the goal of this project was to develop a screening method for CDT using fpDBS with CZE analysis. Blood samples prepared by finger-prick were placed on DBS cards and left to air dry; each dried fpDBS disc was shredded into small pieces and suspended in acid solution (60 μL of HCl 120 mmol/L). After centrifugation (10 min at 1500 × g), the collected sample was adjusted to pH 3.5. After an overnight incubation, the pH was neutralised and an iron rich solution was added. After 1 h, CZE analysis was carried out. A group of 47 individuals was studied. Parallel serum samples were collected from each investigated subject and the %CDT for each sample was measured using HPLC and CZE techniques. The fpDBS transferrin sialo isoform electropherograms were similar to those obtained with serum. Moreover, fpDBS CZE CDT percentage levels demonstrated significant statistical correlation with those obtained from serum for both HPLC and CZE %CDT (p < 0.01; r 2 = 0.8913 and 0.8976, respectively), with %CDT from 0.8 to 13.7% for fpDBS and from 0.7 to 12.7% for serum. The newly developed fpDBS procedure for CDT analysis provides a simple and inexpensive tool for use in population screening. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of Deep Brain Stimulation on Parkinson's Nonmotor Symptoms following Unilateral DBS: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Nelson Hwynn

    2011-01-01

    Full Text Available Parkinson’s disease (PD management has traditionally focused largely on motor symptoms. Deep brain stimulation (DBS of the subthalamic nucleus (STN and globus pallidus internus (GPi are effective treatments for motor symptoms. Nonmotor symptoms (NMSs may also profoundly affect the quality of life. The purpose of this pilot study was to evaluate NMS changes pre- and post-DBS utilizing two recently developed questionnaires. Methods. NMS-Q (questionnaire and NMS-S (scale were administered to PD patients before/after unilateral DBS (STN/GPi targets. Results. Ten PD patients (9 STN implants, 1 GPi implant were included. The three most frequent NMS symptoms identified utilizing NMS-Q in pre-surgical patients were gastrointestinal (100%, sleep (100%, and urinary (90%. NMS sleep subscore significantly decreased (−1.6 points ± 1.8, =0.03. The three most frequent NMS symptoms identified in pre-surgical patients using NMS-S were gastrointestinal (90%, mood (80%, and cardiovascular (80%. The largest mean decrease of NMS scores was seen in miscellaneous symptoms (pain, anosmia, weight change, and sweating (−7 points ± 8.7, and cardiovascular/falls (−1.9, =0.02. Conclusion. Non-motor symptoms improved on two separate questionnaires following unilateral DBS for PD. Future studies are needed to confirm these findings and determine their clinical significance as well as to examine the strengths/weaknesses of each questionnaire/scale.

  6. Performance of the biomerieux DBS puncher and dried blood spots ...

    African Journals Online (AJOL)

    Introduction: The latest World Health Organization recommendations request viral load (VL) testing, if possible, for monitoring HIV-1 infections. However, the use of plasma is an obstacle to realize this test in sub-Saharan Africa. In this context, the dried blood spot (DBS) is an interesting tool for sample collections.

  7. Preliminary Evidence of the Effects of High-frequency Repetitive Transcranial Magnetic Stimulation (rTMS) on Swallowing Functions in Post-Stroke Individuals with Chronic Dysphagia

    Science.gov (United States)

    Cheng, Ivy K. Y.; Chan, Karen M. K.; Wong, C. S.; Cheung, Raymond T. F.

    2015-01-01

    Background: There is growing evidence of potential benefits of repetitive transcranial magnetic stimulation (rTMS) in the rehabilitation of dysphagia. However, the site and frequency of stimulation for optimal effects are not clear. Aims: The aim of this pilot study is to investigate the short-term effects of high-frequency 5 Hz rTMS applied to…

  8. Non-invasive brain stimulation for Parkinson's disease: Current concepts and outlook 2015.

    Science.gov (United States)

    Benninger, David H; Hallett, Mark

    2015-01-01

    In advanced Parkinson's disease (PD), the emergence of symptoms refractory to conventional therapy poses a therapeutic challenge. The success of deep brain stimulation (DBS) and advances in the understanding of the pathophysiology of PD have raised interest in non-invasive brain stimulation as an alternative therapeutic tool. The rationale for its use draws from the concept that reversing abnormalities in brain activity and physiology thought to cause the clinical deficits may restore normal functioning. Currently the best evidence in support of this concept comes from DBS, which improves motor deficits, and modulates brain activity and motor cortex physiology, though whether a causal interaction exists remains largely undetermined. Most trials of non-invasive brain stimulation in PD have applied repetitive transcranial magnetic stimulation (rTMS) targeting the primary motor cortex and cortical areas of the motor circuit. Published studies suggest a possible therapeutic potential of rTMS and transcranial direct current stimulation (tDCS), but clinical effects so far have been small and negligible regarding functional independence and quality of life. Approaches to potentiate the efficacy of rTMS, including increasing stimulation intensity and novel stimulation parameters, derive their rationale from studies of brain physiology. These novel parameters simulate normal firing patterns or act on the hypothesized role of oscillatory activity in the motor cortex and basal ganglia in motor control. There may also be diagnostic potential of TMS in characterizing individual traits for personalized medicine.

  9. Betting on DBS: Effects of subthalamic nucleus deep brain stimulation on risk taking and decision making in patients with Parkinson's disease.

    Science.gov (United States)

    Brandt, Jason; Rogerson, Mark; Al-Joudi, Haya; Reckess, Gila; Shpritz, Barnett; Umeh, Chizoba C; Aljehani, Noha; Mills, Kelly; Mari, Zoltan

    2015-07-01

    Concerns persist that deep brain stimulation (DBS) for Parkinson's disease (PD) increases impulsivity or induces excessive reward seeking. We report here the performance of PD patients with implanted subthalamic nucleus electrodes, with stimulation on and off, on 3 laboratory tasks of risk taking and decision making. They are compared with PD patients maintained on medication and healthy participants. In the Game of Dice Task, a test of "risky" decision making, PD patients with or without DBS made highest risk bets more often and ended up with less money than did healthy participants. There was a trend for DBS stimulation to ameliorate this effect. Deal or No-Deal is an "ambiguous" decision-making task that assessed preference for risk (holding on to one's briefcase) over a "sure thing" (accepting the banker's offer). Here, DBS patients were more conservative with stimulation on than with it off. They accepted smaller offers from the banker and won less money in the DBS-on condition. Overall, the 2 PD groups won less money than did healthy participants. The Framing Paradigm assessed willingness to gamble on a fixed (unambiguous) prize depending on whether the reward was "framed" as a loss or a gain. Nonsurgical PD patients tended to be more risk-averse than were healthy participants, whereas DBS patients were more willing to gamble for gains as well as losses both on and off stimulation. On risky decision-making tasks, DBS patients took more risks than did healthy participants, but stimulation may temper this tendency. In contrast, in an ambiguous-risk situation, DBS patients were more risk-averse (conservative) than were healthy participants, and this tendency was greatest with stimulation. (c) 2015 APA, all rights reserved).

  10. Premotor Diagnosis of Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Heinz Reichmann

    2017-01-01

    Typical Parkinsonian symptoms consist of bradykinesia plus rigidity and/or resting tremor.Some time later postural instability occurs.Pre-motor symptoms such as hyposmia,constipation,REM sleep behavior disorder and depression may antecede these motor symptoms for years.It would be ideal,if we had a biomarker which would allow to predict who with one or two of these pre-motor symptoms will develop the movement disorder Parkinson's disease (PD).Thus,it is interesting to learn that biopsies of the submandibular gland or colon biopsies may be a means to predict PD,if there is a high amout of abnormally folded alpha-synuclein and phosphorylated alpha-synuclein.This would be of relevance if we would have available means to stop the propagation of abnormal alpha-synuclein which is otherwise one of the reasons of this spreading disease PD.

  11. Effect of Bilateral Prefrontal rTMS on Left Prefrontal NAA and Glx Levels in Schizophrenia Patients with Predominant Negative Symptoms: An Exploratory Study.

    Science.gov (United States)

    Dlabac-de Lange, Jozarni J; Liemburg, Edith J; Bais, Leonie; van de Poel-Mustafayeva, Aida T; de Lange-de Klerk, Elly S M; Knegtering, Henderikus; Aleman, André

    Prefrontal repetitive Transcranial Magnetic Stimulation (rTMS) may improve negative symptoms in patients with schizophrenia, but few studies have investigated the underlying neural mechanism. This study aims to investigate changes in the levels of glutamate and glutamine (Glx, neurotransmitter and precursor) and N-Acetyl Aspartate (NAA) in the left dorsolateral prefrontal cortex of patients with schizophrenia treated with active bilateral prefrontal rTMS as compared to sham-rTMS, as measured with 1 H-Magnetic Resonance Spectroscopy ( 1 H-MRS). Patients were randomized to a 3-week course of active or sham high-frequency rTMS. Pre-treatment and post-treatment 1 H-MRS data were available for 24 patients with schizophrenia with moderate to severe negative symptoms (Positive and Negative Syndrome Scale (PANSS) negative subscale ≥ 15). Absolute metabolite concentrations were calculated using LCModel with the water peak as reference. To explore the association between treatment condition and changes in concentration of Glx and NAA, we applied a linear regression model. We observed an increase of Glx concentration in the active treatment group and a decrease of Glx concentration in the group receiving sham treatment. The association between changes in Glx concentration and treatment condition was significant. No significant associations between changes in NAA and treatment condition were found. Noninvasive neurostimulation with high-frequency bilateral prefrontal rTMS may influence Glx concentration in the prefrontal cortex of patients with schizophrenia. Larger studies are needed to confirm these findings and further elucidate the underlying neural working mechanism of rTMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Validation of the Use of Dried Blood Spot (DBS) Method to Assess Vitamin A Status

    Science.gov (United States)

    Fallah, Elham; Peighambardoust, Seyed Hadi

    2012-01-01

    Background: Vitamin A deficiency is an important dietary deficiency in the world. Thus, the ne¬cessity of screening for deficient populations is obvious. This paper introduces a fast, cheap and relatively reliable method called “dried blood spot” (DBS) method in screening the deficient populations. The validity of this method for retinol measurement was investigated. Method: The “precision” and “agreement” criteria of the DBS method were assessed. The preci¬sion was calculated and compared with those of plasma using F-test. The agreement was eva¬luated using Bland-Altman plot. Results: The imprecision of retinol measurements in dried spots was not significantly different from those of the control (plasma). A good correlation coefficient (r2=0.78) was obtained for dried spots’ retinol measurements versus plasma’s retinol analysis (P dried spots was stable for 90 days. Overall, the DBS method provided a precise measurement of retinol, showing results that were comparable with the measurement of retinol in plasma. PMID:24688932

  13. Long-Term Effect of GPi-DBS in a Patient With Generalized Dystonia Due to GLUT1 Deficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Idil Hanci

    2018-05-01

    Full Text Available Treatment outcomes from pallidal deep brain stimulation are highly heterogeneous reflecting the phenotypic and etiologic spectrum of dystonia. Treatment stratification to neurostimulation therapy primarily relies on the phenotypic motor presentation; however, etiology including genetic factors are increasingly recognized as modifiers of treatment outcomes. Here, we describe a 53 year-old female patient with a progressive generalized dystonia since age 25. The patient underwent deep brain stimulation of the globus pallidus internus (GPi-DBS at age 44. Since the clinical phenotype included mobile choreo-dystonic features, we expected favorable therapeutic outcome from GPi-DBS. Although mobile dystonia components were slightly improved in the long-term outcome from GPi-DBS the overall therapeutic response 9 years from implantation was limited when comparing “stimulation off” and “stimulation on” despite of proper electrode localization and sufficient stimulation programming. In order to further understand the reason for this limited motor symptom response, we aimed to clarify the etiology of generalized dystonia in this patient. Genetic testing identified a novel heterozygous pathogenic SLC2A1 mutation as cause of glucose transporter type 1 deficiency syndrome (GLUT1-DS. This case report presents the first outcome of GPi-DBS in a patient with GLUT1-DS, and suggests that genotype relations may increasingly complement phenotype-based therapy stratification of GPi-DBS in dystonia.

  14. Efficacy of deep rTMS for neuropathic pain in the lower limb: a randomized, double-blind crossover trial of an H-coil and figure-8 coil.

    Science.gov (United States)

    Shimizu, Takeshi; Hosomi, Koichi; Maruo, Tomoyuki; Goto, Yuko; Yokoe, Masaru; Kageyama, Yu; Shimokawa, Toshio; Yoshimine, Toshiki; Saitoh, Youichi

    2017-11-01

    OBJECTIVE Electrical motor cortex stimulation can relieve neuropathic pain (NP), but its use requires patients to undergo an invasive procedure. Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) using a figure-8 coil can relieve NP noninvasively, but its ability to relieve lower limb pain is still limited. Deep rTMS using an H-coil can effectively stimulate deep brain regions and has been widely used for the treatment of various neurological diseases; however, there have been no clinical studies comparing the effectiveness of figure-8 coils and H-coils. This study assessed the clinical effectiveness of 5 once-daily stimulations with H-coils and figure-8 coils in patients with NP. METHODS This randomized, double-blind, 3-way crossover trial examined 18 patients with NP who sequentially received 3 types of stimulations in the M1 for 5 consecutive days; each 5-day stimulation period was followed by a 17-day follow-up period before crossing over to the next type of stimulation. During each rTMS session, patients received a 5-Hz rTMS to the M1 region corresponding to the painful lower limb. The visual analog scale (VAS) and the Japanese version of the short-form McGill Pain Questionnaire 2 (SF-MPQ2-J) were used to measure pain intensity. The primary outcome was VAS score reduction immediately after and 1 hour after intervention. RESULTS Both the VAS and SF-MPQ2-J showed significant pain improvement immediately after deep rTMS with an H-coil as compared with the sham group (p H-coil (p = 0.004) but not 1 hour after rTMS using a figure-8 coil. None of the patients exhibited any serious adverse events. CONCLUSIONS The current findings suggest that the use of deep rTMS with an H-coil in the lower limb region of the M1 in patients with NP was tolerable and could provide significant short-term pain relief. Clinical trial registration no.: UMIN000010536 ( http://www.umin.ac.jp/ctr/ ).

  15. r-CBF brain SPET before surgery and during subthalamic nuclei (STN) high frequency stimulation (DBS) in Parkinson's Disease

    International Nuclear Information System (INIS)

    Gerundini, P.; Benti, R.; De Notaris, A.; Ferrari, M.; Raimondi, A.; Mariani, C.; Antonini, A.; Pezzoli, G.; Gaini, S.M.

    2002-01-01

    Deep brain stimulation (DBS) of the subthalamic nuclei (STN) can improve motor symptoms and reduces the need for medical therapy in severe Parkinson's Disease (PD). Moreover, DBS can affect, as the medical treatment, cerebral perfusion/metabolism even in cortical/subcortical areas not primarily involved in PD motor symptoms. Aim of the study was the assessment of r-CBF changes by mean of brain SPECT in severe PD .before surgery and during DBS of the STN. Methods. 14 PD patients (duration 15.2±5.1 ys; H and Y off-score 3.6±0.7) underwent STN electrode implantation. Residual motor dysfunction was assessed by UPDRS score up to one year after surgery. SPECT was performed after i.v. injection of Tc-99m ECD (740 MBq) in PD group before and 6-9 months after surgery and in 13 age matched normals. Standardized ROIs templates were applied in brain sections to generate perfusion ratios in the cerebral cortex and basal ganglia. Statistical Parametric Mapping (SPM) analysis of SPET studies was also obtained. Results: 6 months after surgery the mean UPDRS score improvement was 48.8±26.1% (DBS on) vs pre surgery. 8 patients (R+) had UPDRS improvement >50% (mean 67.7±8.8%); 6 patients (R-) had score improvement <50% (mean 22.9±18.9%). Before surgery, motor dysfunction during therapy was similar in R+ and R- groups (mean UPDRS 19.8±8.2 vs. 21.3±9.6). During BDS, UPDRS mean score without medical therapy was lower in R+ (15.6±5.6) vs. R- (35.0±12.4; p<0.001). ROIs and SPM analysis of pre-surgery SPET studies showed significant hypoperfusion (p<0.01) in the occipital gyri of PD vs control groups. No significant differences were found by comparing pre/post surgery SPECT patterns in whole PD group. However, in R- group SPECT showed significant hypoperfusion in pre-frontal areas, parietal and occipital gyri vs R+ patients (p<0.02) and controls (p<0.01). Before surgery, R+ group had borderline occipital hypoperfusion (p=0.04) and mild increase of putaminal perfusion (p=0.03) vs

  16. Real-time measurement of cerebral blood flow during and after repetitive transcranial magnetic stimulation: A near-infrared spectroscopy study.

    Science.gov (United States)

    Park, Eunhee; Kang, Min Jae; Lee, Ahee; Chang, Won Hyuk; Shin, Yong-Il; Kim, Yun-Hee

    2017-07-13

    To confirm the interhemispheric modulation induced by low-frequency repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex, real-time regional cerebral blood flow (rCBF) was assessed using functional near-infrared spectroscopy (fNIRS) in the contralateral primary motor cortex (M1) and premotor cortex (PM). Ten right-handed healthy subjects completed two experimental sessions that were randomly arranged for real or sham rTMS session. In the real rTMS session, fNIRS data were acquired from the right M1 and PM area, while the motor hot spot of the left M1 was stimulated with 1Hz rTMS for 1200 pulses with two boosters. In the sham stimulation session, stimulation was delivered with a disconnected coil. During the real rTMS session, the concentration of oxyhemoglobin ([oxy-Hb]) in the right M1 increased continuously until the end of the stimulation. These changes lasted for 20min, while the right PM did not show a change in [oxy-Hb] concentration. On the other hand, the concentration of deoxy-hemoglobin ([deoxy-Hb]) decreased continuously in the right M1 and PM during the real rTMS stimulation, and this change lasted for 20min after the stimulation. The sham stimulation did not exhibit any significant change in both [oxy-Hb] and [deoxy-Hb] concentration during or after the stimulation. Application of 1Hz rTMS over M1 resulted in changes of rCBF in contralateral M1 and PM, which seemed to constitute a function of interhemispheric modulation of rTMS. The fNIRS data was able to detect this physiological change of neuromodulatory action of rTMS in real-time. Copyright © 2017. Published by Elsevier B.V.

  17. rTMS in fibromyalgia: a randomized trial evaluating QoL and its brain metabolic substrate

    NARCIS (Netherlands)

    Boyer, L.; Dousset, A.; Roussel, P.; Dossetto, N.; Cammilleri, S.; Piano, V.M.M.; Khalfa, S.; Mundler, O.; Donnet, A.; Guedj, E.

    2014-01-01

    OBJECTIVE: This double-blind, randomized, placebo-controlled study investigated the impact of repetitive transcranial magnetic stimulation (rTMS) on quality of life (QoL) of patients with fibromyalgia, and its possible brain metabolic substrate. METHODS: Thirty-eight patients were randomly assigned

  18. DBS-platform for biomonitoring and toxicokinetics of toxicants: proof of concept using LC-MS/MS analysis of fipronil and its metabolites in blood

    Science.gov (United States)

    Raju, Kanumuri Siva Rama; Taneja, Isha; Rashid, Mamunur; Sonkar, Ashish Kumar; Wahajuddin, Muhammad; Singh, Sheelendra Pratap

    2016-03-01

    A simple, sensitive and high throughput LC-MS/MS method was developed and validated for quantification of fipronil, fipronil sulfone and fipronil desulfinyl in rat and human dried blood spots (DBS). DBS samples were prepared by spiking 10 μl blood on DMPK-C cards followed by drying at room temperature. The whole blood spots were then punched from the card and extracted using acetonitrile. The total chromatographic run time of the method was only 2 min. The lower limit of quantification of the method was 0.1 ng/ml for all the analytes. The method was successfully applied to determine fipronil desulfinyl in DBS samples obtained from its toxicokinetic study in rats following intravenous dose (1 mg/kg). In conclusion, the proposed DBS methodology has significant potential in toxicokinetics and biomonitoring studies of environmental toxicants. This microvolume DBS technique will be an ideal tool for biomonitoring studies, particularly in paediatric population. Small volume requirements, minimally invasive blood sampling method, easier storage and shipping procedure make DBS a suitable technique for such studies. Further, DBS technique contributes towards the principles of 3Rs resulting in significant reduction in the number of rodents used and refinement in sample collection for toxicokinetic studies.

  19. The characteristic and changes of the event-related potentials (ERP and brain topographic maps before and after treatment with rTMS in subjective tinnitus patients.

    Directory of Open Access Journals (Sweden)

    Haidi Yang

    Full Text Available OBJECTIVES: To compare the event-related potentials (ERPs and brain topographic maps characteristic and change in normal controls and subjective tinnitus patients before and after repetitive transcranial magnetic stimulation (rTMS treatment. METHODS AND PARTICIPANTS: The ERPs and brain topographic maps elicited by target stimulus were compared before and after 1-week treatment with rTMS in 20 subjective tinnitus patients and 16 healthy controls. RESULTS: Before rTMS, target stimulus elicited a larger N1 component than the standard stimuli (repeating soundsin control group but not in tinnitus patients. Instead, the tinnitus group pre-treatment exhibited larger amplitude of N1 in response to standard stimuli than to deviant stimuli. Furthermore tinnitus patients had smaller mismatch negativity (MMN and late discriminative negativity (LDNcomponent at Fz compared with the control group. After rTMS treatment, tinnitus patients showed increased N1 response to deviant stimuli and larger MMN and LDN compared with pre-treatment. The topographic maps for the tinnitus group before rTMS -treatment demonstrated global asymmetry between the left and right cerebral hemispheres with more negative activities in left side and more positive activities in right side. In contrast, the brain topographic maps for patients after rTMS-treatment and controls seem roughly symmetrical. The ERP amplitudes and brain topographic maps in post-treatment patient group showed no significant difference with those in controls. CONCLUSIONS: The characterical changes in ERP and brain topographic maps in tinnitus patients maybe related with the electrophysiological mechanism of tinnitus induction and development. It can be used as an objective biomarker for the evaluation of auditory central in subjective tinnitus patients. These findings support the notion that rTMS treatment in tinnitus patients may exert a beneficial effect.

  20. The characteristic and changes of the event-related potentials (ERP) and brain topographic maps before and after treatment with rTMS in subjective tinnitus patients.

    Science.gov (United States)

    Yang, Haidi; Xiong, Hao; Yu, Rongjun; Wang, Changming; Zheng, Yiqing; Zhang, Xueyuan

    2013-01-01

    To compare the event-related potentials (ERPs) and brain topographic maps characteristic and change in normal controls and subjective tinnitus patients before and after repetitive transcranial magnetic stimulation (rTMS) treatment. The ERPs and brain topographic maps elicited by target stimulus were compared before and after 1-week treatment with rTMS in 20 subjective tinnitus patients and 16 healthy controls. Before rTMS, target stimulus elicited a larger N1 component than the standard stimuli (repeating sounds)in control group but not in tinnitus patients. Instead, the tinnitus group pre-treatment exhibited larger amplitude of N1 in response to standard stimuli than to deviant stimuli. Furthermore tinnitus patients had smaller mismatch negativity (MMN) and late discriminative negativity (LDN)component at Fz compared with the control group. After rTMS treatment, tinnitus patients showed increased N1 response to deviant stimuli and larger MMN and LDN compared with pre-treatment. The topographic maps for the tinnitus group before rTMS -treatment demonstrated global asymmetry between the left and right cerebral hemispheres with more negative activities in left side and more positive activities in right side. In contrast, the brain topographic maps for patients after rTMS-treatment and controls seem roughly symmetrical. The ERP amplitudes and brain topographic maps in post-treatment patient group showed no significant difference with those in controls. The characterical changes in ERP and brain topographic maps in tinnitus patients maybe related with the electrophysiological mechanism of tinnitus induction and development. It can be used as an objective biomarker for the evaluation of auditory central in subjective tinnitus patients. These findings support the notion that rTMS treatment in tinnitus patients may exert a beneficial effect.

  1. The Effectiveness of 1 Hz rTMS Over the Primary Motor Area of the Unaffected Hemisphere to Improve Hand Function After Stroke Depends on Hemispheric Dominance.

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Bösl, Kathrin; Theilig, Steven; Wiederer, Ralf; Nowak, Dennis Alexander

    2015-01-01

    Inhibition of motor cortex excitability of the contralesional hemisphere may improve dexterity of the affected hand after stroke. 40 patients (17 dominant hemispheric stroke, 23 non-dominant hemispheric stroke) with a mild to moderate upper limb motor impairment were enrolled in a double-blind, randomized, placebo-controlled trial with two parallel-groups. Both groups received 15 daily sessions of motor training preceded by either 1 Hz rTMS or sham rTMS. Behavioral and neurophysiological evaluations were performed at baseline, after the first week and after the third week of treatment, and after a 6 months follow-up. In both groups motor function of the affected hand improved significantly. Patients with stroke of the non-dominant hemisphere made a similar improvement, regardless of whether the motor training was preceded by sham or 1 Hz rTMS. Patients with stroke of the dominant hemisphere had a less favorable improvement than those with stroke of the non-dominant hemisphere after motor training preceded by sham rTMS. However, when 1 Hz rTMS preceded the motor training, patients with stroke of the dominant hemisphere made a similar improvement as those with stroke of the non-dominant hemisphere. Motor recovery of the affected upper limb after stroke is determined by dominance of the affected hemisphere. Stroke of the dominant hemisphere is associated with per se poorer improvement of the affected hand. 1 Hz rTMS over the contralesional M1 significantly improves dexterity of the affected hand in patients with stroke of the dominant hemisphere, but not in those with stroke of the non-dominant hemisphere. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Apathy and Reduced Speed of Processing Underlie Decline in Verbal Fluency following DBS

    Directory of Open Access Journals (Sweden)

    Jennifer A. Foley

    2017-01-01

    Full Text Available Objective. Reduced verbal fluency is a strikingly uniform finding following deep brain stimulation (DBS for Parkinson’s disease (PD. The precise cognitive mechanism underlying this reduction remains unclear, but theories have suggested reduced motivation, linguistic skill, and/or executive function. It is of note, however, that previous reports have failed to consider the potential role of any changes in speed of processing. Thus, the aim of this study was to examine verbal fluency changes with a particular focus on the role of cognitive speed. Method. In this study, 28 patients with PD completed measures of verbal fluency, motivation, language, executive functioning, and speed of processing, before and after DBS. Results. As expected, there was a marked decline in verbal fluency but also in a timed test of executive functions and two measures of speed of processing. Verbal fluency decline was associated with markers of linguistic and executive functioning, but not after speed of processing was statistically controlled for. In contrast, greater decline in verbal fluency was associated with higher levels of apathy at baseline, which was not associated with changes in cognitive speed. Discussion. Reduced generativity and processing speed may account for the marked reduction in verbal fluency commonly observed following DBS.

  3. Apathy and Reduced Speed of Processing Underlie Decline in Verbal Fluency following DBS

    Science.gov (United States)

    Foltynie, Tom; Zrinzo, Ludvic; Hyam, Jonathan A.; Limousin, Patricia

    2017-01-01

    Objective. Reduced verbal fluency is a strikingly uniform finding following deep brain stimulation (DBS) for Parkinson's disease (PD). The precise cognitive mechanism underlying this reduction remains unclear, but theories have suggested reduced motivation, linguistic skill, and/or executive function. It is of note, however, that previous reports have failed to consider the potential role of any changes in speed of processing. Thus, the aim of this study was to examine verbal fluency changes with a particular focus on the role of cognitive speed. Method. In this study, 28 patients with PD completed measures of verbal fluency, motivation, language, executive functioning, and speed of processing, before and after DBS. Results. As expected, there was a marked decline in verbal fluency but also in a timed test of executive functions and two measures of speed of processing. Verbal fluency decline was associated with markers of linguistic and executive functioning, but not after speed of processing was statistically controlled for. In contrast, greater decline in verbal fluency was associated with higher levels of apathy at baseline, which was not associated with changes in cognitive speed. Discussion. Reduced generativity and processing speed may account for the marked reduction in verbal fluency commonly observed following DBS. PMID:28408788

  4. Apathy and Reduced Speed of Processing Underlie Decline in Verbal Fluency following DBS.

    Science.gov (United States)

    Foley, Jennifer A; Foltynie, Tom; Zrinzo, Ludvic; Hyam, Jonathan A; Limousin, Patricia; Cipolotti, Lisa

    2017-01-01

    Objective . Reduced verbal fluency is a strikingly uniform finding following deep brain stimulation (DBS) for Parkinson's disease (PD). The precise cognitive mechanism underlying this reduction remains unclear, but theories have suggested reduced motivation, linguistic skill, and/or executive function. It is of note, however, that previous reports have failed to consider the potential role of any changes in speed of processing. Thus, the aim of this study was to examine verbal fluency changes with a particular focus on the role of cognitive speed. Method . In this study, 28 patients with PD completed measures of verbal fluency, motivation, language, executive functioning, and speed of processing, before and after DBS. Results . As expected, there was a marked decline in verbal fluency but also in a timed test of executive functions and two measures of speed of processing. Verbal fluency decline was associated with markers of linguistic and executive functioning, but not after speed of processing was statistically controlled for. In contrast, greater decline in verbal fluency was associated with higher levels of apathy at baseline, which was not associated with changes in cognitive speed. Discussion . Reduced generativity and processing speed may account for the marked reduction in verbal fluency commonly observed following DBS.

  5. Functional anatomy of top-down visuospatial processing in the human brain : evidence from rTMS

    NARCIS (Netherlands)

    Aleman, A; Schutter, DJLG; Ramsey, NF; van Honk, J; Kessels, RPC; Hoogduin, JM; Postma, A; Kahn, RS; de Haan, EHF

    The hypothesis was tested that visuospatial mental imagery relies on processing in the posterior parietal lobe. Using repetitive transcranial magnetic stimulation (rTMS) in a cross-over, sham-controlled design, we compared involvement of right posterior parietal cortex with primary visual cortex.

  6. Neurosurgical decision-making with IOM: DBS surgery.

    Science.gov (United States)

    Arle, Jeffrey E; Shils, Jay L

    2007-12-01

    Intraoperative monitoring (IOM) adds new information to intraoperative surgical decision-making. When presented clearly and accurately, it can help guide decision processes during the procedure, but can be a detriment overall if the information is inaccurate or misleading. Troubleshooting abilities and vigilance of the IOM staff play a large role in bolstering the level of trust a surgeon develops in IOM. Additionally, a surgeon may impart his own interpretation and experience with this new information that can undermine or enhance its impact on the case. In this article, we explore these issues with IOM in general and as they relate to the special context of DBS for movement disorders.

  7. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.

    Science.gov (United States)

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts: synchronous and peristaltic. Using extracellular techniques, we recorded, in 61 isolated nerve cords, the activity of motor neurons in conjunction with the phase reference premotor heart interneuron, HN(4), and another premotor interneuron that allowed us to assess the coordination mode. These data were then coupled with a previous description of the temporal pattern of premotor interneuron activity in the two coordination modes to synthesize a global phase diagram for the known elements of the CPG and the entire motor neuron ensemble. These average data reveal the stereotypical side-to-side asymmetric patterns of intersegmental coordination among the motor neurons and show how this pattern meshes with the activity pattern of premotor interneurons. Analysis of animal-to-animal variability in this coordination indicates that the intersegmental phase progression of motor neuron activity in the midbody in the peristaltic coordination mode is the most stereotypical feature of the fictive motor pattern. Bilateral recordings from motor neurons corroborate the main features of the asymmetric motor pattern.

  8. Road Transport Management System (RTMS): a self regulation initiative in heavy vehicle transport in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2007-07-01

    Full Text Available This paper describes the most recent developments of an initiative to introduce meaningful self-regulation in the heavy vehicle transport industry through a Road Transport Management System (RTMS) with the aim of contributing to the road authorities...

  9. Premotor and non-motor features of Parkinson’s disease

    Science.gov (United States)

    Goldman, Jennifer G.; Postuma, Ron

    2014-01-01

    Purpose of review This review highlights recent advances in premotor and non-motor features in Parkinson’s disease, focusing on these issues in the context of prodromal and early stage Parkinson’s disease. Recent findings While Parkinson’s disease patients experience a wide range of non-motor symptoms throughout the disease course, studies demonstrate that non-motor features are not solely a late manifestation. Indeed, disturbances of smell, sleep, mood, and gastrointestinal function may herald Parkinson’s disease or related synucleinopathies and precede these neurodegenerative conditions by 5 or more years. In addition, other non-motor symptoms such as cognitive impairment are now recognized in incident or de novo Parkinson’s disease cohorts. Many of these non-motor features reflect disturbances in non-dopaminergic systems and early involvement of peripheral and central nervous systems including olfactory, enteric, and brainstem neurons as in Braak’s proposed pathological staging of Parkinson’s disease. Current research focuses on identifying potential biomarkers that may detect persons at risk for Parkinson’s disease and permit early intervention with neuroprotective or disease-modifying therapeutics. Summary Recent studies provide new insights on the frequency, pathophysiology, and importance of non-motor features in Parkinson’s disease as well as the recognition that these non-motor symptoms occur in premotor, early, and later phases of Parkinson’s disease. PMID:24978368

  10. Diagnostic accuracy of serological diagnosis of hepatitis C and B using dried blood spot samples (DBS): two systematic reviews and meta-analyses.

    Science.gov (United States)

    Lange, Berit; Cohn, Jennifer; Roberts, Teri; Camp, Johannes; Chauffour, Jeanne; Gummadi, Nina; Ishizaki, Azumi; Nagarathnam, Anupriya; Tuaillon, Edouard; van de Perre, Philippe; Pichler, Christine; Easterbrook, Philippa; Denkinger, Claudia M

    2017-11-01

    Dried blood spots (DBS) are a convenient tool to enable diagnostic testing for viral diseases due to transport, handling and logistical advantages over conventional venous blood sampling. A better understanding of the performance of serological testing for hepatitis C (HCV) and hepatitis B virus (HBV) from DBS is important to enable more widespread use of this sampling approach in resource limited settings, and to inform the 2017 World Health Organization (WHO) guidance on testing for HBV/HCV. We conducted two systematic reviews and meta-analyses on the diagnostic accuracy of HCV antibody (HCV-Ab) and HBV surface antigen (HBsAg) from DBS samples compared to venous blood samples. MEDLINE, EMBASE, Global Health and Cochrane library were searched for studies that assessed diagnostic accuracy with DBS and agreement between DBS and venous sampling. Heterogeneity of results was assessed and where possible a pooled analysis of sensitivity and specificity was performed using a bivariate analysis with maximum likelihood estimate and 95% confidence intervals (95%CI). We conducted a narrative review on the impact of varying storage conditions or limits of detection in subsets of samples. The QUADAS-2 tool was used to assess risk of bias. For the diagnostic accuracy of HBsAg from DBS compared to venous blood, 19 studies were included in a quantitative meta-analysis, and 23 in a narrative review. Pooled sensitivity and specificity were 98% (95%CI:95%-99%) and 100% (95%CI:99-100%), respectively. For the diagnostic accuracy of HCV-Ab from DBS, 19 studies were included in a pooled quantitative meta-analysis, and 23 studies were included in a narrative review. Pooled estimates of sensitivity and specificity were 98% (CI95%:95-99) and 99% (CI95%:98-100), respectively. Overall quality of studies and heterogeneity were rated as moderate in both systematic reviews. HCV-Ab and HBsAg testing using DBS compared to venous blood sampling was associated with excellent diagnostic accuracy

  11. Psychosocial risk factors, pre-motor symptoms and first-time hospitalization with Parkinson's disease

    DEFF Research Database (Denmark)

    Clark, Alice Jessie; Ritz, B; Prescott, E

    2013-01-01

    ), as well as to identify potential pre-motor symptoms for PD in a large prospective cohort study. METHODS: In 1991-1993, a total of 9955 women and men free of PD from the Copenhagen City Heart Study were asked about major life events, economic hardship, social network, impaired sleep and vital exhaustion...... social network in the current study. CONCLUSIONS: Overall, the hypothesis that psychosocial risk factors affect the risk of PD is not supported. The results, however, suggest that vital exhaustion may be a pre-motor marker of the neurodegenerative process eventually leading to motor symptoms and clinical......BACKGROUND AND PURPOSE: Experimental studies support a link between stress and development of parkinsonian symptoms, but prospective population studies are lacking. The aim of the current study is to determine the effects of several psychosocial factors on the risk of Parkinson's disease (PD...

  12. TV commercial and rTMS: can brain lateralization give us information about consumer preference?

    Directory of Open Access Journals (Sweden)

    Federica Leanza

    2017-04-01

    Full Text Available The current research aimed at investigating the brain lateralization effect in response to TV advertising of different commercial sectors. This study explored the effects of dorsolateral prefrontal cortex (DLPFC stimulation on subjective evaluation (semantic differential, in response to some consumer goods. We adopted rTMS (low-frequency 1Hz on left and right DLPFC to modulate the consumers’ (N=thirty-three response during the vision of five commercials. After three hours from the first evaluation of TV commercials without stimulation, rTMS was delivered in brain frontal areas (F3 and F4 areas before the vision of each stimulus. Following the stimulation, subjects evaluated advertising a second time by using the same semantic differential. An increase of TV commercials preference occurred in subjects who were inhibited on right DLPFC; while a decrease of advertising preference was shown in subjects who were inhibited on left DLPFC. These results reveal the important role of DLPFC for emotions’ elaboration. In particular, the left and right DLPFC seem to be related respectively to positive and negative evaluation of emotional stimuli.

  13. Primary motor cortex functionally contributes to language comprehension: An online rTMS study.

    Science.gov (United States)

    Vukovic, Nikola; Feurra, Matteo; Shpektor, Anna; Myachykov, Andriy; Shtyrov, Yury

    2017-02-01

    Among various questions pertinent to grounding human cognitive functions in a neurobiological substrate, the association between language and motor brain structures is a particularly debated one in neuroscience and psychology. While many studies support a broadly distributed model of language and semantics grounded, among other things, in the general modality-specific systems, theories disagree as to whether motor and sensory cortex activity observed during language processing is functional or epiphenomenal. Here, we assessed the role of motor areas in linguistic processing by investigating the responses of 28 healthy volunteers to different word types in semantic and lexical decision tasks, following repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex. We found that early rTMS (delivered within 200ms of word onset) produces a left-lateralised and meaning-specific change in reaction speed, slowing down behavioural responses to action-related words, and facilitating abstract words - an effect present only during semantic, but not lexical, decision. We interpret these data in light of action-perception theory of language, bolstering the claim that motor cortical areas play a functional role in language comprehension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Suellen M. Andrade

    2017-01-01

    Full Text Available Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561.

  15. It's how you get there: Walking down a virtual alley activates premotor and parietal areas

    Directory of Open Access Journals (Sweden)

    Johanna eWagner

    2014-02-01

    Full Text Available Voluntary drive is crucial for motor learning, therefore we are interested in the role that motor planning plays in gait movements. In this study we examined the impact of an interactive Virtual Environment (VE feedback task on the EEG patterns during robot assisted walking. We compared walking in the VE modality to two control conditions: walking with a visual attention paradigm, in which visual stimuli were unrelated to the motor task; and walking with mirror feedback, in which participants observed their own movements. Eleven healthy participants were considered. Application of independent component analysis to the EEG revealed three independent component clusters in premotor and parietal areas showing increased activity during walking with the adaptive VE training paradigm compared to the control conditions. During the interactive VE walking task spectral power in frequency ranges 8-12Hz, 15-20Hz and 23-40Hz was significantly (p ≤ 0.05 decreased. This power decrease is interpreted as a correlate of an active cortical area. Furthermore activity in the premotor cortex revealed gait cycle related modulations significantly different (p ≤ 0.05 from baseline in the frequency range 23-40Hz during walking. These modulations were significantly (p ≤ 0.05 reduced depending on gait cycle phases in the interactive VE walking task compared to the control conditions.We demonstrate that premotor and parietal areas show increased activity during walking with the adaptive VE training paradigm, when compared to walking with mirror- and movement unrelated feedback. Previous research has related a premotor-parietal network to motor planning and motor intention. We argue that movement related interactive feedback enhances motor planning and motor intention. We hypothesize that this might improve gait recovery during rehabilitation.

  16. Increased activity of pre-motor network does not change the excitability of motoneurons during protracted scratch initiation

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Alaburda, Aidas; Hounsgaard, Jørn Dybkjær

    2013-01-01

    of their intrinsic excitability. Here we employed an experimental paradigm of protracted scratch initiation in the integrated carapace-spinal cord preparation of adult turtles (Chrysemys scripta elegans). The protracted initiation of scratch network activity allows us to investigate the excitability of motoneurons...... and pre-motor network activity in the time interval from the start of sensory stimulation until the onset of scratch activity. Our results suggest that increased activity in the pre-motor network facilitates the onset of scratch episodes but does not change the excitability of motoneurons at the onset...... of scratching....

  17. The effectiveness of non-invasive brain stimulation in improving clinical signs of hyperkinetic movement disorders

    Directory of Open Access Journals (Sweden)

    Ignacio eObeso

    2016-01-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is a safe and non-invasive method for stimulating cortical neurons. In neurological realm, rTMS has prevalently been applied to understand pathophysiological mechanisms underlying movement disorders. However, this tool has also the potential to be translated into a clinically applicable therapeutic use. Several available studies supported this hypothesis, but differences in protocols, clinical enrollment and variability of rTMS effects across individuals complicate better understanding of efficient clinical protocols.The aim of this present review is to discuss to what extent the evidence provided by the therapeutic use of rTMS may be generalized. In particular, we attempted to define optimal cortical regions and stimulation protocols that have been demonstrated to maximize the effectiveness seen in the actual literature for the three most prevalent hyperkinetic movement disorders: Parkinson´s disease with levodopa-induced dyskinesias, essential tremor and dystonia. A total of 28 rTMS studies met our search criteria. Despite clinical and methodological differences, overall these studies demonstrated that therapeutic applications of rTMS to normalize pathologically decreased or increased levels of cortical activity have given moderate progress in patient´s quality of life. Moreover, the present literature suggests that altered pathophysiology in hyperkinetic movement disorders establishes motor, premotor or cerebellar structures as candidate regions to reset cortico-subcortical pathways back to normal. Although rTMS has the potential to become a powerful tool for ameliorating the clinical outcome of hyperkinetic neurological patients, until now there is not a clear consensus on optimal protocols for these motor disorders. Well-controlled multicenter randomized clinical trials with high numbers of patients are urgently required.

  18. Nociceptive afferents to the premotor neurons that send axons simultaneously to the facial and hypoglossal motoneurons by means of axon collaterals.

    Directory of Open Access Journals (Sweden)

    Yulin Dong

    Full Text Available It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG or FG/tetramethylrhodamine-dextran amine (TMR-DA were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA was injected into the caudal spinal trigeminal nucleus (Vc. The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt, dorsal and ventral medullary reticular formation (MdD, MdV, supratrigeminal nucleus (Vsup and parabrachial nucleus (PBN with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals.

  19. The influence of rTMS over prefrontal and motor areas in a morphological task: grammatical vs. semantic effects.

    Science.gov (United States)

    Gerfo, Emanuele Lo; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo

    2008-01-31

    We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also sensitive to semantic effects, and whether the motor cortex is also sensitive to grammatical class effects. We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefontal cortex (first experiment) and of the motor area (second experiment). In the first experiment we found that rTMS applied to the left prefrontal cortex delays the processing of action verbs' retrieval, but is not critical for retrieval of state verbs and state nouns. In the second experiment we found that rTMS applied to the left motor cortex delays the processing of action words, both name and verbs, while it is not critical for the processing of state words. These results support the notion that left prefrontal and motor cortex are involved in the process of action word retrieval. Left prefrontal cortex subserves processing of both grammatical and semantic information, whereas motor cortex contributes to the processing of semantic representation of action words without any involvement in the representation of grammatical categories.

  20. Combined rTMS treatment targeting the Anterior Cingulate and the Temporal Cortex for the Treatment of Chronic Tinnitus

    Science.gov (United States)

    Kreuzer, Peter M.; Lehner, Astrid; Schlee, Winfried; Vielsmeier, Veronika; Schecklmann, Martin; Poeppl, Timm B.; Landgrebe, Michael; Rupprecht, Rainer; Langguth, Berthold

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a tinnitus treatment option. Promising results have been obtained by consecutive stimulation of lateral frontal and auditory brain regions. We investigated a combined stimulation paradigm targeting the anterior cingulate cortex (ACC) with double cone coil rTMS, followed by stimulation of the temporo-parietal junction area with a figure-of-eight coil. The study was conducted as a randomized, double-blind pilot trial in 40 patients suffering from chronic tinnitus. We compared mediofrontal stimulation with double-cone-coil, (2000 stimuli, 10 Hz) followed by left temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz) to left dorsolateral-prefrontal-cortex stimulation with figure-of-eight-coil (2000 stimuli, 10 Hz) followed by temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz). The stimulation was feasible with comparable dropout rates in both study arms; no severe adverse events were registered. Responder rates did not differ in both study arms. There was a significant main effect of time for the change in the TQ score, but no significant time x group interaction. This pilot study demonstrated the feasibility of combined mediofrontal/temporoparietal-rTMS-stimulation with double cone coil in tinnitus patients but failed to show better outcome compared to an actively rTMS treated control group. PMID:26667790

  1. A multi-center study on low-frequency rTMS combined with intensive occupational therapy for upper limb hemiparesis in post-stroke patients

    Directory of Open Access Journals (Sweden)

    Kakuda Wataru

    2012-01-01

    Full Text Available Abstract Background Both low-frequency repetitive transcranial magnetic stimulation (rTMS and intensive occupational therapy (OT have been recently reported to be clinically beneficial for post-stroke patients with upper limb hemiparesis. Based on these reports, we developed an inpatient combination protocol of these two modalities for the treatment of such patients. The aims of this pilot study were to confirm the safety and feasibility of the protocol in a large number of patients from different institutions, and identify predictors of the clinical response to the treatment. Methods The study subjects were 204 post-stroke patients with upper limb hemiparesis (mean age at admission 58.5 ± 13.4 years, mean time after stroke 5.0 ± 4.5 years, ± SD from five institutions in Japan. During 15-day hospitalization, each patient received 22 treatment sessions of 20-min low-frequency rTMS and 120-min intensive OT daily. Low-frequency rTMS of 1 Hz was applied to the contralesional hemisphere over the primary motor area. The intensive OT, consisting of 60-min one-to-one training and 60-min self-exercise, was provided after the application of low-frequency rTMS. Fugl-Meyer Assessment (FMA and Wolf Motor Function Test (WMFT were performed serially. The physiatrists and occupational therapists involved in this study received training prior to the study to standardize the therapeutic protocol. Results All patients completed the protocol without any adverse effects. The FMA score increased and WMFT log performance time decreased significantly at discharge, relative to the respective values at admission (change in FMA score: median at admission, 47 points; median at discharge, 51 points; p Conclusions The 15-day inpatient rTMS plus OT protocol is a safe, feasible, and clinically useful neurorehabilitative intervention for post-stroke patients with upper limb hemiparesis. The response to the treatment was not influenced by age or time after stroke onset. The

  2. Premotor and Motor Cortices Encode Reward.

    Directory of Open Access Journals (Sweden)

    Pavan Ramkumar

    Full Text Available Rewards associated with actions are critical for motivation and learning about the consequences of one's actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd and primary motor (M1 neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions.

  3. Continuous theta burst demonstrates a causal role of premotor homunculus in action interpretation

    DEFF Research Database (Denmark)

    Michael, John Andrew

    2014-01-01

    Although it is well established that regions of premotor cortex (PMC) are active during action observation, it remains controversial whether they play a causal role in action understanding. In the experiment reported here, we used off-line continuous theta-burst stimulation (cTBS) to investigate ...

  4. Repetitive activation of the corticospinal tract by means of rTMS may reduce the efficiency of corticomotoneuronal synapses

    DEFF Research Database (Denmark)

    Taube, Wolfgang; Leukel, Christian; Schubert, Martin

    Repetitive transcranial magnetic stimulation (rTMS) is extensively used to study cognitive and motor function in humans and might be of value in the treatment of various disorders. For a better understanding of the effects of rTMS and its more efficient application it is crucial to identify......-conditioning by testing interstimulus intervals (ISIs) from -9 to 0 ms (for instance “ISI -3 ms” indicated that the H-reflex was elicited 3 ms before the supraspinal stimulus). The amplitude of the short-latency facilitation was expressed as percentage of the unconditioned control H-reflex and compared before and after...... is the synapses of the corticomotoneuronal neurones on the spinal motoneurones. Perez et al. (2005). Exp Brain Res 162, 202-212. Speer et al. (2003). Biol Psychiatry 54, 818-825....

  5. Measures to Evaluate the Effects of DBS on Speech Production

    Science.gov (United States)

    Weismer, Gary; Yunusova, Yana; Bunton, Kate

    2011-01-01

    The purpose of this paper is to review and evaluate measures of speech production that could be used to document effects of Deep Brain Stimulation (DBS) on speech performance, especially in persons with Parkinson disease (PD). A small set of evaluative criteria for these measures is presented first, followed by consideration of several speech physiology and speech acoustic measures that have been studied frequently and reported on in the literature on normal speech production, and speech production affected by neuromotor disorders (dysarthria). Each measure is reviewed and evaluated against the evaluative criteria. Embedded within this review and evaluation is a presentation of new data relating speech motions to speech intelligibility measures in speakers with PD, amyotrophic lateral sclerosis (ALS), and control speakers (CS). These data are used to support the conclusion that at the present time the slope of second formant transitions (F2 slope), an acoustic measure, is well suited to make inferences to speech motion and to predict speech intelligibility. The use of other measures should not be ruled out, however, and we encourage further development of evaluative criteria for speech measures designed to probe the effects of DBS or any treatment with potential effects on speech production and communication skills. PMID:24932066

  6. A systematic review of the effects of neuromodulation on eating and body weight: evidence from human and animal studies.

    Science.gov (United States)

    McClelland, Jessica; Bozhilova, Natali; Campbell, Iain; Schmidt, Ulrike

    2013-11-01

    Eating disorders (ED) are chronic and sometimes deadly illnesses. Existing treatments have limited proven efficacy, especially in the case of adults with anorexia nervosa (AN). Emerging neural models of ED provide a rationale for more targeted, brain-directed interventions. This systematic review has examined the effects of neuromodulation techniques on eating behaviours and body weight and assessed their potential for therapeutic use in ED. All articles in PubMed, PsychInfo and Web of Knowledge were considered and screened against a priori inclusion/exclusion criteria. The effects of repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation, vagus nerve stimulation (VNS) and deep brain stimulation (DBS) were examined across studies in ED samples, other psychiatric and neurological disorders, and animal models. Sixty studies were identified. There is evidence for ED symptom reduction following rTMS and DBS in both AN and bulimia nervosa. Findings from studies of other psychiatric and neurological disorders and from animal studies demonstrate that increases in food intake and body weight can be achieved following DBS and that VNS has potential value as a means of controlling eating and inducing weight loss. Neuromodulation tools have potential for reducing ED symptomatology and related behaviours, and for altering food intake and body weight. In response to such findings, and emerging neural models of ED, treatment approaches are highly unlikely to remain 'brainless'. More research is required to evaluate the potential of neuromodulation procedures for improving long-term outcomes in ED. Copyright © 2013 John Wiley & Sons, Ltd and Eating Disorders Association.

  7. [What is needed for rTMS to become a treatment?].

    Science.gov (United States)

    Foucher, J R; Luck, D; Chassagnon, S; Offerlin-Meyer, I; Pham, B-T

    2007-12-01

    Repetitive trans-cranial magnetic stimulation (rTMS) can modulate cortical excitability. Consequently, it appears appealing for the treatment of some affections such as depression or hallucinations. There is already some proof that the concept is valid, but rTMS is slow in progressing in the therapeutic field as a true armamentum. Indeed its effects are of short duration and even inconstant from one patient to the next. These drawbacks depend on certain factors that we will discuss. Until now, there has been inadequate control of the stimulation site. It is possible that this site could vary on an individual basis. It seems logical to propose the use of functional imaging for such a purpose, but its use should be adapted to the symptom. Even after localizing the site, the coil has to be placed accurately. This could be facilitated by a neuronavigator. Stimulation protocols are currently defined by three parameters: the frequency modulating the cortical action either as a stimulation (>5 Hz) or an inhibition (<1 Hz), the intensity and the number of stimuli influencing, notably, the amplitude and duration of the effect. Unfortunately, the effect is inconstant in a given patient and paradoxical reactions have been observed in more than 15% of normal individuals. Improved reliability and amplification of the effect rely on the better control of other parameters: pattern of stimulation, pre and post-conditioning, state of the cortex during stimulation, associated medications, endogenous idiosyncratic factors and related pathology. We will review the current physiological literature to discuss the possible options that would constitute a rational basis for setting up more efficient protocols.

  8. rTMS on left prefrontal cortex contributes to memories for positive emotional cues: a comparison between pictures and words.

    Science.gov (United States)

    Balconi, M; Cobelli, C

    2015-02-26

    The present research explored the cortical correlates of emotional memories in response to words and pictures. Subjects' performance (Accuracy Index, AI; response times, RTs; RTs/AI) was considered when a repetitive Transcranial Magnetic Stimulation (rTMS) was applied on the left dorsolateral prefrontal cortex (LDLPFC). Specifically, the role of LDLPFC was tested by performing a memory task, in which old (previously encoded targets) and new (previously not encoded distractors) emotional pictures/words had to be recognized. Valence (positive vs. negative) and arousing power (high vs. low) of stimuli were also modulated. Moreover, subjective evaluation of emotional stimuli in terms of valence/arousal was explored. We found significant performance improving (higher AI, reduced RTs, improved general performance) in response to rTMS. This "better recognition effect" was only related to specific emotional features, that is positive high arousal pictures or words. Moreover no significant differences were found between stimulus categories. A direct relationship was also observed between subjective evaluation of emotional cues and memory performance when rTMS was applied to LDLPFC. Supported by valence and approach model of emotions, we supposed that a left lateralized prefrontal system may induce a better recognition of positive high arousal words, and that evaluation of emotional cue is related to prefrontal activation, affecting the recognition memories of emotions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Tuning-in to the beat: Aesthetic appreciation of musical rhythms correlates with a premotor activity boost.

    Science.gov (United States)

    Kornysheva, Katja; von Cramon, D Yves; Jacobsen, Thomas; Schubotz, Ricarda I

    2010-01-01

    Listening to music can induce us to tune in to its beat. Previous neuroimaging studies have shown that the motor system becomes involved in perceptual rhythm and timing tasks in general, as well as during preference-related responses to music. However, the role of preferred rhythm and, in particular, of preferred beat frequency (tempo) in driving activity in the motor system remains unknown. The goals of the present functional magnetic resonance imaging (fMRI) study were to determine whether the musical rhythms that are subjectively judged as beautiful boost activity in motor-related areas and if so, whether this effect is driven by preferred tempo, the underlying pulse people tune in to. On the basis of the subjects' judgments, individual preferences were determined for the different systematically varied constituents of the musical rhythms. Results demonstrate the involvement of premotor and cerebellar areas during preferred compared to not preferred musical rhythms and indicate that activity in the ventral premotor cortex (PMv) is enhanced by preferred tempo. Our findings support the assumption that the premotor activity increase during preferred tempo is the result of enhanced sensorimotor simulation of the beat frequency. This may serve as a mechanism that facilitates the tuning-in to the beat of appealing music. 2009 Wiley-Liss, Inc.

  10. 10 Hz rTMS over right parietal cortex alters sense of agency during self-controlled movements

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina; Karabanov, Anke N; Christensen, Mark Schram

    2014-01-01

    A large body of fMRI and lesion-literature has provided evidence that the Inferior Parietal Cortex (IPC) is important for sensorimotor integration and sense of agency (SoA). We used repetitive transcranial magnetic stimulation (rTMS) to explore the role of the IPC during a validated SoA detection...

  11. Brain stimulation methods to treat tobacco addiction.

    Science.gov (United States)

    Wing, Victoria C; Barr, Mera S; Wass, Caroline E; Lipsman, Nir; Lozano, Andres M; Daskalakis, Zafiris J; George, Tony P

    2013-05-01

    Tobacco smoking is the leading cause of preventable deaths worldwide, but many smokers are simply unable to quit. Psychosocial and pharmaceutical treatments have shown modest results on smoking cessation rates, but there is an urgent need to develop treatments with greater efficacy. Brain stimulation methods are gaining increasing interest as possible addiction therapeutics. The purpose of this paper is to review the studies that have evaluated brain stimulation techniques on tobacco addiction, and discuss future directions for research in this novel area of addiction interventions. Electronic and manual literature searches identified fifteen studies that administered repetitive transcranial magnetic stimulation (rTMS), cranial electrostimulation (CES), transcranial direct current stimulation (tDCS) or deep brain stimulation (DBS). rTMS was found to be the most well studied method with respect to tobacco addiction. Results indicate that rTMS and tDCS targeted to the dorsolateral prefrontal cortex (DLPFC) were the most efficacious in reducing tobacco cravings, an effect that may be mediated through the brain reward system involved in tobacco addiction. While rTMS was shown to reduce consumption of cigarettes, as yet no brain stimulation technique has been shown to significantly increase abstinence rates. It is possible that the therapeutic effects of rTMS and tDCS may be improved by optimization of stimulation parameters and increasing the duration of treatment. Although further studies are needed to confirm the ability of brain stimulation methods to treat tobacco addiction, this review indicates that rTMS and tDCS both represent potentially novel treatment modalities. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Can free-viewing perceptual asymmetries be explained by scanning, pre-motor or attentional biases?

    Science.gov (United States)

    Nicholls, Michael E R; Roberts, Georgina R

    2002-04-01

    Judgments of relative magnitude between the left and right sides of a stimulus are generally weighted toward the features contained on the left side. This leftward perceptual bias could be the result of, (a) left-to-right scanning biases, (b) pre-motor activation of the right hemisphere, or (c) a left hemispatial attentional bias. The relative merits of these explanations of perceptual asymmetry were investigated. In Experiment 1, English and Hebrew readers made luminance judgements for two left/right mirror-reversed luminance gradients (greyscales task). Despite different reading/scanning habits, both groups exhibited a leftward perceptual bias. English and Hebrew readers also performed a line bisection task. Scanning biases were controlled by asking participants to follow a marker as it moved left-to-right or right-to-left and then stop it as it reached the midpoint of the line. Despite controlling scanning, a leftward bias was observed in both groups. In Experiment 2, peripheral spatial cues were presented prior to the greyscales stimuli. English readers showed a reduction in the leftward bias for right-sided cues as compared to left-sided and neutral cues. Right-side cues presumably overcame a pre-existing leftward attentional bias. In both experiments, pre-motor activation was controlled using bimanual responses. Despite this control, a leftward bias was observed throughout the study. The data support the attentional bias account of leftward perceptual biases over the scanning and pre-motor activation accounts. Whether or not unilateral hemispheric activation provides an adequate account of this attentional bias is discussed.

  13. Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis

    Directory of Open Access Journals (Sweden)

    Paolo Belardinelli

    2017-01-01

    In conclusion, functionally relevant modulations of CMC can be detected in patients with long-term, severe motor deficits after a brain-robot assisted rehabilitation training. Premotor beta-band CMC may serve as a biomarker and therapeutic target for novel treatment approaches in this patient group.

  14. Low-Frequency rTMS Ameliorates Autistic-Like Behaviors in Rats Induced by Neonatal Isolation Through Regulating the Synaptic GABA Transmission

    Directory of Open Access Journals (Sweden)

    Tao Tan

    2018-02-01

    Full Text Available Patients with autism spectrum disorder (ASD display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown. By using our recent reported animal model with autistic-like behaviors induced by neonatal isolation (postnatal days 1–9, we found that low-frequency rTMS (LF-rTMS, 1 Hz treatment for 2 weeks effectively alleviated the acquired autistic-like symptoms, as reflected by an increase in social interaction and decrease in self-grooming, anxiety- and depressive-like behaviors in young adult rats compared to those in untreated animals. Furthermore, the amelioration in autistic-like behavior was accompanied by a restoration of the balance between E/I activity, especially at the level of synaptic transmission and receptors in synaptosomes. These findings indicated that LF-rTMS may alleviate the symptoms of ASD-like behaviors caused by neonatal isolation through regulating the synaptic GABA transmission, suggesting that LF-rTMS may be a potential therapeutic technique to treat ASD.

  15. Simulation of induced electric field distribution based on five-sphere model used in rTMS.

    Science.gov (United States)

    Pu, Lina; Liu, Zhipeng; Yin, Tao; An, Hao; Li, Song

    2010-01-01

    Repetitive Transcranial magnetic stimulation (TMS) is a relatively new technique, which is non-invasive and painless used to stimulate the central and peripheral neural tissues. The principle is generating time-varying magnetic fields to stimulate the cerebral cortex neuron and inducing eddy current inside the tissues. Many researches study on the distributing of magnetic field and electric field induced inside the human brain, whereas the static electric field was neglected roughly in many studies. In this paper, a five-sphere model is established to simulate the human head used in rTMS. According to the different dielectric properties of the head tissues, the Laplace equation of static electric field is deduced by both of Gauss theorem and current's continuity principle. Boundary conditions used in different interface between two adjacent layers in the five-sphere model is proposed in this paper. Simulating study is conducted to calculate the distribution of the electric field in the model. Simulating results suggest that the model is useful to get the parameters of the most focus coil. Therefore this study could be potential to promote the development of rTMS stimulator.

  16. Injury of Hg2+ and DBS on Lemna minor%Hg2+、DBS对浮萍的伤害研究

    Institute of Scientific and Technical Information of China (English)

    马剑敏; 王琳; 杜晋立; 吴晶敏

    2001-01-01

    The injury degree of Lemna minor by the stress of Hg2+ and DBSare reported.The concentrations of chlorophyll and dissolved protein decrease with the increase of Hg2+ and DBS concentrations or as treatment time is continued,dead percentage increase with the increase of Hg2+ and DBS concentrations or as treatment time is continued.When the concentrations of HgCl2 is 6mg/L or DBS is 12mg/L,about 70% of Lemna minor can live for 10 days at least.%研究了在Hg2+、DBS胁迫下,浮萍(LemnaminorL.)植株的枯死率、叶绿素含量和可溶性蛋白质含量的变化。植株的枯死率随Hg2+、DBS浓度升高和处理时间的延长而增加;叶绿素和蛋白质含量随Hg2+和DBS浓度升高和处理时间的延长而逐渐下降。在HgCl2、DBS浓度分别为6mg/L、12mg/L时,约70%的浮萍10d内仍存活。

  17. Modulation of N400 in Chronic Non-Fluent Aphasia Using Low Frequency Repetitive Transcranial Magnetic Stimulation (rTMS)

    Science.gov (United States)

    Barwood, Caroline H. S.; Murdoch, Bruce E.; Whelan, Brooke-Mai; Lloyd, David; Riek, Stephan; O'Sullivan, John D.; Coulthard, Alan; Wong, Andrew

    2011-01-01

    Low frequency Repetitive Transcranial Magnetic Stimulation (rTMS) has previously been applied to language homologues in non-fluent populations of persons with aphasia yielding significant improvements in behavioral language function up to 43 months post stimulation. The present study aimed to investigate the electrophysiological correlates…

  18. TV commercial and rTMS: can brain lateralization give us information about consumer preference?

    OpenAIRE

    Federica Leanza; Michela Balconi

    2017-01-01

    The current research aimed at investigating the brain lateralization effect in response to TV advertising of different commercial sectors. This study explored the effects of dorsolateral prefrontal cortex (DLPFC) stimulation on subjective evaluation (semantic differential), in response to some consumer goods. We adopted rTMS (low-frequency 1Hz on left and right DLPFC) to modulate the consumers’ (N=thirty-three) response during the vision of five commercials. After three hours from the first e...

  19. Premotor activations in response to visually presented single letters depend on the hand used to write: a study on left-handers.

    Science.gov (United States)

    Longcamp, Marieke; Anton, Jean-Luc; Roth, Muriel; Velay, Jean-Luc

    2005-01-01

    In a previous fMRI study on right-handers (Rhrs), we reported that part of the left ventral premotor cortex (BA6) was activated when alphabetical characters were passively observed and that the same region was also involved in handwriting [Longcamp, M., Anton, J. L., Roth, M., & Velay, J. L. (2003). Visual presentation of single letters activates a premotor area involved in writing. NeuroImage, 19, 1492-1500]. We therefore suggested that letter-viewing may induce automatic involvement of handwriting movements. In the present study, in order to confirm this hypothesis, we carried out a similar fMRI experiment on a group of left-handed subjects (Lhrs). We reasoned that if the above assumption was correct, visual perception of letters by Lhrs might automatically activate cortical motor areas coding for left-handed writing movements, i.e., areas located in the right hemisphere. The visual stimuli used here were either single letters, single pseudoletters, or a control stimulus. The subjects were asked to watch these stimuli attentively, and no response was required. The results showed that a ventral premotor cortical area (BA6) in the right hemisphere was specifically activated when Lhrs looked at letters and not at pseudoletters. This right area was symmetrically located with respect to the left one activated under the same circumstances in Rhrs. This finding supports the hypothesis that visual perception of written language evokes covert motor processes. In addition, a bilateral area, also located in the premotor cortex (BA6), but more ventrally and medially, was found to be activated in response to both letters and pseudoletters. This premotor region, which was not activated correspondingly in Rhrs, might be involved in the processing of graphic stimuli, whatever their degree of familiarity.

  20. The case for testing memory with both stories and word lists prior to dbs surgery for Parkinson's Disease.

    Science.gov (United States)

    Zahodne, Laura B; Bowers, Dawn; Price, Catherine C; Bauer, Russell M; Nisenzon, Anne; Foote, Kelly D; Okun, Michael S

    2011-04-01

    Patients seeking deep brain stimulation (DBS) surgery for Parkinson's disease (PD) typically undergo neuropsychological assessment to determine candidacy for surgery, with poor memory performance interpreted as a contraindication. Patients with PD may exhibit worse memory for word lists than for stories due to the lack of inherent organization in a list of unrelated words. Unfortunately, word list and story tasks are typically developed from different normative datasets, and the existence of a memory performance discrepancy in PD has been challenged. We compared recall of stories and word lists in 35 non-demented PD candidates for DBS. We administered commonly used neuropsychological measures of word list and story memory (Hopkins Verbal Learning Test, Logical Memory), along with a second word list task that was co-normed with the story task. Age-corrected scores were higher for the story task than for both word list tasks. Compared to story recall, word list recall correlated more consistently with motor severity and composite measures of processing speed, working memory, and executive functioning. These results support the classic view of fronto-subcortical contributions to memory in PD and suggest that executive deficits may influence word list recall more than story recall. We recommend a multi-componential memory battery in the neuropsychological assessment of DBS candidates to characterize both mesial temporal and frontal-executive memory processes. One should not rely solely on a word list task because patients exhibiting poor memory for word lists may perform better with stories and therefore deserve an interdisciplinary discussion for DBS surgery.

  1. Autonomy in Depressive Patients Undergoing DBS-Treatment: Informed Consent, Freedom of Will and DBS’ Potential to Restore It

    Science.gov (United States)

    Beeker, Timo; Schlaepfer, Thomas E.; Coenen, Volker A.

    2017-01-01

    According to the World Health Organization, depression is one of the most common and most disabling psychiatric disorders, affecting at any given time approximately 325 million people worldwide. As there is strong evidence that depressive disorders are associated with a dynamic dysregulation of neural circuits involved in emotional processing, recently several attempts have been made to intervene directly in these circuits via deep brain stimulation (DBS) in patients with treatment-resistant major depressive disorder (MDD). Given the promising results of most of these studies, the rising medical interest in this new treatment correlates with a growing sensitivity to ethical questions. One of the most crucial concerns is that DBS might interfere with patients’ ability to make autonomous decisions. Thus, the goal of this article is to evaluate the impact DBS presumably has on the capacity to decide and act autonomously in patients with MDD in the light of the autonomy-undermining effects depression has itself. Following the chronological order of the procedure, special attention will first be paid to depression’s effects on patients’ capacity to make use of their free will in giving valid Informed Consent. We suggest that while the majority of patients with MDD appear capable of autonomous choices, as it is required for Informed Consent, they might still be unable to effectively act according to their own will whenever acting includes significant personal effort. In reducing disabling depressive symptoms like anhedonia and decrease of energy, DBS for treatment resistant MDD thus rather seems to be an opportunity to substantially increase autonomy than a threat to it. PMID:28642690

  2. Autonomy in Depressive Patients Undergoing DBS-Treatment: Informed Consent, Freedom of Will and DBS’ Potential to Restore It

    Directory of Open Access Journals (Sweden)

    Timo Beeker

    2017-06-01

    Full Text Available According to the World Health Organization, depression is one of the most common and most disabling psychiatric disorders, affecting at any given time approximately 325 million people worldwide. As there is strong evidence that depressive disorders are associated with a dynamic dysregulation of neural circuits involved in emotional processing, recently several attempts have been made to intervene directly in these circuits via deep brain stimulation (DBS in patients with treatment-resistant major depressive disorder (MDD. Given the promising results of most of these studies, the rising medical interest in this new treatment correlates with a growing sensitivity to ethical questions. One of the most crucial concerns is that DBS might interfere with patients’ ability to make autonomous decisions. Thus, the goal of this article is to evaluate the impact DBS presumably has on the capacity to decide and act autonomously in patients with MDD in the light of the autonomy-undermining effects depression has itself. Following the chronological order of the procedure, special attention will first be paid to depression’s effects on patients’ capacity to make use of their free will in giving valid Informed Consent. We suggest that while the majority of patients with MDD appear capable of autonomous choices, as it is required for Informed Consent, they might still be unable to effectively act according to their own will whenever acting includes significant personal effort. In reducing disabling depressive symptoms like anhedonia and decrease of energy, DBS for treatment resistant MDD thus rather seems to be an opportunity to substantially increase autonomy than a threat to it.

  3. Diagnostic accuracy of detection and quantification of HBV-DNA and HCV-RNA using dried blood spot (DBS) samples - a systematic review and meta-analysis.

    Science.gov (United States)

    Lange, Berit; Roberts, Teri; Cohn, Jennifer; Greenman, Jamie; Camp, Johannes; Ishizaki, Azumi; Messac, Luke; Tuaillon, Edouard; van de Perre, Philippe; Pichler, Christine; Denkinger, Claudia M; Easterbrook, Philippa

    2017-11-01

    The detection and quantification of hepatitis B (HBV) DNA and hepatitis C (HCV) RNA in whole blood collected on dried blood spots (DBS) may facilitate access to diagnosis and treatment of HBV and HCV infection in resource-poor settings. We evaluated the diagnostic performance of DBS compared to venous blood samples for detection and quantification of HBV-DNA and HCV-RNA in two systematic reviews and meta-analyses on the diagnostic accuracy of HBV DNA and HCV RNA from DBS compared to venous blood samples. We searched MEDLINE, Embase, Global Health, Web of Science, LILAC and Cochrane library for studies that assessed diagnostic accuracy with DBS. Heterogeneity was assessed and where appropriate pooled estimates of sensitivity and specificity were generated using bivariate analyses with maximum likelihood estimates and 95% confidence intervals. We also conducted a narrative review on the impact of varying storage conditions or different cut-offs for detection from studies that undertook this in a subset of samples. The QUADAS-2 tool was used to assess risk of bias. In the quantitative synthesis for diagnostic accuracy of HBV-DNA using DBS, 521 citations were identified, and 12 studies met the inclusion criteria. Overall quality of studies was rated as low. The pooled estimate of sensitivity and specificity for HBV-DNA was 95% (95% CI: 83-99) and 99% (95% CI: 53-100), respectively. In the two studies that reported on cut-offs and limit of detection (LoD) - one reported a sensitivity of 98% for a cut-off of ≥2000 IU/ml and another reported a LoD of 914 IU/ml using a commercial assay. Varying storage conditions for individual samples did not result in a significant variation of results. In the synthesis for diagnostic accuracy of HCV-RNA using DBS, 15 studies met the inclusion criteria, and this included six additional studies to a previously published review. The pooled sensitivity and specificity was 98% (95% CI:95-99) and 98% (95% CI:95-99.0), respectively

  4. Transcallosal connection patterns of opposite dorsal premotor regions support a lateralized specialization for action and perception

    NARCIS (Netherlands)

    van der Hoorn, Anouk; Potgieser, Adriaan R. E.; de Jong, Bauke M.

    Lateralization of higher brain functions requires that a dominant hemisphere collects relevant information from both sides. The right dorsal premotor cortex (PMd), particularly implicated in visuomotor transformations, was hypothesized to be optimally located to converge visuospatial information

  5. The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS

    DEFF Research Database (Denmark)

    Verleger, Rolf; Möller, Friderike; Kuniecki, Michal

    2010-01-01

    ) either as effective or as sham stimulation. In two experiments, either one of these two factors, hemisphere and effectiveness of rTMS, was varied within or between participants. Again, T2 was much better identified in the left than in the right visual field. This advantage of the left visual field......In the present task, series of visual stimuli are rapidly presented left and right, containing two target stimuli, T1 and T2. In previous studies, T2 was better identified in the left than in the right visual field. This advantage of the left visual field might reflect dominance exerted...... by the right over the left hemisphere. If so, then repetitive transcranial magnetic stimulation (rTMS) to the right parietal cortex might release the left hemisphere from right-hemispheric control, thereby improving T2 identification in the right visual field. Alternatively or additionally, the asymmetry in T2...

  6. Interest of targeting either cortical area Brodmann 9 or 46 in rTMS treatment for depression: a preliminary randomized study.

    Science.gov (United States)

    Trojak, Benoit; Meille, Vincent; Jonval, Lysiane; Schuffenecker, Nicolas; Haffen, Emmanuel; Schwan, Raymund; Bonin, Bernard; Chauvet-Gelinier, Jean-Christophe

    2014-12-01

    To assess the interest of specifically targeting Brodmann Areas (BA) 9 or 46 for rTMS treatment of depression. Patients with Treatment-Resistant Depression were randomly assigned to two treatment groups to receive either rTMS on BA 9 or on BA 46. Each patient underwent 10 sessions of 1Hz-rTMS for 2weeks. The Hamilton and Montgomery-Asberg Depression Rating Scales (HDRS, MADRS) were used under blind conditions to assess the therapeutic response (50% improvement). A Wilcoxon signed-rank test was used to compare the depression rating scales scores obtained before and after the 10 rTMS sessions for each of the two groups. The therapeutic results in the two groups were compared using the Mann-Whitney-Wilcoxon test. We also reported the effect sizes using Hedges's g. Fifteen patients were included. Stimulation of both BA 9 (n=7) and BA 46 (n=8) led to similar therapeutic responses in the two groups (with moderate effect size), such as the mean decrease in HDRS (BA 9: p=0.015; BA 46: p=0.010) and MADRS (BA 9: p=0.042; BA 46: p=0.038) scores. Our results do not come out in favor of one or the other BA. Stimulation of BA 9 and BA 46 appears to be equally effective in the treatment of depression. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Repetitive Transcranial Magnetic Stimulation (rTMS) to Treat Social Anxiety Disorder: Case Reports and a Review of the Literature

    Science.gov (United States)

    Paes, Flávia; Baczynski, Tathiana; Novaes, Felipe; Marinho, Tamires; Arias-Carrión, Oscar; Budde, Henning; Sack, Alexander T.; Huston, Joseph P.; Almada, Leonardo Ferreira; Carta, Mauro; Silva, Adriana Cardoso; Nardi, Antonio E.; Machado, Sergio

    2013-01-01

    Objectives: Social anxiety disorder (SAD) is a common and debilitating anxiety disorders. However, few studies had been dedicated to the neurobiology underlying SAD until the last decade. Rates of non-responders to standard methods of treatment remain unsatisfactorily high of approximately 25%, including SAD. Advances in our understanding of SAD could lead to new treatment strategies. A potential non invasive therapeutic option is repetitive transcranial magnetic stimulation (rTMS). Thus, we reported two cases of SAD treated with rTMS Methods: The bibliographical search used Pubmed/Medline, ISI Web of Knowledge and Scielo databases. The terms chosen for the search were: anxiety disorders, neuroimaging, repetitive transcranial magnetic stimulation. Results: In most of the studies conducted on anxiety disorders, except SAD, the right prefrontal cortex (PFC), more specifically dorsolateral PFC was stimulated, with marked results when applying high-rTMS compared with studies stimulating the opposite side. However, according to the “valence hypothesis”, anxiety disorders might be characterized by an interhemispheric imbalance associated with increased right-hemispheric activity. With regard to the two cases treated with rTMS, we found a decrease in BDI, BAI and LSAS scores from baseline to follow-up. Conclusion: We hypothesize that the application of low-rTMS over the right medial PFC (mPFC; the main structure involved in SAD circuitry) combined with high-rTMS over the left mPFC, for at least 4 weeks on consecutive weekdays, may induce a balance in brain activity, opening an attractive therapeutic option for the treatment of SAD. PMID:24278088

  8. Implementing DBS methodology for the determination of Compound A in monkey blood: GLP method validation and investigation of the impact of blood spreading on performance.

    Science.gov (United States)

    Fan, Leimin; Lee, Jacob; Hall, Jeffrey; Tolentino, Edward J; Wu, Huaiqin; El-Shourbagy, Tawakol

    2011-06-01

    This article describes validation work for analysis of an Abbott investigational drug (Compound A) in monkey whole blood with dried blood spots (DBS). The impact of DBS spotting volume on analyte concentration was investigated. The quantitation range was between 30.5 and 10,200 ng/ml. Accuracy and precision of quality controls, linearity of calibration curves, matrix effect, selectivity, dilution, recovery and multiple stabilities were evaluated in the validation, and all demonstrated acceptable results. Incurred sample reanalysis was performed with 57 out of 58 samples having a percentage difference (versus the mean value) less than 20%. A linear relationship between the spotting volume and the spot area was drawn. The influence of spotting volume on concentration was discussed. All validation results met good laboratory practice acceptance requirements. Radial spreading of blood on DBS cards can be a factor in DBS concentrations at smaller spotting volumes.

  9. Downlinks for DBS - Design and engineering considerations

    Science.gov (United States)

    Blecker, M.; Martin, E. R.

    1985-01-01

    The subsystem interrelationships and design parameters choice procedures for a DBS downlink design are discussed from a business decisions point of view. The image quality is determined by customer satisfaction, which is translated to a required carrier/noise (C/N) ratio. The C/N ratio defines acceptable levels of signal fading, a subjective value which is modified by the demographics of the service area. Increasing the satellite on-board transmitting power to meet acceptable broadcast reliability places burdens on the start-up capitalization of the business. Larger receiving antennas in rural areas ameliorates some of the power requirements. The dish size, however, affects the labor costs of installation, but must be kept small enough to be used in heavily populated areas. The satellites must be built, as far as is possible, from off-the-shelf components to keep costs down. Design selections for a sample complete system are listed.

  10. DBS Electrodes With Single Disconnected Contacts: Long-Term Observation and Implications for the Management.

    Science.gov (United States)

    Allert, Niels; Jusciute, Egle; Quindt, Regina; Lindlau, Alexandra; Nolden, Brit Meike; Daryaeitabar, Mohammadreza; Karbe, Hans

    2018-04-27

    To evaluate the long-term course of quadripolar DBS electrodes with disconnected single contacts that cannot be used for DBS. Quadripolar electrodes with open circuits of single contacts or monopolar impedances >6500 Ω were identified from a cohort of 2082 electrodes from 1044 patients with variable movement disorders. The long-term course was analyzed from follow-up data. Disconnected contacts were found in 58 electrodes (2.8%) from 49 patients (4.7%). The dysfunction was restricted to one contact in 51 electrodes (87.9%), two contacts in 5 electrodes (8.6%), three contacts in 2 electrodes (3.4%). Onset was related to surgery (implantation, impulse generator replacement, or other surgical revision) in 34 electrodes (58.6%), trauma in 2 electrodes, undetermined in 11 electrodes, and occurred spontaneously after previous normal measurements in 11 electrodes (19.0%). Repeated measurements at follow-ups of ≥3 months were available in 39 electrodes. In 16 electrodes (41.0%) abnormal impedances persisted constantly during observations up to 11½ years (47 ± 35 months, median 41 months). In 21 electrodes (53.8%) abnormal impedances remained restricted to the initial contact(s) but varied considerably between measurements during up to six years (39 ± 18 months, median 38 months). Only two electrodes (5.1%) with initially one disconnected contact developed a disconnection of a second contact. Disconnections of single contacts occur with increasing cumulative incidence during long-term DBS. Surgery is the main causative risk factor. In the majority of electrodes, the dysfunction remains restricted to the initial contact(s). © 2018 International Neuromodulation Society.

  11. Rapid battery depletion and loss of therapy due to a short circuit in bipolar DBS for essential tremor.

    Science.gov (United States)

    Allert, Niels; Barbe, Michael Thomas; Timmermann, Lars; Coenen, Volker Arnd

    2017-05-01

    Technical dysfunctions have been reported reducing efficacy of deep brain stimulation (DBS). Here, we report on an essential-tremor patient in whom a short circuit in bipolar DBS resulted not only in unilateral loss of therapy but also in high current flow and thereby rapid decline of the impulse-generator battery voltage from 2.83 V a week before the event to 2.54 V, indicating the need for an impulse-generator replacement. Immediate re-programming restored therapeutic efficacy. Moreover, the reduction in current flow allowed the battery voltage to recover without immediate surgical intervention to 2.81 V a week later.

  12. Enhancing memory performance with rTMS in healthy and neurological subjects: the role of the right dorsolateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Patrizia eTurriziani

    2012-04-01

    Full Text Available A debated question in the literature is the degree of anatomical and functional lateralization of the executive control processes subserved by the dorsolateral prefrontal cortex (DLPFC during recognition memory retrieval.We investigated if transient inhibition and excitation of the left and right DLPFC at retrieval by means of repetitive transcranial magnetic stimulation (rTMS modulate recognition memory performance in 100 healthy controls (HCs and in 8 patients with Mild Cognitive Impairment (MCI. Recognition memory tasks of faces, buildings and words were used in different experiments.rTMS-inhibition of the right DLPFC enhanced recognition memory of verbal and non verbal material in both HCs and MCIs. rTMS-excitation of the same region in HCs deteriorated memory performance.Bilateral recruitment of the DLPFC could represent a dysfunctional use of brain resources in recognition memory. Inhibitory rTMS of the right DLPFC may modulate the activity in this dysfunctional network enhancing function in HCs or restoring an adaptive equilibrium in MCI.

  13. Uncovering a context-specific connectional fingerprint of human dorsal premotor cortex

    DEFF Research Database (Denmark)

    Moisa, Marius; Siebner, Hartwig R; Pohmann, Rolf

    2012-01-01

    Primate electrophysiological and lesion studies indicate a prominent role of the left dorsal premotor cortex (PMd) in action selection based on learned sensorimotor associations. Here we applied transcranial magnetic stimulation (TMS) to human left PMd at low or high intensity while right...... to directly assess how stimulation of left PMd modulates task-related brain activity depending on the mode of movement selection. Relative to passive viewing, both tasks activated a frontoparietal motor network. Compared with low-intensity TMS, high-intensity TMS of left PMd was associated with an increase...

  14. Bringing up the rear: new premotor interneurons add regional complexity to a segmentally distributed motor pattern

    Science.gov (United States)

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2011-01-01

    Central pattern generators (CPGs) pace and pattern many rhythmic activities. We have uncovered a new module in the heartbeat CPG of leeches that creates a regional difference in this segmentally distributed motor pattern. The core CPG consists of seven identified pairs and one unidentified pair of heart interneurons of which 5 pairs are premotor and inhibit 16 pairs of heart motor neurons. The heartbeat CPG produces a side-to-side asymmetric pattern of activity of the premotor heart interneurons corresponding to an asymmetric fictive motor pattern and an asymmetric constriction pattern of the hearts with regular switches between the two sides. The premotor pattern progresses from rear to front on one side and nearly synchronously on the other; the motor pattern shows corresponding intersegmental coordination, but only from segment 15 forward. In the rearmost segments the fictive motor pattern and the constriction pattern progress from front to rear on both sides and converge in phase. Modeling studies suggested that the known inhibitory inputs to the rearmost heart motor neurons were insufficient to account for this activity. We therefore reexamined the constriction pattern of intact leeches. We also identified electrophysiologically two additional pairs of heart interneurons in the rear. These new heart interneurons make inhibitory connections with the rear heart motor neurons, are coordinated with the core heartbeat CPG, and are dye-coupled to their contralateral homologs. Their strong inhibitory connections with the rearmost heart motor neurons and the small side-to-side phase difference of their bursting contribute to the different motor and beating pattern observed in the animal's rear. PMID:21775711

  15. The dorsolateral prefrontal cortex plays a role in self-initiated elaborative cognitive processing during episodic memory encoding: rTMS evidence.

    Directory of Open Access Journals (Sweden)

    Colin Hawco

    Full Text Available During episodic memory encoding, elaborative cognitive processing can improve later recall or recognition. While multiple studies examined the neural correlates of encoding strategies, few studies have explicitly focused on the self-initiation of elaborative encoding. Repetitive transcranial magnetic stimulation (rTMS, a method which can transiently disrupt neural activity, was administered during an associative encoding task. rTMS was either applied to the left dorsolateral prefrontal cortex (DLPFC or to the vertex (a control region not involved in memory encoding during presentation of pairs of words. Pairs could be semantically related or not related. Two encoding instructions were given, either cueing participants to analyze semantic relationships (cued condition, or to memorize the pair without any specific strategy cues (the self-initiated condition. Participants filled out a questionnaire regarding their use of memory strategies and performed a cued-recall task. We hypothesized that if the DLPFC plays a role in the self-initiation of elaborative encoding we would observe a reduction in memory performance in the self-initiated condition, particularly for related. We found a significant correlation between the effects of rTMS and strategy use, only in the self-initiated condition with related pairs. High strategy users showed reduced performance following DLPFC stimulation, while low strategy users tended to show increased recall following DLPFC stimulation during encoding. These results suggest the left DLPFC may be involved in the self-initiation of memory strategy use, and individuals may utilize different neural networks depending on their use of encoding strategies.

  16. The human premotor oculomotor brainstem system - can it help to understand oculomotor symptoms in Huntington's disease?

    NARCIS (Netherlands)

    Rueb, U.; Heinsen, H.; Brunt, E. R.; Landwehrmeyer, B.; Den Dunnen, W. F. A.; Gierga, K.; Deller, T.

    Recent progress in oculomotor research has enabled new insights into the functional neuroanatomy of the human premotor oculomotor brainstem network. In the present review, we provide an overview of its functional neuroanatomy and summarize the broad range of oculomotor dysfunctions that may occur in

  17. Decision-Making in the Ventral Premotor Cortex Harbinger of Action

    Science.gov (United States)

    Pardo-Vazquez, Jose L.; Padron, Isabel; Fernandez-Rey, Jose; Acuña, Carlos

    2011-01-01

    Although the premotor (PM) cortex was once viewed as the substrate of pure motor functions, soon it was realized that it was involved in higher brain functions. By this it is meant that the PM cortex functions would better be explained as motor set, preparation for limb movement, or sensory guidance of movement rather than solely by a fixed link to motor performance. These findings, together with a better knowledge of the PM cortex histology and hodology in human and non-human primates prompted quantitative studies of this area combining behavioral tasks with electrophysiological recordings. In addition, the exploration of the PM cortex neurons with qualitative methods also suggested its participation in higher functions. Behavioral choices frequently depend on temporal cues, which together with knowledge of previous outcomes and expectancies are combined to decide and choose a behavioral action. In decision-making the knowledge about the consequences of decisions, either correct or incorrect, is fundamental because they can be used to adapt future behavior. The neuronal correlates of a decision process have been described in several cortical areas of primates. Among them, there is evidence that the monkey ventral premotor (PMv) cortex, an anatomical and physiological well-differentiated area of the PM cortex, supports both perceptual decisions and performance monitoring. Here we review the evidence that the steps in a decision-making process are encoded in the firing rate of the PMv neurons. This provides compelling evidence suggesting that the PMv is involved in the use of recent and long-term sensory memory to decide, execute, and evaluate the outcomes of the subjects’ choices. PMID:21991249

  18. Decision-making in the ventral premotor cortex harbinger of action

    Directory of Open Access Journals (Sweden)

    José L. ePardo-Vázquez

    2011-09-01

    Full Text Available Although the premotor cortex (PM was once viewed as the substrate of pure motor functions, soon it was realized that it was involved in higher brain functions. By this it is meant that the PM cortex functions would better be explained as motor set, preparation for limb movement or sensory guidance of movement rather than solely by a fixed link to motor performance. These findings, together with a better knowledge of the PM cortex histology and hodology in human and non-human primates prompted quantitative studies of this area combining behavioral tasks with electrophysiological recordings. In addition, the exploration of the PM cortex neurons with qualitative methods also suggested its participation in higher functions. Behavioral choices frequently depend on temporal cues, which together with knowledge of previous outcomes and expectancies are combined to decide and choose a behavioral action. In decision-making the knowledge about the consequences of decisions, either correct or incorrect, is fundamental because they can be used to adapt future behavior. The neuronal correlates of a decision process have been described in several cortical areas of primates. Among them, there is evidence that the monkey ventral premotor cortex (PMv, an anatomical and physiological well-differentiated area of the PM cortex, supports both perceptual decisions and performance monitoring. Here we review the evidence that the steps in a decision making process are encoded in the firing rate of the PMv neurons. This provides compelling evidence suggesting that the PMv is involved in the use of recent and long-term sensory memory to decide, execute and evaluate the outcomes of the subjects’ choices.

  19. Translation and cross-cultural adaptation of the Brazilian Portuguese version of the Driving Behavior Survey (DBS

    Directory of Open Access Journals (Sweden)

    Jessye Almeida Cantini

    2013-12-01

    Full Text Available BACKGROUND: Fear of driving has been recognized as a complex diagnostic entity. For this reason, the use of psychometric instruments is fundamental to advancing research in this area. Psychometric instruments are also necessary for clinical care, as they can help conceptualize the disorder and plan adequate treatment. OBJECTIVE: To describe the cross-cultural adaptation of a Brazilian version of the Driving Behavior Survey (DBS. Methods: The process consisted of: 1 two translations and back-translations carried out by independent evaluators; 2 development of a brief version by four bilingual experts in mental health; 3 experimental application; and 4 investigation of operational equivalence. RESULTS: The adaptation process is described and a final Brazilian version of the DBS is presented. CONCLUSION: A new instrument is now available to assess the driving behaviors of the Brazilian population, facilitating research in this field.

  20. Neuroimaging in pre-motor Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Thomas R. Barber

    2017-01-01

    Full Text Available The process of neurodegeneration in Parkinson's disease begins long before the onset of clinical motor symptoms, resulting in substantial cell loss by the time a diagnosis can be made. The period between the onset of neurodegeneration and the development of motoric disease would be the ideal time to intervene with disease modifying therapies. This pre-motor phase can last many years, but the lack of a specific clinical phenotype means that objective biomarkers are needed to reliably detect prodromal disease. In recent years, recognition that patients with REM sleep behaviour disorder (RBD are at particularly high risk of future parkinsonism has enabled the development of large prodromal cohorts in which to investigate novel biomarkers, and neuroimaging has generated some of the most promising results to date. Here we review investigations undertaken in RBD and other pre-clinical cohorts, including modalities that are well established in clinical Parkinson's as well as novel imaging methods. Techniques such as high resolution MRI of the substantia nigra and functional imaging of Parkinsonian brain networks have great potential to facilitate early diagnosis. Further longitudinal studies will establish their true value in quantifying prodromal neurodegeneration and predicting future Parkinson's.

  1. Bayesian Ising approximation for learning dictionaries of multispike timing patterns in premotor neurons

    Science.gov (United States)

    Hernandez Lahme, Damian; Sober, Samuel; Nemenman, Ilya

    Important questions in computational neuroscience are whether, how much, and how information is encoded in the precise timing of neural action potentials. We recently demonstrated that, in the premotor cortex during vocal control in songbirds, spike timing is far more informative about upcoming behavior than is spike rate (Tang et al, 2014). However, identification of complete dictionaries that relate spike timing patterns with the controled behavior remains an elusive problem. Here we present a computational approach to deciphering such codes for individual neurons in the songbird premotor area RA, an analog of mammalian primary motor cortex. Specifically, we analyze which multispike patterns of neural activity predict features of the upcoming vocalization, and hence are important codewords. We use a recently introduced Bayesian Ising Approximation, which properly accounts for the fact that many codewords overlap and hence are not independent. Our results show which complex, temporally precise multispike combinations are used by individual neurons to control acoustic features of the produced song, and that these code words are different across individual neurons and across different acoustic features. This work was supported, in part, by JSMF Grant 220020321, NSF Grant 1208126, NIH Grant NS084844 and NIH Grant 1 R01 EB022872.

  2. Premotor spinal network with balanced excitation and inhibition during motor patterns has high resilience to structural division

    DEFF Research Database (Denmark)

    Petersen, Peter C; Vestergaard, Mikkel; Reveles Jensen, Kristian

    2014-01-01

    Direct measurements of synaptic inhibition (I) and excitation (E) to spinal motoneurons can provide an important insight into the organization of premotor networks. Such measurements of flexor motoneurons participating in motor patterns in turtles have recently demonstrated strong concurrent E...

  3. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)

    DEFF Research Database (Denmark)

    Lefaucheur, Jean-Pascal; André-Obadia, Nathalie; Antal, Andrea

    2014-01-01

    , consciousness disorders, tinnitus, depression, anxiety disorders, obsessive-compulsive disorder, schizophrenia, craving/addiction, and conversion. Despite unavoidable inhomogeneities, there is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency (HF) r...... for the negative symptoms of schizophrenia, and LF-rTMS of contralesional M1 in chronic motor stroke. The effects of rTMS in a number of indications reach level C (possible efficacy), including LF-rTMS of the left temporoparietal cortex in tinnitus and auditory hallucinations. It remains to determine how...

  4. Efficacy of intermittent Theta Burst Stimulation (iTBS) and 10-Hz high-frequency repetitive transcranial magnetic stimulation (rTMS) in treatment-resistant unipolar depression: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Bulteau, Samuel; Sébille, Veronique; Fayet, Guillemette; Thomas-Ollivier, Veronique; Deschamps, Thibault; Bonnin-Rivalland, Annabelle; Laforgue, Edouard; Pichot, Anne; Valrivière, Pierre; Auffray-Calvier, Elisabeth; Fortin, June; Péréon, Yann; Vanelle, Jean-Marie; Sauvaget, Anne

    2017-01-13

    The treatment of depression remains a challenge since at least 40% of patients do not respond to initial antidepressant therapy and 20% present chronic symptoms (more than 2 years despite standard treatment administered correctly). Repetitive transcranial magnetic stimulation (rTMS) is an effective adjuvant therapy but still not ideal. Intermittent Theta Burst Stimulation (iTBS), which has only been used recently in clinical practice, could have a faster and more intense effect compared to conventional protocols, including 10-Hz high-frequency rTMS (HF-rTMS). However, no controlled study has so far highlighted the superiority of iTBS in resistant unipolar depression. This paper focuses on the design of a randomised, controlled, double-blind, single-centre study with two parallel arms, carried out in France, in an attempt to assess the efficacy of an iTBS protocol versus a standard HF- rTMS protocol. Sixty patients aged between 18 and 75 years of age will be enrolled. They must be diagnosed with major depressive disorder persisting despite treatment with two antidepressants at an effective dose over a period of 6 weeks during the current episode. The study will consist of two phases: a treatment phase comprising 20 sessions of rTMS to the left dorsolateral prefrontal cortex, localised via a neuronavigation system and a 6-month longitudinal follow-up. The primary endpoint will be the number of responders per group, defined by a decrease of at least 50% in the initial score on the Montgomery and Asberg Rating Scale (MADRS) at the end of rTMS sessions. The secondary endpoints will be: response rate 1 month after rTMS sessions; number of remissions defined by a MADRS score of iTBS superiority in the management of unipolar depression and we will discuss its effect over time. In case of a significant increase in the number of therapeutic responses with a prolonged effect, the iTBS protocol could be considered a first-line protocol in resistant unipolar depression

  5. The Efficacy of Daily Prefrontal Repetitive Transcranial Magnetic Stimulation (rTMS) for Burning Mouth Syndrome (BMS): A Randomized Controlled Single-blind Study.

    Science.gov (United States)

    Umezaki, Yojiro; Badran, Bashar W; DeVries, William H; Moss, Jkeonye; Gonzales, Theresa; George, Mark S

    2016-01-01

    Burning mouth syndrome (BMS) is a burning oral sensation without any corresponding abnormal findings. In some cases, BMS is refractory to pharmacologic treatments. Repetitive transcranial magnetic stimulation (rTMS) over left prefrontal cortex induces analgesic effect in both acute and chronic pain. However, its effect for BMS has not been evaluated. The aim of this randomized, controlled, single-blind study was to assess the efficacy of prefrontal rTMS for BMS. Twenty patients with BMS were recruited and randomized to receive 30,000 pulses in total at 10 Hz TMS (n = 12) or sham TMS (n = 8). We assessed the change of BMS pain condition, functional status and mood until 2 months after the beginning of treatment. In the real group, the BMS pain intensity decreased 67%, and 75% of the patients reported >50% pain decrease on final assessment compared to baseline, without heavy side effects. There was significant pain reduction in subjects in the real group immediately after 1 week of treatment, whereas there was none in those in the sham group. Similar tendency was confirmed in change of functional status. Mood and the affective aspect of pain were not changed in this study. BMS pain was significantly improved with 2 weeks of treatment of high frequency rTMS over left DLPFC compared to sham stimulation. Further study is needed to refine and improve TMS as a potential treatment of BMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis.

    Science.gov (United States)

    Belardinelli, Paolo; Laer, Leonard; Ortiz, Erick; Braun, Christoph; Gharabaghi, Alireza

    2017-01-01

    Motor recovery in severely impaired stroke patients is often very limited. To refine therapeutic interventions for regaining motor control in this patient group, the functionally relevant mechanisms of neuronal plasticity need to be detected. Cortico-muscular coherence (CMC) may provide physiological and topographic insights to achieve this goal. Synchronizing limb movements to motor-related brain activation is hypothesized to reestablish cortico-motor control indexed by CMC. In the present study, right-handed, chronic stroke patients with right-hemispheric lesions and left hand paralysis participated in a four-week training for their left upper extremity. A brain-robot interface turned event-related beta-band desynchronization of the lesioned sensorimotor cortex during kinesthetic motor-imagery into the opening of the paralyzed hand by a robotic orthosis. Simultaneous MEG/EMG recordings and individual models from MRIs were used for CMC detection and source reconstruction of cortico-muscular connectivity to the affected finger extensors before and after the training program. The upper extremity-FMA of the patients improved significantly from 16.23 ± 6.79 to 19.52 ± 7.91 (p = 0.0015). All patients showed significantly increased CMC in the beta frequency-band, with a distributed, bi-hemispheric pattern and considerable inter-individual variability. The location of CMC changes was not correlated to the severity of the motor impairment, the motor improvement or the lesion volume. Group analysis of the cortical overlap revealed a common feature in all patients following the intervention: a significantly increased level of ipsilesional premotor CMC that extended from the superior to the middle and inferior frontal gyrus, along with a confined area of increased CMC in the contralesional premotor cortex. In conclusion, functionally relevant modulations of CMC can be detected in patients with long-term, severe motor deficits after a brain-robot assisted

  7. Comparing identified and statistically significant lipids and polar metabolites in 15-year old serum and dried blood spot samples for longitudinal studies: Comparing lipids and metabolites in serum and DBS samples

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Jennifer E. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Casey, Cameron P. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Stratton, Kelly G. [National Security Directorate, Pacific Northwest National Laboratory, Richland WA USA; Zink, Erika M. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Kim, Young-Mo [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Zheng, Xueyun [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Monroe, Matthew E. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Weitz, Karl K. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bloodsworth, Kent J. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Orton, Daniel J. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Ibrahim, Yehia M. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Moore, Ronald J. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Lee, Christine G. [Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland OR USA; Research Service, Portland Veterans Affairs Medical Center, Portland OR USA; Pedersen, Catherine [Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland OR USA; Orwoll, Eric [Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland OR USA; Smith, Richard D. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Burnum-Johnson, Kristin E. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Baker, Erin S. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-02-05

    The use of dried blood spots (DBS) has many advantages over traditional plasma and serum samples such as smaller blood volume required, storage at room temperature, and ability for sampling in remote locations. However, understanding the robustness of different analytes in DBS samples is essential, especially in older samples collected for longitudinal studies. Here we analyzed DBS samples collected in 2000-2001 and stored at room temperature and compared them to matched serum samples stored at -80°C to determine if they could be effectively used as specific time points in a longitudinal study following metabolic disease. Four hundred small molecules were identified in both the serum and DBS samples using gas chromatograph-mass spectrometry (GC-MS), liquid chromatography-MS (LC-MS) and LC-ion mobility spectrometry-MS (LC-IMS-MS). The identified polar metabolites overlapped well between the sample types, though only one statistically significant polar metabolite in a case-control study was conserved, indicating degradation occurs in the DBS samples affecting quantitation. Differences in the lipid identifications indicated that some oxidation occurs in the DBS samples. However, thirty-six statistically significant lipids correlated in both sample types indicating that lipid quantitation was more stable across the sample types.

  8. Lateralized Contribution of Prefrontal Cortex in Controlling Task-Irrelevant Information during Verbal and Spatial Working Memory Tasks: rTMS Evidence

    Science.gov (United States)

    Sandrini, Marco; Rossini, Paolo Maria; Miniussi, Carlo

    2008-01-01

    The functional organization of working memory (WM) in the human prefrontal cortex remains unclear. The present study used repetitive transcranial magnetic stimulation (rTMS) to clarify the role of the dorsolateral prefrontal cortex (dlPFC) both in the types of information (verbal vs. spatial), and the types of processes (maintenance vs.…

  9. Functional significance of the electrocorticographic auditory responses in the premotor cortex

    Directory of Open Access Journals (Sweden)

    Kazuyo eTanji

    2015-03-01

    Full Text Available Other than well-known motor activities in the precentral gyrus, functional magnetic resonance imaging (fMRI studies have found that the ventral part of the precentral gyrus is activated in response to linguistic auditory stimuli. It has been proposed that the premotor cortex in the precentral gyrus is responsible for the comprehension of speech, but the precise function of this area is still debated because patients with frontal lesions that include the precentral gyrus do not exhibit disturbances in speech comprehension. We report on a patient who underwent resection of the tumor in the precentral gyrus with electrocorticographic recordings while she performed the verb generation task during awake brain craniotomy. Consistent with previous fMRI studies, high-gamma band auditory activity was observed in the precentral gyrus. Due to the location of the tumor, the patient underwent resection of the auditory responsive precentral area which resulted in the post-operative expression of a characteristic articulatory disturbance known as apraxia of speech (AOS. The language function of the patient was otherwise preserved and she exhibited intact comprehension of both spoken and written language. The present findings demonstrated that a lesion restricted to the ventral precentral gyrus is sufficient for the expression of AOS and suggest that the auditory-responsive area plays an important role in the execution of fluent speech rather than the comprehension of speech. These findings also confirm that the function of the premotor area is predominantly motor in nature and its sensory responses is more consistent with the ‘sensory theory of speech production’, in which it was proposed that sensory representations are used to guide motor-articulatory processes.

  10. Tremor recording and analysis as a tool for target localisation in thalamotomy and DBS for tremor

    NARCIS (Netherlands)

    Journee, HL; Hamoen, DJ; Staal, MJ; Sclabassi, R; Haaxma, R; Elands, A; Hummel, JJJ; Boom, H; Robinson, C; Rutten, W; Neuman, M; Wijkstra, H

    1997-01-01

    The objective of this work was to design and use a tremor and analysis system for stereotactic thalamotomy and thalamus stimulation (DBS). A notebook PC based system was developed. The tremor was measured by accelero-transducers or EMG. The method was used to confirm the definitive localization of

  11. Assessment of the within- and between-lot variability of Whatman™ FTA(®) DMPK and 903(®) DBS papers and their suitability for the quantitative bioanalysis of small molecules.

    Science.gov (United States)

    Luckwell, Jacquelynn; Denniff, Philip; Capper, Stephen; Michael, Paul; Spooner, Neil; Mallender, Philip; Johnson, Barry; Clegg, Sarah; Green, Mark; Ahmad, Sheelan; Woodford, Lynsey

    2013-11-01

    To ensure that PK data generated from DBS samples are of the highest quality, it is important that the paper substrate is uniform and does not unduly contribute to variability. This study investigated any within and between lot variations for four cellulose paper types: Whatman™ FTA(®) DMPK-A, -B and -C, and 903(®) (GE Healthcare, Buckinghamshire, UK). The substrates were tested to demonstrate manufacturing reproducibility (thickness, weight, chemical coating concentration) and its effect on the size of the DBS produced, and the quantitative data derived from the bioanalysis of human DBS samples containing six compounds of varying physicochemical properties. Within and between lot variations in paper thickness, mass and chemical coating concentration were within acceptable manufacturing limits. No variation in the spot size or bioanalytical data was observed. Bioanalytical results obtained for DBS samples containing a number of analytes spanning a range of chemical space are not affected by the lot used or by the location within a lot.

  12. Effect of edaravone in combined with rTMS on the free radicals and neurological function in patients with cerebral infarction

    Directory of Open Access Journals (Sweden)

    Lei Ge

    2017-04-01

    Full Text Available Objective: To explore the effect of edaravone in combined with repetitive transcranial magnetic stimulation (rTMS on the free radicals and neurological function in patients with cerebral infarction. Methods: A total of 90 patients with acute cerebral infarction (ACI who were admitted in our hospital from September, 2015 to March, 2016 were included in the study and randomized into the observation group and the control group. The patients in the control group were given blood pressure reduction, intracranial pressure reduction, blood lipid regulation, anti-platelet aggregation, symptomatic and supportive treatments, edaravone (30 mg + normal saline (100 mL, ivdrip, 2 times/d, continuously for 14 d. On this basis, the patients in the observation group were given additional rTMS. 7 d-treatment was regarded as one course, and the patients were treated for 4 courses. The morning fasting venous blood before treatment, 7 d and 14 d after treatment in the two groups was collected to detect NO, NOS, SOD, MDA, S-100β, and NSE. NIHSS before treatment, 7 d, 14 d, and 28 d after treatment was evaluated. Results: NO, NOS, and MDA levels after treatment in the observation group were significantly lower than those in the control group, while SOD level was significantly higher than that in the control group. S-100β and NSE levels after treatment in the observation group were significantly lower than those in the control group. NIHSS score after treatment in the observation group was significantly lower than that in the control group. Conclusions: Edaravone in combined with rTMS in the treatment of ACI can significantly eliminate the free radicals, effectively improve the neurological function, and enhance the long-term efficacy.

  13. Scalp acupuncture plus low-frequency rTMS promotes repair of brain white matter tracts in stroke patients: A DTI study.

    Science.gov (United States)

    Zhao, Ning; Zhang, Jingna; Qiu, Mingguo; Wang, Chunrong; Xiang, Yun; Wang, Hui; Xie, Jingwen; Liu, Shu; Wu, Jing

    2018-01-01

    To study the clinical effects of scalp acupuncture plus low frequency rTMS in hemiplegic stroke patients. A total of 28 hemiplegic stroke patients were recruited and randomly assigned to the experimental group (scalp acupuncture + low frequency rTMS + routine rehabilitation treatment) or the control group (scalp acupuncture + routine rehabilitation treatment). All patients received a diffusion tensor imaging examination on the day of admission and on the fourteenth day. Compared with pre-treatment, the upper limb motor function score and ability of daily life score increased significantly in the two groups, and motor function improvement was much greater in the experimental group. Fractional anisotropy values significantly increased in white matter tracts, such as the corticospinal tract, forceps minor, superior longitudinal fasciculus and uncinate fasciculus in the two groups. Compared with pre-treatment, the fractional anisotropy values increased and mean diffusion values decreased synchronously in the forceps minor, left inferior fronto-occipital fasciculus, left inferior longitudinal fasciculus, left superior longitudinal fasciculus and left uncinate fasciculus in the experimental group. Before and after treatment, there were no significant differences in the changes of fractional anisotropy values between the two groups, but the changes of the mean diffusion values in the experimental group were much greater than those in the control group in the left superior longitudinal fasciculus and the left uncinate fasciculus (plow frequency rTMS can promote white matter tracts repair better than scalp acupuncture alone; the motor function improvement of the hemiplegic upper limb may be closely related to the rehabilitation of the forceps minor; the combination of scalp acupuncture and low frequency rTMS is expected to provide a more optimal rehabilitation protocol for stroke hemiplegic patients.

  14. Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson's disease

    DEFF Research Database (Denmark)

    Herz, Damian Marc; Florin, Esther; Christensen, Mark Schram

    2014-01-01

    PM to SMA and significantly strengthened coupling in the feedback connection from M1 to lPM expressed as β-β as well as θ-β coupling. Enhancement in cross-frequency θ-β coupling from M1 to lPM was correlated with levodopa-induced improvement in motor function. The results show that PD is associated...... with an altered neural communication between premotor and motor cortical areas, which can be modulated by dopamine replacement....

  15. Effect of Bilateral Prefrontal rTMS on Left Prefrontal NAA and Glx Levels in Schizophrenia Patients with Predominant Negative Symptoms : An Exploratory Study

    NARCIS (Netherlands)

    Dlabac-de Lange, Jozarni J.; Liemburg, Edith J.; Bais, Leonie; van de Poel-Mustafayeva, Aida T.; de Lange-de Klerk, Elly S. M.; Knegtering, Henderikus; Aleman, Andre

    2017-01-01

    Background: Prefrontal repetitive Transcranial Magnetic Stimulation (rTMS) may improve negative symptoms in patients with schizophrenia, but few studies have investigated the underlying neural mechanism. Objective: This study aims to investigate changes in the levels of glutamate and glutamine (Glx,

  16. Does suppression of oscillatory synchronisation mediate some of the therapeutic effects of DBS in patients with Parkinson’s disease?

    Directory of Open Access Journals (Sweden)

    Alexandre eEusebio

    2012-07-01

    Full Text Available There is growing evidence for exaggerated oscillatory neuronal synchronisation in patients with Parkinson’s disease. In particular, oscillations at around 20 Hz, in the so-called beta frequency band, relate to the cardinal symptoms of bradykinesia and rigidity. Deep brain stimulation of the subthalamic nucleus can significantly improve these motor impairments. Recent evidence has demonstrated reduction of beta oscillations concurrent with alleviation of PD motor symptoms, raising the possibility that suppression of aberrant activity may mediate the effects of DBS. Here we review the evidence supporting suppression of pathological oscillations during stimulation and discuss how this might underlie the efficacy of DBS. We also consider how beta activity may provide a feedback signal suitable for next generation closed loop and intelligent stimulators.

  17. Brain plasticity in the adult: modulation of function in amblyopia with rTMS.

    Science.gov (United States)

    Thompson, Benjamin; Mansouri, Behzad; Koski, Lisa; Hess, Robert F

    2008-07-22

    Amblyopia is a cortically based visual disorder caused by disruption of vision during a critical early developmental period. It is often thought to be a largely intractable problem in adult patients because of a lack of neuronal plasticity after this critical period [1]; however, recent advances have suggested that plasticity is still present in the adult amblyopic visual cortex [2-6]. Here, we present data showing that repetitive transcranial magnetic stimulation (rTMS) of the visual cortex can temporarily improve contrast sensitivity in the amblyopic visual cortex. The results indicate continued plasticity of the amblyopic visual system in adulthood and open the way for a potential new therapeutic approach to the treatment of amblyopia.

  18. Bioenergy for District Bioheating System (DBS) from eucalyptus residues in a European coal-producing region

    International Nuclear Information System (INIS)

    Paredes-Sánchez, José P.; López-Ochoa, Luis M.; López-González, Luis M.; Xiberta-Bernat, Jorge

    2016-01-01

    Highlights: • The paper introduces a combined method to evaluate bioenergy. • Forest biomass needs to be studied as a fuel supplier and carbon sink. • The forests under study produce about 28 kt dry and 0.15 Mt CO 2 per year. • Examined a District Bioheating System (DBS) with the available biomass. - Abstract: Since forest biomass can substitute for CO 2 -emitting fossil fuels in the energy sector, forest management can greatly affect the global carbon cycle. Eucalyptus globulus has adapted very well in the coal region of the Principality of Asturias (Northwestern Spain) and has become highly regarded as a valuable raw material for the pulp and paper industry. In the present work, the Eucalyptus globulus is studied as a key natural energy source in order to improve existing methods and develop new ways of optimizing the evaluation and use of both forest biomass and woody residue in energy systems, in accordance with sustainable forestry industry safety and environmental requirements. The feasibility of utilizing forest biomass instead of natural gas in a District Bioheating System (DBS) has been examined based on an analysis of its economical and environmental impacts.

  19. Neuromodulation integrating rTMS and neurofeedback for the treatment of autism spectrum disorder: An exploratory study

    Science.gov (United States)

    Sokhadze, Estate M.; El-Baz, Ayman S.; Tasman, Allan; Sears, Lonnie L.; Wang, Yao; Lamina, Eva V.; Casanova, Manuel F.

    2014-01-01

    Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by deficits in social interaction, language, stereotyped behaviors, and restricted range of interests. In previous studies low frequency repetitive transcranial magnetic stimulation (rTMS) has been used, with positive behavioral and electrophysiological results, for the experimental treatment in ASD. In this study we combined prefrontal rTMS sessions with electroencephalographic (EEG) neurofeedback (NFB) to prolong and reinforce TMS-induced EEG changes. The pilot trial recruited 42 children with ASD (~14.5 yrs). Outcome measures included behavioral evaluations and reaction time test with event-related potential (ERP) recording. For the main goal of this exploratory study we used rTMS-neurofeedback combination (TMS-NFB, N=20) and waitlist (WTL, N=22) groups to examine effects of 18 sessions of integrated rTMS-NFB treatment or wait period) on behavioral responses, stimulus and response-locked ERPs, and other functional and clinical outcomes. The underlying hypothesis was that combined TMS-NFB will improve executive functions in autistic patients as compared to the waitlist group. Behavioral and ERP outcomes were collected in pre- and post-treatment tests in both groups. Results of the study supported our hypothesis by demonstration of positive effects of combined TMS-NFB neurotherapy in active treatment group as compared to control waitlist group, as the TMS-NFB group showed significant improvements in behavioral and functional outcomes as compared to the waitlist group. PMID:25267414

  20. Paying attention through eye movements: a computational investigation of the premotor theory of spatial attention.

    Science.gov (United States)

    Casarotti, Marco; Lisi, Matteo; Umiltà, Carlo; Zorzi, Marco

    2012-07-01

    Growing evidence indicates that planning eye movements and orienting visuospatial attention share overlapping brain mechanisms. A tight link between endogenous attention and eye movements is maintained by the premotor theory, in contrast to other accounts that postulate the existence of specific attention mechanisms that modulate the activity of information processing systems. The strong assumption of equivalence between attention and eye movements, however, is challenged by demonstrations that human observers are able to keep attention on a specific location while moving the eyes elsewhere. Here we investigate whether a recurrent model of saccadic planning can account for attentional effects without requiring additional or specific mechanisms separate from the circuits that perform sensorimotor transformations for eye movements. The model builds on the basis function approach and includes a circuit that performs spatial remapping using an "internal forward model" of how visual inputs are modified as a result of saccadic movements. Simulations show that the latter circuit is crucial to account for dissociations between attention and eye movements that may be invoked to disprove the premotor theory. The model provides new insights into how spatial remapping may be implemented in parietal cortex and offers a computational framework for recent proposals that link visual stability with remapping of attention pointers.

  1. Experimental results supporting the determination of service quality objectives for DBS systems

    Science.gov (United States)

    Chouinard, G.; Whyte, W. A., Jr.; Goldberg, A. A.; Jones, B. L.

    1985-01-01

    A summary of the results of a joint United States and Canadian program on subjective measurements of the picture degradation caused by noise and interference on an NTSC encoded color television signal is given in this paper. The effects of system noise, cochannel and adjacent channel interference, and both single entry and aggregate as well as a combination of these types of interference were subjectively evaluated by expert and nonexpert viewers under reference conditions. These results were used to develop the rationale used at RARC '83 to establish the service quality objective for planning the DBS service for the American continents.

  2. Ipsilateral corticotectal projections from the primary, premotor and supplementary motor cortical areas in adult macaque monkeys: a quantitative anterograde tracing study

    Science.gov (United States)

    Fregosi, Michela; Rouiller, Eric M.

    2018-01-01

    The corticotectal projection from cortical motor areas is one of several descending pathways involved in the indirect control of spinal motoneurons. In non-human primates, previous studies reported that cortical projections to the superior colliculus originated from the premotor cortex and the primary motor cortex, whereas no projection originated from the supplementary motor area. The aim of the present study was to investigate and compare the properties of corticotectal projections originating from these three cortical motor areas in intact adult macaques (n=9). The anterograde tracer BDA was injected into one of these cortical areas in each animal. Individual axonal boutons, both en passant and terminaux, were charted and counted in the different layers of the ipsilateral superior colliculus. The data confirmed the presence of strong corticotectal projections from the premotor cortex. A new observation was that strong corticotectal projections were also found to originate from the supplementary motor area (its proper division). The corticotectal projection from the primary motor cortex was quantitatively less strong than that from either the premotor or supplementary motor areas. The corticotectal projection from each motor area was directed mainly to the deep layer of the superior colliculus, although its intermediate layer was also a consistent target of fairly dense terminations. The strong corticotectal projections from non-primary motor areas are in position to influence the preparation and planning of voluntary movements. PMID:28921678

  3. Integration of Visual and Proprioceptive Limb Position Information in Human Posterior Parietal, Premotor, and Extrastriate Cortex.

    Science.gov (United States)

    Limanowski, Jakub; Blankenburg, Felix

    2016-03-02

    The brain constructs a flexible representation of the body from multisensory information. Previous work on monkeys suggests that the posterior parietal cortex (PPC) and ventral premotor cortex (PMv) represent the position of the upper limbs based on visual and proprioceptive information. Human experiments on the rubber hand illusion implicate similar regions, but since such experiments rely on additional visuo-tactile interactions, they cannot isolate visuo-proprioceptive integration. Here, we independently manipulated the position (palm or back facing) of passive human participants' unseen arm and of a photorealistic virtual 3D arm. Functional magnetic resonance imaging (fMRI) revealed that matching visual and proprioceptive information about arm position engaged the PPC, PMv, and the body-selective extrastriate body area (EBA); activity in the PMv moreover reflected interindividual differences in congruent arm ownership. Further, the PPC, PMv, and EBA increased their coupling with the primary visual cortex during congruent visuo-proprioceptive position information. These results suggest that human PPC, PMv, and EBA evaluate visual and proprioceptive position information and, under sufficient cross-modal congruence, integrate it into a multisensory representation of the upper limb in space. The position of our limbs in space constantly changes, yet the brain manages to represent limb position accurately by combining information from vision and proprioception. Electrophysiological recordings in monkeys have revealed neurons in the posterior parietal and premotor cortices that seem to implement and update such a multisensory limb representation, but this has been difficult to demonstrate in humans. Our fMRI experiment shows that human posterior parietal, premotor, and body-selective visual brain areas respond preferentially to a virtual arm seen in a position corresponding to one's unseen hidden arm, while increasing their communication with regions conveying visual

  4. Exploratory Study of rTMS Neuromodulation Effects on Electrocortical Functional Measures of Performance in an Oddball Test and Behavioral Symptoms in Autism

    Directory of Open Access Journals (Sweden)

    Estate M. Sokhadze

    2018-05-01

    Full Text Available There is no accepted pathology to autism spectrum disorders (ASD but research suggests the presence of an altered excitatory/inhibitory (E/I bias in the cerebral cortex. Repetitive transcranial magnetic stimulation (rTMS offers a non-invasive means of modulating the E/I cortical bias with little in terms of side effects. In this study, 124 high functioning ASD children (IQ > 80, <18 years of age were recruited and assigned using randomization to either a waitlist group or one of three different number of weekly rTMS sessions (i.e., 6, 12, and 18. TMS consisted of trains of 1.0 Hz frequency pulses applied over the dorsolateral prefrontal cortex (DLPFC. The experimental task was a visual oddball with illusory Kanizsa figures. Behavioral response variables included reaction time and error rate along with such neurophysiological indices such as stimulus and response-locked event-related potentials (ERP. One hundred and twelve patients completed the assigned number of TMS sessions. Results showed significant changes from baseline to posttest period in the following measures: motor responses accuracy [lower percentage of committed errors, slower latency of commission errors and restored normative post-error reaction time slowing in both early and later-stage ERP indices, enhanced magnitude of error-related negativity (ERN, improved error monitoring and post-error correction functions]. In addition, screening surveys showed significant reductions in aberrant behavior ratings and in both repetitive and stereotypic behaviors. These differences increased with the total number of treatment sessions. Our results suggest that rTMS, particularly after 18 sessions, facilitates cognitive control, attention and target stimuli recognition by improving discrimination between task-relevant and task-irrelevant illusory figures in an oddball test. The noted improvement in executive functions of behavioral performance monitoring further suggests that TMS has the

  5. Stratifying Parkinson's Patients With STN-DBS Into High-Frequency or 60 Hz-Frequency Modulation Using a Computational Model.

    Science.gov (United States)

    Khojandi, Anahita; Shylo, Oleg; Mannini, Lucia; Kopell, Brian H; Ramdhani, Ritesh A

    2017-07-01

    High frequency stimulation (HFS) of the subthalamic nucleus (STN) is a well-established therapy for Parkinson's disease (PD), particularly the cardinal motor symptoms and levodopa induced motor complications. Recent studies have suggested the possible role of 60 Hz stimulation in STN-deep brain stimulation (DBS) for patients with gait disorder. The objective of this study was to develop a computational model, which stratifies patients a priori based on symptomatology into different frequency settings (i.e., high frequency or 60 Hz). We retrospectively analyzed preoperative MDS-Unified Parkinson's Disease Rating Scale III scores (32 indicators) collected from 20 PD patients implanted with STN-DBS at Mount Sinai Medical Center on either 60 Hz stimulation (ten patients) or HFS (130-185 Hz) (ten patients) for an average of 12 months. Predictive models using the Random Forest classification algorithm were built to associate patient/disease characteristics at surgery to the stimulation frequency. These models were evaluated objectively using leave-one-out cross-validation approach. The computational models produced, stratified patients into 60 Hz or HFS (130-185 Hz) with 95% accuracy. The best models relied on two or three predictors out of the 32 analyzed for classification. Across all predictors, gait and rest tremor of the right hand were consistently the most important. Computational models were developed using preoperative clinical indicators in PD patients treated with STN-DBS. These models were able to accurately stratify PD patients into 60 Hz stimulation or HFS (130-185 Hz) groups a priori, offering a unique potential to enhance the utilization of this therapy based on clinical subtypes. © 2017 International Neuromodulation Society.

  6. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking

    Directory of Open Access Journals (Sweden)

    Sjoerd M. Bruijn

    2015-10-01

    Full Text Available Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG during stabilized and normal walking.Subjects walked on a treadmill in two conditions, each lasting 10 minutes; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e. lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability.

  7. Acute immobilisation facilitates premotor preparatory activity for the non-restrained hand when facing grasp affordances.

    Science.gov (United States)

    Kühn, Simone; Werner, Anika; Lindenberger, Ulman; Verrel, Julius

    2014-05-15

    Use and non-use of body parts during goal-directed action are major forces driving reorganisation of neural processing. We investigated changes in functional brain activity resulting from acute short-term immobilisation of the dominant right hand. Informed by the concept of object affordances, we predicted that the presence or absence of a limb restraint would influence the perception of graspable objects in a laterally specific way. Twenty-three participants underwent fMRI scanning during a passive object-viewing task before the intervention as well as with and without wearing an orthosis. The right dorsal premotor cortex and the left cerebellum were more strongly activated when the handle of an object was oriented towards the left hand while the right hand was immobilised compared with a situation where the hand was not immobilised. The cluster in the premotor cortex showing an interaction between condition (with restraint, without restraint) and stimulus action side (right vs. left) overlapped with the general task vs. baseline contrast prior to the intervention, confirming its functional significance for the task. These results show that acute immobilisation of the dominant right hand leads to rapid changes of the perceived affordance of objects. We conclude that changes in action requirements lead to almost instantaneous changes in functional activation patterns, which in turn may trigger structural cortical plasticity. Copyright © 2014. Published by Elsevier Inc.

  8. Repetitive activation of the corticospinal pathway by means of rTMS may reduce the efficiency of corticomotoneuronal synapses

    DEFF Research Database (Denmark)

    Taube, Wolfgang; Leukel, Christian; Nielsen, Jens Bo

    2015-01-01

    Low-frequency rTMS applied to the primary motor cortex (M1) may produce depression of motor-evoked potentials (MEPs). This depression is commonly assumed to reflect changes in cortical circuits. However, little is known about rTMS-induced effects on subcortical circuits. Therefore, the present st......-either at M1 and/or the CM synapse. As the early facilitation reflects activation of direct CM projections, the most likely site of action is the synapse of the CM neurons onto spinal motoneurons....

  9. Repetitive transcranial magnetic stimulation in cervical dystonia: effect of site and repetition in a randomized pilot trial.

    Directory of Open Access Journals (Sweden)

    Sarah Pirio Richardson

    Full Text Available Dystonia is characterized by abnormal posturing due to sustained muscle contraction, which leads to pain and significant disability. New therapeutic targets are needed in this disorder. The objective of this randomized, sham-controlled, blinded exploratory study is to identify a specific motor system target for non-invasive neuromodulation and to evaluate this target in terms of safety and tolerability in the cervical dystonia (CD population. Eight CD subjects were given 15-minute sessions of low-frequency (0.2 Hz repetitive transcranial magnetic stimulation (rTMS over the primary motor cortex (MC, dorsal premotor cortex (dPM, supplementary motor area (SMA, anterior cingulate cortex (ACC and a sham condition with each session separated by at least two days. The Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS score was rated in a blinded fashion immediately pre- and post-intervention. Secondary outcomes included physiology and tolerability ratings. The mean change in TWSTRS severity score by site was 0.25 ± 1.7 (ACC, -2.9 ± 3.4 (dPM, -3.0 ± 4.8 (MC, -0.5 ± 1.1 (SHAM, and -1.5 ± 3.2 (SMA with negative numbers indicating improvement in symptom control. TWSTRS scores decreased from Session 1 (15.1 ± 5.1 to Session 5 (11.0 ± 7.6. The treatment was tolerable and safe. Physiology data were acquired on 6 of 8 subjects and showed no change over time. These results suggest rTMS can modulate CD symptoms. Both dPM and MC are areas to be targeted in further rTMS studies. The improvement in TWSTRS scores over time with multiple rTMS sessions deserves further evaluation.

  10. DBS in the baso-lateral amygdala improves symptoms of autism and related self-injurious behaviourA case report and hypothesis on the pathogenesis of the disorder

    Directory of Open Access Journals (Sweden)

    Volker eSturm

    2013-01-01

    Full Text Available We treated a thirteen year old boy for life-threatening self-injurious behavior (SIB and severe Kanner’s autism with Deep Brain Stimulation (DBS in the amygdaloid complex as well as in the supra-amygdaloid projection system. Two DBS-electrodes were placed in both structures of each hemisphere. The stimulation contacts targeted the paralaminar, the basolateral, the central amygdala as well as the supra-amygdaloid projection system. DBS was applied to each of these structures, but only stimulation of the baso-lateral part proved effective in improving SIB and core symptoms of the autism spectrum in the emotional, social and even cognitive domains over a follow up of now 24 months. These results, which have been gained for the first time in a patient, support hypotheses, according to which the amygdala may be pivotal in the pathogeneses of autism and point to the special relevance of the baso-lateral part.

  11. Intertrial Variability in the Premotor Cortex Accounts for Individual Differences in Peripersonal Space.

    Science.gov (United States)

    Ferri, Francesca; Costantini, Marcello; Huang, Zirui; Perrucci, Mauro Gianni; Ferretti, Antonio; Romani, Gian Luca; Northoff, Georg

    2015-12-16

    We live in a dynamic environment, constantly confronted with approaching objects that we may either avoid or be forced to address. A multisensory and sensorimotor interface, the peripersonal space (PPS), mediates every physical interaction between our body and the environment. Behavioral investigations show high variability in the extension of PPS across individuals, but there is a lack of evidence on the neural underpinnings of these large individual differences. Here, we used approaching auditory stimuli and fMRI to capture the individual boundary of PPS and examine its neural underpinnings. Precisely, we tested the hypothesis that intertrial variability (ITV) in brain regions coding PPS predicts individual differences of its boundary at the behavioral level. Selectively in the premotor cortex, we found that ITV, rather than trial-averaged amplitude, of BOLD responses to far rather than near dynamic stimuli predicts the individual extension of PPS. Our results provide the first empirical support for the relevance of ITV of brain responses for individual differences in human behavior. Peripersonal space (PPS) is a multisensory and sensorimotor interface mediating every physical interaction between the body and the environment. A major characteristic of the boundary of PPS in humans is the extremely high variability of its location across individuals. We show that interindividual differences in the extension of the PPS are predicted by variability of BOLD responses in the premotor cortex to far stimuli approaching our body. Our results provide the first empirical support to the relevance of variability of evoked responses for human behavior and its variance across individuals. Copyright © 2015 the authors 0270-6474/15/3516328-12$15.00/0.

  12. Role of the right inferior parietal cortex in auditory selective attention: An rTMS study.

    Science.gov (United States)

    Bareham, Corinne A; Georgieva, Stanimira D; Kamke, Marc R; Lloyd, David; Bekinschtein, Tristan A; Mattingley, Jason B

    2018-02-01

    Selective attention is the process of directing limited capacity resources to behaviourally relevant stimuli while ignoring competing stimuli that are currently irrelevant. Studies in healthy human participants and in individuals with focal brain lesions have suggested that the right parietal cortex is crucial for resolving competition for attention. Following right-hemisphere damage, for example, patients may have difficulty reporting a brief, left-sided stimulus if it occurs with a competitor on the right, even though the same left stimulus is reported normally when it occurs alone. Such "extinction" of contralesional stimuli has been documented for all the major sense modalities, but it remains unclear whether its occurrence reflects involvement of one or more specific subregions of the temporo-parietal cortex. Here we employed repetitive transcranial magnetic stimulation (rTMS) over the right hemisphere to examine the effect of disruption of two candidate regions - the supramarginal gyrus (SMG) and the superior temporal gyrus (STG) - on auditory selective attention. Eighteen neurologically normal, right-handed participants performed an auditory task, in which they had to detect target digits presented within simultaneous dichotic streams of spoken distractor letters in the left and right channels, both before and after 20 min of 1 Hz rTMS over the SMG, STG or a somatosensory control site (S1). Across blocks, participants were asked to report on auditory streams in the left, right, or both channels, which yielded focused and divided attention conditions. Performance was unchanged for the two focused attention conditions, regardless of stimulation site, but was selectively impaired for contralateral left-sided targets in the divided attention condition following stimulation of the right SMG, but not the STG or S1. Our findings suggest a causal role for the right inferior parietal cortex in auditory selective attention. Copyright © 2017 Elsevier Ltd. All rights

  13. A critical reflection on the technological development of deep brain stimulation (DBS

    Directory of Open Access Journals (Sweden)

    Christian eIneichen

    2014-09-01

    Full Text Available Since the translational research findings of Benabid and colleagues, which partly led to their seminal paper regarding the treatment of mainly tremor-dominant Parkinson patients through thalamic high-frequency-stimulation (HFS in 1987, we still struggle with identifying a satisfactory mechanistic explanation of the underlying principles of Deep Brain Stimulation. Furthermore, the technological advance of DBS devices (electrodes and implantable pulse generators, IPG's has shown a distinct lack of dynamic progression. In light of this we argue that it is time to leave the paleolithic age and enter hellenistic times: the device-manufacturing industry and the medical community together should put more emphasis on advancing the technology rather than resting on their laurels.

  14. Transformation of a virtual action plan into a motor plan in the premotor cortex.

    Science.gov (United States)

    Nakayama, Yoshihisa; Yamagata, Tomoko; Tanji, Jun; Hoshi, Eiji

    2008-10-08

    Before preparing to initiate a forthcoming motion, we often acquire information about the future action without specifying actual motor parameters. The information for planning an action at this conceptual level can be provided with verbal commands or nonverbal signals even before the associated motor targets are visible. Under these conditions, the information signifying a virtual action plan must be transformed to information that can be used for constructing a motor plan to initiate specific movements. To determine whether the premotor cortex is involved in this process, we examined neuronal activity in the dorsal premotor cortex (PMd) of monkeys performing a behavioral task designed to isolate the behavioral stages of the acquisition of information for a future action and the construction of a motor plan. We trained the animals to receive a symbolic instruction (color and shape of an instruction cue) to determine whether to select the right or left of targets to reach, despite the physical absence of targets. Subsequently, two targets appeared on a screen at different locations. The animals then determined the correct target (left or right) based on the previous instruction and prepared to initiate a reaching movement to an actual target. The experimental design dissociated the selection of the right/left at an abstract level (action plan) from the physical motor plan. Here, we show that activity of individual PMd neurons initially reflects a virtual action plan transcending motor specifics, before these neurons contribute to a transformation process that leads to activity encoding a motor plan.

  15. Brain stimulation in posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Vladan Novakovic

    2011-10-01

    Full Text Available Posttraumatic stress disorder (PTSD is a complex, heterogeneous disorder that develops following trauma and often includes perceptual, cognitive, affective, physiological, and psychological features. PTSD is characterized by hyperarousal, intrusive thoughts, exaggerated startle response, flashbacks, nightmares, sleep disturbances, emotional numbness, and persistent avoidance of trauma-associated stimuli. The efficacy of available treatments for PTSD may result in part from relief of associated depressive and anxiety-related symptoms in addition to treatment of core symptoms that derive from reexperiencing, numbing, and hyperarousal. Diverse, heterogeneous mechanisms of action and the ability to act broadly or very locally may enable brain stimulation devices to address PTSD core symptoms in more targeted ways. To achieve this goal, specific theoretical bases derived from novel, well-designed research protocols will be necessary. Brain stimulation devices include both long-used and new electrical and magnetic devices. Electroconvulsive therapy (ECT and Cranial electrotherapy stimulation (CES have both been in use for decades; transcranial magnetic stimulation (TMS, magnetic seizure therapy (MST, deep brain stimulation (DBS, transcranial Direct Current Stimulation (tDCS, and vagus nerve stimulation (VNS have been developed recently, over approximately the past twenty years. The efficacy of brain stimulation has been demonstrated as a treatment for psychiatric and neurological disorders such as anxiety (CES, depression (ECT, CES, rTMS, VNS, DBS, obsessive-compulsive disorder (OCD (DBS, essential tremor, dystonia (DBS, epilepsy (DBS, VNS, Parkinson Disease (DBS, pain (CES, and insomnia (CES. To date, limited data on brain stimulation for PTSD offer only modest guidance. ECT has shown some efficacy in reducing comorbid depression in PTSD patients but has not been demonstrated to improve most core PTSD symptoms. CES and VNS have shown some efficacy in

  16. Feeling the beat: premotor and striatal interactions in musicians and non-musicians during beat perception

    Science.gov (United States)

    Grahn, Jessica A.; Rowe, James B.

    2009-01-01

    Little is known about the underlying neurobiology of rhythm and beat perception, despite its universal cultural importance. Here we used functional magnetic resonance imaging to study rhythm perception in musicians and non-musicians. Three conditions varied in the degree to which external reinforcement versus internal generation of the beat was required. The ‘Volume’ condition strongly externally marked the beat with volume changes, the ‘Duration’ condition marked the beat with weaker accents arising from duration changes, and the ‘Unaccented’ condition required the beat to be entirely internally generated. In all conditions, beat rhythms compared to nonbeat control rhythms revealed putamen activity. The presence of a beat was also associated with greater connectivity between the putamen and the supplementary motor area (SMA), the premotor cortex (PMC) and auditory cortex. In contrast, the type of accent within the beat conditions modulated the coupling between premotor and auditory cortex, with greater modulation for musicians than non-musicians. Importantly, the putamen's response to beat conditions was not due to differences in temporal complexity between the three rhythm conditions. We propose that a cortico-subcortical network including the putamen, SMA, and PMC is engaged for the analysis of temporal sequences and prediction or generation of putative beats, especially under conditions that may require internal generation of the beat. The importance of this system for auditory-motor interaction and development of precisely timed movement is suggested here by its facilitation in musicians. PMID:19515922

  17. Development of a novel biosensor based on a polypyrrole-dodecylbenzene sulphonate (PPy-DBS) film for the determination of amperometric cholesterol.

    Science.gov (United States)

    Özer, Bayram Oğuz; Çete, Servet

    2017-06-01

    Herein a novel amperometric biosensor based on a conducting polymer with anionic dopant modified electrode was successfully developed for detection of cholesterol. Polypyrrole is deposited on a platinum surface and the sodium dodecylbenzene sulphonate (DBS) ion-doped polypyrrole film was electrochemically prepared by scanning the electrode potential between -0.8 and +0.8 V at a scan rate of 20 mV/s. The present electrochemical biosensor was optimized in terms of working potential, number of cycles, concentrations of monomer, and anionic dopant. Cholesterol oxidase (ChOx) was physically entrapped in PPy-DBS to construct an amperometric cholesterol biosensor. Amperometric determination is based on the electrochemical detection of H 2 O 2 generated in the enzymatic reaction of cholesterol. Kinetic parameters, operational and storage stabilities, pH, and temperature dependencies were determined. Km and Imax were calculated as 0.11 μM and 0.967 nM/min, respectively. The operational stability results showed that 90.0% of the response current was retained after 30 activity assays. Morphology of electrodes was characterized by SEM and AFM. Additionally, contact angle measurements were made with 1 μL water of polymer film and enzyme electrode. As a result, the cholesterol biosensor suggested in this study is easy to prepare and is highly cost-effective. This composite (PPy-DBS) can supply a biocompatible and electrochemical microenvironment for immobilization of the enzyme, making this material a good candidate for the fabrication of highly sensitive and selective cholesterol biosensors.

  18. Pure apraxia of speech due to infarct in premotor cortex.

    Science.gov (United States)

    Patira, Riddhi; Ciniglia, Lauren; Calvert, Timothy; Altschuler, Eric L

    Apraxia of speech (AOS) is now recognized as an articulation disorder distinct from dysarthria and aphasia. Various lesions have been associated with AOS in studies that are limited in precise localization due to variability in size and type of pathology. We present a case of pure AOS in setting of an acute stroke to localize more precisely than ever before the brain area responsible for AOS, dorsal premotor cortex (dPMC). The dPMC is in unique position to plan and coordinate speech production by virtue of its connection with nearby motor cortex harboring corticobulbar tract, supplementary motor area, inferior frontal operculum, and temporo-parietal area via the dorsal stream of dual-stream model of speech processing. The role of dPMC is further supported as part of dorsal stream in the dual-stream model of speech processing as well as controller in the hierarchical state feedback control model. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. ECT, rTMS, and deepTMS in pharmacoresistant drug-free patients with unipolar depression: a comparative review

    Directory of Open Access Journals (Sweden)

    Salviati M

    2012-01-01

    Full Text Available Amedeo Minichino¹, Francesco Saverio Bersani¹, Enrico Capra¹, Rossella Pannese¹, Celeste Bonanno², Massimo Salviati¹, Roberto Delle Chiaie¹, Massimo Biondi¹¹Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, ²Aldo Moro University of Bari, Bari, ItalyBackground: Biological treatments are considered as additional options for the treatment of resistant unipolar depression. Controversial data exist about the efficacy and tolerability of three of the most used somatic treatments: electroconvulsive therapy (ECT, transcranial magnetic stimulation (rTMS, and deep transcranial magnetic stimulation (deepTMS. The aim of this review is to investigate and compare the efficacy and tolerability of these three techniques in drug-free patients with pharmacoresistant unipolar depression.Methods: Three independent reviewers extracted data and assessed the quality of methodological reporting of selected studies. The first outcome was the clinical response to the three different techniques defined as a percentage improvement of Hamilton Depression Rating Scale (HDRS. The second outcome was the evaluation of their neuropsychological effects. The third outcome was the evaluation of the number of remitted patients; remission was defined as an absolute HDRS-24 score of ≤11 or as an absolute HDRS-17 score of ≤8. Tolerability was the fourth outcome; it was evaluated by examining the number of dropped-out patients.Results: The comparative evaluation of HDRS percentage variations shows ECT as the most effective method after 4 weeks of therapy; on the other hand, a better efficacy is obtainable by deepTMS after 2 weeks of therapy. DeepTMS is the technique that gives the best improvement of cognitive performances. The percentage of remitted patients obtained with ECT treatment is the same obtained in the deepTMS group. Both techniques have a remitted patients percentage two times larger than the rTMS. DeepTMS shows a tolerability

  20. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion.

    Directory of Open Access Journals (Sweden)

    Yuki Itakura

    Full Text Available Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs. Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons, that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs. We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged

  1. Investigation of Reduction of the Uncertainty of Monte Carlo Dose Calculations in Oncor® Clinical Linear Accelerator Simulation Using the DBS Variance Reduction Technique in Monte Carlo Code BEAMnrc

    Directory of Open Access Journals (Sweden)

    Amin Asadi

    2017-10-01

    Full Text Available Purpose: To study the benefits of Directional Bremsstrahlung Splitting (DBS dose variance reduction technique in BEAMnrc Monte Carlo (MC code for Oncor® linac at 6MV and 18MV energies. Materials and Method: A MC model of Oncor® linac was built using BEAMnrc MC Code and verified by the measured data for 6MV and 18MV energies of various field sizes. Then Oncor® machine was modeled running DBS technique, and the efficiency of total fluence and spatial fluence for electron and photon, the efficiency of dose variance reduction of MC calculations for PDD on the central beam axis and lateral dose profile across the nominal field was measured and compared. Result: With applying DBS technique, the total fluence of electron and photon increased in turn 626.8 (6MV and 983.4 (6MV, and 285.6 (18MV and 737.8 (18MV, the spatial fluence of electron and photon improved in turn 308.6±1.35% (6MV and 480.38±0.43% (6MV, and 153±0.9% (18MV and 462.6±0.27% (18MV. Moreover, by running DBS technique, the efficiency of dose variance reduction for PDD MC dose calculations before maximum dose point and after dose maximum point enhanced 187.8±0.68% (6MV and 184.6±0.65% (6MV, 156±0.43% (18MV and 153±0.37% (18MV, respectively, and the efficiency of MC calculations for lateral dose profile remarkably on the central beam axis and across the treatment field raised in turn 197±0.66% (6MV and 214.6±0.73% (6MV, 175±0.36% (18MV and 181.4±0.45% (18MV. Conclusion: Applying dose variance reduction technique of DBS for modeling Oncor® linac with using BEAMnrc MC Code surprisingly improved the fluence of electron and photon, and it therefore enhanced the efficiency of dose variance reduction for MC calculations. As a result, running DBS in different kinds of MC simulation Codes might be beneficent in reducing the uncertainty of MC calculations. 

  2. Increased premotor cortex activation in high functioning autism during action observation.

    Science.gov (United States)

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Neurostimulation, neuromodulation, and the treatment of epilepsies

    Directory of Open Access Journals (Sweden)

    Bolden Lauren B.

    2015-06-01

    Full Text Available Introduction. Neurostimulation and neuromodulation are techniques that may be able to affect the course of epilepsy. In the last 20 years, since the approval of VNS, we have observed a surge of studies assessing the potential of other devices and techniques for the treatment of pharmacoresistant epilepsies including deep brain stimulation (DBS, responsive neurostimulation (RNS, trigeminal nerve stimulation (TNS, transcranial direct current stimulation (tDCS, and repetitive transcranial magnetic stimulation (rTMS. Are these devices and techniques simply another treatment option that can be offered to patients with epilepsy or do they offer specific advantages when compared to the standard antiepileptic drugs (AEDs?

  4. A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Werner-Petroll, Nicole; Münchau, Alexander

    2012-01-01

    The dorsal premotor cortex (PMd) plays an import role in action control, sensorimotor integration and motor recovery. Animal studies and human data have demonstrated direct connections between ipsilateral PMd and primary motor cortex hand area (M1(HAND)). In this study we adopted a multimodal app...

  5. Motor and Nonmotor Circuitry Activation Induced by Subthalamic Nucleus Deep Brain Stimulation in Patients With Parkinson Disease: Intraoperative Functional Magnetic Resonance Imaging for Deep Brain Stimulation.

    Science.gov (United States)

    Knight, Emily J; Testini, Paola; Min, Hoon-Ki; Gibson, William S; Gorny, Krzysztof R; Favazza, Christopher P; Felmlee, Joel P; Kim, Inyong; Welker, Kirk M; Clayton, Daniel A; Klassen, Bryan T; Chang, Su-youne; Lee, Kendall H

    2015-06-01

    To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Parkinson disease would affect the activity of motor and nonmotor networks, we applied intraoperative functional magnetic resonance imaging (fMRI) to patients receiving DBS. Ten patients receiving STN DBS for Parkinson disease underwent intraoperative 1.5-T fMRI during high-frequency stimulation delivered via an external pulse generator. The study was conducted between January 1, 2013, and September 30, 2014. We observed blood oxygen level-dependent (BOLD) signal changes (false discovery rate <0.001) in the motor circuitry (including the primary motor, premotor, and supplementary motor cortices; thalamus; pedunculopontine nucleus; and cerebellum) and in the limbic circuitry (including the cingulate and insular cortices). Activation of the motor network was observed also after applying a Bonferroni correction (P<.001) to the data set, suggesting that across patients, BOLD changes in the motor circuitry are more consistent compared with those occurring in the nonmotor network. These findings support the modulatory role of STN DBS on the activity of motor and nonmotor networks and suggest complex mechanisms as the basis of the efficacy of this treatment modality. Furthermore, these results suggest that across patients, BOLD changes in the motor circuitry are more consistent than those in the nonmotor network. With further studies combining the use of real-time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. clinicaltrials.gov Identifier: NCT01809613. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  6. 1,3:2,4-Dibenzylidene-D-sorbitol (DBS) and its derivatives--efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future.

    Science.gov (United States)

    Okesola, Babatunde O; Vieira, Vânia M P; Cornwell, Daniel J; Whitelaw, Nicole K; Smith, David K

    2015-06-28

    Dibenzylidene-D-sorbitol (DBS) has been a well-known low-molecular-weight gelator of organic solvents for over 100 years. As such, it constitutes a very early example of a supramolecular gel--a research field which has recently developed into one of intense interest. The ability of DBS to self-assemble into sample-spanning networks in numerous solvents is predicated upon its 'butterfly-like' structure, whereby the benzylidene groups constitute the 'wings' and the sorbitol backbone the 'body'--the two parts representing the molecular recognition motifs underpinning its gelation mechanism, with the nature of solvent playing a key role in controlling the precise assembly mode. This gelator has found widespread applications in areas as diverse as personal care products and polymer nucleation/clarification, and has considerable potential in applications such as dental composites, energy technology and liquid crystalline materials. Some derivatives of DBS have also been reported which offer the potential to expand the scope and range of applications of this family of gelators and endow the nansocale network with additional functionality. This review aims to explain current trends in DBS research, and provide insight into how by combining a long history of application, with modern methods of derivatisation and analysis, the future for this family of gelators is bright, with an increasing number of high-tech applications, from environmental remediation to tissue engineering, being within reach.

  7. Therapeutic administration of atomoxetine combined with rTMS and occupational therapy for upper limb hemiparesis after stroke: a case series study of three patients.

    Science.gov (United States)

    Kinoshita, Shoji; Kakuda, Wataru; Yamada, Naoki; Momosaki, Ryo; Okuma, Ryo; Watanabe, Shu; Abo, Masahiro

    2016-03-01

    Atomoxetine, a selective noradrenaline reuptake inhibitor, has been reported to enhance brain plasticity, but has not yet been used in stroke patients. We reported the feasibility and clinical benefits on motor functional recovery of the combination of repetitive transcranial magnetic stimulation (rTMS) and intensive occupational therapy (OT) in stroke patients. This pilot study was designed to evaluate the additive effects of oral atomoxetine to rTMS/OT in post-stroke hemiparetic patients. The study included three post-stroke patients with upper limb hemiparesis. Treatment with 40 mg/day atomoxetine commenced 2 weeks before admission. After confirming tolerance, the dose was increased to 120 mg/day. Low-frequency rTMS/OT was provided daily for 15 days during continued atomoxetine therapy. Motor function of the affected upper limb was evaluated with the Fugl-Meyer Assessment and Wolf Motor Function test. All patients completed the protocol and showed motor improvement up to 4 weeks after the treatment. No atomoxetine-related side effects were noted. Our protocol of triple therapy of atomoxetine, low-frequency rTMS, and OT is safe and feasible intervention for upper limb hemiparesis after stroke.

  8. [Neuronal activity of monkey dorso-lateral premotor cortex during tasks of figure recognition guided motor sequence vs memorized spatial motor sequence].

    Science.gov (United States)

    Chen, Y C; Huang, F D; Chen, N H; Shou, J Y; Wu, L

    1998-04-01

    In the last 2-3 decades the role of the premotor cortex (PM) of monkey in memorized spatial sequential (MSS) movements has been amply investigated. However, it is as yet not known whether PM participates in the movement sequence behaviour guided by recognition of visual figures (i.e. the figure-recognition sequence, FRS). In the present work three monkeys were trained to perform both FRS and MSS tasks. Postmortem examination showed that 202 cells were in the dorso-lateral premotor cortex. Among 111 cells recorded during the two tasks, more than 50% changed their activity during the cue periods in either task. During the response period, the ratios of cells with changes of firing rate in both FRS and MSS were high and roughly equal to each other, while during the image period, the proportion in the FRS (83.7%) was significantly higher than that in the MSS (66.7%). Comparison of neuronal activities during same motor sequence of two different tasks showed that during the image periods PM neuronal activities were more closely related to the FRS task, while during the cue periods no difference could be found. Analysis of cell responses showed that the neurons with longer latency were much more in MSS than in FRS in either cue or image period. The present results indicate that the premotor cortex participates in FRS motor sequence as well as in MSS and suggest that the dorso-lateral PM represents another subarea in function shared by both FRS and MSS tasks. However, in view of the differences of PM neuronal responses in cue or image periods of FRS and MSS tasks, it seems likely that neural networks involved in FRS and MSS tasks are different.

  9. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans.

    Science.gov (United States)

    Babiloni, Claudio; Del Percio, Claudio; Vecchio, Fabrizio; Sebastiano, Fabio; Di Gennaro, Giancarlo; Quarato, Pier P; Morace, Roberta; Pavone, Luigi; Soricelli, Andrea; Noce, Giuseppe; Esposito, Vincenzo; Rossini, Paolo Maria; Gallese, Vittorio; Mirabella, Giovanni

    2016-01-01

    In the present study, we tested the hypothesis that both movement execution and observation induce parallel modulations of alpha, beta, and gamma electrocorticographic (ECoG) rhythms in primary somatosensory (Brodmann area 1-2, BA1-2), primary motor (BA4), ventral premotor (BA6), and prefrontal (BA44 and BA45, part of putative human mirror neuron system underlying the understanding of actions of other people) areas. ECoG activity was recorded in drug-resistant epileptic patients during the execution of actions to reach and grasp common objects according to their affordances, as well as during the observation of the same actions performed by an experimenter. Both action execution and observation induced a desynchronization of alpha and beta rhythms in BA1-2, BA4, BA6, BA44 and BA45, which was generally higher in amplitude during the former than the latter condition. Action execution also induced a major synchronization of gamma rhythms in BA4 and BA6, again more during the execution of an action than during its observation. Human primary sensorimotor, premotor, and prefrontal areas do generate alpha, beta, and gamma rhythms and differently modulate them during action execution and observation. Gamma rhythms of motor areas are especially involved in action execution. Oscillatory activity of neural populations in sensorimotor, premotor and prefrontal (part of human mirror neuron system) areas represents and distinguishes own actions from those of other people. This methodological approach might be used for a neurophysiological diagnostic imaging of social cognition in epileptic patients. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Evaluating the roles of the inferior frontal gyrus and superior parietal lobule in deductive reasoning: an rTMS study.

    Science.gov (United States)

    Tsujii, Takeo; Sakatani, Kaoru; Masuda, Sayako; Akiyama, Takekazu; Watanabe, Shigeru

    2011-09-15

    This study used off-line repetitive transcranial magnetic stimulation (rTMS) to examine the roles of the superior parietal lobule (SPL) and inferior frontal gyrus (IFG) in a deductive reasoning task. Subjects performed a categorical syllogistic reasoning task involving congruent, incongruent, and abstract trials. Twenty four subjects received magnetic stimulation to the SPL region prior to the task. In the other 24 subjects, TMS was administered to the IFG region before the task. Stimulation lasted for 10min, with an inter-pulse frequency of 1Hz. We found that bilateral SPL (Brodmann area (BA) 7) stimulation disrupted performance on abstract and incongruent reasoning. Left IFG (BA 45) stimulation impaired congruent reasoning performance while paradoxically facilitating incongruent reasoning performance. This resulted in the elimination of the belief-bias. In contrast, right IFG stimulation only impaired incongruent reasoning performance, thus enhancing the belief-bias effect. These findings are largely consistent with the dual-process theory of reasoning, which proposes the existence of two different human reasoning systems: a belief-based heuristic system; and a logic-based analytic system. The present findings suggest that the left language-related IFG (BA 45) may correspond to the heuristic system, while bilateral SPL may underlie the analytic system. The right IFG may play a role in blocking the belief-based heuristic system for solving incongruent reasoning trials. This study could offer an insight about functional roles of distributed brain systems in human deductive reasoning by utilizing the rTMS approach. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Photometric and Spectroscopic Survey of the Cluster [DBS2003] 156 Associated with the H II Region G331.1-0.5

    Science.gov (United States)

    Pinheiro, M. C.; Ortiz, R.; Abraham, Z.; Copetti, M. V. F.

    2016-05-01

    The Norma section of the Milky Way is especially interesting because it crosses three spiral arms: Sagittarius-Carina, Scutum-Crux and the Norma arm itself. Distance determinations of embedded young stellar clusters can contribute to define the spiral structure in this part of the Galaxy. However, spectrophotometric distances were obtained for only a few of these clusters in Norma. We present a photometric and spectroscopic study in the NIR of the [DBS2003] 156 stellar cluster, associated with the H II region G331.1-0.5. We aim to find the ionizing sources of the H II region and determine its distance. The cluster was observed in the J, H, and {K}{{s}} bands and eight potential massive stars were chosen among the detected sources according to color criteria; subsequent spectroscopy of these candidates was performed with the Ohio State Infrared Imager/Spectrometer spectrograph attached to the Southern Observatory for Astrophysical Research 4.1 m telescope. We identified and classified spectroscopically four early-type stars: IRS 176 (O8 V), IRS 308 (O-type), IRS 310 (O6 V), and IRS 71 (B1 Iab). Based on the proximity of IRS 176 and 308 with the radio continuum emission peaks and their relative positions with respect to the warm dust mid-infrared emission, we concluded that these two stars are the main ionizing sources of the H ii region G331.1-0.5. The mean spectrophotometric distance of IRS 176 and 310 of 3.38 ± 0.58 kpc is similar to that obtained in a previous work for two early-type stars of the neighbor cluster [DBS2003] 157 of 3.29 ± 0.58 kpc. The narrow range of radial velocities of radio sources in the area of the clusters [DBS2003] 156 and 157 and their similar visual extinction indicate that these clusters are physically associated. A common distance of 3.34 ± 0.34 kpc is derived for the system [DBS2003] 156 and 157. Based on observations obtained at the Southern Observatory for Astrophysical Research (SOAR), a joint project of the Ministério de Ci

  12. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study.

    Directory of Open Access Journals (Sweden)

    Paul Sauleau

    Full Text Available The mechanisms behind weight gain following deep brain stimulation (DBS surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN or the globus pallidus internus (GPi. Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET and weight gain following GPi-DBS in patients with Parkinson's disease (PD. Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040. There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6, left superior gyrus (BA 8, the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46, and the left and right somatosensory association cortices (BA 7. However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067. These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target.

  13. Metaphorical motion in mathematical reasoning: further evidence for pre-motor implementation of structure mapping in abstract domains.

    Science.gov (United States)

    Fields, Chris

    2013-08-01

    The theory of computation and category theory both employ arrow-based notations that suggest that the basic metaphor "state changes are like motions" plays a fundamental role in all mathematical reasoning involving formal manipulations. If this is correct, structure-mapping inferences implemented by the pre-motor action planning system can be expected to be involved in solving any mathematics problems not solvable by table lookups and number line manipulations alone. Available functional imaging studies of multi-digit arithmetic, algebra, geometry and calculus problem solving are consistent with this expectation.

  14. Grasp movement decoding from premotor and parietal cortex.

    Science.gov (United States)

    Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg

    2011-10-05

    Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.

  15. Dynamic anticipatory processing of hierarchical sequential events: a common role for Broca's area and ventral premotor cortex across domains?

    Science.gov (United States)

    Fiebach, Christian J; Schubotz, Ricarda I

    2006-05-01

    This paper proposes a domain-general model for the functional contribution of ventral premotor cortex (PMv) and adjacent Broca's area to perceptual, cognitive, and motor processing. We propose to understand this frontal region as a highly flexible sequence processor, with the PMv mapping sequential events onto stored structural templates and Broca's Area involved in more complex, hierarchical or hypersequential processing. This proposal is supported by reference to previous functional neuroimaging studies investigating abstract sequence processing and syntactic processing.

  16. Decoding a Decision Process in the Neuronal Population of Dorsal Premotor Cortex.

    Science.gov (United States)

    Rossi-Pool, Román; Zainos, Antonio; Alvarez, Manuel; Zizumbo, Jerónimo; Vergara, José; Romo, Ranulfo

    2017-12-20

    When trained monkeys discriminate the temporal structure of two sequential vibrotactile stimuli, dorsal premotor cortex (DPC) showed high heterogeneity among its neuronal responses. Notably, DPC neurons coded stimulus patterns as broader categories and signaled them during working memory, comparison, and postponed decision periods. Here, we show that such population activity can be condensed into two major coding components: one that persistently represented in working memory both the first stimulus identity and the postponed informed choice and another that transiently coded the initial sensory information and the result of the comparison between the two stimuli. Additionally, we identified relevant signals that coded the timing of task events. These temporal and task-parameter readouts were shown to be strongly linked to the monkeys' behavior when contrasted to those obtained in a non-demanding cognitive control task and during error trials. These signals, hidden in the heterogeneity, were prominently represented by the DPC population response. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Premotor nitric oxide synthase immunoreactive pathway connecting lumbar segments with the ventral motor nucleus of the cervical enlargement in the dog.

    Science.gov (United States)

    Marsala, Jozef; Lukácová, Nadezda; Cízková, Dása; Lukác, Imrich; Kuchárová, Karolína; Marsala, Martin

    2004-03-01

    In this study we investigate the occurrence and origin of punctate nitric oxide synthase immunoreactivity in the neuropil of the ventral motor nucleus in C7-Th1 segments of the dog spine, which are supposed to be the terminal field of an ascending premotor propriospinal nitric oxide synthase-immunoreactive pathway. As the first step, nitric oxide synthase immunohistochemistry was used to distinguish nitric oxide synthase-immunoreactive staining of the ventral motor nucleus. Dense, punctate nitric oxide synthase immunoreactivity was found on control sections in the neuropil of the ventral motor nucleus. After hemisection at Th10-11, axotomy-induced retrograde changes consisting in a strong upregulation of nitric oxide synthase-containing neurons were found mostly unilaterally in lamina VIII, the medial part of lamina VII and in the pericentral region in all segments of the lumbosacral enlargement. Concurrently, a strong depletion of the punctate nitric oxide synthase immunopositivity in the neuropil of the ventral motor nucleus ipsilaterally with the hemisection was detected, thus revealing that an uncrossed ascending premotor propriospinal pathway containing a fairly high number of nitric oxide synthase-immunoreactive fibers terminates in the ventral motor nucleus. Application of the retrograde fluorescent tracer Fluorogold injected into the ventral motor nucleus and analysis of alternate sections processed for nitric oxide synthase immunocytochemistry revealed the presence of Fluorogold-labeled and nitric oxide synthase-immunoreactive axons in the ventrolateral funiculus and in the lateral and medial portions of the ventral column throughout the thoracic and upper lumbar segments. A noticeable number of Fluorogold-labeled and nitric oxide synthase-immunoreactive somata detected on consecutive sections were found in the lumbosacral enlargement, mainly in laminae VIII-IX, the medial part of lamina VII and in the pericentral region (lamina X), ipsilaterally with the

  18. Structural remodeling of the heart and its premotor cardioinhibitory vagal neurons following T(5) spinal cord transection.

    Science.gov (United States)

    Lujan, Heidi L; Janbaih, Hussein; DiCarlo, Stephen E

    2014-05-01

    Midthoracic spinal cord injury (SCI) is associated with enhanced cardiac sympathetic activity and reduced cardiac parasympathetic activity. The enhanced cardiac sympathetic activity is associated with sympathetic structural plasticity within the stellate ganglia, spinal cord segments T1-T4, and heart. However, changes to cardiac parasympathetic centers rostral to an experimental SCI are relatively unknown. Importantly, reduced vagal activity is a predictor of high mortality. Furthermore, this autonomic dysregulation promotes progressive left ventricular (LV) structural remodeling. Accordingly, we hypothesized that midthoracic spinal cord injury is associated with structural plasticity in premotor (preganglionic parasympathetic neurons) cardioinhibitory vagal neurons located within the nucleus ambiguus as well as LV structural remodeling. To test this hypothesis, dendritic arborization and morphology (cholera toxin B immunohistochemistry and Sholl analysis) of cardiac projecting premotor cardioinhibitory vagal neurons located within the nucleus ambiguus were determined in intact (sham transected) and thoracic level 5 transected (T5X) rats. In addition, LV chamber size, wall thickness, and collagen content (Masson trichrome stain and structural analysis) were determined. Midthoracic SCI was associated with structural changes within the nucleus ambiguus and heart. Specifically, following T5 spinal cord transection, there was a significant increase in cardiac parasympathetic preganglionic neuron dendritic arborization, soma area, maximum dendritic length, and number of intersections/animal. This parasympathetic structural remodeling was associated with a profound LV structural remodeling. Specifically, T5 spinal cord transection increased LV chamber area, reduced LV wall thickness, and increased collagen content. Accordingly, results document a dynamic interaction between the heart and its parasympathetic innervation.

  19. Estimulação cerebral contínua (DBS talâmica para controle do tremor Deep brain stimulation of VIM thalamic nucleus for tremor control

    Directory of Open Access Journals (Sweden)

    José Augusto Nasser

    2002-06-01

    Full Text Available OBJETIVO: Apresentamos resultados da estimulação contínua do núcleo ventral intermédio (VIM talâmico para o controle do tremor. MÉTODO: Quatro pacientes foram selecionados no período de outubro de 1999 a janeiro de 2001 com tremor incapacitante refratário à farmacoterapia. Dois pacientes apresentavam tremor essencial (TE bilateral e 2 pacientes tremor de repouso por doença de Parkinson (DP, um à direita e outro à esquerda. Após avaliação sistemática, foram submetidos ao implante de eletrodo talâmico, modelo DBS 3387(Medtronic, para estimulação cerebral profunda (ECP com alta frequência, sendo este bilateral nos casos de TE e unilateral nos casos com tremor por DP. RESULTADOS: Os pacientes tiveram seu seguimente clínico até o presente, com média de 12 meses, sendo observada a eficácia da estimulação do núcleo VIM no controle dos disparos das células do tremor. As complicações temporárias do tipo parestesias, disartrias e discreto aumento do tônus foram revertidas após o ajuste dos parâmetros de estimulação. CONCLUSÃO: Os resultados confirmam os achados da literatura, de que a estimulação talâmica é excelente opção terapêutica no tratamento do tremor, havendo possibilidade de estimulação talâmica bilateral simultânea com segurança.PURPOSE: We present our results in 4 patients with tremor, in whom electrodes (uni and bilateral for Deep Brain Stimulation (DBS were implanted in the ventral intermediate nucleus (VIM of the thalamus. METHOD: Four patients with disabling tremor, with drug-resistant spite of optimum therapeutic trials with poor response were referred to do surgery. Two patients had bilateral essential tremor. These patients were implanted with electrodes for DBS 3387 (Medtronic. Two patients had unilateral parkinsonian tremor and they received unilateral implantation of model 3387 DBS. RESULTS: All four patients showed relieve of the tremor symptoms with significant tremor control seen at

  20. Dorsal premotor cortex: neural correlates of reach target decisions based on a color-location matching rule and conflicting sensory evidence

    OpenAIRE

    Coallier, Émilie; Michelet, Thomas; Kalaska, John F.

    2015-01-01

    We recorded single-neuron activity in dorsal premotor (PMd) and primary motor cortex (M1) of two monkeys in a reach-target selection task. The monkeys chose between two color-coded potential targets by determining which target's color matched the predominant color of a multicolored checkerboard-like Decision Cue (DC). Different DCs contained differing numbers of colored squares matching each target. The DCs provided evidence about the correct target ranging from unambiguous (one color only) t...

  1. NMDA receptors in the avian amygdala and the premotor arcopallium mediate distinct aspects of appetitive extinction learning.

    Science.gov (United States)

    Gao, Meng; Lengersdorf, Daniel; Stüttgen, Maik C; Güntürkün, Onur

    2018-05-02

    Extinction learning is an essential mechanism that enables constant adaptation to ever-changing environmental conditions. The underlying neural circuit is mostly studied with rodent models using auditory cued fear conditioning. In order to uncover the variant and the invariant neural properties of extinction learning, we adopted pigeons as an animal model in an appetitive sign-tracking paradigm. The animals firstly learned to respond to two conditioned stimuli in two different contexts (CS-1 in context A and CS-2 in context B), before conditioned responses to the stimuli were extinguished in the opposite contexts (CS-1 in context B and CS-2 in context A). Subsequently, responding to both stimuli was tested in both contexts. Prior to extinction training, we locally injected the N-methyl-d-aspartate receptor (NMDAR) antagonist 2-Amino-5-phosphonovaleric acid (APV) in either the amygdala or the (pre)motor arcopallium to investigate their involvement in extinction learning. Our findings suggest that the encoding of extinction memory required the activation of amygdala, as visible by an impairment of extinction acquisition by concurrent inactivation of local NMDARs. In contrast, consolidation and subsequent retrieval of extinction memory recruited the (pre)motor arcopallium. Also, the inactivation of arcopallial NMDARs induced a general motoric slowing during extinction training. Thus, our results reveal a double dissociation between arcopallium and amygdala with respect to acquisition and consolidation of extinction, respectively. Our study therefore provides new insights on the two key components of the avian extinction network and their resemblance to the data obtained from mammals, possibly indicating a shared neural mechanism underlying extinction learning shaped by evolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Simplifying sample pretreatment: application of dried blood spot (DBS) method to blood samples, including postmortem, for UHPLC-MS/MS analysis of drugs of abuse.

    Science.gov (United States)

    Odoardi, Sara; Anzillotti, Luca; Strano-Rossi, Sabina

    2014-10-01

    The complexity of biological matrices, such as blood, requires the development of suitably selective and reliable sample pretreatment procedures prior to their instrumental analysis. A method has been developed for the analysis of drugs of abuse and their metabolites from different chemical classes (opiates, methadone, fentanyl and analogues, cocaine, amphetamines and amphetamine-like substances, ketamine, LSD) in human blood using dried blood spot (DBS) and subsequent UHPLC-MS/MS analysis. DBS extraction required only 100μL of sample, added with the internal standards and then three droplets (30μL each) of this solution were spotted on the card, let dry for 1h, punched and extracted with methanol with 0.1% of formic acid. The supernatant was evaporated and the residue was then reconstituted in 100μL of water with 0.1% of formic acid and injected in the UHPLC-MS/MS system. The method was validated considering the following parameters: LOD and LOQ, linearity, precision, accuracy, matrix effect and dilution integrity. LODs were 0.05-1ng/mL and LOQs were 0.2-2ng/mL. The method showed satisfactory linearity for all substances, with determination coefficients always higher than 0.99. Intra and inter day precision, accuracy, matrix effect and dilution integrity were acceptable for all the studied substances. The addition of internal standards before DBS extraction and the deposition of a fixed volume of blood on the filter cards ensured the accurate quantification of the analytes. The validated method was then applied to authentic postmortem blood samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms.

    Science.gov (United States)

    de Manzano, Örjan; Ullén, Fredrik

    2012-10-15

    Free, i.e. non-externally cued generation of movement sequences is fundamental to human behavior. We have earlier hypothesized that the dorsal premotor cortex (PMD), which has been consistently implicated in cognitive aspects of planning and selection of spatial motor sequences may be particularly important for the free generation of spatial movement sequences, whereas the pre-supplementary motor area (pre-SMA), which shows increased activation during perception, learning and reproduction of temporal sequences, may contribute more to the generation of temporal structures. Here we test this hypothesis using fMRI and musical improvisation in professional pianists as a model behavior. We employed a 2 × 2 factorial design with the factors Melody (Specified/Improvised) and Rhythm (Specified/Improvised). The main effect analyses partly confirmed our hypothesis: there was a main effect of Melody in the PMD; the pre-SMA was present in the main effect of Rhythm, as predicted, as well as in the main effect of Melody. A psychophysiological interaction analysis of functional connectivity demonstrated that the correlation in activity between the pre-SMA and cerebellum was higher during rhythmic improvisation than during the other conditions. In summary, there were only subtle differences in activity level between the pre-SMA and PMD during improvisation, regardless of condition. Consequently, the free generation of rhythmic and melodic structures, appears to be largely integrated processes but the functional connectivity between premotor areas and other regions may change during free generation in response to sequence-specific spatiotemporal demands. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Merging DBS with viral vector or stem cell implantation: “hybrid” stereotactic surgery as an evolution in the surgical treatment of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Nathan C Rowland

    2016-01-01

    Full Text Available Parkinson's disease (PD is a complex neurodegenerative disorder that is currently managed using a broad array of symptom-based strategies. However, targeting its molecular origins represents the potential to discover disease-modifying therapies. Deep brain stimulation (DBS, a highly successful treatment modality for PD symptoms, addresses errant electrophysiological signaling pathways in the basal ganglia. In contrast, ongoing clinical trials testing gene and cell replacement therapies propose to protect or restore neuronal-based physiologic dopamine transmission in the striatum. Given promising new platforms to enhance target localization'such as interventional MRI-guided stereotaxy'the opportunity now exists to create hybrid therapies that combine DBS with gene therapy and/or cell implantation. In this mini-review, we discuss approaches used for central nervous system biologic delivery in PD patients in previous trials and propose a new set of strategies based on novel molecular targets. A multifaceted approach, if successful, may not only contribute to our understanding of PD pathology but could introduce a new era of disease modification.

  5. Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest--a bifocal TMS study

    DEFF Research Database (Denmark)

    Bäumer, T; Schippling, S; Kroeger, J

    2009-01-01

    in ipsilateral M1 excitability was located at the border between ventral Brodmann area (BA) 6 and BA 44, the human homologue of monkey's PMv (area F5). CONCLUSION: We infer that the corticospinal motor output from M1 to contralateral hand muscles can be facilitated or inhibited by a CS over ipsilateral PMv....... SIGNIFICANCE: The fact that conditioning effects following PMd stimulation differ from those after PMv stimulation supports the concept that inputs from premotor cortices to M1 are functionally segregated....

  6. From rule to response: neuronal processes in the premotor and prefrontal cortex.

    Science.gov (United States)

    Wallis, Jonathan D; Miller, Earl K

    2003-09-01

    The ability to use abstract rules or principles allows behavior to generalize from specific circumstances (e.g., rules learned in a specific restaurant can subsequently be applied to any dining experience). Neurons in the prefrontal cortex (PFC) encode such rules. However, to guide behavior, rules must be linked to motor responses. We investigated the neuronal mechanisms underlying this process by recording from the PFC and the premotor cortex (PMC) of monkeys trained to use two abstract rules: "same" or "different." The monkeys had to either hold or release a lever, depending on whether two successively presented pictures were the same or different, and depending on which rule was in effect. The abstract rules were represented in both regions, although they were more prevalent and were encoded earlier and more strongly in the PMC. There was a perceptual bias in the PFC, relative to the PMC, with more PFC neurons encoding the presented pictures. In contrast, neurons encoding the behavioral response were more prevalent in the PMC, and the selectivity was stronger and appeared earlier in the PMC than in the PFC.

  7. Activity in ventral premotor cortex is modulated by vision of own hand in action

    Directory of Open Access Journals (Sweden)

    Luciano Fadiga

    2013-07-01

    Full Text Available Parietal and premotor cortices of the macaque monkey contain distinct populations of neurons which, in addition to their motor discharge, are also activated by visual stimulation. Among these visuomotor neurons, a population of grasping neurons located in the anterior intraparietal area (AIP shows discharge modulation when the own hand is visible during object grasping. Given the dense connections between AIP and inferior frontal regions, we aimed at investigating whether two hand-related frontal areas, ventral premotor area F5 and primary motor cortex (area F1, contain neurons with similar properties. Two macaques were involved in a grasping task executed in various light/dark conditions in which the to-be-grasped object was kept visible by a dim retro-illumination. Approximately 62% of F5 and 55% of F1 motor neurons showed light/dark modulations. To better isolate the effect of hand-related visual input, we introduced two further conditions characterized by kinematic features similar to the dark condition. The scene was briefly illuminated (i during hand preshaping (pre-touch flash, PT-flash and (ii at hand-object contact (touch flash, T-flash. Approximately 48% of F5 and 44% of F1 motor neurons showed a flash-related modulation. Considering flash-modulated neurons in the two flash conditions, ∼40% from F5 and ∼52% from F1 showed stronger activity in PT- than T-flash (PT-flash-dominant, whereas ∼60% from F5 and ∼48% from F1 showed stronger activity in T- than PT-flash (T-flash-dominant. Furthermore, F5, but not F1, flash-dominant neurons were characterized by a higher peak and mean discharge in the preferred flash condition as compared to light and dark conditions. Still considering F5, the distribution of the time of peak discharge was similar in light and preferred flash conditions. This study shows that the frontal cortex contains neurons, previously classified as motor neurons, which are sensitive to the observation of meaningful

  8. CranialVault and its CRAVE tools: a clinical computer assistance system for deep brain stimulation (DBS) therapy.

    Science.gov (United States)

    D'Haese, Pierre-François; Pallavaram, Srivatsan; Li, Rui; Remple, Michael S; Kao, Chris; Neimat, Joseph S; Konrad, Peter E; Dawant, Benoit M

    2012-04-01

    A number of methods have been developed to assist surgeons at various stages of deep brain stimulation (DBS) therapy. These include construction of anatomical atlases, functional databases, and electrophysiological atlases and maps. But, a complete system that can be integrated into the clinical workflow has not been developed. In this paper we present a system designed to assist physicians in pre-operative target planning, intra-operative target refinement and implantation, and post-operative DBS lead programming. The purpose of this system is to centralize the data acquired a the various stages of the procedure, reduce the amount of time needed at each stage of the therapy, and maximize the efficiency of the entire process. The system consists of a central repository (CranialVault), of a suite of software modules called CRAnialVault Explorer (CRAVE) that permit data entry and data visualization at each stage of the therapy, and of a series of algorithms that permit the automatic processing of the data. The central repository contains image data for more than 400 patients with the related pre-operative plans and position of the final implants and about 10,550 electrophysiological data points (micro-electrode recordings or responses to stimulations) recorded from 222 of these patients. The system has reached the stage of a clinical prototype that is being evaluated clinically at our institution. A preliminary quantitative validation of the planning component of the system performed on 80 patients who underwent the procedure between January 2009 and December 2009 shows that the system provides both timely and valuable information. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Changes in neural circuitry associated with depression at pre-clinical, pre-motor and early motor phases of Parkinson's disease.

    Science.gov (United States)

    Borgonovo, Janina; Allende-Castro, Camilo; Laliena, Almudena; Guerrero, Néstor; Silva, Hernán; Concha, Miguel L

    2017-02-01

    Although Parkinson's Disease (PD) is mostly considered a motor disorder, it can present at early stages as a non-motor pathology. Among the non-motor clinical manifestations, depression shows a high prevalence and can be one of the first clinical signs to appear, even a decade before the onset of motor symptoms. Here, we review the evidence of early dysfunction in neural circuitry associated with depression in the context of PD, focusing on pre-clinical, pre-motor and early motor phases of the disease. In the pre-clinical phase, structural and functional changes in the substantia nigra, basal ganglia and limbic structures are already observed. Some of these changes are linked to motor compensation mechanisms while others correspond to pathological processes common to PD and depression and thus could underlie the appearance of depressive symptoms during the pre-motor phase. Studies of the early motor phase (less than five years post diagnosis) reveal an association between the extent of damage in different monoaminergic systems and the appearance of emotional disorders. We propose that the limbic loop of the basal ganglia and the lateral habenula play key roles in the early genesis of depression in PD. Alterations in the neural circuitry linked with emotional control might be sensitive markers of the ongoing neurodegenerative process and thus may serve to facilitate an early diagnosis of this disease. To take advantage of this, we need to improve the clinical criteria and develop biomarkers to identify depression, which could be used to determine individuals at risk to develop PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Prefrontal rTMS for treating depression: location and intensity results from the OPT-TMS multi-site clinical trial.

    Science.gov (United States)

    Johnson, Kevin A; Baig, Mirza; Ramsey, Dave; Lisanby, Sarah H; Avery, David; McDonald, William M; Li, Xingbao; Bernhardt, Elisabeth R; Haynor, David R; Holtzheimer, Paul E; Sackeim, Harold A; George, Mark S; Nahas, Ziad

    2013-03-01

    Motor cortex localization and motor threshold determination often guide Transcranial Magnetic Stimulation (TMS) placement and intensity settings for non-motor brain stimulation. However, anatomic variability results in variability of placement and effective intensity. Post-study analysis of the OPT-TMS Study reviewed both the final positioning and the effective intensity of stimulation (accounting for relative prefrontal scalp-cortex distances). We acquired MRI scans of 185 patients in a multi-site trial of left prefrontal TMS for depression. Scans had marked motor sites (localized with TMS) and marked prefrontal sites (5 cm anterior of motor cortex by the "5 cm rule"). Based on a visual determination made before the first treatment, TMS therapy occurred either at the 5 cm location or was adjusted 1 cm forward. Stimulation intensity was 120% of resting motor threshold. The "5 cm rule" would have placed stimulation in premotor cortex for 9% of patients, which was reduced to 4% with adjustments. We did not find a statistically significant effect of positioning on remission, but no patients with premotor stimulation achieved remission (0/7). Effective stimulation ranged from 93 to 156% of motor threshold, and no seizures were induced across this range. Patients experienced remission with effective stimulation intensity ranging from 93 to 146% of motor threshold, and we did not find a significant effect of effective intensity on remission. Our data indicates that individualized positioning methods are useful to reduce variability in placement. Stimulation at 120% of motor threshold, unadjusted for scalp-cortex distances, appears safe for a broad range of patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Post-Stroke Longitudinal Alterations of Inter-Hemispheric Correlation and Hemispheric Dominance in Mouse Pre-Motor Cortex.

    Science.gov (United States)

    Vallone, Fabio; Lai, Stefano; Spalletti, Cristina; Panarese, Alessandro; Alia, Claudia; Micera, Silvestro; Caleo, Matteo; Di Garbo, Angelo

    2016-01-01

    Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may "take over" control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating dominance

  12. Post-Stroke Longitudinal Alterations of Inter-Hemispheric Correlation and Hemispheric Dominance in Mouse Pre-Motor Cortex.

    Directory of Open Access Journals (Sweden)

    Fabio Vallone

    Full Text Available Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs may "take over" control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA, generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral.Local field potentials (LFPs were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis.Spectral analysis demonstrated an early decrease (day 9 in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23, inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance.These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating

  13. What does low-intensity rTMS do to the cerebellum?

    Science.gov (United States)

    Morellini, N; Grehl, S; Tang, A; Rodger, J; Mariani, J; Lohof, A M; Sherrard, R M

    2015-02-01

    Non-invasive stimulation of the human cerebellum, such as by transcranial magnetic stimulation (TMS), is increasingly used to investigate cerebellar function and identify potential treatment for cerebellar dysfunction. However, the effects of TMS on cerebellar neurons remain poorly defined. We applied low-intensity repetitive TMS (LI-rTMS) to the mouse cerebellum in vivo and in vitro and examined the cellular and molecular sequelae. In normal C57/Bl6 mice, 4 weeks of LI-rTMS using a complex biomimetic high-frequency stimulation (BHFS) alters Purkinje cell (PC) dendritic and spine morphology; the effects persist 4 weeks after the end of stimulation. We then evaluated whether LI-rTMS could induce climbing fibre (CF) reinnervation to denervated PCs. After unilateral pedunculotomy in adult mice and 2 weeks sham or BHFS stimulation, VGLUT2 immunohistochemistry was used to quantify CF reinnervation. In contrast to sham, LI-rTMS induced CF reinnervation to the denervated hemicerebellum. To examine potential mechanisms underlying the LI-rTMS effect, we verified that BHFS could induce CF reinnervation using our in vitro olivocerebellar explants in which denervated cerebellar tissue is co-cultured adjacent to intact cerebella and treated with brain-derived neurotrophic factor (BDNF) (as a positive control), sham or LI-rTMS for 2 weeks. Compared with sham, BDNF and BHFS LI-rTMS significantly increased CF reinnervation, without additive effect. To identify potential underlying mechanisms, we examined intracellular calcium flux during the 10-min stimulation. Complex high-frequency stimulation increased intracellular calcium by release from intracellular stores. Thus, even at low intensity, rTMS modifies PC structure and induces CF reinnervation.

  14. Focal hand dystonia: individualized intervention with repeated application of repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Kimberley, Teresa Jacobson; Borich, Michael R; Schmidt, Rebekah L; Carey, James R; Gillick, Bernadette

    2015-04-01

    To examine for individual factors that may predict response to inhibitory repetitive transcranial magnetic stimulation (rTMS) in focal hand dystonia (FHD); to present the method for determining optimal stimulation to increase inhibition in a given patient; and to examine individual responses to prolonged intervention. Single-subject design to determine optimal parameters to increase inhibition for a given subject and to use the selected parameters once per week for 6 weeks, with 1-week follow-up, to determine response. Clinical research laboratory. A volunteer sample of subjects with FHD (N = 2). One participant had transcranial magnetic stimulation responses indicating impaired inhibition, and the other had responses within normative limits. There were 1200 pulses of 1-Hz rTMS delivered using 4 different stimulation sites/intensity combinations: primary motor cortex at 90% or 110% of resting motor threshold (RMT) and dorsal premotor cortex (PMd) at 90% or 110% of RMT. The parameters producing the greatest within-session increase in cortical silent period (CSP) duration were then used as the intervention. Response variables included handwriting pressure and velocity, subjective symptom rating, CSP, and short latency intracortical inhibition and facilitation. The individual with baseline transcranial magnetic stimulation responses indicating impaired inhibition responded favorably to the repeated intervention, with reduced handwriting force, an increase in the CSP, and subjective report of moderate symptom improvement at 1-week follow-up. The individual with normative baseline responses failed to respond to the intervention. In both subjects, 90% of RMT to the PMd produced the greatest lengthening of the CSP and was used as the intervention. An individualized understanding of neurophysiological measures can be an indicator of responsiveness to inhibitory rTMS in focal dystonia, with further work needed to determine likely responders versus nonresponders. Copyright

  15. Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance.

    Science.gov (United States)

    Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B

    2014-04-01

    Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; 7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.

  16. EEG activation differences in the pre-motor cortex and supplementary motor area between normal individuals with high and low traits of autism.

    Science.gov (United States)

    Puzzo, Ignazio; Cooper, Nicholas R; Vetter, Petra; Russo, Riccardo

    2010-06-25

    The human mirror neuron system (hMNS) is believed to provide a basic mechanism for social cognition. Event-related desynchronization (ERD) in alpha (8-12Hz) and low beta band (12-20Hz) over sensori-motor cortex has been suggested to index mirror neurons' activity. We tested whether autistic traits revealed by high and low scores on the Autistic Quotient (AQ) in the normal population are linked to variations in the electroencephalogram (EEG) over motor, pre-motor cortex and supplementary motor area (SMA) during action observation. Results revealed that in the low AQ group, the pre-motor cortex and SMA were more active during hand action than static hand observation whereas in the high AQ group the same areas were active both during static and hand action observation. In fact participants with high traits of autism showed greater low beta ERD while observing the static hand than those with low traits and this low beta ERD was not significantly different when they watched hand actions. Over primary motor cortex, the classical alpha and low beta ERD during hand actions relative to static hand observation was found across all participants. These findings suggest that the observation-execution matching system works differently according to the degree of autism traits in the normal population and that this is differentiated in terms of the EEG according to scalp site and bandwidth. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Analysis and modeling of ensemble recordings from respiratory pre-motor neurons indicate changes in functional network architecture after acute hypoxia

    Directory of Open Access Journals (Sweden)

    Roberto F Galán

    2010-09-01

    Full Text Available We have combined neurophysiologic recording, statistical analysis, and computational modeling to investigate the dynamics of the respiratory network in the brainstem. Using a multielectrode array, we recorded ensembles of respiratory neurons in perfused in situ rat preparations that produce spontaneous breathing patterns, focusing on inspiratory pre-motor neurons. We compared firing rates and neuronal synchronization among these neurons before and after a brief hypoxic stimulus. We observed a significant decrease in the number of spikes after stimulation, in part due to a transient slowing of the respiratory pattern. However, the median interspike interval did not change, suggesting that the firing threshold of the neurons was not affected but rather the synaptic input was. A bootstrap analysis of synchrony between spike trains revealed that, both before and after brief hypoxia, up to 45 % (but typically less than 5 % of coincident spikes across neuronal pairs was not explained by chance. Most likely, this synchrony resulted from common synaptic input to the pre-motor population, an example of stochastic synchronization. After brief hypoxia most pairs were less synchronized, although some were more, suggesting that the respiratory network was “rewired” transiently after the stimulus. To investigate this hypothesis, we created a simple computational model with feed-forward divergent connections along the inspiratory pathway. Assuming that 1 the number of divergent projections was not the same for all presynaptic cells, but rather spanned a wide range and 2 that the stimulus increased inhibition at the top of the network; this model reproduced the reduction in firing rate and bootstrap-corrected synchrony subsequent to hypoxic stimulation observed in our experimental data.

  18. Combination Protocol of Low-Frequency rTMS and Intensive Occupational Therapy for Post-stroke Upper Limb Hemiparesis: a 6-year Experience of More Than 1700 Japanese Patients.

    Science.gov (United States)

    Kakuda, Wataru; Abo, Masahiro; Sasanuma, Jinichi; Shimizu, Masato; Okamoto, Takatsugu; Kimura, Chikou; Kakita, Kiyohito; Hara, Hiroyoshi

    2016-06-01

    Several years ago, we proposed a combination protocol of repetitive transcranial magnetic stimulation (rTMS) and intensive occupational therapy (OT) for upper limb hemiparesis after stroke. Subsequently, the number of patients treated with the protocol has increased in Japan. We aimed to present the latest data on our proposed combination protocol for post-stroke upper limb hemiparesis as a result of a multi-institutional study. After confirming that a patient met the inclusion criteria for the protocol, they were scheduled to receive the 15-day inpatient protocol. In the protocol, two sessions of 20-min rTMS and 120-min occupational therapy were provided daily, except for Sundays and the days of admission/discharge. Motor function of the affected upper limb was evaluated by the Fugl-Meyer assessment (FMA) and Wolf motor function test (WMFT) at admission/discharge and at 4 weeks after discharge if possible. A total of 1725 post-stroke patients were studied (mean age at admission 61.4 ± 13.0 years). The scheduled 15-day protocol was completed by all patients. At discharge, the increase in FMA score, shortening in performance time of WMFT, and increase in functional ability scale (FAS) score of WMFT were significant (FMA score 46.8 ± 12.2 to 50.9 ± 11.4 points, p hemiparesis after stroke, although its efficacy should be confirmed in a randomized controlled study.

  19. Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements

    Science.gov (United States)

    Angelaki, Dora E.; Dickman, J. David

    2003-01-01

    Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.

  20. Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain--a resting-state fMRI pilot study.

    Science.gov (United States)

    Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L

    2016-02-01

    Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Bilateral primary motor cortex circuitry is modulated due to theta burst stimulation to left dorsal premotor cortex and bimanual training.

    Science.gov (United States)

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2015-08-27

    Motor preparatory and execution activity is enhanced after a single session of bimanual visuomotor training (BMT). Recently, we have shown that increased primary motor cortex (M1) excitability occurs when BMT involves simultaneous activation of homologous muscles and these effects are enhanced when BMT is preceded by intermittent theta burst stimulation (iTBS) to the left dorsal premotor cortex (lPMd). The neural mechanisms underlying these modulations are unclear, but may include interhemispheric interactions between homologous M1s and connectivity with premotor regions. The purpose of this study was to investigate the possible intracortical and interhemispheric modulations of the extensor carpi radials (ECR) representation in M1 bilaterally due to: (1) BMT, (2) iTBS to lPMd, and (3) iTBS to lPMd followed by BMT. This study tests three related hypotheses: (1) BMT will enhance excitability within and between M1 bilaterally, (2) iTBS to lPMd will primarily enhance left M1 (lM1) excitability, and (3) the combination of these interventions will cause a greater enhancement of bilateral M1 excitability. We used single and paired-pulse transcranial magnetic stimulation (TMS) to quantify M1 circuitry bilaterally. The results demonstrate the neural mechanisms underlying the early markers of rapid functional plasticity associated with BMT and iTBS to lPMd primarily relate to modulations of long-interval inhibitory (i.e. GABAB-mediated) circuitry within and between M1s. This work provides novel insight into the underlying neural mechanisms involved in M1 excitability changes associated with BMT and iTBS to lPMd. Critically, this work may inform rehabilitation training and stimulation techniques that modulate cortical plasticity after brain injury. Copyright © 2015. Published by Elsevier B.V.

  2. Modulation of left primary motor cortex excitability after bimanual training and intermittent theta burst stimulation to left dorsal premotor cortex.

    Science.gov (United States)

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2014-03-15

    Bimanual visuomotor movement training (BMT) enhances the excitability of human preparatory premotor and primary motor (M1) cortices compared to unimanual movement. This occurs when BMT involves mirror symmetrical movements of both upper-limbs (in-phase) but not with non-symmetrical movements (anti-phase). The neural mechanisms mediating the effect of BMT is unclear, but may involve interhemispheric connections between homologous M1 representations as well as the dorsal premotor cortices (PMd). The purpose of this study is to assess how intermittent theta burst stimulation (iTBS) of the left PMd affects left M1 excitability, and the possible combined effects of iTBS to left PMd applied before a single session of BMT. Left M1 excitability was quantified using transcranial magnetic stimulation (TMS) in terms of both the amplitudes and spatial extent of motor evoked potentials (MEPs) for the extensor carpi radialis (ECR) before and multiple time points following (1) BMT, (2) iTBS to left PMd or (3) iTBS to left PMd and BMT. Although there was not a greater increase in either specific measure of M1 excitability due to the combination of the interventions, iTBS applied before BMT showed that both the spatial extent and global MEP amplitude for the ECR became larger in parallel, whereas the spatial extent was enhanced with BMT alone and global MEP amplitude was enhanced with iTBS to left PMd alone. These results suggest that the modulation of rapid functional M1 excitability associated with BMT and iTBS of the left PMd could operate under related early markers of neuro-plastic mechanisms, which may be expressed in concurrent and distinct patterns of M1 excitability. Critically, this work may guide rehabilitation training and stimulation techniques that modulate cortical excitability after brain injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Network connectivity and individual responses to brain stimulation in the human motor system.

    Science.gov (United States)

    Cárdenas-Morales, Lizbeth; Volz, Lukas J; Michely, Jochen; Rehme, Anne K; Pool, Eva-Maria; Nettekoven, Charlotte; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2014-07-01

    The mechanisms driving cortical plasticity in response to brain stimulation are still incompletely understood. We here explored whether neural activity and connectivity in the motor system relate to the magnitude of cortical plasticity induced by repetitive transcranial magnetic stimulation (rTMS). Twelve right-handed volunteers underwent functional magnetic resonance imaging during rest and while performing a simple hand motor task. Resting-state functional connectivity, task-induced activation, and task-related effective connectivity were assessed for a network of key motor areas. We then investigated the effects of intermittent theta-burst stimulation (iTBS) on motor-evoked potentials (MEP) for up to 25 min after stimulation over left primary motor cortex (M1) or parieto-occipital vertex (for control). ITBS-induced increases in MEP amplitudes correlated negatively with movement-related fMRI activity in left M1. Control iTBS had no effect on M1 excitability. Subjects with better response to M1-iTBS featured stronger preinterventional effective connectivity between left premotor areas and left M1. In contrast, resting-state connectivity did not predict iTBS aftereffects. Plasticity-related changes in M1 following brain stimulation seem to depend not only on local factors but also on interconnected brain regions. Predominantly activity-dependent properties of the cortical motor system are indicative of excitability changes following induction of cortical plasticity with rTMS. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Long lasting effects of daily theta burst rTMS sessions in the human amblyopic cortex.

    Science.gov (United States)

    Clavagnier, Simon; Thompson, Benjamin; Hess, Robert F

    2013-11-01

    It has been reported that a single session of 1 Hz or 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the visual cortex can temporarily improve contrast sensitivity in adults with amblyopia. More recently, continuous theta burst stimulation (cTBS) of the visual cortex has been found to improve contrast sensitivity in observers with normal vision. The aims of this study were to assess whether cTBS of the visual cortex could improve contrast sensitivity in adults with amblyopia and whether repeated sessions of cTBS would lead to more pronounced and/or longer lasting effects. cTBS was delivered to the visual cortex while patients viewed a high contrast stimulus with their non-amblyopic eye. This manipulation was designed to bias the effects of cTBS toward inputs from the amblyopic eye. Contrast sensitivity was measured before and after stimulation. The effects of one cTBS session were measured in five patients and the effects of five consecutive daily sessions were measured in four patients. Three patients were available for follow-up at varying intervals after the final session. cTBS improved amblyopic eye contrast sensitivity to high spatial frequencies (P enduring visual function improvements in adults with amblyopia. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Effect of transcranial magnetic stimulation (TMS on parietal and premotor cortex during planning of reaching movements.

    Directory of Open Access Journals (Sweden)

    Pierpaolo Busan

    Full Text Available BACKGROUND: Cerebral activation during planning of reaching movements occurs both in the superior parietal lobule (SPL and premotor cortex (PM, and their activation seems to take place in parallel. METHODOLOGY: The activation of the SPL and PM has been investigated using transcranial magnetic stimulation (TMS during planning of reaching movements under visual guidance. PRINCIPAL FINDINGS: A facilitory effect was found when TMS was delivered on the parietal cortex at about half of the time from sight of the target to hand movement, independently of target location in space. Furthermore, at the same stimulation time, a similar facilitory effect was found in PM, which is probably related to movement preparation. CONCLUSIONS: This data contributes to the understanding of cortical dynamics in the parieto-frontal network, and suggests that it is possible to interfere with the planning of reaching movements at different cortical points within a particular time window. Since similar effects may be produced at similar times on both the SPL and PM, parallel processing of visuomotor information is likely to take place in these regions.

  6. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex

    Science.gov (United States)

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  7. Resting-state connectivity of pre-motor cortex reflects disability in multiple sclerosis.

    Science.gov (United States)

    Dogonowski, A-M; Siebner, H R; Soelberg Sørensen, P; Paulson, O B; Dyrby, T B; Blinkenberg, M; Madsen, K H

    2013-11-01

    To characterize the relationship between motor resting-state connectivity of the dorsal pre-motor cortex (PMd) and clinical disability in patients with multiple sclerosis (MS). A total of 27 patients with relapsing-remitting MS (RR-MS) and 15 patients with secondary progressive MS (SP-MS) underwent functional resting-state magnetic resonance imaging. Clinical disability was assessed using the Expanded Disability Status Scale (EDSS). Independent component analysis was used to characterize motor resting-state connectivity. Multiple regression analysis was performed in SPM8 between the individual expression of motor resting-state connectivity in PMd and EDSS scores including age as covariate. Separate post hoc analyses were performed for patients with RR-MS and SP-MS. The EDSS scores ranged from 0 to 7 with a median score of 4.3. Motor resting-state connectivity of left PMd showed a positive linear relation with clinical disability in patients with MS. This effect was stronger when considering the group of patients with RR-MS alone, whereas patients with SP-MS showed no increase in coupling strength between left PMd and the motor resting-state network with increasing clinical disability. No significant relation between motor resting-state connectivity of the right PMd and clinical disability was detected in MS. The increase in functional coupling between left PMd and the motor resting-state network with increasing clinical disability can be interpreted as adaptive reorganization of the motor system to maintain motor function, which appears to be limited to the relapsing-remitting stage of the disease. © 2013 John Wiley & Sons A/S.

  8. Dorsal premotor cortex is involved in switching motor plans

    Science.gov (United States)

    Pastor-Bernier, Alexandre; Tremblay, Elsa; Cisek, Paul

    2012-01-01

    Previous studies have shown that neural activity in primate dorsal premotor cortex (PMd) can simultaneously represent multiple potential movement plans, and that activity related to these movement options is modulated by their relative subjective desirability. These findings support the hypothesis that decisions about actions are made through a competition within the same circuits that guide the actions themselves. This hypothesis further predicts that the very same cells that guide initial decisions will continue to update their activities if an animal changes its mind. For example, if a previously selected movement option suddenly becomes unavailable, the correction will be performed by the same cells that selected the initial movement, as opposed to some different group of cells responsible for online guidance. We tested this prediction by recording neural activity in the PMd of a monkey performing an instructed-delay reach selection task. In the task, two targets were simultaneously presented and their border styles indicated whether each would be worth 1, 2, or 3 juice drops. In a random subset of trials (FREE), the monkey was allowed a choice while in the remaining trials (FORCED) one of the targets disappeared at the time of the GO signal. In FORCED-LOW trials the monkey was forced to move to the less valuable target and started moving either toward the new target (Direct) or toward the target that vanished and then curved to reach the remaining one (Curved). Prior to the GO signal, PMd activity clearly reflected the monkey's subjective preference, predicting his choices in FREE trials even with equally valued options. In FORCED-LOW trials, PMd activity reflected the switch of the monkey's plan as early as 100 ms after the GO signal, well before movement onset (MO). This confirms that the activity is not related to feedback from the movement itself, and suggests that PMd continues to participate in action selection even when the animal changes its mind on

  9. A novel approach for monitoring writing interferences during navigated transcranial magnetic stimulation mappings of writing related cortical areas.

    Science.gov (United States)

    Rogić Vidaković, Maja; Gabelica, Dragan; Vujović, Igor; Šoda, Joško; Batarelo, Nikolina; Džimbeg, Andrija; Zmajević Schönwald, Marina; Rotim, Krešimir; Đogaš, Zoran

    2015-11-30

    It has recently been shown that navigated repetitive transcranial magnetic stimulation (nTMS) is useful in preoperative neurosurgical mapping of motor and language brain areas. In TMS mapping of motor cortices the evoked responses can be quantitatively monitored by electromyographic (EMG) recordings. No such setup exists for monitoring of writing during nTMS mappings of writing related cortical areas. We present a novel approach for monitoring writing during nTMS mappings of motor writing related cortical areas. To our best knowledge, this is the first demonstration of quantitative monitoring of motor evoked responses from hand by EMG, and of pen related activity during writing with our custom made pen, together with the application of chronometric TMS design and patterned protocol of rTMS. The method was applied in four healthy subjects participating in writing during nTMS mapping of the premotor cortical area corresponding to BA 6 and close to the superior frontal sulcus. The results showed that stimulation impaired writing in all subjects. The corresponding spectra of measured signal related to writing movements was observed in the frequency band 0-20 Hz. Magnetic stimulation affected writing by suppressing normal writing frequency band. The proposed setup for monitoring of writing provides additional quantitative data for monitoring and the analysis of rTMS induced writing response modifications. The setup can be useful for investigation of neurophysiologic mechanisms of writing, for therapeutic effects of nTMS, and in preoperative mapping of language cortical areas in patients undergoing brain surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. What is dorso-lateral in the subthalamic Nucleus (STN)?--a topographic and anatomical consideration on the ambiguous description of today's primary target for deep brain stimulation (DBS) surgery.

    Science.gov (United States)

    Coenen, Volker A; Prescher, Andreas; Schmidt, Thorsten; Picozzi, Piero; Gielen, Frans L H

    2008-11-01

    The most frequently used target for DBS in advanced Parkinson Disease (PD) is the sensorimotor subthalamic nucleus (STN), anatomically referred to as dorso-lateral STN [3]. Ambiguities arise, regarding the true meaning of this description in the STN. Does "dorsal" indicate posterior or superior? At its best, this definition assigns two directions in space to a three-dimensional structure. This paper evaluates the ambiguity and describes the sensorimotor part of the STN in stereotactic space.

  11. Integration and validation testing for PhEDEx, DBS and DAS with the PhEDEx LifeCycle agent

    CERN Document Server

    Wildish, Anthony

    2013-01-01

    The ever-increasing amount of data handled by the CMS dataflow and workflow management tools poses new challenges for cross-validation among different systems within CMS experiment at LHC. To approach this problem we developed an integration test suite based on the LifeCycle agent, a tool originally conceived for stress-testing new releases of PhEDEx, the CMS data-placement tool. The LifeCycle agent provides a framework for customising the test workflow in arbitrary ways, and can scale to levels of activity well beyond those seen in normal running. This means we can run realistic performance tests at scales not likely to be seen by the experiment for some years, or with custom topologies to examine particular situations that may cause concern some time in the future.The LifeCycle agent has recently been enhanced to become a general purpose integration and validation testing tool for major CMS services (PhEDEx, DBS, DAS). It allows cross-system integration tests of all three components to be performed in contr...

  12. Effects of SR141716A on Cognitive and Depression-Related Behavior in an Animal Model of Premotor Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    M. T. Tadaiesky

    2010-01-01

    Full Text Available A previous study from our laboratory revealed that moderate nigral dopaminergic degeneration caused emotional and cognitive deficits in rats, paralleling early signs of Parkinson's disease. Recent evidence suggests that the blockade of cannabinoid CB1 receptors might be beneficial to alleviate motor inhibition typical of Parkinson's disease. Here, we investigated whether antagonism of CB1 receptors would improve emotional and cognitive deficits in a rat model of premotor Parkinson's disease. Depression-like behavior and cognition were assessed with the forced swim test and the social recognition test, respectively. Confirming our previous study, rats injected with 6-hydroxydopamine in striatum presented emotional and cognitive alterations which were improved by acute injection of SR141716A. HPLC analysis of monoamine levels demonstrated alterations in the striatum and prefrontal cortex after SR141716A injection. These findings suggest a role for CB1 receptors in the early symptoms caused by degeneration of dopaminergic neurons in the striatum, as observed in Parkinson's disease.

  13. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Schlaak, Boris H; Münchau, Alexander

    2012-01-01

    In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and M1......(HAND) through specifically designed minicoils to selectively probe ipsilateral PMd-to-M1(HAND) connectivity in humans. A suprathreshold test stimulus (TS) was applied to M1(HAND) producing a motor evoked potential (MEP) of about 0.5 mV in the relaxed right first dorsal interosseus muscle (FDI......) facilitation did not change as a function of CS intensity. Even at higher intensities, the CS alone failed to elicit a MEP or a cortical silent period in the pre-activated FDI, excluding a direct spread of excitation from PMd to M1(HAND). No MEP facilitation was present while CS was applied rostrally over...

  14. Are there adaptive changes in the human brain of patients with Parkinson's disease treated with long-term deep brain stimulation of the subthalamic nucleus? A 4-year follow-up study with regional cerebral blood flow SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Sestini, Stelvio; Castagnoli, Antonio [Ospedale Misericordia e Dolce, Department of Diagnostic Imaging, Nuclear Medicine Unit, Prato (Italy); Pupi, Alberto [University of Florence, Department of Clinical Physiopathology, Nuclear Medicine Unit, Florence (Italy); Ammannati, Franco; Silvia, Ramat; Sorbi, Sandro [University of Florence, Department of Neurological and Psychiatric Sciences, Florence (Italy)

    2007-10-15

    The aim of this follow-up study was to assess persistent motor and regional cerebral blood flow (rCBF) changes in patients with Parkinson's disease (PD) treated with high-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN). Ten PD patients with STN-DBS underwent three rCBF SPECT studies at rest, once preoperatively in the off-drug condition (T{sub 0}), and twice postoperatively in the off-drug/off-stimulation conditions at 5 {+-} 2 (T{sub 1}) and 42 {+-} 7 months (T{sub 2}). Patients were assessed using the UPDRS, H and Y and S and E scales. SPM was used to investigate baseline rCBF changes from the preoperative condition to the postoperative conditions and the relationship between rCBF and UPDRS scores used as covariate of interest. Parkinsonian patients showed a clinical improvement which was significant only on follow-up at 42 months. The main effect of treatment from T{sub 0} to T{sub 1} was to produce baseline rCBF increases in the pre-supplementary motor area (pre-SMA), premotor cortex and somatosensory association cortex. From T{sub 1} to T{sub 2} a further baseline rCBF increase was detected in the pre-SMA (p < 0.0001). A correlation was detected between the slight improvement in motor scores and the rCBF increase in the pre-SMA (p < 0.0001), which is known to play a crucial role in clinical progression. Our study suggests the presence of adaptive functional changes in the human brain of PD patients treated with long-term STN-DBS. Such adaptive processes seem to occur in the pre-SMA and to play only a slightly beneficial role in terms of functional compensation of motor impairment. (orig.)

  15. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas.

    Science.gov (United States)

    Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene; Ullén, Fredrik

    2014-04-30

    Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity.

  16. Parietal and premotor cortices: activation reflects imitation accuracy during observation, delayed imitation and concurrent imitation.

    Science.gov (United States)

    Krüger, Britta; Bischoff, Matthias; Blecker, Carlo; Langhanns, Christine; Kindermann, Stefan; Sauerbier, Isabell; Reiser, Mathias; Stark, Rudolf; Munzert, Jörn; Pilgramm, Sebastian

    2014-10-15

    This study investigated whether activation within areas belonging to the action observation and imitation network reveals a linear relation to the subsequent accuracy of imitating a bimanual rhythmic movement measured via a motion capturing system. 20 participants were scanned with functional magnetic resonance imaging (fMRI) when asked to imitate observed bimanual movements either concurrently versus with a delay (2s) or simply to observe the movements without imitation. Results showed that action observation relates to activation within classic mirror-related areas. Activation patterns were more widespread when participants were asked to imitate the movement. During observation with concurrent imitation, activation in the left inferior parietal lobe (IPL) was associated negatively with imitation accuracy. During observation in the delayed imitation condition, higher subsequent imitation accuracy was coupled with higher activation in the right superior parietal lobe (SPL) and the left parietal operculum (POp). During the delayed imitation itself, a negative association between imitation accuracy and brain activation was revealed in the right ventral premotor cortex (vPMC). We conclude that the IPL is involved in online comparison and visuospatial attention processes during imitation, the SPL provides a kinesthetic blueprint during movement observation, the POp preserves body identity, and the vPMC recruits motor representations--especially when no concurrent visual guidance is possible. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex

    Directory of Open Access Journals (Sweden)

    Marianne Anke Stephan

    2016-05-01

    Full Text Available The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group. For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group. Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools.

  18. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  19. Chronic treatment with repetitive transcranial magnetic stimulation inhibits seizure induction by electroconvulsive shock in rats.

    Science.gov (United States)

    Fleischmann, A; Hirschmann, S; Dolberg, O T; Dannon, P N; Grunhaus, L

    1999-03-15

    Studies in laboratory animals suggest that repetitive transcranial magnetic stimulation (rTMS) and electroconvulsive shock (ECS) increase seizure inhibition acutely. This study was designed to explore whether chronic rTMS would also have seizure inhibition properties. To this purpose we administered rTMS (Magstim Rapid) and sham rTMS twice daily (2.5 T, 4-sec train duration, 20 Hz) to two groups of 10 rats for 16 days. The rTMS coil was a 50-mm figure-8 coil held directly over the rat's head. Raters were blind to experimental groups. On days 11, 17, and 21 (5 days after the last rTMS) ECS was administered with a Siemens convulsator using three electrical charge levels. Variables examined were the presence or absence of seizures and seizure length (measured from the initiation of the tonic contraction until the end of the limb movement). At day 11 rTMS had no effect on seizures, and both rTMS and sham rTMS animals convulsed equally. At day 17, however, rTMS-treated animals convulsed significantly less (both at presence/absence of seizures, and at seizure length) than sham rTMS animals. At day 21 the effects of rTMS had disappeared. These findings suggest that rTMS administered chronically leads to changes in seizure threshold similar to those reported for ECS and ECT; however, these effects were short-lived.

  20. New methods of minimally invasive brain modulation as therapies in psychiatry: TMS, MST, VNS and DBS.

    Science.gov (United States)

    George, Mark S

    2002-08-01

    Over the past 20 years, new methods have been developed that have allowed scientists to visualize the human brain in action. Initially positron emission tomography (PET) and now functional magnetic resonance imaging (fMRI) are causing a paradigm shift in psychiatry and the neurosciences. Psychiatry is abandoning the pharmacological model of 'brain as soup', used for much of the past 20 years. Instead, there is new realization that both normal and abnormal behavior arise from chemical processes that occur within parallel distributed networks in specific brain regions. Many of these pathological circuits are becoming well characterized, in disorders ranging from Parkinson's disease, to obsessive-compulsive disorder, to depression. Most recently, there has been an explosion of new techniques that allow for direct stimulation of these brain circuits, without the need for open craniotomy and neurosurgical ablation. The techniques include transcranial magnetic stimulation (TMS), magnetic seizure therapy (MST), vagus nerve stimulation (VNS), and deep brain stimulation (DBS). This review will describe these new tools, and overview their current and future potential for research and clinical neuropsychiatric use. The psychiatry of the future will be better grounded in a firm understanding of neuroanatomy and neurophysiology (as well as pharmacology). These brain stimulation tools, or their next iterations, will play an ever-larger role in clinical neuropsychiatric practice.

  1. Suppression of motor cortical excitability in anesthetized rats by low frequency repetitive transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Paul A Muller

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is a widely-used method for modulating cortical excitability in humans, by mechanisms thought to involve use-dependent synaptic plasticity. For example, when low frequency rTMS (LF rTMS is applied over the motor cortex, in humans, it predictably leads to a suppression of the motor evoked potential (MEP, presumably reflecting long-term depression (LTD -like mechanisms. Yet how closely such rTMS effects actually match LTD is unknown. We therefore sought to (1 reproduce cortico-spinal depression by LF rTMS in rats, (2 establish a reliable animal model for rTMS effects that may enable mechanistic studies, and (3 test whether LTD-like properties are evident in the rat LF rTMS setup. Lateralized MEPs were obtained from anesthetized Long-Evans rats. To test frequency-dependence of LF rTMS, rats underwent rTMS at one of three frequencies, 0.25, 0.5, or 1 Hz. We next tested the dependence of rTMS effects on N-methyl-D-aspartate glutamate receptor (NMDAR, by application of two NMDAR antagonists. We find that 1 Hz rTMS preferentially depresses unilateral MEP in rats, and that this LTD-like effect is blocked by NMDAR antagonists. These are the first electrophysiological data showing depression of cortical excitability following LF rTMS in rats, and the first to demonstrate dependence of this form of cortical plasticity on the NMDAR. We also note that our report is the first to show that the capacity for LTD-type cortical suppression by rTMS is present under barbiturate anesthesia, suggesting that future neuromodulatory rTMS applications under anesthesia may be considered.

  2. Motivational mechanisms (BAS) and prefrontal cortical activation contribute to recognition memory for emotional words. rTMS effect on performance and EEG (alpha band) measures.

    Science.gov (United States)

    Balconi, Michela; Cobelli, Chiara

    2014-10-01

    The present research addressed the question of where memories for emotional words could be represented in the brain. A second main question was related to the effect of personality traits, in terms of the Behavior Activation System (BAS), in emotional word recognition. We tested the role of the left DLPFC (LDLPFC) by performing a memory task in which old (previously encoded targets) and new (previously not encoded distractors) positive or negative emotional words had to be recognized. High-BAS and low-BAS subjects were compared when a repetitive TMS (rTMS) was applied on the LDLPFC. We found significant differences between high-BAS vs. low-BAS subjects, with better performance for high-BAS in response to positive words. In parallel, an increased left cortical activity (alpha desynchronization) was observed for high-BAS in the case of positive words. Thus, we can conclude that the left approach-related hemisphere, underlying BAS, may support faster recognition of positive words. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Effect of Intermediate-Frequency Repetitive Transcranial Magnetic Stimulation on Recovery following Traumatic Brain Injury in Rats

    Directory of Open Access Journals (Sweden)

    Leticia Verdugo-Diaz

    2017-01-01

    Full Text Available Traumatic brain injury (TBI represents a significant public health concern and has been associated with high rates of morbidity and mortality. Although several research groups have proposed the use of repetitive transcranial magnetic stimulation (rTMS to enhance neuroprotection and recovery in patients with TBI, few studies have obtained sufficient evidence regarding its effects in this population. Therefore, we aimed to analyze the effect of intermediate-frequency rTMS (2 Hz on behavioral and histological recovery following TBI in rats. Male Wistar rats were divided into six groups: three groups without TBI (no manipulation, movement restriction plus sham rTMS, and movement restriction plus rTMS and three groups subjected to TBI (TBI only, TBI plus movement restriction and sham rTMS, and TBI plus movement restriction and rTMS. The movement restriction groups were included so that rTMS could be applied without anesthesia. Our results indicate that the restriction of movement and sham rTMS per se promotes recovery, as measured using a neurobehavioral scale, although rTMS was associated with faster and superior recovery. We also observed that TBI caused alterations in the CA1 and CA3 subregions of the hippocampus, which are partly restored by movement restriction and rTMS. Our findings indicated that movement restriction prevents damage caused by TBI and that intermediate-frequency rTMS promotes behavioral and histologic recovery after TBI.

  4. Added value of multiple versus single sessions of repetitive transcranial magnetic stimulation in predicting motor cortex stimulation efficacy for refractory neuropathic pain.

    Science.gov (United States)

    Pommier, Benjamin; Quesada, Charles; Fauchon, Camille; Nuti, Christophe; Vassal, François; Peyron, Roland

    2018-05-18

    OBJECTIVE Selection criteria for offering patients motor cortex stimulation (MCS) for refractory neuropathic pain are a critical topic of research. A single session of repetitive transcranial magnetic stimulation (rTMS) has been advocated for selecting MCS candidates, but it has a low negative predictive value. Here the authors investigated whether multiple rTMS sessions would more accurately predict MCS efficacy. METHODS Patients included in this longitudinal study could access MCS after at least four rTMS sessions performed 3-4 weeks apart. The positive (PPV) and negative (NPV) predictive values of the four rTMS sessions and the correlation between the analgesic effects of the two treatments were assessed. RESULTS Twelve MCS patients underwent an average of 15.9 rTMS sessions prior to surgery; nine of the patients were rTMS responders. Postoperative follow-up was 57.8 ± 15.6 months (mean ± standard deviation). Mean percentage of pain relief (%R) was 21% and 40% after the first and fourth rTMS sessions, respectively. The corresponding mean durations of pain relief were respectively 2.4 and 12.9 days. A cumulative effect of the rTMS sessions was observed on both %R and duration of pain relief (p < 0.01). The %R value obtained with MCS was 35% after 6 months and 43% at the last follow-up. Both the PPV and NPV of rTMS were 100% after the fourth rTMS session (p = 0.0045). A significant correlation was found between %R or duration of pain relief after the fourth rTMS session and %R at the last MCS follow-up (R 2 = 0.83, p = 0.0003). CONCLUSIONS Four rTMS sessions predicted MCS efficacy better than a single session in neuropathic pain patients. Taking into account the cumulative effects of rTMS, the authors found a high-level correlation between the analgesic effects of rTMS and MCS.

  5. Short-term and long-term plasticity interaction in human primary motor cortex.

    Science.gov (United States)

    Iezzi, Ennio; Suppa, Antonio; Conte, Antonella; Li Voti, Pietro; Bologna, Matteo; Berardelli, Alfredo

    2011-05-01

    Repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) elicits changes in motor evoked potential (MEP) size thought to reflect short- and long-term forms of synaptic plasticity, resembling short-term potentiation (STP) and long-term potentiation/depression (LTP/LTD) observed in animal experiments. We designed this study in healthy humans to investigate whether STP as elicited by 5-Hz rTMS interferes with LTP/LTD-like plasticity induced by intermittent and continuous theta-burst stimulation (iTBS and cTBS). The effects induced by 5-Hz rTMS and iTBS/cTBS were indexed as changes in MEP size. We separately evaluated changes induced by 5-Hz rTMS, iTBS and cTBS applied alone and those induced by iTBS and cTBS delivered after priming 5-Hz rTMS. Interactions between 5-Hz rTMS and iTBS/cTBS were investigated under several experimental conditions by delivering 5-Hz rTMS at suprathreshold and subthreshold intensity, allowing 1 and 5 min intervals to elapse between 5-Hz rTMS and TBS, and delivering one and ten 5-Hz rTMS trains. We also investigated whether 5-Hz rTMS induces changes in intracortical excitability tested with paired-pulse transcranial magnetic stimulation. When given alone, 5-Hz rTMS induced short-lasting and iTBS/cTBS induced long-lasting changes in MEP amplitudes. When M1 was primed with 10 suprathreshold 5-Hz rTMS trains at 1 min before iTBS or cTBS, the iTBS/cTBS-induced after-effects disappeared. The 5-Hz rTMS left intracortical excitability unchanged. We suggest that STP elicited by suprathreshold 5-Hz rTMS abolishes iTBS/cTBS-induced LTP/LTD-like plasticity through non-homeostatic metaplasticity mechanisms. Our study provides new information on interactions between short-term and long-term rTMS-induced plasticity in human M1. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Daily iTBS worsens hand motor training--a combined TMS, fMRI and mirror training study.

    Science.gov (United States)

    Läppchen, C H; Ringer, T; Blessin, J; Schulz, K; Seidel, G; Lange, R; Hamzei, F

    2015-02-15

    Repetitive transcranial magnetic stimulation (rTMS) is used to increase regional excitability to improve motor function in combination with training after neurological diseases or events such as stroke. We investigated whether a daily application of intermittent theta burst stimulation (iTBS; a short-duration rTMS that increases regional excitability) improves the training effect compared with sham stimulation in association with a four-day hand training program using a mirror (mirror training, MT). The right dorsal premotor cortex (dPMC right) was chosen as the target region for iTBS because this region has recently been emphasized as a node within a network related to MT. Healthy subjects were randomized into the iTBS group or sham group (control group CG). In the iTBS group, iTBS was applied daily over dPMC right, which was functionally determined in an initial fMRI session prior to starting MT. MT involved 20 min of hand training daily in a mirror over four days. The hand tests, the intracortical excitability and fMRI were evaluated prior to and at the end of MT. The results of the hand training tests of the iTBS group were surprisingly significantly poorer compared with those from the CG group. Both groups showed a different course of excitability in both M1 and a different course of fMRI activation within the supplementary motor area and M1 left. We suggest the inter-regional functional balance was affected by daily iTBS over dPMC right. Maybe an inter-regional connectivity within a network is differentially balanced. An excitability increase within an inhibitory-balanced network would therefore disturb the underlying network. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Updating the premotor theory: the allocation of attention is not always accompanied by saccade preparation.

    Science.gov (United States)

    Belopolsky, Artem V; Theeuwes, Jan

    2012-08-01

    There is an ongoing controversy regarding the relationship between covert attention and saccadic eye movements. While there is quite some evidence that the preparation of a saccade is obligatory preceded by a shift of covert attention, the reverse is not clear: Is allocation of attention always accompanied by saccade preparation? Recently, a shifting and maintenance account was proposed suggesting that shifting and maintenance components of covert attention differ in their relation to the oculomotor system. Specifically, it was argued that a shift of covert attention is always accompanied by activation of the oculomotor program, while maintaining covert attention at a location can be accompanied either by activation or suppression of oculomotor program, depending on the probability of executing an eye movement to the attended location. In the present study we tested whether there is such an obligatory coupling between shifting of attention and saccade preparation and how quickly saccade preparation gets suppressed. The results showed that attention shifting was always accompanied by saccade preparation whenever covert attention had to be shifted during visual search, as well as in response to exogenous or endogenous cues. However, for the endogenous cues the saccade program to the attended location was suppressed very soon after the attention shift was completed. The current findings support the shifting and maintenance account and indicate that the premotor theory needs to be updated to include a shifting and maintenance component for the cases in which covert shifts of attention are made without the intention to execute a saccade. (c) 2012 APA, all rights reserved.

  8. Disrupting the ventral premotor cortex interferes with the contribution of action observation to use-dependent plasticity.

    Science.gov (United States)

    Cantarero, Gabriela; Galea, Joseph M; Ajagbe, Loni; Salas, Rachel; Willis, Jeff; Celnik, Pablo

    2011-12-01

    Action observation (AO), observing another individual perform an action, has been implicated in several higher cognitive processes including forming basic motor memories. Previous work has shown that physical practice (PP) results in cortical motor representational changes, referred to as use-dependent plasticity (UDP), and that AO combined with PP potentiates UDP in both healthy adults and stroke patients. In humans, AO results in activation of the ventral premotor cortex (PMv), however, whether this PMv activation has a functional contribution to UDP is not known. Here, we studied the effects disruption of PMv has on UDP when subjects performed PP combined with AO (PP + AO). Subjects participated in two randomized crossover sessions measuring the amount of UDP resulting from PP + AO while receiving disruptive (1 Hz) TMS over the fMRI-activated PMv or over frontal cortex (Sham). We found that, unlike the sham session, disruptive TMS over PMv reduced the beneficial contribution of AO to UDP. To ensure that disruption of PMv was specifically interfering with the contribution of AO and not PP, subjects completed two more control sessions where they performed only PP while receiving disruptive TMS over PMv or frontal cortex. We found that the magnitude of UDP for both control sessions was similar to PP + AO with TMS over PMv. These findings suggest that the fMRI activation found in PMv during AO studies is functionally relevant to task performance, at least for the beneficial effects that AO exerts over motor training.

  9. Neurotransmitters behind pain relief with transcranial magnetic stimulation - positron emission tomography evidence for release of endogenous opioids.

    Science.gov (United States)

    Lamusuo, S; Hirvonen, J; Lindholm, P; Martikainen, I K; Hagelberg, N; Parkkola, R; Taiminen, T; Hietala, J; Helin, S; Virtanen, A; Pertovaara, A; Jääskeläinen, S K

    2017-10-01

    Repetitive transcranial magnetic stimulation (rTMS) at M1/S1 cortex has been shown to alleviate neuropathic pain. To investigate the possible neurobiological correlates of cortical neurostimulation for the pain relief. We studied the effects of M1/S1 rTMS on nociception, brain dopamine D2 and μ-opioid receptors using a randomized, sham-controlled, double-blinded crossover study design and 3D-positron emission tomography (PET). Ten healthy subjects underwent active and sham rTMS treatments to the right M1/S1 cortex with E-field navigated device. Dopamine D2 and μ-receptor availabilities were assessed with PET radiotracers [ 11 C]raclopride and [ 11 C]carfentanil after each rTMS treatment. Thermal quantitative sensory testing (QST), contact heat evoked potential (CHEP) and blink reflex (BR) recordings were performed between the PET scans. μ-Opioid receptor availability was lower after active than sham rTMS (P ≤ 0.0001) suggested release of endogenous opioids in the right ventral striatum, medial orbitofrontal, prefrontal and anterior cingulate cortices, and left insula, superior temporal gyrus, dorsolateral prefrontal cortex and precentral gyrus. There were no differences in striatal dopamine D2 receptor availability between active and sham rTMS, consistent with lack of long-lasting measurable dopamine release. Active rTMS potentiated the dopamine-regulated habituation of the BR compared to sham (P = 0.02). Thermal QST and CHEP remained unchanged after active rTMS. rTMS given to M1/S1 activates the endogenous opioid system in a wide brain network associated with processing of pain and other salient stimuli. Direct enhancement of top-down opioid-mediated inhibition may partly explain the clinical analgesic effects of rTMS. Neurobiological correlates of rTMS for the pain relief are unclear. rTMS on M1/S1 with 11 C-carfentanyl-PET activates endogenous opioids. Thermal and heat pain thresholds remain unchanged. rTMS induces top-down opioid-mediated inhibition

  10. Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression in Adult and Youth Populations: A Systematic Literature Review and Meta-Analysis

    Science.gov (United States)

    Leggett, Laura E.; Soril, Lesley J. J.; Coward, Stephanie; Lorenzetti, Diane L.; MacKean, Gail; Clement, Fiona M.

    2015-01-01

    Background: Between 30% and 60% of individuals with major depressive disorder will have treatment-resistant depression (TRD): depression that does not subside with pharmaceutical treatment. Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for TRD. Objective: To establish the efficacy and optimal protocol for rTMS among adults and youth with TRD. Data Sources: Two systematic reviews were conducted: one to determine the efficacy of rTMS for adults with TRD and another to determine the effectiveness of rTMS for youth with TRD. For adults, MEDLINE, Cochrane Central Register of Controlled Trials, PubMed, EMBASE, PsycINFO, Cochrane Database of Systematic Reviews, and Health Technology Assessment Database were searched from inception until January 10, 2014 with no language restrictions. Terms aimed at capturing the target diagnosis, such as depression and depressive disorder, were combined with terms describing the technology, such as transcranial magnetic stimulation and rTMS. Results were limited to studies involving human participants and designed as a randomized controlled trial. For youth, the search was altered to include youth only (aged 13–25 years) and all study designs. When possible, meta-analysis of response and remission rates was conducted. Study Selection: Seventy-three articles were included in this review: 70 on adult and 3 on youth populations. Results: Meta-analysis comparing rTMS and sham in adults found statistically significant results favoring rTMS for response (RR: 2.35 [95% CI, 1.70–3.25]) and remission (RR: 2.24 [95% CI, 1.53–3.27]). No statistically significant differences were found when comparing high- and low-frequency, unilateral and bilateral, low- and high-intensity rTMS or rTMS and electroconvulsive therapy (ECT). While meta-analysis of results from the youth literature was not possible, the limited evidence base suggests that rTMS may be effective for treating TRD in youth. Conclusions: The evidence

  11. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  12. Evidence for a functional subdivision of Premotor Ear-Eye Field (Area 8B.

    Directory of Open Access Journals (Sweden)

    Marco eLanzilotto

    2015-01-01

    Full Text Available The Supplementary Eye Field (SEF and the Frontal Eye Field (FEF have been described as participating in gaze shift control. Recent evidence suggests, however, that other areas of the dorsomedial prefrontal cortex also influence gaze shift. Herein, we have investigated electrically evoked ear- and eye movements from the Premotor Ear-Eye Field, or PEEF (area 8B of macaque monkeys. We stimulated PEEF during spontaneous condition (outside the task performance and during the execution of a visual fixation task (VFT. In the first case, we functionally identified two regions within the PEEF: a core and a belt. In the core region, stimulation elicited forward ear movements; regarding the evoked eye movements, in some penetrations, stimulation elicited contraversive fixed-vectors with a mean amplitude of 5.14°; while in other penetrations, we observed prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position. On the contrary, in the belt region, stimulation elicited backward ear movements; regarding the eye movements, in some penetrations stimulation elicited prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position, while in the lateral edge of the investigated region, stimulation elicited contralateral goal-directed eye movements having end-points that fell beyond 15° in respect to the primary eye position. Stimulation during VFT either did not elicit eye movements or evoked saccades of only a few degrees. Finally, even though no head rotation movements were observed during the stimulation period, we viewed a relationship between the duration of stimulation and the neck forces exerted by the monkey’s head. We propose an updated vision of the PEEF composed of two functional regions, core and belt, which may be involved in integrating auditory and visual information important to the programming of gaze

  13. Effects of repetitive transcranial magnetic stimulation combined with sensory cueing on unilateral neglect in subacute patients with right hemispheric stroke: a randomized controlled study.

    Science.gov (United States)

    Yang, Nicole Yh; Fong, Kenneth Nk; Li-Tsang, Cecilia Wp; Zhou, D

    2017-09-01

    To compare the effects of rTMS combined with sensory cueing, rTMS alone, and conventional rehabilitation on unilateral neglect, hemiplegic arm functions and performance of activities of daily living. A single-blinded randomized controlled trial. A convalescent hospital. Sixty inpatients with left unilateral neglect after stroke. Patients were randomly assigned to three groups: rTMS combined with sensory cueing, rTMS, and conventional rehabilitation alone. rTMS at 1 Hz was applied over P5 of the contralesional hemisphere while vibration cueing was emitted using a wristwatch device on the hemiplegic arm, five days per week for two weeks. The first two groups received the same dosage of conventional rehabilitation on top of their experimental interventions. Blinded assessments were administered at baseline, 2 weeks postintervention, and 6 weeks follow-up. Neglect and arm motor performance. Both rTMS combined with sensory cueing (99.6±33.0) and rTMS alone (88.2±28.7) significantly reduced unilateral neglect than conventional rehabilitation (72.7±33.1) when measured using the conventional subtests of the Behavioural Inattention Test, but the combination was better than rTMS alone. Hemiplegic arm functions and activities of daily living improved in all patients across the three groups but no significant differences were found between the groups. The combination of inhibitory P5-rTMS with sensory cueing was better than either rTMS or conventional rehabilitation alone in producing a stronger and long-lasting improvement in unilateral neglect, but the improvement was not associated with improved arm function or independence in activities of daily living.

  14. Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study

    International Nuclear Information System (INIS)

    Gao, Feng; Wang, Shuang; Guo, Yi; Lou, Min; Wu, Jimin; Ding, Meiping; Wang, Jing; Zhang, Hong; Tian, Mei

    2010-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive method to excite neurons in the brain. However, the underlying mechanism of its therapeutic effects in stroke remains unclear. The aim of this study was to investigate the neuroprotective effect of high-frequency rTMS in a rat model of transient cerebral ischaemia using positron emission tomography (PET). Sprague-Dawley rats (n=30) were anaesthetized with chloral hydrate and subjected to 90 min of intraluminal middle cerebral artery occlusion (MCAO) with subsequent reperfusion in three groups: control (n=10), rTMS (n=10), or sham-rTMS groups (n=10). In the rTMS group, rTMS was given 1 h after ischaemia and every 24 h for 7 days after MCAO. In all three groups, small-animal PET (microPET) imaging with 18 F-FDG was used to evaluate brain glucose metabolism. Apoptotic molecules were measured in the infarct margin using immunohistochemical staining. The neurological scores of the rats in the rTMS group were higher than in those of the control group over the whole 7-day observation period. The total, cortical and striatal infarct volumes were significantly less in the rTMS group than in the control group, as measured by 2,3,5-triphenyltetrazolium chloride staining. 18 F-FDG microPET images showed significantly higher standardized uptake values in the cortex and striatum in the rTMS group than in the control group in the affected hemisphere. The number of cells positive for caspase-3 was significantly lower in the rTMS group than in the control group, while the Bcl-2/Bax ratio was significantly higher in the rTMS group than in the control group. rTMS therapy increased glucose metabolism and inhibited apoptosis in the ischaemic hemisphere. 18 F-FDG PET could be used to monitor rTMS therapy in transient cerebral ischaemia in animal studies and in future clinical trials. (orig.)

  15. Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Neurology, Hangzhou, Zhejiang (China); Zhejiang University Medical PET Center, Hangzhou, Zhejiang (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang (China); Wang, Shuang; Guo, Yi; Lou, Min; Wu, Jimin; Ding, Meiping [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Neurology, Hangzhou, Zhejiang (China); Wang, Jing; Zhang, Hong [Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhejiang University Medical PET Center, Hangzhou, Zhejiang (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang (China); Tian, Mei [The University of Texas M.D. Anderson Cancer Center, Department of Experimental Diagnostic Imaging, Houston, TX (United States)

    2010-05-15

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive method to excite neurons in the brain. However, the underlying mechanism of its therapeutic effects in stroke remains unclear. The aim of this study was to investigate the neuroprotective effect of high-frequency rTMS in a rat model of transient cerebral ischaemia using positron emission tomography (PET). Sprague-Dawley rats (n=30) were anaesthetized with chloral hydrate and subjected to 90 min of intraluminal middle cerebral artery occlusion (MCAO) with subsequent reperfusion in three groups: control (n=10), rTMS (n=10), or sham-rTMS groups (n=10). In the rTMS group, rTMS was given 1 h after ischaemia and every 24 h for 7 days after MCAO. In all three groups, small-animal PET (microPET) imaging with {sup 18}F-FDG was used to evaluate brain glucose metabolism. Apoptotic molecules were measured in the infarct margin using immunohistochemical staining. The neurological scores of the rats in the rTMS group were higher than in those of the control group over the whole 7-day observation period. The total, cortical and striatal infarct volumes were significantly less in the rTMS group than in the control group, as measured by 2,3,5-triphenyltetrazolium chloride staining. {sup 18}F-FDG microPET images showed significantly higher standardized uptake values in the cortex and striatum in the rTMS group than in the control group in the affected hemisphere. The number of cells positive for caspase-3 was significantly lower in the rTMS group than in the control group, while the Bcl-2/Bax ratio was significantly higher in the rTMS group than in the control group. rTMS therapy increased glucose metabolism and inhibited apoptosis in the ischaemic hemisphere. {sup 18}F-FDG PET could be used to monitor rTMS therapy in transient cerebral ischaemia in animal studies and in future clinical trials. (orig.)

  16. Short-term adaptations in spinal cord circuits evoked by repetitive transcranial magnetic stimulation: possible underlying mechanisms

    DEFF Research Database (Denmark)

    Perez, Monica A.; Lungholt, Bjarke K.S.; Nielsen, Jens Bo

    2005-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been shown to induce adaptations in cortical neuronal circuitries. In the present study we investigated whether rTMS, through its effect on corticospinal pathways, also produces adaptations at the spinal level, and what the neuronal mechanisms...... that the depression of the H-reflex by rTMS can be explained, at least partly, by an increased presynaptic inhibition of soleus Ia afferents. In contrast, rTMS had no effect on disynaptic reciprocal Ia inhibition from ankle dorsiflexors to plantarflexors. We conclude that a train of rTMS may modulate transmission...

  17. Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation.

    Science.gov (United States)

    Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Zimmer, Claus; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2015-07-01

    Repetitive navigated transcranial magnetic stimulation (rTMS) is now increasingly used for preoperative language mapping in patients with lesions in language-related areas of the brain. Yet its correlation with intraoperative direct cortical stimulation (DCS) has to be improved. To increase rTMS's specificity and positive predictive value, the authors aim to provide thresholds for rTMS's positive language areas. Moreover, they propose a protocol for combining rTMS with functional MRI (fMRI) to combine the strength of both methods. The authors performed multimodal language mapping in 35 patients with left-sided perisylvian lesions by using rTMS, fMRI, and DCS. The rTMS mappings were conducted with a picture-to-trigger interval (PTI, time between stimulus presentation and stimulation onset) of either 0 or 300 msec. The error rates (ERs; that is, the number of errors per number of stimulations) were calculated for each region of the cortical parcellation system (CPS). Subsequently, the rTMS mappings were analyzed through different error rate thresholds (ERT; that is, the ER at which a CPS region was defined as language positive in terms of rTMS), and the 2-out-of-3 rule (a stimulation site was defined as language positive in terms of rTMS if at least 2 out of 3 stimulations caused an error). As a second step, the authors combined the results of fMRI and rTMS in a predefined protocol of combined noninvasive mapping. To validate this noninvasive protocol, they correlated its results to DCS during awake surgery. The analysis by different rTMS ERTs obtained the highest correlation regarding sensitivity and a low rate of false positives for the ERTs of 15%, 20%, 25%, and the 2-out-of-3 rule. However, when comparing the combined fMRI and rTMS results with DCS, the authors observed an overall specificity of 83%, a positive predictive value of 51%, a sensitivity of 98%, and a negative predictive value of 95%. In comparison with fMRI, rTMS is a more sensitive but less specific

  18. Continuous theta-burst stimulation over the dorsal premotor cortex interferes with associative learning during object lifting.

    Science.gov (United States)

    Nowak, Dennis A; Berner, Julia; Herrnberger, Bärbel; Kammer, Thomas; Grön, Georg; Schönfeldt-Lecuona, Carlos

    2009-04-01

    When lifting objects of different mass, humans scale grip force according to the expected mass. In this context, humans are able to associate a sensory cue, such as a colour, to a particular mass of an object and link this association to the grip forces necessary for lifting. Here, we study the role of the dorsal premotor cortex (PMd) in setting-up an association between a colour cue and a particular mass to be lifted. Healthy right-handed subjects used a precision grip between the index finger and thumb to lift two different masses. Colour cues provided information about which of the two masses subjects would have to lift. Subjects first performed a series of lifts with the right hand to establish a stable association between a colour cue and a mass, followed by 20sec of continuous high frequency repetitive trancranial magnetic stimulation using a recently developed protocol (continuous theta-burst stimulation, cTBS) over (i) the left primary motor cortex, (ii) the left PMd and (iii) the left occipital cortex to be commenced by another series of lifts with either the right or left hand. cTBS over the PMd, but not over the primary motor cortex or O1, disrupted the predictive scaling of isometric finger forces based on colour cues, irrespective of whether the right or left hand performed the lifts after the stimulation. Our data highlight the role of the PMd to generalize and maintain associative memory processes relevant for predictive control of grip forces during object manipulation.

  19. Safety study of high-frequency transcranial magnetic stimulation in patients with chronic stroke.

    Science.gov (United States)

    Lomarev, M P; Kim, D Y; Richardson, S Pirio; Voller, B; Hallett, M

    2007-09-01

    Repetitive transcranial magnetic stimulation (rTMS) is a potential therapeutic tool to rehabilitate chronic stroke patients. In this study, the safety of high-frequency rTMS in stroke was investigated (Phase I). The safety of 20 and 25 Hz rTMS over the motor cortex (MC) of the affected hemisphere, with intensities of 110-130% of the motor threshold (MT), was evaluated using surface electromyography (EMG) of hand and arm muscles. Brief EMG bursts, possibly representing peripheral manifestations of after discharges, and spread of excitation to proximal muscles are considered to be associated with a high risk of seizure occurrence. These events were recorded after the rTMS trains. Neither increased MC excitability nor improved pinch force dynamometry was found after rTMS. Stimulation parameters for rTMS, which are safe for healthy volunteers, may lead to a higher risk for seizure occurrence in chronic stroke patients. rTMS at rates of 20 and 25 Hz using above threshold stimulation potentially increases the risk of seizures in patients with chronic stroke.

  20. Synaptic and functional linkages between spinal premotor interneurons and hand-muscle activity during precision grip

    Directory of Open Access Journals (Sweden)

    Tomohiko eTakei

    2013-04-01

    Full Text Available Grasping is a highly complex movement that requires the coordination of a number of hand joints and muscles. Previous studies showed that spinal premotor interneurons (PreM-INs in the primate cervical spinal cord have divergent synaptic effects on hand motoneurons and that they might contribute to hand-muscle synergies. However, the extent to which these PreM-IN synaptic connections functionally contribute to modulating hand-muscle activity is not clear. In this paper, we explored the contribution of spinal PreM-INs to hand-muscle activation by quantifying the synaptic linkage (SL and functional linkage (FL of the PreM-INs with hand-muscle activities. The activity of 23 PreM-INs was recorded from the cervical spinal cord (C6–T1, with EMG signals measured simultaneously from hand and arm muscles in two macaque monkeys performing a precision grip task. Spike-triggered averages (STAs of rectified EMGs were compiled for 456 neuron–muscle pairs; 63 pairs showed significant post-spike effects (i.e., SL. Conversely, 231 of 456 pairs showed significant cross-correlations between the IN firing rate and rectified EMG (i.e., FL. Importantly, a greater proportion of the neuron–muscle pairs with SL showed FL (43/63 pairs, 68% compared with the pairs without SL (203/393, 52%, and the presence of SL was significantly associated with that of FL. However, a significant number of pairs had SL without FL (SL∩!FL, n = 20 or FL without SL (!SL∩FL, n = 203, and the proportions of these incongruities exceeded the number expected by chance. These results suggested that spinal PreM-INs function to significantly modulate hand-muscle activity during precision grip, but the contribution of other neural structures is also needed to recruit an adequate combination of hand-muscle motoneurons.

  1. A Review of Repetitive Transcranial Magnetic Stimulation Use in Psychiatry

    Directory of Open Access Journals (Sweden)

    Onur Durmaz

    2013-08-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is a non-invasive brain stimulation technique first introduced by Barker et al. in 1985. The principle of rTMS is based on a cortical neuronal transmembrane potential stimulated by a pulsative magnetic field. This magnetic field is induced by a direct electrical current sent through a circular coil. rTMS is an effective and widely used therapeutic stimulation method for psychiatric disorders, primarily for unipolar depression. Cost-effectiveness, minor side effects and well-tolerated profile of rTMS with no need to hospitalization for administation are the prominent features of this method. Beside the information for depression, rTMS has been reported to have some remarkable impacts in alleviating symptoms of anxiety disorders. Although data regarding efficacy of rTMS in anxiety disorders is conflicting, there are positive outcomes about generalized anxiety disorder, post-traumatic stress disorder and panic disorder whereas results of rTMS treatment in obsessive-compulsive disorder are generally not favorable. Since low frequency stimulation techniques have been found to be effective in treatment of auditory hallucinations, methodological similarity in concerned studies could be accepted as a supportive aspect of efficacy. Additionally, high frequency stimulation techniques applied to prefrontal area have a potential to impact negative symptoms of schizophrenia. With improving novel techniques of this stimulation method, rTMS is being used increasingly in psychiatric disorders. However, some issues concerning rTMS treatment such as maintenance or prophilactic therapy procedures, duration of effect are remain unclear. Hence, we conclude that multicenter sham controlled studies including similar designs, sociodemographic and clinical variables, methodological protocols with larger sample sizes and studies guieded by imaging methods are warranted to determinate efficacy and side effects of rTMS use

  2. Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study.

    Science.gov (United States)

    Terraneo, Alberto; Leggio, Lorenzo; Saladini, Marina; Ermani, Mario; Bonci, Antonello; Gallimberti, Luigi

    2016-01-01

    Recent animal studies demonstrate that compulsive cocaine seeking strongly reduces prelimbic frontal cortex activity, while optogenetic stimulation of this brain area significantly inhibits compulsive cocaine seeking, providing a strong rationale for applying brain stimulation to reduce cocaine consumption. Thus, we employed repetitive transcranial magnetic stimulation (rTMS), to test if dorsolateral prefrontal cortex (DLPFC) stimulation might prevent cocaine use in humans. Thirty-two cocaine-addicted patients were randomly assigned to either the experimental group (rTMS) on the left DLPFC, or to a control group (pharmacological agents) during a 29-day study (Stage 1). This was followed by a 63-day follow-up (Stage 2), during which all participants were offered rTMS treatment. Amongst the patients who completed Stage 1, 16 were in the rTMS group (100%) and 13 in the control group (81%). No significant adverse events were noted. During Stage 1, there were a significantly higher number of cocaine-free urine drug tests in the rTMS group compared to control (p=0.004). Craving for cocaine was also significantly lower in the rTMS group compared to the controls (p=0.038). Out of 13 patients who completed Stage 1 in the control group, 10 patients received rTMS treatment during Stage 2 and showed significant improvement with favorable outcomes becoming comparable to those of the rTMS group. The present preliminary findings support the safety of rTMS in cocaine-addicted patients, and suggest its potential therapeutic role for rTMS-driven PFC stimulation in reducing cocaine use, providing a strong rationale for developing larger placebo-controlled studies. Trial name: Repetitive transcranial magnetic stimulation (rTMS) in cocaine abusers, URL:〈http://www.isrctn.com/ISRCTN15823943?q=&filters=&sort=&offset=8&totalResults=13530&page=1&pageSize=10&searchType=basic-search〉, ISRCTN15823943. Published by Elsevier B.V.

  3. Rapid-rate transcranial magnetic stimulation of animal auditory cortex impairs short-term but not long-term memory formation.

    Science.gov (United States)

    Wang, Hong; Wang, Xu; Wetzel, Wolfram; Scheich, Henning

    2006-04-01

    Bilateral rapid-rate transcranial magnetic stimulation (rTMS) of gerbil auditory cortex with a miniature coil device was used to study short-term and long-term effects on discrimination learning of frequency-modulated tones. We found previously that directional discrimination of frequency modulation (rising vs. falling) relies on auditory cortex processing and that formation of its memory depends on local protein synthesis. Here we show that, during training over 5 days, certain rTMS regimes contingent on training had differential effects on the time course of learning. When rTMS was applied several times per day, i.e. four blocks of 5 min rTMS each followed 5 min later by a 3-min training block and 15-min intervals between these blocks (experiment A), animals reached a high discrimination performance more slowly over 5 days than did controls. When rTMS preceded only the first two of four training blocks (experiment B), or when prolonged rTMS (20 min) preceded only the first block, or when blocks of experiment A had longer intervals (experiments C and D), no significant day-to-day effects were found. However, in experiment A, and to some extent in experiment B, rTMS reduced the within-session discrimination performance. Nevertheless the animals learned, as demonstrated by a higher performance the next day. Thus, our results indicate that rTMS treatments accumulate over a day but not strongly over successive days. We suggest that rTMS of sensory cortex, as used in our study, affects short-term memory but not long-term memory formation.

  4. Effect of repetitive transcranial magnetic stimulation on rectal function and emotion in humans

    International Nuclear Information System (INIS)

    Aizawa, Yuuichi; Morishita, Joe; Kano, Michiko; Mori, Takayuki; Izumi, Shin-ichi; Kanazawa, Motoyori; Fukudo, Shin; Tsutsui, Kenichiro; Iijima, Toshio

    2011-01-01

    A previous brain imaging study demonstrated activation of the right dorsolateral prefrontal cortex (DLPFC) during visceral nociception, and this activation was associated with anxiety. We hypothesized that functional modulation of the right DLPFC by repetitive transcranial magnetic stimulation (rTMS) can reveal the actual role of right DLPFC in brain-gut interactions in humans. Subjects were 11 healthy males aged 23.5±1.4 (mean±spin echo (SE)) years. Viscerosensory evoked potential (VEP) with sham (0 mA) or actual (30 mA) electrical stimulation (ES) of the rectum was taken after sham, low frequency rTMS at 0.1 Hz, and high frequency rTMS at 10 Hz to the right DLPFC. Rectal tone was measured with a rectal barostat. Visceral perception and emotion were analyzed using an ordinate scale, rectal barostat, and VEP. Low frequency rTMS significantly reduced anxiety evoked by ES at 30 mA (p<0.05). High frequency rTMS-30 mA ES significantly produced more phasic volume events than sham rTMS-30 mA ES (p<0.05). We successfully modulated the gastrointestinal function of healthy individuals through rTMS to the right DLPFC. Thus, rTMS to the DLPFC appears to modulate the affective, but not direct, component of visceral perception and motility of the rectum. (author)

  5. Long-lasting repetitive transcranial magnetic stimulation modulates electroencephalography oscillation in patients with disorders of consciousness.

    Science.gov (United States)

    Xia, Xiaoyu; Liu, Yang; Bai, Yang; Liu, Ziyuan; Yang, Yi; Guo, Yongkun; Xu, Ruxiang; Gao, Xiaorong; Li, Xiaoli; He, Jianghong

    2017-10-18

    Repetitive transcranial magnetic stimulation (rTMS) has been applied for the treatment of patients with disorders of consciousness (DOC). Timely and accurate assessments of its modulation effects are very useful. This study evaluated rTMS modulation effects on electroencephalography (EEG) oscillation in patients with chronic DOC. Eighteen patients with a diagnosis of DOC lasting more than 3 months were recruited. All patients received one session of 10-Hz rTMS at the left dorsolateral prefrontal cortex and then 12 of them received consecutive rTMS treatment everyday for 20 consecutive days. Resting-state EEGs were recorded before the experiment (T0) after one session of rTMS (T1) and after the entire treatment (T2). The JFK Coma Recovery Scale-Revised scale scores were also recorded at the time points. Our data showed that application of 10-Hz rTMS to the left dorsolateral prefrontal cortex decreased low-frequency band power and increased high-frequency band power in DOC patients, especially in minimal conscious state patients. Considering the correlation of the EEG spectrum with the consciousness level of patients with DOC, quantitative EEG might be useful for assessment of the effect of rTMS in DOC patients.

  6. Egocentric and allocentric visuospatial working memory in premotor Huntington's disease: A double dissociation with caudate and hippocampal volumes.

    Science.gov (United States)

    Possin, Katherine L; Kim, Hosung; Geschwind, Michael D; Moskowitz, Tacie; Johnson, Erica T; Sha, Sharon J; Apple, Alexandra; Xu, Duan; Miller, Bruce L; Finkbeiner, Steven; Hess, Christopher P; Kramer, Joel H

    2017-07-01

    Our brains represent spatial information in egocentric (self-based) or allocentric (landmark-based) coordinates. Rodent studies have demonstrated a critical role for the caudate in egocentric navigation and the hippocampus in allocentric navigation. We administered tests of egocentric and allocentric working memory to individuals with premotor Huntington's disease (pmHD), which is associated with early caudate nucleus atrophy, and controls. Each test had 80 trials during which subjects were asked to remember 2 locations over 1-sec delays. The only difference between these otherwise identical tests was that locations could only be coded in self-based or landmark-based coordinates. We applied a multiatlas-based segmentation algorithm and computed point-wise Jacobian determinants to measure regional variations in caudate and hippocampal volumes from 3T MRI. As predicted, the pmHD patients were significantly more impaired on egocentric working memory. Only egocentric accuracy correlated with caudate volumes, specifically the dorsolateral caudate head, right more than left, a region that receives dense efferents from dorsolateral prefrontal cortex. In contrast, only allocentric accuracy correlated with hippocampal volumes, specifically intermediate and posterior regions that connect strongly with parahippocampal and posterior parietal cortices. These results indicate that the distinction between egocentric and allocentric navigation applies to working memory. The dorsolateral caudate is important for egocentric working memory, which can explain the disproportionate impairment in pmHD. Allocentric working memory, in contrast, relies on the hippocampus and is relatively spared in pmHD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The selective role of premotor cortex in speech perception: a contribution to phoneme judgements but not speech comprehension.

    Science.gov (United States)

    Krieger-Redwood, Katya; Gaskell, M Gareth; Lindsay, Shane; Jefferies, Elizabeth

    2013-12-01

    Several accounts of speech perception propose that the areas involved in producing language are also involved in perceiving it. In line with this view, neuroimaging studies show activation of premotor cortex (PMC) during phoneme judgment tasks; however, there is debate about whether speech perception necessarily involves motor processes, across all task contexts, or whether the contribution of PMC is restricted to tasks requiring explicit phoneme awareness. Some aspects of speech processing, such as mapping sounds onto meaning, may proceed without the involvement of motor speech areas if PMC specifically contributes to the manipulation and categorical perception of phonemes. We applied TMS to three sites-PMC, posterior superior temporal gyrus, and occipital pole-and for the first time within the TMS literature, directly contrasted two speech perception tasks that required explicit phoneme decisions and mapping of speech sounds onto semantic categories, respectively. TMS to PMC disrupted explicit phonological judgments but not access to meaning for the same speech stimuli. TMS to two further sites confirmed that this pattern was site specific and did not reflect a generic difference in the susceptibility of our experimental tasks to TMS: stimulation of pSTG, a site involved in auditory processing, disrupted performance in both language tasks, whereas stimulation of occipital pole had no effect on performance in either task. These findings demonstrate that, although PMC is important for explicit phonological judgments, crucially, PMC is not necessary for mapping speech onto meanings.

  8. Repetitive Transcranial Magnetic Stimulation for Clinical Applications in Neurological and Psychiatric Disorders: An Overview

    Science.gov (United States)

    Machado, Sergio; Arias-Carrión, Oscar; Paes, Flávia; Vieira, Renata Teles; Caixeta, Leonardo; Novaes, Felipe; Marinho, Tamires; Almada, Leonardo Ferreira; Silva, Adriana Cardoso; Nardi, Antonio Egidio

    2013-01-01

    Neurological and psychiatric disorders are characterized by several disabling symptoms for which effective, mechanism-based treatments remain elusive. Consequently, more advanced non-invasive therapeutic methods are required. A method that may modulate brain activity and be viable for use in clinical practice is repetitive transcranial magnetic stimulation (rTMS). It is a non-invasive procedure whereby a pulsed magnetic field stimulates electrical activity in the brain. Here, we focus on the basic foundation of rTMS, the main stimulation parametters, the factors that influence individual responses to rTMS and the experimental advances of rTMS that may become a viable clinical application to treat neurological and psychiatric disorders. The findings showed that rTMS can improve some symptoms associated with these conditions and might be useful for promoting cortical plasticity in patients with neurological and psychiatric disorders. However, these changes are transient and it is premature to propose these applications as realistic therapeutic options, even though the rTMS technique has been evidenced as a potential modulator of sensorimotor integration and neuroplasticity. Functional imaging of the region of interest could highlight the capacity of rTMS to bring about plastic changes of the cortical circuitry and hint at future novel clinical interventions. Thus, we recommend that further studies clearly determine the role of rTMS in the treatment of these conditions. Finally, we must remember that however exciting the neurobiological mechanisms might be, the clinical usefulness of rTMS will be determined by its ability to provide patients with neurological and psychiatric disorders with safe, long-lasting and substantial improvements in quality of life. PMID:25610279

  9. Repetitive transcranial magnetic stimulation once a week induces sustainable long-term relief of central poststroke pain.

    Science.gov (United States)

    Kobayashi, Masahito; Fujimaki, Takamitsu; Mihara, Ban; Ohira, Takayuki

    2015-06-01

    Central poststroke pain is a serious problem for some patients after stroke. Repetitive transcranial magnetic stimulation (rTMS) has been reported to relieve poststroke pain but its efficacy is still controversial. We tested the possibility that rTMS, when applied once a week, would induce sustainable relief of poststroke pain. Eighteen patients with central poststroke pain were included in this study. rTMS (10 trains of 10-sec 5 Hz-rTMS) was delivered over the primary motor cortex on the affected side. The rTMS session was repeated once a week for 12 weeks, and for six patients the intervention was continued for one year. The degree of the pain was assessed before each weekly rTMS session to evaluate sustainable effects. The effects of the rTMS reached a plateau at the eighth week. At the 12th week, the rTMS was effective in 61.1% of the patients; 5 of the 18 patients showed more than 70% reduction based on a visual analog scale, 6 patients showed 40-69% reduction, and 7 remained at a pain reduction level of less than 40%. When patients were divided into two groups with or without severe dysesthesia, it was found that eight patients with severe dysesthesia showed less pain relief than those without. In the six patients who continued rTMS for one year, the pain relief effects also were sustained. Although this was an open-label study without a control group, our findings suggest that rTMS of the primary motor cortex, when maintained once a week, could help to relieve poststroke pain. © 2015 International Neuromodulation Society.

  10. The Relationship Between Brain Oscillatory Activity and Therapeutic Effectiveness of Transcranial Magnetic Stimulation in the Treatment of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Andrew Francis Leuchter

    2013-02-01

    Full Text Available Major Depressive Disorder (MDD is marked by disturbances in brain functional connectivity. This connectivity is modulated by rhythmic oscillations of brain electrical activity, which enable coordinated functions across brain regions. Oscillatory activity plays a central role in regulating thinking and memory, mood, cerebral blood flow, and neurotransmitter levels, and restoration of normal oscillatory patterns is associated with effective treatment of MDD. Repetitive Transcranial Magnetic Stimulation (rTMS is a robust treatment for MDD, but the mechanism of action (MOA of its benefits for mood disorders remains incompletely understood. Benefits of rTMS have been tied to enhanced neuroplasticity in specific brain pathways. We summarize here the evidence that rTMS entrains and resets thalamocortical oscillators, normalizes regulation and facilitates reemergence of intrinsic cerebral rhythms, and through this mechanism restores normal brain function. This entrainment and resetting may be a critical step in engendering neuroplastic changes and the antidepressant effects of rTMS. It may be possible to modify the method of rTMS administration to enhance this mechanism of action and achieve better antidepressant effectiveness. We propose that rTMS can be administered: 1 synchronized to a patient’s individual alpha rhythm (IAF, or synchronized rTMS (sTMS; 2 as a low magnetic field strength sinusoidal wave form; and, 3 broadly to multiple brain areas simultaneously. We present here the theory and evidence indicating that these modifications could enhance the therapeutic effectiveness of rTMS for the treatment of MDD.

  11. Does early verbal fluency decline after STN implantation predict long-term cognitive outcome after STN-DBS in Parkinson's disease?

    Science.gov (United States)

    Borden, Alaina; Wallon, David; Lefaucheur, Romain; Derrey, Stéphane; Fetter, Damien; Verin, Marc; Maltête, David

    2014-11-15

    An early and transient verbal fluency (VF) decline and impairment in frontal executive function, suggesting a cognitive microlesion effect may influence the cognitive repercussions related to subthalamic nucleus deep brain stimulation (STN-DBS). Neuropsychological tests including semantic and phonemic verbal fluency were administered both before surgery (baseline), the third day after surgery (T3), at six months (T180), and at an endpoint multiple years after surgery (Tyears). Twenty-four patients (mean age, 63.5 ± 9.5 years; mean disease duration, 12 ± 5.8 years) were included. Both semantic and phonemic VF decreased significantly in the acute post-operative period (44.4 ± 28.2% and 34.3 ± 33.4%, respectively) and remained low at 6 months compared to pre-operative levels (decrease of 3.4 ± 47.8% and 10.8 ± 32.1%) (P < 0.05). Regression analysis showed phonemic VF to be an independent factor of decreased phonemic VF at six months. Age was the only independent predictive factor for incident Parkinson's disease dementia (PDD) (F (4,19)=3.4, P<0.03). An acute post-operative decline in phonemic VF can be predictive of a long-term phonemic VF deficit. The severity of this cognitive lesion effect does not predict the development of dementia which appears to be disease-related. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Quantification de la Charge Virale et tests de résistance du VIH-1 aux ARV à partir d’échantillons DBS (Dried Blood Spots chez des patients Guinéens sous traitement antirétroviral

    Directory of Open Access Journals (Sweden)

    Nestor Bangoura

    2015-06-01

    Full Text Available Problématique: Comme dans plusieurs pays du Sud, le suivi virologique des patients sous traitement antirétroviral (TARV en Guinée est timide voire inexistant dans certaines localités. Le but de cette étude était d’évaluer la faisabilité technique et logistique de l’utilisation des DBS dans les tests de charge virale (CV et de génotypage. Méthode: De septembre à octobre 2010, les DBS ont été préparés à partir de prélèvements sanguins de patients adultes sous TARV. Le délai d’envoi des échantillons au laboratoire de référence était de 30 jours maximum après le prélèvement et se faisait à température ambiante. La CV a été quantifiée et les échantillons de patients en échec virologique (CV ≥ 3 log10 copies/mL ont été génotypés selon le protocole de l’ANRS. L’algorithme de Stanford version 6.0.8 a été utilisé pour l’analyse et l’interprétation des mutations de résistance. Résultats: Parmi les 136 patients inclus, 129 et 7 étaient respectivement sous première et deuxième ligne de traitement avec une médiane de suivi de 35 mois [IQR: 6-108]. L’échec virologique a été noté chez 33 patients. Parmi eux, 84.8% (n = 28/33 ont bénéficié d’ungénotypage. Le taux de résistance global était de 14% (n = 19/136. Le CRF02_AG était le sous type viral le plus prévalent (82%; n = 23. Conclusion: En plus de montrer la faisabilité technique et logistique des tests de CV et de génotypage à partir des DBS, ces résultats montrent l’intérêt de leurs utilisations dans le suivi virologique des patients sous TARV. Cette étude a permis également de documenter l’échec virologique, la résistance aux ARV et la diversité génétique du VIH-1 en Guinée. Mots clés: VIH-1, Résistance aux ARV, DBS (Dried Blood Spots, Guinée Conakry, Génotypage,Charge Virale.   Quantification of Viral load and resistance tests of HIV-1 to ARVs from dried blood spotssamples in Guinean patients undergoing

  13. Enhanced accuracy in novel mirror drawing after repetitive transcranial magnetic stimulation-induced proprioceptive deafferentation

    DEFF Research Database (Denmark)

    Balslev, Daniela; Christensen, Lars O.D.; Lee, Ji-hang

    2004-01-01

    a performance benefit. In this study, we tested whether deafferentation induced by repetitive transcranial magnetic stimulation (rTMS) can improve mirror tracing skills in normal subjects. Hand trajectory error during novel mirror drawing was compared across two groups of subjects that received either 1 Hz r......TMS over the somatosensory cortex contralateral to the hand or sham stimulation. Mirror tracing was more accurate after rTMS than after sham stimulation. Using a position-matching task, we confirmed that rTMS reduced proprioceptive acuity and that this reduction was largest when the coil was placed...

  14. On the context-dependent nature of the contribution of the ventral premotor cortex to speech perception

    Science.gov (United States)

    Tremblay, Pascale; Small, Steven L.

    2011-01-01

    What is the nature of the interface between speech perception and production, where auditory and motor representations converge? One set of explanations suggests that during perception, the motor circuits involved in producing a perceived action are in some way enacting the action without actually causing movement (covert simulation) or sending along the motor information to be used to predict its sensory consequences (i.e., efference copy). Other accounts either reject entirely the involvement of motor representations in perception, or explain their role as being more supportive than integral, and not employing the identical circuits used in production. Using fMRI, we investigated whether there are brain regions that are conjointly active for both speech perception and production, and whether these regions are sensitive to articulatory (syllabic) complexity during both processes, which is predicted by a covert simulation account. A group of healthy young adults (1) observed a female speaker produce a set of familiar words (perception), and (2) observed and then repeated the words (production). There were two types of words, varying in articulatory complexity, as measured by the presence or absence of consonant clusters. The simple words contained no consonant cluster (e.g. “palace”), while the complex words contained one to three consonant clusters (e.g. “planet”). Results indicate that the left ventral premotor cortex (PMv) was significantly active during speech perception and speech production but that activation in this region was scaled to articulatory complexity only during speech production, revealing an incompletely specified efferent motor signal during speech perception. The right planum temporal (PT) was also active during speech perception and speech production, and activation in this region was scaled to articulatory complexity during both production and perception. These findings are discussed in the context of current theories theory of

  15. Effects of low-frequency repetitive transcranial magnetic stimulation on event-related potential P300

    Science.gov (United States)

    Torii, Tetsuya; Sato, Aya; Iwahashi, Masakuni; Iramina, Keiji

    2012-04-01

    The present study analyzed the effects of repetitive transcranial magnetic stimulation (rTMS) on brain activity. P300 latency of event-related potential (ERP) was used to evaluate the effects of low-frequency and short-term rTMS by stimulating the supramarginal gyrus (SMG), which is considered to be the related area of P300 origin. In addition, the prolonged stimulation effects on P300 latency were analyzed after applying rTMS. A figure-eight coil was used to stimulate left-right SMG, and intensity of magnetic stimulation was 80% of motor threshold. A total of 100 magnetic pulses were applied for rTMS. The effects of stimulus frequency at 0.5 or 1 Hz were determined. Following rTMS, an odd-ball task was performed and P300 latency of ERP was measured. The odd-ball task was performed at 5, 10, and 15 min post-rTMS. ERP was measured prior to magnetic stimulation as a control. Electroencephalograph (EEG) was measured at Fz, Cz, and Pz that were indicated by the international 10-20 electrode system. Results demonstrated that different effects on P300 latency occurred between 0.5-1 Hz rTMS. With 1 Hz low-frequency magnetic stimulation to the left SMG, P300 latency decreased. Compared to the control, the latency time difference was approximately 15 ms at Cz. This decrease continued for approximately 10 min post-rTMS. In contrast, 0.5 Hz rTMS resulted in delayed P300 latency. Compared to the control, the latency time difference was approximately 20 ms at Fz, and this delayed effect continued for approximately 15 min post-rTMS. Results demonstrated that P300 latency varied according to rTMS frequency. Furthermore, the duration of the effect was not similar for stimulus frequency of low-frequency rTMS.

  16. Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood.

    Science.gov (United States)

    Pascual-Leone, A; Catalá, M D; Pascual-Leone Pascual, A

    1996-02-01

    We studied the effects of rapid-rate transcranial magnetic stimulation (rTMS) of different scalp positions on mood. Ten normal volunteers rated themselves before and after rTMS on five analog scales labeled "Tristeza" (Sadness), "Ansiedad" (Anxiety), "Alegria" (Happiness), "Cansancio" (Tiredness), and "Dolor/Malestar" (Pain/Discomfort). rTMS was applied to the right lateral prefrontal, left prefrontal, or midline frontal cortex in trains of 5 seconds' duration at 10 Hz and 110% of the subject's motor threshold intensity. Each stimulation position received 10 trains separated by a 25-second pause. No clinically apparent mood changes were evoked by rTMS to any of the scalp positions in any subject. However, left prefrontal rTMS resulted in a significant increase in the Sadness ratings (Tristeza) and a significant decrease in the Happiness ratings ("Alegria") as compared with right prefrontal and midfrontal cortex stimulation. These results show differential effects of rTMS of left and right prefrontal cortex stimulation on mood and illustrate the lateralized control of mood in normal volunteers.

  17. Long term delivery of pulsed magnetic fields does not alter visual discrimination learning or dendritic spine density in the mouse CA1 pyramidal or dentate gyrus neurons [v2; ref status: indexed, http://f1000r.es/2gk

    Directory of Open Access Journals (Sweden)

    Matthew Sykes

    2013-12-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is thought to facilitate brain plasticity. However, few studies address anatomical changes following rTMS in relation to behaviour. We delivered 5 weeks of daily pulsed rTMS stimulation to adult ephrin-A2-/- and wildtype (C57BI/6j mice (n=10 per genotype undergoing a visual learning task and analysed learning performance, as well as spine density, in the dentate gyrus molecular and CA1 pyramidal cell layers in Golgi-stained brain sections. We found that neither learning behaviour, nor hippocampal spine density was affected by long term rTMS. Our negative results highlight the lack of deleterious side effects in normal subjects and are consistent with previous studies suggesting that rTMS has a bigger effect on abnormal or injured brain substrates than on normal/control structures.

  18. Modulation of the Left Prefrontal Cortex with High Frequency Repetitive Transcranial Magnetic Stimulation Facilitates Gait in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-01-01

    Full Text Available Multiple Sclerosis (MS is a chronic central nervous system (CNS demyelinating disease. Gait abnormalities are common and disabling in patients with MS with limited treatment options available. Emerging evidence suggests a role of prefrontal attention networks in modulating gait. High-frequency repetitive transcranial magnetic stimulation (rTMS is known to enhance cortical excitability in stimulated cortex and its correlates. We investigated the effect of high-frequency left prefrontal rTMS on gait parameters in a 51-year-old Caucasian male with chronic relapsing/remitting MS with residual disabling attention and gait symptoms. Patient received 6 Hz, rTMS at 90% motor threshold using figure of eight coil centered on F3 location (using 10-20 electroencephalography (EEG lead localization system. GAITRite gait analysis system was used to collect objective gait measures before and after one session and in another occasion three consecutive daily sessions of rTMS. Two-tailed within subject repeated measure t-test showed significant enhancement in ambulation time, gait velocity, and cadence after three consecutive daily sessions of rTMS. Modulating left prefrontal cortex excitability using rTMS resulted in significant change in gait parameters after three sessions. To our knowledge, this is the first report that demonstrates the effect of rTMS applied to the prefrontal cortex on gait in MS patients.

  19. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    Science.gov (United States)

    Schecklmann, Martin; Lehner, Astrid; Gollmitzer, Judith; Schmidt, Eldrid; Schlee, Winfried; Langguth, Berthold

    2015-01-01

    Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About 10 years ago, repetitive transcranial magnetic stimulation (rTMS) of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity). Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel electroencephalography (EEG) system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1 Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil) served as sham condition. Before and after each rTMS protocol 5 min of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with 1 week interval in between. Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS. This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be

  20. Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke.

    Science.gov (United States)

    Niimi, Masachika; Hashimoto, Kenji; Kakuda, Wataru; Miyano, Satoshi; Momosaki, Ryo; Ishima, Tamaki; Abo, Masahiro

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) can improve upper limb hemiparesis after stroke but the mechanism underlying its efficacy remains elusive. rTMS seems to alter brain-derived neurotrophic factor (BDNF) and such effect is influenced by BDNF gene polymorphism. To investigate the molecular effects of rTMS on serum levels of BDNF, its precursor proBDNF and matrix metalloproteinase-9 (MMP-9) in poststroke patients with upper limb hemiparesis. Poststroke patients with upper limb hemiparesis were studied. Sixty-two patients underwent rehabilitation plus rTMS combination therapy and 33 patients underwent rehabilitation monotherapy without rTMS for 14 days at our hospital. One Hz rTMS was applied over the motor representation of the first dorsal interosseous muscle on the non-lesional hemisphere. Fugl-Meyer Assessment and Wolf Motor Function (WMFT) were used to evaluate motor function on the affected upper limb before and after intervention. Blood samples were collected for analysis of BDNF polymorphism and measurement of BDNF, proBDNF and MMP-9 levels. Two-week combination therapy increased BDNF and MMP-9 serum levels, but not serum proBDNF. Serum BDNF and MMP-9 levels did not correlate with motor function improvement, though baseline serum proBDNF levels correlated negatively and significantly with improvement in WMFT (ρ = -0.422, p = 0.002). The outcome of rTMS therapy was not altered by BDNF gene polymorphism. The combination therapy of rehabilitation plus low-frequency rTMS seems to improve motor function in the affected limb, by activating BDNF processing. BDNF and its precursor proBDNF could be potentially suitable biomarkers for poststroke motor recovery.

  1. Effect of repetitive transcranial magnetic stimulation in drug resistant depressed patients

    International Nuclear Information System (INIS)

    Chung, Yong An; Yoo, Ie Ryung; Kang, Bong Joo; Chae, Jeong Ho; Lee, Hye Won; Moon, Hyun Jin; Kim, Sung Hoon; Sohn, Hyung Sun; Chung, Soo Kyo

    2007-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has recently been clinically applied in the treatment of drug resistant depressed patients. There are mixed findings about the efficacy of rTMS on depression. Furthermore, the influence of rTMS on the physiology of the brain is not clear. We prospectively evaluated changes of regional cerebral blood flow (rCBF) between pre- and post-rTMS treatment in patients with drug resistant depression. Twelve patients with drug-resistant depression (7 male, 5 female; age range; 19∼ 52 years; mean age: 29.3 ± 9.3 years) were given rTMS on right prefrontal lobe with low frequency (1 Hz) and on left prefrontal lobe with high frequency (20 Hz), with 20-minute-duration each day for 3 weeks. Tc-99m ECD brain perfusion SPECT was obtained before and after rTMS treatment. The changes of cerebral perfusion were analyzed using statistical parametric mapping (SPM; t=3.14, uncorrected ρ < 0.01, voxel = 100). Following areas showed significant increase in rCBF after 3 weeks rTMS treatment: the cingulate gyrus, fusiform gyrus of right temporal lobe, precuneus, and left lateral globus pallidus. Significant decrement was noted in the precental and middle frontal gyrus of right frontal lobe, and fusiform gyrus of left occipital lobe. Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased and decreased rCBF in the specific brain regions in drug-resistant depressed patients. Further analyses correlating clinical characteristics and treatment paradigm with functional imaging data may be helpful in clarifying the pathophysiology of drug-resistant patients

  2. Repetitive transcranial magnetic stimulation and transcranial direct-current stimulation in neuropathic pain due to radiculopathy: a randomized sham-controlled comparative study.

    Science.gov (United States)

    Attal, Nadine; Ayache, Samar S; Ciampi De Andrade, Daniel; Mhalla, Alaa; Baudic, Sophie; Jazat, Frédérique; Ahdab, Rechdi; Neves, Danusa O; Sorel, Marc; Lefaucheur, Jean-Pascal; Bouhassira, Didier

    2016-06-01

    No study has directly compared the effectiveness of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS) in neuropathic pain (NP). In this 2-centre randomised double-blind sham-controlled study, we compared the efficacy of 10-Hz rTMS and anodal 2-mA tDCS of the motor cortex and sham stimulation contralateral to the painful area (3 daily sessions) in patients with NP due to lumbosacral radiculopathy. Average pain intensity (primary outcome) was evaluated after each session and 5 days later. Secondary outcomes included neuropathic symptoms and thermal pain thresholds for the upper limbs. We used an innovative design that minimised bias by randomly assigning patients to 1 of 2 groups: active rTMS and tDCS or sham rTMS and tDCS. For each treatment group (active or sham), the order of the sessions was again randomised according to a crossover design. In total, 51 patients were screened and 35 (51% women) were randomized. Active rTMS was superior to tDCS and sham in pain intensity (F = 2.89 and P = 0.023). Transcranial direct-current stimulation was not superior to sham, but its analgesic effects were correlated to that of rTMS (P = 0.046), suggesting common mechanisms of action. Repetitive transcranial magnetic stimulation lowered cold pain thresholds (P = 0.04) and its effect on cold pain was correlated with its analgesic efficacy (P = 0.006). However, rTMS had no impact on individual neuropathic symptoms. Thus, rTMS is more effective than tDCS and sham in patients with NP due to lumbosacral radiculopathy and may modulate the sensory and affective dimensions of pain.

  3. Safety and tolerability of repetitive transcranial magnetic stimulation in patients with pathologic positive sensory phenomena: a review of literature

    Science.gov (United States)

    Muller, Paul A; Pascual-Leone, Alvaro; Rotenberg, Alexander

    2013-01-01

    BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is emerging as a valuable therapeutic and diagnostic tool. rTMS appears particularly promising for disorders characterized by positive sensory phenomena attributable to alterations in sensory cortex excitability. Among these are tinnitus, auditory and visual hallucinations, and pain syndromes. OBJECTIVE Despite studies addressing rTMS efficacy in suppression of positive sensory symptoms, the safety of stimulation of potentially hyperexcitable cortex has not been fully addressed. We performed a systematic literature review and metanalysis to describe the rTMS safety profile in these disorders. METHODS Using the PubMed database, we performed an English-language literature search from January 1985 to April 2011 to review all pertinent publications. Per study, we noted and listed pertinent details. From these data we also calculated a crude per-subject risk for each adverse event. RESULTS 106 publications (n = 1815 subjects) were identified with patients undergoing rTMS for pathologic positive sensory phenomena. Adverse events associated with rTMS were generally mild and occurred in 16.7% of subjects. Seizure was the most serious adverse event, and occurred in three patients with a 0.16% crude per-subject risk. The second most severe adverse event involved aggravation of sensory phenomena, occurring in 1.54%. CONCLUSIONS The published data suggest rTMS for the treatment or diagnosis of pathologic positive sensory phenomena appears to be a relatively safe and well-tolerated procedure. However, published data are lacking in systematic reporting of adverse events, and safety risks of rTMS in these patient populations will have to be addressed in future prospective trials. PMID:22322098

  4. Effect of repetitive transcranial magnetic stimulation in drug resistant depressed patients

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong An; Yoo, Ie Ryung; Kang, Bong Joo; Chae, Jeong Ho; Lee, Hye Won; Moon, Hyun Jin; Kim, Sung Hoon; Sohn, Hyung Sun; Chung, Soo Kyo [The Catholic University of Korea, Seoul (Korea, Republic of)

    2007-02-15

    Repetitive transcranial magnetic stimulation (rTMS) has recently been clinically applied in the treatment of drug resistant depressed patients. There are mixed findings about the efficacy of rTMS on depression. Furthermore, the influence of rTMS on the physiology of the brain is not clear. We prospectively evaluated changes of regional cerebral blood flow (rCBF) between pre- and post-rTMS treatment in patients with drug resistant depression. Twelve patients with drug-resistant depression (7 male, 5 female; age range; 19{approx} 52 years; mean age: 29.3 {+-} 9.3 years) were given rTMS on right prefrontal lobe with low frequency (1 Hz) and on left prefrontal lobe with high frequency (20 Hz), with 20-minute-duration each day for 3 weeks. Tc-99m ECD brain perfusion SPECT was obtained before and after rTMS treatment. The changes of cerebral perfusion were analyzed using statistical parametric mapping (SPM; t=3.14, uncorrected {rho} < 0.01, voxel = 100). Following areas showed significant increase in rCBF after 3 weeks rTMS treatment: the cingulate gyrus, fusiform gyrus of right temporal lobe, precuneus, and left lateral globus pallidus. Significant decrement was noted in the precental and middle frontal gyrus of right frontal lobe, and fusiform gyrus of left occipital lobe. Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased and decreased rCBF in the specific brain regions in drug-resistant depressed patients. Further analyses correlating clinical characteristics and treatment paradigm with functional imaging data may be helpful in clarifying the pathophysiology of drug-resistant patients.

  5. Low- vs high- frequency Repetitive Transcranial Magnetic Stimulation as an add-on treatment for refractory depression

    Directory of Open Access Journals (Sweden)

    julien eeche

    2012-03-01

    Full Text Available Objectives: Repetitive transcranial magnetic stimulation (rTMS seems to be effective as an antidepressant treatment, however, some confusion remain about the best parameters to apply and the efficacy of its association with pharmacological antidepressant treatments.Method: In a single blind randomized study14 patients with unipolar resistant depression to one antidepressant treatment were enrolled to received, in combination with venlafaxine (150 mg, either 20 sessions of 10Hz rTMS (2 000 pulses per session applied over le left dorsolateral prefrontal cortex (DLPFC or 20 sessions of 1 Hz rTMS (120 stimulations per sessions applied over the right DLPFC. Results: A similar antidepressant effect was observed in both groups with a comparable antidepressant delay of action (2 weeks and a comparable number of patients in remission after 4 weeks of daily rTMS sessions (66 vs 50 %.Conclusion: Low- and high- frequency rTMS seem to be effective as an add-on treatment to venlafaxine in pharmacological refractory major depression. Due to its short duration and its safety, low frequency rTMS may be a useful alternative treatment for patients with refractory depression.

  6. Transcranial magnetic stimulation is effective in the treatment of relapse of depression.

    Science.gov (United States)

    Dannon, P N; Schreiber, S; Dolberg, O T; Shemer, L; Grunhaus, L

    2000-01-01

    The aim of this preliminary report is to demonstrate the efficacy of rapid transcranial magnetic stimulation (rTMS) in the treatment of relapsed major depressive disorder (MDD) patients. Four patients with major depressive disorder who were successfully treated with rTMS received a second course of rTMS treatment. Patients were evaluated with the Hamilton Depression Rating Scale - 21 items, the Brief Psychiatric Rating Scale, the Global Depression Scale and the Global Assessment Scale in both trials. The statistical analysis was performed with paired t-tests and chi squares. Clinical ratings demonstrated a significant improvement at the end of both trials. No significant differences were found between the ratings at the end of the treatment courses. rTMS was successfully used in the treatment of relapsed MDD patients who had previously responsed to rTMS. ( Int J Psych Clin Pract 2000; 4: 223 - 226).

  7. A case of cerebral reversible vasoconstriction syndrome triggered by repetition transcranial magnetic stimulation.

    Science.gov (United States)

    Sato, Mamiko; Yamate, Koji; Hayashi, Hiromi; Miura, Toyoaki; Kobayashi, Yasutaka

    2017-08-31

    A 75-year-old man was admitted for combined low-frequency repetitive transcranial magnetic stimulation (rTMS) and intensive occupational therapy. Five days after the initiation of rTMS, he developed hypotension and temporary exacerbation of the right hemiplegia with thunderclap headache. MRA showed segmental stenosis of the left middle cerebral artery, which findings were improved at 9 days after the onset of the headache. He was diagnosed as having the reversible cerebral vasoconstriction syndrome (RCVS). The rTMS was recognized as safe rehabilitation treatment. However, it is necessary to recognize that RCVS can become one of the precipitants. This is the first report of RCVS triggered by rTMS.

  8. Transcranial Magnetic Stimulation of Medial Prefrontal and Cingulate Cortices Reduces Cocaine Self-Administration: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Diana Martinez

    2018-03-01

    Full Text Available BackgroundPrevious studies have shown that repetitive transcranial magnetic stimulation (rTMS to the dorsolateral prefrontal cortex may serve as a potential treatment for cocaine use disorder (CUD, which remains a public health problem that is refractory to treatment. The goal of this pilot study was to investigate the effect of rTMS on cocaine self-administration in the laboratory. In the self-administration sessions, CUD participants chose between cocaine and an alternative reinforcer (money in order to directly measure cocaine-seeking behavior. The rTMS was delivered with the H7 coil, which provides stimulation to the medial prefrontal cortex (mPFC and anterior cingulate cortex (ACC. These brain regions were targeted based on previous imaging studies demonstrating alterations in their activation and connectivity in CUD.MethodsVolunteers with CUD were admitted to an inpatient unit for the entire study and assigned to one of three rTMS groups: high frequency (10 Hz, low frequency (1 Hz, and sham. Six participants were included in each group and the rTMS was delivered on weekdays for 3 weeks. The cocaine self-administration sessions were performed at three time points: at baseline (pre-TMS, session 1, after 4 days of rTMS (session 2, and after 13 days of rTMS (session 3. During each self-administration session, the outcome measure was the number of choices for cocaine.ResultsThe results showed a significant group by time effect (p = 0.02, where the choices for cocaine decreased between sessions 2 and 3 in the high frequency group. There was no effect of rTMS on cocaine self-administration in the low frequency or sham groups.ConclusionTaken in the context of the existing literature, these results contribute to the data showing that high frequency rTMS to the prefrontal cortex may serve as a potential treatment for CUD.

  9. Repeated mapping of cortical language sites by preoperative navigated transcranial magnetic stimulation compared to repeated intraoperative DCS mapping in awake craniotomy

    Science.gov (United States)

    2014-01-01

    Background Repetitive navigated transcranial magnetic stimulation (rTMS) was recently described for mapping of human language areas. However, its capability of detecting language plasticity in brain tumor patients was not proven up to now. Thus, this study was designed to evaluate such data in order to compare rTMS language mapping to language mapping during repeated awake surgery during follow-up in patients suffering from language-eloquent gliomas. Methods Three right-handed patients with left-sided gliomas (2 opercular glioblastomas, 1 astrocytoma WHO grade III of the angular gyrus) underwent preoperative language mapping by rTMS as well as intraoperative language mapping provided via direct cortical stimulation (DCS) for initial as well as for repeated Resection 7, 10, and 15 months later. Results Overall, preoperative rTMS was able to elicit clear language errors in all mappings. A good correlation between initial rTMS and DCS results was observed. As a consequence of brain plasticity, initial DCS and rTMS findings only corresponded with the results obtained during the second examination in one out of three patients thus suggesting changes of language organization in two of our three patients. Conclusions This report points out the usefulness but also the limitations of preoperative rTMS language mapping to detect plastic changes in language function or for long-term follow-up prior to DCS even in recurrent gliomas. However, DCS still has to be regarded as gold standard. PMID:24479694

  10. The causal role of category-specific neuronal representations in the left ventral premotor cortex (PMv) in semantic processing.

    Science.gov (United States)

    Cattaneo, Zaira; Devlin, Joseph T; Salvini, Francesca; Vecchi, Tomaso; Silvanto, Juha

    2010-02-01

    The left ventral premotor cortex (PMv) is preferentially activated by exemplars of tools, suggestive of category specificity in this region. Here we used state-dependent transcranial magnetic stimulation (TMS) to investigate the causal role of such category-specific neuronal representations in the encoding of tool words. Priming to a category name (either "Tool" or "Animal") was used with the objective of modulating the initial activation state of this region prior to application of TMS and the presentation of the target stimulus. When the target word was an exemplar of the "Tool" category, the effects of TMS applied over PMv (but not PMd) interacted with priming history by facilitating reaction times on incongruent trials while not affecting congruent trials. This congruency/TMS interaction implies that the "Tool" and "Animal" primes had a differential effect on the initial activation state of the left PMv and implies that this region is one neural locus of category-specific behavioral priming for the "Tool" category. TMS applied over PMv had no behavioral effect when the target stimulus was an exemplar of the "Animal" category, regardless of whether the target word was congruent or incongruent with the prime. That TMS applied over the left PMv interacted with a priming effect that extended from the category name ("Tool") to exemplars of that category suggests that this region contains neuronal representation associated with a specific semantic category. Our results also demonstrate that the state-dependent effects obtained in the combination of visual priming and TMS are useful in the study of higher-level cognitive functions. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  11. Is it time to introduce repetitive transcranial magnetic stimulation into standard clinical practice for the treatment of depressive disorders?

    Science.gov (United States)

    Fitzgerald, Paul

    2003-02-01

    To examine issues relating to the potential introduction of repetitive transcranial magnetic stimulation (rTMS) into clinical practice as a treatment for depression. A review of the outcomes literature accompanied by an analysis of issues relating to the potential advantages and pitfalls of the introduction of rTMS as a treatment strategy. Evidence is progressively accumulating that rTMS has antidepressant properties that are clinically relevant. These effects are biologically plausible and supported by basic research. Patients with therapy-resistant depression have few treatment alternatives and experience significant suffering, thus justifying the early introduction of a new treatment such as rTMS for this patient group. However, this must be balanced by a need to foster considerable further research and not to raise expectations unreasonably. It is timely for rTMS to be made more available to patients with treatment-resistant mood disorders. This need not be limited to clinical research trials but should only occur in medical settings where continual evaluation and research is conducted.

  12. Transcranial magnetic stimulation of the dorsal lateral prefrontal cortex inhibits medial orbitofrontal activity in smokers.

    Science.gov (United States)

    Li, Xingbao; Sahlem, Gregory L; Badran, Bashar W; McTeague, Lisa M; Hanlon, Colleen A; Hartwell, Karen J; Henderson, Scott; George, Mark S

    2017-12-01

    Several studies have shown that repetitive transcranial magnetic stimulation (rTMS), applied to the dorsolateral prefrontal cortex (DLPFC), can reduce cue-elicited craving in smokers. Currently, the mechanism of this effect is unknown. We used functional magnetic resonance imaging (fMRI) to explore the effect of a single treatment of rTMS on cortical and sub-cortical neural activity in non-treatment seeking nicotine-dependent participants. We conducted a randomized, counterbalanced, crossover trial in which participants attended two experimental visits separated by at least 1 week. On the first visit, participants received either active, or sham rTMS (10 Hz, 5 s-on, 10 s-off, 100% motor threshold, 3,000 pulses) over the left DLPFC, and on the second visit they received the opposite condition (active or sham). Cue craving fMRI scans were completed before and after each rTMS session. A total of 11 non-treatment seeking nicotine-dependent cigarette smokers were enrolled in the study [six female, average age 39.7 ± 13.2, average cigarettes per day 17.3 ± 5.9]. Active rTMS decreased activity in the contralateral medial orbitofrontal cortex (mOFC) and ipsilateral nucleus accumbens (NAc) compared to sham rTMS. This preliminary data suggests that one session of rTMS applied to the DLPFC decreases brain activity in the NAc and mOFC in smokers. rTMS may exert its anti-craving effect by decreasing activity in the NAc and mOFC in smokers. Despite a small sample size, these findings warrant future rTMS/fMRI studies in addictions. (Am J Addict 2017;26:788-794). © 2017 American Academy of Addiction Psychiatry.

  13. Cost effectiveness analysis comparing repetitive transcranial magnetic stimulation to antidepressant medications after a first treatment failure for major depressive disorder in newly diagnosed patients - A lifetime analysis.

    Science.gov (United States)

    Voigt, Jeffrey; Carpenter, Linda; Leuchter, Andrew

    2017-01-01

    Repetitive Transcranial Magnetic Stimulation (rTMS) commonly is used for the treatment of Major Depressive Disorder (MDD) after patients have failed to benefit from trials of multiple antidepressant medications. No analysis to date has examined the cost-effectiveness of rTMS used earlier in the course of treatment and over a patients' lifetime. We used lifetime Markov simulation modeling to compare the direct costs and quality adjusted life years (QALYs) of rTMS and medication therapy in patients with newly diagnosed MDD (ages 20-59) who had failed to benefit from one pharmacotherapy trial. Patients' life expectancies, rates of response and remission, and quality of life outcomes were derived from the literature, and treatment costs were based upon published Medicare reimbursement data. Baseline costs, aggregate per year quality of life assessments (QALYs), Monte Carlo simulation, tornado analysis, assessment of dominance, and one way sensitivity analysis were also performed. The discount rate applied was 3%. Lifetime direct treatment costs, and QALYs identified rTMS as the dominant therapy compared to antidepressant medications (i.e., lower costs with better outcomes) in all age ranges, with costs/improved QALYs ranging from $2,952/0.32 (older patients) to $11,140/0.43 (younger patients). One-way sensitivity analysis demonstrated that the model was most sensitive to the input variables of cost per rTMS session, monthly prescription drug cost, and the number of rTMS sessions per year. rTMS was identified as the dominant therapy compared to antidepressant medication trials over the life of the patient across the lifespan of adults with MDD, given current costs of treatment. These models support the use of rTMS after a single failed antidepressant medication trial versus further attempts at medication treatment in adults with MDD.

  14. Improved discrimination of visual stimuli following repetitive transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Michael L Waterston

    Full Text Available BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a "virtual lesion" in stimulated brain regions, with correspondingly diminished behavioral performance. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of rTMS to visual cortex on subjects' ability to perform visual psychophysical tasks. Contrary to expectations of a visual deficit, we find that rTMS often improves the discrimination of visual features. For coarse orientation tasks, discrimination of a static stimulus improved consistently following theta-burst stimulation of the occipital lobe. Using a reaction-time task, we found that these improvements occurred throughout the visual field and lasted beyond one hour post-rTMS. Low-frequency (1 Hz stimulation yielded similar improvements. In contrast, we did not find consistent effects of rTMS on performance in a fine orientation discrimination task. CONCLUSIONS/SIGNIFICANCE: Overall our results suggest that rTMS generally improves or has no effect on visual acuity, with the nature of the effect depending on the type of stimulation and the task. We interpret our results in the context of an ideal-observer model of visual perception.

  15. Experimental therapy of epilepsy with transcranial magnetic stimulation: lack of additional benefit with prolonged treatment

    Directory of Open Access Journals (Sweden)

    Brasil-Neto Joaquim P.

    2004-01-01

    Full Text Available OBJECTIVE: To investigate the effect of three months of low-frequency repetitive transcranial magnetic stimulation (rTMS treatment in intractable epilepsy. METHODS: Five patients (four males, one female; ages 6 to 50 years, were enrolled in the study; their epilepsy could not be controlled by medical treatment and surgery was not indicated. rTMS was performed twice a week for three months; patients kept records of seizure frequency for an equal period of time before, during, and after rTMS sessions. rTMS was delivered to the vertex with a round coil, at an intensity 5 % below motor threshold. During rTMS sessions, 100 stimuli (five series of 20 stimuli, with one-minute intervals between series were delivered at a frequency of 0.3 Hz. RESULTS: Mean daily number of seizures (MDNS decreased in three patients and increased in two during rTMS- one of these was treated for only one month; the best result was achieved in a patient with focal cortical dysplasia (reduction of 43.09 % in MDNS. In the whole patient group, there was a significant (p<0.01 decrease in MDNS of 22.8 %. CONCLUSION: Although prolonged rTMS treatment is safe and moderately decreases MDNS in a group of patients with intractable epilepsy, individual patient responses were mostly subtle and clinical relevance of this method is probably low. Our data suggest, however, that patients with focal cortical lesions may indeed benefit from this novel treatment. Further studies should concentrate on that patient subgroup.

  16. A randomized controlled comparison of electroconvulsive therapy and repetitive transcranial magnetic stimulation in severe and resistant nonpsychotic major depression.

    Science.gov (United States)

    Grunhaus, Leon; Schreiber, Shaul; Dolberg, Ornah T; Polak, Dana; Dannon, Pinhas N

    2003-02-15

    Studies published over the past few years suggest that transcranial magnetic stimulation (TMS) may have significant antidepressant actions. In a previous report, we compared electroconvulsive therapy (ECT) and repetitive TMS (rTMS) and found ECT to be superior for psychotic major depression (MD); however, ECT and rTMS had similar results in nonpsychotic MD. We now report on a controlled randomized comparison of ECT and rTMS in patients with nonpsychotic MD. Forty patients with nonpsychotic MD referred for ECT were included. Electroconvulsive therapy was performed according to established protocols. Repetitive TMS was performed over the left dorsolateral prefrontal cortex at 90% motor threshold. Patients were treated with 20 sessions (five times per week for 4 weeks) of 10-Hz treatments (1200 pulses per treatment-day) at 90% motor threshold. Response to treatment was defined as a decrease of at least 50% in the Hamilton Rating Scale for Depression (HRSD) score, with a final HRSD equal or less than 10 points and a final Global Assessment of Function Scale rating of 60 or more points. The overall response rate was 58% (23 out of 40 patients responded to treatment). In the ECT group, 12 responded and eight did not; in the rTMS group, 11 responded and nine did not (chi2 =.10, ns). Thus, patients responded as well to either ECT or rTMS. This study adds to the growing literature supporting an antidepressant effect for rTMS. This study is particularly relevant because it suggests that rTMS and ECT reach similar results in nonpsychotic major depressive disorder.

  17. Repetitive transcranial magnetic stimulation as an adjuvant method in the treatment of depression: Preliminary results

    Directory of Open Access Journals (Sweden)

    Jovičić Milica

    2014-01-01

    Full Text Available Introduction. Repetitive transcranial magnetic stimulation (rTMS is a method of brain stimulation which is increasingly used in both clinical practice and research. Up-to-date studies have pointed out a potential antidepressive effect of rTMS, but definitive superiority over placebo has not yet been confirmed. Objective. The aim of the study was to examine the effect of rTMS as an adjuvant treatment with antidepressants during 18 weeks of evaluation starting from the initial application of the protocol. Methods. Four patients with the diagnosis of moderate/severe major depression were included in the study. The protocol involved 2000 stimuli per day (rTMS frequency of 10 Hz, intensity of 120% motor threshold administered over the left dorsolateral prefrontal cortex (DLPFC for 15 days. Subjective and objective depressive symptoms were measured before the initiation of rTMS and repeatedly evaluated at week 3, 6, 12 and 18 from the beginning of the stimulation. Results. After completion of rTMS protocol two patients demonstrated a reduction of depressive symptoms that was sustained throughout the 15-week follow-up period. One patient showed a tendency of remission during the first 12 weeks of the study, but relapsed in week 18. One patient showed no significant symptom reduction at any point of follow-up. Conclusion. Preliminary findings suggest that rTMS has a good tolerability and can be efficient in accelerating the effect of antidepressants, particularly in individuals with shorter duration of depressive episodes and moderate symptom severity. [Projekat Ministarstva nauke Republike Srbije, br. III41029 i br. ON175090

  18. Low-Frequency Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Function and Synaptic Plasticity in APP23/PS45 Mouse Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Zhilin Huang

    2017-09-01

    Full Text Available Alzheimer’s disease (AD is a chronic neurodegenerative disease leading to dementia, which is characterized by progressive memory loss and other cognitive dysfunctions. Recent studies have attested that noninvasive repetitive transcranial magnetic stimulation (rTMS may help improve cognitive function in patients with AD. However, the majority of these studies have focused on the effects of high-frequency rTMS on cognitive function, and little is known about low-frequency rTMS in AD treatment. Furthermore, the potential mechanisms of rTMS on the improvement of learning and memory also remain poorly understood. In the present study, we reported that severe deficits in spatial learning and memory were observed in APP23/PS45 double transgenic mice, a well known mouse model of AD. Furthermore, these behavioral changes were accompanied by the impairment of long-term potentiation (LTP in the CA1 region of hippocampus, a brain region vital to spatial learning and memory. More importantly, 2-week low-frequency rTMS treatment markedly reversed the impairment of spatial learning and memory as well as hippocampal CA1 LTP. In addition, low-frequency rTMS dramatically reduced amyloid-β precursor protein (APP and its C-terminal fragments (CTFs including C99 and C89, as well as β-site APP-cleaving enzyme 1 (BACE1 in the hippocampus. These results indicate that low-frequency rTMS noninvasively and effectively ameliorates cognitive and synaptic functions in a mouse model of AD, and the potential mechanisms may be attributed to rTMS-induced reduction in Aβ neuropathology.

  19. Repetitive transcranial magnetic stimulation induces oscillatory power changes in chronic tinnitus

    Directory of Open Access Journals (Sweden)

    Martin eSchecklmann

    2015-10-01

    Full Text Available Chronic tinnitus is associated with neuroplastic changes in auditory and non-auditory cortical areas. About ten years ago, repetitive transcranial magnetic stimulation (rTMS of auditory and prefrontal cortex was introduced as potential treatment for tinnitus. The resulting changes in tinnitus loudness are interpreted in the context of rTMS induced activity changes (neuroplasticity. Here, we investigate the effect of single rTMS sessions on oscillatory power to probe the capacity of rTMS to interfere with tinnitus-specific cortical plasticity. We measured 20 patients with bilateral chronic tinnitus and 20 healthy controls comparable for age, sex, handedness, and hearing level with a 63-channel EEG system. Educational level, intelligence, depressivity and hyperacusis were controlled for by analysis of covariance. Different rTMS protocols were tested: Left and right temporal and left and right prefrontal cortices were each stimulated with 200 pulses at 1Hz and with an intensity of 60% stimulator output. Stimulation of central parietal cortex with 6-fold reduced intensity (inverted passive-cooled coil served as sham condition. Before and after each rTMS protocol five minutes of resting state EEG were recorded. The order of rTMS protocols was randomized over two sessions with one week interval in between.Analyses on electrode level showed that people with and without tinnitus differed in their response to left temporal and right frontal stimulation. In tinnitus patients left temporal rTMS decreased frontal theta and delta and increased beta2 power, whereas right frontal rTMS decreased right temporal beta3 and gamma power. No changes or increases were observed in the control group. Only non-systematic changes in tinnitus loudness were induced by single sessions of rTMS.This is the first study to show tinnitus-related alterations of neuroplasticity that were specific to stimulation site and oscillatory frequency. The observed effects can be interpreted

  20. Treating Clinical Depression with Repetitive Deep Transcranial Magnetic Stimulation Using the Brainsway H1-coil

    OpenAIRE

    Feifel, David; Pappas, Katherine

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is an emerging non-pharmacological approach to treating many brain-based disorders. rTMS uses electromagnetic coils to stimulate areas of the brain non-invasively. Deep transcranial magnetic stimulation (dTMS) with the Brainsway H1-coil system specifically is a type of rTMS indicated for treating patients with major depressive disorder (MDD) who are resistant to medication. The unique H1-coil design of this device is able to stimulate neuron...

  1. Successful use of transcranial magnetic stimulation in difficult to treat hypersexual disorder

    Directory of Open Access Journals (Sweden)

    Adarsh Tripathi

    2016-01-01

    Full Text Available Hypersexual disorder has phenomenological resemblance with impulsive-compulsive spectrum disorders. Inhibitory repetitive transcranial magnetic stimulation (rTMS over the supplementary motor area (SMA has been found to be effective in the management of impulsive-compulsive behaviors. Inhibitory rTMS over SMA may be helpful in hypersexual disorder. We highlight here a case of hypersexual disorder (excessive sexual drive who failed to respond adequately to the conventional pharmacological treatment and responded with rTMS augmentation.

  2. Cathodal transcranial direct current stimulation (tDCS) applied to the left premotor cortex (PMC) stabilizes a newly learned motor sequence.

    Science.gov (United States)

    Focke, Jan; Kemmet, Sylvia; Krause, Vanessa; Keitel, Ariane; Pollok, Bettina

    2017-01-01

    While the primary motor cortex (M1) is involved in the acquisition the premotor cortex (PMC) has been related to over-night consolidation of a newly learned motor skill. The present study aims at investigating the possible contribution of the left PMC for the stabilization of a motor sequence immediately after acquisition as determined by susceptibility to interference. Thirty six healthy volunteers received anodal, cathodal and sham transcranial direct current stimulation (tDCS) to the left PMC either immediately prior to or during training on a serial reaction time task (SRTT) with the right hand. TDCS was applied for 10min, respectively. Reaction times were measured prior to training (t1), at the end of training (t2), and after presentation of an interfering random pattern (t3). Beyond interference from learning, the random pattern served as control condition in order to estimate general effects of tDCS on reaction times. TDCS applied during SRTT training did not result in any significant effects neither on acquisition nor on susceptibility to interference. In contrast to this, tDCS prior to SRTT training yielded an unspecific facilitation of reaction times at t2 independent of tDCS polarity. At t3, reduced susceptibility to interference was found following cathodal stimulation. The results suggest the involvement of the PMC in early consolidation and reveal a piece of evidence for the hypothesis that behavioral tDCS effects vary with the activation state of the stimulated area. Copyright © 2016. Published by Elsevier B.V.

  3. Safety of repetitive transcranial magnetic stimulation in patients with epilepsy: A systematic review.

    Science.gov (United States)

    Pereira, Luisa Santos; Müller, Vanessa Teixeira; da Mota Gomes, Marleide; Rotenberg, Alexander; Fregni, Felipe

    2016-04-01

    Approximately one-third of patients with epilepsy remain with pharmacologically intractable seizures. An emerging therapeutic modality for seizure suppression is repetitive transcranial magnetic stimulation (rTMS). Despite being considered a safe technique, rTMS carries the risk of inducing seizures, among other milder adverse events, and thus, its safety in the population with epilepsy should be continuously assessed. We performed an updated systematic review on the safety and tolerability of rTMS in patients with epilepsy, similar to a previous report published in 2007 (Bae EH, Schrader LM, Machii K, Alonso-Alonso M, Riviello JJ, Pascual-Leone A, Rotenberg A. Safety and tolerability of repetitive transcranial magnetic stimulation in patients with epilepsy: a review of the literature. Epilepsy Behav. 2007; 10 (4): 521-8), and estimated the risk of seizures and other adverse events during or shortly after rTMS application. We searched the literature for reports of rTMS being applied on patients with epilepsy, with no time or language restrictions, and obtained studies published from January 1990 to August 2015. A total of 46 publications were identified, of which 16 were new studies published after the previous safety review of 2007. We noted the total number of subjects with epilepsy undergoing rTMS, medication usage, incidence of adverse events, and rTMS protocol parameters: frequency, intensity, total number of stimuli, train duration, intertrain intervals, coil type, and stimulation site. Our main data analysis included separate calculations for crude per subject risk of seizure and other adverse events, as well as risk per 1000 stimuli. We also performed an exploratory, secondary analysis on the risk of seizure and other adverse events according to the type of coil used (figure-of-8 or circular), stimulation frequency (≤ 1 Hz or > 1 Hz), pulse intensity in terms of motor threshold (stimulator output for speech arrest, clinically arising from the region of

  4. Effects of low-frequency repetitive transcranial magnetic stimulation on upper extremity motor recovery and functional outcomes in chronic stroke patients: A randomized controlled trial.

    Science.gov (United States)

    Aşkın, Ayhan; Tosun, Aliye; Demirdal, Ümit Seçil

    2017-06-01

    Repetitive transcranial magnetic stimulation (rTMS) was suggested as a preconditioning method that would increase brain plasticity and that it would be optimal to combine rTMS with intensive rehabilitation. To assess the efficacy of inhibitory rTMS on upper extremity motor recovery and functional outcomes in chronic ischemic stroke patients. In this randomized controlled trial, experimental group received low-frequency (LF) rTMS to the primary motor cortex of the unaffected side + physical therapy (PT), and control group received PT. No statistically significant difference was found in baseline demographical and clinical characteristics of the subjects including stroke severity or severity of paralysis prior to intervention. There were statistically significant improvements in all clinical outcome measures except for the Brunnstrom Recovery Stages. Fugl-Meyer Assessment, Box and Block test, motor and total scores of Functional Independence Measurement (FIM), and Functional Ambulation Scale (FAS) scores were significantly increased in both groups, however, these changes were significantly greater in the rTMS group except for FAS score. FIM cognitive scores and standardized mini-mental test scores were significantly increased and distal and hand Modified Ashworth Scale scores were significantly decreased only in the rTMS group (p functional, and cognitive deficits in chronic stroke. Further studies with a larger number of patients with longer follow-up periods are needed to establish its effectiveness in stroke rehabilitation.

  5. Brain stimulation and constraint for perinatal stroke hemiparesis: The PLASTIC CHAMPS Trial.

    Science.gov (United States)

    Kirton, Adam; Andersen, John; Herrero, Mia; Nettel-Aguirre, Alberto; Carsolio, Lisa; Damji, Omar; Keess, Jamie; Mineyko, Aleksandra; Hodge, Jacquie; Hill, Michael D

    2016-05-03

    To determine whether the addition of repetitive transcranial magnetic stimulation (rTMS) and/or constraint-induced movement therapy (CIMT) to intensive therapy increases motor function in children with perinatal stroke and hemiparesis. A factorial-design, blinded, randomized controlled trial (clinicaltrials.gov/NCT01189058) assessed rTMS and CIMT effects in hemiparetic children (aged 6-19 years) with MRI-confirmed perinatal stroke. All completed a 2-week, goal-directed, peer-supported motor learning camp randomized to daily rTMS, CIMT, both, or neither. Primary outcomes were the Assisting Hand Assessment and the Canadian Occupational Performance Measure at baseline, and 1 week, 2 and 6 months postintervention. Outcome assessors were blinded to treatment. Interim safety analyses occurred after 12 and 24 participants. Intention-to-treat analysis examined treatment effects over time (linear mixed effects model). All 45 participants completed the trial. Addition of rTMS, CIMT, or both doubled the chances of clinically significant improvement. Assisting Hand Assessment gains at 6 months were additive and largest with rTMS + CIMT (β coefficient = 5.54 [2.57-8.51], p = 0.0004). The camp alone produced large improvements in Canadian Occupational Performance Measure scores, maximal at 6 months (Cohen d = 1.6, p = 0.002). Quality-of-life scores improved. Interventions were well tolerated and safe with no decrease in function of either hand. Hemiparetic children participating in intensive, psychosocial rehabilitation programs can achieve sustained functional gains. Addition of CIMT and rTMS increases the chances of improvement. This study provides Class II evidence that combined rTMS and CIMT enhance therapy-induced functional motor gains in children with stroke-induced hemiparetic cerebral palsy. © 2016 American Academy of Neurology.

  6. Effects of Bilateral Repetitive Transcranial Magnetic Stimulation on Post-Stroke Dysphagia.

    Science.gov (United States)

    Park, Eunhee; Kim, Min Su; Chang, Won Hyuk; Oh, Su Mi; Kim, Yun Kwan; Lee, Ahee; Kim, Yun-Hee

    Optimal protocol of repetitive transcranial magnetic stimulation (rTMS) on post-stroke dysphagia remains uncertain with regard to its clinical efficacy. The aim of the present study is to investigate the effects of high-frequency rTMS at the bilateral motor cortices over the cortical representation of the mylohyoid muscles in the patients with post-stroke dysphagia. This study was a single-blind, randomized controlled study with a blinded observer. Thirty-five stroke patients were randomly divided into three intervention groups: the bilateral stimulation group, the unilateral stimulation group, and the sham stimulation group. For the bilateral stimulation group, 500 pulses of 10 Hz rTMS over the ipsilesional and 500 pulses of 10 Hz rTMS over the contralesional motor cortices over the cortical areas that project to the mylohyoid muscles were administered daily for 2 consecutive weeks. For the unilateral stimulation group, 500 pulses of 10 Hz rTMS over the ipsilesional motor cortex over the cortical representation of the mylohyoid muscle and the same amount of sham rTMS over the contralesional hemisphere were applied. For the sham stimulation group, sham rTMS was applied at the bilateral motor cortices. Clinical swallowing function and videofluoroscopic swallowing studies were assessed before the intervention (T0), immediately after the intervention (T1) and 3 weeks after the intervention (T2) using Clinical Dysphagia Scale (CDS), Dysphagia Outcome and Severity Scale (DOSS), Penetration Aspiration Scale (PAS), and Videofluoroscopic Dysphagia Scale (VDS). There were significant time and intervention interaction effects in the CDS, DOSS, PAS, and VDS scores (p dysphagia therapies. Copyright © 2016. Published by Elsevier Inc.

  7. Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    Science.gov (United States)

    Sehatzadeh, Shayan; Tu, Hong Anh; Palimaka, Stefan; Yap, Belinda; O'Reilly, Daria; Bowen, Jim; Higgins, Caroline; Holubowich, Corinne

    2016-01-01

    Background To date, several randomized controlled trials (RCTs) have shown the efficacy of repetitive transcranial magnetic stimulation (rTMS) in the treatment of major depression. Objective This analysis examined the antidepressant efficacy of rTMS in patients with treatment-resistant unipolar depression. Methods A literature search was performed for RCTs published from January 1, 1994, to November 20, 2014. The search was updated on March 1, 2015. Two independent reviewers evaluated the abstracts for inclusion, reviewed full texts of eligible studies, and abstracted data. Meta-analyses were conducted to obtain summary estimates. The primary outcome was changes in depression scores measured by the Hamilton Rating Scale for Depression (HRSD), and we considered, a priori, the mean difference of 3.5 points to be a clinically important treatment effect. Remission and response to the treatment were secondary outcomes, and we calculated number needed to treat on the basis of these outcomes. We examined the possibility of publication bias by constructing funnel plots and by Begg's and Egger's tests. A meta-regression was undertaken to examine the effect of specific rTMS technical parameters on the treatment effects. Results Twenty-three RCTs compared rTMS with sham, and six RCTs compared rTMS with electroconvulsive therapy (ECT). Trials of rTMS versus sham showed a statistically significant improvement in depression scores with rTMS (weighted mean difference [WMD] 2.31, 95% CI 1.19–3.43; P transcranial magnetic stimulation had a small short-term effect for improving depression in comparison with sham, but follow-up studies did not show that the small effect will continue for longer periods. PMID:27099642

  8. Effect of Low-Frequency Repetitive Transcranial Magnetic Stimulation on Naming Abilities in Early-Stroke Aphasic Patients: A Prospective, Randomized, Double-Blind Sham-Controlled Study

    Directory of Open Access Journals (Sweden)

    Konrad Waldowski

    2012-01-01

    Full Text Available Background and Purpose. Functional brain imaging studies with aphasia patients have shown increased cortical activation in the right hemisphere language homologues, which hypothetically may represent a maladaptive strategy that interferes with aphasia recovery. The aim of this study was to investigate whether low-frequency repetitive transcranial magnetic stimulation (rTMS over the Broca’s homologues in combination with speech/language therapy improves naming in early-stroke aphasia patients. Methods. 26 right-handed aphasic patients in the early stage (up to 12 weeks of a first-ever left hemisphere ischemic stroke were randomized to receive speech and language therapy combined with real or sham rTMS. Prior to each 45-minute therapeutic session (15 sessions, 5 days a week, 30 minutes of 1-Hz rTMS was applied. Outcome measures were obtained at baseline, immediately after 3 weeks of experimental treatment and 15 weeks; posttreatment using the Computerized Picture Naming Test. Results. Although both groups significantly improved their naming abilities after treatment, no significant differences were noted between the rTMS and sham stimulation groups. The additional analyses have revealed that the rTMS subgroup with a lesion including the anterior part of language area showed greater improvement primarily in naming reaction time 15 weeks after completion of the therapeutic treatment. Improvement was also demonstrated in functional communication abilities. Conclusions. Inhibitory rTMS of the unaffected right inferior frontal gyrus area in combination with speech and language therapy cannot be assumed as an effective method for all poststroke aphasia patients. The treatment seems to be beneficial for patients with frontal language area damage, mostly in the distant time after finishing rTMS procedure.

  9. Extended Remediation of Sleep Deprived-Induced Working Memory Deficits Using fMRI-guided Transcranial Magnetic Stimulation

    Science.gov (United States)

    Luber, Bruce; Steffener, Jason; Tucker, Adrienne; Habeck, Christian; Peterchev, Angel V.; Deng, Zhi-De; Basner, Robert C.; Stern, Yaakov; Lisanby, Sarah H.

    2013-01-01

    Study Objectives: We attempted to prevent the development of working memory (WM) impairments caused by sleep deprivation using fMRI-guided repetitive transcranial magnetic stimulation (rTMS). Novel aspects of our fMRI-guided rTMS paradigm included the use of sophisticated covariance methods to identify functional networks in imaging data, and the use of fMRI-targeted rTMS concurrent with task performance to modulate plasticity effects over a longer term. Design: Between-groups mixed model. Setting: TMS, MRI, and sleep laboratory study. Participants: 27 subjects (13 receiving Active rTMS, and 14 Sham) completed the sleep deprivation protocol, with another 21 (10 Active, 11 Sham) non-sleep deprived subjects run in a second experiment. Interventions: Our previous covariance analysis had identified a network, including occipital cortex, which demonstrated individual differences in resilience to the deleterious effects of sleep deprivation on WM performance. Five Hz rTMS was applied to left lateral occipital cortex while subjects performed a WM task during 4 sessions over the course of 2 days of total sleep deprivation. Measurements and Results: At the end of the sleep deprivation period, Sham sleep deprived subjects exhibited degraded performance in the WM task. In contrast, those receiving Active rTMS did not show the slowing and lapsing typical in sleep deprivation, and instead performed similarly to non- sleep deprived subjects. Importantly, the Active sleep deprivation group showed rTMS-induced facilitation of WM performance a full 18 hours after the last rTMS session. Conclusions: Over the course of sleep deprivation, these results indicate that rTMS applied concurrently with WM task performance affected neural circuitry involved in WM to prevent its full impact. Citation: Luber B; Steffener J; Tucker A; Habeck C; Peterchev AV; Deng ZD; Basner RC; Stern Y; Lisanby SH. Extended remediation of sleep deprived-induced working memory deficits using f

  10. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    International Nuclear Information System (INIS)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun

    2007-01-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging

  11. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging.

  12. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guideline on Subthalamic Nucleus and Globus Pallidus Internus Deep Brain Stimulation for the Treatment of Patients With Parkinson's Disease: Executive Summary.

    Science.gov (United States)

    Rughani, Anand; Schwalb, Jason M; Sidiropoulos, Christos; Pilitsis, Julie; Ramirez-Zamora, Adolfo; Sweet, Jennifer A; Mittal, Sandeep; Espay, Alberto J; Martinez, Jorge Gonzalez; Abosch, Aviva; Eskandar, Emad; Gross, Robert; Alterman, Ron; Hamani, Clement

    2018-06-01

    Is bilateral subthalamic nucleus deep brain stimulation (STN DBS) more, less, or as effective as bilateral globus pallidus internus deep brain stimulation (GPi DBS) in treating motor symptoms of Parkinson's disease, as measured by improvements in Unified Parkinson's Disease Rating Scale, part III (UPDRS-III) scores? Given that bilateral STN DBS is at least as effective as bilateral GPi DBS in treating motor symptoms of Parkinson's disease (as measured by improvements in UPDRS-III scores), consideration can be given to the selection of either target in patients undergoing surgery to treat motor symptoms. (Level I). Is bilateral STN DBS more, less, or as effective as bilateral GPi DBS in allowing reduction of dopaminergic medication in Parkinson's disease? When the main goal of surgery is reduction of dopaminergic medications in a patient with Parkinson's disease, then bilateral STN DBS should be performed instead of GPi DBS. (Level I). Is bilateral STN DBS more, less, or as effective as bilateral GPi DBS in treating dyskinesias associated with Parkinson's disease? There is insufficient evidence to make a generalizable recommendation regarding the target selection for reduction of dyskinesias. However, when the reduction of medication is not anticipated and there is a goal to reduce the severity of "on" medication dyskinesias, the GPi should be targeted. (Level I). Is bilateral STN DBS more, less, or as effective as bilateral GPi DBS in improving quality of life measures in Parkinson's disease? When considering improvements in quality of life in a patient undergoing DBS for Parkinson's disease, there is no basis to recommend bilateral DBS in 1 target over the other. (Level I). Is bilateral STN DBS associated with greater, lesser, or a similar impact on neurocognitive function than bilateral GPi DBS in Parkinson disease? If there is significant concern about cognitive decline, particularly in regards to processing speed and working memory in a patient undergoing DBS

  13. Effects of Multi-Session Repetitive Transcranial Magnetic Stimulation on Motor Control and Spontaneous Brain Activity in Multiple System Atrophy: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Zhu Liu

    2018-05-01

    Full Text Available Background: Impaired motor control is one of the most common symptoms of multiple system atrophy (MSA. It arises from dysfunction of the cerebellum and its connected neural networks, including the primary motor cortex (M1, and is associated with altered spontaneous (i.e., resting-state brain network activity. Non-invasive repetitive transcranial magnetic stimulation (rTMS selectively facilitates the excitability of supraspinal networks. Repeated rTMS sessions have been shown to induce long-term changes to both resting-state brain dynamics and behavior in several neurodegenerative diseases. Here, we hypothesized that a multi-session rTMS intervention would improve motor control in patients with MSA, and that such improvements would correlate with changes in resting-state brain activity.Methods: Nine participants with MSA received daily sessions of 5 Hz rTMS for 5 days. rTMS targeted both the cerebellum and the bilateral M1. Before and within 3 days after the intervention, motor control was assessed by the motor item of the Unified Multiple System Atrophy Rating Scale (UMSARS. Resting-state brain activity was recorded by blood-oxygen-level dependency (BOLD functional magnetic resonance imaging. The “complexity” of resting-state brain activity fluctuations was quantified within seven well-known functional cortical networks using multiscale entropy, a technique that estimates the degree of irregularity of the BOLD time-series across multiple scales of time.Results: The rTMS intervention was well-attended and was not associated with any adverse events. Average motor scores were lower (i.e., better performance following the rTMS intervention as compared to baseline (t8 = 2.3, p = 0.003. Seven of nine participants exhibited such pre-to-post intervention improvements. A trend toward an increase in resting-state complexity was observed within the motor network (t8 = 1.86, p = 0.07. Participants who exhibited greater increases in motor network resting

  14. Complex modulation of fingertip forces during precision grasp and lift after theta burst stimulation over the dorsal premotor cortex

    Directory of Open Access Journals (Sweden)

    Drljačić Dragana

    2017-01-01

    Full Text Available Background/Aim. Adaptive control and fingertip force synchronization of precise grasp stability during unimanual manipulation of small objects represents an illustrative example of highly fractionated movements that are foundation of fine motor control. It is assumed that this process is controlled by several motor areas of the frontal lobe, particularly applicable to the primary motor (M-1 and dorsal premotor cortex (PMd. Aiming to examine the role of PMd during fine coordination of fingertip forces we applied theta burst repetitive magnetic stimulation (TBS to disrupt neural processing in that cortical area. Methods. Using a single-blind, randomized, crossover design, 10 healthy subjects (29 ± 3.9 years received single sessions of continuous TBS (cTBS600, intermittent TBS (iTBS600, or sham stimulation, separate from one another at least one week, over the PMd region of dominant hemisphere. Precision grasp and lift were assessed by instrumented device, recording grip (G and load (L forces, during three manipulation tasks (ramp-and-hold, oscillation force producing and simple lifting tasks, with each hand separately, before and after interventions. Results. We observed the improvement of task performance related to constant error (CE in oscillation task with the dominant hand (DH after the iTBS (p = 0.009. On the contrary, the cTBS reduced variable error (VE for non-dominant hand (NH, p = 0.005. Considering force coordination we found that iTBS worsened variables for NH (G/L ratio, p = 0.017; cross-correlation of the G and L, p = 0.047; Gain, p = 0.047. Conclusion. These results demonstrate the ability of TBS to modulate fingertip forces during precision grasping and lifting, when applied over PMd. These findings support the role of PMd in human motor control and forces generation required to hold small objects stable in our hands.

  15. Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations

    Directory of Open Access Journals (Sweden)

    Massihullah Hamidi

    2009-06-01

    Full Text Available A governing assumption about repetitive transcranial magnetic stimulation (rTMS has been that it interferes with task-related neuronal activity – in effect, by “injecting noise” into the brain – and thereby disrupts behavior. Recent reports of rTMS-produced behavioral enhancement, however, call this assumption into question. We investigated the neurophysiological effects of rTMS delivered during the delay period of a visual working memory task by simultaneously recording brain activity with electroencephalography (EEG. Subjects performed visual working memory for locations or for shapes, and in half the trials a 10-Hz train of rTMS was delivered to the superior parietal lobule or a control brain area. The wide range of individual differences in the effects of rTMS on task accuracy, from improvement to impairment, was predicted by individual differences in the effect of rTMS on power in the alpha-band of the EEG (~ 10 Hz: a decrease in alpha-band power corresponded to improved performance, whereas an increase in alpha-band power corresponded to the opposite. The EEG effect was localized to cortical sources encompassing the frontal eye fields and the intraparietal sulcus, and was specific to task (location, but not object memory and to rTMS target (superior parietal lobule, not control area. Furthermore, for the same task condition, rTMS-induced changes in cross-frequency phase synchrony between alpha- and gamma-band (> 40 Hz oscillations predicted changes in behavior. These results suggest that alpha-band oscillations play an active role cognitive processes and do not simply reflect absence of processing. Furthermore, this study shows that the complex effects of rTMS on behavior can result from biasing endogenous patterns of network-level oscillations.

  16. A Pilot Study of EEG Source Analysis Based Repetitive Transcranial Magnetic Stimulation for the Treatment of Tinnitus.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Repetitive Transcranial Magnetic Stimulation (rTMS is a novel therapeutic tool to induce a suppression of tinnitus. However, the optimal target sites are unknown. We aimed to determine whether low-frequency rTMS induced lasting suppression of tinnitus by decreasing neural activity in the cortex, navigated by high-density electroencephalogram (EEG source analysis, and the utility of EEG for targeting treatment.In this controlled three-armed trial, seven normal hearing patients with tonal tinnitus received a 10-day course of 1-Hz rTMS to the cortex, navigated by high-density EEG source analysis, to the left temporoparietal cortex region, and to the left temporoparietal with sham stimulation. The Tinnitus handicap inventory (THI and a visual analog scale (VAS were used to assess tinnitus severity and loudness. Measurements were taken before, and immediately, 2 weeks, and 4 weeks after the end of the interventions.Low-frequency rTMS decreased tinnitus significantly after active, but not sham, treatment. Responders in the EEG source analysis-based rTMS group, 71.4% (5/7 patients, experienced a significant reduction in tinnitus loudness, as evidenced by VAS scores. The target site of neuronal generators most consistently associated with a positive response was the frontal lobe in the right hemisphere, sourced using high-density EEG equipment, in the tinnitus patients. After left temporoparietal rTMS stimulation, 42.8% (3/7 patients experienced a decrease in tinnitus loudness.Active EEG source analysis based rTMS resulted in significant suppression in tinnitus loudness, showing the superiority of neuronavigation-guided coil positioning in dealing with tinnitus. Non-auditory areas should be considered in the pathophysiology of tinnitus. This knowledge in turn can contribute to investigate the pathophysiology of tinnitus.

  17. Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study.

    Science.gov (United States)

    Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Boeckh-Behrens, Tobias; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2015-08-01

    Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.

  18. The impact of preoperative language mapping by repetitive navigated transcranial magnetic stimulation on the clinical course of brain tumor patients.

    Science.gov (United States)

    Sollmann, Nico; Ille, Sebastian; Hauck, Theresa; Maurer, Stefanie; Negwer, Chiara; Zimmer, Claus; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2015-04-11

    Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is used for resection planning in patients suffering from brain lesions within regions known to be involved in language function. Yet we also need data that show whether patients benefit clinically from preoperative rTMS for language mapping. We enrolled 25 patients with language eloquently located brain lesions undergoing preoperative rTMS language mapping (GROUP 1, 2011-2013), with the mapping results not being available for the surgeon, and we matched these patients with 25 subjects who also underwent preoperative rTMS (GROUP 2, 2013-2014), but the mapping results were taken into account during tumor resection. Additionally, cortical language maps were generated by analyzing preoperative rTMS and intraoperative direct cortical stimulation (DCS) data. Mean anterior-posterior (ap) craniotomy extents and overall craniotomy sizes were significantly smaller for the patients in GROUP 2 (Ap: p = 0.0117; overall size: p = 0.0373), and postoperative language deficits were found significantly more frequently for the patients in GROUP 1 (p = 0.0153), although the preoperative language status did not differ between groups (p = 0.7576). Additionally, there was a trend towards fewer unexpected tumor residuals, shorter surgery duration, less peri- or postoperative complications, shorter inpatient stay, and higher postoperative Karnofsky performance status scale (KPS) for the patients in GROUP 2. The present study provides a first hint that the clinical course of patients suffering from brain tumors might be improved by preoperative rTMS language mapping. However, a significant difference between both groups was only found for craniotomy extents and postoperative deficits, but not for other clinical parameters, which only showed a trend toward better results in GROUP 2. Therefore, multicenter trials with higher sample sizes are needed to further investigate the distinct impact of rTMS

  19. Cost effectiveness analysis comparing repetitive transcranial magnetic stimulation to antidepressant medications after a first treatment failure for major depressive disorder in newly diagnosed patients - A lifetime analysis.

    Directory of Open Access Journals (Sweden)

    Jeffrey Voigt

    Full Text Available Repetitive Transcranial Magnetic Stimulation (rTMS commonly is used for the treatment of Major Depressive Disorder (MDD after patients have failed to benefit from trials of multiple antidepressant medications. No analysis to date has examined the cost-effectiveness of rTMS used earlier in the course of treatment and over a patients' lifetime.We used lifetime Markov simulation modeling to compare the direct costs and quality adjusted life years (QALYs of rTMS and medication therapy in patients with newly diagnosed MDD (ages 20-59 who had failed to benefit from one pharmacotherapy trial. Patients' life expectancies, rates of response and remission, and quality of life outcomes were derived from the literature, and treatment costs were based upon published Medicare reimbursement data. Baseline costs, aggregate per year quality of life assessments (QALYs, Monte Carlo simulation, tornado analysis, assessment of dominance, and one way sensitivity analysis were also performed. The discount rate applied was 3%.Lifetime direct treatment costs, and QALYs identified rTMS as the dominant therapy compared to antidepressant medications (i.e., lower costs with better outcomes in all age ranges, with costs/improved QALYs ranging from $2,952/0.32 (older patients to $11,140/0.43 (younger patients. One-way sensitivity analysis demonstrated that the model was most sensitive to the input variables of cost per rTMS session, monthly prescription drug cost, and the number of rTMS sessions per year.rTMS was identified as the dominant therapy compared to antidepressant medication trials over the life of the patient across the lifespan of adults with MDD, given current costs of treatment. These models support the use of rTMS after a single failed antidepressant medication trial versus further attempts at medication treatment in adults with MDD.

  20. Current evidence on transcranial magnetic stimulation and its potential usefulness in post-stroke neurorehabilitation: Opening new doors to the treatment of cerebrovascular disease.

    Science.gov (United States)

    León Ruiz, M; Rodríguez Sarasa, M L; Sanjuán Rodríguez, L; Benito-León, J; García-Albea Ristol, E; Arce Arce, S

    2016-05-06

    Repetitive transcranial magnetic stimulation (rTMS) is a therapeutic reality in post-stroke rehabilitation. It has a neuroprotective effect on the modulation of neuroplasticity, improving the brain's capacity to retrain neural circuits and promoting restoration and acquisition of new compensatory skills. We conducted a literature search on PubMed and also gathered the latest books, clinical practice guidelines, and recommendations published by the most prominent scientific societies concerning the therapeutic use of rTMS in the rehabilitation of stroke patients. The criteria of the International Federation of Clinical Neurophysiology (2014) were followed regarding the inclusion of all evidence and recommendations. Identifying stroke patients who are eligible for rTMS is essential to accelerate their recovery. rTMS has proven to be safe and effective for treating stroke complications. Functional brain activity can be optimised by applying excitatory or inhibitory electromagnetic pulses to the hemisphere ipsilateral or contralateral to the lesion, respectively, as well as at the level of the transcallosal pathway to regulate interhemispheric communication. Different studies of rTMS in these patients have resulted in improvements in motor disorders, aphasia, dysarthria, oropharyngeal dysphagia, depression, and perceptual-cognitive deficits. However, further well-designed randomized controlled clinical trials with larger sample size are needed to recommend with a higher level of evidence, proper implementation of rTMS use in stroke subjects on a widespread basis. Copyright © 2016 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Left prefrontal repetitive transcranial magnetic stimulation in schizophrenia.

    Science.gov (United States)

    Holi, Matti M; Eronen, Markku; Toivonen, Kari; Toivonen, Päivi; Marttunen, Mauri; Naukkarinen, Hannu

    2004-01-01

    In a double-blind, controlled study, we examined the therapeutic effects of high-frequency left prefrontal repetitive transcranial magnetic stimulation (rTMS) on schizophrenia symptoms. A total of 22 chronic hospitalized schizophrenia patients were randomly assigned to 2 weeks (10 sessions) of real or sham rTMS. rTMS was given with the following parameters: 20 trains of 5-second 10-Hz stimulation at 100 percent motor threshold, 30 seconds apart. Effects on positive and negative symptoms, self-reported symptoms, rough neuropsychological functioning, and hormones were assessed. Although there was a significant improvement in both groups in most of the symptom measures, no real differences were found between the groups. A decrease of more than 20 percent in the total PANSS score was found in 7 control subjects but only 1 subject from the real rTMS group. There was no change in hormone levels or neuropsychological functioning, measured by the MMSE, in either group. Left prefrontal rTMS (with the used parameters) seems to produce a significant nonspecific effect of the treatment procedure but no therapeutic effect in the most chronic and severely ill schizophrenia patients.

  2. Repetitive transcranial magnetic stimulation as a neuropsychiatric tool: present status and future potential.

    Science.gov (United States)

    Post, R M; Kimbrell, T A; McCann, U D; Dunn, R T; Osuch, E A; Speer, A M; Weiss, S R

    1999-03-01

    Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising therapeutic intervention in the treatment of affective disorders. The differences in the type of electrical stimulation required for therapeutic efficacy by rTMS and electroconvulsive therapy (ECT) are discussed. In contrast to ECT, rTMS would not appear to require the generation of a major motor seizure to achieve therapeutic efficacy. Accordingly, it carries the potentially important clinical advantages of not requiring anesthesia and of avoiding side effects such as transient memory loss. Preclinical studies on long-term potentiation (LTP) and long-term depression (LTD) in hippocampal and amygdala slices, as well as clinical data from neuroimaging studies, have provided encouraging clues for potential frequency-dependent effects of rTMS. Preliminary evidence from position emission tomography (PET) scans suggests that higher frequency (20 Hz) stimulation may increase brain glucose metabolism in a transsynaptic fashion, whereas lower frequency (1 Hz) stimulation may decrease it. Therefore, the ability of rTMS to control the frequency as well as the location of stimulation, in addition to its other advantages, has opened up new possibilities for clinical explorations and treatments of neuropsychiatric conditions.

  3. Facilitating effects of deep brain stimulation on feedback learning in Parkinson's disease.

    Science.gov (United States)

    Meissner, Sarah Nadine; Südmeyer, Martin; Keitel, Ariane; Pollok, Bettina; Bellebaum, Christian

    2016-10-15

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) provides an effective treatment for Parkinson's disease (PD) motor symptoms. However, findings of effects on cognitive function such as feedback learning remain controversial and rare. The aim of the present study was to gain a better understanding of cognitive alterations associated with STN-DBS. Therefore, we investigated effects of STN-DBS on active and observational feedback learning in PD. 18 PD patients with STN-DBS and 18 matched healthy controls completed active and observational feedback learning tasks. Patients were investigated ON and OFF STN-DBS. Tasks consisted of learning (with feedback) and test phases (without feedback). STN-DBS improved active learning during feedback trials and PD patients ON (but not OFF) STN-DBS showed comparable performance patterns as healthy controls. No STN-DBS effect was found when assessing performance during active test trials without feedback. In this case, however, STN-DBS effects were found to depend on symptom severity. While more impaired patients benefited from STN-DBS, stimulation had no facilitating effect on patients with less severe symptoms. Along similar lines, the severity of motor symptoms tended to be significantly correlated with differences in active test performance due to STN-DBS. For observational feedback learning, there was a tendency for a positive STN-DBS effect with patients reaching the performance level of healthy controls only ON STN-DBS. The present data suggest that STN-DBS facilitates active feedback learning in PD patients. Furthermore, they provide first evidence that STN-DBS might not only affect learning from own but also from observed actions and outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effective treatment of narcolepsy-like symptoms with high-frequency repetitive transcranial magnetic stimulation: A case report.

    Science.gov (United States)

    Lai, Jian-Bo; Han, Mao-Mao; Xu, Yi; Hu, Shao-Hua

    2017-11-01

    Narcolepsy is a rare sleep disorder with disrupted sleep-architecture. Clinical management of narcolepsy lies dominantly on symptom-driven pharmacotherapy. The treatment role of repetitive transcranial magnetic stimulation (rTMS) for narcolepsy remains unexplored. In this paper, we present a case of a 14-year-old young girl with excessive daytime sleepiness (EDS), cataplexy and hypnagogic hallucinations. After excluding other possible medical conditions, this patient was primarily diagnosed with narcolepsy. The patient received 25 sessions of high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC). The symptoms of EDS and cataplexy significantly improved after rTMS treatment. Meanwhile, her score in the Epworth sleep scale (ESS) also remarkably decreased. This case indicates that rTMS may be selected as a safe and effective alternative strategy for treating narcolepsy-like symptoms. Well-designed researches are warranted in future investigations on this topic.

  5. Repetitive transcranial magnetic stimulation is effective following repeated courses in the treatment of major depressive disorder--a case report.

    Science.gov (United States)

    Dannon, Pinhas N; Grunhaus, Leon

    2003-06-01

    Repetitive transcranial magnetic stimulation (rTMS) is a relatively new treatment modality for psychiatric patients. rTMS was demonstrated to be effective in the treatment of depression. However, longitudinal outcome studies have not yet been published. Relapse rates are higher in depressed patients and most of them do not respond to the same treatment with similar success. In this report we present a patient, who experienced relapse with the various conventional drug treatments, but responded well to rTMS at three different points in time. Copyright 2003 John Wiley & Sons, Ltd.

  6. Benefits of Repetitive Transcranial Magnetic Stimulation (rTMS for Spastic Subjects: Clinical, Functional, and Biomechanical Parameters for Lower Limb and Walking in Five Hemiparetic Patients

    Directory of Open Access Journals (Sweden)

    Luc Terreaux

    2014-01-01

    Full Text Available Introduction. Spasticity is a disabling symptom resulting from reorganization of spinal reflexes no longer inhibited by supraspinal control. Several studies have demonstrated interest in repetitive transcranial magnetic stimulation in spastic patients. We conducted a prospective, randomized, double-blind crossover study on five spastic hemiparetic patients to determine whether this type of stimulation of the premotor cortex can provide a clinical benefit. Material and Methods. Two stimulation frequencies (1 Hz and 10 Hz were tested versus placebo. Patients were assessed clinically, by quantitative analysis of walking and measurement of neuromechanical parameters (H and T reflexes, musculoarticular stiffness of the ankle. Results. No change was observed after placebo and 10 Hz protocols. Clinical parameters were not significantly modified after 1 Hz stimulation, apart from a tendency towards improved recruitment of antagonist muscles on the Fügl-Meyer scale. Only cadence and recurvatum were significantly modified on quantitative analysis of walking. Neuromechanical parameters were modified with significant decreases in Hmax⁡ /Mmax⁡ and T/Mmax⁡ ratios and stiffness indices 9 days or 31 days after initiation of TMS. Conclusion. This preliminary study supports the efficacy of low-frequency TMS to reduce reflex excitability and stiffness of ankle plantar flexors, while clinical signs of spasticity were not significantly modified.

  7. Benefits of repetitive transcranial magnetic stimulation (rTMS) for spastic subjects: clinical, functional, and biomechanical parameters for lower limb and walking in five hemiparetic patients.

    Science.gov (United States)

    Terreaux, Luc; Gross, Raphael; Leboeuf, Fabien; Desal, Hubert; Hamel, Olivier; Nguyen, Jean Paul; Pérot, Chantal; Buffenoir, Kévin

    2014-01-01

    Introduction. Spasticity is a disabling symptom resulting from reorganization of spinal reflexes no longer inhibited by supraspinal control. Several studies have demonstrated interest in repetitive transcranial magnetic stimulation in spastic patients. We conducted a prospective, randomized, double-blind crossover study on five spastic hemiparetic patients to determine whether this type of stimulation of the premotor cortex can provide a clinical benefit. Material and Methods. Two stimulation frequencies (1 Hz and 10 Hz) were tested versus placebo. Patients were assessed clinically, by quantitative analysis of walking and measurement of neuromechanical parameters (H and T reflexes, musculoarticular stiffness of the ankle). Results. No change was observed after placebo and 10 Hz protocols. Clinical parameters were not significantly modified after 1 Hz stimulation, apart from a tendency towards improved recruitment of antagonist muscles on the Fügl-Meyer scale. Only cadence and recurvatum were significantly modified on quantitative analysis of walking. Neuromechanical parameters were modified with significant decreases in H max⁡ /M max⁡ and T/M max⁡ ratios and stiffness indices 9 days or 31 days after initiation of TMS. Conclusion. This preliminary study supports the efficacy of low-frequency TMS to reduce reflex excitability and stiffness of ankle plantar flexors, while clinical signs of spasticity were not significantly modified.

  8. First tests os a Micro-TCA-Based downconverter electronic for 5GHz higher order modes in third harmonic accelerating cavities at the XFEL

    CERN Document Server

    Wamsat, T

    2014-01-01

    converter RTMs (5GHz and 9GHz) and a third RTM with two phase locked loop synthesizers on board for LO generation. Presently the 5GHz and the PLL RTMs are under construction. The first measurements with these cards will be presented.

  9. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial.

    Science.gov (United States)

    Blumberger, Daniel M; Vila-Rodriguez, Fidel; Thorpe, Kevin E; Feffer, Kfir; Noda, Yoshihiro; Giacobbe, Peter; Knyahnytska, Yuliya; Kennedy, Sidney H; Lam, Raymond W; Daskalakis, Zafiris J; Downar, Jonathan

    2018-04-28

    Treatment-resistant major depressive disorder is common; repetitive transcranial magnetic stimulation (rTMS) by use of high-frequency (10 Hz) left-side dorsolateral prefrontal cortex stimulation is an evidence-based treatment for this disorder. Intermittent theta burst stimulation (iTBS) is a newer form of rTMS that can be delivered in 3 min, versus 37·5 min for a standard 10 Hz treatment session. We aimed to establish the clinical effectiveness, safety, and tolerability of iTBS compared with standard 10 Hz rTMS in adults with treatment-resistant depression. In this randomised, multicentre, non-inferiority clinical trial, we recruited patients who were referred to specialty neurostimulation centres based at three Canadian university hospitals (Centre for Addiction and Mental Health and Toronto Western Hospital, Toronto, ON, and University of British Columbia Hospital, Vancouver, BC). Participants were aged 18-65 years, were diagnosed with a current treatment-resistant major depressive episode or could not tolerate at least two antidepressants in the current episode, were receiving stable antidepressant medication doses for at least 4 weeks before baseline, and had an HRSD-17 score of at least 18. Participants were randomly allocated (1:1) to treatment groups (10 Hz rTMS or iTBS) by use of a random permuted block method, with stratification by site and number of adequate trials in which the antidepressants were unsuccessful. Treatment was delivered open-label but investigators and outcome assessors were masked to treatment groups. Participants were treated with 10 Hz rTMS or iTBS to the left dorsolateral prefrontal cortex, administered on 5 days a week for 4-6 weeks. The primary outcome measure was change in 17-item Hamilton Rating Scale for Depression (HRSD-17) score, with a non-inferiority margin of 2·25 points. For the primary outcome measure, we did a per-protocol analysis of all participants who were randomly allocated to groups and who attained the primary

  10. Deep brain stimulation for the treatment of Alzheimer disease and dementias.

    Science.gov (United States)

    Laxton, Adrian W; Lozano, Andres M

    2013-01-01

    To review the use of deep brain stimulation (DBS) for treatment of dementia. A PubMed literature search was conducted to identify all studies that have investigated the use of DBS for treatment of dementia. Three studies examined the use of DBS for dementia. One study involved fornix DBS for Alzheimer disease (AD), and two studies involved DBS of the nucleus basalis of Meynert, one to treat AD and one to treat Parkinson disease dementia. Evidence for the use of DBS to treat dementia is preliminary and limited. Fornix and nucleus basalis of Meynert DBS can influence activity in the pathologic neural circuits that underlie AD and Parkinson disease dementia. Further investigation into the potential clinical effects of DBS for dementia is warranted. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Cyborg psychiatry to ensure agency and autonomy in mental disorders. A proposal for neuromodulation therapeutics.

    Science.gov (United States)

    Micoulaud-Franchi, Jean-Arthur; Fond, Guillaume; Dumas, Guillaume

    2013-01-01

    Neuromodulation therapeutics-as repeated Transcranial Magnetic Stimulation (rTMS) and neurofeedback-are valuable tools for psychiatry. Nevertheless, they currently face some limitations: rTMS has confounding effects on neural activation patterns, and neurofeedback fails to change neural dynamics in some cases. Here we propose how coupling rTMS and neurofeedback can tackle both issues by adapting neural activations during rTMS and actively guiding individuals during neurofeedback. An algorithmic challenge then consists in designing the proper recording, processing, feedback, and control of unwanted effects. But this new neuromodulation technique also poses an ethical challenge: ensuring treatment occurs within a biopsychosocial model of medicine, while considering both the interaction between the patients and the psychiatrist, and the maintenance of individuals' autonomy. Our solution is the concept of Cyborg psychiatry, which embodies the technique and includes a self-engaged interaction between patients and the neuromodulation device.

  12. Cyborg psychiatry to ensure agency and autonomy in mental disorders. A proposal for neuromodulation therapeutics.

    Directory of Open Access Journals (Sweden)

    Jean-Arthur eMicoulaud Franchi

    2013-09-01

    Full Text Available Neuromodulation therapeutics—as repeated Transcranial Magnetic Stimulation (rTMS and neurofeedback—are valuable tools for psychiatry. Nevertheless, they currently face some limitations: rTMS has confounding effects on neural activation patterns, and neurofeedback fails to change neural dynamics in some cases. Here we propose how coupling rTMS and neurofeedback can tackle both issues by adapting neural activations during rTMS and actively guiding individuals during neurofeedback. An algorithmic challenge then consists in designing the proper recording, processing, feedback, and control of unwanted effects. But this new neuromodulation technique also poses an ethical challenge: ensuring treatment occurs within a biopsychosocial model of medicine, while considering both the interaction between the patients and the psychiatrist, and the maintenance of individuals’ autonomy. Our solution is the concept of Cyborg psychiatry, which embodies the technique and includes a self-engaged interaction between patients and the neuromodulation device.

  13. Target Selection Recommendations Based on Impact of Deep Brain Stimulation Surgeries on Nonmotor Symptoms of Parkinson′s Disease

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Wang

    2015-01-01

    Full Text Available Objective: This review examines the evidence that deep brain stimulation (DBS has extensive impact on nonmotor symptoms (NMSs of patients with Parkinson′s disease (PD. Data Sources: We retrieved information from the PubMed database up to September, 2015, using various search terms and their combinations including PD, NMSs, DBS, globus pallidus internus (GPi, subthalamic nucleus (STN, and ventral intermediate thalamic nucleus. Study Selection: We included data from peer-reviewed journals on impacts of DBS on neuropsychological profiles, sensory function, autonomic symptoms, weight changes, and sleep disturbances. For psychological symptoms and cognitive impairment, we tried to use more reliable proofs: Random, control, multicenter, large sample sizes, and long period follow-up clinical studies. We categorized the NMSs into four groups: those that would improve definitively following DBS; those that are not significantly affected by DBS; those that remain controversial on their surgical benefit; and those that can be worsened by DBS. Results: In general, it seems to be an overall beneficial effect of DBS on NMSs, such as sensory, sleep, gastrointestinal, sweating, cardiovascular, odor, urological symptoms, and sexual dysfunction, GPi-DBS may produce similar results; Both STN and Gpi-DBS are safe with regard to cognition and psychology over long-term follow-up, though verbal fluency decline is related to DBS; The impact of DBS on behavioral addictions and dysphagia is still uncertain. Conclusions: As the motor effects of STN-DBS and GPi-DBS are similar, NMSs may determine the target choice in surgery of future patients.

  14. Can repetitive transcranial magnetic stimulation increase muscle strength in functional neurological paresis? A proof-of-principle study.

    Science.gov (United States)

    Broersma, M; Koops, E A; Vroomen, P C; Van der Hoeven, J H; Aleman, A; Leenders, K L; Maurits, N M; van Beilen, M

    2015-05-01

    Therapeutic options are limited in functional neurological paresis disorder. Earlier intervention studies did not control for a placebo effect, hampering assessment of effectivity. A proof-of-principle investigation was conducted into the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS), using a single-blind two-period placebo-controlled cross-over design. Eleven patients received active 15 Hz rTMS over the contralateral motor cortex (hand area), in two periods of 5 days, for 30 min once a day at 80% of resting motor threshold, with a train length of 2 s and an intertrain interval of 4 s. Eight of these eleven patients were also included in the placebo treatment condition. Primary outcome measure was change in muscle strength as measured by dynamometry after treatment. Secondary outcome measure was the subjective change in muscle strength after treatment. In patients who received both treatments, active rTMS induced a significantly larger median increase in objectively measured muscle strength (24%) compared to placebo rTMS (6%; P difference due to treatment, i.e. patients did not perceive these objectively measured motor improvements (P = 0.40). Our findings suggest that rTMS by itself can potentially improve muscle weakness in functional neurological paresis disorder. Whereas patients' muscle strength increased as measured with dynamometry, patients did not report increased functioning of the affected hand, subjectively. The results may indicate that decreased muscle strength is not the core symptom and that rTMS should be added to behavioral approaches in functional neurological paresis. © 2015 EAN.

  15. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation

    Science.gov (United States)

    Chervyakov, Alexander V.; Chernyavsky, Andrey Yu.; Sinitsyn, Dmitry O.; Piradov, Michael A.

    2015-01-01

    Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson’s disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols. PMID:26136672

  16. Repetitive transcranial magnetic stimulation for treatment of major depressive disorder with comorbid generalized anxiety disorder.

    Science.gov (United States)

    White, Daniela; Tavakoli, Sason

    2015-08-01

    Repetitive transcranial magnetic stimulation (rTMS) has shown promising results in treating individuals with behavioral disorders such as major depressive disorder (MDD), posttraumatic stress disorder, obsessive-compulsive disorder, and social anxiety disorder. A number of applications of rTMS to different regions of the left and right prefrontal cortex have been used to treat these disorders, but no study of treatment for MDD with generalized anxiety disorder (GAD) has been conducted with application of rTMS to both the left and right prefrontal cortex. We hypothesized that applying low-frequency rTMS to the right dorsolateral prefrontal cortex (DLPFC) before applying it to the left DLPFC for the treatment of depression would be anxiolytic in patients with MDD with GAD. Thirteen adult patients with comorbid MDD and GAD received treatment with rTMS in an outpatient setting. The number of treatments ranged from 24 to 36 over 5 to 6 weeks. Response was defined as a ≥ 50% reduction in symptoms from baseline, and remission was defined as a score of anxiety symptoms on the 7-item Generalized Anxiety Disorder (GAD-7) scale and depressive symptoms on the 21-item Hamilton Rating Scale for Depression (HAM-D-21). At the end of the treatment period, for the GAD-7 scale, 11 out of 13 (84.6%) patients' anxiety symptoms were in remission, achieving a score of depressive symptoms. In this small pilot study of 13 patients with comorbid MDD and GAD, significant improvement in anxiety symptoms along with depressive symptoms was achieved in a majority of patients after bilateral rTMS application.

  17. Square biphasic pulse deep brain stimulation for essential tremor: The BiP tremor study.

    Science.gov (United States)

    De Jesus, Sol; Almeida, Leonardo; Shahgholi, Leili; Martinez-Ramirez, Daniel; Roper, Jaimie; Hass, Chris J; Akbar, Umer; Wagle Shukla, Aparna; Raike, Robert S; Okun, Michael S

    2018-01-01

    Conventional deep brain stimulation (DBS) utilizes regular, high frequency pulses to treat medication-refractory symptoms in essential tremor (ET). Modifications of DBS pulse shape to achieve improved effectiveness is a promising approach. The current study assessed the safety, tolerability and effectiveness of square biphasic pulse shaping as an alternative to conventional ET DBS. This pilot study compared biphasic pulses (BiP) versus conventional DBS pulses (ClinDBS). Eleven ET subjects with clinically optimized ventralis intermedius nucleus DBS were enrolled. Objective measures were obtained over 3 h while ON BiP stimulation. There was observed benefit in the Fahn-Tolosa Tremor Rating Scale (TRS) for BiP conditions when compared to the DBS off condition and to ClinDBS setting. Total TRS scores during the DBS OFF condition (28.5 IQR = 24.5-35.25) were significantly higher than the other time points. Following active DBS, TRS improved to (20 IQR = 13.8-24.3) at ClinDBS setting and to (16.5 IQR = 12-20.75) at the 3 h period ON BiP stimulation (p = 0.001). Accelerometer recordings revealed improvement in tremor at rest (χ 2  = 16.1, p = 0.006), posture (χ 2  = 15.9, p = 0.007) and with action (χ 2  = 32.1, p=<0.001) when comparing median total scores at ClinDBS and OFF DBS conditions to 3 h ON BiP stimulation. There were no adverse effects and gait was not impacted. BiP was safe, tolerable and effective on the tremor symptoms when tested up to 3 h. This study demonstrated the feasibility of applying a novel DBS waveform in the clinic setting. Larger prospective studies with longer clinical follow-up will be required. Copyright © 2017. Published by Elsevier Ltd.

  18. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    Science.gov (United States)

    van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P; Vanderschuren, Louk J M J; Westenberg, Herman G M

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.

  19. The effects of unilateral versus bilateral subthalamic nucleus deep brain stimulation on prosaccades and antisaccades in Parkinson's disease.

    Science.gov (United States)

    Goelz, Lisa C; David, Fabian J; Sweeney, John A; Vaillancourt, David E; Poizner, Howard; Metman, Leonard Verhagen; Corcos, Daniel M

    2017-02-01

    Unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson's disease improves skeletomotor function assessed clinically, and bilateral STN DBS improves motor function to a significantly greater extent. It is unknown whether unilateral STN DBS improves oculomotor function and whether bilateral STN DBS improves it to a greater extent. Further, it has also been shown that bilateral, but not unilateral, STN DBS is associated with some impaired cognitive-motor functions. The current study compared the effect of unilateral and bilateral STN DBS on sensorimotor and cognitive aspects of oculomotor control. Patients performed prosaccade and antisaccade tasks during no stimulation, unilateral stimulation, and bilateral stimulation. There were three sets of findings. First, for the prosaccade task, unilateral STN DBS had no effect on prosaccade latency and it reduced prosaccade gain; bilateral STN DBS reduced prosaccade latency and increased prosaccade gain. Second, for the antisaccade task, neither unilateral nor bilateral stimulation had an effect on antisaccade latency, unilateral STN DBS increased antisaccade gain, and bilateral STN DBS increased antisaccade gain to a greater extent. Third, bilateral STN DBS induced an increase in prosaccade errors in the antisaccade task. These findings suggest that while bilateral STN DBS benefits spatiotemporal aspects of oculomotor control, it may not be as beneficial for more complex cognitive aspects of oculomotor control. Our findings are discussed considering the strategic role the STN plays in modulating information in the basal ganglia oculomotor circuit.

  20. Deep Brain Stimulation of Caudal Zona Incerta and Subthalamic Nucleus in Patients with Parkinson's Disease: Effects on Voice Intensity

    Directory of Open Access Journals (Sweden)

    Sofie Lundgren

    2011-01-01

    Full Text Available Deep brain stimulation of the subthalamic nucleus (STN-DBS in patients with Parkinson's disease (PD affects speech inconsistently. Recently, stimulation of the caudal zona incerta (cZi-DBS has shown superior motor outcomes for PD patients, but effects on speech have not been systematically investigated. The aim of this study was to compare the effects of cZi-DBS and STN-DBS on voice intensity in PD patients. Mean intensity during reading and intensity decay during rapid syllable repetition were measured for STN-DBS and cZi-DBS patients (eight patients per group, before- and 12 months after-surgery on- and off-stimulation. For mean intensity, there were small significant differences on- versus off-stimulation in each group: 74.2 (2.0 dB contra 72.1 (2.2 dB (=.002 for STN-DBS, and 71.6 (4.1 dB contra 72.8 (3.4 dB (=.03 for cZi-DBS, with significant interaction (<.001. Intensity decay showed no significant changes. The subtle differences found for mean intensity suggest that STN-DBS and cZi-DBS may influence voice intensity differently.

  1. Subthalamic nucleus stimulation impairs emotional conflict adaptation in Parkinson's disease.

    Science.gov (United States)

    Irmen, Friederike; Huebl, Julius; Schroll, Henning; Brücke, Christof; Schneider, Gerd-Helge; Hamker, Fred H; Kühn, Andrea A

    2017-10-01

    The subthalamic nucleus (STN) occupies a strategic position in the motor network, slowing down responses in situations with conflicting perceptual input. Recent evidence suggests a role of the STN in emotion processing through strong connections with emotion recognition structures. As deep brain stimulation (DBS) of the STN in patients with Parkinson's disease (PD) inhibits monitoring of perceptual and value-based conflict, STN DBS may also interfere with emotional conflict processing. To assess a possible interference of STN DBS with emotional conflict processing, we used an emotional Stroop paradigm. Subjects categorized face stimuli according to their emotional expression while ignoring emotionally congruent or incongruent superimposed word labels. Eleven PD patients ON and OFF STN DBS and eleven age-matched healthy subjects conducted the task. We found conflict-induced response slowing in healthy controls and PD patients OFF DBS, but not ON DBS, suggesting STN DBS to decrease adaptation to within-trial conflict. OFF DBS, patients showed more conflict-induced slowing for negative conflict stimuli, which was diminished by STN DBS. Computational modelling of STN influence on conflict adaptation disclosed DBS to interfere via increased baseline activity. © The Author (2017). Published by Oxford University Press.

  2. Transcranial Magnetic Stimulation to Address Mild Cognitive Impairment in the Elderly: A Randomized Controlled Study

    Science.gov (United States)

    Drumond Marra, Hellen Livia; Myczkowski, Martin Luiz; Maia Memória, Cláudia; Arnaut, Débora; Leite Ribeiro, Philip; Sardinha Mansur, Carlos Gustavo; Lancelote Alberto, Rodrigo; Boura Bellini, Bianca; Alves Fernandes da Silva, Adriano; Ciampi de Andrade, Daniel; Teixeira, Manoel Jacobsen; Forlenza, Orestes Vicente; Marcolin, Marco Antonio

    2015-01-01

    Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique with potential to improve memory. Mild cognitive impairment (MCI), which still lacks a specific therapy, is a clinical syndrome associated with increased risk of dementia. This study aims to assess the effects of high-frequency repetitive TMS (HF rTMS) on everyday memory of the elderly with MCI. We conducted a double-blinded randomized sham-controlled trial using rTMS over the left dorsolateral prefrontal cortex (DLPFC). Thirty-four elderly outpatients meeting Petersen's MCI criteria were randomly assigned to receive 10 sessions of either active TMS or sham, 10 Hz rTMS at 110% of motor threshold, 2,000 pulses per session. Neuropsychological assessment at baseline, after the last session (10th) and at one-month follow-up, was applied. ANOVA on the primary efficacy measure, the Rivermead Behavioural Memory Test, revealed a significant group-by-time interaction (p = 0.05), favoring the active group. The improvement was kept after one month. Other neuropsychological tests were heterogeneous. rTMS at 10 Hz enhanced everyday memory in elderly with MCI after 10 sessions. These findings suggest that rTMS might be effective as a therapy for MCI and probably a tool to delay deterioration. PMID:26160997

  3. Primary motor and premotor cortex in implicit sequence learning--evidence for competition between implicit and explicit human motor memory systems.

    Science.gov (United States)

    Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W

    2012-09-01

    Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. STOP-EVENT-RELATED POTENTIALS FROM INTRACRANIAL ELECTRODES REVEAL A KEY ROLE OF PREMOTOR AND MOTOR CORTICES IN STOPPING ONGOING MOVEMENTS

    Directory of Open Access Journals (Sweden)

    Maurizio eMattia

    2012-06-01

    Full Text Available In humans, the ability to withhold manual motor responses seems to rely on a right-lateralized frontal–basal ganglia–thalamic network, including the pre-supplementary motor area and the inferior frontal gyrus. These areas should drive subthalamic nuclei to implement movement inhibition via the hyperdirect pathway. The output of this network is expected to influence those cortical areas underlying limb movement preparation and initiation, i.e. premotor (PMA and primary motor (M1 cortices. Electroencephalographic (EEG studies have shown an enhancement of the N200/P300 complex in the event-related potentials (ERPs when a planned reaching movement is successfully stopped after the presentation of an infrequent stop-signal. PMA and M1 have been suggested as possible neural sources of this ERP complex but, due to the limited spatial resolution of scalp EEG, it is not yet clear which cortical areas contribute to its generation. To elucidate the role of motor cortices, we recorded epicortical ERPs from the lateral surface of the fronto-temporal lobes of five pharmacoresistant epileptic patients performing a reaching version of the countermanding task while undergoing presurgical monitoring. We consistently found a stereotyped ERP complex on a single-trial level when a movement was successfully cancelled. These ERPs were selectively expressed in M1, PMA and Brodmann's area (BA 9 and their onsets preceded the end of the stop process, suggesting a causal involvement in this executive function. Such ERPs also occurred in unsuccessful-stop trials, that is, when subjects moved despite the occurrence of a stop-signal, mostly when they had long reaction times. These findings support the hypothesis that motor cortices are the final target of the inhibitory command elaborated by the frontal–basal ganglia–thalamic network.

  5. Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Florian eMüller-Dahlhaus

    2013-12-01

    Full Text Available Despite numerous clinical studies, which have investigated the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS in various brain diseases, our knowledge of the cellular and molecular mechanisms underlying rTMS-based therapies remains limited. Thus, a deeper understanding of rTMS-induced neural plasticity is required to optimize current treatment protocols. Studies in small animals or appropriate in vitro preparations (including models of brain diseases provide highly useful experimental approaches in this context. State-of-the-art electrophysiological and live-cell imaging techniques that are well established in basic neuroscience can help answering some of the major questions in the field, such as (i which neural structures are activated during TMS, (ii how does rTMS induce Hebbian plasticity, and (iii are other forms of plasticity (e.g., metaplasticity, structural plasticity induced by rTMS? We argue that data gained from these studies will support the development of more effective and specific applications of rTMS in clinical practice.

  6. TMS suppression of right pars triangularis, but not pars opercularis, improves naming in aphasia

    Science.gov (United States)

    Naeser, Margaret A.; Martin, Paula I.; Theoret, Hugo; Kobayashi, Masahito; Fregni, Felipe; Nicholas, Marjorie; Tormos, Jose M.; Steven, Megan S.; Baker, Errol H.; Pascual-Leone, Alvaro

    2011-01-01

    This study sought to discover if an optimum 1 cm2 area in the non-damaged right hemisphere (RH) was present, which could temporarily improve naming in chronic, nonfluent aphasia patients when suppressed with repetitive transcranial magnetic stimulation (rTMS). Ten minutes of slow, 1 Hz rTMS was applied to suppress different RH ROIs in eight aphasia cases. Picture naming and response time (RT) were examined before, and immediately after rTMS. In aphasia patients, suppression of right pars triangularis (PTr) led to significant increase in pictures named, and significant decrease in RT. Suppression of right pars opercularis (POp), however, led to significant increase in RT, but no change in number of pictures named. Eight normals named all pictures correctly; similar to aphasia patients, RT significantly decreased following rTMS to suppress right PTr, versus right POp. Differential effects following suppression of right PTr versus right POp suggest different functional roles for these regions. PMID:21864891

  7. Effective treatment of narcolepsy-like symptoms with high-frequency repetitive transcranial magnetic stimulation

    Science.gov (United States)

    Lai, Jian-bo; Han, Mao-mao; Xu, Yi; Hu, Shao-hua

    2017-01-01

    Abstract Rationale: Narcolepsy is a rare sleep disorder with disrupted sleep-architecture. Clinical management of narcolepsy lies dominantly on symptom-driven pharmacotherapy. The treatment role of repetitive transcranial magnetic stimulation (rTMS) for narcolepsy remains unexplored. Patient concerns: In this paper, we present a case of a 14-year-old young girl with excessive daytime sleepiness (EDS), cataplexy and hypnagogic hallucinations. Diagnoses: After excluding other possible medical conditions, this patient was primarily diagnosed with narcolepsy. Interventions: The patient received 25 sessions of high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC). Outcomes: The symptoms of EDS and cataplexy significantly improved after rTMS treatment. Meanwhile, her score in the Epworth sleep scale (ESS) also remarkably decreased. Lessons: This case indicates that rTMS may be selected as a safe and effective alternative strategy for treating narcolepsy-like symptoms. Well-designed researches are warranted in future investigations on this topic. PMID:29145290

  8. Deep Brain Stimulation of Caudal Zona Incerta and Subthalamic Nucleus in Patients with Parkinson's Disease: Effects on Diadochokinetic Rate

    Directory of Open Access Journals (Sweden)

    Fredrik Karlsson

    2011-01-01

    Full Text Available The hypokinetic dysarthria observed in Parkinson's disease (PD affects the range, speed, and accuracy of articulatory gestures in patients, reducing the perceived quality of speech acoustic output in continuous speech. Deep brain stimulation (DBS of the subthalamic nucleus (STN-DBS and of the caudal zona incerta (cZi-DBS are current surgical treatment options for PD. This study aimed at investigating the outcome of STN-DBS (7 patients and cZi-DBS (7 patients in two articulatory diadochokinesis tasks (AMR and SMR using measurements of articulation rate and quality of the plosive consonants (using the percent measurable VOT metric. The results indicate that patients receiving STN-DBS increased in articulation rate in the Stim-ON condition in the AMR task only, with no effect on production quality. Patients receiving cZi-DBS decreased in articulation rate in the Stim-ON condition and further showed a reduction in production quality. The data therefore suggest that cZi-DBS is more detrimental for extended articulatory movements than STN-DBS.

  9. Placebo response of non-pharmacological and pharmacological trials in major depression: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    André Russowsky Brunoni

    Full Text Available BACKGROUND: Although meta-analyses have shown that placebo responses are large in Major Depressive Disorder (MDD trials; the placebo response of devices such as repetitive transcranial magnetic stimulation (rTMS has not been systematically assessed. We proposed to assess placebo responses in two categories of MDD trials: pharmacological (antidepressant drugs and non-pharmacological (device- rTMS trials. METHODOLOGY/PRINCIPAL FINDINGS: We performed a systematic review and meta-analysis of the literature from April 2002 to April 2008, searching MEDLINE, Cochrane, Scielo and CRISP electronic databases and reference lists from retrieved studies and conference abstracts. We used the keywords placebo and depression and escitalopram for pharmacological studies; and transcranial magnetic stimulation and depression and sham for non-pharmacological studies. All randomized, double-blinded, placebo-controlled, parallel articles on major depressive disorder were included. Forty-one studies met our inclusion criteria - 29 in the rTMS arm and 12 in the escitalopram arm. We extracted the mean and standard values of depression scores in the placebo group of each study. Then, we calculated the pooled effect size for escitalopram and rTMS arm separately, using Cohen's d as the measure of effect size. We found that placebo response are large for both escitalopram (Cohen's d - random-effects model - 1.48; 95%C.I. 1.26 to 1.6 and rTMS studies (0.82; 95%C.I. 0.63 to 1. Exploratory analyses show that sham response is associated with refractoriness and with the use of rTMS as an add-on therapy, but not with age, gender and sham method utilized. CONCLUSIONS/SIGNIFICANCE: We confirmed that placebo response in MDD is large regardless of the intervention and is associated with depression refractoriness and treatment combination (add-on rTMS studies. The magnitude of the placebo response seems to be related with study population and study design rather than the intervention

  10. Transcranial magnetic stimulation for treating depression in elderly patients

    Directory of Open Access Journals (Sweden)

    Hizli Sayar G

    2013-04-01

    Full Text Available Gokben Hizli Sayar, Eylem Ozten, Oguz Tan, Nevzat Tarhan Uskudar University, Neuropsychiatry Istanbul Hospital, Department of Psychiatry, Istanbul, Turkey Purpose: The aim of the study reported here was to examine the safety and effectiveness of high-frequency repetitive transcranial magnetic stimulation (rTMS in elderly patients with depression. Patients and methods: Sixty-five depressed elderly patients received rTMS over their left prefrontal cortex for 6 days per week, from Monday to Saturday, for 3 weeks. The rTMS intensity was set at 100% of the motor threshold and 25 Hz stimulation with a duration of 2 seconds and was delivered 20 times at 30-second intervals. A full course comprised an average of 1000 magnetic pulses. Depression was rated using the Hamilton Depression Rating Scale (HAMD before and after treatment. Response was defined as a 50% reduction in HAMD score. Patients with HAMD scores < 8 were considered to be in remission. Results: The mean HAMD score for the study group decreased from 21.94 ± 5.12 before treatment to 11.28 ± 4.56 after rTMS (P < 0.001. Following the treatment period, 58.46% of the study group demonstrated significant mood improvement, as indexed by a reduction of more than 50% on the HAMD score. Nineteen of these 38 patients attained remission (HAMD score < 8, while 41.54% of all study patients achieved a partial response. None of the patients had a worsened HAMD score at the end of the treatment. Treatment was generally well tolerated and no serious adverse effects were reported. Conclusion: In this study, rTMS was found to be a safe, well-tolerated treatment, and a useful adjunctive treatment to medications in elderly treatment-resistant depressed patients. This study contributes to the existing evidence on the antidepressant effect of rTMS in the treatment of depression in patients over 60 years of age. Keywords: high-frequency repetitive TMS, rTMS, Hamilton Depression Rating Scale

  11. Effects of electroconvulsive therapy and repetitive transcranial magnetic stimulation on serum brain-derived neurotrophic factor levels in patients with depression

    Directory of Open Access Journals (Sweden)

    Laura eGedge

    2012-02-01

    Full Text Available Objective: Brain-derived neurotrophic factor (BDNF levels are decreased in individuals with depression and increase following antidepressant treatment. The objective of this study is to compare pre- and post-treatment serum BDNF levels in patients with drug-resistant major depressive disorder (MDD who received either electroconvulsive therapy (ECT or repetitive transcranial magnetic stimulation (rTMS. It is hypothesized that non-pharmacological treatments also increase serum BDNF levels.Methods: This was a prospective, single-blind study comparing pre- and post-treatment serum BDNF levels of twenty-nine patients with drug-resistant MDD who received ECT or rTMS treatment. Serum BDNF levels were measured one week prior to and one week after treatment using the sandwich ELISA technique. Depression severity was measured one week before and one week after treatment using the Hamilton Depression Rating Scale. Two-sided normal distribution paired t-test analysis was used to compare pre- and post-treatment BDNF concentration and illness severity. Bivariate correlations using Pearson's coefficient assessed the relationship between post-treatment BDNF levels and post-treatment depression severity.Results: There was no significant difference in serum BDNF levels before and after ECT, although concentrations tended to increase from a baseline mean of 9.95 ng/ml to 12.29 ng/ml after treatment (p= 0.137. Treatment with rTMS did not significantly alter BDNF concentrations (p= 0.282. Depression severity significantly decreased following both ECT (p= 0.003 and rTMS (p< 0.001. Post-treatment BDNF concentration was not significantly correlated with post-treatment depression severity in patients who received either ECT (r= -0.133, p= 0.697 or rTMS (r= 0.374, p= 0.126.Conclusion: This study suggests that ECT and rTMS may not exert their clinical effects by altering serum BDNF levels. Serum BDNF concentration may not be a biomarker of ECT or rTMS treatment response.

  12. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  13. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25±2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% ± 1.3% and 10.6% ± 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% ± 4.5% vs. 6.6% ± 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release

  14. Cognitive and Psychiatric Effects of STN versus GPi Deep Brain Stimulation in Parkinson's Disease: A Meta-Analysis of Randomized Controlled Trials.

    Directory of Open Access Journals (Sweden)

    Jia-Wei Wang

    Full Text Available Deep brain stimulation (DBS of either the subthalamic nucleus (STN or the globus pallidus interna (GPi can reduce motor symptoms in patients with Parkinson's disease (PD and improve their quality of life. However, the effects of STN DBS and GPi DBS on cognitive functions and their psychiatric effects remain controversial. The present meta-analysis was therefore performed to clarify these issues.We searched the PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials databases. Other sources, including internet-based clinical trial registries and grey literature sources, were also searched. After searching the literature, two investigators independently performed literature screens to assess the quality of the included trials and to extract the data. The outcomes included the effects of STN DBS and GPi DBS on multiple cognitive domains, depression, anxiety, and quality of life.Seven articles related to four randomized controlled trials that included 521 participants were incorporated into the present meta-analysis. Compared with GPi DBS, STN DBS was associated with declines in selected cognitive domains after surgery, including attention, working memory and processing speed, phonemic fluency, learning and memory, and global cognition. However, there were no significant differences in terms of quality of life or psychiatric effects, such as depression and anxiety, between the two groups.A selective decline in frontal-subcortical cognitive functions is observed after STN DBS in comparison with GPi DBS, which should not be ignored in the target selection for DBS treatment in PD patients. In addition, compared to GPi DBS, STN DBS does not affect depression, anxiety, and quality of life.

  15. Cognitive and Psychiatric Effects of STN versus GPi Deep Brain Stimulation in Parkinson's Disease: A Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Wang, Jia-Wei; Zhang, Yu-Qing; Zhang, Xiao-Hua; Wang, Yun-Peng; Li, Ji-Ping; Li, Yong-Jie

    2016-01-01

    Deep brain stimulation (DBS) of either the subthalamic nucleus (STN) or the globus pallidus interna (GPi) can reduce motor symptoms in patients with Parkinson's disease (PD) and improve their quality of life. However, the effects of STN DBS and GPi DBS on cognitive functions and their psychiatric effects remain controversial. The present meta-analysis was therefore performed to clarify these issues. We searched the PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials databases. Other sources, including internet-based clinical trial registries and grey literature sources, were also searched. After searching the literature, two investigators independently performed literature screens to assess the quality of the included trials and to extract the data. The outcomes included the effects of STN DBS and GPi DBS on multiple cognitive domains, depression, anxiety, and quality of life. Seven articles related to four randomized controlled trials that included 521 participants were incorporated into the present meta-analysis. Compared with GPi DBS, STN DBS was associated with declines in selected cognitive domains after surgery, including attention, working memory and processing speed, phonemic fluency, learning and memory, and global cognition. However, there were no significant differences in terms of quality of life or psychiatric effects, such as depression and anxiety, between the two groups. A selective decline in frontal-subcortical cognitive functions is observed after STN DBS in comparison with GPi DBS, which should not be ignored in the target selection for DBS treatment in PD patients. In addition, compared to GPi DBS, STN DBS does not affect depression, anxiety, and quality of life.

  16. Increases in frontostriatal connectivity are associated with response to dorsomedial repetitive transcranial magnetic stimulation in refractory binge/purge behaviors

    Directory of Open Access Journals (Sweden)

    Katharine Dunlop

    2015-01-01

    Conclusions: Enhanced frontostriatal connectivity was associated with responders to dmPFC-rTMS for binge/purge behavior. rTMS caused paradoxical suppression of frontostriatal connectivity in nonresponders. rs-fMRI could prove critical for optimizing stimulation parameters in a future sham-controlled trial of rTMS in disordered eating.

  17. Are Patients Ready for "EARLYSTIM"? Attitudes towards Deep Brain Stimulation among Female and Male Patients with Moderately Advanced Parkinson's Disease.

    Science.gov (United States)

    Sperens, Maria; Hamberg, Katarina; Hariz, Gun-Marie

    2017-01-01

    Objective . To explore, in female and male patients with medically treated, moderately advanced Parkinson's disease (PD), their knowledge and reasoning about Deep Brain Stimulation (DBS). Methods . 23 patients with PD (10 women), aged 46-70, were interviewed at a mean of 8 years after diagnosis, with open-ended questions concerning their reflections and considerations about DBS. The interviews were transcribed verbatim and analysed according to the difference and similarity technique in Grounded Theory. Results . From the patients' narratives, the core category "Processing DBS: balancing symptoms, fears and hopes" was established. The patients were knowledgeable about DBS and expressed cautious and well considered attitudes towards its outcome but did not consider themselves ill enough to undergo DBS. They were aware of its potential side-effects. They considered DBS as the last option when oral medication is no longer sufficient. There was no difference between men and women in their reasoning and attitudes towards DBS. Conclusion . This study suggests that knowledge about the pros and cons of DBS exists among PD patients and that they have a cautious attitude towards DBS. Our patients did not seem to endorse an earlier implementation of DBS, and they considered that it should be the last resort when really needed.

  18. Are Patients Ready for “EARLYSTIM”? Attitudes towards Deep Brain Stimulation among Female and Male Patients with Moderately Advanced Parkinson's Disease

    Science.gov (United States)

    2017-01-01

    Objective. To explore, in female and male patients with medically treated, moderately advanced Parkinson's disease (PD), their knowledge and reasoning about Deep Brain Stimulation (DBS). Methods. 23 patients with PD (10 women), aged 46–70, were interviewed at a mean of 8 years after diagnosis, with open-ended questions concerning their reflections and considerations about DBS. The interviews were transcribed verbatim and analysed according to the difference and similarity technique in Grounded Theory. Results. From the patients' narratives, the core category “Processing DBS: balancing symptoms, fears and hopes” was established. The patients were knowledgeable about DBS and expressed cautious and well considered attitudes towards its outcome but did not consider themselves ill enough to undergo DBS. They were aware of its potential side-effects. They considered DBS as the last option when oral medication is no longer sufficient. There was no difference between men and women in their reasoning and attitudes towards DBS. Conclusion. This study suggests that knowledge about the pros and cons of DBS exists among PD patients and that they have a cautious attitude towards DBS. Our patients did not seem to endorse an earlier implementation of DBS, and they considered that it should be the last resort when really needed. PMID:28458943

  19. Are Patients Ready for “EARLYSTIM”? Attitudes towards Deep Brain Stimulation among Female and Male Patients with Moderately Advanced Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Maria Sperens

    2017-01-01

    Full Text Available Objective. To explore, in female and male patients with medically treated, moderately advanced Parkinson’s disease (PD, their knowledge and reasoning about Deep Brain Stimulation (DBS. Methods. 23 patients with PD (10 women, aged 46–70, were interviewed at a mean of 8 years after diagnosis, with open-ended questions concerning their reflections and considerations about DBS. The interviews were transcribed verbatim and analysed according to the difference and similarity technique in Grounded Theory. Results. From the patients’ narratives, the core category “Processing DBS: balancing symptoms, fears and hopes” was established. The patients were knowledgeable about DBS and expressed cautious and well considered attitudes towards its outcome but did not consider themselves ill enough to undergo DBS. They were aware of its potential side-effects. They considered DBS as the last option when oral medication is no longer sufficient. There was no difference between men and women in their reasoning and attitudes towards DBS. Conclusion. This study suggests that knowledge about the pros and cons of DBS exists among PD patients and that they have a cautious attitude towards DBS. Our patients did not seem to endorse an earlier implementation of DBS, and they considered that it should be the last resort when really needed.

  20. Fragile X protein in newborn dried blood spots.

    Science.gov (United States)

    Adayev, Tatyana; LaFauci, Giuseppe; Dobkin, Carl; Caggana, Michele; Wiley, Veronica; Field, Michael; Wotton, Tiffany; Kascsak, Richard; Nolin, Sarah L; Glicksman, Anne; Hosmer, Nicole; Brown, W Ted

    2014-10-28

    The fragile X syndrome (FXS) results from mutation of the FMR1 gene that prevents expression of its gene product, FMRP. We previously characterized 215 dried blood spots (DBS) representing different FMR1 genotypes and ages with a Luminex-based immunoassay (qFMRP). We found variable FMRP levels in the normal samples and identified affected males by the drastic reduction of FMRP. Here, to establish the variability of expression of FMRP in a larger random population we quantified FMRP in 2,000 anonymous fresh newborn DBS. We also evaluated the effect of long term storage on qFMRP by retrospectively assaying 74 aged newborn DBS that had been stored for 7-84 months that included normal and full mutation individuals. These analyses were performed on 3 mm DBS disks. To identify the alleles associated with the lowest FMRP levels in the fresh DBS, we analyzed the DNA in the samples that were more than two standard deviations below the mean. Analysis of the fresh newborn DBS revealed a broad distribution of FMRP with a mean approximately 7-fold higher than that we previously reported for fresh DBS in normal adults and no samples whose FMRP level indicated FXS. DNA analysis of the lowest FMRP DBS showed that this was the low extreme of the normal range and included a female carrying a 165 CGG repeat premutation. In the retrospective study of aged newborn DBS, the FMRP mean of the normal samples was less than 30% of the mean of the fresh DBS. Despite the degraded signal from these aged DBS, qFMRP identified the FXS individuals. The assay showed that newborn DBS contain high levels of FMRP that will allow identification of males and potentially females, affected by FXS. The assay is also an effective screening tool for aged DBS stored for up to four years.

  1. Regional cerebral blood flow changes associated with transcranial magnetic stimulation in refractory depressed patients

    International Nuclear Information System (INIS)

    Kim, C. H.; Chung, Y. A.; Chae, J. H.; Oh, J. H.; Kim, S. H.; Sohn, H. S.; Chung, S. K.

    2005-01-01

    Imaging studies by repetitive transcranial magnetic stimulation (rTMS) demonstrates biological activities of the brain. The aim of this study was to investigate the patterns of regional cerebral blood flow (rCBF) after a series of therapeutic rTMS sessions. Nine patients with refractory depression who had not been responsive to appropriate pharmacotherapy over 1 year were randomly assigned to daily 1 Hz right-sided rTMS or 20 Hz left-sided rTMS sessions for over 3 weeks. Baseline and 3-week post-rTMS treatment SPECT images were obtained 40 minutes after intravenous injection of approximately 740925 MBq of Tc-99m ECD using a multi-detector scanner (ECAM plus; Siemens, Erlangen, Germany) equipped with a low-energy, fan-beam collimator. All patients showed a good clinical outcome. Statistically significant common increase in rCBF patterns was found in the fusiform gyrus of left temporal lobe, left hippocampus, left superior parietal lobule, superior frontal gyrus of right frontal lobe, right lateral globus pallidus and cingulated gyrus of both limbic lobes. And in the fusiform gyrus of left occipital lobe and middle frontal gyrus of right frontal lobe decreased uptake was seen compared to controls. Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased activity in specific brain regions in patients with treatment refractory depression. Therapeutic TMS seems to influence distinct cortical regions, as well as different pathways, affecting rCBF in a homogeneous manner that is probably region dependent and illness related

  2. POSSIBLE MECHANISMS UNDERLYING THE THERAPEUTIC EFFECTS OF TRANSCRANIAL MAGNETIC STIMULATION

    Directory of Open Access Journals (Sweden)

    Alexander eChervyakov

    2015-06-01

    Full Text Available Transcranial magnetic stimulation (TMS is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation (LTP and long-term depression (LTD. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor (BDNF concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals. It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.

  3. Regional cerebral blood flow changes associated with transcranial magnetic stimulation in refractory depressed patients

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. H.; Chung, Y. A.; Chae, J. H.; Oh, J. H.; Kim, S. H.; Sohn, H. S.; Chung, S. K. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-07-01

    Imaging studies by repetitive transcranial magnetic stimulation (rTMS) demonstrates biological activities of the brain. The aim of this study was to investigate the patterns of regional cerebral blood flow (rCBF) after a series of therapeutic rTMS sessions. Nine patients with refractory depression who had not been responsive to appropriate pharmacotherapy over 1 year were randomly assigned to daily 1 Hz right-sided rTMS or 20 Hz left-sided rTMS sessions for over 3 weeks. Baseline and 3-week post-rTMS treatment SPECT images were obtained 40 minutes after intravenous injection of approximately 740925 MBq of Tc-99m ECD using a multi-detector scanner (ECAM plus; Siemens, Erlangen, Germany) equipped with a low-energy, fan-beam collimator. All patients showed a good clinical outcome. Statistically significant common increase in rCBF patterns was found in the fusiform gyrus of left temporal lobe, left hippocampus, left superior parietal lobule, superior frontal gyrus of right frontal lobe, right lateral globus pallidus and cingulated gyrus of both limbic lobes. And in the fusiform gyrus of left occipital lobe and middle frontal gyrus of right frontal lobe decreased uptake was seen compared to controls. Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased activity in specific brain regions in patients with treatment refractory depression. Therapeutic TMS seems to influence distinct cortical regions, as well as different pathways, affecting rCBF in a homogeneous manner that is probably region dependent and illness related.

  4. When vision guides movement: a functional imaging study of the monkey brain.

    Science.gov (United States)

    Gregoriou, Georgia G; Savaki, Helen E

    2003-07-01

    Goal-directed reaching requires a precise neural representation of the arm position and the target location. Parietal and frontal cortical areas rely on visual, somatosensory, and motor signals to guide the reaching arm to the desired position in space. To dissociate the regions processing these signals, we applied the quantitative [(14)C]-deoxyglucose method on monkeys reaching either in the light or in the dark. Nonvisual (somatosensory and memory-related) guidance of the arm, during reaching in the dark, induced activation of discrete regions in the parietal, premotor, and motor cortices. These included the dorsal part of the medial bank of the intraparietal sulcus, the ventral premotor area F4, the dorsal premotor area F2 below the superior precentral dimple, and the primary somatosensory and motor cortices. Additional parietal and premotor regions comprising the ventral intraparietal cortex, ventral premotor area F5, and the ventral part of dorsal premotor area F2 were activated by visual guidance of the arm during reaching in the light. This study provides evidence that different regions of the parieto-premotor circuit process the visual, somatosensory, and motor-memory-related signals which guide the moving arm.

  5. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    Directory of Open Access Journals (Sweden)

    Geoffrey van der Plasse

    Full Text Available Following the successful application of deep brain stimulation (DBS in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell and medial shell (mShell. Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.

  6. Repetitive Transcranial Magnetic Stimulation in Patients with Hereditary Spastic Paraplegia

    Directory of Open Access Journals (Sweden)

    Mehmet Ağırman

    2011-06-01

    Full Text Available Hereditary spastic paraplegia (HSPP is a heterogeneous genetic disease characterized by progressive spasticity of lower extremities. Spasticity is a major cause of long-term disability in HSPP and significantly affects the functional life of patients. Repetitive transcranial magnetic stimulation (rTMS is widely used in diagnosis and treatment of many neurological and psychiatric diseases. Although the positive impacts of rTMS for spasticity have been reported, no study has been found on HSPP. We present two HSPP patients treated with low frequency rTMS (20 minutes at a frequency of 1 Hz (1200 pulses, for a period of 10 treatment sessions.

  7. Repetitive Transcranial Magnetic Stimulation in Patients with Hereditary Spastic Paraplegia

    Directory of Open Access Journals (Sweden)

    Mehmet Ağırman

    2011-06-01

    Full Text Available Hereditary spastic paraplegia (HSPP is a heterogeneous genetic disease characterized by progressive spasticity of lower extremities. Spasticity is a major cause of long-term disability in HSPP and significantly affects the functional life of patients. Repetitive transcranial magnetic stimulation (rTMS is widely used in diagnosis and treatment of many neurological and psychiatric diseases. Although the positive impacts of rTMS for spasticity have been reported, no study has been found on HSPP. We present two HSPP patients treated with low frequency rTMS (20 minutes at a frequency of 1 Hz (1200 pulses, for a period of 10 treatment sessions

  8. Stimulating Conversation: Enhancement of Elicited Propositional Speech in a Patient with Chronic Non-Fluent Aphasia following Transcranial Magnetic Stimulation

    Science.gov (United States)

    Hamilton, Roy H.; Sanders, Linda; Benson, Jennifer; Faseyitan, Olufunsho; Norise, Catherine; Naeser, Margaret; Martin, Paula; Coslett, H. Branch

    2010-01-01

    Although evidence suggests that patients with left hemisphere strokes and non-fluent aphasia who receive 1Hz repetitive transcranial magnetic stimulation (rTMS) over the intact right inferior frontal gyrus experience persistent benefits in naming, it remains unclear whether the effects of rTMS in these patients generalize to other language…

  9. Partial clinical response to 2 weeks of 2 Hz repetitive transcranial magnetic stimulation to the right parietal cortex in depression

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Laman, D.M.; Honk, E.J. van; Vergouwen, A.C.M.; Koerselman, F.

    2009-01-01

    The aim of this treatment study was to evaluate the therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) over the right parietal cortex in depression. In a double-blind, sham-controlled design ten consecutive sessions of 2 Hz rTMS (inter-pulse interval 0.5 s) at 90% motor

  10. Transcranial magnetic stimulation research on reading and dyslexia: a new clinical intervention technique for treating dyslexia?

    Directory of Open Access Journals (Sweden)

    Maurits van den Noort

    2015-01-01

    Full Text Available Nowadays, several noninvasive neuroimaging techniques, including transcranial magnetic stimulation (TMS, exist. The working mechanism behind TMS is a rapidly changing magnetic field that generates an electric current via electromagnetic induction. When the coil is placed on the scalp, the magnetic field generates a physiological reaction in the underlying neural tissue. The TMS-induced change in the participant′s behavior is used by researchers to investigate the causal relations between specific brain areas and cognitive functions such as language. A variant of TMS has been developed, which is called rapid-rate TMS (rTMS. In this review, three databases (Medline, Educational Resources Information Center, and Scopus were searched for rTMS studies on normal reading and dyslexia with a cut-off date of October 31, 2014. rTMS was found to be a valuable tool for investigating questions related to reading research, both on the word and the sentence level. Moreover, it can be successfully used in research on dyslexia. Recently, (high-frequency rTMS has been used as a "clinical" intervention technique for treating dyslexia and for improving reading performance by exciting underactive reading pathways in the brain. Finally, we end the paper with a discussion of future directions in the field of rTMS research and dyslexia, for instance, the promising prospect of combining TMS with simultaneous electroencephalographic imaging.

  11. Safety of repetitive transcranial magnetic stimulation in patients with implanted cortical electrodes. An ex-vivo study and report of a case.

    Science.gov (United States)

    Phielipp, Nicolás M; Saha, Utpal; Sankar, Tejas; Yugeta, Akihiro; Chen, Robert

    2017-06-01

    To evaluate the safety of repetitive transcranial magnetic stimulation (rTMS) in patients with implanted subdural cortical electrodes. We performed ex-vivo experiments to test the temperature, displacement and current induced in the electrodes with single pulse transcranial magnetic stimulation (TMS) from 10 to 100% of stimulator output and tested a typical rTMS protocol used in a clinical setting. We then used rTMS to the motor cortex to treat a patient with refractory post-herpetic neuralgia who had previously been implanted with a subdural motor cortical electrode for pain management. The rTMS protocol consisted of ten sessions of 2000 stimuli at 20Hz and 90% of resting motor threshold. The ex-vivo study showed an increase in the coil temperature of 2°C, a maximum induced charge density of 30.4μC/cm 2 /phase, and no electrode displacement with TMS. There was no serious adverse effect associated with rTMS treatment of the patient. Cortical tremor was observed in the intervals between trains of stimuli during one treatment session. TMS was safe in a patient with implanted Medtronic Resume II electrode (model 3587A) subdural cortical electrode. TMS may be used as a therapeutic, diagnostic or research tool in patients this type of with implanted cortical electrodes. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  12. Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson's disease: a systematic review and meta-analysis.

    Science.gov (United States)

    Goodwill, Alicia M; Lum, Jarrad A G; Hendy, Ashlee M; Muthalib, Makii; Johnson, Liam; Albein-Urios, Natalia; Teo, Wei-Peng

    2017-11-01

    Parkinson's disease (PD) is a neurodegenerative disorder affecting motor and cognitive abilities. There is no cure for PD, therefore identifying safe therapies to alleviate symptoms remains a priority. This meta-analysis quantified the effectiveness of repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (TES) to improve motor and cognitive dysfunction in PD. PubMed, EMBASE, Web of Science, Google Scholar, Scopus, Library of Congress and Cochrane library were searched. 24 rTMS and 9 TES studies (n = 33) with a sham control group were included for analyses. The Physiotherapy Evidence Database and Cochrane Risk of Bias showed high quality (7.5/10) and low bias with included studies respectively. Our results showed an overall positive effect in favour of rTMS (SMD = 0.394, CI [0.106-0.683], p = 0.007) and TES (SMD = 0.611, CI [0.188-1.035], p = 0.005) compared with sham stimulation on motor function, with no significant differences detected between rTMS and TES (Q [1] = 0.69, p = 0.406). Neither rTMS nor TES improved cognition. No effects for stimulation parameters on motor or cognitive function were observed. To enhance the clinical utility of non-invasive brain stimulation (NBS), individual prescription of stimulation parameters based upon symptomology and resting excitability state should be a priority of future research.

  13. Effective deep brain stimulation suppresses low frequency network oscillations in the basal ganglia by regularizing neural firing patterns

    Science.gov (United States)

    McConnell, George C.; So, Rosa Q.; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M.

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson’s disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90Hz) improve motor symptoms, while low frequencies (basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high frequency DBS reversed motor symptoms and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high frequency DBS, but not low frequency DBS, reduced pathological low frequency oscillations (~9Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low frequency band to the stimulation frequency during high frequency DBS, but not during low frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high frequency DBS is more effective than low frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low frequency network oscillations with a regularized pattern of neuronal firing. PMID:23136407

  14. Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns.

    Science.gov (United States)

    McConnell, George C; So, Rosa Q; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M

    2012-11-07

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson's disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90 Hz) improve motor symptoms, while low frequencies (basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high-frequency DBS reversed motor symptoms, and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high-frequency DBS, but not low-frequency DBS, reduced pathological low-frequency oscillations (∼9 Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low-frequency band to the stimulation frequency during high-frequency DBS, but not during low-frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high-frequency DBS is more effective than low-frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low-frequency network oscillations with a regularized pattern of neuronal firing.

  15. Deep Brain Stimulation, Continuity over Time, and the True Self.

    Science.gov (United States)

    Nyholm, Sven; O'Neill, Elizabeth

    2016-10-01

    One of the topics that often comes up in ethical discussions of deep brain stimulation (DBS) is the question of what impact DBS has, or might have, on the patient's self. This is often understood as a question of whether DBS poses a threat to personal identity, which is typically understood as having to do with psychological and/or narrative continuity over time. In this article, we argue that the discussion of whether DBS is a threat to continuity over time is too narrow. There are other questions concerning DBS and the self that are overlooked in discussions exclusively focusing on psychological and/or narrative continuity. For example, it is also important to investigate whether DBS might sometimes have a positive (e.g., a rehabilitating) effect on the patient's self. To widen the discussion of DBS, so as to make it encompass a broader range of considerations that bear on DBS's impact on the self, we identify six features of the commonly used concept of a person's "true self." We apply these six features to the relation between DBS and the self. And we end with a brief discussion of the role DBS might play in treating otherwise treatment-refractory anorexia nervosa. This further highlights the importance of discussing both continuity over time and the notion of the true self.

  16. Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials.

    Science.gov (United States)

    Bansal, Arjun K; Truccolo, Wilson; Vargas-Irwin, Carlos E; Donoghue, John P

    2012-03-01

    Neural activity in motor cortex during reach and grasp movements shows modulations in a broad range of signals from single-neuron spiking activity (SA) to various frequency bands in broadband local field potentials (LFPs). In particular, spatiotemporal patterns in multiband LFPs are thought to reflect dendritic integration of local and interareal synaptic inputs, attentional and preparatory processes, and multiunit activity (MUA) related to movement representation in the local motor area. Nevertheless, the relationship between multiband LFPs and SA, and their relationship to movement parameters and their relative value as brain-computer interface (BCI) control signals, remain poorly understood. Also, although this broad range of signals may provide complementary information channels in primary (MI) and ventral premotor (PMv) areas, areal differences in information have not been systematically examined. Here, for the first time, the amount of information in SA and multiband LFPs was compared for MI and PMv by recording from dual 96-multielectrode arrays while monkeys made naturalistic reach and grasp actions. Information was assessed as decoding accuracy for 3D arm end point and grip aperture kinematics based on SA or LFPs in MI and PMv, or combinations of signal types across areas. In contrast with previous studies with ≤16 simultaneous electrodes, here ensembles of >16 units (on average) carried more information than multiband, multichannel LFPs. Furthermore, reach and grasp information added by various LFP frequency bands was not independent from that in SA ensembles but rather typically less than and primarily contained within the latter. Notably, MI and PMv did not show a particular bias toward reach or grasp for this task or for a broad range of signal types. For BCIs, our results indicate that neuronal ensemble spiking is the preferred signal for decoding, while LFPs and combined signals from PMv and MI can add robustness to BCI control.

  17. Cathodal Transcranial Direct Current Stimulation of the Right Wernicke's Area Improves Comprehension in Subacute Stroke Patients

    Science.gov (United States)

    You, Dae Sang; Kim, Dae-Yul; Chun, Min Ho; Jung, Seung Eun; Park, Sung Jong

    2011-01-01

    Previous studies have shown the appearance of right-sided language-related brain activity in right-handed patients after a stroke. Non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) have been shown to modulate excitability in the brain. Moreover, rTMS and…

  18. Evaluation of HBsAg and anti-HBc assays in saliva and dried blood spot samples according HIV status.

    Science.gov (United States)

    Flores, Geane Lopes; Cruz, Helena Medina; Potsch, Denise Vigo; May, Silvia Beatriz; Brandão-Mello, Carlos Eduardo; Pires, Marcia Maria Amendola; Pilotto, Jose Henrique; Lewis-Ximenez, Lia Laura; Lampe, Elisabeth; Villar, Livia Melo

    2017-09-01

    Influence of HIV status in HBV markers detection in saliva and dried blood spots (DBS) was not well established. This study aims to evaluate the performance of optimized commercial immunoassay for identifying HBsAg and anti-HBc in saliva and DBS according HIV status. A sum of 535 individuals grouped as HIV + , HBV + , HIV/HBV + and HIV/HBV- were recruited where 347 and 188 were included for HBsAg and anti-HBc evaluation, respectively. Serum, DBS collected in Whatman 903 paper and saliva obtained using salivette device were analyzed using EIA. Increased sample volume and ROC curve analysis for cut off determination were used for DBS and saliva testing. HBsAg detection in saliva and DBS exhibited sensitivities of 80.9% and 85.6% and specificities of 86.8% and 96.3%. Sensitivity of anti-HBc in saliva and DBS were 82.4% and 76.9% and specificities in saliva and DBS were 96.9% and 91.7%. Low sensitivities were observed for HBsAg (62%) and anti-HBc (47%) detection in saliva of HIV/HBV+ individuals. OD values were also lower for HBsAg detection in DBS and saliva of HIV/HBV+ individuals compared to their serum samples. Statistical significance was found for sensitivities in HBsAg detection between saliva and DBS demonstrating high sensitivity for DBS specimens. In conclusion, HIV status or antiretroviral treatment appears to interfere in the performance of HBsAg and anti-HBc detection in DBS and saliva samples using the adapted commercial EIA. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Moving forward: advances in the treatment of movement disorders with deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Terry K Schiefer

    2011-11-01

    Full Text Available The modern era of stereotactic and functional neurosurgery has ushered in state of the art technologies for the treatment of movement disorders, particularly Parkinson’s disease (PD, tremor, and dystonia. After years of experience with various surgical therapies, the eventual shortcomings of both medical and surgical treatments, and several serendipitous discoveries, deep brain stimulation (DBS has risen to the forefront as a highly effective, safe, and reversible treatment for these conditions. Idiopathic advanced Parkinson’s disease can be treated with thalamic, globus pallidus internus (GPi, or subthalamic nucleus (STN DBS. Thalamic DBS primarily relieves tremor while GPi and STN DBS alleviate a wide range of Parkinsonian symptoms. Thalamic DBS is also used in the treatment of other types of tremor, particularly essential tremor, with excellent results. Both primary and various types of secondary dystonia can be treated very effectively with GPi DBS. The variety of anatomical targets for these movement disorders is indicative of the network-level dysfunction mediating these movement disturbances. Despite an increasing understanding of the clinical benefits of DBS, little is known about how DBS can create such wide sweeping neuromodulatory effects. The key to improving this therapeutic modality and discovering new ways to treat these and other neurologic conditions lies in better understanding the intricacies of DBS. Here we review the history and pertinent clinical data for DBS treatment of PD, tremor, and dystonia. Our search criteria for PubMed included combinations of the following terms: DBS, neuromodulation, movement disorders, PD, tremor, dystonia, and history. Dates were not restricted.

  20. Alterations in blood glucose and plasma glucagon concentrations during deep brain stimulation in the shell region of the nucleus accumbens in rats

    Directory of Open Access Journals (Sweden)

    Charlene eDiepenbroek

    2013-12-01

    Full Text Available Deep brain stimulation (DBS of the nucleus accumbens (NAc is an effective therapy for obsessive compulsive disorder (OCD and is currently under investigation as a treatment for eating disorders. DBS of this area is associated with altered food intake and pharmacological treatment of OCD is associated with the risk of developing type 2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc influences glucose metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of one hour. To assess the effects of stimulation on blood glucose and glucoregulatory hormones, blood samples were drawn before, during and after stimulation. Subsequently, all animals were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic area (LHA using computerized image analysis. DBS of the sNAc rapidly increased plasma concentrations of glucagon and glucose while sham stimulation and DBS outside the sNAc were ineffective. In addition, the increase in glucose was dependent on DBS intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations was independent of intensity and region, indicating that the observed DBS-induced metabolic changes were not due to corticosterone release. Stimulation of the sNAc with 200 μA increased Fos immunoreactivity in the LHA compared to sham or 100 μA stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in a region- and intensity dependent manner in association with neuronal activation in the LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism during DBS-treatment of OCD patients.

  1. Quantitation of 25-hydroxyvitamin D in dried blood spots by 2D LC-MS/MS without derivatization and correlation with serum in adult and pediatric studies.

    Science.gov (United States)

    Jensen, Berit P; Saraf, Rajneeta; Ma, Jing; Berry, Sarah; Grant, Cameron C; Camargo, Carlos A; Sies, Christiaan W

    2018-06-01

    Demand for measurement of 25-hydroxyvitamin D (25OHD) is growing and dried blood spot (DBS) sampling is attractive as samples are easier to collect, transport and store. A 2D LC-MS/MS assay without derivatization was developed. DBS punches (3.2 mm) were ultrasonicated with d 6 -25OHD 3 in 70% methanol followed by hexane extraction, dry-down and reconstitution. The assay was validated and applied to two studies comparing whole blood adult DBS with serum samples (n = 40) and neonatal whole blood DBS with cord serum samples (n = 80). The assay was validated in whole blood DBS over the range 13-106 nmol/L 25OHD 3 and 11-91 nmol/L 25OHD 2 with a limit of detection of 3 nmol/L. Intra- and inter-day imprecision was <13% CV and bias <12%. The assay had high recovery and minimal matrix effects. Triplicate DBS study samples had a mean CV of ≤13% for 25OHD 3. No 25OHD 2 was detected. DBS calculated serum 25OHD 3 concentrations correlated strongly with serum concentrations in the adult DBS/serum study (r = 0.94) and moderately in the neonatal DBS/cord serum study (r = 0.69). Direct quantitation of 25OHD in DBS by 2D LC-MS/MS without derivatization was found to be an alternative to serum quantitation applicable to clinical research studies on adult DBS samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Deep brain stimulation changes basal ganglia output nuclei firing pattern in the dystonic hamster.

    Science.gov (United States)

    Leblois, Arthur; Reese, René; Labarre, David; Hamann, Melanie; Richter, Angelika; Boraud, Thomas; Meissner, Wassilios G

    2010-05-01

    Dystonia is a heterogeneous syndrome of movement disorders characterized by involuntary muscle contractions leading to abnormal movements and postures. While medical treatment is often ineffective, deep brain stimulation (DBS) of the internal pallidum improves dystonia. Here, we studied the impact of DBS in the entopeduncular nucleus (EP), the rodent equivalent of the human globus pallidus internus, on basal ganglia output in the dt(sz)-hamster, a well-characterized model of dystonia by extracellular recordings. Previous work has shown that EP-DBS improves dystonic symptoms in dt(sz)-hamsters. We report that EP-DBS changes firing pattern in the EP, most neurons switching to a less regular firing pattern during DBS. In contrast, EP-DBS did not change the average firing rate of EP neurons. EP neurons display multiphasic responses to each stimulation impulse, likely underlying the disruption of their firing rhythm. Finally, neurons in the substantia nigra pars reticulata display similar responses to EP-DBS, supporting the idea that EP-DBS affects basal ganglia output activity through the activation of common afferent fibers. Copyright 2010 Elsevier Inc. All rights reserved.

  3. 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke

    Directory of Open Access Journals (Sweden)

    Sonia M Brodie

    2014-03-01

    Full Text Available Sensory feedback is critical for motor learning, and thus to neurorehabilitation after stroke. Whether enhancing sensory feedback by applying excitatory repetitive transcranial magnetic stimulation (rTMS over the ipsilesional primary sensory cortex (IL-S1 might enhance motor learning in chronic stroke has yet to be investigated. The present study investigated the effects of 5 Hz rTMS over IL-S1 paired with skilled motor practice on motor learning, hemiparetic cutaneous somatosensation, and motor function. Individuals with unilateral chronic stroke were pseudo-randomly divided into either Active or Sham 5 Hz rTMS groups (n=11/group. Following stimulation, both groups practiced a Serial Tracking Task (STT with the hemiparetic arm; this was repeated for 5 days. Performance on the STT was quantified by response time, peak velocity, and cumulative distance tracked at baseline, during the 5 days of practice, and at a no-rTMS retention test. Cutaneous somatosensation was measured using two-point discrimination. Standardized sensorimotor tests were performed to assess whether the effects might generalize to impact hemiparetic arm function. The active 5Hz rTMS + training group demonstrated significantly greater improvements in STT performance [response time (F1,286.04=13.016, p< 0.0005, peak velocity (F1,285.95=4.111, p=0.044, and cumulative distance (F1,285.92=4.076, p=0.044] and cutaneous somatosensation (F1,21.15=8.793, p=0.007 across all sessions compared to the sham rTMS + training group. Measures of upper extremity motor function were not significantly different for either group. Our preliminary results suggest that, when paired with motor practice, 5Hz rTMS over IL-S1 enhances motor learning related change in individuals with chronic stroke, potentially as a consequence of improved cutaneous somatosensation, however no improvement in general upper extremity function was observed.

  4. Transcranial magnetic stimulation for treating depression in elderly patients

    Science.gov (United States)

    Sayar, Gokben Hizli; Ozten, Eylem; Tan, Oguz; Tarhan, Nevzat

    2013-01-01

    Purpose The aim of the study reported here was to examine the safety and effectiveness of high-frequency repetitive transcranial magnetic stimulation (rTMS) in elderly patients with depression. Patients and methods Sixty-five depressed elderly patients received rTMS over their left prefrontal cortex for 6 days per week, from Monday to Saturday, for 3 weeks. The rTMS intensity was set at 100% of the motor threshold and 25 Hz stimulation with a duration of 2 seconds and was delivered 20 times at 30-second intervals. A full course comprised an average of 1000 magnetic pulses. Depression was rated using the Hamilton Depression Rating Scale (HAMD) before and after treatment. Response was defined as a 50% reduction in HAMD score. Patients with HAMD scores < 8 were considered to be in remission. Results The mean HAMD score for the study group decreased from 21.94 ± 5.12 before treatment to 11.28 ± 4.56 after rTMS (P < 0.001). Following the treatment period, 58.46% of the study group demonstrated significant mood improvement, as indexed by a reduction of more than 50% on the HAMD score. Nineteen of these 38 patients attained remission (HAMD score < 8), while 41.54% of all study patients achieved a partial response. None of the patients had a worsened HAMD score at the end of the treatment. Treatment was generally well tolerated and no serious adverse effects were reported. Conclusion In this study, rTMS was found to be a safe, well-tolerated treatment, and a useful adjunctive treatment to medications in elderly treatment-resistant depressed patients. This study contributes to the existing evidence on the antidepressant effect of rTMS in the treatment of depression in patients over 60 years of age. PMID:23723700

  5. Effects of Electroacupuncture Combined with Repetitive Transcranial Magnetic Stimulation on the Expression of Nestin in Neural Stem Cell after Focal Cerebral Ischemia in Adult Rats

    Institute of Scientific and Technical Information of China (English)

    HUANG Guofu; HUANG Xiaolin; CHEN Hong; HAY Xiaohua

    2009-01-01

    Objective: To investigate the influence of electroacupuncture (EA) combined with repetitive transeranial magnetic stimulation(rTMS) on the temporal profile of nestin expression after induction of focal cerebral isehemia in adult rats and to explore the mechanism of EA combined with rTMS in treating ischemic brain injury. Method: The model of transient focal ischemia was produced by occlusion of middle cerebral artery. Seventy-five Wistar rats were randomly divided into normal group, model group, EA group, rTMS group and EA +rTMS group. The neurologic impairment rating and ability of learning and memory were observed at the 7th、14th and 28th d after infarction respectively. Meanwhile, Western blotting was used to observe the number of nestin expression positive cells. Result: Nestin-positive cells were found in cortex, subgranular zone (SGZ), subventricular zone (SVZ) of the ipsilateral side at different time points after cerebral isehemia. The number of nestin-positive cells peaked at the 7th d, began to decrease at the 14th d and was significantly higher in EA+rTMS group than that in model group (P<0.05), then almost reached normal at the 28th d. The improvement of neural motor function deficits as well as the indexes of learning and memory were more obvious in EA+rTMS group compared with model group (P<0.01, P<0.05). These effects were most obvious in EA+rTMS group compared with the EA and rTMS group (P<0.05). Conclusion: EA and rTMS possess the potency of building up and can increase the number of nestin-positive cells in some brain regions after focal cerebral ischemia, which might be one of the important mechanisms of EA combined with rTMS in treating ischemia brain injury.

  6. Improvement of health-related quality of life in depression after transcranial magnetic stimulation in a naturalistic trial is associated with decreased perfusion in precuneus

    Directory of Open Access Journals (Sweden)

    Dumas Rémy

    2012-07-01

    Full Text Available Abstract Background Assessing Health-related Quality of life (HRQoL is necessary to evaluate care and treatments provided to patients with major depressive disorder (MDD, in addition to the traditional assessment of clinical outcomes. However, HRQoL remains under-utilized to assess the effectiveness of repetitive transcranial magnetic stimulation (rTMS in research or in a routine clinical setting. The primary objective of this exploratory study on MDD was to investigate the impact of low-frequency rTMS on HRQoL using the SF-36 questionnaire. A secondary objective was to study the functional neural substrate underlying HRQoL changes using neuroimaging. Methods Fifteen right-handed patients who met DSM-IV criteria for MDD participated in the study. HRQoL was assessed using the SF-36, and regional cerebral blood (rCBF flow using 99mTc-ECD-SPECT. Voxel based correlation was searched between concomitant changes in rCBF and in HRQoL after rTMS. Results Role-Physical Problems dimension showed a statistical significant improvement of 73.2% (p = 0.001 and an effect size (Cohen’s d of 0.43, indicating moderate effect. Five SF-36 dimension scores and the two composite scores showed effect sizes ranged from 0.28 to 0.43. Improvement of Mental Composite Score (MCS-SF-36 after rTMS was correlated with a concomitant decrease of precuneus perfusion (p  Conclusions This study suggests low-frequency rTMS can improve HRQoL, through its role-physical problems dimension, in patients with MDD. This improvement is associated with a decreased perfusion of the precuneus, a brain area involved in self-focus and self-processing, arguing for a neural substrate to the impact of rTMS on HRQoL.

  7. Assessment of Vascular Stent Heating with Repetitive Transcranial Magnetic Stimulation.

    Science.gov (United States)

    Varnerin, Nicole; Mirando, David; Potter-Baker, Kelsey A; Cardenas, Jesus; Cunningham, David A; Sankarasubramanian, Vishwanath; Beall, Erik; Plow, Ela B

    2017-05-01

    A high proportion of patients with stroke do not qualify for repetitive transcranial magnetic stimulation (rTMS) clinical studies due to the presence of metallic stents. The ultimate concern is that any metal could become heated due to eddy currents. However, to date, no clinical safety data are available regarding the risk of metallic stents heating with rTMS. We tested the safety of common rTMS protocols (1 Hz and 10 Hz) with stents used commonly in stroke, nitinol and elgiloy. In our method, stents were tested in gelled saline at 2 different locations: at the center and at the lobe of the coil. In addition, at each location, stent heating was evaluated in 3 different orientations: parallel to the long axis of coil, parallel to the short axis of the coil, and perpendicular to the plane of the coil. We found that stents did not heat to more than 1°C with either 1 Hz rTMS or 10 Hz rTMS in any configuration or orientation. Heating in general was greater at the lobe when the stent was oriented perpendicularly. Our study represents a new method for ex vivo quantification of stent heating. We have found that heating of stents was well below the Food and Drug Administration standards of 2°C. Thus, our study paves the way for in vivo testing of rTMS (≤10 Hz) in the presence of implanted magnetic resonance imaging-compatible stents in animal studies. When planning human safety studies though, geometry, orientation, and location relative to the coil would be important to consider as well. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  8. An Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning

    Directory of Open Access Journals (Sweden)

    Juan Pablo Rivera

    2015-07-01

    Full Text Available Physically-based radiative transfer models (RTMs help in understanding the processes occurring on the Earth’s surface and their interactions with vegetation and atmosphere. When it comes to studying vegetation properties, RTMs allows us to study light interception by plant canopies and are used in the retrieval of biophysical variables through model inversion. However, advanced RTMs can take a long computational time, which makes them unfeasible in many real applications. To overcome this problem, it has been proposed to substitute RTMs through so-called emulators. Emulators are statistical models that approximate the functioning of RTMs. Emulators are advantageous in real practice because of the computational efficiency and excellent accuracy and flexibility for extrapolation. We hereby present an “Emulator toolbox” that enables analysing multi-output machine learning regression algorithms (MO-MLRAs on their ability to approximate an RTM. The toolbox is included in the free-access ARTMO’s MATLAB suite for parameter retrieval and model inversion and currently contains both linear and non-linear MO-MLRAs, namely partial least squares regression (PLSR, kernel ridge regression (KRR and neural networks (NN. These MO-MLRAs have been evaluated on their precision and speed to approximate the soil vegetation atmosphere transfer model SCOPE (Soil Canopy Observation, Photochemistry and Energy balance. SCOPE generates, amongst others, sun-induced chlorophyll fluorescence as the output signal. KRR and NN were evaluated as capable of reconstructing fluorescence spectra with great precision. Relative errors fell below 0.5% when trained with 500 or more samples using cross-validation and principal component analysis to alleviate the underdetermination problem. Moreover, NN reconstructed fluorescence spectra about 50-times faster and KRR about 800-times faster than SCOPE. The Emulator toolbox is foreseen to open new opportunities in the use of advanced

  9. rTMS of the dorsomedial prefrontal cortex for major depression: safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation.

    Science.gov (United States)

    Bakker, Nathan; Shahab, Saba; Giacobbe, Peter; Blumberger, Daniel M; Daskalakis, Zafiris J; Kennedy, Sidney H; Downar, Jonathan

    2015-01-01

    Conventional rTMS protocols for major depression commonly employ stimulation sessions lasting >30 min. However, recent studies have sought to improve costs, capacities, and outcomes by employing briefer protocols such as theta burst stimulation (iTBS). To compare safety, effectiveness, and outcome predictors for DMPFC-rTMS with 10 Hz (30 min) versus iTBS (6 min) protocols, in a large, naturalistic, retrospective case series. A chart review identified 185 patients with a medication-resistant major depressive episode who underwent 20-30 sessions of DMPFC-rTMS (10 Hz, n = 98; iTBS, n = 87) at a single Canadian clinic from 2011 to 2014. Clinical characteristics of 10 Hz and iTBS patients did not differ prior to treatment, aside from significantly higher age in iTBS patients. A total 7912 runs of DMPFC-rTMS (10 Hz, 4274; iTBS, 3638) were administered, without any seizures or other serious adverse events, and no significant differences in rates of premature discontinuation between groups. Dichotomous outcomes did not differ significantly between groups (Response/remission rates: Beck Depression Inventory-II: 10 Hz, 40.6%/29.2%; iTBS, 43.0%/31.0%. 17-item Hamilton Rating Scale for Depression: 10 Hz, 50.6%/38.5%; iTBS, 48.5%/27.9%). On continuous outcomes, there was no significant difference between groups in pre-treatment or post-treatment scores, or percent improvement on either measure. Mixed-effects modeling revealed no significant group-by-time interaction on either measure. Both 10 Hz and iTBS DMPFC-rTMS appear safe and tolerable at 120% resting motor threshold. The effectiveness of 6 min iTBS and 30 min 10 Hz protocols appears comparable. Randomized trials comparing 10 Hz to iTBS may be warranted. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Combining Functional Neuroimaging with Off-Line Brain Stimulation: Modulation of Task-Related Activity in Language Areas

    Science.gov (United States)

    Andoh, Jamila; Paus, Tomas

    2011-01-01

    Repetitive TMS (rTMS) provides a noninvasive tool for modulating neural activity in the human brain. In healthy participants, rTMS applied over the language-related areas in the left hemisphere, including the left posterior temporal area of Wernicke (LTMP) and inferior frontal area of Broca, have been shown to affect performance on word…

  11. Use of repetitive transcranial magnetic stimulation for treatment in psychiatry.

    Science.gov (United States)

    Aleman, André

    2013-08-01

    The potential of noninvasive neurostimulation by repetitive transcranial magnetic stimulation (rTMS) for improving psychiatric disorders has been studied increasingly over the past two decades. This is especially the case for major depression and for auditory-verbal hallucinations in schizophrenia. The present review briefly describes the background of this novel treatment modality and summarizes evidence from clinical trials into the efficacy of rTMS for depression and hallucinations. Evidence for efficacy in depression is stronger than for hallucinations, although a number of studies have reported clinically relevant improvements for hallucinations too. Different stimulation parameters (frequency, duration, location of stimulation) are discussed. There is a paucity of research into other psychiatric disorders, but initial evidence suggests that rTMS may also hold promise for the treatment of negative symptoms in schizophrenia, obsessive compulsive disorder and post-traumatic stress disorder. It can be concluded that rTMS induces alterations in neural networks relevant for psychiatric disorders and that more research is needed to elucidate efficacy and underlying mechanisms of action.

  12. Treating Clinical Depression with Repetitive Deep Transcranial Magnetic Stimulation Using the Brainsway H1-coil.

    Science.gov (United States)

    Feifel, David; Pappas, Katherine

    2016-10-04

    Repetitive transcranial magnetic stimulation (rTMS) is an emerging non-pharmacological approach to treating many brain-based disorders. rTMS uses electromagnetic coils to stimulate areas of the brain non-invasively. Deep transcranial magnetic stimulation (dTMS) with the Brainsway H1-coil system specifically is a type of rTMS indicated for treating patients with major depressive disorder (MDD) who are resistant to medication. The unique H1-coil design of this device is able to stimulate neuronal pathways that lie deeper in the targeted brain areas than those reached by conventional rTMS coils. dTMS is considered to be low-risk and well tolerated, making it a viable treatment option for people who have not responded to medication or psychotherapy trials for their depression. Randomized, sham-control studies have demonstrated that dTMS produces significantly greater improvement in depressive symptoms than sham dTMS treatment in patients with major depression that has not responded to antidepressant medication. In this paper, we will review the methodology for treating major depression with dTMS using an H1-coil.

  13. Effects of subthalamic nucleus deep brain stimulation on emotional working memory capacity and mood in patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Merkl A

    2017-06-01

    Full Text Available Angela Merkl,1,2 Eva Röck,1 Tanja Schmitz-Hübsch,1,3 Gerd-Helge Schneider,4 Andrea A Kühn1,3,5 1Department of Neurology, Charité – University Medicine Berlin, Campus Virchow Klinikum, 2Department of Psychiatry and Psychotherapy, Charité – University Medicine Berlin, Campus Benjamin Franklin, 3NeuroCure, Charité – University Medicine Berlin, 4Department of Neurosurgery, Charité – University Medicine Berlin, Campus Virchow Klinikum, 5Berlin School of Mind and Brain, Charité – University Medicine Berlin, Berlin, Germany Background: In Parkinson’s disease (PD, cognitive symptoms and mood changes may be even more distressing for the patient than motor symptoms.Objective: Our aim was to determine the effects of bilateral subthalamic nucleus deep brain stimulation (STN-DBS on working memory (WM and mood.Methods: Sixteen patients with PD were assessed with STN-DBS switched on (DBS-ON and with dopaminergic treatment (Med-ON compared to switched off (DBS-OFF and without dopaminergic treatment (Med-OFF. The primary outcome measures were a Visual Analog Mood Scale (VAMS and an emotional 2-back WM task at 12 months after DBS in the optimal DBS-ON/Med-ON setting compared to DBS-OFF/Med-OFF.Results: Comparison of DBS-OFF/Med-OFF to DBS-ON/Med-ON revealed a significant increase in alertness (meanoff/off =51.59±24.54; meanon/on =72.75; P=0.016 and contentedness (meanoff/off =38.73±24.41; meanon/on =79.01±17.66; P=0.001, n=16, and a trend for reduction in sedation (P=0.060, which was related to stimulation as shown in a subgroup of seven patients. The N-back task revealed a significant increase in accuracy with DBS-ON/Med-ON compared to DBS-OFF/Med-OFF (82.0% vs 76.0%, respectively (P=0.044, regardless of stimulus valence.Conclusion: In line with previous studies, we found that patients rated themselves subjectively as more alert, content, and less sedated during short-term DBS-ON. Accuracy in the WM task increased with the combination of

  14. Deep Brain Stimulation as a Treatment for Refractory Epilepsy: Review of the Current State-of-the-Art.

    Science.gov (United States)

    Ganguli, Malika P; Upton, Adrian R M; Kamath, Markad V

    2017-01-01

    Epilepsy affects ∼ 1% of the global population, and 33% of patients are nonresponsive to medication and must seek alternative treatment options. Alternative options such as surgery and ablation exist but are not appropriate treatment plans for some patients. Neurostimulation methods such as vagal nerve stimulation, responsive neural stimulation, and deep brain stimulation (DBS) are viable alternatives for medically refractory patients. DBS stimulation has been used in the treatment of Parkinson's disease, dystonia, and pain management. For the treatment of epilepsy, DBS has been found to be an effective treatment plan, with promising results of reduced seizure frequency and intensity. In this review, we discuss DBS surgery and equipment, mechanisms of DBS for epilepsy, and efficacy, technological specifications, and suggestions for future research. We also review a historical summary of experiments involving DBS for epilepsy. Our literature review suggests that further studies are warranted for medically refractory epilepsy using DBS.

  15. The effect of deep brain stimulation of the subthalamic nucleus on executive functions: impaired verbal fluency and intact updating, planning and conflict resolution in Parkinson's disease.

    Science.gov (United States)

    Demeter, Gyula; Valálik, István; Pajkossy, Péter; Szőllősi, Ágnes; Lukács, Ágnes; Kemény, Ferenc; Racsmány, Mihály

    2017-04-24

    Although the improvement of motor symptoms in Parkinson's disease (PD) after deep brain stimulation (DBS) of the subthalamic nucleus (STN) is well documented, there are open questions regarding its impact on cognitive functions. The aim of this study was to assess the effect of bilateral DBS of the STN on executive functions in PD patients using a DBS wait-listed PD control group. Ten PD patients with DBS implantation (DBS group) and ten PD wait-listed patients (Clinical control group) participated in the study. Neuropsychological tasks were used to assess general mental ability and various executive functions. Each task was administered twice to each participant: before and after surgery (with the stimulators on) in the DBS group and with a matched delay between the two task administration points in the control group. There was no significant difference between the DBS and the control groups' performance in tasks measuring the updating of verbal, spatial or visual information (Digit span, Corsi and N-back tasks), planning and shifting (Trail Making B), and conflict resolution (Stroop task). However, the DBS group showed a significant decline on the semantic verbal fluency task after surgery compared to the control group, which is in line with findings of previous studies. Our results provide support for the relative cognitive safety of the STN DBS using a wait-listed PD control group. Differential effects of the STN DBS on frontostriatal networks are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output.

    Science.gov (United States)

    Humphries, Mark D; Gurney, Kevin

    2012-07-01

    Deep brain stimulation (DBS) is a remarkably successful treatment for the motor symptoms of Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN) within the basal ganglia is a main clinical target, but the physiological mechanisms of therapeutic STN DBS at the cellular and network level are unclear. We set out to begin to address the hypothesis that a mixture of responses in the basal ganglia output nuclei, combining regularized firing and inhibition, is a key contributor to the effectiveness of STN DBS. We used our computational model of the complete basal ganglia circuit to show how such a mixture of responses in basal ganglia output naturally arises from the network effects of STN DBS. We replicated the diversification of responses recorded in a primate STN DBS study to show that the model's predicted mixture of responses is consistent with therapeutic STN DBS. We then showed how this 'mixture of response' perspective suggests new ideas for DBS mechanisms: first, that the therapeutic frequency of STN DBS is above 100 Hz because the diversification of responses exhibits a step change above this frequency; and second, that optogenetic models of direct STN stimulation during DBS have proven therapeutically ineffective because they do not replicate the mixture of basal ganglia output responses evoked by electrical DBS. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  17. Deep Brain Stimulation of Medial Dorsal and Ventral Anterior Nucleus of the Thalamus in OCD: A Retrospective Case Series.

    Directory of Open Access Journals (Sweden)

    Mohammad Maarouf

    Full Text Available The current notion that cortico-striato-thalamo-cortical circuits are involved in the pathophysiology of obsessive-compulsive disorder (OCD has instigated the search for the most suitable target for deep brain stimulation (DBS. However, despite extensive research, uncertainty about the ideal target remains with many structures being underexplored. The aim of this report is to address a new target for DBS, the medial dorsal (MD and the ventral anterior (VA nucleus of the thalamus, which has thus far received little attention in the treatment of OCD.In this retrospective trial, four patients (three female, one male aged 31-48 years, suffering from therapy-refractory OCD underwent high-frequency DBS of the MD and VA. In two patients (de novo group the thalamus was chosen as a primary target for DBS, whereas in two patients (rescue DBS group lead implantation was performed in a rescue DBS attempt following unsuccessful primary stimulation.Continuous thalamic stimulation yielded no significant improvement in OCD symptom severity. Over the course of thalamic DBS symptoms improved in only one patient who showed "partial response" on the Yale-Brown Obsessive Compulsive (Y-BOCS Scale. Beck Depression Inventory scores dropped by around 46% in the de novo group; anxiety symptoms improved by up to 34%. In the de novo DBS group no effect of DBS on anxiety and mood was observable.MD/VA-DBS yielded no adequate alleviation of therapy-refractory OCD, the overall strategy in targeting MD/VA as described in this paper can thus not be recommended in DBS for OCD. The magnocellular portion of MD (MDMC, however, might prove a promising target in the treatment of mood related and anxiety disorders.

  18. Deep Brain Stimulation of Medial Dorsal and Ventral Anterior Nucleus of the Thalamus in OCD: A Retrospective Case Series.

    Science.gov (United States)

    Maarouf, Mohammad; Neudorfer, Clemens; El Majdoub, Faycal; Lenartz, Doris; Kuhn, Jens; Sturm, Volker

    2016-01-01

    The current notion that cortico-striato-thalamo-cortical circuits are involved in the pathophysiology of obsessive-compulsive disorder (OCD) has instigated the search for the most suitable target for deep brain stimulation (DBS). However, despite extensive research, uncertainty about the ideal target remains with many structures being underexplored. The aim of this report is to address a new target for DBS, the medial dorsal (MD) and the ventral anterior (VA) nucleus of the thalamus, which has thus far received little attention in the treatment of OCD. In this retrospective trial, four patients (three female, one male) aged 31-48 years, suffering from therapy-refractory OCD underwent high-frequency DBS of the MD and VA. In two patients (de novo group) the thalamus was chosen as a primary target for DBS, whereas in two patients (rescue DBS group) lead implantation was performed in a rescue DBS attempt following unsuccessful primary stimulation. Continuous thalamic stimulation yielded no significant improvement in OCD symptom severity. Over the course of thalamic DBS symptoms improved in only one patient who showed "partial response" on the Yale-Brown Obsessive Compulsive (Y-BOCS) Scale. Beck Depression Inventory scores dropped by around 46% in the de novo group; anxiety symptoms improved by up to 34%. In the de novo DBS group no effect of DBS on anxiety and mood was observable. MD/VA-DBS yielded no adequate alleviation of therapy-refractory OCD, the overall strategy in targeting MD/VA as described in this paper can thus not be recommended in DBS for OCD. The magnocellular portion of MD (MDMC), however, might prove a promising target in the treatment of mood related and anxiety disorders.

  19. Catatonia after deep brain stimulation successfully treated with lorazepam and right unilateral electroconvulsive therapy: a case report.

    Science.gov (United States)

    Quinn, Davin K; Rees, Caleb; Brodsky, Aaron; Deligtisch, Amanda; Evans, Daniel; Khafaja, Mohamad; Abbott, Christopher C

    2014-09-01

    The presence of a deep brain stimulator (DBS) in a patient who develops neuropsychiatric symptoms poses unique diagnostic challenges and questions for the treating psychiatrist. Catatonia has been described only once, during DBS implantation, but has not been reported in a successfully implanted DBS patient. We present a case of a patient with bipolar disorder and renal transplant who developed catatonia after DBS for essential tremor. The patient was successfully treated for catatonia with lorazepam and electroconvulsive therapy after careful diagnostic workup. Electroconvulsive therapy has been successfully used with DBS in a handful of cases, and certain precautions may help reduce potential risk. Catatonia is a rare occurrence after DBS but when present may be safely treated with standard therapies such as lorazepam and electroconvulsive therapy.

  20. Deep brain stimulation of nucleus accumbens region in alcoholism affects reward processing.

    Science.gov (United States)

    Heldmann, Marcus; Berding, Georg; Voges, Jürgen; Bogerts, Bernhard; Galazky, Imke; Müller, Ulf; Baillot, Gunther; Heinze, Hans-Jochen; Münte, Thomas F

    2012-01-01

    The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling paradigm was investigated using H(2)[(15)O]-PET (positron emission tomography) in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control.

  1. REPETITIVE TMS ON LEFT CEREBELLUM AFFECTS IMPULSIVITY IN BORDERLINE PERSONALITY DISORDER : A PILOT STUDY

    Directory of Open Access Journals (Sweden)

    Giulia Zelda De Vidovich

    2016-12-01

    Full Text Available The borderline personality disorder (BPD is characterized by a severe pattern of instability in emotional regulation, interpersonal relationships, identity, and impulse control. These functions are related to the prefrontal cortex (PFC, and since PFC shows a rich anatomical connectivity with the cerebellum, the functionality of the cerebellar-PFC axis may impact on BPD. In this study we investigated the potential involvement of cerebello-thalamo-cortical connections in impulsive reactions through a pre/post stimulation design. BPD patients (n=8 and healthy controls (HC; n=9 performed an Affective Go/No-Go task (AGN assessing information processing biases for positive and negative stimuli before and after repetitive transcranial magnetic stimulation (rTMS; 1 Hz/10 min, 80% RMT over the left lateral cerebellum. The AGN task consisted of four blocks requiring associative capacities of increasing complexity. BPD patients performed significantly worse than the HC, especially when cognitive demands was high (3rd and 4th block, but their performace approached that of HC after rTMS (rTMS was almost ineffective in HC. The more evident effect of rTMS in complex associative tasks might have occurred since the cerebellum is deeply involved in integration and coordination of different stimuli. We hypothesize that, in BPD patients, cerebello-thalamo-cortical communication is altered, resulting in emotional dysregulation and disturbed impulse control. The rTMS over the left cerebellum might have interfered with existing functional connections exerting a facilitating effect on PFC control.

  2. Safety of primed repetitive transcranial magnetic stimulation and modified constraint-induced movement therapy in a randomized controlled trial in pediatric hemiparesis.

    Science.gov (United States)

    Gillick, Bernadette T; Krach, Linda E; Feyma, Tim; Rich, Tonya L; Moberg, Kelli; Menk, Jeremiah; Cassidy, Jessica; Kimberley, Teresa; Carey, James R

    2015-04-01

    To investigate the safety of combining a 6-Hz primed low-frequency repetitive transcranial magnetic stimulation (rTMS) intervention in the contralesional hemisphere with a modified constraint-induced movement therapy (mCIMT) program in children with congenital hemiparesis. Phase 1 randomized, double-blinded, placebo-controlled pretest/posttest trial. University academic facility and pediatric specialty hospital. Subjects (N = 19; age range, 8-17 y) with congenital hemiparesis caused by ischemic stroke or periventricular leukomalacia. No subject withdrew because of adverse events. All subjects included completed the study. Subjects were randomized to 1 of 2 groups: either real rTMS plus mCIMT (n = 10) or sham rTMS plus mCIMT (n = 9). Adverse events, physician assessment, ipsilateral hand function, stereognosis, cognitive function, subject report of symptoms assessment, and subject questionnaire. No major adverse events occurred. Minor adverse events were found in both groups. The most common events were headaches (real: 50%, sham: 89%; P = .14) and cast irritation (real: 30%, sham: 44%; P = .65). No differences between groups in secondary cognitive and unaffected hand motor measures were found. Primed rTMS can be used safely with mCIMT in congenital hemiparesis. We provide new information on the use of rTMS in combination with mCIMT in children. These findings could be useful in research and future clinical applications in advancing function in congenital hemiparesis. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Repetitive transcranial magnetic stimulation of the supplementary motor area in treatment-resistant obsessive-compulsive disorder: An open-label pilot study.

    Science.gov (United States)

    Lee, Young-Ji; Koo, Bon-Hoon; Seo, Wan-Seok; Kim, Hye-Geum; Kim, Ji-Yean; Cheon, Eun-Jin

    2017-10-01

    Obsessive-compulsive disorder (OCD) is a severely distressing disorder represented by obsessions and compulsions. A significant proportion of OCD patients fail to improve with conventional treatment methods. Repetitive transcranial magnetic stimulation (rTMS) has been proposed as an alternative for OCD treatment. Functional neuroimaging studies indicate that OCD is associated with increased activity in the supplementary motor area (SMA), a region that plays an important role in the pathophysiology of this disorder. In this study, we assessed the efficacy of augmentation with 1Hz rTMS over the SMA in treatment-resistant OCD patients. The participants received 1Hz rTMS over the SMA in 20 daily sessions for 4weeks. We observed significant reduction in Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score at the 4th week of the treatment. Reduction in compulsion contributed to the reduction of global Y-BOCS whereas there was no significant reduction in obsession. Clinical global impression-global improvement also showed significant change at the 2nd and 4th week of the treatment. No additional significant changes or significant adverse effects were seen. These findings suggest that 1Hz rTMS over the SMA can be an efficient and safe add-on therapeutic method in treatment-resistant patients with OCD. Further controlled studies in larger samples are required to confirm the effect of 1Hz rTMS over the SMA in OCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Metabolic changes of cerebrum by repetitive transcranial magnetic stimulation over lateral cerebellum: a study with FDG PET.

    Science.gov (United States)

    Cho, Sang Soo; Yoon, Eun Jin; Bang, Sung Ae; Park, Hyun Soo; Kim, Yu Kyeong; Strafella, Antonio P; Kim, Sang Eun

    2012-09-01

    To better understand the functional role of cerebellum within the large-scale cerebellocerebral neural network, we investigated the changes of neuronal activity elicited by cerebellar repetitive transcranial magnetic stimulation (rTMS) using (18)F-fluorodeoxyglucose (FDG) and positron emission tomography (PET). Twelve right-handed healthy volunteers were studied with brain FDG PET under two conditions: active rTMS of 1 Hz frequency over the left lateral cerebellum and sham stimulation. Compared to the sham condition, active rTMS induced decreased glucose metabolism in the stimulated left lateral cerebellum, the areas known to be involved in voluntary motor movement (supplementary motor area and posterior parietal cortex) in the right cerebral hemisphere, and the areas known to be involved in cognition and emotion (orbitofrontal, medial frontal, and anterior cingulate gyri) in the left cerebral hemisphere. Increased metabolism was found in cognition- and language-related brain regions such as the left inferior frontal gyrus including Broca's area, bilateral superior temporal gyri including Wernicke's area, and bilateral middle temporal gyri. Left cerebellar rTMS also led to increased metabolism in the left cerebellar dentate nucleus and pons. These results demonstrate that rTMS over the left lateral cerebellum modulates not only the target region excitability but also excitability of remote, but interconnected, motor-, language-, cognition-, and emotion-related cerebral regions. They provide further evidence that the cerebellum is involved not only in motor-related functions but also in higher cognitive abilities and emotion through the large-scale cerebellocereberal neural network.

  5. Repetitive TMS on Left Cerebellum Affects Impulsivity in Borderline Personality Disorder: A Pilot Study.

    Science.gov (United States)

    De Vidovich, Giulia Zelda; Muffatti, Riccardo; Monaco, Jessica; Caramia, Nicoletta; Broglia, Davide; Caverzasi, Edgardo; Barale, Francesco; D'Angelo, Egidio

    2016-01-01

    The borderline personality disorder (BPD) is characterized by a severe pattern of instability in emotional regulation, interpersonal relationships, identity and impulse control. These functions are related to the prefrontal cortex (PFC), and since PFC shows a rich anatomical connectivity with the cerebellum, the functionality of the cerebellar-PFC axis may impact on BPD. In this study, we investigated the potential involvement of cerebello-thalamo-cortical connections in impulsive reactions through a pre/post stimulation design. BPD patients ( n = 8) and healthy controls (HC; n = 9) performed an Affective Go/No-Go task (AGN) assessing information processing biases for positive and negative stimuli before and after repetitive transcranial magnetic stimulation (rTMS; 1 Hz/10 min, 80% resting motor threshold (RMT) over the left lateral cerebellum. The AGN task consisted of four blocks requiring associative capacities of increasing complexity. BPD patients performed significantly worse than the HC, especially when cognitive demands were high (third and fourth block), but their performance approached that of HC after rTMS (rTMS was almost ineffective in HC). The more evident effect of rTMS in complex associative tasks might have occurred since the cerebellum is deeply involved in integration and coordination of different stimuli. We hypothesize that in BPD patients, cerebello-thalamo-cortical communication is altered, resulting in emotional dysregulation and disturbed impulse control. The rTMS over the left cerebellum might have interfered with existing functional connections exerting a facilitating effect on PFC control.

  6. State of the Art for Deep Brain Stimulation Therapy in Movement Disorders: A Clinical and Technological Perspective.

    Science.gov (United States)

    Wagle Shukla, Aparna; Okun, Michael S

    2016-01-01

    Deep brain stimulation (DBS) therapy is a widely used brain surgery that can be applied for many neurological and psychiatric disorders. DBS is American Food and Drug Administration approved for medication refractory Parkinson's disease, essential tremor and dystonia. Although DBS has shown consistent success in many clinical trials, the therapy has limitations and there are well-recognized complications. Thus, only carefully selected patients are ideal candidates for this surgery. Over the last two decades, there have been significant advances in clinical knowledge on DBS. In addition, the surgical techniques and technology related to DBS has been rapidly evolving. The goal of this review is to describe the current status of DBS in the context of movement disorders, outline the mechanisms of action for DBS in brief, discuss the standard surgical and imaging techniques, discuss the patient selection and clinical outcomes in each of the movement disorders, and finally, introduce the recent advancements from a clinical and technological perspective.

  7. Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: a randomised trial.

    Science.gov (United States)

    Kirton, Adam; Chen, Robert; Friefeld, Sharon; Gunraj, Carolyn; Pontigon, Anne-Marie; Deveber, Gabrielle

    2008-06-01

    Arterial ischaemic stroke (AIS) can cause disabling hemiparesis in children. We aimed to test whether contralesional, inhibitory repetitive transcranial magnetic stimulation (rTMS) could affect interhemispheric inhibition to improve hand function in chronic subcortical paediatric AIS. Patients were eligible for this parallel, randomised trial if they were in the SickKids Children's Stroke Program and had subcortical AIS more than 2 years previously, had transcallosal sparing, were more than 7 years of age, had hand motor impairment, had no seizures or dyskinesia, and were taking no drugs that alter cortical excitability. Patients were paired for age and weakness and were randomised within each pair to sham treatment or inhibitory, low-frequency rTMS over contralesional motor cortex (20 min, 1200 stimuli) once per day for 8 days. An occupational therapist did standardised tests of hand function at days 1 (baseline), 5, 10, and 17 (1 week post-treatment), and the primary outcomes were changes in grip strength and the Melbourne assessment of upper extremity function (MAUEF) between baseline and day 10. Patients, parents, and occupational therapists were blinded to treatment allocation. Analysis was per protocol. Ten patients with paediatric stroke were enrolled (median age 13.25 [IQR 10.08-16.78] years, mean time post-stroke 6.33 [SD 3.56] years): four with mild weakness, two with moderate weakness, and four with severe weakness. A repeated-measures ANOVA showed a significant interaction between time and the effect of treatment on grip strength (p=0.03). At day 10, grip strength was 2.28 (SD 1.01) kg greater than baseline in the rTMS group and 2.92 (1.20) kg less than baseline in the sham group (p=0.009). Benefits in mean grip strength persisted at day 17 (2.63 [0.56] kg greater than baseline with rTMS and 1.00 [0.70] kg less than baseline with sham treatment; p=0.01). Day 10 MAUEF score improved by more in the rTMS group than in the sham group (7.25 [3.8] vs 0.79 [1

  8. Adjunctive treatment with transcranial magnetic stimulation in treatment resistant depression: a randomized, double-blind, sham-controlled study

    Directory of Open Access Journals (Sweden)

    Qiang LIU

    2011-02-01

    Full Text Available Background: High-frequency repetitive transcranial magnetic stimulation (rTMS to the left prefrontal cortex is a promising antidepressant treatment but the appropriate duration of treatment andits effect on cognitive symptoms in treatment resistant patients is uncertain.Hypotheis: Patients with treatment resistant depression on standard antidepressant medication who receive four weeks of adjunctive treatment with high-frequency rTMS to the left prefrontal cortex will have better clinical outcomes and better cognitive functioning than those who receive sham rTMS treatments.Methods: Thirty patients with treatment resistant depression (defined as failure to respond to two or more antidepressants of different classes administered for at least 6 weeks at or above two-thirds of the recommended maximum dose receiving selective serotonin reuptake inhibitors or serotonin-norepinephrine reuptake inhibitors wererandomly assigned to receive adjundive treatment with either real rTMS (n=15 or sham rTMS (n=15 5 times a week for 4 conseculive weeks. Blinded pre-post evaluations were conducted using the 17-item Hamilton Depression Rating Scale (HAMD, the Montgomery-Asberg Depression Rating Scale (MADRS, the severity of illness measure from the Clinical Global Impression Rating scale(CGI-S, the Wechsler Adult Intelligence ScaIe (WAIS, the Wechsler Memory Scale (WMS, and the Wisconsjn Card Sorting Test(WC5T.Results:14 subjects from each group completed the study. There was no significant difference in the HAMD total scores between the two groups after 2 weeks of treatment but after 4 weeks of treatment the mean percentage drop in the HAMD total score was significantly greater in the real rTMS group (49%, SD=19% than in the sham rTMS group(29%, SD=25%, with a mean difference of 20% [95%CI=3%-37%;t26=2.42; P=0.023]. At 4 weeks the mean (SD reduction in the MADRS total score was also greater in the real rTMS group [47%(23% vs 16%(40

  9. Me, Myself and My Brain Implant: Deep Brain Stimulation Raises Questions of Personal Authenticity and Alienation.

    Science.gov (United States)

    Kraemer, Felicitas

    2013-01-01

    In this article, I explore select case studies of Parkinson patients treated with deep brain stimulation (DBS) in light of the notions of alienation and authenticity. While the literature on DBS has so far neglected the issues of authenticity and alienation, I argue that interpreting these cases in terms of these concepts raises new issues for not only the philosophical discussion of neuro-ethics of DBS, but also for the psychological and medical approach to patients under DBS. In particular, I suggest that the experience of alienation and authenticity varies from patient to patient with DBS. For some, alienation can be brought about by neurointerventions because patients no longer feel like themselves. But, on the other hand, it seems alienation can also be cured by DBS as other patients experience their state of mind as authentic under treatment and retrospectively regard their former lives without stimulation as alienated. I argue that we must do further research on the relevance of authenticity and alienation to patients treated with DBS in order to gain a deeper philosophical understanding, and to develop the best evaluative criterion for the behavior of DBS patients.

  10. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.

    Science.gov (United States)

    Gunalan, Kabilar; Chaturvedi, Ashutosh; Howell, Bryan; Duchin, Yuval; Lempka, Scott F; Patriat, Remi; Sapiro, Guillermo; Harel, Noam; McIntyre, Cameron C

    2017-01-01

    Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports. Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM) and predict the response of the hyperdirect pathway to clinical stimulation. Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python) enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD). This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution. Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings. Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.

  11. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.

    Directory of Open Access Journals (Sweden)

    Kabilar Gunalan

    Full Text Available Deep brain stimulation (DBS is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports.Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM and predict the response of the hyperdirect pathway to clinical stimulation.Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD. This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution.Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings.Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.

  12. Validation and Application of a Dried Blood Spot Ceftriaxone Assay

    Science.gov (United States)

    Page-Sharp, Madhu; Nunn, Troy; Salman, Sam; Moore, Brioni R.; Batty, Kevin T.; Davis, Timothy M. E.

    2015-01-01

    Dried blood spot (DBS) antibiotic assays can facilitate pharmacokinetic/pharmacodynamic (PK/PD) studies in situations where venous blood sampling is logistically and/or ethically problematic. In this study, we aimed to develop, validate, and apply a DBS ceftriaxone assay. A liquid chromatography-tandem mass spectroscopy (LC-MS/MS) DBS ceftriaxone assay was assessed for matrix effects, process efficiency, recovery, variability, and limits of quantification (LOQ) and detection (LOD). The effects of hematocrit, protein binding, red cell partitioning, and chad positioning were evaluated, and thermal stability was assessed. Plasma, DBS, and cell pellet ceftriaxone concentrations in 10 healthy adults were compared, and plasma concentration-time profiles of DBS and plasma ceftriaxone were incorporated into population PK models. The LOQ and LOD for ceftriaxone in DBS were 0.14 mg/liter and 0.05 mg/liter, respectively. Adjusting for hematocrit, red cell partitioning, and relative recovery, DBS-predicted plasma concentrations were comparable to measured plasma concentrations (r > 0.95, P 95% initial concentrations in DBS for 14 h, 35 h, 30 days, 21 weeks, and >11 months, respectively. The present DBS ceftriaxone assay is robust and can be used as a surrogate for plasma concentrations to provide valid PK and PK/PD data in a variety of clinical situations, including in studies of young children and of those in remote or resource-poor settings. PMID:26438505

  13. Deep Brain Stimulation of the Internal Globus Pallidus Improves Response Initiation and Proactive Inhibition in Patients With Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Yixin Pan

    2018-04-01

    Full Text Available Background: Impulse control disorder is not uncommon in patients with Parkinson’s disease (PD who are treated with dopamine replacement therapy and subthalamic deep brain stimulation (DBS. Internal globus pallidus (GPi-DBS is increasingly used, but its role in inhibitory control has rarely been explored. In this study, we evaluated the effect of GPi-DBS on inhibitory control in PD patients.Methods: A stop-signal paradigm was used to test response initiation, proactive inhibition, and reactive inhibition. The subjects enrolled in the experiment were 27 patients with PD, of whom 13 had received only drug treatment and 14 had received bilateral GPi-DBS in addition to conventional medical treatment and 15 healthy individuals.Results: Our results revealed that with GPi-DBS on, patients with PD showed significantly faster responses than the other groups in trials where it was certain that no stop signal would be presented. Proactive inhibition was significantly different in the surgical patients with GPi-DBS on versus when GPi-DBS was off, in surgical patients with GPi-DBS on versus drug-treated patients, and in healthy controls versus drug-treated patients. Correlation analyses revealed that when GPi-DBS was on, there was a statistically significant moderate positive relationship between proactive inhibition and dopaminergic medication.Conclusion: GPi-DBS may lead to an increase in response initiation speed and improve the dysfunctional proactive inhibitory control observed in PD patients. Our results may help us to understand the role of the GPi in cortical-basal ganglia circuits.

  14. Surgical neuroanatomy and programming in deep brain stimulation for obsessive compulsive disorder.

    Science.gov (United States)

    Morishita, Takashi; Fayad, Sarah M; Goodman, Wayne K; Foote, Kelly D; Chen, Dennis; Peace, David A; Rhoton, Albert L; Okun, Michael S

    2014-06-01

    Deep brain stimulation (DBS) has been established as a safe, effective therapy for movement disorders (Parkinson's disease, essential tremor, etc.), and its application is expanding to the treatment of other intractable neuropsychiatric disorders including depression and obsessive-compulsive disorder (OCD). Several published studies have supported the efficacy of DBS for severely debilitating OCD. However, questions remain regarding the optimal anatomic target and the lack of a bedside programming paradigm for OCD DBS. Management of OCD DBS can be highly variable and is typically guided by each center's individual expertise. In this paper, we review the various approaches to targeting and programming for OCD DBS. We also review the clinical experience for each proposed target and discuss the relevant neuroanatomy. A PubMed review was performed searching for literature on OCD DBS and included all articles published before March 2012. We included all available studies with a clear description of the anatomic targets, programming details, and the outcomes. Six different DBS approaches were identified. High-frequency stimulation with high voltage was applied in most cases, and predictive factors for favorable outcomes were discussed in the literature. DBS remains an experimental treatment for medication refractory OCD. Target selection and programming paradigms are not yet standardized, though an improved understanding of the relationship between the DBS lead and the surrounding neuroanatomic structures will aid in the selection of targets and the approach to programming. We propose to form a registry to track OCD DBS cases for future clinical study design. © 2013 International Neuromodulation Society.

  15. Acute changes in mood induced by subthalamic deep brain stimulation in Parkinson disease are modulated by psychiatric diagnosis.

    Science.gov (United States)

    Eisenstein, Sarah A; Dewispelaere, William B; Campbell, Meghan C; Lugar, Heather M; Perlmutter, Joel S; Black, Kevin J; Hershey, Tamara

    2014-01-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) reduces Parkinson disease (PD) motor symptoms but has unexplained, variable effects on mood. The study tested the hypothesis that pre-existing mood and/or anxiety disorders or increased symptom severity negatively affects mood response to STN DBS. Thirty-eight PD participants with bilateral STN DBS and on PD medications were interviewed with Structured Clinical Interview for DSM-IV-TR Axis I Disorders (SCID) and completed Beck Depression Inventory (BDI) and Spielberger State Anxiety Inventory (SSAI) self-reports. Subsequently, during OFF and optimal ON (clinical settings) STN DBS conditions and while off PD medications, motor function was assessed with the United Parkinson Disease Rating Scale (UPDRS, part III), and participants rated their mood with Visual Analogue Scales (VAS), and again completed SSAI. VAS mood variables included anxiety, apathy, valence and emotional arousal. STN DBS improved UPDRS scores and mood. Unexpectedly, PD participants diagnosed with current anxiety or mood disorders experienced greater STN DBS-induced improvement in mood than those diagnosed with remitted disorders or who were deemed as having never met threshold criteria for diagnosis. BDI and SSAI scores did not modulate mood response to STN DBS, indicating that clinical categorical diagnosis better differentiates mood response to STN DBS than self-rated symptom severity. SCID diagnosis, BDI and SSAI scores did not modulate motor response to STN DBS. PD participants diagnosed with current mood or anxiety disorders are more sensitive to STN DBS-induced effects on mood, possibly indicating altered basal ganglia circuitry in this group. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A network analysis of ¹⁵O-H₂O PET reveals deep brain stimulation effects on brain network of Parkinson's disease.

    Science.gov (United States)

    Park, Hae-Jeong; Park, Bumhee; Kim, Hae Yu; Oh, Maeng-Keun; Kim, Joong Il; Yoon, Misun; Lee, Jong Doo; Chang, Jin Woo

    2015-05-01

    As Parkinson's disease (PD) can be considered a network abnormality, the effects of deep brain stimulation (DBS) need to be investigated in the aspect of networks. This study aimed to examine how DBS of the bilateral subthalamic nucleus (STN) affects the motor networks of patients with idiopathic PD during motor performance and to show the feasibility of the network analysis using cross-sectional positron emission tomography (PET) images in DBS studies. We obtained [¹⁵O]H₂O PET images from ten patients with PD during a sequential finger-to-thumb opposition task and during the resting state, with DBS-On and DBS-Off at STN. To identify the alteration of motor networks in PD and their changes due to STN-DBS, we applied independent component analysis (ICA) to all the cross-sectional PET images. We analysed the strength of each component according to DBS effects, task effects and interaction effects. ICA blindly decomposed components of functionally associated distributed clusters, which were comparable to the results of univariate statistical parametric mapping. ICA further revealed that STN-DBS modifies usage-strengths of components corresponding to the basal ganglia-thalamo-cortical circuits in PD patients by increasing the hypoactive basal ganglia and by suppressing the hyperactive cortical motor areas, ventrolateral thalamus and cerebellum. Our results suggest that STN-DBS may affect not only the abnormal local activity, but also alter brain networks in patients with PD. This study also demonstrated the usefulness of ICA for cross-sectional PET data to reveal network modifications due to DBS, which was not observable using the subtraction method.

  17. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities.

    Science.gov (United States)

    Giacino, Joseph; Fins, Joseph J; Machado, Andre; Schiff, Nicholas D

    2012-07-01

    Central thalamic deep brain stimulation (CT-DBS) may have therapeutic potential to improve behavioral functioning in patients with severe traumatic brain injury (TBI), but its use remains experimental. Current research suggests that the central thalamus plays a critical role in modulating arousal during tasks requiring sustained attention, working memory, and motor function. The aim of the current article is to review the methodology used in the CT-DBS protocol developed by our group, outline the challenges we encountered and offer suggestions for future DBS trials in this population. RATIONAL FOR CT-DBS IN TBI:  CT-DBS may therefore be able to stimulate these functions by eliciting action potentials that excite thalamocortical and thalamostriatal pathways. Because patients in chronic minimally conscious state (MCS) have a very low probability of regaining functional independence, yet often have significant sparing of cortical connectivity, they may represent a particularly appropriate target group for CT-DBS. PIlOT STUDY RESULTS:  We have conducted a series of single-subject studies of CT-DBS in patients with chronic posttraumatic MCS, with 24-month follow-up. Outcomes were measured using the Coma Recovery Scale-Revised as well as a battery of secondary outcome measures to capture more granular changes. Findings from our index case suggest that CT-DBS can significantly increase functional communication, motor performance, feeding, and object naming in the DBS on state, with performance in some domains remaining above baseline even after DBS was turned off. The use of CT-DBS in patients in MCS, however, presents challenges at almost every step, including during surgical planning, outcome measurement, and postoperative care. Additionally, given the difficulties of obtaining informed consent from patients in MCS and the experimental nature of the treatment, a robust, scientifically rooted ethical framework is resented for pursuing this line of work. © 2012

  18. Dried blood spot HIV-1 RNA quantification using open real-time systems in South Africa and Burkina Faso.

    Science.gov (United States)

    Viljoen, Johannes; Gampini, Sandrine; Danaviah, Sivapragashini; Valéa, Diane; Pillay, Sureshnee; Kania, Dramane; Méda, Nicolas; Newell, Marie-Louise; Van de Perre, Philippe; Rouet, François

    2010-11-01

    There is an urgent need to assess the accuracy/feasibility of using dried blood spots (DBS) for monitoring of HIV-1 viral load in resource-limited settings. A total of 892 DBS from HIV-1-positive pregnant women and their neonates enrolled in the Kesho Bora prevention of mother-to-child transmission trial conducted in Durban (South Africa) and Bobo-Dioulasso (Burkina Faso) between May 2005 and July 2008 were tested for HIV-1 RNA. The combination Nuclisens extraction method (BioMérieux)/Generic HIV Viral Load assay (Biocentric) was performed using one DBS (in Durban) versus 2 DBS (in Bobo-Dioulasso) on 2 distinct open real-time polymerase chain reaction instruments. DBS HIV-1 RNA results were compared with plasma HIV-1 RNA and HIV serology results used as the gold standards. The limits of detection of assays on DBS were 3100 and 1550 copies per milliliter in Durban and Bobo-Dioulasso, respectively. DBS HIV-1 RNA values correlated significantly with plasma levels (n = 327; R = 0.7351) and were uniformly distributed according to duration of DBS storage at -20°C (median duration, 280 days). For early infant diagnosis, the sensitivity and specificity were 100% (95% confidence interval: 97.2 to 100.0 and 96.5 to 100.0, respectively). HIV-1 viral load kinetics in DNase-pretreated DBS were similar to those obtained in plasma specimens among 13 patients receiving antiretroviral treatment. HIV-1 RNA findings from serial infant DBS collected prospectively (n = 164) showed 100% concordance with HIV serology at 18 months of life. Our findings strongly advocate the implementation of DBS HIV-1 RNA testing in remote areas from low-income and middle-income countries.

  19. Disruption in proprioception from long-term thalamic deep brain stimulation: A pilot study

    Directory of Open Access Journals (Sweden)

    Jennifer A Semrau

    2015-05-01

    Full Text Available Deep brain stimulation (DBS is an excellent treatment for tremor and is generally thought to be reversible by turning off stimulation. For tremor, DBS is implanted in the ventrointermedius (Vim nucleus of the thalamus, a region that relays proprioceptive information for movement sensation (kinaesthesia. Gait disturbances have been observed with bilateral Vim DBS, but the long-term effects on proprioceptive processing are unknown. We aimed to determine whether Vim DBS surgical implantation or stimulation leads to proprioceptive deficits in the upper limb. We assessed two groups of tremor subjects on measures of proprioception (kinaesthesia, position sense and motor function using a robotic exoskeleton. In the first group (Surgery, we tested patients before and after implantation of Vim DBS, but before DBS was turned on to determine if proprioceptive deficits were inherent to tremor or caused by DBS implantation. In the second group (Stim, we tested subjects with chronically implanted Vim DBS ON and OFF stimulation. Compared to controls, there were no proprioceptive deficits before or after DBS implantation in the Surgery group. Surprisingly, those that received chronic long-term stimulation (LT-stim, 3-10 years displayed significant proprioceptive deficits ON and OFF stimulation not present in subjects with chronic short-term stimulation (ST-stim, 0.5-2 years. LT-stim had significantly larger variability and reduced workspace area during the position sense assessment. During the kinesthetic assessment, LT-stim made significantly larger directional errors and consistently underestimated the speed of the robot, despite generating normal movement speeds during motor assessment. Chronic long-term Vim DBS may potentially disrupt proprioceptive processing, possibly inducing irreversible plasticity in the Vim nucleus and/or its network connections. Our findings in the upper limb may help explain some of the gait disturbances seen by others following Vim

  20. Field study of dried blood spot specimens for HIV-1 drug resistance genotyping.

    Science.gov (United States)

    Parry, C M; Parkin, N; Diallo, K; Mwebaza, S; Batamwita, R; DeVos, J; Bbosa, N; Lyagoba, F; Magambo, B; Jordan, M R; Downing, R; Zhang, G; Kaleebu, P; Yang, C; Bertagnolio, S

    2014-08-01

    Dried blood spots (DBS) are an alternative specimen type for HIV drug resistance genotyping in resource-limited settings. Data relating to the impact of DBS storage and shipment conditions on genotyping efficiency under field conditions are limited. We compared the genotyping efficiencies and resistance profiles of DBS stored and shipped at different temperatures to those of plasma specimens collected in parallel from patients receiving antiretroviral therapy in Uganda. Plasma and four DBS cards from anti-coagulated venous blood and a fifth card from finger-prick blood were prepared from 103 HIV patients with a median viral load (VL) of 57,062 copies/ml (range, 1,081 to 2,964,191). DBS were stored at ambient temperature for 2 or 4 weeks or frozen at -80 °C and shipped from Uganda to the United States at ambient temperature or frozen on dry ice for genotyping using a broadly sensitive in-house method. Plasma (97.1%) and DBS (98.1%) stored and shipped frozen had similar genotyping efficiencies. DBS stored frozen (97.1%) or at ambient temperature for 2 weeks (93.2%) and shipped at ambient temperature also had similar genotyping efficiencies. Genotyping efficiency was reduced for DBS stored at ambient temperature for 4 weeks (89.3%, P = 0.03) or prepared from finger-prick blood and stored at ambient temperature for 2 weeks (77.7%, P blood and handled similarly. Resistance profiles were similar between plasma and DBS specimens. This report delineates the optimal DBS collection, storage, and shipping conditions and opens a new avenue for cost-saving ambient-temperature DBS specimen shipments for HIV drug resistance (HIVDR) surveillances in resource-limited settings. Copyright © 2014, American Society for Microbiology. All Rights Reserved.