WorldWideScience

Sample records for dbd plasma treatment

  1. Reel-to-Reel Atmospheric Pressure Dielectric Barrier Discharge (DBD Plasma Treatment of Polypropylene Films

    Directory of Open Access Journals (Sweden)

    Lukas JW Seidelmann

    2017-03-01

    Full Text Available Atmospheric pressure plasma treatment of the surface of a polypropylene film can significantly increase its surface energy and, thereby improve the printability of the film. A laboratory-scale dielectric barrier discharge (DBD system has therefore been developed, which simulates the electrode configuration and reel-to-reel web transport mechanism used in a typical industrial-scale system. By treating the polypropylene in a nitrogen discharge, we have shown that the water contact angle could be reduced by as much as 40° compared to the untreated film, corresponding to an increase in surface energy of 14 mNm−1. Ink pull-off tests showed that the DBD plasma treatment resulted in excellent adhesion of solvent-based inks to the polypropylene film.

  2. Preparation of chitosan-coated polyethylene packaging films by DBD plasma treatment.

    Science.gov (United States)

    Theapsak, Siriporn; Watthanaphanit, Anyarat; Rujiravanit, Ratana

    2012-05-01

    Polyethylene (PE) packaging films were coated with chitosan in order to introduce the antibacterial activity to the films. To augment the interaction between the two polymers, we modified the surfaces of the PE films by dielectric barrier discharge (DBD) plasma before chitosan coating. After that the plasma-treated PE films were immersed in chitosan acetate solutions with different concentrations of chitosan. The optimum plasma treatment time was 10 s as determined from contact angle measurement. Effect of the plasma treatment on the surface roughness of the PE films was investigated by atomic force microscope (AFM) while the occurrence of polar functional groups was observed by X-ray photoelectron spectroscope (XPS) and Fourier transformed infrared spectroscope (FTIR). It was found that the surface roughness as well as the occurrence of oxygen-containing functional groups (i.e., C═O, C-O, and -OH) of the plasma-treated PE films increased from those of the untreated one, indicating that the DBD plasma enhanced hydrophilicity of the PE films. The amounts of chitosan coated on the PE films were determined after washing the coated films in water for several number of washing cycles prior to detection of the chitosan content by the Kjaldahl method. The amounts of chitosan coated on the PE films were constant after washing for three times and the chitosan-coated PE films exhibited appreciable antibacterial activity against Escherichia coli and Staphylococcus aureus. Hence, the obtained chitosan-coated PE films could be a promising candidate for antibacterial food packaging.

  3. The influence of surface DBD plasma treatment on the adhesion of coatings to high-tech textiles

    Czech Academy of Sciences Publication Activity Database

    Šimor, M.; Creyghton, Y.; Wypton, A.; Zemek, Josef

    2010-01-01

    Roč. 24, č. 1 (2010), s. 77-97 ISSN 0169-4243 Institutional research plan: CEZ:AV0Z10100521 Keywords : adhesion * plasma treatment * surface DBD * composite * surface modification * XPS * PET Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.980, year: 2010

  4. Inactivation of Escherichia coli and Staphylococcus aureus on contaminated perilla leaves by Dielectric Barrier Discharge (DBD) plasma treatment.

    Science.gov (United States)

    Ji, Sang Hye; Ki, Se Hoon; Ahn, Ji Ho; Shin, Jae Ho; Hong, Eun Jeong; Kim, Yun Ji; Choi, Eun Ha

    2018-02-15

    This study focused on sterilization methods for the reduction of microorganisms on perilla leaves by cylinder type Dielectric Barrier Discharge (DBD) plasma with underwater bubbler treatment. S. aureus and E. coli in a suspension were reduced to less than 3.4 and 0.5 log CFU/ml after the plasma treatment for 3 min, respectively. On the perilla leaves, they were also reduced to 4.8 and 1.6 log CFU/ml after the plasma treatment, respectively. The S. aureus and E. coli bacterial cell wall was damaged by the plasma treatment evident by scanning electron microscopic analysis. The observed infrared bands of the FTIR spectra demonstrated changes in protein, lipid, polysaccharide, polyphosphate group and other carbohydrate functionalities of plasma treated bacteria and untreated bacterial cell membranes. The degradation of the constituent bonds of the bacterial cell membrane by RONS generated from plasma destroys the DNA, RNA, and proteins within the cell, and may eventually cause cell death. In this study, H 2 O 2 (13.68 μM) and NO 3 (138 μM), which are the main factors generated by plasma, proved to have a bactericidal effect by inducing lipid peroxidation of bacterial cell membranes. In conclusion, cylinder type DBD plasma with underwater bubbler can be used as an environmentally friendly food disinfection device in cleaning processes of the food industry. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Degradation of nicotine in water solutions using a water falling film DBD plasma reactor: direct and indirect treatment

    Science.gov (United States)

    Krupež, Jelena; Kovačević, Vesna V.; Jović, Milica; Roglić, Goran M.; Natić, Maja M.; Kuraica, Milorad M.; Obradović, Bratislav M.; Dojčinović, Biljana P.

    2018-05-01

    Nicotine degradation efficiency in water solutions was studied using a water falling film dielectric barrier discharge (DBD) reactor. Two different treatments were applied: direct treatment, the recirculation of the solution through a DBD reactor, and indirect treatment, the bubbling of the gas from the DBD through the porous filter into the solution. In a separate experiment, samples spiked with nicotine in double distilled water (ddH2O) and tap water were studied and compared after both treatments. Furthermore, the effects of the homogeneous catalysts, namely, Fe2+ and H2O2, were tested in the direct treatment. Nicotine degradation efficiency was determined using high-performance liquid chromatography. A degradation efficiency of 90% was achieved after the direct treatment catalyzed with Fe2+. In order to analyze the biodegradability, mineralization level, and toxicity of the obtained solutions, after all degradation procedures the values of the following parameters were determined: total organic carbon, chemical oxygen demand, biochemical oxygen demand, and the Artemia salina toxicity test. The results showed that an increase in biodegradability was obtained, after all treatments. A partial nicotine mineralization was achieved and the mortality of the A. salina organism decreased in the treated samples, all of which indicating the effective removal of nicotine and the creation of less toxic solutions. Nicotine degradation products were identified using ultrahigh-performance liquid chromatography coupled with a linear ion trap Orbitrap hybrid mass spectrometer and a simple mechanism for oxidative degradation of nicotine in non-thermal plasma systems is proposed.

  6. Pulsed-DC DBD Plasma Actuators

    Science.gov (United States)

    Duong, Alan; Corke, Thomas; Thomas, Flint

    2017-11-01

    A power system for dielectric barrier discharge (DBD) plasma actuators that utilizes a pulsed-DC waveform is presented. The plasma actuator arrangement is identical to most typical AC-DBD designs with staggered electrodes that are separated by a dielectric insulator. A key difference is that the pulsed-DC actuator utilizes a DC voltage source to drive the actuator instead of an AC voltage input. The DC source is supplied to both electrodes. The exposed electrode remains constant in time while the encapsulated electrode is periodically grounded for short instances then is allowed to rise to the source DC level. Further investigation of the pulsed-DC plasma actuator was conducted. Time-resolved velocity measurements were done to characterize the induced velocity field generated by the pulsed-DC plasma actuator. A model of the pulsed-DC plasma actuator is developed in LTspice for further study. The work presented are intended in developing a model to be used in CFD flow control simulations. NASA SBIR NNX14CC12C.

  7. Preliminary Study on Treatment of Palm Oil Mill Effluent (POME by Sand Filtration-DBD Plasma System

    Directory of Open Access Journals (Sweden)

    Ariadi Hazmi

    2016-02-01

    Full Text Available In the palm oil industry, open ponding, aerobic and anaerobic digestion, physicochemical treatment and membrane filtration are generally applied as conventional treatments of palm oil mill effluent (POME. In this study, a sand filtration-dielectric barrier discharge (DBD system was investigated as an alternative process for treating POME. This system can reduce land usage, processing time and costs compared to conventional systems. The removal efficiency of chemical oxygen demand (COD, biological oxygen demand (BOD5, and oil-grease in relation to the applied voltage were studied. Furthermore, the pH and temperature profiles were investigated. The obtained results indicate that the removal efficiency of COD, BOD5, and oil-grease increased with an increase of the applied voltage. The electrical energy consumption needed is about 10.56 kWh/L of POME.

  8. Power consumption analysis DBD plasma ozone generator

    Science.gov (United States)

    Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Susan, I. A.; Arianto, F.; Widyanto, S. A.

    2016-11-01

    Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts

  9. A Multicell Converter Model of DBD Plasma Discharges

    International Nuclear Information System (INIS)

    Flores-Fuentes, A. A.; Piedad-Beneitez, A. de la; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia A, R.; Barocio, S. R.; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.

    2006-01-01

    A compact Matlab model of plasma discharges in a DBD reactor consisting of two parallel electrode plates with a small gap and a thin dielectric sheet between them is reported. Its DBD plasma is modelled as a voltage controlled current-source switched on when the voltage across the gap exceeds the breakdown voltage. A three cell voltage-source inverter, configured in half-bridge, has been used as a power supply. This configuration has an excellent performance when operating as an open-loop. The distribution of total energy between a large number of low power converters proofs to be advantageous, allowing an efficient high power drive. Simulation results show that the current source and its output current tend to follow an exponential behaviour. A phenomenological characteristic of the voltage-current behaviour of DBD is then described by power laws with different voltage exponent function values

  10. Degradation of Dye Wastewater by ns-Pulse DBD Plasma

    Science.gov (United States)

    Gao, Jin; Gu, Pingdao; Yuan, Li; Zhong, Fangchuan

    2013-09-01

    Two plasma reactors have been developed and used to degrade dye wastewater agents. The configuration of one plasma reactor is a comb-like extendable unit module consisting of 5 electrodes covered with a quartz tube and the other one is an array reactor which is extended from the unit module. The decomposition of wastewater by ns pulse dielectric barrier discharge (DBD) plasma have been carried out by atomizing the dyeing solutions into the reactors. During experiments, the indigo carmine has been treated as the waste agent. The measurements of UV-VIS absorption spectroscopy and the chemical oxygen demand (COD) are carried out to demonstrate the decomposition effect on the wastewater. It shows that the decoloration rate of 99% and the COD degradation rate of 65% are achieved with 15 min treatment in the unit reactor. The effect of electrical parameters on degradation has been studied in detail. Results from the array reactor indicate that it has a better degradation effect than the unit one. It can not only totally remove the chromogenic bond of the indigo carmine solution, but also effectively degrade unsaturated bonds. The decoloration rate reaches 99% after 10 min treatment, the decomposition rate of the unsaturated bond reaches 83% after 60 min treatment, and the COD degradation rate is nearly 74%.

  11. Degradation of Dye Wastewater by ns-Pulse DBD Plasma

    International Nuclear Information System (INIS)

    Gao Jin; Yuan Li; Zhong Fangchuan; Gu Pingdao

    2013-01-01

    Two plasma reactors have been developed and used to degrade dye wastewater agents. The configuration of one plasma reactor is a comb-like extendable unit module consisting of 5 electrodes covered with a quartz tube and the other one is an array reactor which is extended from the unit module. The decomposition of wastewater by ns pulse dielectric barrier discharge (DBD) plasma have been carried out by atomizing the dyeing solutions into the reactors. During experiments, the indigo carmine has been treated as the waste agent. The measurements of UV-VIS absorption spectroscopy and the chemical oxygen demand (COD) are carried out to demonstrate the decomposition effect on the wastewater. It shows that the decoloration rate of 99% and the COD degradation rate of 65% are achieved with 15 min treatment in the unit reactor. The effect of electrical parameters on degradation has been studied in detail. Results from the array reactor indicate that it has a better degradation effect than the unit one. It can not only totally remove the chromogenic bond of the indigo carmine solution, but also effectively degrade unsaturated bonds. The decoloration rate reaches 99% after 10 min treatment, the decomposition rate of the unsaturated bond reaches 83% after 60 min treatment, and the COD degradation rate is nearly 74%

  12. Characterization of DBD plasma source for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuchenbecker, M; Vioel, W [University of Applied Sciences and Arts, Faculty of Natural Sciences and Technology, Von-Ossietzky-Str. 99, 37085 Goettingen (Germany); Bibinov, N; Awakowicz, P [Institute for Electrical Engineering and Plasma Technology, Ruhr-Universitaet Bochum, Universitaetstr. 150, 44780 Bochum (Germany); Kaemlimg, A; Wandke, D, E-mail: m.kuchenbecker@web.d, E-mail: Nikita.Bibinov@rub.d, E-mail: awakowicz@aept-ruhr-uni-bochum.d, E-mail: vioel@hawk-hhg.d [CINOGY GmbH, Max-Naeder-Str. 15, 37114 Duderstadt (Germany)

    2009-02-21

    The dielectric barrier discharge (DBD) plasma source for biomedical application is characterized using optical emission spectroscopy, plasma-chemical simulation and voltage-current measurements. This plasma source possesses only one electrode covered by ceramic. Human body or some other object with enough high electric capacitance or connected to ground can serve as the opposite electrode. DBD consists of a number of microdischarge channels distributed in the gas gap between the electrodes and on the surface of the dielectric. To characterize the plasma conditions in the DBD source, an aluminium plate is used as an opposite electrode. Electric parameters, the diameter of microdischarge channel and plasma parameters (electron distribution function and electron density) are determined. The gas temperature is measured in the microdischarge channel and calculated in afterglow phase. The heating of the opposite electrode is studied using probe measurement. The gas and plasma parameters in the microdischarge channel are studied at varied distances between electrodes. According to an energy balance study, the input microdischarge electric energy dissipates mainly in heating of electrodes (about 90%) and partially (about 10%) in the production of chemical active species (atoms and metastable molecules).

  13. Abatement of trichloroethylene using DBD plasma

    Science.gov (United States)

    Vesali-Naseh, M.; Xu, S.; Xu, L.; Khodadadi, A.; Mortazavi, Y.; Ostrikov, K.

    2014-08-01

    Dielectric barrier discharge plasma was used to oxidize trichloroethylene (TCE) in 21% of O2 in carriers of N2 and He. The degradation products of TCE were analyzed using gas chromatography mass spectrometry. TCE was decomposed completely at optimum energy density of 260 and 300 J/l for He and N2, respectively and its conversion followed zero order reaction. The TCE removal efficiency is decreased in humid air due to interception of reactive intermediates by OH radicals.

  14. Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property

    International Nuclear Information System (INIS)

    Zhang, Haibao; Li, Hua; Fang, Ming; Wang, Zhengduo; Sang, Lijun; Yang, Lizhen; Chen, Qiang

    2016-01-01

    Graphical abstract: The images of Al coating adhesion testes for (a) untreated and (b) roll-to-roll DBD plasma treated PE. - Highlights: • Over three-months ageing a high surface energy was still existed in roll-to-roll DBD plasma-treated PE surface. • The adhesion and barrier property of Al-coated PE web were greatly improved. • The mechanism of plasma grafting to improve the properties of Al-coated PE web was found. - Abstract: In this paper the roll-to-roll atmospheric dielectric barrier discharge (DBD) was used to pre-treat polyethylene (PE) web surface before the conventional thermal evaporation aluminum (Al) was performed as a barrier layer. We emphasized the plasma environment effect based on the inlet three kinds of reactive monomers. The cross hatch test was employed to assess the Al coating adhesion; and the oxygen transmission rate (OTR) was used to evaluate gas barrier property. The results showed that after roll-to-roll DBD plasma treatment all Al coatings adhered strongly on PE films and were free from pinhole defects with mirror morphology. The OTR was reduced from 2673 cm 3 /m 2 day for Al-coated original PE to 138 cm 3 /m 2 day for Al-coated allyamine (C 3 H 7 N) modified PE. To well understand the mechanism the chemical compositions of the untreated and DBD plasma pretreated PE films were analyzed by X-ray photoelectron spectroscopy (XPS). The surface topography was characterized by atomic force microscopy (AFM). For the property of surface energy the water contact angle measurement was also carried out in the DBD plasma treated samples with deionized water.

  15. Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibao; Li, Hua; Fang, Ming; Wang, Zhengduo; Sang, Lijun; Yang, Lizhen; Chen, Qiang, E-mail: lppmchenqiang@hotmail.com

    2016-12-01

    Graphical abstract: The images of Al coating adhesion testes for (a) untreated and (b) roll-to-roll DBD plasma treated PE. - Highlights: • Over three-months ageing a high surface energy was still existed in roll-to-roll DBD plasma-treated PE surface. • The adhesion and barrier property of Al-coated PE web were greatly improved. • The mechanism of plasma grafting to improve the properties of Al-coated PE web was found. - Abstract: In this paper the roll-to-roll atmospheric dielectric barrier discharge (DBD) was used to pre-treat polyethylene (PE) web surface before the conventional thermal evaporation aluminum (Al) was performed as a barrier layer. We emphasized the plasma environment effect based on the inlet three kinds of reactive monomers. The cross hatch test was employed to assess the Al coating adhesion; and the oxygen transmission rate (OTR) was used to evaluate gas barrier property. The results showed that after roll-to-roll DBD plasma treatment all Al coatings adhered strongly on PE films and were free from pinhole defects with mirror morphology. The OTR was reduced from 2673 cm{sup 3}/m{sup 2} day for Al-coated original PE to 138 cm{sup 3}/m{sup 2} day for Al-coated allyamine (C{sub 3}H{sub 7}N) modified PE. To well understand the mechanism the chemical compositions of the untreated and DBD plasma pretreated PE films were analyzed by X-ray photoelectron spectroscopy (XPS). The surface topography was characterized by atomic force microscopy (AFM). For the property of surface energy the water contact angle measurement was also carried out in the DBD plasma treated samples with deionized water.

  16. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    Czech Academy of Sciences Publication Activity Database

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, Václav; Doležalová, Eva; Šimek, Milan; Biederman, H.

    2017-01-01

    Roč. 50, č. 13 (2017), č. článku 135201. ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LD13010 Grant - others:European Cooperation in Science and Technology(XE) COST MP1101 Program:Materials, Physical and Nanosciences COST Action MP1101 Institutional support: RVO:61389021 Keywords : dielectric barrier discharges (DBD) * bio-decontamination * etching * polymers * biomolecules * spores * surface treatment Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6463/aa5c21/meta

  17. Shock Wave Boundary Layer Interaction Control Using Pulsed DBD Plasma Actuators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Active flow control using dielectric barrier discharge (DBD) plasma actuators is an attractive option for both reduction of complexity of aircraft systems required...

  18. Influence of DBD plasma pretreatment on the deposition of chitosan onto UHMWPE fiber surfaces for improvement of adhesion and dyeing properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yu, E-mail: ren.y@ntu.edu.cn [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); College of Textile and Clothing Engineering, Soochow University, Jiangsu 215021 (China); Kuangda Fibre Technology Co., Ltd., Jiangsu 213161 (China); Ding, Zhirong [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Wang, Chunxia [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Zang, Chuanfeng; Zhang, Yin; Xu, Lin [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China)

    2017-02-28

    Highlights: • The DBD plasma and chitosan combined treatment were performed on UHMWPE fibers. • The SEM and XPS analysis confirmed that chitosan was adsorbed on the UHMWPE fiber surfaces after the combined treatment. • The IFSS between the UHMWPE fiber and the epoxy resin reached 2.25 MPa with 100 s plasma pretreatment. • The dyeability of the UHMWPE fibers after the combined treatment was significantly improved. - Abstract: The combination treatment of dielectric barrier discharge (DBD) plasma and chitosan coatings was performed on ultrahigh molecular weight polyethylene (UHMWPE) fibers in order to improve the wettability, dyeability and adhesion properties. The properties of UHMWPE fibers coated with chitosan, after being pretreated by DBD plasma, were evaluated through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The interfacial shear strength (IFSS) between the fiber and the epoxy resin was determined using the single fiber pull-out test technique. The modified UHMWPE fibers were dyed with reactive dyes after the combined treatment. Surface wettability and dyeability were investigated by water contact angle and K/S measurement, respectively. SEM images confirmed that the chitosan was induced onto the surfaces of the UHMWPE fibers after the combined treatment. The XPS analysis showed that the oxygen and nitrogen contents of the UHMWPE fiber surfaces after the combined treatment were higher than that of the fiber modified by chitosan without DBD plasma pretreatment. Meanwhile, the UHMWPE fibers treated with combination of DBD plasma and chitosan treatment had better wettability, dyeability and adhesion property than those of the non-plasma pretreated surfaces, indicating that DBD plasma pretreatment facilitated the deposition of chitosan onto the UHMWPE surfaces.

  19. Plasma dynamics in a packed bed dielectric barrier discharge (DBD) operated in helium

    Science.gov (United States)

    Mujahid, Zaka-ul-Islam; Hala, Ahmed

    2018-03-01

    Packed bed dielectric barrier discharges (DBDs) are very promising for several applications including remediation of environmental pollutants and greenhouse gas conversion. In this work, we have investigated the space and time-resolved emission from a packed bed DBD operated in helium, to understand the plasma dynamics. We have chosen a simple planar DBD arrangement with a patterned dielectric, which mimics the spherical boundaries between the dielectric pellets and allows the optical access to the plasma. The results show that plasma is sustained in a packed bed DBD by three mechanisms: filamentary discharge in the void (between the center of dielectric structures and the opposite electrode), microdischarges at the contact points and surface ionization waves over the dielectric surface. It is observed that for most of the duration plasma is generated at the contact points between the dielectric structures.

  20. Application of a Dielectric Barrier Discharge Atmospheric Cold Plasma (Dbd-Acp) for Eshcerichia Coli Inactivation in Apple Juice.

    Science.gov (United States)

    Liao, Xinyu; Li, Jiao; Muhammad, Aliyu Idris; Suo, Yuanjie; Chen, Shiguo; Ye, Xingqian; Liu, Donghong; Ding, Tian

    2018-02-01

    Atmospheric cold plasma (ACP) is a promising non-thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)-ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD-ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD-ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD-ACP as an alternative to thermal processing for fruit juices in food industry. Escherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization. © 2018 Institute of Food Technologists®.

  1. Removal of caffeine from water by combining dielectric barrier discharge (DBD plasma with goethite

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2017-07-01

    Full Text Available In this research, dielectric barrier discharge plasma was developed to cooperate with goethite for removing caffeine in aqueous solution. Goethite was characterized by X-ray diffraction and scanning electron microscopy. The effects of input power, initial concentration and catalysts concentration on the removal efficiency of caffeine were evaluated. Furthermore, the degradation pathways of caffeine were also discussed preliminarily. In the case of caffeine concentration at 50 mg L−1, the degradation efficiency of caffeine was improved from 41% to 94% after 24 min on the conditions of input power of 75 W by combining goethite catalysts (2.5 g L−1, while the energy efficiency could be enhanced 1.6–2.3 times compared to the single DBD reactor. The reaction mechanism experiments demonstrated that attack by hydroxyl radical and ozone was the main degradation process of caffeine in aqueous solution. These studies also provided a theoretical and practical basis for the application of DBD-goethite in treatment of caffeine from water.

  2. Modification of surface characteristic and tribo-electric properties of polymers by DBD plasma in atmospheric air

    Science.gov (United States)

    Bekkara, Mohammed Fethi; Dascalescu, Lucien; Benmimoun, Youcef; Zeghloul, Thami; Tilmatine, Amar; Zouzou, Noureddine

    2018-01-01

    The aim of this paper is to quantify the effects of dielectric barrier discharge (DBD) exposure on the physico-chemical and tribo-electric properties of polymers. The study was conducted in atmospheric air on polypropylene, polyethylene and polyvinyl-chloride. These three types of polymers are widely used in industry. The polymers were characterized by means of an optical profilometer, a fourier-transform infrared (FTIR) spectrometer and an electric charge measurement system. The latter is composed of a Faraday pail connected to an electrometer. The profilometer analyses showed that the DBD plasma treatment has increased the surface roughness of the three polymers. FTIR revealed that oxygen atoms and polar groups were grafted on their surfaces, thereby conferring them a hydrophilic character. The short (2 sec) DBD plasma treatment has considerably improved the electrostatic charge acquired by the polymers during electrostatic tribo-charging, while longer exposures conferred the polymer anti-static properties and decreased its tribo-charging capability. The correlation between the results of the physico-chemical analyses and the tribo-electric behavior has been discussed.

  3. Elimination de solutés organiques polluants d'effluents liquides par plasma non thermique : comparaison des processus mis en jeu à l'interface liquide-plasma dans les procédés Glidarc et DBD

    OpenAIRE

    Djakaou, Iya-Sou

    2012-01-01

    The role of oxidant species created in the gas phase has been investigated in two non-thermal plasma processes applied for the water treatment: Gliding Arc and falling film Dielectric Barrier Discharge (DBD) processes. Three different model organic pollutants have been treated in the two discharge reactors. The obtained results, from easier to more difficult to remove, are as follows: phenol>> Heptanol> pCBA> for the Glidarc reactor and 1-Heptanol >> Phenol> pCBA for DBD falling film reactor....

  4. DBD plasma source operated in single-filamentary mode for therapeutic use in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Priyadarshini; Mertmann, Philipp; Bibinov, Nikita; Awakowicz, Peter [Institute for Electrical Engineering and Plasma Technology, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany); Wandke, Dirk [CINOGY GmbH, Max-Naeder-Str. 15, 37114 Duderstadt (Germany); Vioel, Wolfgang, E-mail: rajasekaran@aept.rub.d, E-mail: mertmann@aept.rub.d, E-mail: Nikita.Bibinov@rub.d, E-mail: dirk.wandke@cinogy.co, E-mail: vioel@hawk-hhg.d, E-mail: awakowicz@aept.rub.d [University of Applied Sciences and Arts, Faculty of Natural Sciences and Technology, Von-Ossietzky-Str. 99, 37085 Goettingen (Germany)

    2009-11-21

    Our dielectric barrier discharge (DBD) plasma source for bio-medical application comprises a copper electrode covered with ceramic. Objects of high capacitance such as the human body can be used as the opposite electrode. In this study, the DBD source is operated in single-filamentary mode using an aluminium spike as the opposite electrode, to imitate the conditions when the discharge is ignited on a raised point, such as hair, during therapeutic use on the human body. The single-filamentary discharge thus obtained is characterized using optical emission spectroscopy, numerical simulation, voltage-current measurements and microphotography. For characterization of the discharge, averaged plasma parameters such as electron distribution function and electron density are determined. Fluxes of nitric oxide (NO), ozone (O{sub 3}) and photons reaching the treated surface are simulated. The calculated fluxes are finally compared with corresponding fluxes used in different bio-medical applications.

  5. HF DBD plasma actuators for reduction of cylinder noise in flow

    International Nuclear Information System (INIS)

    Kopiev, V F; Kopiev, V A; Zaytsev, M Yu; Kazansky, P N; Moralev, I A

    2017-01-01

    Surface high frequency dielectric barrier discharge (HF DBD) was used to reduce flow-induced noise, radiated by circular cylinder in cross flow. Effect of HF DBD actuators is studied for flow velocity up to 80 m s −1 (Reynolds numbers up to 2.18 · 10 5 ), corresponding to the typical aircraft landing approach speed. Noise measurements were performed by microphone array in anechoic chamber; averaged flow parameters were studied by particle image velocimetry (PIV). Actuator was powered by high-frequency voltage in hundreds kHz range in steady or modulated mode with the modulation frequency of 0.3–20 kHz (Strouhal number St of 0.4 to 20). It is demonstrated that upstream directed plasma actuators are able to reduce the vortex noise of a cylinder by 10 dB. Noise reduction is accompanied by significant reorganization of the wake behind a cylinder, decreasing both wake width and turbulence level. The physical mechanism related to broadband noise control by HF DBD actuator is also discussed. (paper)

  6. HF DBD plasma actuators for reduction of cylinder noise in flow

    Science.gov (United States)

    Kopiev, V. F.; Kazansky, P. N.; Kopiev, V. A.; Moralev, I. A.; Zaytsev, M. Yu

    2017-11-01

    Surface high frequency dielectric barrier discharge (HF DBD) was used to reduce flow-induced noise, radiated by circular cylinder in cross flow. Effect of HF DBD actuators is studied for flow velocity up to 80 m s-1 (Reynolds numbers up to 2.18 · 105), corresponding to the typical aircraft landing approach speed. Noise measurements were performed by microphone array in anechoic chamber; averaged flow parameters were studied by particle image velocimetry (PIV). Actuator was powered by high-frequency voltage in hundreds kHz range in steady or modulated mode with the modulation frequency of 0.3-20 kHz (Strouhal number St of 0.4 to 20). It is demonstrated that upstream directed plasma actuators are able to reduce the vortex noise of a cylinder by 10 dB. Noise reduction is accompanied by significant reorganization of the wake behind a cylinder, decreasing both wake width and turbulence level. The physical mechanism related to broadband noise control by HF DBD actuator is also discussed.

  7. Electrocatalytic reduction of carbon dioxide under plasma DBD process

    International Nuclear Information System (INIS)

    Amouroux, Jacques; Cavadias, Simeon

    2017-01-01

    Carbon dioxide can be converted, by reaction with hydrogen, into fine chemicals and liquid fuels such as methanol and DME. Methane production by the Sabatier reaction opens the way of carbon recycling for a circular economy of carbon resources. The catalytic process of methanation of carbon dioxide produces two molecules of water as a by-product. A current limitation in the CO 2 methanation is the ageing of catalysts, mainly due to water adsorption during the process. To avoid this adsorption, the process is operated at high temperature (300 °C–400 °C), leading to carbon deposition on the catalyst and its deactivation. To overcome this problem, a methanation plasma-catalytic process has been developed, which achieves high CO 2 conversion rate (80%), and a selectivity close to 100%, working from room temperature to 150 °C, instead of 300 °C–400 °C for the thermal catalytic process. The main characteristics of this process are high-voltage pulses of few nanoseconds duration, activating the adsorption of CO 2 in bent configuration and the polarization of the catalyst. The key step in this process is the desorption of water from the polarized catalyst. The high CO 2 conversion at low temperature could be explained by the creation of a plasma inside the nanopores of the catalyst. (paper)

  8. Electrocatalytic reduction of carbon dioxide under plasma DBD process

    Science.gov (United States)

    Amouroux, Jacques; Cavadias, Simeon

    2017-11-01

    Carbon dioxide can be converted, by reaction with hydrogen, into fine chemicals and liquid fuels such as methanol and DME. Methane production by the Sabatier reaction opens the way of carbon recycling for a circular economy of carbon resources. The catalytic process of methanation of carbon dioxide produces two molecules of water as a by-product. A current limitation in the CO2 methanation is the ageing of catalysts, mainly due to water adsorption during the process. To avoid this adsorption, the process is operated at high temperature (300 °C-400 °C), leading to carbon deposition on the catalyst and its deactivation. To overcome this problem, a methanation plasma-catalytic process has been developed, which achieves high CO2 conversion rate (80%), and a selectivity close to 100%, working from room temperature to 150 °C, instead of 300 °C-400 °C for the thermal catalytic process. The main characteristics of this process are high-voltage pulses of few nanoseconds duration, activating the adsorption of CO2 in bent configuration and the polarization of the catalyst. The key step in this process is the desorption of water from the polarized catalyst. The high CO2 conversion at low temperature could be explained by the creation of a plasma inside the nanopores of the catalyst.

  9. Phase-Averaged Vortex Train Flow Generated by Plasma DBD Actuator

    Czech Academy of Sciences Publication Activity Database

    Procházka, Pavel P.; Uruba, Václav

    2012-01-01

    Roč. 12, č. 1 (2012), s. 573-574 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /83./. Darmstadt, 26.03.2012-30.03.2012] R&D Projects: GA ČR GAP101/10/1230; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : DBD plasma actiator * vortex train * PIV * POD Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201210275/abstract

  10. Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: A study on cell growth/proliferation and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Fatemeh [Physics Department, Shahid Beheshti University G.C., Evin, Tehran (Iran, Islamic Republic of); Shokri, Babak, E-mail: b-shokri@sbu.ac.ir [Physics Department, Shahid Beheshti University G.C., Evin, Tehran (Iran, Islamic Republic of); Laser-Plasma Research Institute, Shahid Beheshti University G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Sharifian, M. [Faculty of Physics, Science Department, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2016-01-01

    Highlights: • Cell viability and antibacterial activity was investigated on PMMA modified by DBD. • Treated-samples got hydrophilic by introducing oxygen-containing functional groups. • Mouse embryonic fibroblast (MEF) adhesion was significantly enhanced. • Samples exhibited acceptable antibacterial activity against E. Coli. • Optimum antibacterial performance and cell attachment were obtained. - Abstract: This paper reports polymethyl methacrylate (PMMA) surface modification by atmospheric-pressure oxygen dielectric barrier discharge (DBD) plasma to improve its biocompatibility and antibacterial effects. The role of plasma system parameters, such as electrode gap, treatment time and applied voltage, on the surface characteristics and biological responses was studied. The surface characteristics of PMMA films before and after the plasma treatments were analyzed by water contact angle (WCA) goniometry, atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Also, acid–base approach was used for evaluation of surface free energy (SFE) and its components. Stability of plasma treatment or aging effect was examined by repeating water contact angle measurements in a period of 9 days after treatment. Moreover, the antibacterial properties of samples were investigated by bacterial adhesion assay against Escherichia coli. Additionally, all samples were tested for the biocompatibility by cell viability assay of mouse embryonic fibroblast. WCA measurements indicated that the surface wettability of PMMA films was improved by increasing surface free energy via oxygen DBD plasma treatments. AFM measurement revealed that surface roughness was slightly increased after treatments, and ATR-FTIR analysis showed that more polar groups were introduced on the plasma-treated PMMA film surface. The results also demonstrated an enhancement of antibacterial performance of the modified surfaces. Furthermore, it was

  11. Antitumor action of non thermal plasma sources, DBD and Plasma Gun, alone or in combined protocols

    Science.gov (United States)

    Robert, Eric; Brullé, Laura; Vandamme, Marc; Riès, Delphine; Le Pape, Alain; Pouvesle, Jean-Michel

    2012-10-01

    The presentation deals with the assessment on two non thermal plasma sources developed and optimized for oncology applications. The first plasma source is a floating-electrode dielectric barrier discharge powered at a few hundreds of Hz which deliver air-plasma directly on the surface of cell culture medium in dishes or on the skin or organs of mice bearing cancer tumors. The second plasma source, so called Plasma Gun, is a plasma jet source triggered in noble gas, transferred in high aspect ratio and flexible capillaries, on targeting cells or tumors after plasma transfer in air through the ``plasma plume'' generated at the capillary outlet. In vitro evidence for massive cancer cell destruction and in vivo tumor activity and growth rate reductions have been measured with both plasma sources. DNA damages, cell cycle arrests and apoptosis induction were also demonstrated following the application of any of the two plasma source both in vitro and in vivo. The comparison of plasma treatment with state of the art chemotherapeutic alternatives has been performed and last but not least the benefit of combined protocols involving plasma and chemotherapeutic treatments has been evidenced for mice bearing orthotopic pancreas cancer and is under evaluation for the colon tumors.

  12. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    Science.gov (United States)

    Chen, Weimin; Zhou, Xiaoyan; Zhang, Xiaotao; Bian, Jie; Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi; Wan, Jinglin

    2017-06-01

    The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Sisbnd Osbnd C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  13. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air

    Science.gov (United States)

    Jain, Vishal; Visani, Anand; Srinivasan, R.; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (˜0.28 W/cm2) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (˜50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  14. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    International Nuclear Information System (INIS)

    Chen, Weimin; Zhou, Xiaoyan; Zhang, Xiaotao; Bian, Jie; Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi; Wan, Jinglin

    2017-01-01

    Highlights: • Plasma working under low pressure is easy to realize industrialization. • Enhancing process finished within 75 s. • Plasma treatment leads to the increase in equilibrium contact angle by 330%. • Tinfoil film with simple chemical structure was used to reveal the mechanism. - Abstract: The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Si−O−C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  15. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weimin [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China); Zhou, Xiaoyan, E-mail: zhouxiaoyan@njfu.edu.cn [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Zhang, Xiaotao [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Bian, Jie [Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China); Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Wan, Jinglin [Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China)

    2017-06-15

    Highlights: • Plasma working under low pressure is easy to realize industrialization. • Enhancing process finished within 75 s. • Plasma treatment leads to the increase in equilibrium contact angle by 330%. • Tinfoil film with simple chemical structure was used to reveal the mechanism. - Abstract: The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Si−O−C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  16. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator

    Directory of Open Access Journals (Sweden)

    Han Menghu

    2015-04-01

    Full Text Available Experimental investigation of aerodynamic control on a 35° swept flying wing by means of nanosecond dielectric barrier discharge (NS-DBD plasma was carried out at subsonic flow speed of 20–40 m/s, corresponding to Reynolds number of 3.1 × 105–6.2 × 105. In control condition, the plasma actuator was installed symmetrically on the leading edge of the wing. Lift coefficient, drag coefficient, lift-to-drag ratio and pitching moment coefficient were tested with and without control for a range of angles of attack. The tested results indicate that an increase of 14.5% in maximum lift coefficient, a decrease of 34.2% in drag coefficient, an increase of 22.4% in maximum lift-to-drag ratio and an increase of 2° at stall angle of attack could be achieved compared with the baseline case. The effects of pulsed frequency, amplitude and chord Reynolds number were also investigated. And the results revealed that control efficiency demonstrated strong dependence on pulsed frequency. Moreover, the results of pitching moment coefficient indicated that the breakdown of leading edge vortices could be delayed by plasma actuator at low pulsed frequencies.

  17. Dielectric Barrier Discharge (DBD) Plasma Actuators Thrust-Measurement Methodology Incorporating New Anti-Thrust Hypothesis

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a large diameter, grounded, metal sleeve.

  18. Progress Toward Accurate Measurements of Power Consumptions of DBD Plasma Actuators

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.; Griebeler, Elmer L.

    2012-01-01

    The accurate measurement of power consumption by Dielectric Barrier Discharge (DBD) plasma actuators is a challenge due to the characteristics of the actuator current signal. Micro-discharges generate high-amplitude, high-frequency current spike transients superimposed on a low-amplitude, low-frequency current. We have used a high-speed digital oscilloscope to measure the actuator power consumption using the Shunt Resistor method and the Monitor Capacitor method. The measurements were performed simultaneously and compared to each other in a time-accurate manner. It was found that low signal-to-noise ratios of the oscilloscopes used, in combination with the high dynamic range of the current spikes, make the Shunt Resistor method inaccurate. An innovative, nonlinear signal compression circuit was applied to the actuator current signal and yielded excellent agreement between the two methods. The paper describes the issues and challenges associated with performing accurate power measurements. It provides insights into the two methods including new insight into the Lissajous curve of the Monitor Capacitor method. Extension to a broad range of parameters and further development of the compression hardware will be performed in future work.

  19. Study on the properties of a ε-Fe3N-based magnetic lubricant prepared by DBD plasma

    Science.gov (United States)

    Yanqin, LI; Xiuling, ZHANG; Lanbo, DI

    2018-01-01

    The ε-Fe3N-based magnetic lubricant which is stable and high saturation magnetization has been prepared by a homemade DBD device under the atmospheric pressure. The results show that the NH3 flow rate, the applied peak-to-peak voltage and the mass ratio of surfactant and carrier lubricant have important effects on the phase structure, the magnetic properties, the size of ferroparticles and the stability of the ε-Fe3N-based magnetic lubricant. TEM images show the ε-Fe3N ferroparticles are dispersed in the carrier lubricant homogeneously, and the cluster phenomenon is not observed. The stable ε-Fe3N-based magnetic lubricant with the saturation magnetization of 50.11 mT and the mean ferroparticle size of 11 nm is prepared successfully. The main particles of the atmospheric-pressure Ar/NH3/Fe(CO)5 DBD plasma are NH, N, N+, Fe, N2, Ar, H α , and CO; NH is a decomposition product of NH3. Fe and N active radicals are two elementary species in the preparation of the ε-Fe3N-based magnetic lubricant in the atmospheric-pressure DBD plasma. There are two discharge modes for DBD plasma, namely, multi-pulse APGD and filamentary discharge. By increasing the applied peak-to-peak voltage from 4600 to 7800 V, the discharge mode is changed from single-pulse APGD with filamentary discharge to two-pulse APGD with filamentary discharge, and the Lissajous figure also converts from a quadrilateral with one step to two steps on the right-hand side.

  20. Double dielectric barrier (DBD) plasma-assisted deposition of chemical stabilized nanoparticles on polyamide 6,6 and polyester fabrics

    Science.gov (United States)

    Ribeiro, A. I.; Modic, M.; Cvelbar, U.; Dinescu, G.; Mitu, B.; Nikiforov, A.; Leys, C.; Kuchakova, I.; Vanneste, M.; Heyse, P.; De Vrieze, M.; Carneiro, N.; Souto, A. P.; Zille, A.

    2017-10-01

    The development of new multifunctional textiles containing nanoparticles (NPs) has a special interest in several applications for pharmaceutical and medical products. Cu, Zn and Ag are the most promising antimicrobial NPs, exhibiting strong antibacterial activities. However, most of antimicrobial textiles coated with NPs are not able to perform a controlled release of NPs because of the high degree of aggregation. The aim of this study is to assess the effect of NPs stabilizers such as citrate, alginate and polyvinyl alcohol (PVA) in Cu, Zn and Ag NPs dispersions. The obtained dispersions were used to develop a new class of antibacterial NPs coatings onto polyamide 6,6 (PA66) and polyester fabrics (PES) by Double Dielectric Barrier (DBD) plasma discharge. Dynamic light scattering (DLS) was used to evaluate the best dispersing agent in terms of size, polydispersity index and zeta potential. Coating efficiency was evaluated by SEM, XPS and FTIR. The washing fastness of the coatings developed was also tested. The results show that the best dispersions were obtained using 2.5% of citrate for ZnO, 5% Alginate for Cu and 2.5% alginate for Ag NPs. SEM, XPS and FTIR analysis shows that DBD is an efficient deposition technique only for Ag and Cu NPs and that better perform in PA66 than PES fabric. The DBD deposition in air display similar results in term of NPS deposition of usually more efficient plasma jets using carrier gas such as N2 and Ar.

  1. Reuse of effluent from dyeing process of polyamide fibers modified by double barrier discharge (DBD) plasma

    OpenAIRE

    Oliveira, Fernando Ribeiro; Steffens, F.; Souto, A. Pedro; Zille, Andrea

    2016-01-01

    Published online: 27 Feb 2015 Low-temperature plasma technology becomes more and more attractive compared with traditional wet processes in textile preparation and finishing due to its high efficiency and low environmental impact. The objective of this study was to investigate the influence of dielectric barrier discharge plasma treatment on the trichromic dyeing process of polyamide 6.6 (PA66) and the reuse of the generated effluents for new dyeing processes. Chemical and physical charact...

  2. Deactivation of Escherichia coli in a post-discharge chamber coupled to an atmospheric pressure multi-electrode DBD plasma source

    International Nuclear Information System (INIS)

    Pérez-Ruiz, V H; López-Callejas, R; De la Piedad Beneitez, A; Peña-Eguiluz, R; Mercado-Cabrera, A; Muñoz-Castro, A E; Barocio, S R; Valencia-Alvarado, R; Rodríguez-Méndez, B G

    2012-01-01

    Experimental results from applying a room pressure RF multi-electrode DBD plasma source to the inhibition of the population growth of Gram negative Escherichia coli (E. coli) within a post-discharge reactor are reported. The sample to be treated is deposited in the post-discharge chamber at about 50 mm from the plasma source outlet. Thus, the active species generated by the source are conveyed toward the chamber by the working gas flow. The plasma characterization included the measurement of the axial temperature at different distances from the reactor outlet by means of a K-type thermocouple. The resulting 294 K to 322 K temperature interval corresponded to distances between 10 mm to 1 mm respectively. As the material under treatment is placed further away, any thermal damage of the sample by the plasma is prevented. The measurement and optimization of the ozone O 3 concentration has also been carried out, provided that this is an active specie with particularly high germicide power. The effectiveness treatment of the E. coli bacteria growth inhibition by the proposed plasma source reached 99% when a 10 3 CFU/mL concentration on an agar plate had been exposed during ten minutes.

  3. Optical characteristics of a RF DBD plasma jet in various A r / O 2 ...

    Indian Academy of Sciences (India)

    Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H β . It is mostly seen that, the radiation intensity of Ar ...

  4. Optical characteristics of a RF DBD plasma jet in various Ar/O2 ...

    Indian Academy of Sciences (India)

    Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H β . It is mostly seen that, the radiation intensity of Ar ...

  5. Surface DBD for deposition of the PEO-like plasma polymers

    Czech Academy of Sciences Publication Activity Database

    Gordeev, Ivan; Šimek, Milan; Prukner, Václav; Choukourov, A.; Biederman, H.

    2012-01-01

    Roč. 9, č. 1 (2012), s. 83-89 ISSN 1612-8850 R&D Projects: GA ČR(CZ) GD104/09/H080 Institutional research plan: CEZ:AV0Z20430508 Keywords : AC barrier discharges * surface discharges * plasma polymers * poly(ethylene oxide) (PEO) * UV-vis spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.730, year: 2012 http://onlinelibrary.wiley.com/doi/10.1002/ ppap .201100051/pdf

  6. Optical characteristics of a RF DBD plasma jet in various mixtures

    Indian Academy of Sciences (India)

    A Falahat

    2018-01-25

    Jan 25, 2018 ... the physical properties of a kHz-driven atmospheric plasma jet with the Ar/O2 mixture at a low flow ... tates a good temporal response and fewer complications from quenching. Additionally, in the OES .... where I denotes the total intensity, Aki is the transition probability, gk is the degeneracy of the upper ...

  7. On the dynamics of the vortex structures generated by plasma DBD actuator

    Czech Academy of Sciences Publication Activity Database

    Procházka, Pavel P.; Uruba, Václav; Antoš, Pavel

    2013-01-01

    Roč. 13, č. 1 (2013), s. 343-344 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /84./. Novi Sad, 18.03.2013-22.03.2013] R&D Projects: GA ČR GAP101/10/1230; GA ČR GAP101/12/1271 Institutional support: RVO:61388998 Keywords : plasma actuator * vortex dynamics * PIV Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201310167/abstract

  8. Plasma Onco-Immunotherapy: Novel Approach to Cancer Treatment

    Science.gov (United States)

    Fridman, Alexander

    2015-09-01

    Presentation is reviewing the newest results obtained by researchers of A.J. Drexel Plasma Institute on direct application of non-thermal plasma for direct treatment of different types of cancer by means of specific stimulation of immune system in the frameworks of the so-called onco-immunotherapy. Especial attention is paid to analysis of depth of penetration of different plasma-medical effects, from ROS, RNS, and ions to special biological signaling and immune system related processes. General aspects of the plasma-stimulation of immune system are discussed, pointing out specific medical applications. Most of experiments have been carried out using nanosecond pulsed DBD at low power and relatively low level of treatment doses, guaranteeing non-damage no-toxicity treatment regime. The nanosecond pulsed DBD physics is discussed mostly regarding its space uniformity and control of plasma parameters relevant to plasma medical treatment, and especially relevant to depth of penetration of different plasma medical effects. Detailed mechanism of the plasma-induced onco-immunotherapy has been suggested based upon preliminary in-vitro experiments with DBD treatment of different cancer cells. Sub-elements of this mechanism related to activation of macrophages and dendritic cells, specific stressing of cancer cells and the immunogenic cell death (ICD) are to be discussed based on results of corresponding in-vitro experiments. In-vivo experiments focused on the plasma-induced onco-immunotherapy were carried out in collaboration with medical doctors from Jefferson University hospital of Philadelphia. Todays achievements and nearest future prospective of clinical test focused on plasma-controlled cancer treatment are discussed in conclusion.

  9. Non-Thermal Dielectric Barrier Discharge (DBD Effects on Proliferation and Differentiation of Human Fibroblasts Are Primary Mediated by Hydrogen Peroxide.

    Directory of Open Access Journals (Sweden)

    Julian Balzer

    Full Text Available The proliferation of fibroblasts and myofibroblast differentiation are crucial in wound healing and wound closure. Impaired wound healing is often correlated with chronic bacterial contamination of the wound area. A new promising approach to overcome wound contamination, particularly infection with antibiotic-resistant pathogens, is the topical treatment with non-thermal "cold" atmospheric plasma (CAP. Dielectric barrier discharge (DBD devices generate CAP containing active and reactive species, which have antibacterial effects but also may affect treated tissue/cells. Moreover, DBD treatment acidifies wound fluids and leads to an accumulation of hydrogen peroxide (H2O2 and nitric oxide products, such as nitrite and nitrate, in the wound. Thus, in this paper, we addressed the question of whether DBD-induced chemical changes may interfere with wound healing-relevant cell parameters such as viability, proliferation and myofibroblast differentiation of primary human fibroblasts. DBD treatment of 250 μl buffered saline (PBS led to a treatment time-dependent acidification (pH 6.7; 300 s and coincidently accumulation of nitrite (~300 μM, nitrate (~1 mM and H2O2 (~200 μM. Fibroblast viability was reduced by single DBD treatments (60-300 s; ~77-66% or exposure to freshly DBD-treated PBS (60-300 s; ~75-55%, accompanied by prolonged proliferation inhibition of the remaining cells. In addition, the total number of myofibroblasts was reduced, whereas in contrast, the myofibroblast frequency was significantly increased 12 days after DBD treatment or exposure to DBD-treated PBS. Control experiments mimicking DBD treatment indicate that plasma-generated H2O2 was mainly responsible for the decreased proliferation and differentiation, but not for DBD-induced toxicity. In conclusion, apart from antibacterial effects, DBD/CAP may mediate biological processes, for example, wound healing by accumulation of H2O2. Therefore, a clinical DBD treatment must be well

  10. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne

    2007-01-01

    Glassy carbon plates were treated with an atmospheric pressure dielectric barrier discharge (DBD). He gas, gas mixtures of He and reactive gases such as O2, CO2 and NH3, Ar gas and Ar/NH3 gas mixture were used as treatment gases. The oxygen and nitrogen contents on the surface as well as defect...... density increased with the plasma treatments. Adhesion test of the treated glassy carbon covered with cured epoxy showed cohesive failure, indicating strong bonding after the treatments. This is in contrast to the adhesion tests of untreated samples where the epoxy readily peeled off the glassy carbon....

  11. Chemical analysis of reactive species and antimicrobial activity of/nwater treated by nanosecond pulsed DBD air plasma

    Czech Academy of Sciences Publication Activity Database

    Laurita, R.; Barbieri, D.; Gherardi, M.; Colombo, V.; Lukeš, Petr

    2015-01-01

    Roč. 3, č. 2 (2015), s. 53-61 ISSN 2212-8166 R&D Projects: GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST TD1208 Institutional support: RVO:61389021 Keywords : Dielectric barrier discharge * Plasma activated water * Reactive species * Peroxynitrite * Phenol degradation * Candida albicans * Staphylococcus aureus * Antimicrobial activity * Nosocomial infections Subject RIV: BL - Plasma and Gas Discharge Physics http://www.sciencedirect.com/science/article/pii/S2212816615300081

  12. Thermal plasma waste treatment

    International Nuclear Information System (INIS)

    Heberlein, Joachim; Murphy, Anthony B

    2008-01-01

    Plasma waste treatment has over the past decade become a more prominent technology because of the increasing problems with waste disposal and because of the realization of opportunities to generate valuable co-products. Plasma vitrification of hazardous slags has been a commercial technology for several years, and volume reduction of hazardous wastes using plasma processes is increasingly being used. Plasma gasification of wastes with low negative values has attracted interest as a source of energy and spawned process developments for treatment of even municipal solid wastes. Numerous technologies and approaches exist for plasma treatment of wastes. This review summarizes the approaches that have been developed, presents some of the basic physical principles, provides details of some specific processes and considers the advantages and disadvantages of thermal plasmas in waste treatment applications. (topical review)

  13. Optical characteristics of a RF DBD plasma jet in various {Ar}/ {O}_{2}Ar/O2 mixtures

    Science.gov (United States)

    Falahat, A.; Ganjovi, A.; Taraz, M.; Ravari, M. N. Rostami; Shahedi, A.

    2018-02-01

    In this paper, using the optical emission spectroscopy (OES) technique, the optical characteristics of a radiofrequency (RF) plasma jet are examined. The Ar/O2 mixture is taken as the operational gas and, the Ar percentage in the Ar/O2 mixture is varied from 70% to 95%. Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer H_{β }. It is mostly seen that, the radiation intensity of Ar 4p→ 4s transitions at higher argon contributions in Ar/O2 mixture is higher. It is found that, at higher Ar percentages, the emission intensities from atomic oxygen (O) are higher and, the line intensities from the argon atoms and ions including O atoms linearly increase. It is observed that the quenching of Ar^{*} with O2 results in higher O species with respect to O2 molecules. In addition, at higher percentages of Ar in the Ar/O2 mixture, while the excitation temperature is decreased, the electron density is increased.

  14. Disinfection of fresh chicken breast fillets with in-package atmospheric cold plasma: effect of treatment voltage and time

    Science.gov (United States)

    Effects of treatment voltage and time of in-package atmospheric cold plasma (ACP) were studied on ozone formation, microbiological quality, surface color, and pH of fresh chicken fillets. Samples were sealed in food trays in air, treated with a dielectric-barrier-discharge (DBD) ACP system, and stor...

  15. Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators: New Anti-Thrust Hypothesis, Frequency Sweeps Methodology, Humidity and Enclosure Effects

    Science.gov (United States)

    Ashpis, David E.; Laun, Matthew C.

    2014-01-01

    We discuss thrust measurements of Dielectric Barrier Discharge (DBD) plasma actuators devices used for aerodynamic active flow control. After a review of our experience with conventional thrust measurement and significant non-repeatability of the results, we devised a suspended actuator test setup, and now present a methodology of thrust measurements with decreased uncertainty. The methodology consists of frequency scans at constant voltages. The procedure consists of increasing the frequency in a step-wise fashion from several Hz to the maximum frequency of several kHz, followed by frequency decrease back down to the start frequency of several Hz. This sequence is performed first at the highest voltage of interest, then repeated at lower voltages. The data in the descending frequency direction is more consistent and selected for reporting. Sample results show strong dependence of thrust on humidity which also affects the consistency and fluctuations of the measurements. We also observed negative values of thrust, or "anti-thrust", at low frequencies between 4 Hz and up to 64 Hz. The anti-thrust is proportional to the mean-squared voltage and is frequency independent. Departures from the parabolic anti-thrust curve are correlated with appearance of visible plasma discharges. We propose the anti-thrust hypothesis. It states that the measured thrust is a sum of plasma thrust and anti-thrust, and assumes that the anti-thrust exists at all frequencies and voltages. The anti-thrust depends on actuator geometry and materials and on the test installation. It enables the separation of the plasma thrust from the measured total thrust. This approach enables more meaningful comparisons between actuators at different installations and laboratories. The dependence on test installation was validated by surrounding the actuator with a grounded large-diameter metal sleeve. Strong dependence on humidity is also shown; the thrust significantly increased with decreasing humidity, e

  16. An uniform DBD plasma excited by bipolar nanosecond pulse using wire-cylinder electrode configuration in atmospheric air.

    Science.gov (United States)

    Jiang, Peng-Chao; Wang, Wen-Chun; Zhang, Shuai; Jia, Li; Yang, De-Zheng; Tang, Kai; Liu, Zhi-Jie

    2014-03-25

    In this study, a bipolar nanosecond pulsed power supply with 15 ns rising time is employed to generate an uniform dielectric barrier discharge using the wire-cylinder electrode configuration in atmospheric air. The images, waveforms of pulse voltage and discharge current, and the optical emission spectra of the discharges are recorded. The rotational and vibrational temperatures of plasma are determined by comparing the simulated spectra with the experimental spectra. The effects of pulse peak voltage, pulse repetition rate and quartz tube diameter on the emission intensities of N2 (C(3)Πu→B(3)Πg, 0-0) and N2(+)B(2)Σu(+)→X(2)Σg(+),0-0 and the rotational and vibrational temperatures have been investigated. It is found that the uniform plasma with low gas temperature can be obtained, and the emission intensities of N2 (C(3)Πu→B(3)Πg, 0-0) and N2(+)B(2)Σu(+)→X(2)Σg(+),0-0 rise with increasing the pulse peak voltage and pulse repetition rate, while decrease as the increase of quartz tube diameter. In addition, under the condition of 28 kV pulse peak voltage, 150 Hz pulse repetition rate and 7 mm quartz tube diameter, the plasma gas temperature is determined to be 330 K. The results also indicate that the plasma gas temperature keep almost constant when increasing the pulse peak voltage and pulse repetition rate but increase with the increase of the quartz tube diameter. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Size and Aging Effects on Antimicrobial Efficiency of Silver Nanoparticles Coated on Polyamide Fabrics Activated by Atmospheric DBD Plasma.

    Science.gov (United States)

    Zille, Andrea; Fernandes, Margarida M; Francesko, Antonio; Tzanov, Tzanko; Fernandes, Marta; Oliveira, Fernando R; Almeida, Luís; Amorim, Teresa; Carneiro, Noémia; Esteves, Maria F; Souto, António P

    2015-07-01

    This work studies the surface characteristics, antimicrobial activity, and aging effect of plasma-pretreated polyamide 6,6 (PA66) fabrics coated with silver nanoparticles (AgNPs), aiming to identify the optimum size of nanosilver exhibiting antibacterial properties suitable for the manufacture of hospital textiles. The release of bactericidal Ag(+) ions from a 10, 20, 40, 60, and 100 nm AgNPs-coated PA66 surface was a function of the particles' size, number, and aging. Plasma pretreatment promoted both ionic and covalent interactions between AgNPs and the formed oxygen species on the fibers, favoring the deposition of smaller-diameter AgNPs that consequently showed better immediate and durable antimicrobial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. Surprisingly, after 30 days of aging, a comparable bacterial growth inhibition was achieved for all of the fibers treated with AgNPs <100 nm in size. The Ag(+) in the coatings also favored the electrostatic stabilization of the plasma-induced functional groups on the PA66 surface, thereby retarding the aging process. At the same time, the size-related ratio (Ag(+)/Ag(0)) of the AgNPs between 40 and 60 nm allowed for the controlled release of Ag(+) rather than bulk silver. Overall, the results suggest that instead of reducing the size of the AgNPs, which is associated with higher toxicity, similar long-term effects can be achieved with larger NPs (40-60 nm), even in lower concentrations. Because the antimicrobial efficiency of AgNPs larger than 30 nm is mainly ruled by the release of Ag(+) over time and not by the size and number of the AgNPs, this parameter is crucial for the development of efficient antimicrobial coatings on plasma-treated surfaces and contributes to the safety and durability of clothing used in clinical settings.

  18. Study on the Removal of SO2 from Simulated Flue Gas Using Dry Calcium-Spray with DBD Plasma

    International Nuclear Information System (INIS)

    Yi Chengwu; Wu Chundu; Chen Zhigang; Ou Hongxiang; Shao Xuejun

    2008-01-01

    In this study, lime-hydrate (Ca(OH) 2 ) desulfurizer was treated by plasma with strong ionization discharge of a dielectric barrier. The removal of SO 2 from simulated flue gas was investigated. The principles of SO 2 removal are discussed. Several factors affecting the efficiency of SO 2 removal were studied. They included the ratio of calcium to sulfur (Ca/S), desulfurizer granularity, residence time of the flue gas, voltage applied to the discharge electrode in the plasma generator, and energy consumption. Experimental results indicate that the increase in Ca/S ratio, the applied voltage and discharge power, the residence time, and the reduction in the desulfurizer granularity all can raise the SO 2 removal efficiency. The SO 2 removal efficiency was up to 91.3% under the following conditions, namely a primary concentration of SO2 of 2262 x 10 -6 (v/v) in the emission gas, 21%(v/v) of oxygen, 1.8% (v/v) of water, a Ca/S ratio of 1.48, a residence time of 2.8 s, a 3.4 kV voltage and a 10 kHz frequency power applied to the discharge electrodes in the plasma generator, and a flow rate of 100 m 3 /h for emission gas.

  19. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application

    Science.gov (United States)

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  20. Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator

    Science.gov (United States)

    Yadong, HUANG; Benmou, ZHOU

    2018-05-01

    Perturbation is generally considered as the flow noise, and its energy can gain transient growth in the separation bubble. The amplified perturbations may cause unstable Kelvin–Helmohltz vortices which induce the three-dimensional transition. Active control of noise amplification via dielectric barrier discharge plasma actuator in the flow over a square leading-edge flat plate is numerically studied. The actuator is installed near the plate leading-edge where the separation bubble is formed. The maximum energy amplification of perturbations is positively correlated with the separation bubble scale which decreases with the increasing control parameters. As the magnitude of noise amplification is reduced, the laminar-turbulent transition is successfully suppressed.

  1. Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor

    Science.gov (United States)

    Bingyan, CHEN; Xiangxiang, GAO; Ke, CHEN; Changyu, LIU; Qinshu, LI; Wei, SU; Yongfeng, JIANG; Xiang, HE; Changping, ZHU; Juntao, FEI

    2018-02-01

    Discharge plasmas in air can be accompanied by ultraviolet (UV) radiation and electron impact, which can produce large numbers of reactive species such as hydroxyl radical (OH·), oxygen radical (O·), ozone (O3), and nitrogen oxides (NO x ), etc. The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds (VOCs) treatment with the discharge plasmas. In this paper, we propose a volume discharge setup used to purify formaldehyde in air, which is configured by a plate-to-plate dielectric barrier discharge (DBD) channel and excited by an AC high voltage source. The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde. The energy efficiency ratios (EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel, and the most desirable processing effect is the gas flow velocity within the range from 2.50 to 3.33 m s‑1. Moreover, the EERs of both the generated dosages of oxides (O3 and NO2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell. Additionally, the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density, and the peak of the function is appeared in the range from 273.5 to 400.0 W l‑1. This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD, and it is helpful in the applications of VOCs removal by using discharge plasma.

  2. Characterization of atmospheric pressure plasma treated wool/cashmere textiles: Treatment in nitrogen

    Science.gov (United States)

    Zanini, Stefano; Citterio, Attilio; Leonardi, Gabriella; Riccardi, Claudia

    2018-01-01

    We performed atmospheric pressure plasma treatments of wool/cashmere (15/85%) textiles with a dielectric barrier discharge (DBD) in nitrogen. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy, X-ray photoelectron microscopy (XPS), and fatty acid gas chromatographic analysis. Changes in mechanical properties and tactile performance of textiles after the plasma treatment were determined using the KES-F system. The analyses reveal significant surface modification of the treated fabrics, which enhances their surface wettability.

  3. Plasma treatment of onychomycosis

    Science.gov (United States)

    Xiong, Zilan; Roe, Jeff; Grammer, Tim; Him, Yeon-Ho; Graves, David B.

    2015-09-01

    Onychomycosis or fungal infection of the toenail or fingernail is a common affliction. Approximately 10% of the world's adult population is estimated to suffer from onychomycosis. Current treatment options such as topical creams, oral drugs, or laser treatments are generally limited by a variety of problems. We present results for an alternative onychomycosis treatment scheme using atmospheric pressure cold air plasmas. Using thinned cow hoof as a model nail material, we tested the ability of various plasma sources to act through the model nail to eradicate either bacteria or fungus deposited on the opposite side. Following 20 minute exposure to a surface microdischarge (SMD) device operating in room air, we observed a ~ 2 log reduction of E. coli. A similar result was obtained against T. rubrum after 45 min plasma treatment. NOx species concentration penetrating through the model nail as well as uptake into the nail were measured as a function of nail thickness. We propose that these plasma-generated species, or perhaps their reaction products, are responsible for at least part of the observed anti-microbial effect. We also explore the use of ultraviolet light acting in synergy with plasma-generated chemical species.

  4. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Wang Qian; Chen Ping; Jia Caixia; Chen, Mingxin; Li Bin

    2011-01-01

    In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. -O-C=O) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.

  5. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    International Nuclear Information System (INIS)

    Wang Zhaojun; Jiang Song; Liu Kefu

    2014-01-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%. (plasma technology)

  6. DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application

    Science.gov (United States)

    Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang

    2018-01-01

    Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.

  7. On the history of plasma treatment and comparison of microbiostatic efficacy of a historical high-frequency plasma device with two modern devices.

    Science.gov (United States)

    Napp, Judith; Daeschlein, Georg; Napp, Matthias; von Podewils, Sebastian; Gümbel, Denis; Spitzmueller, Romy; Fornaciari, Paolo; Hinz, Peter; Jünger, Michael

    2015-01-01

    Cold atmospheric pressure plasma (CAP) with its many bioactive properties has defined a new medical field: the plasma medicine. However, in the related form of high-frequency therapy, CAP was even used briefly a century ago. The aim of this study was to review historic CAP treatments and to obtain data regarding the antimicrobial efficacy of a historical high-frequency plasma device. First, historic literature regarding the history of CAP treatment was evaluated, because in the modern literature no data were available. Second, the susceptibility of 5 different bacterial wound isolates, cultured on agar, to a historic plasma source (violet wand [VW]) and two modern devices (atmospheric pressure plasma jet [APPJ] and Dielectric Barrier Discharge [DBD]) was analyzed . The obtained inhibition areas (IA) were compared. First, the most convenient popular historical electromedical treatments produced a so-called effluvia by using glass electrodes, related to today's CAP. Second, all three tested plasma sources showed complete eradication of all tested microbial strains in the treated area. The "historical" cold VW plasma showed antimicrobial effects similar to those of modern APPJ and DBD regarding the diameter of the IA. Some retrograde evidence may be deducted from this, especially for treatment of infectious diseases with historical plasma devices. The underlying technology may serve as model for construction of modern sucessive devices.

  8. Influence of successive plasma treatments on PP foils

    International Nuclear Information System (INIS)

    Jacobs, T; Morent, R; De Geyter, N; Leys, C

    2011-01-01

    Polypropylene (PP) foil is treated with a dielectric barrier discharge (DBD) plasma operating in helium at medium pressure. The influence of exposure to the atmosphere between successive treatments is studied by varying the exposure time. Each PP sample is treated with subsequent treatment steps of 5 s. Between two treatment steps, different procedures are applied: 1) the sample remains in the discharge chamber at medium pressure (under helium atmosphere) for a certain time before it is treated again or 2) the pressure is increased to atmospheric pressure, so the sample remains exposed to atmospheric air for a certain time and afterwards the system is pumped down again to medium pressure before it undergoes a successive helium plasma treatment. The treated samples are analysed using contact angle measurements. The results show that exposure to the atmosphere between two treatment steps leads to a lower contact angle. The longer the exposure time, the lower the contact angle becomes. Another experiment showed that the treatment effect could be gradually removed by applying several short plasma treatments of 1 s to saturated samples. With every short treatment step, the contact angle becomes higher. It is believed that this is due to etching of the surface. In the near future, both atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) analysis on some selected samples are planned to elucidate the chemical and/or physical nature of the observed phenomena.

  9. Experiments and modelling VOCs' removal in a DBD reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sarron, V.; Aubry, O.; Khacef, A.; Cormier, J.M. [Orleans Univ., Orleans Cedex (France). Polytech d' Orleans, Group for Research and Studies on Mediators of Inflamation

    2010-07-01

    Non-thermal plasma discharges are being considered as a means to convert volatile organic compounds (VOCs) diluted in air at atmospheric pressure. This study showed that the treatment of propane or ethane in a dielectric barrier discharge (DBD) reactor at a temperature of 800 K can be modeled from a chemical mechanism. The DBD reactor was simulated using consecutive elementary plug flow reactors (PFR). Streamer effects leading to active species production such as O-atoms in dry air from electronic dissociation of oxygen (O{sub 2}) were simulated by injection of O-atoms at the inlet of each elementary PFR. A good agreement was obtained for all the studied inlet mixtures, in which ethane concentrations and propane were varied in air. The concentration of O-atoms were found to play a role on carbon monoxide (CO) and carbon dioxide (CO{sub 2}) concentrations at a given energy density. An increase of O promoted CO{sub 2} concentration. In addition, the models made it possible to determine the concentrations levels of non measured by-products. The O-atom concentration was the main parameter of the developed model to simulate a DBD reactor. It was concluded that the obtained models can be efficient tools for predicting light hydrocarbons conversion in a non-thermal plasma. 7 refs., 10 figs.

  10. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Jia Caixia; Chen Ping; Liu Wei; Li Bin; Wang Qian

    2011-01-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm 3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, C=O and O=C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  11. Effects of pre- and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions

    International Nuclear Information System (INIS)

    Asadian, M; Grande, S; Morent, R; Nikiforov, A; De Geyter, N; Declercq, H

    2017-01-01

    In this study, liquid plasma treatment was used to improve the morphology of Poly-ε-CaproLactone (PCL) NanoFibers (NFs), followed by performing a Dielectric Barrier Discharge (DBD) plasma surface modification to enhance the hydrophilicity of electrospun mats generated from plasma-modified PCL solutions. Cell interaction studies performed after 1 day and 7 days clearly revealed the highly increased cellular interactions on the double plasma-treated nanofibers compared to the pristine ones due to the combination of (1) a better NF morphology and (2) an increased surface hydrophilicity. (paper)

  12. Adsorbability Enhancement of Macroporous Resin by Dielectric Barrier Discharge Plasma Treatment to Phenol in Water

    Directory of Open Access Journals (Sweden)

    Shoufeng Tang

    2016-01-01

    Full Text Available In order to enhance the adsorption efficiency and economize the use of macroporous resin, we have treated it with the dielectric barrier discharge (DBD plasma to improve its adsorbing capacity for phenol. The effects of operation conditions, for instance, applied voltage, treated time, and air flow rate on resin, were investigated by adsorption kinetics and isotherms. Results showed that the adsorption data were in good agreement with the pseudo-second-order and Freundlich equation. Experimental results showed that the modified resin was 156.5 mg/g and 39.2% higher than the untreated sample, when the modified conditions were conducted for discharge voltage 20 kV, treatment time 45 min, and air flow rate 1.2 L/min. The resin was characterized by FTIR and nitrogen adsorption isotherms before and after the DBD processes. It was found that the reason for the enhancement of resin adsorbability was attributed to the DBD plasma changing the surface physical and chemical structure.

  13. Fischer-Tropsch Performance of an SiO2-Supported Co-Based Catalyst Prepared by Hydrogen Dielectric-Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    Fu Tingjun; Huang Chengdu; Lv Jing; Li Zhenhua

    2014-01-01

    A silica-supported cobalt catalyst was prepared by hydrogen dielectric-barrier discharge (H 2 -DBD) plasma. Compared to thermal hydrogen reduction, H 2 -DBD plasma treatment can not only fully decompose the cobalt precursor but also partially reduce the cobalt oxides at lower temperature and with less time. The effect of the discharge atmosphere on the property of the plasma-prepared catalyst and the Fischer-Tropsch synthesis activity was studied. The results indicate that H 2 -DBD plasma treatment is a promising alternative for preparing Co/SiO 2 catalysts from the viewpoint of energy savings and efficiency

  14. Non-thermal plasma treatment of Radix aconiti wastewater generated by traditional Chinese medicine processing.

    Science.gov (United States)

    Wen, Yiyong; Yi, Jianping; Zhao, Shen; Jiang, Song; Chi, Yuming; Liu, Kefu

    2016-06-01

    The wastewater effluent from Radix aconiti processing, an important step in the production processes of traditional Chinese medicine (TCM), is a type of toxic wastewater and difficult to treat. Plasma oxidation methods have emerged as feasible techniques for effective decomposition of toxic organic pollutants. This study examined the performance of a plasma reactor operated in a dielectric barrier discharge (DBD) to degrade the effluent from R. aconiti processing. The effects of treatment time, discharge voltage, initial pH value and the feeding gas for the reactor on the degradation of this TCM wastewater were investigated. A bacterium bioluminescence assay was adopted in this study to test the toxicity of the TCM wastewater after non-thermal plasma treatment. The degradation ratio of the main toxic component was 87.77% after 60min treatment with oxygen used as feed gas and it was 99.59% when the initial pH value was 8.0. High discharge voltage and alkaline solution environment were beneficial for improving the degradation ratio. The treatment process was found to be capable of reducing the toxicity of the wastewater to a low level or even render it non-toxic. These experimental results suggested that the DBD plasma method may be a competitive technology for primary decomposition of biologically undegradable toxic organic pollutants in TCM wastewater. Copyright © 2016. Published by Elsevier B.V.

  15. A compact nanosecond pulse generator for DBD tube characterization

    Science.gov (United States)

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  16. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas [Unit of Periodontology, Dental School, University of Greifswald, Rotgerberstr. 8, 17475 Greifswald (Germany); Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel [Institute for Hygiene and Environmental Medicine, University of Greifswald, Walther-Rathenau-Str. 49 a, 17487 Greifswald (Germany); Sietmann, Rabea [Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald (Germany); Kindel, Eckhard; Weltmann, Klaus-Dieter, E-mail: ina.koban@uni-greifswald.d [Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2010-07-15

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log{sub 10} reduction factor of 1.5, the log{sub 10} reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  17. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas; Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter

    2010-01-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log 10 reduction factor of 1.5, the log 10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  18. Plasma treatment of crane rails

    Directory of Open Access Journals (Sweden)

    Владислав Олександрович Мазур

    2016-07-01

    Full Text Available Crane operation results in wear and tear of rails and crane wheels. Renovation and efficiency of these details is therefore relevant. Modern technologies of wheels and rails restoration use surfacing or high-frequency currents treatment. Surface treatment with highly concentrated streams of energy- with a laser beam, plasma jet- is a promising direction.. It is proposed to increase the efficiency of crane rails by means of surface plasma treatment. The modes of treatment have been chosen.. Modelling of plasma jet thermal impact on a solid body of complex shape has been made. Plasma hardening regimes that meet the requirements of production have been defined. Structural transformation of the material in the crane rails on plasma treatment has been investigated. It has been concluded that for carbon and low alloy crane steels the plasma exposure zone is characterized by a high degree of hardened structure dispersion and higher hardness as compared to the hardness after high-frequency quenching. As this takes place phase transformations are both shift (in the upper zone of plasma influence and fluctuation (in the lower zone of the plasma. With high-speed plasma heating granular or lamellar pearlite mainly transforms into austenite. The level of service characteristics of hardened steel, which is achieved in this case is determined by the kinetics and completeness of pearlite → austenite transformation. For carbon and low alloy rail steels plasma hardening can replace bulk hardening, hardening by high-frequency currents, or surfacing. The modes for plasma treatment which make it possible to obtain a surface layer with a certain service characteristics have been defined

  19. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    International Nuclear Information System (INIS)

    Li, Ying; Manolache, Sorin; Qiu, Yiping; Sarmadi, Majid

    2016-01-01

    Graphical abstract: - Highlights: • The continuous ethanol flow technique can successfully modify ramie fiber surface with an increase in IFSS value up to 50%. • Response surface methodology was applied to design the plasma treatment parameters for ramie fiber modification. • The ethanol flow rate was the most influential treatment parameter in plasma modification process. - Abstract: In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  20. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [College of Material and Textile Engineering, Jiaxing University, Jiaxing 314033 (China); Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Manolache, Sorin [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); US Forest Products Laboratory, Madison, WI 53726 (United States); Qiu, Yiping, E-mail: ypqiu@dhu.edu.cn [College of Textiles, Donghua University, Shanghai 201620 (China); Sarmadi, Majid, E-mail: majidsar@wisc.edu [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-02-28

    Graphical abstract: - Highlights: • The continuous ethanol flow technique can successfully modify ramie fiber surface with an increase in IFSS value up to 50%. • Response surface methodology was applied to design the plasma treatment parameters for ramie fiber modification. • The ethanol flow rate was the most influential treatment parameter in plasma modification process. - Abstract: In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  1. Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms.

    Science.gov (United States)

    Judée, F; Simon, S; Bailly, C; Dufour, T

    2018-04-15

    Cold atmospheric plasmas are weakly ionized gases that can be generated in ambient air. They produce energetic species (e.g. electrons, metastables) as well as reactive oxygen species, reactive nitrogen species, UV radiations and local electric field. Their interaction with a liquid such as tap water can hence change its chemical composition. The resulting "plasma-activated liquid" can meet many applications, including medicine and agriculture. Consequently, a complete experimental set of analytical techniques dedicated to the characterization of long lifetime chemical species has been implemented to characterize tap water treated using cold atmospheric plasma process and intended to agronomy applications. For that purpose, colorimetry and acid titrations are performed, considering acid-base equilibria, pH and temperature variations induced during plasma activation. 16 species are quantified and monitored: hydroxide and hydronium ions, ammonia and ammonium ions, orthophosphates, carbonate ions, nitrite and nitrate ions and hydrogen peroxide. The related consumption/production mechanisms are discussed. In parallel, a chemical model of electrical conductivity based on Kohlrausch's law has been developed to simulate the electrical conductivity of the plasma-activated tap water (PATW). Comparing its predictions with experimental measurements leads to a narrow fitting, hence supporting the self-sufficiency of the experimental set, I.e. the fact that all long lifetime radicals of interest present in PATW are characterized. Finally, to evaluate the potential of cold atmospheric plasmas for agriculture applications, tap water has been daily plasma-treated to irrigate lentils seeds. Then, seedlings lengths have been measured and compared with untreated tap water, showing an increase as high as 34.0% and 128.4% after 3 days and 6 days of activation respectively. The interaction mechanisms between plasma and tap water are discussed as well as their positive synergy on

  2. Plasma Treatments and Biomass Gasification

    Science.gov (United States)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  3. Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Dong Xiaoyu; Yuan Yulian; Tang Qian; Dou Shaohua; Di Lanbo; Zhang Xiuling

    2014-01-01

    In this study, Saccharomyces cerevisiae (S. cerevisiae) was exposed to dielectric barrier discharge plasma (DBD) to improve its ethanol production capacity during fermentation. Response surface methodology (RSM) was used to optimize the discharge-associated parameters of DBD for the purpose of maximizing the ethanol yield achieved by DBD-treated S. cerevisiae. According to single factor experiments, a mathematical model was established using Box-Behnken central composite experiment design, with plasma exposure time, power supply voltage, and exposed-sample volume as impact factors and ethanol yield as the response. This was followed by response surface analysis. Optimal experimental parameters for plasma discharge-induced enhancement in ethanol yield were plasma exposure time of 1 min, power voltage of 26 V, and an exposed sample volume of 9 mL. Under these conditions, the resulting yield of ethanol was 0.48 g/g, representing an increase of 33% over control. (plasma technology)

  4. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui; Kuffel, E

    2007-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH 3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly

  5. Plasma treatment of Seeds: effect on growth, spores and bacterial charge

    Science.gov (United States)

    Ambrico, P. F.; Simek, M.; Morano, M.; Ambrico, M.; Minafra, A.; Prukner, V.; de Miccolis Angelini, R. M.; Trotti, P.

    2016-09-01

    We report on the effect of low temperature plasma treatment on tomato, basil and tobacco commercial seeds. Seeds were treated in filtered ambient air volume, surface and plasma jet DBD at atmospheric pressure Sterile agar substrate, supplemented with a nutrient and vitamin mixture, was used to allow seeds germination in sterilized sealed plastic containers. The seeds were stored in controlled environmental condition (T = 26C, cycle of 14hrs light/10hrs dark condition). Since all the procedure was performed under sterile conditions, only bacteria and fungi carried by seeds could grow. Plasma treatment significantly reduced the presence of bacterial contamination, while some fungi could resist at shortest exposures Seeds germination was then followed by time lapse photography in sterile water on 3MM Whatman paper in a closed container. The effect of plasma treatment was a faster germination time of seeds and emergence of cotyledons, able to start photosynthesis in seedlings.The plasma treated seeds were also sow in a soil/peat moss mixture. Plants were cultivated for about 40 days, showing that plasma induced a faster growth in length and weight with respect to untreated seeds.Furthermore the effect of plasma on seeds surface was studied by SEM imaging. We acknowledge `SELGE' (Puglia) and TACR (TA03010098).

  6. Removal of several pesticides in a falling water film DBD reactor with activated carbon textile: Energy efficiency.

    Science.gov (United States)

    Vanraes, Patrick; Ghodbane, Houria; Davister, Dries; Wardenier, Niels; Nikiforov, Anton; Verheust, Yannick P; Van Hulle, Stijn W H; Hamdaoui, Oualid; Vandamme, Jeroen; Van Durme, Jim; Surmont, Pieter; Lynen, Frederic; Leys, Christophe

    2017-06-01

    Bio-recalcitrant micropollutants are often insufficiently removed by modern wastewater treatment plants to meet the future demands worldwide. Therefore, several advanced oxidation techniques, including cold plasma technology, are being investigated as effective complementary water treatment methods. In order to permit industrial implementation, energy demand of these techniques needs to be minimized. To this end, we have developed an electrical discharge reactor where water treatment by dielectric barrier discharge (DBD) is combined with adsorption on activated carbon textile and additional ozonation. The reactor consists of a DBD plasma chamber, including the adsorptive textile, and an ozonation chamber, where the DBD generated plasma gas is bubbled. In the present paper, this reactor is further characterized and optimized in terms of its energy efficiency for removal of the five pesticides α-HCH, pentachlorobenzene, alachlor, diuron and isoproturon, with initial concentrations ranging between 22 and 430 μg/L. Energy efficiency of the reactor is found to increase significantly when initial micropollutant concentration is decreased, when duty cycle is decreased and when oxygen is used as feed gas as compared to air and argon. Overall reactor performance is improved as well by making it work in single-pass operation, where water is flowing through the system only once. The results are explained with insights found in literature and practical implications are discussed. For the used operational conditions and settings, α-HCH is the most persistent pesticide in the reactor, with a minimal achieved electrical energy per order of 8 kWh/m 3 , while a most efficient removal of 3 kWh/m 3 or lower was reached for the four other pesticides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination

    International Nuclear Information System (INIS)

    Bai Suli; Huang Chengdu; Lv Jing; Li Zhenhua

    2012-01-01

    Co-based catalysts were prepared by using dielectric-barrier discharge (DBD) plasma as an alternative method to conventional thermal calcination. The characterization results of N 2 -physisorption, temperature programmed reduction (TPR), transmission electron microscope (TEM), and X-ray diffraction (XRD) indicated that the catalysts prepared by DBD plasma had a higher specific surface area, lower reduction temperature, smaller particle size and higher cobalt dispersion as compared to calcined catalysts. The DBD plasma method can prevent the sintering and aggregation of active particles on the support due to the decreased treatment time (0.5 h) at lower temperature compared to the longer thermal calcination at higher temperature (at 500° C for 5 h). As a result, the catalytic performance of the Fischer-Tropsch synthesis on DBD plasma treated Co/SiO 2 catalyst showed an enhanced activity, C 5+ selectivity and catalytic stability as compared to the conventional thermal calcined Co/SiO 2 catalyst.

  8. Improving the bonding between henequen fibers and high density polyethylene using atmospheric pressure ethylene-plasma treatments

    Directory of Open Access Journals (Sweden)

    A. Aguilar-Rios

    2014-07-01

    Full Text Available In order to improve the bonding between henequen fibers (Agave fourcroydes and High Density Polyethylene (HDPE, they were treated in an ethylene-dielectric barrier discharge (DBD plasma operating at atmospheric pressure. A 23 factorial experimental design was used to study the effects of the plasma operational parameters, namely, frequency, flow rate and exposure time, over the fiber tensile mechanical properties and its adhesion to HDPE. The fiber-matrix Interfacial Shear Strength (IFSS was evaluated by means of the single fiber pull-out test. The fiber surface chemical changes were assessed by photoacoustic Fourier transform infrared spectroscopy (PAS-FTIR and the changes in surface morphology with scanning electron microscopy (SEM. The results indicate that individual operational parameters in the DBD plasma treatment have different effects on the tensile properties of the henequen fibers and on its bonding to HDPE. The SEM results show that the plasma treatment increased the roughness of the fiber surface. The FTIR result seems to indicate the presence of a hydrocarbon-like polymer film, bearing some vinyl groups deposited onto the fibers. These suggests that the improvement in the henequen-HDPE bonding could be the result of the enhancement of the mechanical interlocking, due the increment in roughness, and the possible reaction of the vinyl groups on the film deposited onto the fiber with the HDPE.

  9. Ultrasound enhanced plasma treatment of glass-fibre-reinforced polyester in atmospheric pressure air for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2011-01-01

    damage of the GFRP plates. The polar component of the surface energy of the polyester plate was 21 mJ/m2 before the treatment, increased markedly to 52 mJ/m2 after 2-s plasma treatment without ultrasonic irradiation, and further increased slightly after longer treatments. In addition, the polar component...... that nitrogen-containing functional groups were uniformly attached after the treatments. The roughness of the GFRP surfaces increased after the plasma treatment, but the ultrasonic irradiation did not enhance surface roughening.......A glass-fibre-reinforced polyester (GFRP) plate was treated with dielectric barrier discharge (DBD) at atmospheric pressure in air for adhesion improvement. The effects of ultrasonic irradiation using a high-power gas-jet generator during the treatment were investigated. The optical emission...

  10. Interfacial reactions between DBD and porous catalyst in dry methane reforming

    Science.gov (United States)

    Kameshima, Seigo; Mizukami, Ryo; Yamazaki, Takumi; Prananto, Lukman A.; Nozaki, Tomohiro

    2018-03-01

    Interaction between dielectric barrier discharge (DBD) and porous catalyst in dry methane reforming (CH4  +  CO2  =  2H2  +  2CO) was studied. Coke formation behavior and coke morphology, as well as material conversion and selectivity, over the cross-section of porous pellets was investigated comprehensively by SEM analysis, Raman spectroscopy and pulsed reforming diagnosis, showing DBD and porous pellet interaction is possible only in the interfacial region (the external surface of the pellet): neither generation of DBD nor the diffusion of plasma generated reactive species in the internal micropores is possible. Coke formation and gasification mechanism in nonthermal plasma catalysis of DMR were discussed based on the catalyst effectiveness factor: low-temperature plasma catalysis is equivalent to the high-temperature thermal catalysis.

  11. Statistical Analysis of Reducing Biochemical Oxygen Demand (BOD) on Industrial Rubber Wastewater using Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Syakur, Abdul; Zaman, Badrus; Yunita Nurmaliakasih, Dias

    2017-04-01

    Dielectric Barrier Discharge plasma (DBD) is one of type non-thermal plasma (non-equilibrium plasma) or can be referred to as cold plasma. In this research, DBD plasma be utilized to reduce organic compounds like Biochemichal oxygen demand in the wastewater rubber processing. In the environment field DBD plasma has been used as a treatment for reducing air pollutants such as gas COx, NOx and HC. In addition DBD plasma have been developed to processed wastewater as an alternative technology in wastewater treatment. DBD plasma appears when the electrode is given a high voltage so that, it will form electric field in the area of the electrodes which allows the ionization and the presence of high-energy electrons in the area. The presence of these electrons will ionize molecules of H2O into active species such as OH•, H• and H2O2. The active species that can oxidize into CO2 and H2O so, BOD that can be degraded. In this research for wastewater treatment used high voltage are 10kV, 11kV, 12kV and 13kV and variations of processing time for 5, 10, 15, 20, and 25 (minutes). By increasing the voltage and extend the contact time then the speed variation of electrons to ionize the greater and more active species to be formed to degrade the pollutants to the maximum. This research used quantitative analysis with statistical analysis using SPSS software.

  12. Functionalization of Hydrogen-free Diamond-like Carbon Films using Open-air Dielectric Barrier Discharge Atmospheric Plasma Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid, Spain; Instituto de Quimica-Fisica" Rocasolano" C.S.I.C., 28006 Madrid, Spain; Mahasarakham University, Mahasarakham 44150, Thailand; CASTI, CNR-INFM Regional Laboratory, L' Aquila 67100, Italy; SUNY Upstate Medical University, Syracuse, NY 13210, USA; Endrino, Jose; Endrino, J. L.; Marco, J. F.; Poolcharuansin, P.; Phani, A.R.; Allen, M.; Albella, J. M.; Anders, A.

    2007-12-28

    A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N2 gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N2 DBD plasma treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N2 atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC coated devices.

  13. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: effects on pathogen inactivation and meat-quality attributes.

    Science.gov (United States)

    Jayasena, Dinesh D; Kim, Hyun Joo; Yong, Hae In; Park, Sanghoo; Kim, Kijung; Choe, Wonho; Jo, Cheorun

    2015-04-01

    The effects of a flexible thin-layer dielectric barrier discharge (DBD) plasma system using a sealed package on microbial inactivation and quality attributes of fresh pork and beef were tested. Following a 10-min treatment, the microbial-load reductions of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium were 2.04, 2.54, and 2.68 Log CFU/g in pork-butt samples and 1.90, 2.57, and 2.58 Log CFU/g in beef-loin samples, respectively. Colorimetric analysis showed that DBD-plasma treatment did not significantly affect L* values (lightness) of pork and beef samples, but lowered a* values (redness) significantly after 5- and 7.5-min exposures. The plasma treatment significantly influenced lipid oxidation only after a 10-min exposure. The texture of both types of meat was unaffected by plasma treatment. All sensory parameters of treated and non-treated samples were comparable except for taste, which was negatively influenced by the plasma treatment (P quality might be prevented by the use of hurdle technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The influence of surface DBD plasma treatment on the adhesion of coatings to high-tech textiles

    NARCIS (Netherlands)

    Šimor, M.; Creyghton, Y.; Wypkema, A.W.; Zemek, J.

    2010-01-01

    The surface of high-performance poly(ethylene terephthalate) (PET) fibers is difficult to wet and impossible to chemically bond to different matrices. Sizing applied on the fiber surface usually improves fiber wetting, but prevents good adhesion between a matrix and the fiber surface. The present

  15. Uniformity analysis of dielectric barrier discharge (DBD) processed polyethylene terephthalate (PET) surface

    Science.gov (United States)

    Liu, Chaozong; Brown, Norman M. D.; Meenan, Brian J.

    2006-01-01

    A dielectric barrier discharge (DBD) plasma, operating in air at atmospheric pressure, has been used to induce changes in the surface properties of polyethylene terephthalate (PET) films. The effects that the key DBD operating parameters: discharge power, processing speed, processing duration, and electrode configurations, have on producing wettability changes in the PET surface region have been investigated. The approach taken involves the application of an Taguchi experimental design and robust analysis methodology. The various data sets obtained from these analyses have been used to studies the effect of the operating parameters on the surface uniformity and efficiency of the said treatment. In general, the results obtained indicate that DBD plasma processing is an effective method for the controlled surface modification of PET. Relatively short exposures to the atmospheric pressure discharge produces significant wettability changes at the polymer film surface, as indicted by pronounced reductions in the water contact angle measured. It was observed that the wettability of the resultant surface shows no significant differences in respect to orientation parallel (L-direction) or perpendicular (T-direction) to the electrode long axis. However, there was significant differences between the data obtained from these two orientations. Analysis of the role of each of the operating parameters concerned shows that they have a selective effectiveness with respect to resultant surface modification in terms of uniformity of modification and wettability. The number of treatment cycles and the electrode configuration used were found to have the most significant effects on the homogeneity of the resultant PET surface changes in L- and T-orientation, respectively. On the other hand, the applied power showed no significant role in this regard. The number of treatment cycles was found to be the dominant factor (at significance level of 0.05) in respect of water contact angle

  16. Numerical simulation of nanosecond pulsed DBD in lean methane–air mixture for typical conditions in internal engines

    International Nuclear Information System (INIS)

    Takana, Hidemasa; Nishiyama, Hideya

    2014-01-01

    Detailed two-dimensional numerical simulations of a high energy loading nanosecond dc pulse DBD in a lean methane–air mixture were conducted for plasma-assisted combustion by integrating individual models of plasma chemistry, photoionization and energy loading. The DBD streamer propagation process with radical productions was clarified at 10 atm and 600 K as under the condition of actual internal engines at ignition. Energy is loaded to the streamer first by the formation of plasma channel and then ceased due to the self-shielding effect. Because of the inversed electric field in a discharge space during decrease in applied voltage, energy is loaded to the discharge again. It was found that higher energy is loaded to the DBD streamer for larger dielectric constant even at lower applied voltage, and higher number density of oxygen radical is produced at almost the same radical production efficiency. (paper)

  17. Effect of dielectric barrier discharge treatment on surface nanostructure and wettability of polylactic acid (PLA) nonwoven fabrics

    Science.gov (United States)

    Ren, Yu; Xu, Lin; Wang, Chunxia; Wang, Xiaona; Ding, Zhirong; Chen, Yuyue

    2017-12-01

    Polylactic acid (PLA) nonwoven fabrics are treated with atmospheric dielectric barrier discharge (DBD) plasma to improve surface wettability. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) show that micro- to nano-scale textures appear on the treated PLA surfaces dependent on the treatment time. X-ray photoelectron spectroscopy (XPS) analysis reveals that the DBD plasma treatments result in decreased carbon contents and increased oxygen contents as well as slightly increased nitrogen contents. The water contact angle decreases sharply with the increase of the DBD plasma treatment time. The super hydrophilic PLA surfaces (the water contact angle reached 0°) are obtained when the treatment time is longer than 90 s. Ninety days after the DBD plasma treatment, the XPS analysis shows that Csbnd O/Csbnd N and Cdbnd O/Osbnd Cdbnd O percentages decline for all treatment groups. However, the water contact angle is kept constant at 0° for the groups treated above 90 s, which could be due to the oxidized nano-structured layer on the DBD plasma treated PLA surfaces.

  18. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    Science.gov (United States)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  19. Plasma treatment: A Novel Medical Application

    International Nuclear Information System (INIS)

    Boonyawan, Dheerawan

    2015-01-01

    Cold atmospheric plasma (CAP) for the medical treatment is a new field in plasma application, called plasma medicine. CAP contrains mix of excited atoms and molecules, UV photons, charged particles as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS). Typical species in air CAPs are O 3 , OH, N x , and HNO x . Two cold atomospheric plasma devices were utiized (either in an indirect or a direct way) for the treatment of physiologically healthy volunterrs, The results show that CAP is effective againts chronic wound infections and/ or for skin treatment in clinical trials. The current developments in this field have fuelled the hope that CAP could be, and interesting new therapeutic apptoach in the treatment of cancer.

  20. Roles of individual radicals generated by a submerged dielectric barrier discharge plasma reactor during Escherichia coli O157:H7 inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Muhammad Saiful Islam [Department of Food Biotechnology, University of Science and Technology, Daejeon, 305-350 (Korea, Republic of); Lee, Eun-Jung [Food Safety Research Group, Korea Food Research Institute, Seongnam-si, Gyeonggi-Do (Korea, Republic of); Kim, Yun-Ji, E-mail: yunji@kfri.re.kr [Department of Food Biotechnology, University of Science and Technology, Daejeon, 305-350 (Korea, Republic of); Food Safety Research Group, Korea Food Research Institute, Seongnam-si, Gyeonggi-Do (Korea, Republic of)

    2015-10-15

    A submerged dielectric barrier discharge plasma reactor (underwater DBD) has been used on Escherichia coli O157:H7 (ATCC 35150). Plasma treatment was carried out using clean dry air gas to investigate the individual effects of the radicals produced by underwater DBD on an E. coli O157:H7 suspension (8.0 log CFU/ml). E. coli O157:H7 was reduced by 6.0 log CFU/ml for 2 min of underwater DBD plasma treatment. Optical Emission Spectra (OES) shows that OH and NO (α, β) radicals, generated by underwater DBD along with ozone gas. E. coli O157:H7 were reduced by 2.3 log CFU/ml for 10 min of underwater DBD plasma treatment with the terephthalic acid (TA) OH radical scavenger solution, which is significantly lower (3.7 log CFU/ml) than the result obtained without using the OH radical scavenger. A maximum of 1.5 ppm of ozone gas was produced during the discharge of underwater DBD, and the obtained reduction difference in E.coli O157:H7 in presence and in absence of ozone gas was 1.68 log CFU/ml. The remainder of the 0.62 log CFU/ml reduction might be due to the effect of the NO (α, β) radicals or due to the combined effect of all the radicals produced by underwater DBD. A small amount of hydrogen peroxide was also generated but does not play any role in E. coli O157:H7 inactivation.

  1. Changes in the biomechanical properties of a single cell induced by nonthermal atmospheric pressure micro-dielectric barrier discharge plasma.

    Science.gov (United States)

    Choi, Hyeongwon; Choi, Eun Ha; Kim, Kyung Sook

    2017-10-01

    Mechanical properties of a single cell are closely related to the fate and functions of the cell. Changes in mechanical properties may cause diseases or cell apoptosis. Selective cytotoxic effects of nonthermal atmospheric pressure micro-dielectric barrier discharge (DBD) plasma have been demonstrated on cancer cells. In this work, changes in the mechanical properties of a single cell induced by nonthermal atmospheric pressure micro-DBD plasma were investigated using atomic force microscopy (AFM). Two cervical cancer cell lines (HeLa and SiHa) and normal human fibroblast cells (HFBs) were exposed to micro-DBD plasma for various exposure times. The elasticity of a single cell was determined by force-distance curve measurement using AFM. Young's modulus was decreased by plasma treatment for all cells. The Young's modulus of plasma-treated HeLa cells was decreased by 75% compared to nontreated HeLa cells. In SiHa cells and HFBs, elasticity was decreased slightly. Chemical changes induced by the plasma treatment, which were observed by Raman spectroscopy, were also significant in HeLa cells compared to SiHa cells and HFBs. These results suggested that the molecular changes induced by micro-DBD plasma were related to cell mechanical changes. © 2017 Wiley Periodicals, Inc.

  2. Plasma treatment of polymers for improved adhesion

    International Nuclear Information System (INIS)

    Kelber, J.A.

    1988-01-01

    A variety of plasma treatments of polymer sufaces for improved adhesion are reviewed: noble and reactive has treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasma-induced amination of polymer fibers. The plasma induced surface chemical and morphological changer are discussed, as are the mechanisms of adhersion to polymeric adhesives, particularly epoxy. Noble has plasma eching of fluoropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhsion to epoxy. Reactive has plasma also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble and reactive gas (except for hydrogen) etching of polyolefins results in surface oxidation and imrprove adhesion via hydrogen bonding of these exygen containing groups across the interface. The introduction of amine groups to a polymer surface by ammonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical group surrounding the amine

  3. Surface modification of thermoplastic poly(vinyl alcohol)/saponite nanocomposites via surface-initiated atom transfer radical polymerization enhanced by air dielectric discharges barrier plasma treatment

    International Nuclear Information System (INIS)

    Zhen Weijun; Lu Canhui

    2012-01-01

    To improve the water resistance of thermoplastic poly(vinyl alcohol)/saponite nanocomposites (TPVA), a simple two-step method was developed for the covalent immobilization of atom transfer radical polymerization (ATRP) initiators on the TPVA surfaces enhanced by air dielectric barrier discharges (DBD) plasma treatment, and hydrophobic poly(methyl methacrylate) (PMMA) brushes were then grafted onto the surface of TPVA via surface-initiated atom transfer radical polymerization (SI-ATRP). The chemical composition, morphology and hydrophobicity of the modified TPVA surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. The water resistance of the surface-functionalized PMMA was evaluated by the contact angle and water adsorption method. It was shown that air DBD plasma treatment activated the TPVA surface and accelerated the immobilization of ATRP initiator on the TPVA surface. Compared with TPVA control, TPVA modified by SI-ATRP can be grafted well-defined and covalently tethered network PMMA brushes onto the surface and the hydrophobicity of TPVA were significantly enhanced.

  4. Estudi de la vida útil d'aliments envasats tractats amb Dielectric Barrier Discharge Plasma

    OpenAIRE

    Messari Jouid, Fatima

    2015-01-01

    It was just a few years ago when the first studies about the utility of DBD (Dielectric Barrier Discharge) treatment on the microbial reduction of food. Is for this reason that, at the moment, there are few published studies. The most useful literature found comes the physics and chemistry fields. The aim of this study is the evaluation of the effect of DBD plasma treatment in orange juice, whole milk, dried tomato soup and cocoa powder, thinking about the possibility of using this technology...

  5. Raman spectroscopic study of plasma-treated salmon DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha [Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  6. Treatment of gaseous effluents by using surface discharge plasma in continuous reactors: Process modelling and simulation

    OpenAIRE

    Assadi , Aymen ,; Bouzaza , Abdelkrim; Wolbert , Dominique

    2015-01-01

    International audience; In the present work, the oxidation of isovaleraldehyde, a typical pollutant of indoor air, is investigated by using two different plasma DBD reactors: cylindrical and planar reactor. The study of the influence of the specific energy shows that its increment is accompanied by an increase of the removal efficiency. In fact, when specific energy extends three times, the removal efficiency is increased from 5 to 40%. Moreover an increase of the specific energy induces a hi...

  7. Treatment of poly(ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth

    Czech Academy of Sciences Publication Activity Database

    Kuzminova, A.; Vandrovcová, Marta; Shelemin, A.; Kylián, O.; Choukourov, A.; Hanuš, J.; Bačáková, Lucie; Slavínská, D.; Biederman, H.

    2015-01-01

    Roč. 357, part A (2015), s. 689-695 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : plasma treatment * DBD plasma * cells growth Subject RIV: JJ - Other Materials Impact factor: 3.150, year: 2015

  8. Characterization of atmospheric pressure plasma treated pure cashmere and wool/cashmere textiles: Treatment in air/water vapor mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zanini, Stefano, E-mail: stefano.zanini@mib.infn.it [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy); Grimoldi, Elisa [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy); Citterio, Attilio [Politecnico di Milano, Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Via Mancinelli 7, I-20131 Milano (Italy); Riccardi, Claudia, E-mail: riccardi@mib.infn.it [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy)

    2015-09-15

    Highlights: • We treated cashmere and wool/cashmere textiles with atmospheric pressure plasma. • Wettability of the fabrics was increased. • The increment in wettability derived from a surface oxidation of the fibers. • Only minor etching effects were observed with scanning electron microscopy. - Abstract: We performed atmospheric pressure plasma treatments of pure cashmere and wool/cashmere textiles with a dielectric barrier discharge (DBD) in humid air (air/water vapor mixtures). Treatment parameters have been optimized in order to enhance the wettability of the fabrics without changing their bulk properties as well as their touch. A deep characterization has been performed to study the wettability, the surface morphologies, the chemical composition and the mechanical properties of the plasma treated textiles. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy and X-ray photoelectron microscopy (XPS). The analyses reveal a surface oxidation of the treated fabrics, which enhances their surface wettability. Morphological characterization of the treated fibers with scanning electron microscopy (SEM) reveals minor etching effects, an essential feature for the maintenance of the textile softness.

  9. Computational simulation of reactive species production by methane-air DBD at high pressure and high temperature

    Science.gov (United States)

    Takana, H.; Tanaka, Y.; Nishiyama, H.

    2012-01-01

    Computational simulations of a single streamer in DBD in lean methane-air mixture at pressure of 1 and 3 atm and temperature of 300 and 500 K were conducted for plasma-enhanced chemical reactions in a closed system. The effects of surrounding pressure and temperature are characterized for reactive species production by a DBD discharge. The results show that the production characteristics of reactive species are strongly influenced by the total gas number density and the higher concentration of reactive species are produced at higher pressure and lower gas temperature for a given initial reduced electric field.

  10. Properties of zirconia after plasma treatment

    Science.gov (United States)

    Alekseenko, V. P.; Kulkov, S. N.

    2017-09-01

    The influence of high-frequency plasma treatment on the properties of zirconia powder is shown in the work. The powder was produced by a plasma-chemical method. The powders had a foamy form with the size of agglomerates of 5-10 μm and crystallites of 20-50 nm. The powders were treated by the pulse plasma unit with dielectric barrier discharge generator. It was shown that the plasma processing changes the acidity of water-powder suspensions from 8.1 to 4.3 pH, which signifies the powders' wettability improvement. It was revealed that more intensive mixing using ultrasound influences the acidity level, reducing it in comparison with mixing by paddle-type agitator. It was shown that these changes of surface properties have relaxation by 4% per day and extrapolation of this dependence shows that the powder will have initial properties after 400 hours storage at room conditions.

  11. Catalytic oxidation of benzene using DBD corona discharges

    International Nuclear Information System (INIS)

    Lu, B.; Zhang, X.; Yu, X.; Feng, T.; Yao, S.

    2006-01-01

    Plasma oxidation of benzene (C 6 H 6 ) in oxygen and nitrogen was investigated using a dielectric barrier discharge (DBD) reactor with or without MnO 2 or TiO 2 at atmospheric pressure and without external heating except plasma heating. An alternative current power supply was used to generate corona discharges for the plasma oxidation. The energy density was controlled under 200 J/L to keep an increase in gas temperature less than 167 K. C 6 H 6 was oxidized to carbon monoxide (CO) and dioxide (CO 2 ). Typically, the energy efficiency at an energy density of 92 J/L was about 0.052, 0.039, and 0.024 mol/kWh with MnO 2 , TiO 2 , and without MnO 2 and TiO 2 , respectively. Benzene oxidation mechanism was mentioned. A comparison on energy efficiency as a function of initial concentration of hydrocarbons, inorganic sulphur compounds, and chloro (fluoro and bromo) carbons was given

  12. Laser treatment of plasma sprayed HA coatings

    NARCIS (Netherlands)

    Khor, KA; Vreeling, A; Dong, ZL; Cheang, P

    1999-01-01

    Laser treatment was conducted on plasma sprayed hydroxyapatite (HA) coatings using a Nd-YAG pulse laser. Various laser parameters were investigated. The results showed that the HA surface melted when an energy level of greater than or equal to 2 J and a spot size of 2 mm was employed during

  13. Plasma treatment of polymers for modifying haemocompatibility

    International Nuclear Information System (INIS)

    Wilson, D.J.

    2000-03-01

    The primary objective of this study was to investigate changes in the thrombogenicity of four materials, PTFE, PDMS, PEU and UHMW-PE induced by plasma treatments. In particular, correlations were sought between the chemical and topographical alterations to the materials surface caused by exposure to plasmas and the observed changes of blood response. Each material was treated in O 2 , Ar, N 2 and NH 3 discharges, the system pressure, treatment times, gas flow rates and plasma power ( 51 Cr labelled platelets and (ii) platelet aggregation and release of microparticles by flow cytometry, after labelling with anti-CD62 and anti-CD41 antibodies, in whole blood perfused in a cone and plate viscometer at a physiologically relevant shear rate (500 s -1 ). In addition, quasi-static evaluation was carried out by contact phase activation and assessed by PTT assays. Contact with the 'as-received' materials resulted in activation of the blood. Moreover, plasma treatment resulted in further modifications of both the surface and fluid phase responses for example, a reduction in the number of adhered platelets and a expression of p-selectin compared with the as-received surfaces attributed to changes in surface chemistry. (author)

  14. Effect of atmospheric oxidative plasma treatments on polypropylenic fibers surface: Characterization and reaction mechanisms

    International Nuclear Information System (INIS)

    Nisticò, Roberto; Magnacca, Giuliana; Faga, Maria Giulia; Gautier, Giovanna; D’Angelo, Domenico; Ciancio, Emanuele; Lamberti, Roberta; Martorana, Selanna

    2013-01-01

    Atmospheric pressure plasma-dielectric barrier discharge (APP-DBD, open chamber configuration) was used to functionalize polypropylene (PP) fibers surface in order to generate oxidized-reactive groups such as hydroperoxides, alcohols and carbonyl species (i.e. ketones and others). Such a species increased the surface polarity, without causing material degradation. Three different types of plasma mixture (He, He/O 2 , He/O 2 /H 2 O) under three different values of applied power (750, 1050, 1400 W) were investigated. The formed plasma species (O 2 + , O single atom and OH radical) and their distribution were monitored via optical emission spectrometry (OES) measurements, and the plasma effects on PP surface species formation were followed by X-ray photoemission spectroscopy (XPS). Results allowed to better understand the reaction pathways between plasma phase and PP fibers. In fact, two reaction mechanisms were proposed, the first one concerning the plasma phase reactions and the second one involving material surface modifications.

  15. Plasma assisted surface treatments of biomaterials.

    Science.gov (United States)

    Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G

    2017-10-01

    The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Plasma treatment of heat-resistant materials

    International Nuclear Information System (INIS)

    Vlasov, V A; Kosmachev, P V; Skripnikova, N K; Bezukhov, K A

    2015-01-01

    Refractory lining of thermal generating units is exposed to chemical, thermal, and mechanical attacks. The degree of fracture of heat-resistant materials depends on the chemical medium composition, the process temperature and the material porosity. As is known, a shortterm exposure of the surface to low-temperature plasma (LTP) makes possible to create specific coatings that can improve the properties of workpieces. The aim of this work is to produce the protective coating on heat-resistant chamotte products using the LTP technique. Experiments have shown that plasma treatment of chamotte products modifies the surface, and a glass-ceramic coating enriched in mullite is formed providing the improvement of heat resistance. For increasing heat resistance of chamotte refractories, pastes comprising mixtures of Bacor, alumina oxide, and chamot were applied to their surfaces in different ratios. It is proved that the appropriate coating cannot be created if only one of heat-resistant components is used. The required coatings that can be used and recommended for practical applications are obtained only with the introduction of powder chamot. The paste composition of 50% chamot, 25% Bacor, and 25% alumina oxide exposed to plasma treatment, has demonstrated the most uniform surface fusion. (paper)

  17. A novel cupping-assisted plasma treatment for skin disinfection

    Science.gov (United States)

    Xiong, Zilan; Graves, David B.

    2017-02-01

    A novel plasma treatment method/plasma source called cupping-assisted plasma treatment/source for skin disinfection is introduced. The idea combines ancient Chinese ‘cupping’ technology with plasma sources to generate active plasma inside an isolated, pressure-controlled chamber attached to the skin. Advantages of lower pressure include reducing the threshold voltage for plasma ignition and improving the spatial uniformity of the plasma treatment. In addition, with reduced pressure inside the cup, skin pore permeability might be increased and it improves attachment of the plasma device to the skin. Moreover, at a given pressure, plasma-generated active species are restricted inside the cup, raising local reactive species concentration and enhancing the measured surface disinfection rate. A surface micro-discharge (SMD) device is used as an example of a working plasma source. We report discharge characteristics and disinfection efficiency as a function of pressure and applied voltage.

  18. Surface modification of chitosan/PEO nanofibers by air dielectric barrier discharge plasma for acetylcholinesterase immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Dorraki, Naghme, E-mail: n.dorraki@web.sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Safa, Nasrin Navab [Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Jahanfar, Mehdi [Protein Research Center, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Ghomi, Hamid [Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Ranaei-Siadat, Seyed-Omid [Protein Research Center, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of)

    2015-09-15

    Highlights: • We used an economical and effective method for surface modification. • Chitosan/PEO nanofibrous membranes were modified by air-DBD plasma. • The most NH{sub 3}{sup +} group was generated on the 6 min plasma modified membrane. • We immobilized acetylcholinesterase on the plasma modified and unmodified membranes. • More enzyme activity was detected on the modified membrane by plasma. - Abstract: There are different methods to modify polymer surfaces for biological applications. In this work we have introduced air-dielectric barrier discharge (DBD) plasma at atmospheric pressure as an economical and safe method for modifying the surface of electrospun chitosan/PEO (90/10) nanofibers for acetylcholinesterase (AChE) immobilization. According to the contact angle measurement results, the nanofibers become highly hydrophilic when they are exposed to the DBD plasma for 6 min in compared to unmodified membrane. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) results reveal hydroxyl, C=O and NH{sub 3}{sup +} polar groups increment after 6 min plasma treatment. Contact angle measurements and ATR-FTIR results are confirmed by X-ray photoelectron spectroscopy (XPS). AChE at pH 7.4 carries a negative charge and after immobilization on the surface of plasma-treated nanofibrous membrane attracts the NH{sub 3}{sup +} group and more enzyme activity is detected on the plasma-modified nanofibers for 6 min in compared to unmodified nanofibers. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used for the surface topography and morphology characterization. The results have proved that air-DBD plasma is a suitable method for chitosan/PEO nanofibrous membrane modification as a biodegradable and functionalized substrate for enzyme immobilization.

  19. Impact of an ionic liquid on protein thermodynamics in the presence of cold atmospheric plasma and gamma rays.

    Science.gov (United States)

    Attri, Pankaj; Kim, Minsup; Choi, Eun Ha; Cho, Art E; Koga, Kazunori; Shiratani, Masaharu

    2017-09-27

    Cold atmospheric plasma and gamma rays are known to have anticancer properties, even though their specific mechanisms and roles as co-solvents during their action are still not clearly understood. Despite the use of gamma rays in cancer therapy, they have oncogenic potential, whereas this has not been observed for plasma treatment (to date). To gain a better understanding, we studied the action of dielectric barrier discharge (DBD) plasma and gamma rays on the myoglobin protein. We analyzed the secondary structure and thermodynamic properties of myoglobin after both treatments. In addition, in the last few years, ammonium ionic liquids (ILs) have revealed their important role in protein folding as co-solvents. In this work, we treated the protein with ammonium ILs such as triethylammonium methanesulfonate (TEMS) and tetrabutylammonium methanesulfonate (TBMS) and later treated this IL-protein solution with DBD plasma and gamma rays. In this study, we show the chemical and thermal denaturation of the protein after plasma and gamma treatments in the presence and absence of ILs using circular dichroism (CD) and UV-vis spectroscopy. Furthermore, we also show the influence of plasma and gamma rays on the secondary structure of myoglobin in the absence and presence of ILs or ILs + urea using CD. Finally, molecular dynamic simulations were conducted to gain deeper insight into how the ILs behave to protect the protein against the hydrogen peroxide generated by the DBD plasma and gamma rays.

  20. TREATMENT OF PRIMARY PLASMA CELL LEUKAEMIA

    Directory of Open Access Journals (Sweden)

    Peter Černelč

    2003-04-01

    Full Text Available Background. The author describes long-term survival in 3 patients with primary plasma cell leukaemia (PL after different therapeutic regimen and maintenance treatment with interferon alpha (INF.Patients and treatment. In a 52-year-old male patient, a partial remission of PL was achieved after 6 months of treatment with melphalan and prednisone. The patient did not consent to stem cell transplantation (SCT. An 86-year-old female patient with PL achieved a complete remission after 6 months of treatment with vincristine, doxorubicin and dexamethasone. A 31-year-old male patient experienced a complete remission of PL after 6 months of treatment with cyclophosphamide, vincristine, doxorubicin, methilprednisone, followed by autologous SCT. All three patients were placed on maintenance therapy with INF-2b (Intron A 3 × 106 IU given subcutaneously on two days per week. In the 52-year-old man, the remission lasted 9 months and in the woman 23 months, whereupon they developed a relapse with signs of disseminated plasmacytoma. In both patients the former chemotherapy was applied again, resulting in a slight improvement. The man died 37 months and the woman 43 months after the diagnosis of PL, while the youngest patient has been in complete remission for 82 months.Conclusions. Long remission achieved in our patients confirmed the favourable effect of INF in terms of prolongation of the remission duration in this patients. The effect of maintenance treatment with INF is usually directly dependent on the degree of remission induced by different therapeutic regimen.

  1. Platelet-rich plasma for osteoarthritis treatment

    Directory of Open Access Journals (Sweden)

    Eduardo Knop

    2016-04-01

    Full Text Available ABSTRACT We conducted a comprehensive and systematic search of the literature on the use of platelet-rich plasma (PRP in the treatment of osteoarthritis, using the Medline, Lilacs, Cochrane and SciELO databases, from May 2012 to October 2013. A total of 23 studies were selected, with nine being controlled trials and, of these, seven randomized, which included 725 patients. In this series, the group receiving PRP showed improvement in pain and joint function compared to placebo and hyaluronic acid. The response lasted up to two years and was better in milder cases. However it was found that there is no standardization in the PRP production method, neither in the number, timing, and volume of applications. Furthermore, the populations studied were not clearly described in many studies. Thus, these results should be analyzed with caution, and further studies with more standardized methods would be necessary for a more consistent conclusion about the PRP role in osteoarthritis.

  2. Improvement of water quality using dielectric barrier discharge plasma

    Science.gov (United States)

    Quyen, N. T.; Traikool, T.; Nitisoravut, R.; Onjun, T.

    2017-06-01

    The improvement of water quality using by atmospheric plasma produced from a dielectric barrier discharge (DBD) was studied. An experiment was set-up with a 4 mm diameter pipe, which contains 2 electrodes and has an air flow with the rate of 15 liters per minute. Surface water, domestic wastewater and DI water were treated with the DBD plasma for some period of time. Electricity was supplied at 3.5 kV with the frequency of 5.5 kHz. Some key parameters of water quality includes the level of chemical oxygen demand (COD), total suspended solid (TSS), color, and odor are measured before and after. The result showed that strong acid with pH below 2 was observed after 60 minutes plasma treatment for the DI water, while the surface water and wastewater needs about 120 minutes to pH below 2 even though the pH value are about the same at the beginning. Moreover, It was formed that the COD, TSS microorganism was noticeably decreased, therefore the increasing of transparency level. This result confirms that atmospheric DBD plasma generated acidity in water as reduce amount of organic and suspended solid in water.

  3. Plasma Treatment to Enhance Fuel Cell Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal builds on preliminary work, performed in 2012, which demonstrated that plasma treatment methods can effectively modify the wetting characteristics of...

  4. Oxygen Plasma Treatment of Rubber Surface by the Atmospheric Pressure Cold Plasma Torch

    DEFF Research Database (Denmark)

    Lee, Bong-ju; Kusano, Yukihiro; Kato, Nobuko

    1997-01-01

    adhesive. The adhesion property was improved by treatment of the rubber compound with plasma containing oxygen radicals. Physical and chemical changes of the rubber surface as a result of the plasma treatment were analyzed by field emission scanning electron microscopy (FE-SEM) and fourier transform......A new application of the atmospheric cold plasma torch has been investigated. Namely, the surface treatment of an air-exposed vulcanized rubber compound. The effect of plasma treatment was evaluated by the bondability of the treated rubber compound with another rubber compound using a polyurethane...

  5. Chemical modification of extracellular matrix by cold atmospheric plasma-generated reactive species affects chondrogenesis and bone formation.

    Science.gov (United States)

    Eisenhauer, Peter; Chernets, Natalie; Song, You; Dobrynin, Danil; Pleshko, Nancy; Steinbeck, Marla J; Freeman, Theresa A

    2016-09-01

    The goal of this study was to investigate whether cold plasma generated by dielectric barrier discharge (DBD) modifies extracellular matrices (ECM) to influence chondrogenesis and endochondral ossification. Replacement of cartilage by bone during endochondral ossification is essential in fetal skeletal development, bone growth and fracture healing. Regulation of this process by the ECM occurs through matrix remodelling, involving a variety of cell attachment molecules and growth factors, which influence cell morphology and protein expression. The commercially available ECM, Matrigel, was treated with microsecond or nanosecond pulsed (μsp or nsp, respectively) DBD frequencies conditions at the equivalent frequencies (1 kHz) or power (~1 W). Recombinant human bone morphogenetic protein-2 was added and the mixture subcutaneously injected into mice to simulate ectopic endochondral ossification. Two weeks later, the masses were extracted and analysed by microcomputed tomography. A significant increase in bone formation was observed in Matrigel treated with μsp DBD compared with control, while a significant decrease in bone formation was observed for both nsp treatments. Histological and immunohistochemical analysis showed Matrigel treated with μsp plasma increased the number of invading cells, the amount of vascular endothelial growth factor and chondrogenesis while the opposite was true for Matrigel treated with nsp plasma. In support of the in vivo Matrigel study, 10 T1/2 cells cultured in vitro on μsp DBD-treated type I collagen showed increased expression of adhesion proteins and activation of survival pathways, which decreased with nsp plasma treatments. These results indicate DBD modification of ECM can influence cellular behaviours to accelerate or inhibit chondrogenesis and endochondral ossification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Medical Plasma in Dentistry: A Future Therapy for Peri-implantitis

    Science.gov (United States)

    Koban, Ina; Jablonowski, Lukasz; Kramer, Axel; Weltmann, Klaus-Dieter; Kocher, Thomas

    Biofilm formation plays a major role in the pathogenesis of many oral diseases especially in peri-implantits. To evaluate the anti-biofilm effect of different plasma devices and processes we used different dental biofilm models: Candida albicans, Streptococcus mutans, Streptococcus sanguinis, aerobe multispecies human saliva and anaerobe plaque biofilms. After 10 min treatment we reduced the biofilms by 5 log10 steps using dielectric barrier discharge (DBD) plasma. Chlorhexidine is the gold standard antiseptic which achieved in the same time only a 1.5 log10 reduction. All plasma devices (DBD or plasma jets) damaged the membrane of the microorganisms but only etching plasma sources can remove the biofilm as shown in CLSM micrographs. It is possible to improve the plasma process using antiseptics like octenidine. This combination significantly reduced CFU values after 1 min plasma treatment compared to the plasma control. Beside the anti-biofilm effect an additional effect of plasma is the contact angle reduction of different titanium implant surfaces from 90° to super-hydrophilic (<5°). This can improve the implant healing process. Thus in the future, plasma could be an interesting treatment option in dentistry, especially in treatment of peri-implantits.

  7. Study of plasma-material surface interaction using Langmuir probe technique during plasma treatment

    International Nuclear Information System (INIS)

    Saloum, S.; Akel, M.

    2009-06-01

    In this study, we tried to understand the plasma-surface interactions by using Langmuir probes. Two different types of plasmas were studied, the first is the electropositive plasma in Argon and the second is the electronegative plasma in Sulfur Hexafluoride. In the first type, the effects of Argon gas pressure, the injection of Helium in the remote zone and the substrate bias on the measurements of the Electron Energy Probability Function (EEPF) and on the plasma parameters (electron density (n e ), effective electron temperature (T e ff), plasma potential (V p ) and floating potential (V f )) have been investigated. The obtained EEPFs and plasma parameters have been used to control two remote plasma processes. The first is the remote Plasma Enhanced Chemical Vapor Deposition (PE-CVD) of thin films, on silicon wafers, from Hexamethyldisoloxane (HMDSO) precursor diluted in the remote Ar-He plasma. The second is the pure Argon remote plasma treatment of polymethylmethacrylate (PMMA) polymer surface. In the second type, the plasma diagnostics were performed in the remote zone as a function of SF 6 flow rate, where relative concentrations of fluorine atoms were measured using actinometry optical emission spectroscopy; electron density, electron temperature and plasma potential were determined using single cylindrical Langmuir probe, positive ion flux and negative ion fraction were determined using an planar probe. The silicon etching process in SF 6 plasma was studied. (author)

  8. Oxygen Plasma Treatment of Rubber Surface by the Atmospheric Pressure Cold Plasma Torch

    DEFF Research Database (Denmark)

    Lee, Bong-ju; Kusano, Yukihiro; Kato, Nobuko

    1997-01-01

    A new application of the atmospheric cold plasma torch has been investigated. Namely, the surface treatment of an air-exposed vulcanized rubber compound. The effect of plasma treatment was evaluated by the bondability of the treated rubber compound with another rubber compound using a polyurethane...

  9. Platelet-rich plasma for osteoarthritis treatment.

    Science.gov (United States)

    Knop, Eduardo; Paula, Luiz Eduardo de; Fuller, Ricardo

    2016-01-01

    We conducted a comprehensive and systematic search of the literature on the use of platelet-rich plasma (PRP) in the treatment of osteoarthritis, using the Medline, Lilacs, Cochrane and SciELO databases, from May 2012 to October 2013. A total of 23 studies were selected, with nine being controlled trials and, of these, seven randomized, which included 725 patients. In this series, the group receiving PRP showed improvement in pain and joint function compared to placebo and hyaluronic acid. The response lasted up to two years and was better in milder cases. However it was found that there is no standardization in the PRP production method, neither in the number, timing, and volume of applications. Furthermore, the populations studied were not clearly described in many studies. Thus, these results should be analyzed with caution, and further studies with more standardized methods would be necessary for a more consistent conclusion about the PRP role in osteoarthritis. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  10. Shock Generation and Control Using DBD Plasma Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Shock-wave/boundary-layer interactions (SWBLI) pose challenges to aeronautical engineers because they create regions of adverse pressure gradients as a result of the...

  11. Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments

    International Nuclear Information System (INIS)

    Chen, Shih-Cheng; Chang, Ting-Chang; Chen, Wei-Ren; Lo, Yuan-Chun; Wu, Kai-Ting; Sze, S.M.; Chen, Jason; Liao, I.H.; Yeh, Fon-Shan

    2010-01-01

    In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.

  12. Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shih-Cheng, E-mail: scchen0213@gmail.co [Department of Electrical Engineering and Institute of Electronic Engineering, National Tsing Hua University, Taiwan (China); Chang, Ting-Chang [Department of Physics and Institute of Electro-Optical Engineering, and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Taiwan (China); Chen, Wei-Ren [Institute of Electronics, National Chiao Tung University, Taiwan, Hsinchu, Taiwan 300 (China); Lo, Yuan-Chun; Wu, Kai-Ting [Institute of Photonics Technologies, National Tsing Hua University, Taiwan (China); Sze, S.M. [Institute of Electronics, National Chiao Tung University, Taiwan, Hsinchu, Taiwan 300 (China); Chen, Jason; Liao, I.H. [ProMOS Technologies, No. 19 Li Hsin Rd., Science-Based Industrial Park, Hsinchu, Taiwan 300 (China); Yeh, Fon-Shan [Department of Electrical Engineering and Institute of Electronic Engineering, National Tsing Hua University, Taiwan (China)

    2010-10-01

    In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.

  13. Disruptive Behaviour Disorder (DBD) Rating Scale for Attention ...

    African Journals Online (AJOL)

    A total of 1384 subjects randomly selected from six primary schools were evaluated using the DBD rating scale for ADHD. Teachers were asked to rate the selected subjects on a scale of 1 to 4 on ADHD related symptoms. The raw scores were entered into SPSS 11.0 for Windows (2003) and the mean and 2 standard ...

  14. Executive Function Deficits in Preschool Children with ADHD and DBD

    Science.gov (United States)

    Schoemaker, Kim; Bunte, Tessa; Wiebe, Sandra A.; Espy, Kimberly Andrews; Dekovic, Maja; Matthys, Walter

    2012-01-01

    Background: Impairments in executive functions (EF) are consistently associated with attention deficit hyperactivity disorder (ADHD) and to a lesser extent, with disruptive behavior disorder (DBD), that is, oppositional defiant disorder or conduct disorder, in school-aged children. Recently, larger numbers of children with these disorders are…

  15. Using atmospheric pressure plasma treatment for treating grey cotton fabric.

    Science.gov (United States)

    Kan, Chi-Wai; Lam, Chui-Fung; Chan, Chee-Kooi; Ng, Sun-Pui

    2014-02-15

    Conventional wet treatment, desizing, scouring and bleaching, for grey cotton fabric involves the use of high water, chemical and energy consumption which may not be considered as a clean process. This study aims to investigate the efficiency of the atmospheric pressure plasma (APP) treatment on treating grey cotton fabric when compared with the conventional wet treatment. Grey cotton fabrics were treated with different combinations of plasma parameters with helium and oxygen gases and also through conventional desizing, scouring and bleaching processes in order to obtain comparable results. The results obtained from wicking and water drop tests showed that wettability of grey cotton fabrics was greatly improved after plasma treatment and yielded better results than conventional desizing and scouring. The weight reduction of plasma treated grey cotton fabrics revealed that plasma treatment can help remove sizing materials and impurities. Chemical and morphological changes in plasma treated samples were analysed by FTIR and SEM, respectively. Finally, dyeability of the plasma treated and conventional wet treated grey cotton fabrics was compared and the results showed that similar dyeing results were obtained. This can prove that plasma treatment would be another choice for treating grey cotton fabrics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Decontamination Efficiency of a DBD Lamp Containing an UV-C Emitting Phosphor.

    Science.gov (United States)

    Caillier, Bruno; Caiut, José Maurício Almeida; Muja, Cristina; Demoucron, Julien; Mauricot, Robert; Dexpert-Ghys, Jeanette; Guillot, Philippe

    2015-01-01

    Among different physical and chemical agents, the UV radiation appears to be an important route for inactivation of resistant microorganisms. The present study introduces a new mercury-free Dielectric Barrier Discharge (DBD) flat lamp, where the biocide action comes from the UV emission produced by rare-earth phosphor obtained by spray pyrolysis, following plasma excitation. In this study, the emission intensity of the prototype lamp is tuned by controlling gas pressure and electrical power, 500 mbar and 15 W, corresponding to optimal conditions. In order to characterize the prototype lamp, the energetic output, temperature increase following lamp ignition and ozone production of the source were measured. The bactericidal experiments carried out showed excellent results for several gram-positive and gram-negative bacterial strains, thus demonstrating the high decontamination efficiency of the DBD flat lamp. Finally, the study of the external morphology of the microorganisms after the exposure to the UV emission suggested that other mechanisms than the bacterial DNA damage could be involved in the inactivation process. © 2015 The American Society of Photobiology.

  17. Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma.

    Science.gov (United States)

    Dorraki, Naghme; Mahdavi, Vahideh; Ghomi, Hamid; Ghasempour, Alireza

    2016-12-06

    The food industry is in a constant search for new technologies to improve the commercial sterilization process of agricultural commodities. Plasma treatment may offer a novel and efficient method for pesticide removal from agricultural product surfaces. To study the proposed technique of plasma food treatment, the degradation behavior of diazinon insecticide by air-dielectric barrier discharge (DBD) plasma was investigated. The authors studied the effect of different plasma powers and treatment times on pesticide concentration in liquid form and coated on the surface of cucumbers, where the diazinon residue was analyzed with mass spectroscopy gas chromatography. Our results suggest that atmospheric pressure air-DBD plasma is potentially effective for the degradation of diazinon insecticide, and mainly depends on related operating parameters, including plasma treatment time, discharge power, and pesticide concentrations. Based on the interaction between reactive oxygen species and electrons in the plasma with the diazinon molecule, two degradation pathway of diazinon during plasma treatment are proposed. It was also found that produced organophosphate pesticides are harmless and less hazardous compounds than diazinon.

  18. Study on the effects of physical plasma on in-vitro cultivates cells; Untersuchungen zum Einfluss von physikalischem Plasma auf in vitro kultivierte Zellen

    Energy Technology Data Exchange (ETDEWEB)

    Strassenburg, Susanne

    2014-03-15

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  19. Improving the efficiency of plasma heat treatment of metals

    International Nuclear Information System (INIS)

    Gabdrakhmanov, Az T; Israphilov, I H; Galiakbarov, A T; Samigullin, A D; Gabdrakhmanov, Al T

    2016-01-01

    This paper proposes an effective way of the plasma hardening the surface layer at the expense combined influence of the plasma jet and a cold air flow. After that influence occurs a distinctive by plasma treatment microstructure with increased microhardness (an increase of 35%) and depth. There is proposed an improved design of the vortex tube for receiving the air flow with a temperature of 20 C to - 120C. (paper)

  20. Improvement of crystalline silicon surface passivation by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Martin, I.; Vetter, M.; Orpella, A.; Voz, C.; Puigdollers, J.; Alcubilla, R.; Kharchenko, A.V.; Roca i Cabarrocas, P.

    2004-01-01

    A completely dry low-temperature process has been developed to passivate 3.3 Ω cm p-type crystalline silicon surface with excellent results. Particularly, we have investigated the use of a hydrogen plasma treatment, just before hydrogenated amorphous silicon carbide (a-SiC x :H) deposition, without breaking the vacuum. We measured effective lifetime, τ eff , through a quasi-steady-state photoconductance technique. Experimental results show that hydrogen plasma treatment improves surface passivation compared to classical HF dip. S eff values lower than 19 cm s -1 were achieved using a hydrogen plasma treatment and an a-SiC x :H film deposited at 300 deg. C

  1. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Zhi, C.Y.; Bai, X.D.; Wang, E.G.

    2002-01-01

    The field emission capability of the carbon nanotubes (CNTs) has been improved by hydrogen plasma treatment, and the enhanced emission mechanism has been studied systematically using Fourier-transform infrared spectroscopy, Raman, and transmission electron microscopy. The hydrogen concentration in the samples increases with increasing plasma treatment duration. A C δ- -H δ+ dipole layer may form on CNTs' surface and a high density of defects results from the plasma treatment, which is likely to make the external surface of CNTs more active to emit electrons after treatment. In addition, the sharp edge of CNTs' top, after removal of the catalyst particles, may increase the local electronic field more effectively. The present study suggests that hydrogen plasma treatment is a useful method for improving the field electron emission property of CNTs

  2. Surface Modification of Polymeric Materials by Plasma Treatment

    Directory of Open Access Journals (Sweden)

    E.F. Castro Vidaurre

    2002-03-01

    Full Text Available Low-temperature plasma treatment has been used in the last years as a useful tool to modify the surface properties of different materials, in special of polymers. In the present work low temperature plasma was used to treat the surface of asymmetric porous substrates of polysulfone (PSf membranes. The main purpose of this work was to study the influence of the exposure time and the power supplied to argon plasma on the permeability properties of the membranes. Three rf power levels, respectively 5, 10 and 15 W were used. Treatment time ranged from 1 to 50 min. Reduction of single gas permeability was observed with Ar plasma treatments at low energy bombardment (5 W and short exposure time (20 min. Higher power and/or higher plasma exposition time causes a degradation process begins. The chemical and structural characterization of the membranes before and after the surface modification was done by AFM, SEM and XPS.

  3. Electrical Characterization of Dielectric Barrier Discharge in Atmospheric Air for Plasma Production Aiming for Improving Seed Germination

    International Nuclear Information System (INIS)

    Traikool, T; Poolyarat, N; Picha, R; Onjun, T

    2014-01-01

    A Dielectric Barrier Discharge (DBD) reactor has been developed aiming for improving seed germination. This DBD reactor consists of two 3-inch stainless steel planar electrodes with mylar sheets as dielectric barriers. An adjustable frequency AC high voltage power supply is then connected to the DBD reactor in order to generate plasma. The gas gap of DBD can be varied up to 3 mm when operating in atmospheric air. The electrical characterization of this DBD such as power, current, etc., together with optical emission characterization of plasma generated with this DBD will be presented. This information will be essential toward a development in order for applying plasma to small seeds, such as tomato, rice, chili, etc. to improve seed germination as inspired by the work of Bozena Sera et al (IEEE Trans. Plasma Sci., vol. 38, no. 10, p.2963).

  4. Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray

    International Nuclear Information System (INIS)

    Chen Bingyan; Zhu Changping; He Xiang; Yin Cheng; Fei Juntao; Wang Yuan; Jiang Yongfeng; Chen Longwei; Gao Yuan; Han Qingbang

    2016-01-01

    Electric discharge in and in contact with water can accompany ultraviolet (UV) radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals (OH), oxygen radical (O), ozone (O 3 ) and hydrogen peroxide (H 2 O 2 ). In this paper, a nonthermal plasma processing system was established by means of dielectric barrier discharge (DBD) arrays in water mist spray. The relationship between droplet size and water content was examined, and the effects of the concentrations of oxides in both treated water and gas were investigated under different water content and discharge time. The relative intensity of UV spectra from DBD in water mist was a function of water content. The concentrations of both O 3 and nitrogen dioxide (NO 2 ) in DBD room decreased with increasing water content. Moreover, the concentrations of H 2 O 2 , O 3 and nitrogen oxides (NO x ) in treated water decreased with increasing water content, and all the ones enhanced after discharge. The experimental results were further analyzed by chemical reaction equations and commented by physical principles as much as possible. At last, the water containing phenol was tested in this system for the concentration from 100 mg/L to 9.8 mg/L in a period of 35 min. (paper)

  5. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    Salarieh Setareh; Dorranian Davoud

    2013-01-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O 2 , He, and He/O 2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O 2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment

  6. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  7. Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil

    Czech Academy of Sciences Publication Activity Database

    Prysiazhnyi, V.; Slavíček, P.; Mikmeková, Eliška; Klíma, M.

    2016-01-01

    Roč. 18, č. 4 (2016), s. 430-437 ISSN 1009-0630 Institutional support: RVO:68081731 Keywords : atmospheric pressure plasma * plasma jet * aluminium * surface treatment * surface processing * chemical precleaning Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.830, year: 2016

  8. Study on the effects of physical plasma on in-vitro cultivates cells

    International Nuclear Information System (INIS)

    Strassenburg, Susanne

    2014-03-01

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  9. Protective coatings of metal surfaces by cold plasma treatment

    Science.gov (United States)

    Manory, R.; Grill, A.

    1985-01-01

    The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.

  10. Ambient plasma treatment of silicon wafers for surface passivation recovery

    Science.gov (United States)

    Ge, Jia; Prinz, Markus; Markert, Thomas; Aberle, Armin G.; Mueller, Thomas

    2017-08-01

    In this work, the effect of an ambient plasma treatment powered by compressed dry air on the passivation quality of silicon wafers coated with intrinsic amorphous silicon sub-oxide is investigated. While long-time storage deteriorates the effective lifetime of all samples, a short ambient plasma treatment improves their passivation qualities. By studying the influence of the plasma treatment parameters on the passivation layers, an optimized process condition was identified which even boosted the passivation quality beyond its original value obtained immediately after deposition. On the other hand, the absence of stringent requirement on gas precursors, vacuum condition and longtime processing makes the ambient plasma treatment an excellent candidate to replace conventional thermal annealing in industrial heterojunction solar cell production.

  11. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Madsen, Bo; Berglund, Linn

    2017-01-01

    Dielectric barrier discharge plasma treatment was applied to modify cellulose nanofibre (CNF) surfaces with and without ultrasonic irradiation. The plasma treatment improved the wetting by deionised water and glycerol, and increased the contents of oxygen, carbonyl group, and carboxyl group...... and amorphous phases. Ultrasonic irradiation also improved the uniformity of the treatment. Altogether, it is demonstrated that atmospheric pressure plasma treatment is a promising technique to modify the CNF surface before composite processing....... on the nanofibre surface. Ultrasonic irradiation further enhanced the wetting and oxidation of the nanofibre coating. Scanning electron microscopic observations showed skeleton-like features on the plasma-treated surface, indicating preferential etching of weaker domains, such as low-molecular weight domains...

  12. Factor VIII and fibrinogen recovery in plasma after Theraflex methylene blue-treatment: effect of plasma source and treatment time.

    Science.gov (United States)

    Rapaille, André; Reichenberg, Stefan; Najdovski, Tome; Cellier, Nicolas; de Valensart, Nicolas; Deneys, Véronique

    2014-04-01

    The quality of fresh-frozen plasma is affected by different factors. Factor VIII is sensitive to blood component storage processes and storage as well as pathogen-reduction technologies. The level of fibrinogen in plasma is not affected by the collection processes but it is affected by preparation and pathogen-reduction technologies. The quality of plasma from whole blood and apheresis donations harvested at different times and treated with a pathogen-reduction technique, methylene blue/light, was investigated, considering, in particular, fibrinogen and factor VIII levels and recovery. The mean factor VIII level after methylene blue treatment exceeded 0.5 IU/mL in all series. Factor VIII recovery varied between 78% and 89% in different series. The recovery of factor VIII was dependent on plasma source as opposed to treatment time. The interaction between the two factors was statistically significant. Mean levels of fibrinogen after methylene blue/light treatment exceeded 200 mg/dL in all arms. The level of fibrinogen after treatment correlated strongly with the level before treatment. There was a negative correlation between fibrinogen level before treatment and recovery. Pearson's correlation coefficient between factor VIII recovery and fibrinogen recovery was 0.58. These results show a difference in recovery of factor VIII and fibrinogen correlated with plasma source. The recovery of both factor VIII and fibrinogen was higher in whole blood plasma than in apheresis plasma. Factor VIII and fibrinogen recovery did not appear to be correlated.

  13. Air plasma treatment of liquid covered tissue: long timescale chemistry

    Science.gov (United States)

    Lietz, Amanda M.; Kushner, Mark J.

    2016-10-01

    Atmospheric pressure plasmas have shown great promise for the treatment of wounds and cancerous tumors. In these applications, the sample is usually covered by a thin layer of a biological liquid. The reactive oxygen and nitrogen species (RONS) generated by the plasma activate and are processed by the liquid before the plasma produced activation reaches the tissue. The synergy between the plasma and the liquid, including evaporation and the solvation of ions and neutrals, is critical to understanding the outcome of plasma treatment. The atmospheric pressure plasma sources used in these procedures are typically repetitively pulsed. The processes activated by the plasma sources have multiple timescales—from a few ns during the discharge pulse to many minutes for reactions in the liquid. In this paper we discuss results from a computational investigation of plasma-liquid interactions and liquid phase chemistry using a global model with the goal of addressing this large dynamic range in timescales. In modeling air plasmas produced by a dielectric barrier discharge over liquid covered tissue, 5000 voltage pulses were simulated, followed by 5 min of afterglow. Due to the accumulation of long-lived species such as ozone and N x O y , the gas phase dynamics of the 5000th discharge pulse are different from those of the first pulse, particularly with regards to the negative ions. The consequences of applied voltage, gas flow, pulse repetition frequency, and the presence of organic molecules in the liquid on the gas and liquid reactive species are discussed.

  14. fabrics induced by cold plasma treatments

    Indian Academy of Sciences (India)

    Abstract. Some selective cold plasma processing modify specific surface properties of textile polymeric materials such as their dyeability, wettability and hydrorepellence. To correlate the sample surface changes with the acquired surface properties allows one to obtain information on the chemical and physical processing ...

  15. Water treatment by the AC gliding arc air plasma

    Science.gov (United States)

    Gharagozalian, Mehrnaz; Dorranian, Davoud; Ghoranneviss, Mahmood

    2017-09-01

    In this study, the effects of gliding arc (G Arc) plasma system on the treatment of water have been investigated experimentally. An AC power supply of 15 kV potential difference at 50 Hz frequency was employed to generate plasma. Plasma density and temperature were measured using spectroscopic method. The water was contaminated with staphylococcus aureus (Gram-positive) and salmonella bacteria (Gram-negative), and Penicillium (mold fungus) individually. pH, hydrogen peroxide, and nitride contents of treated water were measured after plasma treatment. Decontamination of treated water was determined using colony counting method. Results indicate that G Arc plasma is a powerful and green tool to decontaminate water without producing any byproducts.

  16. Cold plasma treatment in wound care: efficacy and risk assessment

    Science.gov (United States)

    Stoffels, Eva

    2007-10-01

    Cold atmospheric plasma is an ideal medium for non-destructive modification of vulnerable surfaces. One of the most promising medical applications of cold plasma treatment is wound healing. Potential advantages in wound healing have been demonstrated in vitro: the plasma does not necrotize the cells and does not affect the extracellular matrix [1], has clear bactericidal or bacteriostatic effects [2], and stimulates fibroblast cells towards faster attachment and proliferation [3]. However, safety issues, such as the potential cytotoxicity of the plasma must be clarified prior to clinical implementation. This work comprises the recent facts on sub-lethal plasma effects on mammalian cells, as well as studies on apoptosis induction and quantitative assessment of DNA damage. Fibroblast, smooth muscle and endothelial cells were treated using the standard cold plasma needle [1,2]; intra- and extracellular oxidant levels as well as the influence of the plasma on intracellular antioxidant balance were monitored using appropriate fluorescent markers [1]. We have studied long-term cellular damage was monitored using flow cytometry to determine the DNA profiles in treated cells. Dose-response curves were obtained: increased proliferation as well as apoptosis were visualized under different treatment conditions. The results from the in vitro studies are satisfying. [1] I.E. Kieft, ``Plasma needle: exploring biomedical applications of non-thermal plasmas'', PhD Thesis, Eindhoven University of Technology (2005). [2] R.E.J. Sladek, ``Plasma needle: non-thermal atmospheric plasmas in dentistry'' PhD Thesis, Eindhoven University of Technology (2006). [3] I.E. Kieft, D. Darios, A.J.M. Roks, E. Stoffels, IEEE Trans. Plasma Sci. 34(4), 2006, pp. 1331-1336.

  17. Cleaning of magnetic nanoparticle surfaces via cold plasmas treatments

    Directory of Open Access Journals (Sweden)

    Narayan Poudyal

    2017-05-01

    Full Text Available We report surface cleaning of magnetic nanoparticles (SmCo5 nanochips and CoFe2O4 nanoparticles by using cold plasma. SmCo5 nanochips and CoFe2O4 nanoparticles, coated with surfactants (oleic acid and oleylamine, respectively on their surfaces, were treated in cold plasmas generated in argon, hydrogen or oxygen atmospheres. The plasmas were generated using a capacitively coupled pulsed radio frequency discharge. Surface cleaning of nanoparticles was monitored by measurement of the reduction of surface carbon content as functions of plasma processing parameters and treatment times. EDX and XPS analyses of the nanoparticles, obtained after the plasma treatment, revealed significant reduction of carbon content was achieved via plasma treatment. The SmCo5 nanochips and CoFe2O4 nanoparticles treated in an argon plasma revealed reduction of atomic carbon content by more than 54 and 40 in atomic percentage, compared with the untreated nanoparticles while the morphology, crystal structures and magnetic properties are retained upon the treatments.

  18. Development of plasma apparatus for plasma irradiation to living cell model

    Science.gov (United States)

    Suda, Yoshiyuki; Kato, Ryo; Tanoue, Hideto; Takikawa, Hirofumi; Tero, Ryugo

    2012-10-01

    Atmospheric pressure plasma has been studied for the industrial applications of biotechnology and medical care. For the development of these fields, understanding the influence of atmospheric pressure plasma on living cell and the mechanism of cell death is necessary. We focus on a basic structure of cell membrane, called lipid bilayer. Lipid bilayer is composed of lipid molecules with an amphipathic property and can be formed on hydrophilic substrates. In this paper, we report the development of the plasma apparatus for the treatment of lipid bilayer. The plasma apparatus uses a typical dielectric barrier discharge (DBD) system and employs parallel plate electrodes with a gap distance of 1 mm [1]. Each electrode is covered with a quartz plate and the substrate temperature is kept constant by cooling medium. The lower quartz electrode has a dimple, in which the substrate coated with a lipid bilayer and buffer fluid are mounted. [4pt] [1] Y. Sugioka, et al, IEEE Trans. Plasma Sci., in press

  19. Saturated Resin Ectopic Regeneration by Non-Thermal Dielectric Barrier Discharge Plasma

    Directory of Open Access Journals (Sweden)

    Chunjing Hao

    2017-11-01

    Full Text Available Textile dyes are some of the most refractory organic compounds in the environment due to their complex and various structure. An integrated resin adsorption/Dielectric Barrier Discharge (DBD plasma regeneration was proposed to treat the indigo carmine solution. It is the first time to report ectopic regeneration of the saturated resins by non-thermal Dielectric Barrier Discharge. The adsorption/desorption efficiency, surface functional groups, structural properties, regeneration efficiency, and the intermediate products between gas and liquid phase before and after treatment were investigated. The results showed that DBD plasma could maintain the efficient adsorption performance of resins while degrading the indigo carmine adsorbed by resins. The degradation rate of indigo carmine reached 88% and the regeneration efficiency (RE can be maintained above 85% after multi-successive regeneration cycles. The indigo carmine contaminants were decomposed by a variety of reactive radicals leading to fracture of exocyclic C=C bond, which could cause decoloration of dye solution. Based on above results, a possible degradation pathway for the indigo carmine by resin adsorption/DBD plasma treatment was proposed.

  20. Air plasma treatment of liquid covered tissue: long timescale chemistry

    International Nuclear Information System (INIS)

    Lietz, Amanda M; Kushner, Mark J

    2016-01-01

    Atmospheric pressure plasmas have shown great promise for the treatment of wounds and cancerous tumors. In these applications, the sample is usually covered by a thin layer of a biological liquid. The reactive oxygen and nitrogen species (RONS) generated by the plasma activate and are processed by the liquid before the plasma produced activation reaches the tissue. The synergy between the plasma and the liquid, including evaporation and the solvation of ions and neutrals, is critical to understanding the outcome of plasma treatment. The atmospheric pressure plasma sources used in these procedures are typically repetitively pulsed. The processes activated by the plasma sources have multiple timescales—from a few ns during the discharge pulse to many minutes for reactions in the liquid. In this paper we discuss results from a computational investigation of plasma–liquid interactions and liquid phase chemistry using a global model with the goal of addressing this large dynamic range in timescales. In modeling air plasmas produced by a dielectric barrier discharge over liquid covered tissue, 5000 voltage pulses were simulated, followed by 5 min of afterglow. Due to the accumulation of long-lived species such as ozone and N x O y , the gas phase dynamics of the 5000th discharge pulse are different from those of the first pulse, particularly with regards to the negative ions. The consequences of applied voltage, gas flow, pulse repetition frequency, and the presence of organic molecules in the liquid on the gas and liquid reactive species are discussed. (paper)

  1. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe [Faculty of Physics, Alexandru Ioan Cuza University, Bd. Carol No. 11, 700506, Iasi (Romania); Grigoras, Constantin, E-mail: andrei.nastuta@uaic.ro [Physiopathology Department, Grigore T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania)

    2011-03-16

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  2. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    International Nuclear Information System (INIS)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe; Grigoras, Constantin

    2011-01-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  3. Low Temperature Plasma for the Treatment of Epithelial Cancer Cells

    Science.gov (United States)

    Mohades, Soheila

    Biomedical applications of low temperature plasmas (LTP) may lead to a paradigm shift in treating various diseases by conducting fundamental research on the effects of LTP on cells, tissues, organisms (plants, insects, and microorganisms). This is a rapidly growing interdisciplinary research field that involves engineering, physics, life sciences, and chemistry to find novel solutions for urgent medical needs. Effects of different LTP sources have shown the anti-tumor properties of plasma exposure; however, there are still many unknowns about the interaction of plasma with eukaryotic cells which must be elucidated in order to evaluate the practical potential of plasma in cancer treatment. Plasma, the fourth state of matter, is composed of electrons, ions, reactive molecules (radicals and non-radicals), excited species, radiation, and heat. A sufficient dose (time) of plasma exposure can induce death in cancer cells. The plasma pencil is employed to study the anti-tumor properties of this treatment on epithelial cells. The plasma pencil has been previously used for the inactivation of bacteria, destroying amyloid fibrils, and the killing of various cancer cells. Bladder cancer is the 9th leading cause of cancer. In this dissertation, human urinary bladder tissue with the squamous cell carcinoma disease (SCaBER cells) is treated with LTP utilizing two different approaches: direct plasma exposure and Plasma Activated Media (PAM) as an advancement to the treatment. PAM is produced by exposing a liquid cell culture medium to the plasma pencil. Direct LTP treatment of cancer cells indicates a dose-dependent killing effect at post-treatment times. Similarly, PAM treatment shows an anti-cancer effect by inducing substantial cell death. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have an important role in the biomedical effects of LTP treatment. This study demonstrates the capability of the plasma pencil to transport ROS/RNS into cell culture media

  4. Treatment of organic waste using thermal plasma pyrolysis technology

    International Nuclear Information System (INIS)

    Huang, H.; Tang, L.

    2007-01-01

    This paper outlines the principles of thermal plasma pyrolysis processes and discusses recent research activities about organic waste treatment using thermal plasma pyrolysis technology. Different kinds of organic wastes, varying from plastic and used tires to agricultural residue and medical waste, have been subjected to thermal plasma pyrolysis tests in laboratory and pilot scale projects. Plasma pyrolysis of organic waste usually gives two product streams: a combustible gas having a calorific value in the range of 4-9 MJ/Nm 3 and a carbonaceous residue. Pyrolysis conditions as well as some technical measures such as the quenching process and steam reforming have significant influences on the properties of these pyrolysis products. Research results indicated that thermal plasma pyrolysis may be a useful way of waste management for energy and material recovery

  5. Plasma-grafting polymerization on carbon fibers and its effect on their composite properties

    Science.gov (United States)

    Zhang, Huanxia; Li, Wei

    2015-11-01

    Interfacial adhesion between matrix and fibers plays a crucial role in controlling the performance of composites. Carbon fibers have the major constraint of chemical interness and hence have limited adhesion with the matrix. Surface treatment of fibers is the best solution to this problem. In this work, carbon fibers were activated by plasma and grafting polymerization. The grafting ratio of polymerization was obtained by acid-base titration. The chemical and physical changes induced by the treatments on carbon fiber surface was examined using contact angle measurements, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The interfacial adhesion of CF/EP (carbon fiber/epoxy) composites were analyzed by a single fiber composite (SFC) for filament fragmentation test. Experimental results show that the grafting rate was not only the function of the plasma-treat time but also the concentration of the grafting polymerization. The oxygen-containing groups (such as Csbnd O, Cdbnd O, and Osbnd Cdbnd O) and the interfacial shear strength (IFSS) of the plasma-grafting carbon fiber increased more significantly than the carbon fiber without plasma treatment grafted with MAH. This demonstrates that the surfaces of the carbon fiber samples are more active, hydrophilic, and rough after plasma-grafting treatments using a DBD operating in ambient argon mixture with oxygen. With DBD (dielectric barrier discharges) operating in ambient argon mixture with oxygen, the more active, hydrophilic, and rough surface was obtained by the plasma-grafting treatments.

  6. Plasma Adenosine Deaminase Enzyme Reduces with Treatment of ...

    African Journals Online (AJOL)

    olayemitoyin

    Plasma Adenosine Deaminase Enzyme Reduces with Treatment of Pulmonary Tuberculosis in Nigerian Patients: Indication for. Diagnosis and Treatment Monitoring. Ige O.a, Edem V.F.b and Arinola O.G.b,*. aDepartment of Medicine, University of Ibadan, Ibadan, Nigeria b Department of Chemical Pathology,. University of ...

  7. Atmospheric pressure H20 plasma treatment of polyester cord threads

    International Nuclear Information System (INIS)

    Simor, M.; Krump, H.; Hudec, I.; Rahel, J.; Brablec, A.; Cernak, M.

    2004-01-01

    Polyester cord threads, which are used as a reinforcing materials of rubber blend, have been treated in atmospheric-pressure H 2 0 plasma in order to enhance their adhesion to rubber. The atmospheric-pressure H 2 0 plasma was generated in an underwater diaphragm discharge. The plasma treatment resulted in approximately 100% improvement in the adhesion. Scanning electron microscopy investigation indicates that not only introduced surface polar groups but also increased surface area of the fibres due to a fibre surface roughening are responsible for the improved adhesive strength (Authors)

  8. Plasma treatment of diamond nanoparticles for dispersion improvement in water

    International Nuclear Information System (INIS)

    Yu Qingsong; Kim, Young Jo; Ma, Hongbin

    2006-01-01

    Low-temperature plasmas of methane and oxygen mixtures were used to treat diamond nanoparticles to modify their surface characteristics and thus improve their dispersion capability in water. It was found that the plasma treatment significantly reduced water contact angle of diamond nanoparticles and thus rendered the nanoparticles with strong water affinity for dispersion enhancement in polar media such as water. Surface analysis using Fourier transform infrared spectroscopy confirmed that polar groups were imparted on nanoparticle surfaces. As a result, improved suspension stability was observed with plasma treated nanoparticles when dispersed in water

  9. Flow morphing by coaxial type plasma actuator

    Science.gov (United States)

    Toyoizumi, S.; Aono, H.; Ishikawa, H.

    2017-04-01

    The purpose of study is to achieve the fluid drag reduction of a circular disk by Dielectric Barrier Discharge Plasma Actuator (DBD-PA). We here introduced “Flow Morphing” concept that flow around the body was changed by DBD-PA jet, such as the body shape morphing. Coaxial type DBD-PA injected axisymmetric jet, generating the vortex region on the pressure side of the circular disk. The vortex generated by axisymmetric plasma jet and flow around circular disk were visualized by tracer particles method. The fluid drag was measured by compression type load cell. In addition streamwise velocity was measured by an X-type hot wire probe. The extent of fluid drag reduction by coaxial type DBD-PA jet was influenced by the volume of vortex region and the diameter of plasma electrode.

  10. Study of Ag and PE interface after plasma treatment

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Bočan, Jiří; Švorčík, V.; Pavlík, J.; Strýhal, Z.; Sajdl, P.

    2008-01-01

    Roč. 5, č. 4 (2008), s. 964-967 ISSN 1862-6351. [9th International workshop on plasma based ion implantation and deposition. Leipzig, 02.09.2007-06.09.2007] R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : RBS and AFM study * metal-polymer interface * plasma treatment Subject RIV: JJ - Other Materials

  11. Investigation of Plasma Eects in Ultra High Molecular Weight Polyethylene (UHMWPE) Cords

    DEFF Research Database (Denmark)

    Teodoru, Steluta; Kusano, Yukihiro; Rozlosnik, Noemi

    modication for improved wetting and/or adhesion with other polymeric materials. Atmospheric pressure plasma treatment is promising for this purpose due to its environmental compatibility, high treatment eects without aecting the textural characteristics of the bulk material, its applicability to a variety...... of shapes, and easy up-scaling and construction of in-line production processes. An atmospheric pressure dielectric barrier discharge (DBD) plasma is used to study surface modication eect on UHMWPE cords, operated at a frequency of ca. 40 kHz in He, He/O2, O2 and N2 gases. The cords were continuously...

  12. Exploration to generate atmospheric pressure glow discharge plasma in air

    Science.gov (United States)

    Wenzheng, LIU; Chuanlong, MA; Shuai, ZHAO; Xiaozhong, CHEN; Tahan, WANG; Luxiang, ZHAO; Zhiyi, LI; Jiangqi, NIU; Liying, ZHU; Maolin, CHAI

    2018-03-01

    Atmospheric pressure glow discharge (APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge (DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in air-gap is suppressed effectively and a large space of APGD plasma in air is generated. Further, through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.

  13. Enhancing Cold Atmospheric Plasma Treatment Efficiency for Cancer Therapy

    Science.gov (United States)

    Cheng, Xiaoqian

    To improve efficiency and safety of anti-cancer therapies the researchers and clinicians alike are prompted to develop targeted combined therapies that especially minimize damage to healthy tissues while eradicating the body of cancerous tissues. Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that cold plasma induced cell death. In this study, we seek to integrate the medical application of CAP. We proposed and implemented 3 novel ideas to enhance efficacy and selectivity of cancer therapy. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. We determined a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of CAP, including output voltage, treatment time, and gas flow-rate. We varied the characteristics of the cold plasma in order to obtain different major species (such as O, OH, N2+, and N2 lines). "plasma dosage" D ~ Q * V * t. is defined, where D is the entire "plasma dosage"; Q is the flow rate of feeding gas; V is output voltage; t is treatment time. The proper CAP dosage caused 3-fold cell death in the U87 cells compared to the normal human astrocytes E6/E7 cells. We demonstrated there is a synergy between AuNPS and CAP in cancer therapy. Specifically, the concentration of AuNPs plays an important role on plasma therapy. At an optimal concentration, gold nanoparticles can significantly induce U87 cell death up to a 30% overall increase compared to the control group with the same plasma dosage but no AuNPs applied. The ROS intensity of the corresponding conditions has a reversed trend compared to cell viability. This matches with the theory that intracellular ROS accumulation results in oxidative stress, which further changes the intracellular pathways, causing damage to the proteins, lipids and DNA. Our results show that this synergy has great potential in improving the

  14. Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil

    International Nuclear Information System (INIS)

    Prysiazhnyi, Vadym; Slavicek, Pavel; Klima, Milos; Mikmekova, Eliska

    2016-01-01

    This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces. The results of our study showed that the state of the topmost surface layer (i.e. the surface morphology and chemical groups) of plasma modified aluminum significantly depends on the chemical precleaning. Commonly used chemicals (isopropanol, trichlorethane, solution of NaOH in deionized water) were used as precleaning agents. The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University, which operates in Ar, Ar/O 2 gas mixtures. The effectiveness of the plasma treatment was estimated by the wettability measurements, showing high wettability improvement already after 0.3 s treatment. The effects of surface cleaning (hydrocarbon removal), surface oxidation and activation (generation of OH groups) were estimated using infrared spectroscopy. The changes in the surface morphology were measured using scanning electron microscopy. Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure. (paper)

  15. Degradation of sulfur dioxide using plasma technology

    International Nuclear Information System (INIS)

    Estrada M, N.; Garcia E, R.; Pacheco P, M.; Valdivia B, R.; Pacheco S, J.

    2013-01-01

    This paper presents the electro-chemical study performed for sulfur dioxide (SO 2 ) treatment using non thermal plasma coupled to a nano structured fluid bed enhancing the toxic gas removal and the adsorption of acids formed during plasma treatment, more of 80% of removal was obtained. Non thermal plasma was ignited by dielectric barrier discharge (Dbd). The research was developed through an analysis of the chemical kinetics of the process and experimental study of degradation; in each experiment the electrical parameters and the influence of carbon nano structures were monitored to establish the optimal conditions of degradation. We compared the theoretical and experimental results to conclude whether the proposed model is correct for degradation. (Author)

  16. Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor

    Science.gov (United States)

    Abedi-Varaki, Mehdi

    2017-08-01

    Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.

  17. Characterization and Properties of Electroless Nickel Plated Poly (ethylene terephthalate) Nonwoven Fabric Enhanced by Dielectric Barrier Discharge Plasma Pretreatment

    International Nuclear Information System (INIS)

    Geng Yamin; Lu Canhui; Liang Mei; Zhang Wei

    2010-01-01

    In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (W A ), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (W A ) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD air-plasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.

  18. Chemical analysis of plasma-assisted antimicrobial treatment on cotton

    Science.gov (United States)

    Kan, C. W.; Lam, Y. L.; Yuen, C. W. M.; Luximon, A.; Lau, K. W.; Chen, K. S.

    2013-06-01

    This paper explores the use of plasma treatment as a pretreatment process to assist the application of antimicrobial process on cotton fabric with good functional effect. In this paper, antimicrobial finishing agent, Microfresh Liquid Formulation 9200-200 (MF), and a binder (polyurethane dispersion, Microban Liquid Formulation R10800-0, MB) will be used for treating the cotton fabric for improving the antimicrobial property and pre-treatment of cotton fabric by plasma under atmospheric pressure will be employed to improve loading of chemical agents. The chemical analysis of the treated cotton fabric will be conducted by Fourier transform Infrared Spectroscopy.

  19. Cold ion atmospheric plasma jets for living tissue treatment

    Science.gov (United States)

    Shashurin, Alexey; Keidar, Michael; Stepp, Mary Ann

    2008-11-01

    Recently a great attention is attracted to the creation of the cold plasma jets and their interaction with living tissue. The plasma gun operating on helium and equipped with high-voltage resonant transformer is designed. Long nondivergent plasma jets with length more than 5 cm and diameter 1-2 mm are obtained. The measured electrical current in the plasma jet indicates that the plasma jet is discontinuous and represents a series of propagating plasma bundles (two bundles per driving high voltage period) with peak current up to few hundred mA. The exposition of the living tissue (fibroblast cells and PEM cells) to the helium plasma jet causes an immediate detachment of part of the cells from their matrix in the case of direct contact of the jet with cell culture. In addition, it was found that migration velocity inside of the treated region significantly decreases in the case of treatment through the thin layer of the protecting media covering the cell culture.

  20. Treatment of fly ash from power plants using thermal plasma

    Directory of Open Access Journals (Sweden)

    Sulaiman Al-Mayman

    2017-05-01

    Full Text Available Fly ash from power plants is very toxic because it contains heavy metals. In this study fly ash was treated with a thermal plasma. Before their treatment, the fly ash was analyzed by many technics such as X-ray fluorescence, CHN elemental analysis, inductively coupled plasma atomic emission spectroscopy and scanning electron microscopy. With these technics, the composition, the chemical and physical proprieties of fly ash are determined. The results obtained by these analysis show that fly ash is mainly composed of carbon, and it contains also sulfur and metals such as V, Ca, Mg, Na, Fe, Ni, and Rh. The scanning electron microscopy analysis shows that fly ash particles are porous and have very irregular shapes with particle sizes of 20–50 μm. The treatment of fly ash was carried out in a plasma reactor and in two steps. In the first step, fly ash was treated in a pyrolysis/combustion plasma system to reduce the fraction of carbon. In the second step, the product obtained by the combustion of fly ash was vitrified in a plasma furnace. The leaching results show that the fly ash was detoxified by plasma vitrification and the produced slag is amorphous and glassy.

  1. Niacin treatment increases plasma homocyst(e)ine levels.

    Science.gov (United States)

    Garg, R; Malinow, M; Pettinger, M; Upson, B; Hunninghake, D

    1999-12-01

    Studies have reported high levels of plasma homocyst(e)ine as an independent risk factor for arterial occlusive disease. The Cholesterol Lowering Atherosclerosis Study reported an increase in plasma homocyst(e)ine levels in patients receiving both colestipol and niacin compared with placebo. Thus the objective of this study was to examine the effect of niacin treatment on plasma homocyst(e)ine levels. The Arterial Disease Multiple Intervention Trial, a multicenter randomized, placebo-controlled trial, examined the effect of niacin compared with placebo on homocyst(e)ine in a subset of 52 participants with peripheral arterial disease. During the screening phase, titration of niacin dose from 100 mg to 1000 mg daily resulted in a 17% increase in mean plasma homocyst(e)ine level from 13.1 +/- 4.4 micromol/L to 15.3 +/- 5.6 micromol/L (P ine levels in the niacin group and a 7% decrease in the placebo group (P =.0001). This difference remained statistically significant at the end of follow-up at 48 weeks. Niacin substantially increased plasma homocyst(e)ine levels, which could potentially reduce the expected benefits of niacin associated with lipoprotein modification. However, plasma homocyst(e)ine levels can be decreased by folic acid supplementation. Thus further studies are needed to determine whether B vitamin supplementation to patients undergoing long-term niacin treatment would be beneficial.

  2. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    Science.gov (United States)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use

  3. Test for bacterial resistance build-up against plasma treatment

    International Nuclear Information System (INIS)

    Zimmermann, J L; Shimizu, T; Li, Y-F; Morfill, G E; Schmidt, H-U; Isbary, G

    2012-01-01

    It is well known that the evolution of resistance of microorganisms to a range of different antibiotics presents a major problem in the control of infectious diseases. Accordingly, new bactericidal ‘agents’ are in great demand. Using a cold atmospheric pressure (CAP) plasma dispenser operated with ambient air, a more than five orders of magnitude inactivation or reduction of Methicillin-resistant Staphylococcus aureus (MRSA; resistant against a large number of the tested antibiotics) was obtained in less than 10 s. This makes CAP the most promising candidate for combating nosocomial (hospital-induced) infections. To test for the occurrence and development of bacterial resistance against such plasmas, experiments with Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Enterococcus mundtii) were performed. The aim was to determine quantitative limits for primary (naturally) or secondary (acquired) resistance against the plasma treatment. Our results show that E. coli and E. mundtii possess no primary resistance against the plasma treatment. By generating four generations of bacteria for every strain, where the survivors of the plasma treatment were used for the production of the next generation, a lower limit to secondary resistance was obtained. Our results indicate that CAP technology could contribute to the control of infections in hospitals, in outpatient care and in disaster situations, providing a new, fast and efficient broad-band disinfection technology that is not constrained by bacterial resistance mechanisms. (paper)

  4. Degradation of sulfur dioxide using plasma technology; Degradacion de dioxido de azufre empleando tecnologia de plasma

    Energy Technology Data Exchange (ETDEWEB)

    Estrada M, N.; Garcia E, R. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Pacheco P, M.; Valdivia B, R.; Pacheco S, J., E-mail: nadiaemz@yahoo.com.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-07-01

    This paper presents the electro-chemical study performed for sulfur dioxide (SO{sub 2}) treatment using non thermal plasma coupled to a nano structured fluid bed enhancing the toxic gas removal and the adsorption of acids formed during plasma treatment, more of 80% of removal was obtained. Non thermal plasma was ignited by dielectric barrier discharge (Dbd). The research was developed through an analysis of the chemical kinetics of the process and experimental study of degradation; in each experiment the electrical parameters and the influence of carbon nano structures were monitored to establish the optimal conditions of degradation. We compared the theoretical and experimental results to conclude whether the proposed model is correct for degradation. (Author)

  5. Application of rf plasma for treatment of wool

    Science.gov (United States)

    Radetić, M.; Jović, D.; JovančiĆ, P.; Petrović, Z. Lj.

    1999-10-01

    Capacitively coupled rf plasma was used to treat wool fabrics. We have used pressures in the range of 0.25-0.75 mbar and powers of the order of 100 W. The rf plasma chamber was cylindrical and the central electrode was powered making it a very asymmetric system. The wool fibers were placed on the outer chamber walls which have the radius of 35 cm and which were grounded. The treatment lasted between 0 and 10 minutes in air, oxygen and argon 13.56 MHz plasmas. Even after 2 minutes the properties of the wool have changed sufficiently to match the treatment by chlorination as far as the quality of printing and dyeing goes. In addition fiber swelling, pilling and wettability were also considerably improved. Extended treatment by plasma reduces mechanical properties of wool fibers so limited duration of treatment of 2-5 minutes in oxygen was found to give optimum results. Topography of the fibers was analyzed by using atomic force microscopy and scanning electron microscopy. It was discovered that the improvement was brought about by superficial modification of the fiber through replacement of the fatty layer and partial destruction of the epicuticle.

  6. NOx reduction by ozone injection and direct plasma treatment

    DEFF Research Database (Denmark)

    Stamate, Eugen; Salewski, Mirko

    2012-01-01

    NOx reduction by ozone injection and direct plasma treatment is investigated for different process parameters in a 6 m long serpentine reactor. Several aspects including the role of mixing scheme, water vapours, steep temperature gradient and time dependet NOx levels are taken into consideration...

  7. Electrical properties of vanadium oxide subject to hydrogen plasma treatment

    OpenAIRE

    Pergament, Alex; Kuldin, Nik

    2008-01-01

    The effect of doping with hydrogen on the electrical properties of vanadium oxide is studied. For vanadium oxide films, subject to cold hydrogen plasma treatment, the temperature dependence of resistance with a maximum at T ~ 100 K is observed. Also, the dependence of the a.c. resistance on frequency is studied. A strategy for fabrication new superconducting materials is discussed.

  8. Plasma treatment of polyester fabric to impart the water repellency ...

    Indian Academy of Sciences (India)

    Plasma treatment of polyester fabric to impart the water repellency property∗. C J JAHAGIRDAR and L B TIWARI1. Applied Physics Division, Institute of Chemical Technology, University of Mumbai,. Matunga, Mumbai 400 019, India. 1Present address: B/18, B-304, Gulshan, Gokuldham, Goregaon (East), Mumbai 400 063,.

  9. Toxic waste treatment with sliding centrifugal plasma reactor

    International Nuclear Information System (INIS)

    Pacheco, J.; Pacheco, M.; Valdivia, R.; Ramos, F.; Duran, M.; Hidalgo, M.; Cruz, A.; Martinez, J. C.; Martinez, R.; De la Cruz, S.; Flores, T.; Vidal, E.; Escobar, S.; Garduno, M.; Garcia, M.; Portillo, J.; Torres, C.; Estrada, N.; Velazquez, S.; Vasquez, C.

    2008-01-01

    The aim is to develop technology for hazardous waste treatment, including the building and putting into operation of a prototype based on a sliding centrifugal plasma technology to demonstrate its ability to degradation taking in account the existing environmental standards. (Author)

  10. Treatment of mixed wastes by thermal plasma discharges

    International Nuclear Information System (INIS)

    Diaz A, L.V.

    2007-01-01

    The present study has as purpose to apply the technology of thermal plasma in the destruction of certain type of waste generated in the ININ. As first instance, origin, classification and disposition of the radioactive waste generated in the ININ is identified. Once identified the waste, the waste to treat is determined based on: the easiness of treating him with plasma, classification and importance. Later on, a substance or compound settles down (sample model) that serves as indicative of the waste for its physical-chemical characteristics, this is made because in the Thermal Plasma Applications Laboratory is not had the license to work with radioactive material. The sample model and the material to form the vitreous matrix are characterized before and after the treatment in order to evaluating their degradation and vitrification. During the treatment by means of the thermal plasma, the appropriate conditions are determined for the degradation and vitrification of the waste. Also, it is carried out an energy balance in the system to know the capacity to fuse the material depending the transfer of existent heat between the plasma and the material to treat. Obtaining favorable results, it thought about to climb in the project and by this way to help to solve one of the environmental problems in Mexico, as they are it the mixed wastes. (Author)

  11. Atmospheric Pressure Plasma Treatment for Grey Cotton Knitted Fabric

    Directory of Open Access Journals (Sweden)

    Chi-wai Kan

    2018-01-01

    Full Text Available 100% grey cotton knitted fabric contains impurities and yellowness and needs to be prepared for processing to make it suitable for coloration and finishing. Therefore, conventionally 100% grey cotton knitted fabric undergoes a process of scouring and bleaching, which involves the use of large amounts of water and chemicals, in order to remove impurities and yellowness. Due to increased environmental awareness, pursuing a reduction of water and chemicals is a current trend in textile processing. In this study, we explore the possibility of using atmospheric pressure plasma as a dry process to treat 100% grey cotton knitted fabric (single jersey and interlock before processing. Experimental results reveal that atmospheric pressure plasma treatment can effectively remove impurities from 100% grey cotton knitted fabrics and significantly improve its water absorption property. On the other hand, if 100% grey cotton knitted fabrics are pretreated with plasma and then undergo a normal scouring process, the treatment time is reduced. In addition, the surface morphological and chemical changes in plasma-treated fabrics were studied and compared with the conventionally treated fabrics using scanning electron microscope (SEM, Fourier-transform infrared spectroscopy-attenuated total reflection (FTIR-ATR and X-ray photoelectron spectroscopy (XPS. The decrease in carbon content, as shown in XPS, reveal the removal of surface impurities. The oxygen-to-carbon (O/C ratios of the plasma treated knitted fabrics reveal enhanced hydrophilicity.

  12. Surface-wave-sustained plasma torch for water treatment

    Science.gov (United States)

    Marinova, P.; Benova, E.; Todorova, Y.; Topalova, Y.; Yotinov, I.; Atanasova, M.; Krcma, F.

    2018-02-01

    In this study the effects of water treatment by surface-wave-sustained plasma torch at 2.45 GHz are studied. Changes in two directions are obtained: (i) changes of the plasma characteristics during the interaction with the water; (ii) water physical and chemical characteristics modification as a result of the plasma treatment. In addition, deactivation of Gram positive and Gram negative bacteria in suspension are registered. A number of charged and excited particles from the plasma interact with the water. As a result the water chemical and physical characteristics such as the water conductivity, pH, H2O2 concentration are modified. It is observed that the effect depends on the treatment time, wave power, and volume of the treated liquid. At specific discharge conditions determined by the wave power, gas flow, discharge tube radius, thickness and permittivity, the surface-wave-sustained discharge (SWD) operating at atmospheric pressure in argon is strongly non-equilibrium with electron temperature T e much higher than the temperature of the heavy particles (gas temperature T g). It has been observed that SWD argon plasma with T g close to the room temperature is able to produce H2O2 in the water with high efficiency at short exposure times (less than 60 sec). The H2O2 decomposition is strongly dependant on the temperature thus the low operating gas temperature is crucial for the H2O2 production efficiency. After scaling up the device, the observed effects can be applied for the waste water treatment in different facilities. The innovation will be useful especially for the treatment of waters and materials for medical application.

  13. Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose

    Science.gov (United States)

    Huang, Fangmin; Long, Zhouyang; Liu, Sa; Qin, Zhenglong

    2017-04-01

    Dielectric barrier discharge (DBD) plasma was used as a pretreatment method for downstream hydrolysis of microcrystalline cellulose (MCC). The degree of polymerization (DP) of MCC decreased after it was pretreated by DBD plasma under a carrier gas of air/argon. The effectiveness of depolymerization was found to be influenced by the crystallinity of MCC when under the pretreatment of DBD plasma. With the addition of tert-butyl alcohol in the treated MCC water suspension solution, depolymerization effectiveness of MCC was inhibited. When MCC was pretreated by DBD plasma for 30 min, the total reducing sugar concentration (TRSC) and liquefaction yield (LY) of pretreated-MCC (PMCC) increased by 82.98% and 34.18% respectively compared with those for raw MCC.

  14. Atmospheric Pressure Non-Thermal Plasma Activation of CO2in a Packed-Bed Dielectric Barrier Discharge Reactor.

    Science.gov (United States)

    Mei, Danhua; Tu, Xin

    2017-11-17

    Direct conversion of CO 2 into CO and O 2 is performed in a packed-bed dielectric barrier discharge (DBD) non-thermal plasma reactor at low temperatures and atmospheric pressure. The maximum CO 2 conversion of 22.6 % is achieved when BaTiO 3 pellets are fully packed into the discharge gap. The introduction of γ-Al 2 O 3 or 10 wt % Ni/γ-Al 2 O 3 catalyst into the BaTiO 3 packed DBD reactor increases both CO 2 conversion and energy efficiency of the plasma process. Packing γ-Al 2 O 3 or 10 wt % Ni/γ-Al 2 O 3 upstream of the BaTiO 3 bed shows higher CO 2 conversion and energy efficiency compared with that of mid- or downstream packing modes because the reverse reaction of CO 2 conversion-the recombination of CO and O to form CO 2 -is more likely to occur in mid- and downstream modes. Compared with the γ-Al 2 O 3 support, the coupling of the DBD with the Ni catalyst shows a higher CO 2 conversion, which can be attributed to the presence of Ni active species on the catalyst surface. The argon plasma treatment of the reacted Ni catalyst provides extra evidence to confirm the role of Ni active species in the conversion of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Science.gov (United States)

    Chraska, T.; Pala, Z.; Mušálek, R.; Medřický, J.; Vilémová, M.

    2015-04-01

    Alumina-zirconia ceramic material has been plasma sprayed using a water-stabilized plasma torch to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization, while at the same time, a uniaxial pressure of 80 MPa has been applied to their surface. After such post-treatment, the ceramic samples are crystalline and have very low open porosity. The post-treated material exhibits high hardness and significantly increased flexural strength. The post-treated samples have a microstructure that is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.

  16. Formation and treatment of materials with microwave plasmas

    International Nuclear Information System (INIS)

    Camps, E.; Garcia, J.L.; Romero, S.

    1996-01-01

    The plasmas technology occupies day by day a more important place in the development of new materials, with properties superior to those developed with conventional techniques. Some processes have already been established and are exploited to industrial level. These basically include the plasmas that are generated within discharges of continuous current, as well as those with alternate fields of frequency in the range of radiofrequency (13.6 MHz usually). Nevertheless, the need to increase the efficiency of the work of plasma used, has given as a result the study of plasmas generated to higher frequencies (2.45 GHz), known as m icrowave plasmas . An important development in the treatment of materials at low pressures and temperature, are those known as microwave discharges of the type of cyclotron resonances of the electrodes, that is, a discharge submerged into a magnetic field. These discharges have the advantage of not including electrodes, they can generate plasmas with higher density of ionized and excited particles, can work under low pressures (∼ 1m Torr), and have higher ionizing coefficient (∼ 1%), than other kind of discharge. With the aim to study the accuracy in work of the microwave discharges in magnetic fields, the National Institute of Nuclear Research (ININ) designed and built a gadget of this type which is actually used in the formation of thin films of the diamond type and of amorphous silicon. At the same time, experiments for nitrating steels, in order to establish the mechanisms that would allow to build samples, with surfaces stronger and resistant to corrosion, at short-time treatments, than those needed, when using other kinds of discharges. (Author)

  17. Ozone modeling within plasmas for ozone sensor applications

    OpenAIRE

    Arshak, Khalil; Forde, Edward; Guiney, Ivor

    2007-01-01

    peer-reviewed Ozone (03) is potentially hazardous to human health and accurate prediction and measurement of this gas is essential in addressing its associated health risks. This paper presents theory to predict the levels of ozone concentration emittedfrom a dielectric barrier discharge (DBD) plasma for ozone sensing applications. This is done by postulating the kinetic model for ozone generation, with a DBD plasma at atmospheric pressure in air, in the form of a set of rate equations....

  18. Atmospheric pressure plasma jet treatment of Salmonella Enteritidis inoculated eggshells.

    Science.gov (United States)

    Moritz, Maike; Wiacek, Claudia; Koethe, Martin; Braun, Peggy G

    2017-03-20

    Contamination of eggshells with Salmonella Enteritidis remains a food safety concern. In many cases human salmonellosis within the EU can be traced back to raw or undercooked eggs and egg products. Atmospheric pressure plasma is a novel decontamination method that can reduce a wide range of pathogens. The aim of this work was to evaluate the possibility of using an effective short time cold plasma treatment to inactivate Salmonella Enteritidis on the eggshell. Therefore, artificially contaminated eggshells were treated with an atmospheric pressure plasma jet under different experimental settings with various exposure times (15-300s), distances from the plasma jet nozzle to the eggshell surface (5, 8 or 12mm), feed gas compositions (Ar, Ar with 0.2, 0.5 or 1.0% O 2 ), gas flow rates (5 and 7slm) and different inoculations of Salmonella Enteritidis (10 1 -10 6 CFU/cm 2 ). Atmospheric pressure plasma could reduce Salmonella Enteritidis on eggshells significantly. Reduction factors ranged between 0.22 and 2.27 log CFU (colony-forming units). Exposure time and, particularly at 10 4 CFU/cm 2 inoculation, feed gas had a major impact on Salmonella reduction. Precisely, longer exposure times led to higher reductions and Ar as feed gas was more effective than ArO 2 mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Platelet-rich plasma in knee osteoarthritis treatment].

    Science.gov (United States)

    Simental-Mendía, Mario Alberto; Vílchez-Cavazos, José Félix; Martínez-Rodríguez, Herminia Guadalupe

    2015-01-01

    The biological changes that commonly cause degenerative articular cartilage injuries in the knee are primarily associated to misalignment of the joint and metabolic changes related to age, as occurs in osteoarthritis. Furthermore, the capacity for cartilage self-regeneration is quite limited due to the lack of vascularity of the tissue. To date there is no ideal treatment capable to stimulate cartilage regeneration; thus there is a need to seek alternative therapies for the treatment of such conditions. The number of publications demonstrating the therapeutic and regenerative benefits of using platelet-rich plasma as a treatment for knee osteoarthritis has been increasing in recent years. In spite of encouraging results, there are still only a few randomised control studies with strong clinical evidence, lacking clarity on points such as the optimum formulation or the mechanism of action of platelet-rich plasma. Up to this point and based on the results of clinical studies, not all patients can benefit from this therapy. It is important to consider aspects such as the age and grade of cartilage degeneration. The aim of the present paper is to review the recent scientific literature on the treatment of knee osteoarthritis with platelet-rich plasma, and the biological bases of this therapy, as well as presenting the current opinion on this subject. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  20. Surface improvement of EPDM rubber by plasma treatment

    International Nuclear Information System (INIS)

    Moraes, J H; Silva Sobrinho, A S da; Maciel, H S; Dutra, J C N; Massi, M; Mello, S A C; Schreiner, W H

    2007-01-01

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N 2 /Ar and N 2 /H 2 /Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber

  1. Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist

    Science.gov (United States)

    Xu, Di; Xiao, Zehua; Hao, Chunjing; Qiu, Jian; Liu, Kefu

    2017-06-01

    A dielectric barrier discharge (DBD) reactor is introduced to generate H2O2 by non-thermal plasma with a mixture of oxygen and water mist produced by an ultrasonic atomizer. The results of our experiment show that the energy yield and concentration of the generated H2O2 in the pulsed discharge are much higher than that in AC discharge, due to its high energy efficiency and low heating effect. Micron-sized liquid droplets produced by an ultrasonic atomizer in water mist have large specific surface area, which greatly reduces mass transfer resistance between hydroxyl radicals and water liquids, leading to higher energy yield and H2O2 concentration than in our previous research. The influence of applied voltage, discharge frequency, and environmental temperature on the generated H2O2 is discussed in detail from the viewpoint of the DBD mechanism. The H2O2 concentration of 30 mg l-1, with the energy yield of 2 g kW-1h-1 is obtained by pulsed discharge in our research.

  2. Hydrogen sulfide waste treatment by microwave plasma-chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J.B.L.; Doctor, R.D.

    1994-03-01

    A waste-treatment process that recovers both hydrogen and sulfur from industrial acid-gas waste streams is being developed to replace the Claus technology, which recovers only sulfur. The proposed process is derived from research reported in the Soviet technical literature and uses microwave (or radio-frequency) energy to initiate plasma-chemical reactions that dissociate hydrogen sulfide into elemental hydrogen and sulfur. This process has several advantages over the current Claus-plus-tail-gas-cleanup technology, which burns the hydrogen to water. The primary advantage of the proposal process is its potential for recovering and recycling hydrogen more cheaply than the direct production of hydrogen. Since unconverted hydrogen sulfide is recycled to the plasma reactor, the plasma-chemical process has the potential for sulfur recoveries in excess of 99% without the additional complexity of the tail-gas-cleanup processes associated with the Claus technology. There may also be some environmental advantages to the plasma-chemical process, because the process purge stream would primarily be the carbon dioxide and water contained in the acid-gas waste stream. Laboratory experiments with pure hydrogen sulfide have demonstrated the ability of the process to operate at or above atmospheric pressure with an acceptable hydrogen sulfide dissociation energy. Experiments with a wide range of acid-gas compositions have demonstrated that carbon dioxide and water are compatible with the plasma-chemical dissociation process and that they do not appear to create new waste-treatment problems. However, carbon dioxide does have negative impacts on the overall process. First, it decreases the hydrogen production, and second, it increases the hydrogen sulfide dissociation energy.

  3. Improved reliability of Mo nanocrystal memory with ammonia plasma treatment

    International Nuclear Information System (INIS)

    Lin, C.-C.; Tu, C.-H.; Chen, W.-R.; Hu, C.-W.; Sze, Simon M.; Tseng, T.-Y.; Chang, T.-C.; Chen, S.-C.; Lin, J.-Y.

    2009-01-01

    We investigated ammonia plasma treatment influence on the nonvolatile memory characteristics of the charge storage layer composed of Mo nanocrystals embedded in nonstoichiometry oxide (SiO x ). X-ray photoelectron spectra analyses revealed that nitrogen was incorporated into the charge storage layer. Electric analyses indicated that the memory window was reduced and the retention and the endurance improved after the treatment. The reduction in the memory window and the improvement in retention were interpreted in terms of the nitrogen passivation of traps in the oxide around Mo nanocrystals. The robust endurance characteristic was attributed the improvement of the quality of the surrounding oxide by nitrogen passivation

  4. Treatment of plasminogen deficiency patients with fresh frozen plasma.

    Science.gov (United States)

    Kızılocak, Hande; Ozdemir, Nihal; Dikme, Gürcan; Koç, Begüm; Atabek, Ayşe Ayzıt; Çokuğraş, Haluk; İskeleli, Güzin; Dönmez-Demir, Buket; Christiansen, Nina Merete; Ziegler, Maike; Ozdağ, Hilal; Schuster, Volker; Celkan, Tiraje

    2018-02-01

    Congenital plasminogen (Plg) deficiency leads to the development of ligneous membranes on mucosal surfaces. Here, we report our experience with local and intravenous fresh frozen plasma (FFP). We retrospectively reviewed medical files of 17 patients and their eight first-degree relatives. Conjunctivitis was the main complaint. Thirteen patients were treated both with intravenous and conjunctival FFP. Venous thrombosis did not develop in any. Genetic evaluation revealed heterogeneous mutations as well as polymorphisms. Diagnosis and treatment of Plg deficiency is challenging; topical and intravenous FFP may be an alternative treatment. © 2017 Wiley Periodicals, Inc.

  5. Treatment of hazardous organic wastes using silent discharge plasmas

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Bechtold, L.A.; Coogan, J.J.; Heck, H.G.; Kang, M.; McCulla, W.H.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    During the past two decades, interest in applying non-equilibrium plasmas to the removal of hazardous chemicals from gaseous media has been growing, in particular from heightened concerns over the pollution of our environment and a growing body of environmental regulations. At the Los Alamos National Laboratory, we are currently engaged in a project to develop non-equilibrium plasma technology for hazardous waste treatment. Our present focus is on dielectric-barrier discharges, which are historically called silent electrical discharges. This type of plasma is also named a silent discharge plasma (SDP). We have chosen this method due to its potential for high energy efficiency, its scientific and technological maturity, and its scalability. The SDP process has been demonstrated to be reliable and economical for the industrial-scale synthesis of ozone, where municipal water treatment plants frequently require the on-site generation of thousands of kilograins per day (Eliasson ampersand Kogelschatz). The related methods of corona processing are presently the focus of work at other institutions, particularly for flue gas processing. Both SDP and corona processes are characterized by the production of large quantities of highly reactive free radicals, especially atomic oxygen O(3P) and the hydroxyl OH, in the gaseous medium and their subsequent reaction with contaminants. Our primary objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more amenable to treatment. In the ideal case, the hazardous wastes are destructively oxidized to simpler, non-hazardous compounds plus CO2 and H2O. Sometimes the reaction products are still potentially hazardous, but are easily treated by conventional methods to yield non-hazardous products

  6. Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field

    International Nuclear Information System (INIS)

    Wang Changquan; Zhang Guixin; Wang Xinxin; Chen Zhiyu

    2012-01-01

    Atmospheric pressure non-thermal plasma is of interest for industrial applications. In this study, polypropylene (PP) films are modified by a dielectric barrier discharge (DBD) with a non-uniform magnetic field in air at atmospheric pressure. The surface properties of the PP films before and after a DBD treatment are studied by using contact angle measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The effect of treatment time on the surface modification with and without a magnetic field is investigated. It is found that the hydrophilic improvement depends on the treatment time and magnetic field. It is also found that surface roughness and oxygen-containing groups are introduced onto the PP film surface after the DBD treatment. Surface roughness and oxygen-containing polar functional groups of the PP films increase with the magnetic induction density. The functional groups are identified as C-O, C=O and O-C=O by using XPS analysis. It is concluded that the hydrophilic improvement of PP films treated with a magnetic field is due to a greater surface roughness and more oxygen-containing groups. (plasma technology)

  7. Plasma and Ocular Prednisolone Disposition after Oral Treatment in Cats

    Directory of Open Access Journals (Sweden)

    María J. Del Sole

    2013-01-01

    Full Text Available Objective. To evaluate the plasma and aqueous humor disposition of prednisolone after oral administration in cats. Methods. Six cats were administered with a single oral dose of prednisolone (10 mg. Blood and aqueous humor samples were serially collected after drug administration. Prednisolone concentrations in plasma and aqueous humor were measured at 0.25, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, and 5.0 h after administration by a high-performance liquid chromatographic analytical method developed and validated for this purpose. Results. Mean ± standard error (SE of maximum plasma prednisolone concentration (300.8 ± 67.3 ng/mL was reached at 1 h after administration. Prednisolone was distributed to the aqueous humor reaching a mean peak concentration of 100.9 ± 25.5 ng/mL at 1.25 h after administration. The mean ± SE systemic and aqueous humor exposure (AUC was 553.3 ± 120.0 ng*h/mL and 378.8 ± 64.9 ng*h/mL, respectively. A high AUCaqueous humor/AUCplasma ratio was observed (0.68 ± 0.13. The mean half-life time of elimination in plasma and aqueous humor was 0.87 ± 0.16 h and 2.25 ± 0.44 h, respectively. Clinical Significance. The observed high ratio between aqueous humor and plasma prednisolone concentrations indicates that extensive penetration of prednisolone to the anterior segment of the eye may occur. This is the first step that contributes to the optimization of the pharmacological therapeutics for the clinical treatment of uveitis.

  8. Study on hydrophilicity of polymer surfaces improved by plasma treatment

    International Nuclear Information System (INIS)

    Lai Jiangnan; Sunderland, Bob; Xue Jianming; Yan, Sha; Zhao Weijiang; Folkard, Melvyn; Michael, Barry D.; Wang Yugang

    2006-01-01

    Surface properties of polycarbonate (PC), polypropylene (PP), polyethylene terephthalate (PET) samples treated by microwave-induced argon plasma have been studied with contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanned electron microscopy (SEM). It is found that plasma treatment modified the surfaces both in composition and roughness. Modification of composition makes polymer surfaces tend to be highly hydrophilic, which mainly depended on the increase of ratio of oxygen-containing group as same as other papers reported. And this experiment further revealed that C=O bond is Key factor to the improvement of the hydrophilicity of polymer surfaces. Our SEM observation on PET shown that the roughness of the surface has also been improved in micron scale and it has influence on the surface hydrophilicity

  9. ELECTROLYTIC-PLASMA TREATMENT OF INNER SURFACE OF TUBULAR PRODUCTS

    Directory of Open Access Journals (Sweden)

    Yu. G. Alekseev

    2016-01-01

    Full Text Available While manufacturing a number of important tubular products stringent requirements have been imposed on quality of their inner surfaces. The well-known methods for inner surface treatment of pipes include sandblasting, chemical cleaning with acid reagents (oxalic, formic, sulfamic, orthophosphoric acids and electrochemical polishing. Disadvantages of the chemical method are cleaning-up irregularities, high metal removal, limited number of reagent application, complicated selection of reagent chemical composition and concentration, complicated and environmentally harmful recycling of waste chemicals, high cost of reagents. Low productivity at a high cost, as well as hazardous impact on personnel due to high dispersion of abrasive dust are considered as disadvantages of sandblasting. Electrochemical polishing is characterized by the following disadvantages: low processing productivity because supply of high currents is rather difficult due to electrolyte scattering capacity away from the main electrode action zone, limited length of the cavity to be treated due to heating of flexible current leads at operating current densities, application of expensive aggressive electrolytes and high costs of their recycling. A new method for polishing and cleaning of inner surfaces of tubular products based on electrolyte-plasma treatment has been developed. In comparison with the existing methods the proposed methods ensures quality processing with high intensity while applying non-toxic, environmentally friendly and cheap electrolytes. The paper presents results of investigations on technological specific features of electrolyte-plasma treatment for inner surfaces of tubular products: influence of slotted nozzle width, electrolyte flow and rate on stability of gas-vapor blanket, current density and productivity. Results of the research have made it possible to determine modes that provide stability and high productivity in the process of electrolyte-plasma

  10. Surface Treatment of PET Nonwovens with Atmospheric Plasma

    International Nuclear Information System (INIS)

    Li Shufang

    2013-01-01

    In this study, polyethylene-terephthalate (PET) nonwovens are treated using an atmospheric plasma and the effects of the treatment time, treatment power and discharge distance on the ability of water-penetration into the nonwovens are investigated. The result indicates that the method can improve the wettability of PET nonwovens remarkably, but the aging decay of the sample's wettability is found to be notable as a function of the storage time after treatment due to the internal rotation of the single bond of surface macromolecules. As shown by SEM and XPS analysis, the etching and surface reaction are significant, and water-penetration weight is found to increase remarkably with the increasing power. This variation can be attributed to momentum transfer and enhanced higher-energy particle excitation.

  11. Surface modification of electrospun PVA/chitosan nanofibers by dielectric barrier discharge plasma at atmospheric pressure and studies of their mechanical properties and biocompatibility.

    Science.gov (United States)

    Das, Punamshree; Ojah, Namita; Kandimalla, Raghuram; Mohan, Kiranjyoti; Gogoi, Dolly; Dolui, Swapan Kumar; Choudhury, Arup Jyoti

    2018-03-22

    In this paper, surface of electrospun PVA/Cs nanofibers is modified using dielectric barrier discharge (DBD) plasma and the relationship between the observed mechanical properties and biocompatibility of the nanofibers and plasma-induced surface properties is discussed. Plasma treatment of electrospun PVA/Cs nanofibers is carried out with both inert (argon, Ar) and reactive (oxygen, O 2 ) gases at atmospheric pressure. Incorporation of oxygen-containing polar functional groups on the surface of Ar-plasma treated (PVA/Cs/Ar) and O 2 -plasma treated (PVA/Cs/O 2 ) nanofibers and increase in surface roughness contribute to the improvement of surface wettability and the decrease of contact angle with water of the nanofibers. Both PVA/Cs/Ar and PVA/Cs/O 2 nanofibers show high tensile strength (11.6-15.6%) and Young's modulus (33.8-37.3%) as compared to the untreated one. Experimental results show that in terms of haemolytic activity the PVA/Cs/Ar and PVA/Cs/O 2 nanofibers do not cause structural changes of blood cells and meet the biocompatibility requirements for blood-contacting polymeric materials. MTT cell viability results further reveals improvement in biocompatibility of PVA/Cs nanofibers after Ar and O 2 plasma treatment. The results suggest that DBD plasma treated electrospun PVA/Cs nanofibers have the potential to be used as wound dressing and scaffolds for tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. KEJADIAN DEMAM BERDARAH DENGUE (DBD DAN FAKTOR IKLIM DI KOTA BATAM, PROVINSI KEPULAUAN RIAU

    Directory of Open Access Journals (Sweden)

    Jusniar Ariati

    2015-03-01

    Full Text Available Demam Berdarah Dengue (DBD atau Dengue Haemorrhagic Fever (DHF merupakan penyakit akut, bersifat endemik dan secara periodik dapat mendatangkan Kejadian Luar Biasa (KLB. Sejak pertama kali ditemukan tahun 1968 di Indonesia, penyebaran penyakit ini dengan cepat terjadi ke berbagai daerah. Peningkatan jumlah kasus di Indonesia selama ini terjadi pada saat musim hujan dikarenakan temperatur bumi yang semakin meningkat. Perubahan pola suhu dan curah hujan dapat menyebabkan nyamuk memperluas tempat perkembiakannya, hal ini disebabkan karena nyamuk berkembang biak dengan cepat. Kejadian DBD di Kota Batam pada tahun 2007 sebesar 157,9 per 100.000 penduduk, 153,5 per 100,000 penduduk pada tahun 2008; 136,2 per 100,000 penduduk pada tahun 2009: 29,5 per 100,000 penduduk tahun 2010 and 59,43 per 100,000 penduduk pada tahun 2011. Faktor iklim yaitu faktor iklim yaitu curah hujan, suhu, hari hujan dan kelembaban terhadap kejadian DBD di Kota Batam, Propinsi Kepulauan Riau. Disain studi ini merupakan studi retrospektif. Data iklim dikumpulkan dari kantor BMKG (Badan Meteorologi, Klimatologi dan Geofisika, sedangkan data kejadian DBD didapat dari Dinas Kesehatan Kota Batam selama tahun 2001-2011. Data dianalisis dengan analisis regresi linier menurut Colton. Hasil analisis menunjukkan bahwa terdapat hubungan antara kejadian DBD dengan suhu dan curah hujan walaupun tidak terlalu kuat. Nilai r antara kejadian DBD dan suhu udara adalah 0,31, sedangkan curah hujan sebesar 0,26. Hasil analisis antara kejadian DBD terhadap hari hujan dan kelembaban didapatkan nilai r = 0,07 dan r = 0,11 artinya tidak terdapat hubungan dengan kejadian DBD di Kota Batam.

  13. Advancements and applications of plasma arc centrifugal treatment

    International Nuclear Information System (INIS)

    Eschenbach, R.C.; Leland, L.B.; Chen, W.M.

    1997-01-01

    A process using a transferred arc plasma to heat material charged into a spinning tube inside a sealed, water-cooled container has been applied to radioactive and hazardous waste treatment in several countries. Inorganic material in the feed is melted into a leach-resistant slag, while organic material is vaporized and reacted to form carbon dioxide and water vapor. Any acid gases formed plus particulates are removed in a gas cleanup system. Design features and their relations to design objectives are described. Current and near-future applications are reported for treating nuclear power plant wastes and for remediating contamination from past nuclear weapons activities

  14. Plasma medicine—current state of research and medical application

    Science.gov (United States)

    Weltmann, K.-D.; von Woedtke, Th

    2017-01-01

    Plasma medicine means the direct application of cold atmospheric plasma (CAP) on or in the human body for therapeutic purposes. Further, the field interacts strongly with results gained for biological decontamination. Experimental research as well as first practical application is realized using two basic principles of CAP sources: dielectric barrier discharges (DBD) and atmospheric pressure plasma jets (APPJ). Originating from the fundamental insights that the biological effects of CAP are most probably caused by changes of the liquid environment of cells, and are dominated by reactive oxygen and nitrogen species (ROS, RNS), basic mechanisms of biological plasma activity are identified. It was demonstrated that there is no increased risk of cold plasma application and, above all, there are no indications for genotoxic effects. The most important biological effects of cold atmospheric pressure plasma were identified: (1) inactivation of a broad spectrum of microorganisms including multidrug resistant ones; (2) stimulation of cell proliferation and tissue regeneration with lower plasma treatment intensity (treatment time); (3) inactivation of cells by initialization of programmed cell death (apoptosis) with higher plasma treatment intensity (treatment time). In recent years, the main focus of clinical applications was in the field of wound healing and treatment of infective skin diseases. First CAP sources are CE-certified as medical devices now which is the main precondition to start the introduction of plasma medicine into clinical reality. Plasma application in dentistry and, above all, CAP use for cancer treatment are becoming more and more important research fields in plasma medicine. A further in-depth knowledge of control and adaptation of plasma parameters and plasma geometries is needed to obtain suitable and reliable plasma sources for the different therapeutic indications and to open up new fields of medical application.

  15. Control of surface wettability for inkjet printing by combining hydrophobic coating and plasma treatment

    International Nuclear Information System (INIS)

    Park, Heung Yeol; Kang, Byung Ju; Lee, Dohyung; Oh, Je Hoon

    2013-01-01

    We have obtained a wide range of surface wettabilities of PI substrate for inkjet printing by combining hydrophobic solution coating and O 2 or Ar plasma treatments. Experiments were conducted to investigate the variation in inkjet-printed dot diameters with different surface treatments. The change in chemical and physical characteristics of treated surfaces was evaluated using static contact angle measurements, field emission scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Only hydrophobic coated surface produces the smallest dot diameter and the largest contact angle. Dot diameter increases and contact angle decreases as the plasma treatment time increases. Since the removal of hydrophobic layer from the surface occurs due to the etching effect of O 2 and Ar plasma during the plasma treatments, F/C ratio decreases with increasing the plasma treatment time. Surface roughness variations are also observed after plasma treatments. The ranges of printed dot sizes for O 2 and Ar plasma treatments are 38 μm–70 μm and 38 μm–92 μm, respectively. Ar plasma treatment shows a wider range of surface wettability because of higher removal rate of the hydrophobic layer. This combination of hydrophobic coating and plasma treatment can offer an effective way to obtain a wide range of surface wettabilities for high quality inkjet-printed patterns. - Highlights: • Hydrophobic coating and plasma treatments were used to control surface wettability. • Inkjet-printed dot diameters increase with O 2 or Ar plasma treatment time. • Contact angles of Ag ink agree well with the variation tendency of dot diameters. • The removal of hydrophobic layer occurs during the plasma treatments. • Ar plasma treatment shows a wider range of surface wettability than O 2 plasma

  16. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    Yun Jeong Woo

    2013-01-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  17. Multiple sclerosis treatment effects on plasma cytokine receptor levels.

    Science.gov (United States)

    Bedri, Sahl Khalid; Fink, Katharina; Manouchehrinia, Ali; Lundström, Wangko; Kockum, Ingrid; Olsson, Tomas; Hillert, Jan; Glaser, Anna

    2018-02-01

    Genetic variants within some cytokine receptor genes have been associated with MS susceptibility, including IL7RA and IL2RA. As these genes are expressed by cells targeted by immune-modulatory drugs, we explored the potential role of their gene products as biomarkers in monitoring MS treatment. We assessed the impact of natalizumab followed by fingolimod on the intra-individual changes of plasma protein levels of sIL-7Rα, sIL-2Rα and also sIL-6R and sgp130 in MS patients. During natalizumab treatment we observed a decline in sgp130 and sIL-7Rα levels, while subsequent fingolimod treatment lead to increased sgp130 and sIL-7Rα and decreased sIL-2Rα levels. In addition, during fingolimod treatment sIL-7Rα levels were increasing significantly more in patients homozygous for the MS risk genotype of rs6897932. We also observed an effect of the MS associated rs71624119 on sgp130 levels. These results may elucidate the pharmacodynamics of treatments and help identify biomarkers for MS outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites

    International Nuclear Information System (INIS)

    Sever, K.; Erden, S.; Guelec, H.A.; Seki, Y.; Sarikanat, M.

    2011-01-01

    Highlights: → To improve mechanical properties of jute/HDPE composites, jute fabric was subjected to oxygen plasma treatment. → LF and RF plasma systems at different plasma powers were used for treatment. → In LF system, interlaminar shear strength, tensile and flexure strengths showed a tendency to increase at plasma powers of 30 and 60 W. - Abstract: The surfaces of jute fabrics have been oxygen plasma treated using low frequency (LF) and radio frequency (RF) plasma systems at different plasma powers (30, 60, and 90 W) for 15 min to improve the mechanical properties of jute fiber/HDPE (high density polyethylene) composites. The effect of oxygen plasma treatment on the functional groups of jute fibers was examined by X-ray photoelectron spectroscopy (XPS) analysis. Effects of oxygen plasma treatments on the mechanical properties of jute fiber/HDPE composites were investigated by means of tensile, flexure, and short-beam shear tests. Surface morphology of the fractured surfaces of composites was observed by using scanning electron microscopy (SEM). When RF plasma system was used, the interlaminar shear strength (ILSS) values of the composites increased with increasing plasma power. Similarly, in LF plasma system, ILSS values showed a tendency to increase at plasma powers of 30 and 60 W. However, increasing of plasma power to 90 W decreased the ILSS value of jute/HDPE composite. Also, tensile and flexure strengths of the composites showed similar trends.

  19. Experimental investigations on characteristics of boundary layer and control of transition on an airfoil by AC-DBD

    Science.gov (United States)

    Geng, Xi; Shi, Zhiwei; Cheng, Keming; Dong, Hao; Zhao, Qun; Chen, Sinuo

    2018-03-01

    Plasma-based flow control is one of the most promising techniques for aerodynamic problems, such as delaying the boundary layer transition. The boundary layer’s characteristics induced by AC-DBD plasma actuators and applied by the actuators to delay the boundary layer transition on airfoil at Ma = 0.3 were experimentally investigated. The PIV measurement was used to study the boundary layer’s characteristics induced by the plasma actuators. The measurement plane, which was parallel to the surface of the actuators and 1 mm above the surface, was involved in the test, including the perpendicular plane. The instantaneous results showed that the induced flow field consisted of many small size unsteady vortices which were eliminated by the time average. The subsequent oil-film interferometry skin friction measurement was conducted on a NASA SC(2)-0712 airfoil at Ma = 0.3. The coefficient of skin friction demonstrates that the plasma actuators successfully delay the boundary layer transition and the efficiency is better at higher driven voltage.

  20. Plasma-on-chip device for stable irradiation of cells cultured in media with a low-temperature atmospheric pressure plasma.

    Science.gov (United States)

    Okada, Tomohiro; Chang, Chun-Yao; Kobayashi, Mime; Shimizu, Tetsuji; Sasaki, Minoru; Kumagai, Shinya

    2016-09-01

    We have developed a micro electromechanical systems (MEMS) device which enables plasma treatment for cells cultured in media. The device, referred to as the plasma-on-chip, comprises microwells and microplasma sources fabricated together in a single chip. The microwells have through-holes between the microwells and microplasma sources. Each microplasma source is located on the backside of each microwells. The reactive components generated by the microplasma sources pass through the through-holes and reach cells cultured in the microwells. In this study, a plasma-on-chip device was modified for a stable plasma treatment. The use of a dielectric barrier discharge (DBD) technique allowed a stable plasma treatment up to 3 min. The plasma-on-chip with the original electrode configuration typically had the maximum stable operation time of around 1 min. Spectral analysis of the plasma identified reactive species such as O and OH radicals that can affect the activity of cells. Plasma treatment was successfully performed on yeast (Saccharomyces cerevisiae) and green algae (Chlorella) cells. While no apparent change was observed with yeast, the treatment degraded the activity of the Chlorella cells and decreased their fluorescence. The device has the potential to help understand interactions between plasma and cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  2. RF atmospheric plasma jet surface treatment of paper

    Science.gov (United States)

    Pawlat, Joanna; Terebun, Piotr; Kwiatkowski, Michał; Diatczyk, Jaroslaw

    2016-09-01

    A radio frequency RF atmospheric pressure plasma jet was used to enhance the wettability of cellulose-based paper of 90 g m-2 and 160 g m-2 grammage as a perspective platform for antibiotic sensitivity tests. Helium and argon were the carrier gases for oxygen and nitrogen; pure water and rapeseed oil were used for goniometric tests. The influence of the flow rate and gas type, the power of the discharge, and distance from the nozzle was examined. The surface structure was observed using an optical microscope. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra were investigated in order to determine whether cellulose degradation processes occurred. The RF plasma jet allowed us to decrease the surface contact angle without drastic changes in other features of the tested material. Experiments confirmed the significant influence of the distance between the treated sample and reactor nozzle, especially for treatment times longer than 15 s due to the greater concentration of reactive species at the surface of the sample, which decreases with distance—and their accumulation effect with time. The increase of discharge power plays an important role in decreasing the surface contact angle for times longer than 10 s. Higher power had a positive effect on the amount of generated active particles and facilitated the ignition of discharge. However, a too high value can cause a rise in temperature of the material and heat-caused damage.

  3. Long and short term effects of plasma treatment on meristematic plant cells

    Science.gov (United States)

    Puač, N.; Živković, S.; Selaković, N.; Milutinović, M.; Boljević, J.; Malović, G.; Petrović, Z. Lj.

    2014-05-01

    In this paper, we will present results of plasma treatments of meristematic cells of Daucus carota. Plasma needle was used as an atmospheric pressure/gas composition source of non-equilibrium plasma in all treatments. Activity of antioxidant enzymes superoxide dismutase and catalase was measured immediately after plasma treatment and after two weeks following the treatment. Superoxide dismutase activity was increased in samples immediately after the plasma treatment. On the other hand, catalase activity was much higher in treated samples when measured two weeks after plasma treatment. These results show that there is a direct proof of the triggering of signal transduction in the cells by two reactive oxygen species H2O2 and O2-, causing enzyme activity and short and long term effects even during the growth of calli, where the information is passed to newborn cells over the period of two weeks.

  4. Thermal plasma treatment of cell-phone waste : preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Ruj, B. [Central Mechanical Engineering Research Inst., Durgapur (India). Thermal Engineering Group; Chang, J.S.; Li, O.L. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics; Pietsch, G. [RWTH Aachen Univ., Aachen (Germany)

    2010-07-01

    The cell phone is an indispensable service facilitator, however, the disposal and recycling of cell phones is a major problem. While the potential life span of a mobile phone, excluding batteries, is over 10 years, most of the users upgrade their phones approximately four times during this period. Cell phone waste is significantly more hazardous than many other municipal wastes as it contains thousands of components made of toxic chemicals and metals like lead, cadmium, chromium, mercury, polyvinyl chlorides (PVC), brominated flame retardants, beryllium, antimony and phthalates. Cell phones also use many expensive rare metals. Since cell phones are made up of plastics, metals, ceramics, and trace other substances, primitive recycling or disposal of cell phone waste to landfills and incinerators creates irreversible environmental damage by polluting water and soil, and contaminating air. In order to minimize releases into the environment and threat to human health, the disposal of cell phones needs to be managed in an environmentally friendly way. This paper discussed a safer method of reducing the generation of syngas and hydrocarbons and metal recovery through the treatment of cell phone wastes by a thermal plasma. The presentation discussed the experiment, with particular reference to sample preparation; experimental set-up; and results four samples with different experimental conditions. It was concluded that the plasma treatment of cell phone waste in reduced condition generates gaseous components such as hydrogen, carbon monoxide, and hydrocarbons which are combustible. Therefore, this system is an energy recovery system that contributes to resource conservation and reduction of climate change gases. 5 refs., 2 tabs., 2 figs.

  5. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    Science.gov (United States)

    Qu, Guangzhou; Liang, Dongli; Qu, Dong; Huang, Yimei; Li, Jie

    2014-06-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration.

  6. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    International Nuclear Information System (INIS)

    Qu Guangzhou; Liang Dongli; Qu Dong; Huang Yimei; Li Jie

    2014-01-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O 3 ) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O 3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O 3 regeneration. O 3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O 3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O 3 regeneration has a lower weight loss than DBD plasma regeneration

  7. Effects of oxygen plasma treatment on domestic aramid fiber III reinforced bismaleimide composite interfacial properties

    Science.gov (United States)

    Shi, Chen; Wang, Jing; Chen, Ping; Feng, Jiayue; Cui, Jinyuan; Yang, Faze

    2017-12-01

    Domestic Aramid Fiber III (DAF III) was modified by oxygen plasma treatment. The fiber surface characteristics was observed by Scanning Electron Microscopy. The results showed that oxygen plasma treatment changed surface morphologies. The effects of oxygen plasma treatment on DAF III reinforced bismaleimides (BMI) composite bending and interfacial properties were investigated, respectively. The ILSS value increased from 49.3 MPa to 56.0 MPa (by 13.5%) after oxygen plasma treatment. The bending strength changed a little. Furthermore, the composite rupture mode changed from interfacial rupture to fiber or resin bulk rupture.

  8. Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Plasma cell neoplasms occur when abnormal plasma cells or myeloma cells form tumors in the bones or soft tissues of the body. Multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are different types of plasma cell neoplasms. Find out about risk factors, symptoms, diagnostic tests, prognosis, and treatment for these diseases.

  9. PENINGKATAN PERANSERTA MASYARAKAT DALAM PELAKSANAAN PEMBERANTASAN SARANG NYAMUK DBD (PSN-DBD DI DUA KELURAHAN DI KOTA PALU, SULAWESI TENGAH

    Directory of Open Access Journals (Sweden)

    Sitti Chadijah

    2012-07-01

    Full Text Available Dengue hemorrhagic fever (DHF is still one of the most important public health problem in Indonesia. Disease control efforts have been widely carried out, such as larvaciding, fogging focus, and mosquito breeding control. The efforts will be performing well if its involves community participation. The objectives of this study was to enhance community participation in the implementation of the mosquito control program of Dengue Hemorrhagic fever in Palupi and Singgani villages, Palu. The research design is a quasi experimental to analyze the difference between two approach, i.e. larvae surveyors (in Indonesia called as Jumantik empowerment and the participation of the community leadres (in Indonesia called Ketua RT. Mosquito larvae survey was conducted with a single larval method. The population in this tsudy is all house in the two villages. Sample are consist of 100 houses in each village which were randomly selected. The result showed that during the first larvae survey in Palupi village, the larva-free rate (ABJ was 68% with the result of CI, HI and BI were 20.81%, 32% and 46 respectively. In the village of Siranindi, the number of larva-free rate was 78%, with CI 19.64%, HI 22% and BI 33. At the seven weeks after the intervention with community participation  suggests that the larva-free rate in Palupi village was became 89%, with the number of CI 3.67%, HI 11% and BI 1%. While in Siranindi village, the larva-free rate was 85% with the CI, HI and BI were 8.4%, 15% and 21% respectively. According to that result, the most effective of community participation on DHF vector control is larva monitors (jumantik empowerment.AbstrakDemam berdarah dengue (DBD masih merupakan salah satu masalah kesehatan yang paling penting masyarakat di Indonesia. Upaya pengendalian penyakit telah banyak dilakukan, seperti larvaciding, fokus fogging, dan pengendalian nyamuk berkembang biak. Upaya ini akan lebih baik jika  melibatkan partisipasi masyarakat. Tujuan

  10. Plasma product treatment in various types of von Willebrand's disease.

    Science.gov (United States)

    Berntorp, E

    1994-01-01

    Four different virus-inactivated factor VIII concentrates (Haemate P, Behring; Profilate, Alpha, FVIII-VHP-vWF, CRTS), near-pure von Willebrand factor (Facteur Willebrand, CRTS) or one recombinant FVIII preparation (Recombinate, Baxter) were given to one or more patients with different forms of von Willebrand's disease. Duke bleeding time, VIII:C, vWF:Ag, RC of activity, and the multimeric pattern of plasma vWF were monitored. Both Duke bleeding time and the multimeric pattern were normalized after treatment with Haemate P, FVIII-VHP-vWF, or Facteur Willebrand, and to a lesser extent after Profilate. Except in one case, the reduction in bleeding time lasted longer after Haemate P than after the other concentrates. Recombinate had no effect on primary hemostasis, and the half-life of VIII:C was very short. If prompt hemostasis is required, and when pharmacological correction of the defect is impossible, we recommend a concentrate containing both FVIII and the full complement of vWF multimers, but for prophylactic treatment pure von Willebrand factor may be used.

  11. Assessment of Atmospheric Pressure Plasma Treatment for Implant Osseointegration

    Directory of Open Access Journals (Sweden)

    Natalie R. Danna

    2015-01-01

    Full Text Available This study assessed the osseointegrative effects of atmospheric pressure plasma (APP surface treatment for implants in a canine model. Control surfaces were untreated textured titanium (Ti and calcium phosphate (CaP. Experimental surfaces were their 80-second air-based APP-treated counterparts. Physicochemical characterization was performed to assess topography, surface energy, and chemical composition. One implant from each control and experimental group (four in total was placed in one radius of each of the seven male beagles for three weeks, and one implant from each group was placed in the contralateral radius for six weeks. After sacrifice, bone-to-implant contact (BIC and bone area fraction occupancy (BAFO were assessed. X-ray photoelectron spectroscopy showed decreased surface levels of carbon and increased Ti and oxygen, and calcium and oxygen, posttreatment for Ti and CaP surfaces, respectively. There was a significant (P<0.001 increase in BIC for APP-treated textured Ti surfaces at six weeks but not at three weeks or for CaP surfaces. There were no significant (P=0.57 differences for BAFO between treated and untreated surfaces for either material at either time point. This suggests that air-based APP surface treatment may improve osseointegration of textured Ti surfaces but not CaP surfaces. Studies optimizing APP parameters and applications are warranted.

  12. Assessment of Atmospheric Pressure Plasma Treatment for Implant Osseointegration.

    Science.gov (United States)

    Danna, Natalie R; Beutel, Bryan G; Tovar, Nick; Witek, Lukasz; Marin, Charles; Bonfante, Estevam A; Granato, Rodrigo; Suzuki, Marcelo; Coelho, Paulo G

    2015-01-01

    This study assessed the osseointegrative effects of atmospheric pressure plasma (APP) surface treatment for implants in a canine model. Control surfaces were untreated textured titanium (Ti) and calcium phosphate (CaP). Experimental surfaces were their 80-second air-based APP-treated counterparts. Physicochemical characterization was performed to assess topography, surface energy, and chemical composition. One implant from each control and experimental group (four in total) was placed in one radius of each of the seven male beagles for three weeks, and one implant from each group was placed in the contralateral radius for six weeks. After sacrifice, bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were assessed. X-ray photoelectron spectroscopy showed decreased surface levels of carbon and increased Ti and oxygen, and calcium and oxygen, posttreatment for Ti and CaP surfaces, respectively. There was a significant (P < 0.001) increase in BIC for APP-treated textured Ti surfaces at six weeks but not at three weeks or for CaP surfaces. There were no significant (P = 0.57) differences for BAFO between treated and untreated surfaces for either material at either time point. This suggests that air-based APP surface treatment may improve osseointegration of textured Ti surfaces but not CaP surfaces. Studies optimizing APP parameters and applications are warranted.

  13. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low-speed flows and...

  14. Hydrophobization of polymer particles by tetrafluoromethane (CF4) plasma irradiation using a barrel-plasma-treatment system

    Science.gov (United States)

    Matsubara, Keisuke; Danno, Masato; Inoue, Mitsuhiro; Nishizawa, Hideki; Honda, Yuji; Abe, Takayuki

    2013-11-01

    In this study, tetrafluoromethane (CF4) plasma-treatments of polymethylmethacrylate (PMMA) powder were performed using a polygonal barrel-plasma-treatment system to improve the PMMA's hydrophobicity. Characterization of the treated samples showed that the PMMA particle surfaces were fluorinated by the CF4 treatment. The smooth surfaces of the particles changed into nano-sized worm-like structures after the plasma-treatment. The hydrophobicity of the treated PMMA samples was superior to that of the untreated samples. It was noted that the hydrophobicity of the treated samples and the surface fluorination level depended on the plasma-treatment time and radiofrequency (RF) power; high RF power increased the sample temperature, which in turn decreased the hydrophobicity of the treated samples and the surface fluorination because of the thermal decomposition of PMMA. The water-repellent effects were evaluated by using paper towels to show the application of the plasma-treated PMMA particles, with the result that the paper towel coated with the treated sample was highly water-repellent.

  15. Hydrophobization of polymer particles by tetrafluoromethane (CF{sub 4}) plasma irradiation using a barrel-plasma-treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Keisuke; Danno, Masato; Inoue, Mitsuhiro; Nishizawa, Hideki; Honda, Yuji; Abe, Takayuki, E-mail: tabe@ctg.u-toyama.ac.jp

    2013-11-01

    In this study, tetrafluoromethane (CF{sub 4}) plasma-treatments of polymethylmethacrylate (PMMA) powder were performed using a polygonal barrel-plasma-treatment system to improve the PMMA's hydrophobicity. Characterization of the treated samples showed that the PMMA particle surfaces were fluorinated by the CF{sub 4} treatment. The smooth surfaces of the particles changed into nano-sized worm-like structures after the plasma-treatment. The hydrophobicity of the treated PMMA samples was superior to that of the untreated samples. It was noted that the hydrophobicity of the treated samples and the surface fluorination level depended on the plasma-treatment time and radiofrequency (RF) power; high RF power increased the sample temperature, which in turn decreased the hydrophobicity of the treated samples and the surface fluorination because of the thermal decomposition of PMMA. The water-repellent effects were evaluated by using paper towels to show the application of the plasma-treated PMMA particles, with the result that the paper towel coated with the treated sample was highly water-repellent.

  16. Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff

    International Nuclear Information System (INIS)

    Yaman, Necla; Ozdogan, Esen; Seventekin, Necdet; Ayhan, Hakan

    2009-01-01

    The impact of plasma treatment parameters on the surface morphology, physical-chemical, and dyeing properties of polypropylene (PP) using anionic and cationic dyestuffs were investigated in this study. Argon plasma treatment was used to activate PP fabric surfaces. Activated surfaces were grafted different compounds: 6-aminohexanoic acid (6-AHA), acrylic acid (AA), ethylendiamine (EDA), acryl amide (AAMID) and hexamethyldisiloxane (HMDS). Compounds were applied after the plasma treatment and the acid and basic dyeing result that was then observed, were quite encouraging in certain conditions. The possible formed oxidizing groups were emphasized by FTIR and ATR and the surface morphology of plasma treated PP fibers was also investigated with scanning electron microscopy (SEM). PP fabric could be dyed with acid and basic dyestuffs after only plasma treatment and plasma induced grafting, and fastnesses of the dyed samples were satisfactory.

  17. Enhancement of gas sensor response of nanocrystalline zinc oxide for ammonia by plasma treatment

    International Nuclear Information System (INIS)

    Hou, Yue; Jayatissa, Ahalapitiya H.

    2014-01-01

    The effect of oxygen plasma treatment on nanocrystalline ZnO thin film based gas sensor was investigated. ZnO thin films were synthesized on alkali-free glass substrates by a sol–gel process. ZnO thin films were treated with oxygen plasma to change the number of vacancies/defects in ZnO. The effect of oxygen plasma on the structural, electrical, optical and gas sensing properties was investigated as a function of plasma treatment time. The results suggest that the microstructure and the surface morphology can be tuned by oxygen plasma treatment. The optical transmission in the visible range varies after the oxygen plasma treatment. Moreover, it is found that the oxygen plasma has significant impact on the electrical properties of ZnO thin films indicating a variation of resistivity. The oxygen plasma treated ZnO thin film exhibits an enhanced sensing response towards NH 3 in comparison with that of the as-deposited ZnO sensor. When compared with the as-deposited ZnO film, the sensing response was improved by 50% for the optimum oxygen plasma treatment time of 8 min. The selectivity of 8 min plasma treated ZnO sensor was also examined for an important industrial gas mixture of H 2 , CH 4 and NH 3 .

  18. Experimental Study of SO2 Removal by Pulsed DBD Along with the Application of Magnetic Field

    International Nuclear Information System (INIS)

    Rong Mingzhe; Liu Dingxin; Wang Xiaohua; Wang Junhua

    2007-01-01

    Dielectric barrier discharge (DBD) for SO 2 removal from indoor air is investigated. In order to improve the removal efficiency, two novel methods are combined in this paper, namely by applying a pulsed driving voltage with nanosecond rising time and applying a magnetic field. For SO 2 removal efficiency, different matches of electric field and magnetic field are discussed. And nanosecond rising edge pulsed power supply and microsecond rising edge pulsed power supply are compared. It can be concluded that a pulsed DBD with nanosecond rising edge should be adopted, and electrical field and magnetic field should be applied in an appropriate match

  19. Faktor yang Berhubungan dengan Kejadian Penyakit Demam Berdarah Dengue (Dbd) di Kab. Jeneponto

    OpenAIRE

    Arsin, Andi Arsunan; Syafar, Muh; Abbas, Aida

    2010-01-01

    DBD cases in District Jeneponto in 2007 were 123 cases with Incident Rate (IR) 37.19/100.000 individual) and Case Fatality Rate (CFR) of 3.25% (8 individual). This research were aimed to find the relation of mosquito larvae existence in-house, mosquito larvae existence at plants within house environment, morning/noon sleeping habit, cloth hanging habit, knowledge, attitude and actions that related with the DBD incidence.This research conducted using cross sectional study design and it was con...

  20. On electron attachment effect on characteristics of the DBD in chlorine and its mixtures with xenon

    Science.gov (United States)

    Avtaeva, S. V.

    2017-11-01

    The electron attachment effect on DBD characteristics in chlorine and its mixtures with xenon has been studied. Characteristics of the DBDs in pure chlorine and in xenon-chlorine mixtures with a chlorine fraction of 0.1-5% were modeled using the fluid model. It is shown that the electron attachment limits a magnitude of the DBD current, contributes to formation of multiple current spikes, appearance of a double layer near the dielectric surface and formation of XeCl* excimer molecules, and leads to a redistribution of the power deposited into the discharge: more power is deposited into ions and less power is deposited into electrons.

  1. Surface Modification of Direct-Current and Radio-Frequency Oxygen Plasma Treatments Enhance Cell Biocompatibility

    Directory of Open Access Journals (Sweden)

    Wan-Ching Chou

    2017-10-01

    Full Text Available The sand-blasting and acid etching (SLA method can fabricate a rough topography for mechanical fixation and long-term stability of titanium implant, but can not achieve early bone healing. This study used two kinds of plasma treatments (Direct-Current and Radio-Frequency plasma to modify the SLA-treated surface. The modification of plasma treatments creates respective power range and different content functional OH groups. The results show that the plasma treatments do not change the micron scale topography, and plasma-treated specimens presented super hydrophilicity. The X-ray photoelectron spectroscopy (XPS-examined result showed that the functional OH content of the RF plasma-treated group was higher than the control (SLA and DC treatment groups. The biological responses (protein adsorption, cell attachment, cell proliferation, and differentiation promoted after plasma treatments, and the cell responses, have correlated to the total content of amphoteric OH groups. The experimental results indicated that plasma treatments can create functional OH groups on SLA-treated specimens, and the RF plasma-treated SLA implant thus has potential for achievement of bone healing in early stage of implantation.

  2. The Plasma Hearth Process demonstration project for mixed waste treatment

    International Nuclear Information System (INIS)

    Geimer, R.; Dwight, C.; McClellan, G.

    1994-01-01

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development (OTD) Mixed Waste Integrated Program (MWIP). Testing to date has yielded encouraging results in displaying potential applications for the PHP technology. Early tests have shown that a wide range of waste materials can be readily processed in the PHP and converted to a vitreous product. Waste materials can be treated in their original container as received at the treatment facility, without pretreatment. The vitreous product, when cooled, exhibits excellent performance in leach resistance, consistently exceeding the Environmental Protection Agency (EPA) Toxicity Characteristic Leaching Procedure (TCLP) requirements. Performance of the Demonstration System during test operations has been shown to meet emission requirements. An accelerated development phase, being conducted at both bench- and pilot-scale on both nonradioactive and radioactive materials, will confirm the viability of the process. It is anticipated that, as a result of this accelerated technology development and demonstration phase, the PHP will be ready for a final field-level demonstration within three years

  3. [Treatment of corneal ulcers with platelet rich plasma].

    Science.gov (United States)

    Acosta, L; Castro, M; Fernandez, M; Oliveres, E; Gomez-Demmel, E; Tartara, L

    2014-02-01

    To assess the efficacy of platelet rich plasma (PRP) in the treatment of extensive corneal ulcers in albino rabbits. New Zealand rabbits, divided in 3 groups, were used for the study. Corneal ulcers of 10mm diameter were made. Rabbits blood was extracted for the preparation of the PRP of the corresponding group. The blood was processed by differential centrifugation. The first group, named control, was treated with sterile saline every 8h. The second group, named gel, was treated with deproteinized extract gel beef fat every 8h, and the third group, named PRP received one PRP drop on the first and third day of monitoring. The rabbits were monitored, by taking photographs, each day for the 7 days that the study lasted. A better outcome was observed in the group with deproteinized extract gel beef fat (GE group), and the PRP group (PL group), in comparison with the control group (CO group) (PSolcoseryl®), for the regeneration of the extensive and deep corneal ulcers. Besides, it stands out as a no surgical procedure is required, and there is easy access, low cost and reduced doses. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  4. MoO3 trapping layers with CF4 plasma treatment in flash memory applications

    International Nuclear Information System (INIS)

    Kao, Chuyan Haur; Chen, Hsiang; Chen, Su-Zhien; Chen, Chian Yu; Lo, Kuang-Yu; Lin, Chun Han

    2014-01-01

    Highlights: • MoO 3 -based flash memories have been fabricated. • CF4 plasma treatment could enhance good memory performance. • Material analyses confirm that plasma treatment eliminated defects. • Fluorine atoms might fix the dangling bonds. - Abstract: In this research, we used MoO 3 with CF 4 plasma treatment as charge trapping layer in metal-oxide-high-k -oxide-Si-type memory. We analyzed material properties and electrical characteristics with multiple analyses. The plasma treatment could increase the trapping density, reduce the leakage current, expand band gap, and passivate the defect to enhance the memory performance. The MoO 3 charge trapping layer memory with suitable CF 4 plasma treatment is promising for future nonvolatile memory applications

  5. Surface modification of carbon nanohorns by helium plasma and ozone treatments

    Science.gov (United States)

    Lin, Zaw; Iijima, Toru; Selvam Karthik, Paneer; Yoshida, Mitsunobu; Hada, Masaki; Nishikawa, Takeshi; Hayashi, Yasuhiko

    2017-01-01

    In this paper, we describe the effects of helium plasma and ozone treatments on the dispersibility of carbon nanohorns (CNHs) in water. The experimental setups have been designed to efficiently generate helium plasma and ozone by dielectric barrier discharge at atmospheric pressure. After being treated with ozone, the oxygen-containing functional groups were introduced to the surface of CNHs, and are responsible for better dispersion. Helium plasma treatment was performed separately and it resulted in hydroxyl functional groups on the surface of CNHs. It was also found that the sizes of CNHs in water were smaller after ozone treatment. However, plasma-treated CNHs were bigger than ozone treated CNHs. The dispersed CNHs modified by ozone treatment were stable for more than three months without precipitation. In contrast, though helium plasma treatment introduced hydroxyl groups to the surface of CNHs, the dispersibility decreased and the flocculation of CNHs was observed in a few minutes.

  6. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  7. Plasma jet array treatment to improve the hydrophobicity of contaminated HTV silicone rubber

    Science.gov (United States)

    Zhang, Ruobing; Han, Qianting; Xia, Yan; Li, Shuang

    2017-10-01

    An atmospheric-pressure plasma jet array specially designed for HTV silicone rubber treatment is reported in this paper. Stable plasma containing highly energetic active particles was uniformly generated in the plasma jet array. The discharge pattern was affected by the applied voltage. The divergence phenomenon was observed at low gas flow rate and abated when the flow rate increased. Temperature of the plasma plume is close to room temperature which makes it feasible for temperature-sensitive material treatment. Hydrophobicity of contaminated HTV silicone rubber was significantly improved after quick exposure of the plasma jet array, and the effective treatment area reached 120 mm × 50 mm (length × width). Reactive particles in the plasma accelerate accumulation of the hydrophobic molecules, namely low molecular weight silicone chains, on the contaminated surface, which result in a hydrophobicity improvement of the HTV silicone rubber.

  8. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment.

    Science.gov (United States)

    Basaran, Pervin; Basaran-Akgul, Nese; Oksuz, Lutfi

    2008-06-01

    Low pressure cold plasma (LPCP) using air gases and sulfur hexafluoride (SF(6)) was developed and tested for anti-fungal efficacy against Aspergillus parasiticus on various nut samples. Artificially A. parasiticus contaminated hazelnuts, peanuts, and pistachio nuts were treated with air gases plasma and SF(6) plasma for up to 20 min duration. The sterilizing effect of LPCP on A. parasiticus was higher during the early treatment period than the later treatment period. Air gases plasma treatment for 5 min resulted in 1-log reduction of A. parasiticus and a further 5 min treatment resulted in additional 1-log reduction. SF(6) plasma application was more effective resulting in approximately a 5-log decrease in fungal population for the same duration. When effectiveness of plasma treatment against aflatoxins were tested, 20 min air gases plasma treatment resulted in a 50% reduction in total aflatoxins (AFB1, AFB2, AFG1, and AFG2), while only a 20% reduction in total aflatoxin was observed after 20 min SF(6) plasma treatment. In this study, a rapid, functional clean-up method for the elimination of aflatoxin producing fungus from shelled and unshelled nuts was investigated as a suitable fungal decontamination method.

  9. Effect of argon plasma treatment on the output performance of triboelectric nanogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Guang-Gui, E-mail: ggcheng@ujs.edu.cn [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou (China); Jiang, Shi-Yu; Li, Kai [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China); Zhang, Zhong-Qiang [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou (China); Wang, Ying; Yuan, Ning-Yi [Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou (China); Ding, Jian-Ning, E-mail: dingjn@ujs.edu.cn [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou (China); Zhang, Wei [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China)

    2017-08-01

    Highlights: • Two different kinds of PDMS films were prepared by spin-coated. • The PDMS surface was plasma treated with different power and time. • The output performance of TENG was significantly enhanced by plasma treatment. • Plasma treatment effect has time-efficient, the output declines with store time. - Abstract: Physical and chemical properties of the polymer surface play great roles in the output performance of triboelectric nanogenerator (TENG). Specific texture on the surface of polymer can enlarge the contact area and enhance the power output performance of TENG. In this paper, polydimethylsiloxane (PDMS) films with smooth and micro pillar arrays on the surface were prepared respectively. The surfaces were treated by argon plasma before testing their output performance. By changing treatment parameters such as treating time and plasma power, surfaces with different roughness and their relationship were achieved. The electrical output performances of the assembled TENG for each specimen showed that argon plasma treatment has a significant etching effect on the PDMS surface and greatly strengthen its output performance. The average surface roughness of PDMS film increases with the etching time from 5 mins to 15 mins when the argon plasma power is 60 W. Nevertheless, the average surface roughness is inversely proportional to the treatment time for the power of 90W. When treated with 90 W and 5 mins, many uniform micro pillars appeared on the both PDMS surface, and the output performance of the TENG for plasma treated smooth surface is 2.6 times larger than that before treatment. The output voltage increases from 42 V to 72 V, and the short circuit current increases from 4.2 μA to 8.3 μA after plasma treatment of the micro pillar array surface. However, this plasma treatment has time-efficient due to the hydrophobic recovery property of Ar plasma treated PDMS surface, both output voltage and short circuit current decrease significantly after 3

  10. Plasma arc systems for waste treatment and metal recovery

    Science.gov (United States)

    Eschenbach, Richard C.

    1996-06-01

    Plasma torches are being used for treating very difficult wastes,for recovering metal values from metallurgical wastes, and for making high-quality ingots and powder in the special metals industry. This article discusses the process requirements and the state of the art for plasma arc systems in each of these fields.

  11. Influence of plasma treatment on corn germination and early growth

    Czech Academy of Sciences Publication Activity Database

    Šerá, Božena; Špatenka, P.; Šerý, M.; Vrchotová, Naděžda; Hrušková, Iveta

    2010-01-01

    Roč. 38, č. 10 (2010), s. 2963-2968 ISSN 0093-3813 Institutional research plan: CEZ:AV0Z60870520 Keywords : air plasma * germination * microwave discharge * seed Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.070, year: 2010

  12. Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching

    Science.gov (United States)

    Lee, Jae Koo; Kim, Myoung Soo; Byun, June Ho; Kim, Kyong Tai; Kim, Gyoo Cheon; Park, Gan Young

    2011-08-01

    Low temperature atmospheric pressure plasmas have attracted great interests and they have been widely applied to biomedical applications to interact with living tissues, cells, and bacteria due to their non-thermal property. This paper reviews the biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Gold nanoparticles conjugated with cancer-specific antibodies have been introduced to cancerous cells to enhance selective killing of cells, and the mechanism of cell apoptosis induced by plasma has been investigated. Tooth exposed to helium plasma jet with hydrogen peroxide has become brighter and the productions of hydroxyl radicals from hydrogen peroxide have been enhanced by plasma exposure.

  13. Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-06

    Atmospheric-pressure plasma jets (APPJs) are a method of plasma treatment that plays an important role in material processing and modifying surface properties of materials, especially polymers. Gas plasmas react with polymer surfaces in numerous ways such as oxidation, radical formation, degradation, and promotion of cross-linking. Because of this, gas and plasma conditions can be explored for chosen processes to maximize desired properties. The purpose of this study is to investigate plasma parameters in order to modify surface properties for improved adhesion between aluminum and epoxy substrates using two types of adhesives. The background, results to date, and future work will be discussed.

  14. Hypothermic oxygenated machine perfusion (HOPE) for orthotopic liver transplantation of human liver allografts from extended criteria donors (ECD) in donation after brain death (DBD): a prospective multicentre randomised controlled trial (HOPE ECD-DBD)

    Science.gov (United States)

    Czigany, Zoltan; Schöning, Wenzel; Ulmer, Tom Florian; Bednarsch, Jan; Amygdalos, Iakovos; Cramer, Thorsten; Rogiers, Xavier; Popescu, Irinel; Botea, Florin; Froněk, Jiří; Kroy, Daniela; Koch, Alexander; Tacke, Frank; Trautwein, Christian; Tolba, Rene H; Hein, Marc; Koek, Ger H; Dejong, Cornelis H C; Neumann, Ulf Peter; Lurje, Georg

    2017-01-01

    Introduction Orthotopic liver transplantation (OLT) has emerged as the mainstay of treatment for end-stage liver disease. In an attempt to improve the availability of donor allografts and reduce waiting list mortality, graft acceptance criteria were extended increasingly over the decades. The use of extended criteria donor (ECD) allografts is associated with a higher incidence of primary graft non-function and/or delayed graft function. As such, several strategies have been developed aiming at reconditioning poor quality ECD liver allografts. Hypothermic oxygenated machine perfusion (HOPE) has been successfully tested in preclinical experiments and in few clinical series of donation after cardiac death OLT. Methods and analysis HOPE ECD-DBD is an investigator-initiated, open-label, phase-II, prospective multicentre randomised controlled trial on the effects of HOPE on ECD allografts in donation after brain death (DBD) OLT. Human whole organ liver grafts will be submitted to 1–2 hours of HOPE (n=23) via the portal vein before implantation and are going to be compared with a control group (n=23) of patients transplanted after conventional cold storage. Primary (peak and Δ peak alanine aminotransferase within 7 days) and secondary (aspartate aminotransferase, bilirubin and international normalised ratio, postoperative complications, early allograft dysfunction, duration of hospital and intensive care unit stay, 1-year patient and graft survival) endpoints will be analysed within a 12-month follow-up. Extent of ischaemia–reperfusion (I/R) injury will be assessed using liver tissue, perfusate, bile and serum samples taken during the perioperative phase of OLT. Ethics and dissemination The study was approved by the institutional review board of the RWTH Aachen University, Aachen, Germany (EK 049/17). The current paper represent the pre-results phase. First results are expected in 2018. Trial registration number NCT03124641. PMID:29018070

  15. Layer-dependent fluorination and doping of graphene via plasma treatment

    International Nuclear Information System (INIS)

    Chen Minjiang; Zhou Haiqing; Qiu Caiyu; Yang Huaichao; Yu Fang; Sun Lianfeng

    2012-01-01

    In this work, the fluorination of n-layer graphene is systematically investigated using CHF 3 and CF 4 plasma treatments. The G and 2D Raman peaks of graphene show upshifts after each of the two kinds of plasma treatment, indicating p-doping to the graphene. Meanwhile, D, D′ and D + G peaks can be clearly observed for monolayer graphene, whereas these peaks are weaker for thicker n-layer graphene (n ≥ 2) at the same experimental conditions. The upshifts of the G and 2D peaks and the ratio of I(2D)/I(G) for CF 4 plasma treated graphene are larger than those of CHF 3 plasma treated graphene. The ratio of I(D)/I(G) of the Raman spectra is notably small in CF 4 plasma treated graphene. These facts indicate that CF 4 plasma treatment introduces more p-doping and fewer defects for graphene. Moreover, the fluorination of monolayer graphene by CF 4 plasma treatment is reversible through thermal annealing while that by CHF 3 plasma treatment is irreversible. These studies explore the information on the surface properties of graphene and provide an optimal method of fluorinating graphene through plasma techniques. (paper)

  16. Chemical Changes in Nonthermal Plasma-Treated N-Acetylcysteine (NAC) Solution and Their Contribution to Bacterial Inactivation

    Science.gov (United States)

    Ercan, Utku K.; Smith, Josh; Ji, Hai-Feng; Brooks, Ari D.; Joshi, Suresh G.

    2016-01-01

    In continuation of our previous reports on the broad-spectrum antimicrobial activity of atmospheric non-thermal dielectric barrier discharge (DBD) plasma treated N-Acetylcysteine (NAC) solution against planktonic and biofilm forms of different multidrug resistant microorganisms, we present here the chemical changes that mediate inactivation of Escherichia coli. In this study, the mechanism and products of the chemical reactions in plasma-treated NAC solution are shown. UV-visible spectrometry, FT-IR, NMR, and colorimetric assays were utilized for chemical characterization of plasma treated NAC solution. The characterization results were correlated with the antimicrobial assays using determined chemical species in solution in order to confirm the major species that are responsible for antimicrobial inactivation. Our results have revealed that plasma treatment of NAC solution creates predominantly reactive nitrogen species versus reactive oxygen species, and the generated peroxynitrite is responsible for significant bacterial inactivation. PMID:26832829

  17. Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis

    Science.gov (United States)

    Baranov, O.; Bazaka, K.; Kersten, H.; Keidar, M.; Cvelbar, U.; Xu, S.; Levchenko, I.

    2017-12-01

    Given the vast number of strategies used to control the behavior of laboratory and industrially relevant plasmas for material processing and other state-of-the-art applications, a potential user may find themselves overwhelmed with the diversity of physical configurations used to generate and control plasmas. Apparently, a need for clearly defined, physics-based classification of the presently available spectrum of plasma technologies is pressing, and the critically summary of the individual advantages, unique benefits, and challenges against key application criteria is a vital prerequisite for the further progress. To facilitate selection of the technological solutions that provide the best match to the needs of the end user, this work systematically explores plasma setups, focusing on the most significant family of the processes—control of plasma fluxes—which determine the distribution and delivery of mass and energy to the surfaces of materials being processed and synthesized. A novel classification based on the incorporation of substrates into plasma-generating circuitry is also proposed and illustrated by its application to a wide variety of plasma reactors, where the effect of substrate incorporation on the plasma fluxes is emphasized. With the key process and material parameters, such as growth and modification rates, phase transitions, crystallinity, density of lattice defects, and others being linked to plasma and energy fluxes, this review offers direction to physicists, engineers, and materials scientists engaged in the design and development of instrumentation for plasma processing and diagnostics, where the selection of the correct tools is critical for the advancement of emerging and high-performance applications.

  18. Oxygen functionalization of MWCNTs in RF-dielectric barrier discharge Ar/O2 plasma

    Science.gov (United States)

    Abdel-Fattah, E.; Ogawa, D.; Nakamura, K.

    2017-07-01

    The oxygenation of multi-wall carbon nanotubes (MWCNTs) was performed via a radio frequency dielectric barrier discharge (RF-DBD) in an Ar/{{\\text{H}}2}\\text{O} plasma mixture. The relative intensity of the Ar/{{\\text{O}}2} plasma species was characterized by optical emission spectroscopy (OES). The effects of treatment time, RF power and oxygen gas percentage on the chemical composition and surface morphology of MWCNTs were investigated by means of x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and field emission scanning electron microscopy (FE-SEM). The results of FTIR and XPS revealed the presence of oxygen-containing functional groups on the MWCNTs treated in an Ar/{{\\text{O}}2} plasma at an RF power of 50 W and pressure of 400 Pa. The amount of oxygen functional groups (C=O, C-O, and O-COO) also increased by increasing treatment time up to 6 min, but slightly decreased when treatment time was increased by 10 min. The increase of oxygen gas percentage in the plasma mixture does not affect the oxygen content in the treated MWCNTs. Meanwhile, MWCNTs treated at high power (80 W) showed a reduction in oxygen functional groups in comparison with low RF power conditions. The Raman analysis was consistent with the XPS and FTIR results. The integrity of the nanotube patterns also remained damaged as observed by FE-SEM images. The MWCNTs treated in RF-DBD using the Ar/{{\\text{O}}2} plasma mixture showed improved dispersibility in deionized water. A correlation between the OES data and the observed surface characterization for an improved understanding of the functionalization of MWCNTs in Ar/{{\\text{O}}2} plasma was presented.

  19. Evaluation of the sensitivity of bacterial and yeast cells to cold atmospheric plasma jet treatments.

    Science.gov (United States)

    Sharkey, Michael A; Chebbi, Ahmed; McDonnell, Kevin A; Staunton, Claire; Dowling, Denis P

    2015-06-07

    The focus of this research was first to determine the influence of the atmospheric plasma drive frequency on the generation of atomic oxygen species and its correlation with the reduction of bacterial load after treatment in vitro. The treatments were carried out using a helium-plasma jet source called PlasmaStream™. The susceptibility of multiple microbial cell lines was investigated in order to compare the response of gram-positive and gram-negative bacteria, as well as a yeast cell line to the atmospheric plasma treatment. It was observed for the source evaluated that at a frequency of 160 kHz, increased levels of oxygen-laden active species (i.e., OH, NO) were generated. At this frequency, the maximum level of bacterial inactivation in vitro was also achieved. Ex vivo studies (using freshly excised porcine skin as a human analog) were also carried out to verify the antibacterial effect of the plasma jet treatment at this optimal operational frequency and to investigate the effect of treatment duration on the reduction of bacterial load. The plasma jet treatment was found to yield a 4 log reduction in bacterial load after 6 min of treatment, with no observable adverse effects on the treatment surface. The gram-negative bacterial cell lines were found to be far more susceptible to the atmospheric plasma treatments than the gram-positive bacteria. Flow cytometric analysis of plasma treated bacterial cells (Escherichia coli) was conducted in order to attain a fundamental understanding of the mode of action of the treatment on bacteria at a cellular level. This study showed that after treatment with the plasma jet, E. coli cells progressed through the following steps of cell death; the inactivation of transport systems, followed by depolarization of the cytoplasmic membrane, and finally permeabilization of the cell wall.

  20. Effects of oxygen plasma treatment power on Aramid fiber III/BMI composite humidity resistance properties

    Science.gov (United States)

    Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang

    2018-01-01

    The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.

  1. Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment

    KAUST Repository

    Shen, Chao

    2012-05-24

    Structural changes of few-layer graphene sheets induced by CF4 plasma treatment are studied by optical microscopy and Raman spectroscopy, together with theoretical simulation. Experimental results suggest a thickness reduction of few-layer graphene sheets subjected to prolonged CF4 plasma treatment while plasma treatment with short time only leads to fluorine functionalization on the surface layer by formation of covalent bonds. Raman spectra reveal an increase in disorder by physical disruption of the graphene lattice as well as functionalization during the plasma treatment. The F/CF3 adsorption and the lattice distortion produced are proved by theoretical simulation using density functional theory, which also predicts p-type doping and Dirac cone splitting in CF4 plasma-treated graphene sheets that may have potential in future graphene-based micro/nanodevices.

  2. Executive Functions in Preschool Children with ADHD and DBD: Assessment, Development and Role of Environment

    NARCIS (Netherlands)

    Schoemaker, K.

    2013-01-01

    Impairments in executive functions (EF) are consistently associated with attention deficit hyperactivity disorder (ADHD) and to a lesser extent, with disruptive behavior disorder (DBD), i.e., oppositional defiant disorder or conduct disorder, in school-aged children. Recently, larger numbers of

  3. Electrical Characteristics of Carbon Nanotubes by Plasma and Microwave Surface Treatments

    International Nuclear Information System (INIS)

    Cho, Sangjin; Lee, Soonbo; Boo, Jinhyo; Shrestha, Shankar Prasad

    2014-01-01

    The plasma and microwave surface treatments of carbon nanotubes that loaded on plastic substrates were carried out with expecting a change of carbon nanotube dispersion by increasing treatment time. The microwave treatment process was undergone by commercial microwave oven (800 W). The electrical property was measured by hall measurement and resistance was increased by increasing O 2 flow rate of plasma, suggesting an improvement of carbon nanotube dispersion and a possibility of controlling the resistances of carbon nanotubes by plasma surface treatment. The resistance was increased in both polyethylene terephthalate and polyimide substrates by increasing O 2 flow rate. Resistance changes only slightly with different O 2 flow treatment in measure rho for all polyimide samples. Sheet resistance is lowest in polyimide substrate not due to high carbon nanotube loading but due to tendency to remain in elongated structure. O 2 or N 2 plasma treatments on both polyethylene terephthalate and polyimide substrates lead to increase in sheet resistance

  4. Design of Thermochromic Polynorbornene Bearing Spiropyran Chromophore Moieties: Synthesis, Thermal Behavior and Dielectric Barrier Discharge Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Saleh A. Ahmed

    2017-11-01

    Full Text Available A new class of thermochromic polynorbornene with pendent spiropyran moieties has been synthesized. Functionalization of norbornene monomers with spirobenzopyran moieties has been achieved using Steglich esterification. These new monomeric materials were polymerized via Ring Opening Metathesis Polymerization (ROMP. In spite of their poor solubility, polynorbornenes with spirobenzopyran exhibited thermochromic behavior due to the conversion of their closed spiropyran moieties to the open merocyanine form. Moreover, these polymers displayed bathochromic shifts in their optical response, which was attributed to the J-aggregation of the attached merocyanine moieties that were associated with their high concentration in the polymeric chain. The surface of the obtained polymers was exposed to atmospheric pressure air Dielectric Barrier Discharge (DBD plasma system, which resulted in the reduction of the surface porosity and converted some surface area into completely non-porous regions. Moreover, the plasma system created some areas with highly ordered J-aggregates of the merocyanine form in thread-like structures. This modification of the polymers’ morphology may alter their applications and allow for these materials to be potential candidates for new applications, such as non-porous membranes for reverse osmosis, nanofiltration, or molecular separation in the gas phase.

  5. Comparative study on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor.

    Science.gov (United States)

    Hama Aziz, Kosar Hikmat; Miessner, Hans; Mueller, Siegfried; Mahyar, Ali; Kalass, Dieter; Moeller, Detlev; Khorshid, Ibrahim; Rashid, Muhammad Amin M

    2018-02-05

    Ozonation and advanced oxidation processes based on photocatalysis (P.C.) and non-thermal plasma generated in a dielectric barrier discharge (DBD) in different gas atmospheres were compared for the degradation and mineralization of 2,4-dichlorophenoxy acetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) in aqueous solutions, using a planar falling film reactor with comparable design. The energetic yields (G 50 ) as measure of the efficiencies of the different methods are for 2,4-D in the order DBD/Ar-Fenton>ozonation>DBD/Ar>P.C.ozonation>DBD/Ar:O 2 ≫DBD/Air>P.C.oxidation. For 2,4-DCP the order is ozonation≫DBD/Ar-Fenton>P.C.ozonation>DBD/Ar>DBD/Ar:O 2 ≫P.C.oxidation>DBD/Air. The degradation by using ozone is very effective, but it should be noted that the mineralization measured by the total organic carbon (TOC) removal is low. The reason is the formation of stable towards ozone intermediates, especially low chain carboxylic acids. The fate of these intermediates during the degradation with the different methods has been followed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Toxic waste treatment with sliding centrifugal plasma reactor; Tratamiento de residuos toxicos con reactores de plasma centrifugo deslizante (PCD)

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, J.; Pacheco, M.; Valdivia, R.; Ramos, F.; Duran, M.; Hidalgo, M.; Cruz, A.; Martinez, J. C.; Martinez, R.; De la Cruz, S.; Flores, T.; Vidal, E.; Escobar, S. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Garduno, M.; Garcia, M.; Portillo, J.; Torres, C.; Estrada, N.; Velazquez, S.; Vasquez, C. [Instituto Tecnologico de Toluca, Av. Instituto Tecnologico s/n, Ex-Rancho la Virgen, Metepec 52140, Estado de Mexico (Mexico)

    2008-07-01

    The aim is to develop technology for hazardous waste treatment, including the building and putting into operation of a prototype based on a sliding centrifugal plasma technology to demonstrate its ability to degradation taking in account the existing environmental standards. (Author)

  7. Treatment of Streptococcus mutans bacteria by a plasma needle

    Science.gov (United States)

    Zhang, Xianhui; Huang, Jun; Liu, Xiaodi; Peng, Lei; Guo, Lihong; Lv, Guohua; Chen, Wei; Feng, Kecheng; Yang, Si-ze

    2009-03-01

    A dielectric barrier discharge plasma needle was realized at atmospheric pressure with a funnel-shaped nozzle. The preliminary characteristics of the plasma plume and its applications in the inactivation of Streptococcus mutans (S. mutans), the most important microorganism causing dental caries, were presented in this paper. The temperature of the plasma plume does not reach higher than 315 K when the power is below 28 W. Oxygen was injected downstream in the plasma afterglow region through the powered steel tube. Its effect was studied via optical-emission spectroscopy, both in air and in agar. Results show that addition of 26 SCCM O2 does not affect the plume length significantly (SCCM denotes cubic centimeter per minute at STP). The inactivation of S. mutans is primarily attributed to ultraviolet light emission, O, OH, and He radicals.

  8. Treatment of Streptococcus mutans bacteria by a plasma needle

    International Nuclear Information System (INIS)

    Zhang Xianhui; Huang Jun; Lv Guohua; Liu Xiaodi; Peng Lei; Guo Lihong; Chen Wei; Feng Kecheng; Yang Size

    2009-01-01

    A dielectric barrier discharge plasma needle was realized at atmospheric pressure with a funnel-shaped nozzle. The preliminary characteristics of the plasma plume and its applications in the inactivation of Streptococcus mutans (S. mutans), the most important microorganism causing dental caries, were presented in this paper. The temperature of the plasma plume does not reach higher than 315 K when the power is below 28 W. Oxygen was injected downstream in the plasma afterglow region through the powered steel tube. Its effect was studied via optical-emission spectroscopy, both in air and in agar. Results show that addition of 26 SCCM O 2 does not affect the plume length significantly (SCCM denotes cubic centimeter per minute at STP). The inactivation of S. mutans is primarily attributed to ultraviolet light emission, O, OH, and He radicals

  9. Treatment of enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wei; Huang Jun; Wang Xingquan; Lv Guohua; Zhang Guoping [Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, 100190 Beijing (China); Du Ning; Liu Xiaodi; Guo Lihong [Department of Oral Biology, Peking University School and Hospital of Stomatology, 100080 Beijing (China); Yang Size [Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, 100190 Beijing (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005 (China)

    2012-07-01

    An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O{sub 2} plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O{sub 2} plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O{sub 2} (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.

  10. Atmospheric cold plasma jet for plant disease treatment

    Science.gov (United States)

    Zhang, Xianhui; Liu, Dongping; Zhou, Renwu; Song, Ying; Sun, Yue; Zhang, Qi; Niu, Jinhai; Fan, Hongyu; Yang, Si-ze

    2014-01-01

    This study shows that the atmospheric cold plasma jet is capable of curing the fungus-infected plant leaves and controlling the spread of infection as an attractive tool for plant disease management. The healing effect was significantly dependent on the size of the black spots infected with fungal cells and the leaf age. The leaves with the diameter of black spots of vacuoles and cell membrane of fungal cells, resulting in plasma-induced inactivation.

  11. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  12. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  13. Prior exposure to interpersonal violence and long-term treatment response for boys with a disruptive behavior disorder.

    Science.gov (United States)

    Shenk, Chad E; Dorn, Lorah D; Kolko, David J; Rausch, Joseph R; Insana, Salvatore P

    2014-10-01

    Interpersonal violence (IPV) is common in children with a disruptive behavior disorder (DBD) and increases the risk for greater DBD symptom severity, callous-unemotional (CU) traits, and neuroendocrine disruption. Thus, IPV may make it difficult to change symptom trajectories for families receiving DBD interventions given these relationships. The current study examined whether IPV prior to receiving treatment for a DBD predicted trajectories of a variety of associated outcomes, specifically DBD symptoms, CU traits, and cortisol concentrations. Boys with a DBD diagnosis (N = 66; age range = 6-11 years; 54.5% of whom experienced IPV prior to treatment) of either oppositional defiant disorder or conduct disorder participated in a randomized clinical trial and were assessed 3 years following treatment. Multilevel modeling demonstrated that prior IPV predicted smaller rates of change in DBD symptoms, CU traits, and cortisol trajectories, indicating less benefit from intervention. The effect size magnitudes of IPV were large for each outcome (d = 0.88-1.07). These results suggest that IPV is a predictor of the long-term treatment response for boys with a DBD. Including trauma-focused components into existing DBD interventions may be worth testing to improve treatment effectiveness for boys with a prior history of IPV. Copyright © 2014 International Society for Traumatic Stress Studies.

  14. Removing of oxides from Fe-Ni alloys by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Vesel, A.; Drenik, A.; Mozetic, M.

    2007-01-01

    Plasma wall interaction is one of the key issues in fusion research for ITER application. The first-wall materials in tokamaks and in other high temperature plasma reactors are subject to and to continuous degradation due to the ion bombardment. Furthermore the release of the eroded wall material leads to their redeposition to other parts of the fusion reactor and they can be even transported into the core plasma where they cause dilution of the plasma fuel and cooling of the plasma itself. One possible solution for removal of deposits formed during operation of the fusion devices is oxygen plasma treatment. A drawback of the oxygen plasma is that it causes formation of oxides on the surface of the materials. These oxides can be reduced by further hydrogen plasma treatment. A study on reduction of an oxide layer from Fe-Ni alloys was performed. The samples were exposed to low pressure weakly ionized hydrogen plasma for different periods. A density of hydrogen plasma was 8x10 15 m -3 , an electron temperature was 6 eV, and a degree of dissociation was about 30%. After plasma treatment the samples were analyzed by Auger Electron Spectroscopy (AES). The results showed that the complete reduction of an initial oxide layer with the thickness of about 30 nm occurred after 20 s of exposure to hydrogen plasma, when AES showed no more oxygen on the surface of Fe-Ni alloy. During the exposure of the samples to the plasma their temperature was measured. The temperature first rised with time, reached the maximum value, and than dropped as soon as the layer of an oxide on the surface was reduced. (author)

  15. Nano-structuring of PTFE surface by plasma treatment, etching, and sputtering with gold

    International Nuclear Information System (INIS)

    Reznickova, Alena; Kolska, Zdenka; Hnatowicz, Vladimir; Svorcik, Vaclav

    2011-01-01

    Properties of pristine, plasma modified, and etched (by water and methanol) polytetrafluoroethylene (PTFE) were studied. Gold nanolayers sputtered on this modified PTFE have been also investigated. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Degradation of polymer chains was examined by etching of plasma modified PTFE in water or methanol. The amount of ablated and etched layer was measured by gravimetry. In the next step the pristine, plasma modified, and etched PTFE was sputtered with gold. Changes in surface morphology were observed using atomic force microscopy. Chemical structure of modified polymers was characterized by X-ray photoelectron spectroscopy (XPS). Surface chemistry of the samples was investigated by electrokinetic analysis. Sheet resistance of the gold layers was measured by two-point technique. The contact angle of the plasma modified PTFE decreases with increasing exposure time. The PTFE amount, ablated by the plasma treatment, increases with the plasma exposure time. XPS measurements proved that during the plasma treatment the PTFE macromolecular chains are degraded and oxidized and new –C–O–C–, –C=O, and –O–C=O groups are created in modified surface layer. Surface of the plasma modified PTFE is weakly soluble in methanol and intensively soluble in water. Zeta potential and XPS shown dramatic changes in PTFE surface chemistry after the plasma exposure, water etching, and gold deposition. When continuous gold layer is formed a rapid decrease of the sheet resistance of the gold layer is observed.

  16. Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment.

    Directory of Open Access Journals (Sweden)

    Marla J Steinbeck

    Full Text Available Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide and dihydrorhodamine (peroxide were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS

  17. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Zhang Ruiyun; Pan Xianlin; Jiang Muwen; Peng Shujing; Qiu Yiping

    2012-01-01

    Highlights: ► PBO fibers were treated with atmospheric pressure plasmas. ► When 1% of oxygen was added to the plasma, IFSS increased 130%. ► Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  18. Numerical analysis of the effect of plasma flow control on enhancing the aerodynamic characteristics of stratospheric screw propeller

    International Nuclear Information System (INIS)

    Cheng Yufeng; Nie Wansheng

    2012-01-01

    Based on the body force aerodynamic actuation mechanism of dielectric barrier discharge (DBD) plasma, the effect of plasma flow control on enhancing the aerodynamic characteristics of ten blade elements equably along the stratospheric screw propeller blade was numerical studied. Then the effect of plasma flow control enhancing the aerodynamic characteristics of stratospheric screw propeller was compared that by the blade element theory method. The results show that the flow separate phenomena will easily happen in the root region and top end region of screw propeller, and the blade elements in the root region of screw propeller may work on the negative attack angle condition. DBD plasma flow control can entirely restrain the faintish flow separate phenomena in middle region of screw propeller. Although DBD plasma flow control can not entirely restrain the badly flow separate phenomena in top end region of screw propeller, it also can enhance the aerodynamic characteristics of blade elements in these regions in same degree. But effect of DBD plasma flow control on enhancing the aerodynamic characteristics of the blade elements working on the negative attack angle condition is ineffectively. It can be concluded that DBD plasma flow control can enhance the aerodynamic characteristics of stratospheric screw propeller, the thrust of the whole propeller and the propeller efficiency in the case of plasma on will increases by a factor of 28.27% and 12.3% respectively compared with that in the case of plasma off studied. (authors)

  19. Surface-nitriding treatment of steels using microwave-induced nitrogen plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Sato, Shigeo; Arai, Yuuki; Yamashita, Noboru; Kojyo, Atsushi; Kodama, Kenji; Ohtsu, Naofumi; Okamoto, Yukio; Wagatsuma, Kazuaki

    2012-01-01

    A rapid surface-nitriding system using microwave-induced nitrogen plasma at atmospheric pressure was developed for modifying iron and steel surfaces. Since the conventional plasma nitriding technique requires a low-pressure atmosphere in the treatment chamber, the population of excited nitrogen molecules in the plasma is limited. Accordingly, several hours are required for nitriding treatment. By contrast, the developed nitriding system can use atmospheric-pressure plasma through application of the Okamoto cavity for excitation of nitrogen plasma. The high population of excited nitrogen molecules induced by the atmospheric-pressure plasma allowed the formation of a nitriding layer that was several micrometers thick within 1 min and produced an expanded austenite iron phase with a high nitrogen concentration close to the solubility limit on the iron substrate. In addition, the nitriding treatment on high-chromium steel was performed by introducing a reducing gas such as NH 3 and H 2 into the treatment chamber. While the nitriding reaction did not proceed in a simple N 2 atmosphere due to surface oxidation, the surface reduction induced by the NH 3 or H 2 gas promoted the nitriding reaction at the surface. These nitriding phenomena characteristics of the atmospheric-pressure plasma are discussed in this paper based on the effects of the specimen temperature and plasma atmosphere on the thickness, the chemical states, and the nitride compounds of the nitrided layer as investigated by X-ray diffraction, glow-discharge optical emission spectroscopy, and X-ray photoelectron spectroscopy.

  20. Investigation of sewage sludge treatment using air plasma assisted gasification.

    Science.gov (United States)

    Striūgas, Nerijus; Valinčius, Vitas; Pedišius, Nerijus; Poškas, Robertas; Zakarauskas, Kęstutis

    2017-06-01

    This study presents an experimental investigation of downdraft gasification process coupled with a secondary thermal plasma reactor in order to perform experimental investigations of sewage sludge gasification, and compare process parameters running the system with and without the secondary thermal plasma reactor. The experimental investigation were performed with non-pelletized mixture of dried sewage sludge and wood pellets. To estimate the process performance, the composition of the producer gas, tars, particle matter, producer gas and char yield were measured at the exit of the gasification and plasma reactor. The research revealed the distribution of selected metals and chlorine in the process products and examined a possible formation of hexachlorobenzene. It determined that the plasma assisted processing of gaseous products changes the composition of the tars and the producer gas, mostly by destruction of hydrocarbon species, such as methane, acetylene, ethane or propane. Plasma processing of the producer gas reduces their calorific value but increases the gas yield and the total produced energy amount. The presented technology demonstrated capability both for applying to reduce the accumulation of the sewage sludge and production of substitute gas for drying of sewage sludge and electrical power. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Plasma temperature during methylene blue/light treatment influences virus inactivation capacity and product quality.

    Science.gov (United States)

    Gravemann, U; Handke, W; Sumian, C; Alvarez, I; Reichenberg, S; Müller, T H; Seltsam, A

    2018-02-27

    Photodynamic treatment using methylene blue (MB) and visible light is in routine use for pathogen inactivation of human plasma in different countries. Ambient and product temperature conditions for human plasma during production may vary between production sites. The influence of different temperature conditions on virus inactivation capacity and plasma quality of the THERAFLEX MB-Plasma procedure was investigated in this study. Plasma units equilibrated to 5 ± 2°C, room temperature (22 ± 2°C) or 30 ± 2°C were treated with MB/light and comparatively assessed for the inactivation capacity for three different viruses, concentrations of MB and its photoproducts, activity of various plasma coagulation factors and clotting time. Reduced solubility of the MB pill was observed at 5 ± 2°C. Photocatalytic degradation of MB increased with increasing temperature, and the greatest formation of photoproducts (mainly azure B) occurred at 30 ± 2°C. Inactivation of suid herpesvirus, bovine viral diarrhoea virus and vesicular stomatitis virus was significantly lower at 5 ± 2°C than at higher temperatures. MB/light treatment affected clotting times and the activity of almost all investigated plasma proteins. Factor VIII (-17·7 ± 8·3%, 22 ± 2°C) and fibrinogen (-14·4 ± 16·4%, 22 ± 2°C) showed the highest decreases in activity. Increasing plasma temperatures resulted in greater changes in clotting time and higher losses of plasma coagulation factor activity. Temperature conditions for THERAFLEX MB-Plasma treatment must be carefully controlled to assure uniform quality of pathogen-reduced plasma in routine production. Inactivation of cooled plasma is not recommended. © 2018 International Society of Blood Transfusion.

  2. Comparison of direct and indirect plasma oxidation of NO combined with oxidation by catalyst

    DEFF Research Database (Denmark)

    Jogi, Indrek; Stamate, Eugen; Irimiea, Cornelia

    2015-01-01

    Direct and indirect plasma oxidation of NOx was tested in a medium-scale test-bench at gas flows of 50 slm (3 m(3)/h). For direct plasma oxidation the synthetic flue gas was directed through a stacked DBD reactor. For indirect plasma oxidation, a DBD reactor was used to generate ozone from pure O-2...... and the plasma treated gas including ozone was mixed with flue gas at the entrance of a 6 m long serpentine-like reaction chamber which allowed reaction times longer than 10 s. At relatively low NOx concentrations of 200 ppm, both oxidation methods gave similar results. However, the temperature increase...

  3. Germination of Chenopodium Album in Response to Microwave Plasma Treatment

    International Nuclear Information System (INIS)

    Sera, Bozena; Stranak, Vitezslav; Sery, Michal; Spatenka, Petr; Tichy, Milan

    2008-01-01

    The seeds of Lamb's Quarters (Chenopodium album agg.) were stimulated by low-pressure discharge. The tested seeds were exposed to plasma discharge for different time durations (from 6 minutes to 48 minutes). Germination tests were performed under specified laboratory conditions during seven days in five identical and completely independent experiments. Significant differences between the control and plasma-treated seeds were observed. The treated seeds showed structural changes on the surface of the seat coat. They germinated faster and their sprout accretion on the first day of seed germination was longer. Germination rate for the untreated seeds was 15% while it increased approximately three times (max 55%) for seeds treated by plasma from 12 minutes to 48 minutes.

  4. Physical and chemical contributions of a plasma treatment in the growth of ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Jang, J.T. [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, H., E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Lee, W.J. [Department of Materials and Components Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Yun, J. [Department of Nano Science and Engineering, Kyungnam University, Changwon, Gyeongnam 631-701 (Korea, Republic of)

    2013-11-15

    Highlights: •ZnO nanorods were grown by hydrothermal synthesis. •Oxygen plasma was done on the surface of seed ZnO nanorods. •The ZnO nanorods with and without plasma treatment were characterized. •The results showed that the optical and structural properties of ZnO nanorods with plasma treatment were enhanced. -- Abstract: We analyzed the enhancement of optical and structural properties of ZnO nanorods by using a plasma treatment. In this study, seed ZnO nanorods were grown by hydrothermal synthesis for 1 h on a ZnO buffered Si substrate. The seed ZnO nanorods were then treated with an oxygen plasma. Next, ZnO was grown for an additional 4 h by hydrothermal synthesis. The resultant ZnO nanorods were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD) and photoluminescence (PL). The measurements showed that the plasma treatment of the seed ZnO nanorods increased the roughness of the buffer layer and the concentration of oxygen ions on the surfaces of the seed ZnO nanorods and the buffer layer, leading to improved optical and structural properties. In this study, we found that the plasma treatment on the seed ZnO nanorods enhanced the optical and structural properties of the ZnO nanorods.

  5. Stereoscopic PIV measurement of boundary layer affected by DBD actuator

    Directory of Open Access Journals (Sweden)

    Procházka Pavel

    2016-01-01

    Full Text Available The effect of ionic wind generated by plasma actuator on developed boundary layer inside a narrow channel was investigated recently. Since the main investigated plane was parallel to the channel axis, the description of flow field was not evaluated credibly. This paper is dealing with cross-section planes downstream the actuator measured via 3D time-resolved PIV. The actuator position is in spanwise or in streamwise orientation so that ionic wind is blown in the same direction as the main flow or in opposite direction or perpendicularly. The interaction between boundary layer and ionic wind is evaluated for three different velocities of main flow and several parameters of plasma actuation (steady and unsteady regime, frequency etc.. Statistical properties of the flow are shown as well as dynamical behaviour of arising longitudinal vortices are discussed via phase-locked measurement and decomposition method.

  6. Role of Ultrasound Guided Platelet-Rich Plasma (PRP Injection in Treatment of Lateral Epicondylitis

    Directory of Open Access Journals (Sweden)

    Enass M. Khattab

    2017-06-01

    Conclusion: We concluded that US-guided platelet-rich plasma (PRP injection for treatment of lateral epicondylitis was a safe, minimally invasive and effective procedure in improving the sonographic and pathological changes of common extensor tendon (CET.

  7. Properties of various plasma surface treatments for low-temperature Au–Au bonding

    Science.gov (United States)

    Yamamoto, Michitaka; Higurashi, Eiji; Suga, Tadatomo; Sawada, Renshi; Itoh, Toshihiro

    2018-04-01

    Atmospheric-pressure (AP) plasma treatment using three different types of gases (an argon-hydrogen mixed gas, an argon-oxygen mixed gas, and a nitrogen gas) and low-pressure (LP) plasma treatment using an argon gas were compared for Au–Au bonding with thin films and stud bumps at low temperature (25 or 150 °C) in ambient air. The argon-hydrogen gas mixture AP plasma treatment and argon LP plasma treatment were found to distinctly increase the shear bond strength for both samples at both temperatures. From X-ray photoelectron spectroscopy (XPS) analysis, the removal of organic contaminants on Au surfaces without the formation of hydroxyl groups and gold oxide is considered effective in increasing the Au–Au bonding strength at low temperature.

  8. MODEL PREDIKSI KEJADIAN DEMAM BERDARAH DENGUE (DBD BERDASARKAN FAKTOR IKLIM DI KOTA BOGOR, JAWA BARAT

    Directory of Open Access Journals (Sweden)

    Jusniar Ariati

    2015-01-01

    Full Text Available AbstractDengue Hemorrhagic Fever (DHF presents a serious health problem in Indonesia. Dengue viruses are transmitted to human through the biting of infected mosquitoes, especially Aedes aegypti and Ae. albopictus.The occurrence of variation and climate change will Affect the growth areas of mosquitoes. This situation can influence on the emergence of dengue fever cases. In this paper will discuss the predictions of the mathematical model of considering the incidence of DHF with climatic factors. The research design was a retrospective study with the data collected is dengue incidence and climate include temperature, rainfall, humidity and rainy days since 2002-2010. Data analysis was performed using Minitab 16.0 software statistical time series. The results showed that R2 varied between 0.65 to 0.99. The highest R2 value of the regression equation obtained in August, September and October is 0.99 and the lowest in April with a R2 value of 0.65. The results of predictions based on 4 predictors (precipitation, rainy days, temperature and humidity with the incidence of DHF is actually not much different, except in April. It can be concluded that according to linear predictive models of dengue is influenced by climatic factors (precipitation, rainy days, temperature and humidity 2 months before and 1 month prior dengue incidence.Keywords : Dhf, Climate, Prediction ModelAbstrakDemam Berdarah Dengue (DBD merupakan salah satu masalah kesehatan di Indonesia. Aedes aegyptisebagai vektor utama penyakit DD/DBD kehidupannya dipengaruhi oleh faktor iklim, diantaranya suhu, kelembaban udara, curah hujan dan hari hujan. Berbagai upaya pengendalian  telah   dilakukan  namun  belum   menurunkan  jumlah  kasus  secara  signifikan, sehingga diperlukan model untuk memprediksi kejadian DBD di suatu wilayah sehingga kejadiannya dapat diantisipasi. Dalam tulisan ini akan membahas model matematika prediksi kejadian DBD dengan mempertimbangkan faktor iklim

  9. Plasma lipids pattern in hypertensives on treatment in Illorin, Nigeria ...

    African Journals Online (AJOL)

    Hypertension, a major cause of CVD, is frequently associated with dyslipidaemia and overweight. These risk factors have sex differences that need local study. This work aims to evaluate the pattern of plasma lipids and BMI in male and female hypertensives. Fifty hypertensives attending the Cardiology Clinic of University of ...

  10. Effect of low-temperature plasma treatment on tailorability and ...

    Indian Academy of Sciences (India)

    air entrapped within the fabric will be more, which results in better thermal insulation. The increase in thermal resistance of the LTP-treated wool fabrics may also be due to the increased surface area of the fibres due to the etching effect of plasma over the fibre surface which is evident from figure 1. This increased surface ...

  11. Electrohydraulic Discharges and Nonthermal Plasma for Water Treatment

    Czech Academy of Sciences Publication Activity Database

    Locke, B.R.; Sato, M.; Hoffman, M.R.; Chang, J.S.; Šunka, Pavel

    2006-01-01

    Roč. 45, č. 1 (2006), s. 882-905 ISSN 0888-5885 Institutional research plan: CEZ:AV0Z20430508 Keywords : Electrical discharges * water cleaning * environmental applications * liquid phase reactor Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.518, year: 2006

  12. Influence of argon plasma treatment on polyethersulphone surface

    Indian Academy of Sciences (India)

    N L Singh1 S M Pelagade1 R S Rane2 S Mukherjee2 U P Deshpande3 V Ganeshan3 T Shripathi3. Department of Physics, M.S. University of Baroda, Vadodara 390 002, India; FCIPT, Institute for Plasma Research, Gandhinagar 382 044, India; UGC-DAE-CSR, University Campus, Khandawa Road, Indore 452 017, India ...

  13. Plasma treatment of polyester fabric to impart the water repellency ...

    Indian Academy of Sciences (India)

    Abstract. Polyester fabric is treated with DCDMS solution by two methods: dipping the fabric directly in DCDMS solution for different intervals and dipping the fabric in. DCDMS solution after its exposure into RF plasma chamber for different durations at optimized exposure power conditions. The physical properties of ...

  14. Microscopic electrical conductivity of nanodiamonds after thermal and plasma treatments

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jan; Kozak, Halyna; Stehlík, Štěpán; Švrček, V.; Pichot, V.; Spitzer, D.; Kromka, Alexander; Rezek, Bohuslav

    2016-01-01

    Roč. 1, č. 16 (2016), s. 1105-1111 ISSN 2059-8521 R&D Projects: GA ČR GA15-01809S Institutional support: RVO:68378271 Keywords : atomic force microscopy * conductive AFM * diamond * nanoparticles * plasma Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Plasma treatment of polyester fabric to impart the water repellency ...

    Indian Academy of Sciences (India)

    Polyester fabric is treated with DCDMS solution by two methods: dipping the fabric directly in DCDMS solution for different intervals and dipping the fabric in DCDMS solution after its exposure into RF plasma chamber for different durations at optimized exposure power conditions. The physical properties of polyester fabric ...

  16. Thermochemical treatment of steel in an electrolytic plasma

    International Nuclear Information System (INIS)

    Duradzhi, V.N.; Lavrova, T.S.; Mokrova, A.M.

    1986-01-01

    Heating metals in an electrolyte plasma derived from aqueous solutions can achieve high speed diffusive saturation of surfaces by carbon, nitrogen, carbon and nitrogen, tungsten, molybdenum, and a combination of molybdenum and vandium. The process can be widely used in industry for raising product quality

  17. Mesoporous silica thin films prepared by argon plasma treatment of sol-gel-derived precursor

    International Nuclear Information System (INIS)

    Zhang Jian; Palaniappan, Alagappan; Su Xiaodi; Tay, Francis E.H.

    2005-01-01

    Argon plasma is used to generate the mesoporous silica thin films from sol-gel-derived precursor. Poly(ethylene glycol) (PEG, MW = 400) is employed as the template, i.e., the pore-directing agent as well as the binder. The influence of the plasma parameters (plasma power and processing time) on the mesoscopic properties of silica films are investigated by scanning electron microscopy (SEM), FT-IR, low-angle X-ray scattering (SAXS), and nitrogen adsorption isotherm. It is concluded that the plasma treatment is a promising way to remove organic templates and generate mesoporous thin films. Compared to the conventional thermal calcination methods, the plasma treatment provides a promising low-temperature, low-cost and time-saving preparation process

  18. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report

    Science.gov (United States)

    Likhanskii, Alexandre

    2012-01-01

    This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

  19. Study of structural modification of sugarcane bagasse employing hydrothermal treatment followed by atmospheric pressure plasmas treatment

    Science.gov (United States)

    Amorim, Jayr; Pimenta, Maria Teresa; Gurgel, Leandro; Squina, Fabio; Souza-Correa, Jorge; Curvelo, Antonio

    2009-10-01

    Nowadays, the cellulosic ethanol is an important alternative way to many liquid biofuels using renewable biomass rich in polysaccharides. To be used as feedstock for ethanol production, the bagasse needs to be pretreated in order to expose its main constitutive. The present work proposes the use of different pretreatment processes to better expose the cellulose for hydrolysis and fermentation. In the present paper the sugarcane bagasse was submitted to a hydrothermal pretreatment followed by atmospheric pressure plasmas (APPs). An RF microplasma torch was employed as APPs in Ar and Ar/O2 mixing. The bagasse was treated in discharge and post-discharge regions. The position and time of treatment was varied as well as the gas mixture. The quantity of polysaccharides was determined by using high performance liquid chromatography. It was observed the release of a fraction of the hemicelluloses in the sugarcane bagasse. Modifications in the surface of the sugarcane fibers were monitored by employing scanning electron microscopy.

  20. Simultaneous treatment of low-level miscellaneous solid waste by thermal plasma

    International Nuclear Information System (INIS)

    Amakawa, T.; Adachi, K.; Yasui, S.

    2001-01-01

    Volume reduction is a cost saving method for the final disposal of radioactive waste. On one hand, arc plasma heating can provide sufficient heat independent of the chemical and physical properties of waste, therefore enabling stable heating at high treatment rates. CRIEPI (central research institute of electric power industry) focused on the advantages of arc plasma heating, and has clarified that arc plasma heating can be used in a simultaneous melting treatment process for low-level miscellaneous mixed solid waste, generated from nuclear power plants for volume reduction, and in the stabilization of radionuclides. (authors)

  1. Treatment of Mesh Skin Grafted Scars Using a Plasma Skin Regeneration System

    Directory of Open Access Journals (Sweden)

    Takamitsu Higashimori

    2010-01-01

    Full Text Available Objectives. Several modalities have been advocated to treat traumatic scars, including surgical techniques and laser resurfacing. Recently, a plasma skin regeneration (PSR system has been investigated. There are no reports on plasma treatment of mesh skin grafted scars. The objective of our study is to evaluate the effectiveness and complications of plasma treatment of mesh skin grafted scars in Asian patients. Materials and Methods. Four Asian patients with mesh skin grafted scars were enrolled in the study. The plasma treatments were performed at monthly intervals with PSR, using energy settings of 3 to 4 J. Improvement was determined by patient questionnaires and physician evaluation of digital photographs taken prior to treatment and at 3 months post treatment. The patients were also evaluated for any side effects from the treatment. Results. All patients showed more than 50% improvement. The average pain score on a 10-point scale was 6.9 +/− 1.2 SD and all patients tolerated the treatments. Temporary, localized hypopigmentation was observed in two patients. Hyperpigmentation and worsening of scarring were not observed. Conclusions. Plasma treatment is clinically effective and is associated with minimal complications when used to treat mesh skin grafted scars in Asian patients.

  2. HARDENING OF CRANE RAILS BY PLASMA DISCRETE-TIME SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    S. S. Samotugin

    2017-01-01

    Full Text Available Crane wheels and rails are subjected to intensive wear in the process of operation. Therefore, improvement of these components’ performance can be considered a task of high importance. A promising direction in this regard is surface treatment by highly concentrated energy flows such as laser beams or plasma jets. This thesis suggests that the use of gradient plasma surface treatment can improve the performance of crane rails. A research was conducted, according to which hardened zones were deposited on crane rails under different treatment modes. Microhardness was measured both at the surface and in depth using custom-made microsections. The article includes the results of study of plasma surface hardening effects on wear resistance of crane rails. Change of plasma surface treatment parameters (current, plasma torch movement speed, argon gas flow rate allows for desired steel hardness and structure, while the choice of optimal location for hardened zones makes it possible to significantly improve wear resistance and crack resistance. As a result of plasma surface hardening, the fine-grained martensite structure is obtained with mainly lamellar morphology and higher hardness rate compared toinduction hardening or overlaying. Wear test of carbon steels revealed that plasma surfacing reduces abrasive wear rate compared to the irinitial state by 2 to 3 times. Enough sharp boundary between hardened and non-hardened portions has a positive effect on the performance of parts under dynamic loads, contributing to the inhibition of cracks during the transition from solid to a soft metal. For carbon and low alloy rail steels, the properties achieved by plasma surface hardening can effectively replace induction hardening or overlaying.The mode range for plasma surface treatment that allow sobtaining a surface layer with certain operating properties has been determined.

  3. Plasma-based Compressor Stall Control

    Science.gov (United States)

    McGowan, Ryan; Corke, Thomas

    2017-11-01

    The use of dielectric barrier discharge (DBD) plasma actuator casing treatment to prevent or delay stall inception in an axial fan is examined. The actuators are powered by a pulsed-DC waveform which induces a larger peak velocity than a purely AC waveform such as a sine or sawtooth wave. With this system, a high-voltage DC source is supplied to both electrodes, remaining constant in time for the exposed electrode. Meanwhile, the covered electrode is periodically grounded for several microseconds and allowed to rise back to the source DC level. To test the actuators' ability to interact with and modify the formation of stall cells, a facility has been designed and constructed around nonconductive fan blades. The actuators are installed in the fan casing near the blade tips. The instrumentation allows for the measurement of rotating pressure disturbances (traveling stall cells) in this tip gap region as well as fan performance characteristics including pressure rise and flow rate. The casing plasma actuation is found to reduce the correlation of the rotating stall cells, thereby extending the stall margin of the fan. Various azimuthal arrangements of the plasma actuator casing treatment is explored, as well as input voltage levels to the actuator to determine optimum conditions. NASA SBIR Contract NNX14CC12C.

  4. Treatment of Mallory-Weiss syndrome using argon plasma coagulation

    OpenAIRE

    BEKTAŞ, Mehmet; KORKUT, Esin; İDİLMAN, Ramazan; KESKİN, Onur; ÜSTÜN, Yusuf; GUPTA, Vikas; BAHAR, Kadir

    2011-01-01

    The endoscopic hemostatic method has been introduced as a safe and effective mechanical approach to hemostasis for upper gastrointestinal bleeding related to Mallory-Weiss syndrome. A 62-year-old male patient with chronic cough and a 27-year-old 10-week pregnant female were admitted to our clinic with gross hematemesis. Upper gastrointestinal endoscopy was performed and Mallory-Weiss syndrome was diagnosed. Coagulum and visible vessels were observed during the procedure. Argon plasma coagul...

  5. Plasma exchange in the treatment of thyroid storm secondary to type II amiodarone-induced thyrotoxicosis

    Directory of Open Access Journals (Sweden)

    Ling Zhu

    2016-07-01

    Full Text Available Type II amiodarone-induced thyrotoxicosis (AIT is an uncommon cause of thyroid storm. Due to the rarity of the condition, little is known about the role of plasma exchange in the treatment of severe AIT. A 56-year-old male presented with thyroid storm 2months following cessation of amiodarone. Despite conventional treatment, his condition deteriorated. He underwent two cycles of plasma exchange, which successfully controlled the severe hyperthyroidism. The thyroid hormone levels continued to fall up to 10h following plasma exchange. He subsequently underwent emergency total thyroidectomy and the histology of thyroid gland confirmed type II AIT. Management of thyroid storm secondary to type II AIT can be challenging as patients may not respond to conventional treatments, and thyroid storm may be more harmful in AIT patients owing to the underlying cardiac disease. If used appropriately, plasma exchange can effectively reduce circulating hormones, to allow stabilisation of patients in preparation for emergency thyroidectomy.

  6. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment

    Science.gov (United States)

    Novotná, Zdeňka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdeňka; Hubáček, Tomáš; Borovec, Jakub; Švorčík, Václav

    2017-06-01

    Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

  7. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment.

    Science.gov (United States)

    Novotná, Zdeňka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdeňka; Hubáček, Tomáš; Borovec, Jakub; Švorčík, Václav

    2017-12-01

    Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

  8. ANN-Based Control of a Wheeled Inverted Pendulum System Using an Extended DBD Learning Algorithm

    Directory of Open Access Journals (Sweden)

    David Cruz

    2016-05-01

    Full Text Available This paper presents a dynamic model for a self-balancing vehicle using the Euler-Lagrange approach. The design and deployment of an artificial neuronal network (ANN in a closed-loop control is described. The ANN is characterized by integration of the extended delta-bar-delta algorithm (DBD, which accelerates the adjustment of synaptic weights. The results of the control strategy in the dynamic model of the robot are also presented.

  9. Fungicidal Effects of Plasma and Radio-Wave Pre-treatments on Seeds of Grain Crops and Legumes

    Science.gov (United States)

    Filatova, Irina; Azharonok, Viktor; Shik, Alexander; Antoniuk, Alexandra; Terletskaya, Natalia

    An influence of RF plasma and RF electromagnetic field pre-treatments on level of fungal infection of some important agricultural plants has been studied. It is shown that pre-sowing plasma and radio-wave seeds treatments contribute to their germination enhancement and plant productivity improvement owing to stimulative and fungicidal effect of plasma and RF electromagnetic field irradiation.

  10. Hubungan Sanitasi Lingkungan dan Tindakan 3M Plus Terhadap Kejadian DBD

    Directory of Open Access Journals (Sweden)

    rara marisdayana

    2016-02-01

    Full Text Available Sejak tahun 1968 sampai tahun 2012 World Health Organization (WHO mencatat negara Indonesia sebagai negara dengan kasus demam berdarah dengue yang tertinggi di Asia Tenggara. Pada tahun 2015 kasus DBD terus meningkat di Wilayah kerja puskesmas Kenali Besar, hal ini menyebabkan beberapa kelurahan yang berada di wilayah kerja puskesmas kenali besar termasuk daerah endemis DBD.Jenis Penelitian yaitu Penelitian kuantitatif dengan metode cross sectional. Sampel yang diambil dalam penelitian ini sesuai dengan kaedah proportional random sampling yaitu sebanyak 95 responden.Hasil analisis terdapat hubungan yang signifikan antara tempat penampungan air bersih dengan kejadian demam berdarah dengue diwilayah Kerja Puskesmas Kenali Besar (p value = 0,006 p≤ 0,05. terdapat hubungan yang signifikan antara Penyediaan tempat pembuangan sampah dengan kejadian demam berdarah dengue diwilayah Kerja Puskesmas Kenali Besar (p value = 0,002 p≤ 0,05. Terdapat hubungan yang signifikan antara tindakan 3M Plus dengan kejadian demam berdarah dengue diwilayah Kerja Puskesmas Kenali Besar (p value = 0,048 p≤ 0,05..           Ada hubungan antara sarana air bersih, penyediaan tempat sampah dan tindakan 3M Plus dengan kejadian DBD diwilayah Kerja Puskesmas Kenali Besar.

  11. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses

    International Nuclear Information System (INIS)

    Likhanskii, Alexandre V.; Shneider, Mikhail N.; Macheret, Sergey O.; Miles, Richard B.

    2007-01-01

    A detailed physical model for an asymmetric dielectric barrier discharge (DBD) in air driven by repetitive nanosecond voltage pulses is developed. In particular, modeling of DBD with high voltage repetitive negative and positive nanosecond pulses combined with positive dc bias is carried out. Operation at high voltage is compared with operation at low voltage, highlighting the advantage of high voltages, however the effect of backward-directed breakdown in the case of negative pulses results in a decrease of the integral momentum transferred to the gas. The use of positive repetitive pulses with dc bias is demonstrated to be promising for DBD performance improvement. The effects of the voltage waveform not only on force magnitude, but also on the spatial profile of the force, are shown. The crucial role of background photoionization in numerical modeling of ionization waves (streamers) in DBD plasmas is demonstrated

  12. Enhancement of Biocompatibility on Bioactive Titanium Surface by Low-Temperature Plasma Treatment

    Science.gov (United States)

    Lin, Chia-Cheng; Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Che-Tong; Lee, Sheng-Yang; Chen, Chin-Sung; Ou, Keng-Liang

    2005-12-01

    The surface of implantable biomaterials directly contacts the host tissue and is critical in determining biocompatibility. To improve implant integration, interfacial reactions must be controlled to minimize nonspecific adsorption of proteins, and tissue-healing phenomena can be controlled. The purpose of this study was to develop a new method of functionalizing titanium surfaces by plasma treatment. The covalent immobilization of bioactive organic molecules and the bioactivities in vitro were assessed by transmission electron microscopy (TEM), atomic force spectroscopy (AFM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as indices of cellular cytotoxicity. Argon plasma removed all of the adsorbed contaminants and impurities. Plasma-cleaned titanium surfaces showed better bioactive performances than untreated titanium surfaces. The analytical results reveal that plasma-cleaned titanium surfaces provide a clean and reproducible starting condition for further plasma treatments to create well-controlled surface layers. Allylamine was ionized by plasma treatment, and acted as a medium to link albumin. Cells demonstrated a good spread, and a wide attachment was attained on the Albu-Ti plate. Cell attachment and growth were shown to be influenced by the surface properties. The plasma treatment process plays an important role in facilitating tissue healing. This process not only provides a clean titanium surface, but also leads to surface amination on plasma-treated titanium surfaces. Surface cleaning by ion bombardment and surface modification by plasma polymerization are believed to remove contamination on titanium surfaces and thus promote tissue healing.

  13. Self-consistent treatment of transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Wilhelmsson, H.

    1993-01-01

    A theory is developed for the dynamics of tokamak plasmas considering the influence of combinations of simultaneous heating processes (alpha particle, auxiliary and ohmic), thermal conduction and particle diffusion, thermal and particle pinches, thermalization of alpha particles as well as the effects of boundary conditions. The analysis is based on a generalization of the central expansion technique which transforms the partial differential equations to a set of nonlinear coupled equations in time for the dynamic variables. Oscillatory solutions are found, but only in the presence of alpha particle heating. Examples of extensive computer simulations are included which support and complete the analytic results. (26 refs.)

  14. Reduction of a thin chromium oxide film on Inconel surface upon treatment with hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka, E-mail: alenka.vesel@guest.arnes.si [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Mozetic, Miran [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Balat-Pichelin, Marianne [PROMES-CNRS Laboratory, 7 Rue du four solaire, 66120 Font Romeu Odeillo (France)

    2016-11-30

    Highlights: • Oxidized Inconel alloy was exposed to hydrogen at temperatures up to 1500 K. • Oxide reduction in hydrogen plasma started at approximately 1300 K. • AES depth profiling revealed complete reduction of oxides in plasma. • Oxides were not reduced, if the sample was heated just in hydrogen atmosphere. • Surface of reduced Inconel preserved the same composition as the bulk material. - Abstract: Inconel samples with a surface oxide film composed of solely chromium oxide with a thickness of approximately 700 nm were exposed to low-pressure hydrogen plasma at elevated temperatures to determine the suitable parameters for reduction of the oxide film. The hydrogen pressure during treatment was set to 60 Pa. Plasma was created by a surfaguide microwave discharge in a quartz glass tube to allow for a high dissociation fraction of hydrogen molecules. Auger electron depth profiling (AES) was used to determine the decay of the oxygen in the surface film and X-ray diffraction (XRD) to measure structural modifications. During hydrogen plasma treatment, the oxidized Inconel samples were heated to elevated temperatures. The reduction of the oxide film started at temperatures of approximately 1300 K (considering the emissivity of 0.85) and the oxide was reduced in about 10 s of treatment as revealed by AES. The XRD showed sharper substrate peaks after the reduction. Samples treated in hydrogen atmosphere under the same conditions have not been reduced up to approximately 1500 K indicating usefulness of plasma treatment.

  15. Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Ching-Chou Wu

    2015-02-01

    Full Text Available Surface properties play a critical role in influencing cell responses to a biomaterial. The objectives of this study were (1 to characterize changes in surface properties of zirconia (ZrO2 ceramic after oxygen plasma treatment; and (2 to determine the effect of such changes on biological responses of human osteoblast-like cells (MG63. The results indicated that the surface morphology was not changed by oxygen plasma treatment. In contrast, oxygen plasma treatment to ZrO2 not only resulted in an increase in hydrophilicity, but also it retained surface hydrophilicity after 5-min treatment time. More importantly, surface properties of ZrO2 modified by oxygen plasma treatment were beneficial for cell growth, whereas the surface roughness of the materials did not have a significant efficacy. It is concluded that oxygen plasma treatment was certified to be effective in modifying the surface state of ZrO2 and has the potential in the creation and maintenance of hydrophilic surfaces and the enhancement of cell proliferation and differentiation.

  16. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    Science.gov (United States)

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  17. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    Science.gov (United States)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  18. Magnetically driven rotation of thermal plasma jet for non-degradable CF{sub 4} treatment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sooseok, E-mail: choi@chemenv.titech.ac.jp [Department of Nuclear Engineering, Seoul National University (Korea, Republic of); Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology (Japan); Hong, Sang Hee; Kim, Sungwoo [Department of Nuclear Engineering, Seoul National University (Korea, Republic of); Park, Dong-Wha [Department of Chemical Engineering and Regional Innovation Center for Environmental Technology of Thermal Plasma, Inha University (Korea, Republic of); Watanabe, Takayuki [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology (Japan)

    2012-11-15

    Effects of an externally applied magnetic field on the thermal plasma treatment of non-degradable greenhouse gas were investigated. Tetrafluoromethane (CF{sub 4}) was decomposed as a waste gas, because it is the most stable species among perfluorocompounds and has the highest global warming potential. A permanent magnet equipped on the exit region of a hollow electrode plasma torch produced azimuthal Lorentz force to drive rotational motions of the arc root and the thermal plasma jet. In order to sustain a stable arc discharge, the position of the permanent magnet was determined by numerical analysis on the temperature distribution according to the length of arc column. Forcibly swirling motion of thermal plasma jet was observed in accordance with the strength of applied magnetic field. Increased destruction and removal efficiency of CF{sub 4} was measured in torch operation with the externally applied magnetic field due to the enhanced entrainment of waste gas into the thermal plasma jet.

  19. Magnetically driven rotation of thermal plasma jet for non-degradable CF4 treatment

    International Nuclear Information System (INIS)

    Choi, Sooseok; Hong, Sang Hee; Kim, Sungwoo; Park, Dong-Wha; Watanabe, Takayuki

    2012-01-01

    Effects of an externally applied magnetic field on the thermal plasma treatment of non-degradable greenhouse gas were investigated. Tetrafluoromethane (CF 4 ) was decomposed as a waste gas, because it is the most stable species among perfluorocompounds and has the highest global warming potential. A permanent magnet equipped on the exit region of a hollow electrode plasma torch produced azimuthal Lorentz force to drive rotational motions of the arc root and the thermal plasma jet. In order to sustain a stable arc discharge, the position of the permanent magnet was determined by numerical analysis on the temperature distribution according to the length of arc column. Forcibly swirling motion of thermal plasma jet was observed in accordance with the strength of applied magnetic field. Increased destruction and removal efficiency of CF 4 was measured in torch operation with the externally applied magnetic field due to the enhanced entrainment of waste gas into the thermal plasma jet.

  20. Plasma Osteoprotegerin Levels Before and After Treatment of Thyroid Dysfunctions

    Directory of Open Access Journals (Sweden)

    Didem Özdemir

    2013-12-01

    Full Text Available Purpose: Osteoprotegerin (OPG is a soluble decoy receptor for the receptor activator of nuclear factor kappaB ligand, thereby inhibiting bone resorption. In this study, we aimed to evaluate plasma OPG levels in patients with thyroid dysfunctions and determine whether its levels change after restoration of euthyroidism. Material and Method: OPG levels were studied at the time of diagnosis and after the restoration of euthyroidism at least for 8 weeks in patients diagnosed with overt thyrotoxicosis and hypothyroidism. Results: Seventeen hypothyroid, 17 thyrotoxic patients and 17 age-, sex- and body mass index-matched healthy controls were analyzed. Mean basal plasma OPG levels were 5.42±2.66, 5.04±1.62 and 5.24±0.93 pmol/l in thyrotoxic, hypothyroid and healthy controls, respectively (p=0.844. After restoration of euthyroidism, OPG was 5.52±2.37 pmol/l in thyrotoxic and 4.33±1.37 pmol/l in hypothyroid patients, indicating no significant difference compared to baseline values (p=0.846 and p=0.109, respectively. We also did not observe any correlation between basal OPG levels and basal thyrotropin and thyroid hormone levels. Discussion: Thyroid dysfunctions seem to affect bone functions by mechanisms other than OPG, however, more clinical studies with larger sample sizes are needed to clarify the underlying mechanisms of thyroid dysfunction-related changes in bone metabolism. Turk Jem 2013; 17: 102-7

  1. Mesotherapy and platelet-rich plasma for the treatment of hair loss

    Directory of Open Access Journals (Sweden)

    Gonca Gökdemir

    2014-06-01

    Full Text Available Hair loss often significant impact on quality of life, including loss of self-confidence and self-esteem. However, treatment of hair loss is frustrating for both patients and doctors. Mesotherapy and platelet-rich plasma have recently become advertised method for the treatment of different types of alopecia. The efficacy of these methods in hair loss is controversial in view of lack of documented evidence. It was reviewed the data about the efficacy, safety and treatment protocols of mesotherapy and platelet-rich plasma in patients with hair loss.

  2. A Study of Atmospheric Plasma Treatment on Surface Energetics of Carbon Fibers

    International Nuclear Information System (INIS)

    Park, Soo Jin; Chang, Yong Hwan; Moon, Cheol Whan; Suh, Dong Hack; Im, Seung Soon; Kim, Yeong Cheol

    2010-01-01

    In this study, the atmospheric plasma treatment with He/O 2 was conducted to modify the surface chemistry of carbon fibers. The effects of plasma treatment parameters on the surface energetics of carbon fibers were experimentally investigated with respect to gas flow ratio, power intensity, and treatment time. Surface characteristics of the carbon fibers were determined by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), Fourier transform infrared (FT-IR), Zeta-potential, and contact angle measurements. The results indicated that oxygen plasma treatment led to a large amount of reactive functional groups onto the fiber surface, and these groups can form together as physical intermolecular bonding to improve the surface wettability with a hydrophilic polymer matrix

  3. Plasma-chemical technology of treatment of halogen-containing waste including polychlorinated biphenyls

    Science.gov (United States)

    Gusarov, E. E.; Malkov, Yu. P.; Stepanov, S. G.; Troshchinenko, G. A.; Zasypkin, I. M.

    2010-12-01

    We consider the developed plasma-chemical technology of halogen-containing substances treatment. The paper contains the experimental plant schematic and the positive results obtained after the treatment of tetrafluoromethane, ozone-damaging freon 12, polychlorinated biphenyls (PCB), the waste containing fluoride and chloride organics. The technology is proposed for industrial application.

  4. Modification of optical and electrical properties of chemical bath deposited CdS using plasma treatments

    International Nuclear Information System (INIS)

    Gonzalez, G.; Krishnan, B.; Avellaneda, D.; Castillo, G. Alan; Das Roy, T.K.; Shaji, S.

    2011-01-01

    Cadmium sulphide (CdS) is a well known n-type semiconductor that is widely used in solar cells. Here we report preparation and characterization of chemical bath deposited CdS thin films and modification of their optical and electrical properties using plasma treatments. CdS thin films were prepared from a chemical bath containing Cadmium chloride, Triethanolamine and Thiourea under various deposition conditions. Good quality thin films were obtained during deposition times of 5, 10 and 15 min. CdS thin films prepared for 10 min. were treated using a glow discharge plasma having nitrogen and argon carrier gases. The changes in morphology, optical and electrical properties of these plasma treated CdS thin films were analyzed in detail. The results obtained show that plasma treatment is an effective technique in modification of the optical and electrical properties of chemical bath deposited CdS thin films.

  5. Enhancement of food safety – antimicrobial effectiveness of cold plasma treatments

    Directory of Open Access Journals (Sweden)

    Irina SMEU

    2014-08-01

    Full Text Available Cold plasma treatment proved to be a flexible, efficient, chemical-free antimicrobial process and it can represent an easy to use sanitizing method for the food industry that does not require special temperature, humidity or pressure conditions. This paper reviews the classification of plasma and the main cold plasma generating devices used in the recent years to enhance food safety. A research of available literature was also conducted to identify the antimicrobial mode of action of cold plasma treatment as well as advantages and key limitations of this technique when applied to different food products such as fruits, vegetables, meat and milk. The study revealed that further development of this method will have to be carried out, allowing better understanding of the complex interactions during applications and its restrictions, as well as practice outlook.

  6. Recovery of Cu and valuable metals from E-waste using thermal plasma treatment

    Science.gov (United States)

    Mitrasinovic, Aleksandar; Pershin, Larry; Wen, John Z.; Mostaghimi, Javad

    2011-08-01

    A thermal plasma treatment was employed for economical recovery of valuable metals from e-waste. Cu-clad plates that simulated circuit boards were fed at the bottom of the reactor and treated with a plasma jet at temperatures between 385 and 840°C. Organic components of the Cu-clad plates were decomposed and contributed to the increased temperature of the offgas. Due to the low temperatures at the base of the reactor, the analyzed samples did not show losses characteristic for the plasma processes such as evaporation or metal oxidation. After plasma treatment, Cu foils were separated from the fiber glass and other solid residues allowing a complete recovery. Solid residues of the plates at the bottom of the reactor were crunched into small particles, allowing easy recycling or use as construction material.

  7. Population Pharmacokinetics of Meropenem in Plasma and Subcutis in Patients on Extracorporeal Membrane Oxygenation Treatment

    DEFF Research Database (Denmark)

    Hanberg, Pelle; Öbrink-Hansen, Kristina; Thorsted, Anders

    2018-01-01

    The objectives of this study were to describe meropenem pharmacokinetics (PK) in plasma and/or subcutaneous adipose tissue (SCT) in critically ill patients receiving ECMO treatment, and to develop a population PK model to simulate alternative dosing regimens and modes of administration. We...... conducted a prospective observational study. Ten patients on ECMO treatment received meropenem (1 or 2 g) intravenously over 5 min every 8 hours. Serial SCT concentrations were determined using microdialysis and compared with plasma concentrations. A population PK model of SCT and plasma data was developed...... infusion would be needed for 100%fT>MIC and 100%fT>4xMIC to be obtained. Meropenem plasma and SCT concentrations were associated with estimated creatinine-clearance (eCLCr). Simulations showed that in patients with increased eCLCr, dose increment or continuous infusion may be needed to obtain therapeutic...

  8. Rapid plasma treatment of polyimide for improved adhesive and durable copper film deposition

    International Nuclear Information System (INIS)

    Usami, Kenji; Ishijima, Tatsuo; Toyoda, Hirotaka

    2012-01-01

    To improve adhesion at the interface between Cupper (Cu) and polyimide (PI) layers, a PI film surface was treated with a microwave-excited plasma. The Ar/N 2 plasma treatment improved the Cu adhesion force to 10 N/cm even for PI substrates with absorbed water. A dramatic improvement of the adhesion durability was achieved by depositing a thin carbon film (C) on the PI substrate as an interlayer between PI and Cu using a microwave plasma followed by treatment with the Ar/N 2 plasma prior to the Cu deposition. After a 20-h accelerated aging test, the reduction of the adhesion force for the resulting Cu/C/PI sample was only 10%, whereas that for the Cu/PI sample was 55%. To gain insight into the film properties, the interface between the Cu and PI film was investigated by X-ray photoelectron spectroscopy.

  9. Effect of atmospheric plasma treatment on seed germination of rice (Oryza sativa L.)

    Science.gov (United States)

    Penado, Keith Nealson M.; Mahinay, Christian Lorenz S.; Culaba, Ivan B.

    2018-01-01

    Multiple methods of improving plant development have been utilized over the past decades. Despite these improvements, there still exists a need for better planting methods due to the increasing population of a global community. Studies have reported that plasma treatment affects the growth and germination of a variety of plant species, including a multitude of grains which often takes the bulk in the diet of the average human being. This study explores the effect of atmospheric air plasma jet treatment on the seed germination of rice (Oryza sativa L.). The seeds were treated using an atmospheric air plasma jet for 1, 2, and 3 s. The effect of plasma exposure shows a reduction of trichomes on the surface of the seed. This caused a possible increase in wettability which significantly affected the seed germ length but did not affect the seed germination count after the germination period of 72 h.

  10. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air

    Science.gov (United States)

    Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO

    2018-01-01

    Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.

  11. ANALISIS SPASIAL DISTRIBUSI KASUS DEMAM BERDARAH DENGUE (DBD KOTA BONTANG, PROVINSI KALIMANTAN TIMUR

    Directory of Open Access Journals (Sweden)

    Damar Tri Boewono

    2013-02-01

    Full Text Available Abstract Vector control programs of Dengue Hemorrhagic Fever (DHF have been conducted by Bontang Health Office, unfortunately DHF cases were still occurred in the years. Comprehensive research was conducted to determine the distribution of DHF cases using spatial analysis, in relation to positive larvae of breeding habitat distributions. The study was done in Belimbing village, West Bontang Subdistrict and Gunung Elai village, Nort Bontang Subdistrict. The aim  of the study was to determine the specific vector control strategy based on the breeding habitats, larvae free index (LFI, insecticide susceptible status of dengue vector Ae. aegypti and cases distribution (GIS mapping and distance index analyses.  The study revealed that the average LFI in the study areas were 31.9-67.5% and lower the national standar of 95%.  Dengue vector in the study areas were found to be resistant to both insecticides. The average mortality of Malathion was 15.0-65% and 5.0-7.50% on Lambdacyhalothrin. The application dosage of Temefos were effective against the larvae. Dengue cases distribution in the study areas were found in  clusters/gregorious. Distance index analysis revealed that 35.62% of dengue cases in Bontang city were distributed in the radius of 360 meters. This result reflected that the transmission was dominant due to human mobility. The health community empowerment is needed to encourage the people to participate on the vector control program especially regular household sanitation or clean-up campaigns ( to dry of, cover and bury /the vector habitats cleaning and larvicide applications in an effort to sustain the vector control programs. Key Words: DHF, Spatial distribution, Cases Distance Index, Bontang City Abstrak. Berbagai program pengendalian nyamuk vektor demam berdarah dengue (DBD telah dilakukan oleh Dinas Kesehatan Kota Bontang, beberapa tahun sebelum 2008. Walaupun demikian, kasus DBD masih dijumpai setiap tahun. Penelitian komprehensif

  12. DYNAMIC ADHESIVE WETTABILITY OF POPLAR VENEER WITH COLD OXYGEN PLASMA TREATMENT

    OpenAIRE

    Lijuan Tang,; Rong Zhang,; Xiaoyan Zhou,; Mingzhu Pan,; Minzhi Chen,; Xuehui Yang,; Ping Zhou,; Zhao Chen

    2012-01-01

    Effects of cold oxygen plasma treatment on activating the surface of poplar veneers and improving its wettability were investigated. The veneers were treated with cold oxygen plasma for 1, 3, 5, 7, and 9 min, and aged in air for 1, 3, 7, 14, 21, and 28 days. The dynamic adhesive wettability of veneers was assessed using the contact angle, K-value analysis, and surface free energy. The shear strength of three-layer panels produced from untreated and cold oxygen plasma treated veneers was exami...

  13. Adhesion improvement of fibres by continuous plasma treatment at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Sørensen, Bent F.

    2013-01-01

    Carbon fibres and ultra-high-molecular-weight polyethylene (UHMWPE) fibres were continuously treated by a dielectric barrier discharge plasma at atmospheric pressure for adhesion improvement with epoxy resins. The plasma treatment improved wettability, increased the oxygen containing polar...... functional groups at the surface, and subsequently improved adhesion to the epoxy and fracture resistance of epoxy composites. Hansen solubility parameters (HSP), quantitatively describing physical interactions among molecules, were measured for the UHMWPE fibre surfaces. The result identifies two distinct...... types of surfaces in both the plasma treated and the untreated fibres. One type is typical of polyethylene polymers while the other is characteristic of the oxygenated surface at much higher values of HSP....

  14. Enhancing Dark Shade Pigment Dyeing of Cotton Fabric Using Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2017-07-01

    Full Text Available This study is intended to investigate the effect of atmospheric pressure plasma treatment on dark shade pigment dyeing of cotton fabric. Experimental results reveal that plasma-treated cotton fabric can attain better color yield, levelness, and crocking fastness in dark shade pigment dyeing, compared with normal cotton fabric (not plasma treated. SEM analysis indicates that cracks and grooves were formed on the cotton fiber surface where the pigment and the binder can get deposited and improve the color yield, levelness, and crocking fastness. It was also noticed that pigment was aggregated when deposited on the fiber surface which could affect the final color properties.

  15. Densification of spin-on-glass (SOG) film by RF plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tomoya; Nagao, Masayoshi; Ohsaki, Hisashi; Shimizu, Takashi; Kanemaru, Seigo, E-mail: tomoya-yoshida@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST) Nanoelectronics Research Institute, AIST Tsukuba Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2011-10-29

    We propose a spin-on glass (SOG) film densification technique based on the plasma-treatment technology. We demonstrated the densification of the SOG film at the temperature of lower than 53 degree C without compulsory cooling. We investigate the plasma-densification condition and found that the optimum RF power needed to densify the SOG film. This technique is applicable for production processes in wide range of electronic devices.

  16. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  17. Comparing glow discharge plasma and ultrasound treatment for improving aerobic respiration of activated sludge.

    Science.gov (United States)

    Van de Moortel, Nina; Van den Broeck, Rob; Degrève, Jan; Dewil, Raf

    2017-10-01

    In this paper, a new and innovative technique, glow discharge plasma, is introduced for the treatment of activated sludge, whereby its effect on sludge solubilization, settleability, floc structure and biomass activity for carbon removal and nitrification is investigated. The obtained results are compared to the use of ultrasound for activated sludge treatment, a technique known for its potential to enhancing biomass activity. Results indicate that ultrasound is up to 9 times more efficient in solubilizing activated sludge and disrupting the sludge floc. However, ultrasound has a detrimental effect on sludge settling, even the lowest treatment intensity of 180 kJ/kgMLSS induced a 12% increase in sludge volume index (SVI). Glow discharge plasma on the other hand, improved settleability up to 51%. Glow discharge plasma and ultrasound both positively affect the carbon removal rate. On the long term, extreme conditions even gave rise to a maximum improvement in respiration by 58.6% and 176.5% for a glow discharge plasma and ultrasound treatment. Nitrification, however, was never positively influenced by either of the treatments. Starting from 8297 kJ/kgMLSS for glow discharge plasma and 9000 kJ/kgMLSS for ultrasound, a negative effect on the nitrification rate was found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Plasma Treatment to Remove Carbon from Indium UV Filters

    Science.gov (United States)

    Greer, Harold F.; Nikzad, Shouleh; Beasley, Matthew; Gantner, Brennan

    2012-01-01

    The sounding rocket experiment FIRE (Far-ultraviolet Imaging Rocket Experiment) will improve the science community fs ability to image a spectral region hitherto unexplored astronomically. The imaging band of FIRE (.900 to 1,100 Angstroms) will help fill the current wavelength imaging observation hole existing from approximately equal to 620 Angstroms to the GALEX band near 1,350 Angstroms. FIRE is a single-optic prime focus telescope with a 1.75-m focal length. The bandpass of 900 to 1100 Angstroms is set by a combination of the mirror coating, the indium filter in front of the detector, and the salt coating on the front of the detector fs microchannel plates. Critical to this is the indium filter that must reduce the flux from Lymanalpha at 1,216 Angstroms by a minimum factor of 10(exp -4). The cost of this Lyman-alpha removal is that the filter is not fully transparent at the desired wavelengths of 900 to 1,100 Angstroms. Recently, in a project to improve the performance of optical and solar blind detectors, JPL developed a plasma process capable of removing carbon contamination from indium metal. In this work, a low-power, low-temperature hydrogen plasma reacts with the carbon contaminants in the indium to form methane, but leaves the indium metal surface undisturbed. This process was recently tested in a proof-of-concept experiment with a filter provided by the University of Colorado. This initial test on a test filter showed improvement in transmission from 7 to 9 percent near 900 with no process optimization applied. Further improvements in this performance were readily achieved to bring the total transmission to 12% with optimization to JPL's existing process.

  19. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    Science.gov (United States)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  20. Room-temperature crystallization of amorphous films by RF plasma treatment

    International Nuclear Information System (INIS)

    Ohsaki, H.; Shibayama, Y.; Yoshida, N.; Watanabe, T.; Kanemaru, S.

    2009-01-01

    The crystallization of amorphous thin films was achieved by 13.56 MHz RF (radio frequency) plasma treatment. This crystallization process has a strong advantage that the sample temperature is lower than 120 o C during the plasma treatment even without compulsory cooling and various amorphous films are crystallized after 2 min or so. This treatment works on amorphous films of various materials, independently of the film preparation method and substrate materials. Crystallization has been confirmed on amorphous thin films of sputtered ITO (tin doped indium oxide) deposited on soda-lime glass and PET (polyethylene terephthalate), of sputtered TiO 2 on soda-lime glass, of sol-gel derived TiO 2 on silicon wafer and of sputtered hydrogen-doped silicon on soda-lime glass. The plasma gas pressure was found to be the key parameter in the plasma crystallization process. The appropriate gas pressure depends on the plasma gas species and not on film or substrate materials. A Cu electrode, attached to the backside of the substrate and is electrically floated from the electric ground, was found to enhance the plasma crystallization performance

  1. Study on plasma melting treatment of crucibles, ceramic filter elements, asbestos, and fly ash

    International Nuclear Information System (INIS)

    Hoshi, Akiko; Nakasio, Nobuyuki; Nakajima, Mikio

    2004-01-01

    The Japan Atomic Energy Research Institute (JAERI) decided to adopt an advanced volume reduction program for low-level radioactive wastes. In this program, inorganic wastes are converted to stable glassy products suitable for disposal by a plasma melting system in the Waste Volume Reduction Facilities (WVRF). High melting point wastes such as refractories are excluded from the plasma melting treatment in the WVRF, and wastes difficult to handle such as asbestos are also excluded. However, it is describable to apply the plasma melting treatment to these wastes for stabilization and volume reduction from the viewpoint of disposal. In this paper, plasma melting test of crucibles, ceramic filter elements, asbestos, and simulated fly ashes were carried out as a part of technical support for WVRF. The plasma melting treatment was applicable for crucibles and asbestos because homogeneous and glassy products were obtained by controlling of waste and loading condition. It was found that SiC in ceramic filter elements was volatile with a plasma torch with inert gas, and adding reducer was ineffective against stabilizing volatile metals such as Zn, Pb in a solidified product in the melting test of simulated fly ash. (author)

  2. Effects of RF plasma treatment on spray-pyrolyzed copper oxide films on silicon substrates

    Science.gov (United States)

    Madera, Rozen Grace B.; Martinez, Melanie M.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    The effects of radio-frequency (RF) argon (Ar) plasma treatment on the structural, morphological, electrical and compositional properties of the spray-pyrolyzed p-type copper oxide films on n-type (100) silicon (Si) substrates were investigated. The films were successfully synthesized using 0.3 M copper acetate monohydrate sprayed on precut Si substrates maintained at 350 °C. X-ray diffraction revealed cupric oxide (CuO) with a monoclinic structure. An apparent improvement in crystallinity was realized after Ar plasma treatment, attributed to the removal of residues contaminating the surface. Scanning electron microscope images showed agglomerated monoclinic grains and revealed a reduction in size upon plasma exposure induced by the sputtering effect. The current-voltage characteristics of CuO/Si showed a rectifying behavior after Ar plasma exposure with an increase in turn-on voltage. Four-point probe measurements revealed a decrease in sheet resistance after plasma irradiation. Fourier transform infrared spectral analyses also showed O-H and C-O bands on the films. This work was able to produce CuO thin films via spray pyrolysis on Si substrates and enhancement in their properties by applying postdeposition Ar plasma treatment.

  3. A Study on the Effect of Plasma Treatment for Waste Wood Biocomposites

    Directory of Open Access Journals (Sweden)

    MiMi Kim

    2013-01-01

    Full Text Available The surface modification of wood powder by atmospheric pressure plasma treatment was investigated. The composites were manufactured using wood powder and polypropylene (wood powder: polypropylene = 55 wt% : 45 wt%. Atmospheric pressure plasma treatment was applied under the condition of 3 KV, 17±1 KHz, 2 g/min. Helium was used as the carrier gas and hexamethyl-disiloxane (HMDSO as the monomer to modify the surface property of the waste wood biocomposites by plasma polymerization. The tensile strengths of untreated waste wood powder (W3 and single species wood powder (S3 were about 18.5 MPa and 21.5 MPa while those of plasma treated waste wood powder (PW3 and plasma treated single species wood powder (PS3 were about 21.2 MPa and 23.4 MPa, respectively. Tensile strengths of W3 and S3 were improved by 14.6% and 8.8%, respectively. From the analyses of mechanical properties and morphology, we conclude that the interfacial bonding of polypropylene and wood powder can be improved by atmospheric pressure plasma treatment.

  4. The effect of tetrafluoromethane plasma post-treatment on the electrical property of tungsten oxide nanowires.

    Science.gov (United States)

    Huang, Bohr-Ran; Lin, Jun-Cheng; Lin, Tzu-Ching; Mangindaan, Dave; Wang, Meng-Jiy

    2011-09-01

    The effects of tetrafluoromethane (CF4) plasma on the surface morphology, chemical compositions, and electrical property of tungsten oxide (W18O49) nanowires are investigated. The nanostructured tungsten oxide nanowires with average length of 250-350 nm were self-catalytically grown on Si substrate. By post-treatment with CF4 plasma for 10 min, the W18O49 nanowires on the substrate showed the highest current response. Longer CF4 plasma post-treatment time demonstrated higher etching effect which demolished the nanowires and resulted in lower conductivity of the samples. The disintegration of the W18O49 nanowires layer after CF4 plasma treatment, revealed physically by the decrease of the average thickness and chemically by the decrease of XRD peak ratio (I 23.0/I 26.0), was closely related to the overall electrical performance. The etching effect was further reveled by Raman spectra showing the evolution of O-W-O and W=O characteristics with the increased post-treatment time. Moreover, the improvement of the electrical property of W18O49 nanowires was elucidated by the exposure rate to explain the mechanism of plasma post treatment in three stages: passivation, degradation and ablation. The maximum exposure rate, corresponding to the maximum conductivity, was achieved by 10 min of CF4 plasma treatment. The time-differentiated exposure analyses confirmed the evolution of resistance of W18O49 nanowires on Si with different post-treatment time which supported the results of surface characterizations.

  5. Plasma enhanced C1 chemistry for green technology

    Science.gov (United States)

    Nozaki, Tomohiro

    2013-09-01

    Plasma catalysis is one of the innovative next generation green technologies that meet the needs for energy and materials conservation as well as environmental protection. Non-thermal plasma uniquely generates reactive species independently of reaction temperature, and these species are used to initiate chemical reactions at unexpectedly lower temperatures than normal thermochemical reactions. Non-thermal plasma thus broadens the operation window of existing chemical conversion processes, and ultimately allows modification of the process parameters to minimize energy and material consumption. We have been specifically focusing on dielectric barrier discharge (DBD) as one of the viable non-thermal plasma sources for practical fuel reforming. In the presentation, room temperature one-step conversion of methane to methanol and hydrogen using a miniaturized DBD reactor (microplasma reactor) is highlighted. The practical impact of plasma technology on existing C1-chemistry is introduced, and then unique characteristics of plasma fuel reforming such as non-equilibrium product distribution is discussed.

  6. An international comparison of the effect of policy shifts to organ donation following cardiocirculatory death (DCD on donation rates after brain death (DBD and transplantation rates.

    Directory of Open Access Journals (Sweden)

    Aric Bendorf

    Full Text Available During the past decade an increasing number of countries have adopted policies that emphasize donation after cardiocirculatory death (DCD in an attempt to address the widening gap between the demand for transplantable organs and the availability of organs from donation after brain death (DBD donors. In order to examine how these policy shifts have affected overall deceased organ donor (DD and DBD rates, we analyzed deceased donation rates from 82 countries from 2000-2010. On average, overall DD, DBD and DCD rates have increased over time, with the proportion of DCD increasing 0.3% per year (p = 0.01. Countries with higher DCD rates have, on average, lower DBD rates. For every one-per million population (pmp increase in the DCD rate, the average DBD rate decreased by 1.02 pmp (95% CI: 0.73, 1.32; p<0.0001. We also found that the number of organs transplanted per donor was significantly lower in DCD when compared to DBD donors with 1.51 less transplants per DCD compared to DBD (95% CI: 1.23, 1.79; p<0.001. Whilst the results do not infer a causal relationship between increased DCD and decreased DBD rates, the significant correlation between higher DCD and lower DBD rates coupled with the reduced number of organs transplanted per DCD donor suggests that a national policy focus on DCD may lead to an overall reduction in the number of transplants performed.

  7. Creation of fluorocarbon barriers on surfaces of starch-based products through cold plasma treatment

    Science.gov (United States)

    Han, Yousoo

    Two kinds of starch foam trays (starch and aspen-starch foam trays) were produced using a lab model baking machine. Surfaces of the trays were treated with CF4 and SF6 plasma to create fluorine-rich layers on the surfaces, which might show strong water resistance. The plasma parameters, such like RF power, gas pressure and reaction time, were varied to evaluate the effects of each parameter on fluorination of surfaces. The atomic concentrations of fluorine, oxygen and carbon on samples' surfaces were earned from ESCA (electron spectroscopy for chemical analysis) and contact angles of sample surfaces were measured for hydrophobicity. For water resistance of plasma treated surfaces, liquid water uptake and water vapor uptake test were performed. Also, equilibrium moisture contents of unmodified and plasma treated samples were measured to evaluate biodegradability of plasma treated samples. Fluorine-rich barriers were created on sample surfaces treated with CF 4 and SF6 plasma. The fluorine atomic concentrations of treated sample surfaces were ranged from 34.4% to 64.4% (CF4 treatment) and 43.6% to 57.9% (SF6 treatment). It was found at both plasma gases that plasma parameters affected total fluorine concentration and carbon-peak shapes in ESCA surveys, which imply different distributions of mono- or multi-fluoro carbon's contents. In various reaction times, it was found that total fluorine contents were decreased after a critical point as the reaction time was prolonged, which may imply that a dominant mechanism has been changed from deposition or functionalization to etching. Oxygen atomic concentration was decreased at sample surfaces treated by both plasmas. In the case of SF6 plasma, it was proved that the removal of oxygen surely occurred because there was no addition of sulfur species. Plasma treated sample surfaces had high contact angles with distilled water up to 150° and the high values of angles have been kept constant up to for 15 minutes. Fluorine

  8. UV Spectra of Amino Acid Immobilized at Nanoparticles Formation through Nanosphere Lithography (NSL) by Plasma Treatment

    International Nuclear Information System (INIS)

    Mohamad, Farizan; Agam, Mohd Arif; Nur, Hadi

    2011-01-01

    The modifying of nanospheres structures by plasma treatments to the fabricated nanoparticles arrays by Nanosphere Lithography (NSL) techniques to create Periodic Particles Arrays (PPAs) with different size, shape and orientation. Spectra of amino acid that immobilized to the nanoparticles arrays under Ultra Violet (UV) spectrums were studied. The PPAs with different sizes, shapes and orientation were fabricated by plasma treatment of 5 sec, 7 sec and 10 sec to the Polystyrene Nanosphere (PSN). Plasma treatment will effect to the PSN including etching part of the PSN to produce a much bigger channel to the single layer template of the PSN. Metal was deposited at interstitial sites between of the polymer balls and later removed by dissolving them in organic solvent, leaving a hexagonal pattern of metal structures at the interstitial sites. The nanoparticles immobilized with the standard amino acid, which later investigated under UV spectrums. The spectrums shows the possibilities use as biosensor devices.

  9. UV excimer laser and low temperature plasma treatments of polyamide materials

    Science.gov (United States)

    Yip, Yiu Wan Joanne

    Polyamides have found widespread application in various industrial sectors, for example, they are used in apparel, home furnishings and similar uses. However, the requirements for high quality performance products are continually increasing and these promote a variety of surface treatments for polymer modification. UV excimer laser and low temperature plasma treatments are ideally suited for polyamide modification because they can change the physical and chemical properties of the material without affecting its bulk features. This project aimed to study the modification of polyamides by UV excimer laser irradiation and low temperature plasma treatment. The morphological changes in the resulting samples were analysed by scanning electron microscopy (SEM) and tapping mode atomic force microscopy (TM-AFM). The chemical modifications were studied by x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and chemical force microscopy (CFM). Change in degree of crystallinity was examined by differential scanning calorimetry (DSC). After high-fluence laser irradiation, topographical results showed that ripples of micrometer size form on the fibre surface. By contrast, sub-micrometer size structures form on the polyamide surface when the applied laser energy is well below its ablation threshold. After high-fluence laser irradiation, chemical studies showed that the surface oxygen content of polyamide is reduced. A reverse result is obtained with low-fluence treatment. The DSC result showed no significant change in degree of crystallinity in either high-fluence or low-fluence treated samples. The same modifications in polyamide surfaces were studied after low temperature plasma treatment with oxygen, argon or tetrafluoromethane gas. The most significant result was that the surface oxygen content of polyamide increased after oxygen and argon plasma treatments. Both treatments induced many hydroxyl (-OH) and carboxylic acid (-COOH

  10. Effect of Argon Plasma Treatment Variables on Wettability and Antibacterial Properties of Polyester Fabrics

    Science.gov (United States)

    Senthilkumar, Pandurangan; Karthik, Thangavelu

    2016-04-01

    In this research work, the effect of argon plasma treatment variables on the comfort and antibacterial properties of polyester fabric has been investigated. The SEM micrographs and FTIR analysis confirms the modification of fabric surface. The Box-Behnken design was used for the optimization of plasma process variables and to evaluate the effects and interactions of the process variables, i.e. operating power, treatment time and distance between the electrodes on the characteristics of polyester fabrics. The optimum conditions of operating power 600 W, treatment time 30 s, and the distance between the electrodes of 2.8 mm was arrived using numerical prediction tool in Design-Expert software. The plasma treated polyester fabrics showed better fabric characteristics particularly in terms of water vapour permeability, wickability and antibacterial activity compared to untreated fabrics, which confirms that the modified structure of polyester fabric.

  11. Platelets rich plasma versus minoxidil 5% in treatment of alopecia areata: A trichoscopic evaluation.

    Science.gov (United States)

    El Taieb, Moustafa A; Ibrahim, Hassan; Nada, Essam A; Seif Al-Din, Mai

    2017-01-01

    Alopecia areata is a common cause of nonscarring alopecia that occurs in a patchy, confluent, or diffuse pattern. Dermoscopy is a noninvasive technique for the clinical diagnosis of many skin diseases. Topical minoxidil solution 5% and platelet rich plasma are important modalities used in treatment of alopecia areata. We aimed to evaluate the efficacy of PRP versus topical minoxidil 5% in the treatment of AA by clinical evaluation and trichoscopic examination. Ninety patients were allocated into three groups; the first was treated with topical minoxidil 5% solution, the second with platelets rich plasma injections, and the third with placebo. Diagnosis and follow up were done by serial digital camera photography of lesions and dermoscopic scan before and every 1 month after treatment for 3 months. Patients treated with minoxidil 5% and platelets rich plasma both have significant hair growth than placebo (p minoxidil and control (p minoxidil 5% as evaluated by clinical and trichoscopic examination. © 2016 Wiley Periodicals, Inc.

  12. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lee, E-mail: leeli@mail.hust.edu.cn; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-30

    Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  13. Improvement of Plating Characteristics Between Nickel and PEEK by Plasma Treatment and Chemical Etching

    International Nuclear Information System (INIS)

    Lee, Hye W.; Lee, Jong K.; Park, Ki Y.

    2009-01-01

    Surface of PEEK(poly-ether-ether-ketone) was modified by chemical etching, plasma treatment and mechanical grinding to improve the plating adhesion. The plating characteristics of these samples were studied by the contact angle, plating thickness, gloss and adhesion. Chemical etching and plasma treatment increased wettability, adhesion and gloss. The contact angle of as-received PEEK was 61 .deg. . The contact angles of chemical etched, plasma treated or both were improved to the range of 15∼33 .deg. . In the case of electroless plating, the thickest layer without blister was 1.6 μm. The adhesion strengths by chemical etching, plasma treatment or both chemical etching and plasma treatment were 75 kgf/cm 2 , 102 kgf/cm 2 , 113 kgf/cm 2 , respectively, comparing to the 24 kgf/cm 2 of as-received. In the case of mechanically ground PEEKs, the adhesion strengths were higher than those unground, with the sacrifice of surface gloss. The gloss of untreated PEEK were greater than mechanically ground PEEKs. Plating thickness increased linearly with the plating times

  14. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    International Nuclear Information System (INIS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  15. Dengue virus inactivation by minipool TnBP/Triton X-45 treatment of plasma and cryoprecipitate.

    Science.gov (United States)

    Burnouf, T; Chou, M-L; Cheng, L-H; Li, Z-R; Wu, Y-W; El-Ekiaby, M; Tsai, K-H

    2013-01-01

    A minipool solvent/detergent (S/D; 1% TnBP/1% Triton X-45; 31°C) process was developed for viral inactivation of plasma and cryoprecipitate used for transfusion. The goal of this study was to determine the rate and extent of inactivation of dengue virus (DENV) during this process. DENV-1 was propagated using C6/36 mosquito cells to an infectivity titre close to 9 log and spiked (10% v/v) into individual plasma and cryoprecipitate samples from two distinct donors. Samples were taken right after spiking and during viral inactivation treatment by 1% TnBP-1% Triton X-45 at 31°C. DENV-1 infectivity was assessed on Vero E6 cells by a focus-forming assay (FFA). Culture medium and complement-inactivated plasma were used as experimental controls. Experiments were done in duplicate. DENV-1 infectivity was 7·5 log in spiked plasma and 7·1 and 7·3 log in spiked cryoprecipitate. There was no loss of DENV-1 infectivity in the spiked materials, nor in the controls not subjected to S/D treatment. No infectivity was found in plasma and cryoprecipitate subjected to S/D treatment at the first time-point evaluated (10 min). DENV-1 was strongly inactivated in plasma and cryoprecipitate, respectively, within 10 min of 1% TnBP/1% Triton X-45 treatment at 31°C. These data provide a reassurance of the safety of such S/D-treated plasma and cryoprecipitate with regard to the risk of transmission of all DENV serotypes and other flaviviruses. © 2012 The Author(s). Vox Sanguinis © 2012 International Society of Blood Transfusion.

  16. Plasma adenosine deaminase enzyme reduces with treatment of ...

    African Journals Online (AJOL)

    Tuberculosis(TB)-specific host biomarkers for diagnosis and monitoring of treatment response have been identified as priorities for TB research. Macrophage and T cell lymphocytes play vital roles in Mycobacterium tuberculosis immune response and their associated biomarkers could form good candidates for diagnosis ...

  17. Influence of argon plasma treatment on polyethersulphone surface

    Indian Academy of Sciences (India)

    2013-01-09

    Jan 9, 2013 ... waste water treatment from heavy and toxic metals, low-level nuclear waste management and separation of Zr from uranium in their wastes and enzyme immobilization. The aim of this work is to improve superficial hydrophilic properties of PES films by measuring contact angle (surface free energy, SFE), ...

  18. Fluoxetine treatment for major depression decreases the plasma ...

    African Journals Online (AJOL)

    The levels of all five cytokine of patients with MDD were significantly decreased after treatment. However, the levels remained significantly higher than those of the healthy controls (p<0.001). In the seven depressed subjects whose HDRS score fell to below seven after antidepressant therapy comparing with those subjects ...

  19. Direct deposition of aluminum oxide gate dielectric on graphene channel using nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Lim, Taekyung; Kim, Dongchool; Ju, Sanghyun

    2013-01-01

    Deposition of high-quality dielectric on a graphene channel is an essential technology to overcome structural constraints for the development of nano-electronic devices. In this study, we investigated a method for directly depositing aluminum oxide (Al 2 O 3 ) on a graphene channel through nitrogen plasma treatment. The deposited Al 2 O 3 thin film on graphene demonstrated excellent dielectric properties with negligible charge trapping and de-trapping in the gate insulator. A top-gate-structural graphene transistor was fabricated using Al 2 O 3 as the gate dielectric with nitrogen plasma treatment on graphene channel region, and exhibited p-type transistor characteristics

  20. Enzymatic Modification of Plasma Low Density Lipoproteins in Rabbits: A Potential Treatment for Hypercholesterolemia

    Science.gov (United States)

    Labeque, Regine; Mullon, Claudy J. P.; Ferreira, Joao Paulo M.; Lees, Robert S.; Langer, Robert

    1993-04-01

    Phospholipase A_2 (EC 3.1.1.4) hydrolyzes certain phospholipids of low density lipoprotein (LDL). Plasma clearance of phospholipase A_2-modified human LDL is up to 17 times faster than that of native human LDL in hypercholesterolemic rabbits. Modification of blood lipoproteins of hypercholesterolemic rabbits was performed by using an extracorporeal circuit containing immobilized phospholipase A_2. After 90-min treatments, nearly 30% decreases in plasma cholesterol concentrations were observed. Erythrocyte, leukocyte, and platelet counts showed no net change after treatment. This technique does not require any fluid replacement or sorbent regeneration and offers a potential approach for lowering serum cholesterol and LDL levels.

  1. Surface Modification of Electrospun PVDF/PAN Nanofibrous Layers by Low Vacuum Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Fatma Yalcinkaya

    2016-01-01

    Full Text Available Nanofibres are very promising for water remediation due to their high porosity and small pore size. Mechanical properties of nanofibres restrict the application of pressure needed water treatments. Various PAN, PVDF, and PVDF/PAN nanofibre layers were produced, and mechanical properties were improved via a lamination process. Low vacuum plasma treatment was applied for the surface modification of nanofibres. Atmospheric air was used to improve hydrophilicity while sulphur hexafluoride gas was used to improve hydrophobicity of membranes. Hydrophilic membranes showed higher affinity to attach plasma particles compared to hydrophobic membranes.

  2. Plasma Level Formaldehyde in Children Receiving Pulpotomy Treatment under General Anesthesia.

    Science.gov (United States)

    Bagrizan, Majid; Pourgolshani, Pouya; Hosseinpour, Sepanta; Jalalpour, Golnoush; Shahrestani, Mostafa Zahmatkesh

    Formocresol has long been used by dentists for pulpotomy of primary teeth. Due to some concerns regarding its possible carcinogenicity, formocresol has been the topic of numerous studies. This study sought to assess the changes in plasma level of formaldehyde of children after receiving pulpotomy under general anesthesia. Twenty-five children between 2-6 years requiring dental treatments under general anesthesia were studied. Blood samples were taken of children before and after the procedure. Plasma level of formaldehyde was measured using high performance liquid chromatography (HPLC). A total of 106 pulpotomy treatments were performed in 25 children using 126 cotton pellets dipped in formocresol. An increase and a decrease in plasma level of formaldehyde were noted in 5 (20%) and 20 (80%) children, respectively post-operatively compared to baseline. The t-test showed no significant difference in plasma level of formaldehyde pre- and postoperatively (P=0.12). the plasma level of formaldehyde in children who had higher levels of formaldehyde prior to the operation was also higher than that of others after the operation and this association was statistically significant (P=0.001, r=0.64). The results showed no significant change in the mean plasma level of formaldehyde in children who received pulpotomy under general anesthesia compared to its baseline value.

  3. Effect of oxygen plasma treatment on adhesion improvement of Au deposited on Pa-c substrates

    International Nuclear Information System (INIS)

    Lee, Jeong Hoon; Hwang, Kyo Seon; Kim, Tae Song; Seong, Jin Wook; Yoon, Ki Hyun; Ahn, Sae Young

    2004-01-01

    Adhesion of gold on parylene C (Pa-c) is a major hurdle in achieving reliable and durable performance for biosensor application due to the hydrophobicity of Pa-c. It is, therefore, imperative to put efforts to improve adhesion between Au and Pa-c. In this reseach, oxygen plasma treatment for adhesion improvement was performed on Pa-c surfaces at various plasma powers and times. To analyze the relation of surface energy and roughness to adhesion promotion, we used several techniques such as contact-angle, surface-energy, surface-roughness, and adhesion analyses. As the oxygen plasma power and time were increased, the surface roughness of Pa-c increased. Also, Au films had larger and more uniform grain sizes as the oxygen plasma power and time were increased. Untreated surfaces revealed a contact angle of 108 .deg. , but the contact angle drastically decreased in the initial stage of oxygen plasma treatment and slowly decreased with increasing power and time to values of 27.3 and 34, respectively. From the adhesion analysis, adhesion was improved as the plasma power or time was increased. The improvement of adhesion is related to an increase in roughness as well as carbonyl groups.

  4. Energy-dependent finite-orbit treatment for plasma buildup in mirror fusion devices

    International Nuclear Information System (INIS)

    Campbell, M.M.

    1980-01-01

    A computer simulation of hot plasma buildup in mirror fusion devices and results from this model are presented. In a small, hot magnetically confined plasma, the ion orbit radius (rho/sub i/) can be comparable to the plasma radius (R/sub p/). It a mirror-confined plasma were rho/sub i//R/sub p/ > 1/25 (such as 2XII-B), a point kinetic treatment of ion interactions becomes inaccurate and a finite gyro-radius (FGR) treatment must be used to adequately describe plasma buildup processes. This is particularly true for describing losses due to cold-gas charge exchange (c-x) near the plasma surface, since a particle lost near the vacuum interface may have contributed to the density as far as 2 rho/sub i/ radially inward from the c-x point. A similar FGR effect applies to beam-deposited ions whose large orbits influence the density up to 2 rho/sub i/ from the trapping point

  5. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Chráska, Tomáš; Pala, Zdeněk; Mušálek, Radek; Medřický, Jan; Vilémová, Monika

    2015-01-01

    Roč. 24, č. 4 (2015), s. 637-643 ISSN 1059-9630 R&D Projects: GA ČR GAP107/12/1922 Institutional support: RVO:61389021 Keywords : ceramic s * heat treatment * nanostructured materials Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 1.568, year: 2015

  6. Clinical significance of determination of changes of plasma ET and serum TNF content after treatment in patients with diabetes millitus

    International Nuclear Information System (INIS)

    Zhang Jianguo; Wu Jiaming

    2006-01-01

    Objective: To investigate the clinical significance of the changes of plasma ET and serum TNF levels after treatment in patients with diabetes millitus. Methods: Plasma ET and serum TNF contents were determined with RIA in 54 patients with diabetes mellitus both before and after treatment as well as in 35 controls. Results: Before treatment, the plasma ET and serum TNF levels were significantly in the diabetics higher than those in the controls (P<0.01). After 3 months treatment, the levels remained significantly higher (P<0.05). Conclusion: Development and progression of diabetes millitus were closely related to the plasma ET and serum TNF levels. (authors)

  7. Effects of plasma treatment time on surface characteristics of indium-tin-oxide film for resistive switching storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Po-Hsun [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Chang, Kuan-Chang, E-mail: kcchang@pkusz.edu.cn [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); School of Electronic and Computer Engineering, Peking University, Shenzhen 518055 (China); Tsai, Tsung-Ming; Pan, Chih-Hung; Shih, Chih-Cheng; Wu, Cheng-Hsien; Yang, Chih-Cheng; Chen, Wen-Chung; Lin, Jiun-Chiu; Wang, Ming-Hui [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Zheng, Hao-Xuan; Chen, Min-Chen [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Sze, Simon M. [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 300, Taiwan, ROC (China)

    2017-08-31

    In this paper, we implement a post-oxidation method to modify surface characteristics of indium tin oxide (ITO) films by using an O{sub 2} inductively coupled plasma (ICP) treatment. Based on field emission-scanning electron microscope (FE-SEM) and atomic force microscope (AFM) analysis, we found that the surface morphologies of the ITO films become slightly flatter after the O{sub 2} plasma treatment. The optical characteristics and X-ray diffraction (XRD) experiments of either pure ITO or O{sub 2} plasma treated ITO films were also verified. Even though the XRD results showed no difference from bulk crystallizations, the oxygen concentrations increased at the film surface after O{sub 2} plasma treatment, according to the XPS inspection results. Moreover, this study investigated the effects of two different plasma treatment times on oxygen concentration in the ITO films. The surface sheet resistance of the plasma treated ITO films became nearly non-conductive when measured with a 4-point probe. Finally, we applied the O{sub 2} plasma treated ITO films as the insulator in resistive random access memory (RRAM) to examine their potential for use in resistive switching storage applications. Stable resistance switching characteristics were obtained by applying the O{sub 2} plasma treatment to the ITO-based RRAM. We also confirmed the relationship between plasma treatment time and RRAM performance. These material analyses and electrical measurements suggest possible advantages in using this plasma treatment technique in device fabrication processes for RRAM applications.

  8. Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma.

    Science.gov (United States)

    Patange, Apurva; Boehm, Daniela; Bueno-Ferrer, Carmen; Cullen, P J; Bourke, Paula

    2017-09-01

    Brochothrix thermosphacta is the predominant spoilage microorganism in meat and its control in processing environments is important to maintain meat product quality. Atmospheric cold plasma is of interest for control of pathogenic and spoilage microorganisms in foods. This study ascertained the potential of dielectric barrier discharge atmospheric cold plasma (DBD-ACP) for control of B. thermosphacta, taking microbial and food environment factors into consideration, and investigated the shelf-life of lamb chop after in-package plasma treatment in modified atmosphere. Community profiling was used to assess the treatment effects on the lamb microflora. ACP treatment (80 kV) for 30s inactivated B. thermosphacta populations below detection levels in PBS, while 5 min treatment achieved a 2 Log cycle reduction using a complex meat model medium and attached cells. The antimicrobial efficacy of plasma was reduced but still apparent on lamb chop surface-inoculated with high concentrations of B. thermosphacta. Lamb chop treated under modified atmosphere exhibited reduced microbial growth over the product shelf-life and community profiling showed no evident changes to the microbial populations after the treatment. The overall results indicated potential of ACP to enhance microbial control leading to meat storage life extension through adjusting the modality of treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Dielectric barrier Discharge Plasma Actuator Characterization and Application

    NARCIS (Netherlands)

    Correale, G.

    2016-01-01

    An experimental investigation about nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuator is presented in this thesis. This work aimed to answer fundamental questions on the actuation mechanism of this device. In order to do so, parametric studies in a quiescent air as well as laminar

  10. [Platelet rich plasma versus oral paracetamol for the treatment of early knee osteoarthritis. Preliminary study].

    Science.gov (United States)

    Acosta-Olivo, Carlos; Esponda-Colmenares, Francisco; Vilchez-Cavazos, Félix; Lara-Arias, Jorge; Mendoza-Lemus, Oscar; Ramos-Morales, Tomas

    2014-01-01

    in the treatment of early osteoartrosis, analgesics and non-steroidal anti-inflammatory drugs are frequently used to relieve pain. Currently, platelet rich plasma is used as an alternative in the treatment of osteoartrosis. The aim of this study was to evaluate the effect of platelet rich plasma compared to paracetamol as a treatment for patients with knee osteoartrosis grade I. we evaluated 42 patients who were randomized into two groups. Group one was treated with 5 mL of platelet rich plasma in two applications, while group two was treated with 1 gr of oral paracetamol every 8 hours for 30 days. Both patient groups received supervised physical rehabilitation during the 6 month observation period. Peripheral blood samples were taken to measure plasma IL-1β, TNF-a and TGF-β1 levels at day 0 and at 6 months post-treatment. Clinical evaluation was conducted using the KOOS at the start of the study and for every subsequent month during the study period. the Knee injury and Osteoarthritis Outcome Score (KOOS) for group one at the start of the treatment was measured at 30.1 points, whereas at the end, it was measured at 48.2 points, showing a clinical improvement of 60%. There were no statistically significant differences in IL-1β and TNF-a levels between groups treated either with platelet rich plasma or paracetamol. Our patients treated with platelet rich plasma showed a statistically significant increase in the serum levels of TGF-β1, which was associated with an improvement in the clinical evaluation used (KOOS).

  11. Modification of wetting of copper (Cu) on carbon (C) by plasma treatment and molybdenum (Mo) interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmenger-Sittner, C. [Vienna University of Technology, Institute of Solid State Physics, E-138, Thin Film Group, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria)]. E-mail: christoph.eisenmenger@ifp.tuwien.ac.at; Schrank, C. [Vienna University of Technology, Institute of Solid State Physics, E-138, Thin Film Group, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Neubauer, E. [ARC Seibersdorf Research, Department Materials Research, A-2444 Seibersdorf (Austria); Eiper, E. [Erich Schmid Institute, Leoben (Austria); Keckes, J. [Erich Schmid Institute, Leoben (Austria); Materials Center Leoben, Leoben (Austria)

    2006-05-30

    Manipulating wetting and adhesion between the chemically immiscible elements Cu and C is of high interest for the production of C-fiber reinforced Cu-C metal matrix composites (MMC's) which are potential materials for high performance heat sinks. This work presents two approaches to adhesion manipulation: (i) the activation of the C-surface by a treatment in nitrogen (N{sub 2}) radio frequency (RF) plasma and (ii) the deposition of a Mo-interlayer on the C-surface. Both approaches yield a significant increase in adhesion for Cu-coatings deposited immediately after pre treatment. Heat treatment (30 min, 800 deg. C, high vacuum furnace) leads to a drastic loss in adhesion for the plasma treated samples while the samples containing the Mo-interlayer retain excellent adhesion values. Results of thermal cycling experiments (RT-500 deg. C) combined with in situ X-ray diffraction (XRD) measurements show a similar picture. The Cu-coating on the plasma treated sample delaminates after one cycle. The sample with the Mo-interlayer can go through several cycles and is able to sustain thermally induced stresses. The difference in the response of the two sample types to post deposition thermal treatment can be tracked back to the de-wetting behavior of Cu on the different substrates. Void formation is observed at the Cu-C interface in the case of plasma treatment but not for samples with a Mo-interlayer.

  12. CF4 plasma treatment on nanostructure band engineered Gd2O3-nanocrystal nonvolatile memory

    Science.gov (United States)

    Wang, Jer-Chyi; Lin, Chih-Ting

    2011-03-01

    The effects of CF4 plasma treatment on Gd2O3 nanocrystal (NC) memory were investigated. For material analysis, secondary ion mass spectrometry and x-ray photoelectron spectroscopy analyses were performed to characterize the fluorine depth profile of the Gd2O3-NC film. In addition, an UV-visible spectrophotometer was used to obtain the Gd2O3 bandgap and analyzed to suggest the modified structure of the energy band. Moreover, the electrical properties, including the memory window, program/erase speed, charge retention, and endurance characteristics were significantly improved depending on the CF4 plasma treatment conditions. This can be explained by the physical model based on the built-in electric field in the Gd2O3 nanostructure. However, it was observed that too much CF4 plasma caused large surface roughness induced by the plasma damage, leading to characteristics degradation. It was concluded that with suitable CF4 plasma treatment, this Gd2O3-NC memory can be applied to future nonvolatile memory applications.

  13. Small-scale demonstration of nonthermal plasma VOC treatment at Tinker AFB

    Energy Technology Data Exchange (ETDEWEB)

    Korzekwa, R.A.; Rosocha, L.A.

    1996-10-22

    Nonthermal plasma (NTP) technology is a promising candidate for the treatment of air pollutants. An NTP is different from a thermal plasma in that high energy electrons are used to create chemically active species without raising the gas to high temperatures. NTPs have the potential of simultaneous removal of multiple air pollutants with better control over treatment byproducts. A silent discharge plasma (SDP) configuration is one method of easily generating such a nonthermal plasma. Silent electrical discharge plasma (dielectric barrier) reactors can decompose gas-phase pollutants by free-radical attack or electron-induced fragmentation. The radicals or electrons are produced by the large average volume nonthermal plasmas generated in the reactor. In the past decade, the barrier configuration has attracted attention for destroying toxic chemical agents for the military, removing harmful greenhouse gases (oxides of sulfur and nitrogen - SO{sub x} and NO{sub x}), and treating other environmentally-hazardous chemical compounds (hydrocarbons, chlorocarbons, and chlorofluorocarbons). At the Los Alamos National Laboratory (LANL), the authors have been studying the silent discharge plasma for processing gaseous-based hazardous chemicals for approximately five years. The key objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more easily managed. The main applications have been for treating off-gases from thermal treatment units (e.g., incinerators, high-temperature packed bed reactors, arc melters; low-temperature thermal desorbers), and for abating hazardous air-pollutant emissions (e.g., industrial air emissions, vapors extracted from contaminated soil or groundwater).

  14. Atmospheric-pressure plasma jet characterization and applications on melanoma cancer treatment (B/16-F10)

    Science.gov (United States)

    Mashayekh, Shahriar; Rajaee, Hajar; Akhlaghi, Morteza; Shokri, Babak; Hassan, Zuhir M.

    2015-09-01

    A new approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper, a pin-to-hole plasma jet for biological applications has been designed and manufactured and characterized. The characterization includes power consumption via Lissajous method, thermal behavior of atmospheric-pressure plasma jet by using Infra-red camera as a novel method and using Speicair software to determine vibrational and transitional temperatures, and optical emission spectroscopy to determine the generated species. Treatment of Melanoma cancer cells (B16/F10) was also implemented, and tetrazolium salt dye (MTT assay) and flow cytometry were used to evaluate viability. Effect of ultraviolet photons on cancerous cells was also observed using an MgF2 crystal with MTT assay. Finally, in-vivo studies on C57 type mice were also done in order to have a better understanding of the effects in real conditions.

  15. Atmospheric-pressure plasma jet characterization and applications on melanoma cancer treatment (B/16-F10)

    Energy Technology Data Exchange (ETDEWEB)

    Mashayekh, Shahriar [Physics Department, Shahid Beheshti University, G.C., Evin, 19839-63113 Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Rajaee, Hajar; Hassan, Zuhir M. [Imonology Department, Faculty of Medical Science, Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Akhlaghi, Morteza [Laser-Plasma Research Institute, Shahid Beheshti University, G.C., Evin, 19839-63113 Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Shokri, Babak [Physics Department and Laser-Plasma Research Institute, Shahid Beheshti University, G.C., Evin, 19839-63113 Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-09-15

    A new approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper, a pin-to-hole plasma jet for biological applications has been designed and manufactured and characterized. The characterization includes power consumption via Lissajous method, thermal behavior of atmospheric-pressure plasma jet by using Infra-red camera as a novel method and using Speicair software to determine vibrational and transitional temperatures, and optical emission spectroscopy to determine the generated species. Treatment of Melanoma cancer cells (B16/F10) was also implemented, and tetrazolium salt dye (MTT assay) and flow cytometry were used to evaluate viability. Effect of ultraviolet photons on cancerous cells was also observed using an MgF{sub 2} crystal with MTT assay. Finally, in-vivo studies on C57 type mice were also done in order to have a better understanding of the effects in real conditions.

  16. Levels of cell-free DNA and plasma KRAS during treatment of advanced NSCLC

    DEFF Research Database (Denmark)

    Dowler Nygaard, Anneli; Spindler, Karen-Lise Garm; Pallisgaard, Niels

    2014-01-01

    be analysed in plasma and may increase the scientific use of such measurements. In the present study, we investigated: i) the dynamics of cfDNA and plasma mutated KRAS (pmKRAS) during the treatment of patients with advanced NSCLC; and ii) the prognostic value of baseline cfDNA and pmKRAS. Sixty‑nine patients......Non-small cell lung cancer (NSCLC) is one of the most common malignant tumours in the western world and is associated with a poor prognosis. Biomarkers predicting prognosis and therapeutic effects are highly required, and cell-free DNA (cfDNA) may be a feasible option. Genetic mutations can...... were included in a prospective biomarker trial. Inclusion criteria included advanced NSCLC, candidate for first-line treatment, no previous cancer within the five years prior to this study. Blood samples were drawn at baseline, day 8 and at progression. Analyses of cfDNA and KRAS mutations in plasma...

  17. Enhancement of the Laser Transmission Weldability between Polyethylene and Polyoxymethylene by Plasma Surface Treatment

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2017-12-01

    Full Text Available Due to their large compatibility difference, polyethylene (PE and polyoxymethylene (POM cannot be welded together by laser transmission welding. In this study, PE and POM are pretreated using plasma that significantly enhances their laser transmission welding strength. To understand the mechanism underlying the laser welding strength enhancement, surface modification is analyzed using contact angle measurements, atomic force microscopy (AFM, optical microscopy, and X-ray photoelectron spectroscopy (XPS. Characterization results show that the plasma surface treatment improves the surface free energy, significantly enhancing the wettability of the materials. The increase in surface roughness and the generation of homogeneous bubbles contribute to the formation of mechanical micro-interlocking. The oxygen-containing groups introduced by the oxygen plasma treatment improve the compatibility of PE and POM, and facilitate the diffusion and entanglement of molecular chains and the formation of van der Waals force.

  18. Long-wave plasma radiofrequency ablation for treatment of xanthelasma palpebrarum.

    Science.gov (United States)

    Baroni, Adone

    2018-03-01

    Xanthelasma palpebrarum is the most common type of xanthoma affecting the eyelids. It is characterized by asymptomatic soft yellowish macules, papules, or plaques over the upper and lower eyelids. Many treatments are available for management of xanthelasma palpebrarum, the most commonly used include surgical excision, ablative CO 2 or erbium lasers, nonablative Q-switched Nd:YAG laser, trichloroacetic acid peeling, and radiofrequency ablation. This study aims to evaluate the effectiveness of RF ablation in the treatment of xanthelasma palpebrarum, with D.A.S. Medical portable device (Technolux, Italia), a radiofrequency tool working with long-wave plasma energy and without anesthesia. Twenty patients, 15 female and 5 male, affected by xanthelasma palpebrarum, were enrolled for long-wave plasma radiofrequency ablation treatment. The treatment consisted of 3/4 sessions that were carried out at intervals of 30 days. Treatments were well tolerated by all patients with no adverse effects and optimal aesthetic results. The procedure is very fast and can be performed without anesthesia because of the low and tolerable pain stimulation. Long-wave plasma radiofrequency ablation is an effective option for treatment of xanthelasma palpebrarum and adds an additional tool to the increasing list of medical devices for aesthetic treatments. © 2018 Wiley Periodicals, Inc.

  19. Environmental and economic vision of plasma treatment of waste in Makkah

    Science.gov (United States)

    Galaly, Ahmed Rida; van Oost, Guido

    2017-10-01

    An environmental and economic assessment of the development of a plasma-chemical reactor equipped with plasma torches for the environmentally friendly treatment of waste streams by plasma is outlined with a view to the chemical and energetic valorization of the sustainability in the Kingdom of Saudi Arabia (KSA). This is especially applicable in the pilgrimage season in the city of Makkah, which is a major challenge since the amount of waste was estimated at about 750 thousand tons through Arabic Year 1435H (2015), and is growing at a rate of 3%-5% annually. According to statistics, the value of waste in Saudi Arabia ranges between 8 and 9 billion EUR. The Plasma-Treatment Project (PTP) encompasses the direct plasma treatment of all types of waste (from source and landfill), as well as an environmental vision and economic evaluation of the use of the gas produced for fuel and electricity production in KSA, especially in the pilgrimage season in the holy city Makkah. The electrical power required for the plasma-treatment process is estimated at 5000 kW (2000 kW used for the operation of the system and 3000 kW sold), taking into account the fact that: (1) the processing capacity of solid waste is 100 tons per day (2) and the sale of electricity amounts to 23.8 MW at 0.18 EUR per kWh. (3) The profit from the sale of electricity per year is estimated at 3.27 million EUR and the estimated profit of solid-waste treatment amounts to 6 million EUR per year and (4) the gross profit per ton of solid waste totals 8 million EUR per year. The present article introduces the first stage of the PTP, in Makkah in the pilgrimage season, which consists of five stages: (1) study and treatment of waste streams, (2) slaughterhouse waste treatment, (3) treatment of refuse-derived fuel, (4) treatment of car tires and (5) treatment of slag (the fifth stage associated with each stage from the four previous stages).

  20. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations

    DEFF Research Database (Denmark)

    Nielsen, Tenna Ruest Haarmark; Fonvig, Cilius Esmann; Dahl, Maria

    2018-01-01

    OBJECTIVE: The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during...... childhood obesity treatment. METHODS: 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6-21.7), and median BMI SDS 2.8 (range 1.3-5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0......, and 80% improved their lipid concentrations. CONCLUSION: Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma lipid concentrations. Even in individuals increasing their BMI SDS, body composition...

  1. Post-Plasma SiOx Coatings of Metal and Metal Oxide Nanoparticles for Enhanced Thermal Stability and Tunable Photoactivity Applications

    Science.gov (United States)

    Post, Patrick; Jidenko, Nicolas; Weber, Alfred P.; Borra, Jean-Pascal

    2016-01-01

    The plasma-based aerosol process developed for the direct coating of particles in gases with silicon oxide in a continuous chemical vapor deposition (CVD) process is presented. It is shown that non-thermal plasma filaments induced in a dielectric barrier discharge (DBD) at atmospheric pressure trigger post-DBD gas phase reactions. DBD operating conditions are first scanned to produce ozone and dinitrogen pentoxide. In the selected conditions, these plasma species react with gaseous tetraethyl orthosilicate (TEOS) precursor downstream of the DBD. The gaseous intermediates then condense on the surface of nanoparticles and self-reactions lead to homogeneous solid SiOx coatings, with thickness from nanometer to micrometer. This confirms the interest of post-DBD injection of the organo-silicon precursor to achieve stable production of actives species with subsequent controlled thickness of SiOx coatings. SiOx coatings of spherical and agglomerated metal and metal oxide nanoparticles (Pt, CuO, TiO2) are achieved. In the selected DBD operating conditions, the thickness of homogeneous nanometer sized coatings of spherical nanoparticles depends on the reaction duration and on the precursor concentration. For agglomerates, operating conditions can be tuned to cover preferentially the interparticle contact zones between primary particles, shifting the sintering of platinum agglomerates to much higher temperatures than the usual sintering temperature. Potential applications for enhanced thermal stability and tunable photoactivity of coated agglomerates are presented. PMID:28335219

  2. Microwave-driven plasma gasification for biomass waste treatment at miniature scale

    NARCIS (Netherlands)

    Sturm, G.S.J.; Navarrete Muñoz, A.; Purushothaman Vellayani, A.; Stefanidis, G.

    2016-01-01

    Gasification technology may combine waste treatment with energy generation. Conventional gasification processes are bulky and inflexible. By using an external energy source, in the form of microwave-generated plasma, equipment size may be reduced and flexibility as regards to the feed composition

  3. Treatment of PET nonwoven with a water vapor or carbon dioxide plasma

    NARCIS (Netherlands)

    Klomp, A.J.A.; Klomp, A.J.A.; Terlingen, J.G.A.; Terlingen, J.G.A.; Takens, G.A.J.; Takens, G.A.J.; Strikker, A.; Engbers, G.H.M.; Feijen, Jan

    2000-01-01

    Gas plasma treatment of poly(ethylene terephthalate) nonwoven (NW-PET) was used to increase the hydrophilicity of single- and multilayer NW-PET. NW-PET was treated with a pulsatile CO2 or with a pulsatile H2O glow discharge. X-ray photoelectron spectroscopy (XPS) showed significantly more oxygen

  4. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment

    Czech Academy of Sciences Publication Activity Database

    Novotná, Z.; Rimpelová, S.; Juřík, P.; Veselý, M.; Kolská, Z.; Hubáček, Tomáš; Borovec, Jakub; Švorčík, V.

    2017-01-01

    Roč. 12, JUN (2017), č. článku 424. ISSN 1556-276X R&D Projects: GA MŠk LM2015075 Institutional support: RVO:60077344 Keywords : polyetheretherketone * plasma treatment * gold sputtering * atomic force microscopy Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 2.833, year: 2016

  5. Formation of methyl nitrite and methyl nitrate during plasma treatment of diesel exhaust

    DEFF Research Database (Denmark)

    Wallington, TJ; Hoard, JW; Andersen, Mads Peter Sulbæk

    2003-01-01

    FIR spectroscopy was used to identify CH3ONO and CH3ONO2 as products of the nonthermal plasma treatment of simulated diesel exhaust. This is the first observation of CH3ONO formation in such systems. The yield of CH3ONO relative to CH3ONO2 scaled linearly with the average [NO]/ [NO2] ratio in the...

  6. Continuous Plasma Treatment of Ultra-High-Molecular-Weight Polyethylene (UHMWPE) Fibres for Adhesion Improvement

    DEFF Research Database (Denmark)

    Teodoru, Steluta; Kusano, Yukihiro; Rozlosnik, Noemi

    2009-01-01

    A dielectric barrier discharge in Ar, He, He/O2, N2 or O2 at atmospheric pressure was used for the continuous plasma treatment of UHMWPE fibres. The influence of the input power of the discharge and the gas flow rate on surface modification is studied with the aim of adhesion improvement. Surface...

  7. Investigation of Plasma Treatment on Micro-Injection Moulded Microneedle for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Karthik Nair

    2015-10-01

    Full Text Available Plasma technology has been widely used to increase the surface energy of the polymer surfaces for many industrial applications; in particular to increase in wettability. The present work was carried out to investigate how surface modification using plasma treatment modifies the surface energy of micro-injection moulded microneedles and its influence on drug delivery. Microneedles of polyether ether ketone and polycarbonate and have been manufactured using micro-injection moulding and samples from each production batch have been subsequently subjected to a range of plasma treatment. These samples were coated with bovine serum albumin to study the protein adsorption on these treated polymer surfaces. Sample surfaces structures, before and after treatment, were studied using atomic force microscope and surface energies have been obtained using contact angle measurement and calculated using the Owens-Wendt theory. Adsorption performance of bovine serum albumin and release kinetics for each sample set was assessed using a Franz diffusion cell. Results indicate that plasma treatment significantly increases the surface energy and roughness of the microneedles resulting in better adsorption and release of BSA.

  8. Effect of adjunct metformin treatment on levels of plasma lipids in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Lund, S.S.; Tarnow, L.; Astrup, A.S.

    2009-01-01

    , we report the effect of a 1-year treatment with metformin vs. placebo on plasma lipids in T1DM patients and persistent poor glycaemic control. METHODS: One hundred T1DM patients with haemoglobinA(1c) (HbA(1c)) > or =8.5% during the year before enrolment entered a 1-month run-in period on placebo...

  9. Antimicrobial and cold plasma treatments for inactivation of listeria monocytogenes on whole apple surface

    Science.gov (United States)

    Introduction: Produce and bacterial cell surface structure play an important role as to where and how bacteria attach to produce surfaces. The efficacy of a novel antimicrobial solution developed in our laboratory was investigated in combination with cold plasma treatments for inactivation of Liste...

  10. Plasma TIMP-1 levels and treatment outcome in patients treated with XELOX for metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Frederiksen, C.; Qvortrup, C.; Christensen, I.J.

    2011-01-01

    associations between baseline TIMP-1 or CEA levels and best response to treatment or progression-free survival (PFS) could be demonstrated. In contrast, high baseline plasma TIMP-1 levels were associated with poor overall survival (OS), P = 0.008, hazard ratio (HR) = 1.80 [95% confidence interval (CI): 1...

  11. Circulating plasma platinum more than 10 years after cisplatin treatment for testicular cancer

    NARCIS (Netherlands)

    Gietema, JA; Meinardi, MT; Messerschmidt, J; Gelevert, T; Alt, F; Uges, DRA; Sleijfer, DT

    2000-01-01

    We have shown in patients cured from metastatic testicular cancer that up to 20 years after administration of cisplatin-containing chemotherapy, circulating platinum is still detectable in plasma. This finding may influence the development of long-term, treatment-related side-effects.

  12. Corona Glow Discharge Plasma Treatment for Hidrophylicity Improvement of Polyester and Cotton Fabrics

    Science.gov (United States)

    Susan, A. I.; Widodo, M.; Nur, M.

    2017-07-01

    The effects of irradiation by a corona glow discharge plasma on hidrophylicity properties of polyester and cotton fabrics were investigated. We used a corona glow discharge plasma reactor with multiple points to plane electrodes, which was generated by a high voltage DC. Factors that affect the hidrophylicity properties were identified and evaluated as functions of irradiation parameters, which include duration of treatment, distance between electrodes, and bias voltage. It was readily observed from SEM examinations that plasma changed the surface morphology of both polyester and cotton fibers, giving result to an increased roughness to both of them. Results also showed that the hidrophylicityof polyester and cotton fabrics improved by the treatment, which is proportional to the time of treatment and voltage, but inversely proportional to the distance between electrodes. Time of treatment that provided the optimum enhancement of hidrophylicity for cotton is 15 minutes which improved the wetting time from 8.16 seconds to 1.26 seconds. For polyester, it took 15 minutes of irradiation time to improve the wetting time from 7340 seconds to 2905 seconds. The optimum distance between electrodes for both fabrics in this study was found to be 2 cm. Further analysis showed that the improved hidrophylicity properties is due to the creation of surface radicals by free radicals in the plasma leading to the formation of new water-attracting functional groups on the fiber surface.

  13. Surface characterization of the chitosan membrane after oxygen plasma treatment and its aging effect

    International Nuclear Information System (INIS)

    Wang Yingjun; Yin Shiheng; Ren Li; Zhao Lianna

    2009-01-01

    Chitosan has received considerable attention for biomedical applications in recent years because of its biocompatibility and biodegradability. In this paper, angle-resolved x-ray photoelectron spectroscopy (ARXPS) was carried out to investigate the chemical groups' spatial orientation on the chitosan membrane surface. Oxygen plasma treatment was also employed to improve the surface hydrophilicity of the chitosan membrane. The results of ARXPS revealed the distribution of surface polar groups, such as-OH and O=CNH 2 toward the membrane bulk, which was the origin of the chitosan membrane surface hydrophobicity. The contact angle measurements and XPS results indicated that oxygen plasma treatment can markedly improve the surface hydrophilicity and surface energy of the chitosan membrane by incorporating oxygen-containing polar groups. With the existence of the aging process, the influence of plasma treatment was not permanent, it faded with storage time. The ARXPS result discovered that the reorientation of polar functional groups generated by plasma treatment toward the membrane bulk was primarily responsible for the aging effect.

  14. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  15. Selective etching of semicrystalline polymers CF4 gas plasma treatment of poly(ethylene)

    NARCIS (Netherlands)

    Olde riekerink, M.B.; Terlingen, J.G.A.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, Jan

    1999-01-01

    A series of poly(ethylene) (PE) films with different degrees of crystallinity was treated with a radio-frequency tetrafluoromethane (CF4) gas plasma (48-49 W, 0.06-0.07 mbar, and continuous vs pulsed treatment). The etching behavior and surface chemical and structural changes of the PE films were

  16. Anti-bacterial treatment of polyethylene by cold plasma for medical purposes

    Czech Academy of Sciences Publication Activity Database

    Popelka, A.; Novák, I.; Lehocký, M.; Chodák, I.; Sedliačik, J.; Gajtanska, M.; Sedliačiková, M.; Vesel, A.; Junkar, I.; Kleinová, A.; Špírková, Milena; Bílek, F.

    2012-01-01

    Roč. 17, č. 1 (2012), s. 762-785 ISSN 1420-3049 R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyethylene * grafting * plasma treatment Subject RIV: JI - Composite Materials Impact factor: 2.428, year: 2012

  17. Treatment with cinacalcet increases plasma sclerostin concentration in hemodialysis patients with secondary hyperparathyroidism.

    Science.gov (United States)

    Kuczera, Piotr; Adamczak, Marcin; Więcek, Andrzej

    2016-11-15

    Sclerostin is a paracrine acting factor, which is expressed in the osteocytes and articular chondrocytes. Sclerostin decreases the osteoblast-related bone formation through the inhibition of the Wnt/β-catenin pathway. Osteocytes also express the Calcium sensing receptor which is a target for cinacalcet. The aim of this study was to assess the influence of six-month cinacalcet treatment on plasma sclerostin concentration in hemodialysed patients with secondary hyperparathyroidism (sHPT). In 58 hemodialysed patients with sHPT (PTH > 300 pg/ml) plasma sclerostin and serum PTH, calcium and phosphate concentrations were assessed before the first dose of cinacalcet and after 3 and 6 months of treatment. Serum PTH concentration decreased after 3 and 6 month of treatment from 1138 (931-1345) pg/ml to 772 (551-992) pg/ml and to 635 (430-839) pg/ml, respectively. Mean serum calcium and phosphate concentrations remained stable. Plasma sclerostin concentration increased after 3 and 6 months of treatment from 1.66 (1.35-1.96) ng/ml, to 1.77 (1.43-2.12) ng/ml and to 1.87 (1.50-2.25) ng/ml, respectively. In 42 patients with cinacalcet induced serum PTH decrease plasma sclerostin concentration increased after 3 and 6 months of treatment from 1.51 (1.19-1.84) ng/ml to 1.59 (1.29-1.89) ng/ml and to 1.75 (1.42-2.01) ng/ml, respectively. Contrary, in the 16 patients without cinacalcet induced serum PTH decrease plasma sclerostin concentration was stable. Plasma sclerostin concentrations correlated inversely with serum PTH concentrations at the baseline and also after 6 months of treatment. 1. In hemodialysed patients with secondary hyperparathyroidism treatment with cinacalcet increases plasma sclerostin concentration 2. This effect seems to be related to decrease of serum PTH concentration.

  18. Nanostructuring of polymethylpentene by plasma and heat treatment for improved biocompatibility

    Czech Academy of Sciences Publication Activity Database

    Slepička, P.; Kasálková-Slepičková, N.; Kolská, Z.; Macková, Anna; Bačáková, Lucie; Švorčík, V.; Malinský, Petr; Trostová, S.

    2012-01-01

    Roč. 97, č. 7 (2012), s. 1075-1082 ISSN 0141-3910 R&D Projects: GA ČR GA106/09/0125; GA ČR(CZ) GAP108/10/1106; GA ČR(CZ) GAP108/12/1168 Institutional support: RVO:61389005 ; RVO:67985823 Keywords : Polymethylpentene * Plasma treatment * Thermal treatment * Surface chemistry * Cell proliferation * Morfology Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.770, year: 2012

  19. Attaining 2D Black Phosphorus and Investigations into Floating-Electrode Dielectric Barrier Discharge Treatment of Solutions

    Science.gov (United States)

    Smith, Joshua Benjamin

    -ray diffraction, transmission electron microscopy, and Raman spectroscopy have confirmed successful growth of 2D black phosphorus from red phosphorus thin films for potential uses in 2D semiconductor applications. Additionally, this work discusses some of the chemistry occurring in solution as a result of nonthermal plasma treatment from a floating-electrode dielectric barrier discharge (FE-DBD) configuration. Nonthermal plasma generation allows for the treatment of heat sensitive materials. This has opened up the field to numerous clinical applications of nonthermal plasma treatment including sterilization and wound healing along with potentials in dentistry, dermatology, and even food industries. FE-DBD plasma treatment of water was found to provide a wide-range antimicrobial solution that remained active following 2 years of aging. This plasma-treated water was found to generate a number of ROS/RNS and the formation of these components was studied and verified with UV/Vis and ESR spectroscopy. Enhanced effects were observed when cell culture medium was plasma treated, suggesting the formation of additional reactive species from the plasma treatment of a variety of biomolecules. It is essential to understand these effects for a number of reasons. The possibility to generate a wide range of antimicrobial solutions from air, water, and basic biomolecules could provide a solution for those bacteria that have developed antibiotic resistances. Simultaneously, information into the reaction mechanisms of this FE-DBD plasma treatment can be investigated. All of the applications mentioned above involve complex networks of basic biomolecules, from skin tissue to bacteria cell walls. This work analyzes the effects of plasma treatment on several biomolecule solutions and simultaneously takes aim at understanding some of the potential mechanisms of plasma treatment. Studies were carried out using NMR and GC/MS. This information was used to investigate the possible targeted areas for FE-DBD

  20. Effects of O2 plasma treatment of PDMS on the deposition of electrospun PVA nanofibers

    Science.gov (United States)

    Kobayashi, Natsumi; Miki, Norihisa; Hishida, Koichi; Hotta, Atsushi

    2014-03-01

    A new polymeric nanofiber-alignment technique with the selective deposition of the nanofibers using oxygen (O2) plasma treatment on a base material for the electrospinning was introduced. Generally, without any pretreatments, electrospun fibers are deposited randomly on the collector. In this work, we focused on the O2 plasma treatment of the surface of the base material to modify the surface morphology and to add polar groups to the surface. O2 plasma-treated and untreated surface of poly (dimethylsiloxane) (PDMS) was prepared by masking a part of PDMS film by another PDMS film. The polyvinyl alcohol (PVA) fibers were then deposited onto the PDMS film. The surface structure of the PDMS film with PVA nanofibers was analyzed by scanning electron microscopy, water contact angle measurements, and X-ray photon spectroscopy. Only a few PVA nanofibers were deposited randomly on the untreated area of the PDMS film, while a number of PVA nanofibers were selectively deposited onto the O2 plasma-treated area. Intriguingly, PVA nanofibers were neatly aligned along the border of the untreated and the treated areas. The contact angle of the plasma-treated surface of PDMS decreased from 105 to 22 degree and the atomic ratio of O/Si was 1.7 times higher than that of the untreated PDMS.

  1. Clinical significance of determination of changes of serum TSGF and plasma VEGF levels after treatment in patients with endometriosis

    International Nuclear Information System (INIS)

    Shi Shaohong; Tian Xiaoping

    2006-01-01

    Objective: To investigate the changes of serum TSGF and plasma VEGF levels after treatment in patients with endometriosis. Methods: Serum TSGF levels were determined with ELISA mad plasma VEGF levels with biochemistry in 31 patients with endometriosis both before and after treatment as well as in 30 controls. Results: Before treatment the serum TSGF and plasma VEGF levels in patients were significantly higher than those in the controls (P 0.05). Conclusion: Development of endometriosis were closely related to the plasma levels of VEGF and serum TSGF levels. (authors)

  2. Surface modification of polyvinyl alcohol/malonic acid nanofibers by gaseous dielectric barrier discharge plasma for glucose oxidase immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Afshari, Esmail, E-mail: e.afshari@mail.sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Mazinani, Saeedeh [Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, 15875-4413, Tehran (Iran, Islamic Republic of); Ranaei-Siadat, Seyed-Omid [Protein Research Center, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Ghomi, Hamid [Laser and Plasma Research Institute, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of)

    2016-11-01

    Highlights: • We fabricated polyvinyl alcohol/malonic acid nanofibers using electrospinning. • The surface nanofibers were modified by gaseous (air, nitrogen, CO{sub 2} and argon) dielectric barrier discharge. • Among them, air plasma had the most significant effect on glucose oxidase immobilization. • Chemical analysis showed that after modification of nanofibers by air plasma, the carboxyl group increased. • After air plasma treatment, reusability and storage stability of glucose oxidase immobilized on nanofibers improved. - Abstract: Polymeric nanofiber prepares a suitable situation for enzyme immobilization for variety of applications. In this research, we have fabricated polyvinyl alcohol (PVA)/malonic acid nanofibers using electrospinning. After fabrication of nanofibers, the effect of air, nitrogen, CO{sub 2}, and argon DBD (dielectric barrier discharge) plasmas on PVA/malonic acid nanofibers were analysed. Among them, air plasma had the most significant effect on glucose oxidase (GOx) immobilization. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrum analysis and X-ray photoelectron spectroscopy (XPS) results revealed that in case of air plasma modified nanofibers, the carboxyl groups on the surface are increased. The scanning electron microscopy (SEM) images showed that, after GOx immobilization, the modified nanofibers with plasma has retained its nanofiber structure. Finally, we analysed reusability and storage stability of GOx immobilized on plasma modified and unmodified nanofibers. The results were more satisfactory for modified nanofibers with respect to unmodified ones.

  3. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen

    International Nuclear Information System (INIS)

    Marković, Marijana; Jović, Milica; Stanković, Dalibor; Kovačević, Vesna; Roglić, Goran; Gojgić-Cvijović, Gordana; Manojlović, Dragan

    2015-01-01

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe 2+ ). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC–MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. - Highlights: • Twelve ibuprofen degradation products were identified in total. • The degradation percentage differed between treatments (DBD/Fe 2+ was 99%). • In DBD/Fe 2+ only aliphatic degradation products were identified. • V. fischeri was sensitive to ibuprofen solution after the Fenton treatment. • A. salina showed no toxic effect when exposed to all post treatment solutions

  4. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Marković, Marijana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Jović, Milica; Stanković, Dalibor [Innovation Center, Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Kovačević, Vesna [Faculty of Physics, University of Belgrade, P.O. Box 44, 11000 Belgrade (Serbia); Roglić, Goran [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Gojgić-Cvijović, Gordana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Manojlović, Dragan, E-mail: manojlo@chem.bg.ac.rs [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia)

    2015-02-01

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe{sup 2+}). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC–MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. - Highlights: • Twelve ibuprofen degradation products were identified in total. • The degradation percentage differed between treatments (DBD/Fe{sup 2+} was 99%). • In DBD/Fe{sup 2+} only aliphatic degradation products were identified. • V. fischeri was sensitive to ibuprofen solution after the Fenton treatment. • A. salina showed no toxic effect when exposed to all post treatment solutions.

  5. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... of an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  6. Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning

    Science.gov (United States)

    Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers were prepared by atmospheric plasma treatment and electrospinning. Atmospheric helium plasma treatment was first used to reduce the silver nitrate precursor in pre-electrospinning solutions into metallic silver nanoparticles, foll...

  7. Plasma oxysterols: biomarkers for diagnosis and treatment in spastic paraplegia type 5.

    Science.gov (United States)

    Marelli, Cecilia; Lamari, Foudil; Rainteau, Dominique; Lafourcade, Alexandre; Banneau, Guillaume; Humbert, Lydie; Monin, Marie-Lorraine; Petit, Elodie; Debs, Rabab; Castelnovo, Giovanni; Ollagnon, Elisabeth; Lavie, Julie; Pilliod, Julie; Coupry, Isabelle; Babin, Patrick J; Guissart, Claire; Benyounes, Imen; Ullmann, Urielle; Lesca, Gaetan; Thauvin-Robinet, Christel; Labauge, Pierre; Odent, Sylvie; Ewenczyk, Claire; Wolf, Claude; Stevanin, Giovanni; Hajage, David; Durr, Alexandra; Goizet, Cyril; Mochel, Fanny

    2018-01-01

    The hereditary spastic paraplegias are an expanding and heterogeneous group of disorders characterized by spasticity in the lower limbs. Plasma biomarkers are needed to guide the genetic testing of spastic paraplegia. Spastic paraplegia type 5 (SPG5) is an autosomal recessive spastic paraplegia due to mutations in CYP7B1, which encodes a cytochrome P450 7α-hydroxylase implicated in cholesterol and bile acids metabolism. We developed a method based on ultra-performance liquid chromatography electrospray tandem mass spectrometry to validate two plasma 25-hydroxycholesterol (25-OHC) and 27-hydroxycholesterol (27-OHC) as diagnostic biomarkers in a cohort of 21 patients with SPG5. For 14 patients, SPG5 was initially suspected on the basis of genetic analysis, and then confirmed by increased plasma 25-OHC, 27-OHC and their ratio to total cholesterol. For seven patients, the diagnosis was initially based on elevated plasma oxysterol levels and confirmed by the identification of two causal CYP7B1 mutations. The receiver operating characteristic curves analysis showed that 25-OHC, 27-OHC and their ratio to total cholesterol discriminated between SPG5 patients and healthy controls with 100% sensitivity and specificity. Taking advantage of the robustness of these plasma oxysterols, we then conducted a phase II therapeutic trial in 12 patients and tested whether candidate molecules (atorvastatin, chenodeoxycholic acid and resveratrol) can lower plasma oxysterols and improve bile acids profile. The trial consisted of a three-period, three-treatment crossover study and the six different sequences of three treatments were randomized. Using a linear mixed effect regression model with a random intercept, we observed that atorvastatin decreased moderately plasma 27-OHC (∼30%, P acids profile in SPG5 patients, with significantly decreased total serum bile acids associated with a relative decrease of ursodeoxycholic and lithocholic acids compared to deoxycholic acid. Treatment with

  8. Radioactive Waste Treatment and Conditioning Using Plasma Technology Pilot Plant: Testing and Commissioning

    International Nuclear Information System (INIS)

    Rafizi Salihuddin; Rohyiza Baan; Norasalwa Zakaria

    2016-01-01

    Plasma pilot plant was commissioned for research and development program on radioactive waste treatment. The plant is equipped with a 50 kW direct current of non-transferred arc plasma torch which mounted vertically on top of the combustion chamber. The plant also consists of a dual function chamber, a water cooling system, a compress air supply system and a control system. This paper devoted the outcome after testing and commissioning of the plant. The problems arise was discussed in order to find the possible suggestion to overcome the issues. (author)

  9. Plasma treatment of multiwall carbon nanotubes for dispersion improvement in water

    International Nuclear Information System (INIS)

    Chen Changlun; Ogino, Akihisa; Nagatsu, Masaaki; Wang Xiangke

    2010-01-01

    Microwave excited Ar/H 2 O surface-wave plasma was used to treat multiwall carbon nanotubes (MWCNTs) to modify their surface characteristics and thus improve their dispersion capability in water. Changes in the atom composition and structure properties of MWCNTs were analyzed using x-ray photoelectron spectroscopy and Raman spectroscopy, and the surface morphology of MWCNTs was observed by field emission scanning electron microscopy and scanning transmission electron microscopy. The results indicated that Ar/H 2 O plasma treatment greatly enhanced the content of oxygen, and modified surface microstructure properties. The integrity of nanotube patterns, however, was not damaged.

  10. Effect of plasma treatment on interface property of BCN/GaN structure

    Science.gov (United States)

    Shimada, Yoshiaki; Chikamatsu, Kentaro; Kimura, Chiharu; Aoki, Hidemitsu; Sugino, Takashi

    2006-11-01

    Interface properties of BCN/GaN metal-insulator-semiconductor (MIS) structures are investigated by X-ray photoelectron spectroscopy (XPS) and capacitance versus voltage ( C- V) characteristics measurements. The BCN/GaN samples are fabricated by in situ process consisting of plasma treatment and deposition of BCN film in the plasma-assisted chemical vapor deposition (PACVD) apparatus. XPS measurement shows that the oxide formation at the BCN/GaN interface is suppressed by nitrogen (N 2) and hydrogen (H 2) plasma treatment. The interface state density is estimated from C- V characteristics measured at 1 MHz using Terman method. The minimum interface state density appears from 0.2 to 0.7 eV below the conduction band edge of GaN. The minimum value of the interface state density is estimated to be 3.0 × 10 10 eV -1 cm -2 for the BCN/GaN structure with mixed N 2 and H 2 plasma treatment for 25 min. Even after annealing at 430 °C for 10 min, the interface state density as low as 6.0 × 10 10 eV -1 cm -2 is maintained.

  11. Investigation the effects of metallic substrate surfaces due to ion-plasma treatment

    International Nuclear Information System (INIS)

    Shulaev, V.M.; Taran, V.S.; Timoshenko, A.I.; Gasilin, V.V.

    2011-01-01

    It has been found correlation between modification effects and duration of ion-plasma cleaning the substrate surface with titanium ions. Experiments were carried out using serial vacuum-arc equipment ''Bulat-6'' at the stationary mode in non-filtered titanium plasma, which contained considerable quantity of evaporated material droplets. The polished cylinder substrates (diameter and height 9,14,20 mm) have been treated. The substrates were manufactured of stainless steel 12X18H10T and non-oxygen copper M00b. The substrates surface roughness after ion-plasma treatment has been investigated with electron microscope JEOL JSM-840 and optic interference non-contact profilograph- profilometer ''Micron-alpha''. According obtained results the surface of copper and stainless steel substrates has been treated to intensive modification, i.e. substrate surface after treatment significantly differs from initial one. During final ion-plasma treatment a number of effects occur: purification from surface oxides is accompanied with metallic surface ''contamination'' by the cathode material macrodroplets, surface micromelting accompanied by roughness increase, the surface layer annealing with noticeable decrease of hardness.

  12. Demonstration of thermal plasma gasification/vitrification for municipal solid waste treatment.

    Science.gov (United States)

    Byun, Youngchul; Namkung, Won; Cho, Moohyun; Chung, Jae Woo; Kim, Young-Suk; Lee, Jin-Ho; Lee, Carg-Ro; Hwang, Soon-Mo

    2010-09-01

    Thermal plasma treatment has been regarded as a viable alternative for the treatment of highly toxic wastes, such as incinerator residues, radioactive wastes, and medical wastes. Therefore, a gasification/vitrification unit for the direct treatment of municipal solid waste (MSW), with a capacity of 10 tons/day, was developed using an integrated furnace equipped with two nontransferred thermal plasma torches. The overall process, as well as the analysis of byproducts and energy balance, has been presented in this paper to assess the performance of this technology. It was successfully demonstrated that the thermal plasma process converted MSW into innocuous slag, with much lower levels of environmental air pollutant emissions and the syngas having a utility value as energy sources (287 Nm3/MSW-ton for H2 and 395 Nm3/MSW-ton for CO), using 1.14 MWh/MSW-ton of electricity (thermal plasma torch (0.817 MWh/MSW-ton)+utilities (0.322 MWh/MSW-ton)) and 7.37 Nm3/MSW-ton of liquefied petroleum gas.

  13. Plasma catecholamine levels before and after paroxetine treatment in patients with panic disorder.

    Science.gov (United States)

    Oh, Jae-Young; Yu, Bum-Hee; Heo, Jung-Yoon; Yoo, Ikki; Song, Hyemin; Jeon, Hong Jin

    2015-02-28

    Catecholamines such as norepinephrine, epinephrine, and dopamine are closely related to the autonomic nervous system, suggesting that panic disorder may involve elevated catecholamine levels. This study investigated basal and posttreatment catecholamine levels in patients with panic disorder. A total of 29 patients with panic disorder and 23 healthy controls participated in the study. Panic disorder patients received paroxetine treatment for 12 weeks after clinical tests and examination had been conducted. We investigated the difference in basal levels of catecholamine and measured the changes in catecholamine levels before and after drug treatment in panic disorder patients. The basal plasma epinephrine (48.87±6.18 pg/ml) and dopamine (34.87±3.57 pg/ml) levels of panic disorder patients were significantly higher than those (34.79±4.72 pg/ml and 20.40±3.53 pg/ml) of the control group. However, basal plasma norepinephrine levels did not show statistically significant differences between patients and controls. After drug therapy, plasma catecholamine levels were nonsignificantly decreased and norepinephrine levels showed a tendency toward a decrease that did not reach significance. In conclusion, this study suggests the possibility of a baseline increase of plasma catecholamine levels and activation of sympathetic nervous systems in patients with panic disorder which may normalize after treatment with paroxetine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG Polymer Scaffolds Using Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Rok Zaplotnik

    2016-04-01

    Full Text Available Polyurethane/urea copolymers based on poly(ethylene glycol (PURPEG were exposed to weakly ionized, highly reactive low-pressure oxygen plasma to improve their sorption kinetics. The plasma was sustained with an inductively coupled radiofrequency generator operating at various power levels in either E-mode (up to the forward power of 300 W or H-mode (above 500 W. The treatments that used H-mode caused nearly instant thermal degradation of the polymer samples. The density of the charged particles in E-mode was on the order of 1016 m−3, which prevented material destruction upon plasma treatment, but the density of neutral O-atoms in the ground state was on the order of 1021 m−3. The evolution of plasma characteristics during sample treatment in E-mode was determined by optical emission spectroscopy; surface modifications were determined by water adsorption kinetics and X-ray photoelectron spectroscopy; and etching intensity was determined by residual gas analysis. The results showed moderate surface functionalization with hydroxyl and carboxyl/ester groups, weak etching at a rate of several nm/s, rather slow activation down to a water contact angle of 30° and an ability to rapidly absorb water.

  15. Effect of low temperature oxygen plasma treatment on microstructure and adhesion force of graphene

    Science.gov (United States)

    Zhu, Jun; Deng, Heijun; Xue, Wei; Wang, Quan

    2018-01-01

    Graphene has attracted strong attention due to its unique mechanical, electrical, thermal and magnetic properties. In this work, we investigate the effect of low temperature oxygen plasma treatment on microstructure and adhesion force of single-layer graphene (SLG). Low temperature oxygen plasma is used to treat SLG grown by chemical vapor deposition through varying the exposure time. Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy are utilized to identify changes before and after treatment. Raman spectra of treated graphene reveal that peak intensity of the characteristic D and D' peaks increase. Meanwhile, degradation of the G and 2D peaks in X-ray photoelectron spectroscopy indicates that abundant Csbnd OH and Cdbnd O functional groups are introduced into graphene after treatment. AFM investigation shows that surface roughness and adhesion force of treated graphene increase significantly firstly and then slowly. Therefore, this work would offer a practical route to improve the performance of graphene-based devices.

  16. Influence of O2 plasma treatment on NiO x layer in perovskite solar cells

    Science.gov (United States)

    Nishihara, Yoshihiko; Chikamatsu, Masayuki; Kazaoui, Said; Miyadera, Tetsuhiko; Yoshida, Yuji

    2018-04-01

    We fabricated perovskite solar cells (PSCs) with an inverted p-i-n planar structure using a NiO x film as a hole-transporting layer. Since the surface of the NiO x film fabricated by sputtering is hydrophobic, O2 plasma treatment under various conditions was performed to improve its wettability. Water contact angles after the treatment under both normal and weak conditions on the NiO x film reached approximately 15°. After the treatment, the valence band level of the NiO x film was deeper by about 0.15 eV. The maximum efficiency of the NiO x -based device under the optimized O2 plasma condition reached 12.3%.

  17. Molecular surface structural changes of plasticized PVC materials after plasma treatment.

    Science.gov (United States)

    Zhang, Xiaoxian; Zhang, Chi; Hankett, Jeanne M; Chen, Zhan

    2013-03-26

    In this research, a variety of analytical techniques including sum frequency generation vibrational spectroscopy (SFG), coherent anti-Stokes Raman spectroscopy (CARS), and X-ray photoelectron spectroscopy (XPS) have been employed to investigate the surface and bulk structures of phthalate plasticized poly(vinyl chloride) (PVC) at the molecular level. Two types of phthalate molecules with different chain lengths, diethyl phthalate (DEP) and dibutyl phthalate (DBP), mixed with PVC in various weight ratios were examined to verify their different surface and bulk behaviors. The effects of oxygen and argon plasma treatment on PVC/DBP and PVC/DEP hybrid films were investigated on both the surface and bulk of films using SFG and CARS to evaluate the different plasticizer migration processes. Without plasma treatment, SFG results indicated that more plasticizers segregate to the surface at higher plasticizer bulk concentrations. SFG studies also demonstrated the presence of phthalates on the surface even at very low bulk concentration (5 wt %). Additionally, the results gathered from SFG, CARS, and XPS experiments suggested that the PVC/DEP system was unstable, and DEP molecules could leach out from the PVC under low vacuum after several minutes. In contrast, the PVC/DBP system was more stable; the migration process of DBP out of PVC could be effectively suppressed after oxygen plasma treatment. XPS results indicated the increase of C═O/C-O groups and decrease of C-Cl functionalities on the polymer surface after oxygen plasma treatment. The XPS results also suggested that exposure to argon plasma induced chemical bond breaking and formation of cross-linking or unsaturated groups with chain scission on the surface. Finally, our results indicate the potential risk of using DEP molecules in PVC since DEP can easily leach out from the polymeric bulk.

  18. Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment

    Science.gov (United States)

    De Velasco-Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.; Vázquez, Norma Aurea-Rangel; Pérez-Cruz, Ma. Ana

    2018-03-01

    In the present work the possible surface modification of natural zeolite using cold oxygen plasma was studied. The sample with and without treatment was characterized using nitrogen adsorption isotherms at -196 °C, FT-IR spectroscopy, SEM/EDX analysis and X-Ray Diffraction. Additionally, the two samples were used for the removal of lead and acid, basic, reactive and food dyes in batch systems. The natural zeolite was found to be a mesoporous material with a low specific surface area (23 m2/g). X-ray patterns confirmed that clinoptilolite was the main crystal structure present in the natural zeolite. The molecular properties of dyes and the zeolitic structure were studied using molecular simulation, with the purpose to understand the adsorption mechanism. The results pointed out that only the roughness of the clinoptilolite was affected by the plasma treatment, whereas the specific surface area, chemical functionality and crystal structure remained constant. Finally, adsorption results confirmed that the plasma treatment had no significant effects on the dyes and lead retention capacities of the natural zeolite.

  19. X-Ray Diffraction Analysis of Bottom Ash Waste after Plasma Treatment

    Science.gov (United States)

    Volokitin, G.; Abzaev, Yu; Skripnikova, N.; Volokitin, O.; Shekhovtsov, V.

    2017-04-01

    The paper deals with the plasma-chemical synthesis of melts produced from the bottom ash waste for the production of new construction materials with enhanced performance characteristics. Phase composition of the plasma-treated bottom ash waste is detected by the X-ray diffraction analysis. The bottom ash waste is a mixture of SiO2 minerals. The structure and phase composition of this mixture are investigated after the plasma treatment. The obtained results are compared with the original state of the mixture. The identification and the qualitative content of ash waste as a multi-phase system are complicated by the overlapped reflections and a possible existence of the intermediate amorphous phase.

  20. Atmospheric pressure plasma treatment of glass fibre composite for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, H.; Stenum, Bjarne

    2007-01-01

    Glass-fibre-reinforced polyester composite plates were treated with an atmospheric pressure dielectric barrier discharge. Synthetic air was used as the treatment gas. The water contact angle dropped markedly from 84 to 22° after a 2-s treatment, and decreased to 0° when the composite plates were...... treated for more than 30 s. X-Ray photoelectron spectroscopic analysis showed that the contents of aluminium and oxygen on the surface increased with the plasma treatment. The adhesion strength of the 2-s treated surface was comparable to or higher than that achieved by conventional mechanical surface...

  1. Successful treatment of ligneous conjunctivitis with topical fresh frozen plasma in an infant

    Directory of Open Access Journals (Sweden)

    Zuhal Özen Tunay

    2015-10-01

    Full Text Available ABSTRACTA 6-month-old female infant presented to our clinic with bilateral eyelid swelling, yellowish-white membranes under both lids, and mucoid ocular discharge. Her aunt had similar ocular problems that were undiagnosed. The conjunctival membranes were excised and histopathological investigation of these membranes showed ligneous conjunctivitis. Further, laboratory examination revealed plasminogen deficiency. A good response was observed to topical fresh frozen plasma (FFP treatment without systemic therapy, and the membranes did not recur during the treatment. Topical FFP treatment may facilitate rapid rehabilitation and prevent recurrence in patients with ligneous conjunctivitis.

  2. Single injection of platelet-rich plasma as a novel treatment of carpal tunnel syndrome

    Directory of Open Access Journals (Sweden)

    Michael Alexander Malahias

    2015-01-01

    Full Text Available Both in vitro and in vivo experiments have confirmed that platelet-rich plasma has therapeutic effects on many neuropathies, but its effects on carpal tunnel syndrome remain poorly understood. We aimed to investigate whether single injection of platelet-rich plasma can improve the clinical symptoms of carpal tunnel syndrome. Fourteen patients presenting with median nerve injury who had suffered from mild carpal tunnel syndrome for over 3 months were included in this study. Under ultrasound guidance, 1-2 mL of platelet-rich plasma was injected into the region around the median nerve at the proximal edge of the carpal tunnel. At 1 month after single injection of platelet-rich plasma, Visual Analogue Scale results showed that pain almost disappeared in eight patients and it was obviously alleviated in three patients. Simultaneously, the disabilities of the arm, shoulder and hand questionnaire showed that upper limb function was obviously improved. In addition, no ultrasonographic manifestation of the carpal tunnel syndrome was found in five patients during ultrasonographic measurement of the width of the median nerve. During 3-month follow-up, the pain was not greatly alleviated in three patients. These findings show very encouraging mid-term outcomes regarding use of platelet-rich plasma for the treatment of carpal tunnel syndrome.

  3. Reduced plasma taurine level in Parkinson's disease: association with motor severity and levodopa treatment.

    Science.gov (United States)

    Zhang, Li; Yuan, Yongsheng; Tong, Qing; Jiang, Siming; Xu, Qinrong; Ding, Jian; Zhang, Lian; Zhang, Rui; Zhang, Kezhong

    2016-01-01

    This study aimed to evaluate the level of taurine in plasma, and its association with the severity of motor and non-motor symptoms (NMS) and chronic levodopa treatment in Parkinson's disease (PD). Plasma taurine level was measured in treated PD (tPD), untreated PD (ntPD) and control groups. Motor symptoms and NMS were assessed using the Unified Parkinson's Disease Rating Scale, the short form of the McGill Pain Questionnaire, the Hamilton Depression Scale, the Scale for Outcomes in Parkinson's disease for Autonomic Symptoms and the Pittsburgh Sleep Quality Index. Longtime exposure to levodopa was indicated by its approximate cumulative dosage. The plasma taurine levels of PD patients were decreased when compared with controls and negatively associated with motor severity but not NMS. Moreover, tPD patients exhibited lower levels of plasma taurine than ntPD patients. Interestingly, plasma taurine levels negatively correlated with cumulative levodopa dosage in tPD. After controlling for potential confounders, the association between taurine and levodopa remained significant. Our study supports that taurine may play important roles in the pathophysiology of PD and the disturbances caused by chronic levodopa administration.

  4. Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces

    Science.gov (United States)

    Xiaoming, ZHU; Heng, GUO; Jianfeng, ZHOU; Xiaofei, ZHANG; Jian, CHEN; Jing, LI; Heping, LI; Jianguo, TAN

    2018-04-01

    Improvement of the bonding strength and durability between the dentin surface and the composite resin is a challenging job in dentistry. In this paper, a radio-frequency atmospheric-pressure glow discharge (RF-APGD) plasma jet is employed for the treatment of the acid-etched dentin surfaces used for the composite restoration. The properties of the plasma treated dentin surfaces and the resin-dentin interfaces are analyzed using the x-ray photoemission spectroscopy, contact angle goniometer, scanning electron microscope and microtensile tester. The experimental results show that, due to the abundant chemically reactive species existing in the RF-APGD plasma jet under a stable and low energy input operating mode, the contact angle of the plasma-treated dentin surfaces decreases to a stable level with the increase of the atomic percentage of oxygen in the specimens; the formation of the long resin tags in the scattered clusters and the hybrid layers at the resin-dentin interfaces significantly improve the bonding strength and durability. These results indicate that the RF-APGD plasma jet is an effective tool for modifying the chemical properties of the dentin surfaces, and for improving the immediate bonding strength and the durability of the resin-dentin bonding in dentistry.

  5. INTRALESIONAL PLATELET RICH PLASMA vs INTRALESIONAL TRIAMCINOLONE IN THE TREATMENT OF ALOPECIA AREATA: A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Shumez H, Prasad PVS, Kaviarasan PK, Deepika R

    2015-01-01

    Full Text Available Background: Alopecia areata (AA is a chronic non-scarring alopecia that involves the scalp and/or body, and is characterized by patchy areas of hair loss without any signs of clinical inflammation. Various therapies have been proposed for their treatment.But none have been shown to alter the course of the disease. Platelet Rich Plasma (PRP is a volume of autologous plasma that has a high platelet concentration. Growth factors released from platelets may act on stem cells in the bulge area of the follicles, stimulating the development of new follicles and promoting neovascularization. Aim: To evaluate and compare the efficacy of intralesional injection of autologous platelet rich plasma with intralesional injection of triamcinolone acetonide (10mg/ml in the treatment of alopecia areata. Methodology: 74 patients with alopecia areata were allocated into 2 groups and treated with triamcinolone and PRP injections. Treatment outcome was measured by taking into account extent and density of regrowth of hair and was expressed as a percentage of overall growth. Results: Forty eight patients were treated with triamcinolone injections and 26 patients were treated with PRP injections. Patients treated with PRP had an earlier response at the end of 6weeks than patients treated with triamcinolone. However, this difference was statistically insignificant. The overall improvement at the end of 9 weeks was 100% for all patients in both groups. Conclusion: PRP is a safe, simple, biocompatible and effective procedure for the treatment of alopecia areata with efficacy comparable with triamcinolone.

  6. Treatment with platelet-rich plasma of surgically related dormant corneal ulcers.

    Science.gov (United States)

    Alio, Jorge L; Rodriguez, Alejandra E; De Arriba, Pablo; Gisbert, Sandra; Abdelghany, Ahmed A

    2018-03-01

    To assess the effectiveness of autologous platelet-rich plasma for the treatment of dormant corneal ulcers secondary to corneal surgery and unresponsive to conventional treatment. VISSUM, Ophthalmology Institute of Alicante, Alicante, Spain. Prospective nonrandomized, observational consecutive study. A total of 44 eyes of 28 patients with dormant corneal ulcers secondary to corneal surgery were included in a prospective study and treated with autologous platelet-rich plasma during 6 weeks. Wilcoxon signed-rank test was used to compare the effect of the treatment. In all, 28 patients (65.1%) improved their visual acuity at least one line in Snellen chart, 26 (59.09%) had a decrease in the size of the ulcer or even a total closure, and 40 (90.9%) experienced an improvement in their symptoms. The results are also provided for the four groups of patients (keratoplasty, refractive surgery, cross-linking, and chronic postsurgical corneal edema). Platelet-rich plasma eye drops shows to be a good option for the treatment of dormant corneal ulcers secondary to corneal surgery.

  7. DLTS Analysis and Interface Engineering of Solution Route Fabricated Zirconia Based MIS Devices Using Plasma Treatment

    Science.gov (United States)

    Kumar, Arvind; Mondal, Sandip; Koteswara Rao, K. S. R.

    2018-02-01

    In this work, we have fabricated low-temperature sol-gel spin-coated and oxygen (O2) plasma treated ZrO2 thin film-based metal-insulator-semiconductor devices. To understand the impact of plasma treatment on the Si/ZrO2 interface, deep level transient spectroscopy measurements were performed. It is reported that the interface state density ( D it) comes down to 7.1 × 1010 eV-1 cm-2 from 4 × 1011 eV-1 cm-2, after plasma treatment. The reduction in D it is around five times and can be attributed to the passivation of oxygen vacancies near the Si/ZrO2 interface, as they try to relocate near the interface. The energy level position ( E T) of interfacial traps is estimated to be 0.36 eV below the conduction band edge. The untreated ZrO2 film displayed poor leakage behavior due to the presence of several traps within the film and at the interface; O2 plasma treated films show improved leakage current density as they have been reduced from 5.4 × 10-8 A/cm2 to 1.98 × 10-9 A/cm2 for gate injection mode and 6.4 × 10-8 A/cm2 to 6.3 × 10-10 A/cm2 for substrate injection mode at 1 V. Hence, we suggest that plasma treatment might be useful in future device fabrication technology.

  8. Polymer films with surfaces unmodified and modified by non-thermal plasma as new substrates for cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Borges, A.M.G.; Benetoli, L.O. [Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Licínio, M.A. [Department of Clinical Analysis, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Zoldan, V.C. [Department of Physical, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Santos-Silva, M.C. [Department of Clinical Analysis, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Assreuy, J. [Department of Pharmacology, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Pasa, A.A. [Department of Physical, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Debacher, N.A. [Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Soldi, V., E-mail: vsoldi@pq.cnpq.br [Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil)

    2013-04-01

    The surface properties of biomaterials, such as wettability, polar group distribution, and topography, play important roles in the behavior of cell adhesion and proliferation. Gaseous plasma discharges are among the most common means to modify the surface of a polymer without affecting its properties. Herein, we describe the surface modification of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) films using atmospheric pressure plasma processing through exposure to a dielectric barrier discharge (DBD). After treatment the film surface showed significant changes from hydrophobic to hydrophilic as the water contact angle decreasing from 95° to 37°. All plasma-treated films developed more hydrophilic surfaces compared to untreated films, although the reasons for the change in the surface properties of PS and PMMA differed, that is, the PS showed chemical changes and in the case of PMMA they were topographical. Excellent adhesion and cell proliferation were observed in all films. In vitro studies employing flow cytometry showed that the proliferation of L929 cells was higher in the film formed by a 1:1 mixture of PS/PMMA, which is consistent with the results of a previous study. These findings suggest better adhesion of L929 onto the 1:1 PS/PMMA modified film, indicating that this system is a new candidate biomaterial for tissue engineering. Highlights: ► The PS/PMMA films showed hydrophilic surface after DBD-treatment. ► The 1:1 PS/PMMA modified film is a new substrate for L929 cell proliferation. ► The 1:1 PS/PMMA blend film showed additional 170 × 10{sup 3} cells after treatment. ► The proliferation of cells in the blend film triplicated when compared to control. ► Synergistic effect improves cell proliferation in the blend film.

  9. Plasma arachidonic acid-rich phospholipids in Crohn's disease: response to treatment.

    Science.gov (United States)

    Pereira, S P; Cassell, T B; Engelman, J L; Sladen, G E; Murphy, G M; Dowling, R H

    1996-10-01

    1. Increased concentrations of plasma polyunsaturated fatty acids have been implicated in the pathogenesis of Crohn's disease. However, it is not known whether there are corresponding changes in circulating phospholipids--the major source of fatty acids in the plasma. 2. Fasting plasma samples were obtained from 17 control subjects and 13 patients with active Crohn's disease [Simple Index of Crohn's Disease Activity (SICDA) > 6] before, and 2 and 8 weeks after, treatment with either a peptide diet or oral prednisolone. 3. Before treatment, the Crohn's disease patients had mildly active disease (SICDA 9.9 +/- 0.8, erythrocyte sedimentation rate 26.4 +/- 6.5 mm/h, serum C-reactive protein 2.8 +/- 0.4 mg/l). The proportions of the polyunsaturated phosphatidylcholine species, 16:0-20:4 (10.0 +/- 0.7%) and 16:0-22:6 (7.1 +/- 0.8%), were both significantly higher than those in healthy controls (7.6 +/- 0.5%, P theory that, in active Crohn's disease, the mucosal phospholipids containing polyunsaturated fatty acids are increased, contribute to eicosanoid synthesis and 'spill' into the plasma.

  10. Improving the wettability of 2024 aluminium alloy by means of cold plasma treatment

    Science.gov (United States)

    Polini, W.; Sorrentino, L.

    2003-05-01

    Aluminium alloys are heavily used to manufacture structural parts in the aeronautic industry because of its lightness and its corrosion resistance. These alloys are successfully used in other industrial fields too, such as railway, automotive and naval industries. The need to contrast the severe use conditions and the heavy stresses developing in aeronautic field implies to protect the surfaces of the structures in aluminium alloy by any deterioration. To preserve by deterioration, it is necessary to make aluminium more suitable to be coated by protective paint. In the aeronautic industry, a complex and critical process is used in order to enhance both wettability and adhesive properties of aluminium alloy surfaces. Cold plasma treatment represents an efficient, clean and economic alternative to activate aluminium surfaces. The present work deals with air cold plasma treatment of 2024 aluminium alloy surfaces. The influence of dc electrical discharge cold plasma parameters on wettability of 2024 aluminium alloy surfaces has been studied. A set of process variables (voltage, time and air flow rate) has been identified and used to conduct some experimental tests on the basis of design of experiment (DOE) techniques. The experimental results show that the proposed plasma process may considerably increase aluminium alloy wettability. These results represent the first step in trying to optimise the aluminium adhesion by means of this non-conventional manufacturing process.

  11. Longitudinal Relationship between Plasma Reactive Oxygen Metabolites and Periodontal Condition in the Maintenance Phase of Periodontal Treatment

    Directory of Open Access Journals (Sweden)

    Tatsuya Machida

    2014-01-01

    Full Text Available Aim. The present cohort study describes the longitudinal relationship between plasma oxidative status and periodontitis progression during the maintenance phase of treatment. Materials and Methods. Forty-five patients (mean age 58.8 years were monitored from 2008 to 2013. Periodontal conditions, including probing pocket depth (PPD and clinical attachment level (CAL, were recorded. Measurements of plasma reactive oxygen metabolites (ROM and biologic antioxidant potential (BAP were performed to evaluate plasma oxidative status. The patients were assigned into 2 groups as low and high plasma ROM level using a cut-off value which was median of plasma ROM level at baseline. Results. In the subjects with low plasma ROM level at baseline, changes in mean CAL were positively correlated with changes in plasma ROM levels, bleeding on probing, and plaque control record, but not with PPD. In the subjects with high plasma ROM at baseline, changes in CAL were significantly associated with only PPD at baseline. On the other hands there were no significant associations between changes in CAL and those in plasma BAP levels. Conclusions. When plasma ROM level in periodontitis patients was low, increases in plasma ROM level were associated with those in CAL during the maintenance phase of treatment.

  12. Clinical effect of plasma perfusion combined with plasma exchange in treatment of patients with acute-on-chronic liver failure

    Directory of Open Access Journals (Sweden)

    ZHOU Jian

    2017-04-01

    Full Text Available ObjectiveTo investigate the clinical effect of plasma perfusion (PP combined with plasma exchange (PE in the treatment of acute-on-chronic liver failure (ACLF. MethodsA total of 72 patients with ACLF who were admitted to The Second People’s Hospital of Lanzhou from January 2014 to December 2015 were enrolled. In addition to internal medication, all the patients were treated with the artificial liver support system (once every 3-4 days based on the patients’ conditions, 1-3 times on average for each patient. According to the difference in therapies, the patients were divided into combination group with 40 patients (PP combined with PE and a total of 107 case times and control group with 32 patients (PE alone and a total of 85 case times. Total bilirubin (TBil, alanine aminotransferase (ALT, and prothrombin time were recorded before treatment, after surgery, and at 72 hours after surgery. Clinical outcome was evaluated after 4 weeks of treatment. The t-test was used for comparison of continuous data between groups, and the chi-square test was used for comparison of categorical data between groups. ResultsThe overall response rate of all patients was 63.89% (46/72. At 72 hours after surgery, there was a significant difference in the level of ALT between the combination group and the control group (319.54±86.23 U/L vs 354.75±100.76 U/L, t=2.60, P<0.05. Both groups had significant reductions in TBil and ALT after surgery (combination group: t=6.69 and 15.84, P<0.05; control group: t=5.34 and 14.38, P<0.05 and at 72 hours after surgery (combination group: t=3.24 and 8.83, P<0.05; control group: t=2.40 and 4.61, P<0.05. Both groups had significant changes in prothrombin time activity after surgery (t=4.83 and 5.01, both P<0.05. There were no significant differences in the incidence rates of pruritus and rash between the two groups, while there was a significant difference in the incidence rate of perioral or limb numbness between the

  13. Gas Plasma Pre-treatment Increases Antibiotic Sensitivity and Persister Eradication in Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Guo, Li; Xu, Ruobing; Zhao, Yiming; Liu, Dingxin; Liu, Zhijie; Wang, Xiaohua; Chen, Hailan; Kong, Michael G.

    2018-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious nosocomial infections, and recurrent MRSA infections primarily result from the survival of persister cells after antibiotic treatment. Gas plasma, a novel source of ROS (reactive oxygen species) and RNS (reactive nitrogen species) generation, not only inactivates pathogenic microbes but also restore the sensitivity of MRSA to antibiotics. This study further found that sublethal treatment of MRSA with both plasma and plasma-activated saline increased the antibiotic sensitivity and promoted the eradication of persister cells by tetracycline, gentamycin, clindamycin, chloramphenicol, ciprofloxacin, rifampicin, and vancomycin. The short-lived ROS and RNS generated by plasma played a primary role in the process and induced the increase of many species of ROS and RNS in MRSA cells. Thus, our data indicated that the plasma treatment could promote the effects of many different classes of antibiotics and act as an antibiotic sensitizer for the treatment of antibiotic-resistant bacteria involved in infectious diseases.

  14. Improvement of field emission from screen-printed carbon nanotubes by He/(N2,Ar) atmospheric pressure plasma treatment

    International Nuclear Information System (INIS)

    Kyung, S. J.; Park, J. B.; Lee, J. H.; Yeom, G. Y.

    2006-01-01

    A screen-printed carbon nanotube (CNT) paste for applications to field emission emitters was treated with He, He/Ar, and He/N 2 atmospheric pressure plasmas. The effect of the different plasma treatments on the field emission characteristics of the screen-printed CNTs was investigated. The atmospheric pressure plasma applied to the screen-printed CNT paste for 10 s resulted in a reduction in the turn-on electric field. In particular, the application of a He/N 2 plasma treatment decreased the turn-on electric field from 3.13 to 1.29 V/μm and increased the field enhancement factor from 737 to 2775 after the treatment. These results suggest that an adequate atmospheric pressure plasma treatment of screen-printed CNTs can be effective in enhancing the field emission properties

  15. Effect of well-established plasma treatment technology on some physiological characteristics in maize leaves during seedling stage

    International Nuclear Information System (INIS)

    Zhao Hongxiang; Fang Xiangqian; Bian Shaofeng; Zhang Lihua; Tan Guobo; Meng Xiangmeng; Yan Weiping; Liu Yaliang; Sun Ning

    2010-01-01

    In order to provide theoretical references and technical support for application of plasma treatment technology in agriculture, the seeds of maize were treated by well-established plasma treatment technology, then the changes of physiological characteristics of maize leaves during seedling stage were studied. The results indicated that the stress resistance of maize was improved by plasma treatment. The SOD, POD and CAT activities, soluble protein content and soluble sugar content of leaves at two-leave stage, four-leave stage, six-leave stage and eight-leave stage treated by plasma were higher than that of CK, but the MDA content was lower than CK. Although NR activity in leaves at twoleave stage and four-leave stage was slightly lower than CK, but higher than CK at six-leave stage (26.81%) and eightleaves stage (26.75%). Plasma treatment enhanced the nitrogen metabolism capacity, and this tendency was increased remarkable with the growth stages processes. (authors)

  16. ESTUDO DA EFICIÊNCIA DE UM REATOR DE DESCARGA POR BARREIRA DIELÉTRICA (DBD, NA PRODUÇÃO DAS ESPÉCIES ATIVAS DO SEGUNDO SISTEMA POSITIVO DO N2.

    Directory of Open Access Journals (Sweden)

    Ivan Alves de Souza

    2015-07-01

    Full Text Available Apesar das inúmeras publicações a respeito da versatilidade da técnica de descarga por barreira dielétrica (DBD, principalmente em aplicações emergentes como descontaminação biológica e química, pouco se apresentou sobre a influência dos parâmetros de processos. No presente trabalho é analisada a influência dos parâmetros do processo sobre as espécies ativas do plasma formado quando ar é utilizado como atmosfera. Analisou-se a influência da distância e voltagem aplicada entre eletrodos, bem como a frequência do pulso aplicado.  As análises das espécies foram realizadas diagnosticando o plasma por espectroscopia de emissão óptica (EEO. Esses resultados foram correlacionados com dados da potência consumida no processo de produção de plasma, obtidos a partir das figuras de Lissajous.  O equipamento DBD utilizado possui sua máxima eficiência de produção de plasma atmosférico com a distância entre eletrodos fixada em 0,5mm Voltagem de 15 kV e frequência de 500 ou 600 Hz dependendo da espécie ativa  que se queira em maior quantidade N2 357nm ou N2 337nm respectivamente .

  17. Regenerable Antibacterial Cotton Fabric by Plasma Treatment with Dimethylhydantoin: Antibacterial Activity against S. aureus

    Directory of Open Access Journals (Sweden)

    Chang-E. Zhou

    2017-01-01

    Full Text Available This study examined the influence of variables in a finishing process for making cotton fabric with regenerable antibacterial properties against Staphylococcus aureus (S. aureus. 5,5-dimethylhydantoin (DMH was coated onto cotton fabric by a pad-dry-plasma-cure method. Sodium hypochlorite was used for chlorinating the DMH coated fabric in order to introduce antibacterial properties. An orthogonal array testing strategy (OATS was used in the finishing process for finding the optimum treatment conditions. After finishing, UV-Visible spectroscopy, Scanning Electron Microscopy (SEM, and Fourier Transform Infrared Spectroscopy (FTIR were employed to characterise the properties of the treated cotton fabric, including the concentration of chlorine, morphological properties, and functional groups. The results show that cotton fabric coated with DMH followed by plasma treatment and chlorination can inhibit S. aureus and that the antibacterial property is regenerable.

  18. A salt-free treatment of aluminum dross using plasma heating

    Science.gov (United States)

    Lavoie, S.; Dubé, G.

    1991-02-01

    The plasma dross treatment process is similar in operation and equipment to the conventional RSF process, but its elimination of salt fluxes solves the problem of corrosive gas evolution, and also results in salt-free by-products (NMP), which are recyclable and are a marketable raw material for other industries. Labor and equipment demands are about the same for both processes, but the new process dispenses with the costs of salt purchase and landfilling or recycling of salt cake. The new process is the first industrial application of plasma heating technology in the aluminum industry, and greatly reduces environmental risks, while providing a closed-loop, pollution-and waste-free dross treatment method.

  19. Ultrasound enhanced 50 Hz plasma treatment of glass-fiber-reinforced polyester at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2013-01-01

    approximately from 20 up to 80 mJm2 with ultrasonic irradiation. The plasma treatment with ultrasonic irradiation also introduced oxygen- and nitrogen-containing functional groups at the GFRP surface. These changes would improve the adhesion properties of the GFRP plates....... of around 30 kHz with the sound pressure level of approximately 155 dB were introduced vertically to the GFRP surface through a cylindrical waveguide. The polar component of the surface energy was almost unchanged after the plasma treatment without ultrasonic irradiation, but drastically increased......Glass-fiber-reinforced polyester (GFRP) plates are treated using a 50Hz dielectric barrier discharge at a peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency...

  20. Parametric Study of Effects of Atmospheric Pressure Plasma Treatment on the Wettability of Cotton Fabric

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2018-02-01

    Full Text Available In textiles processing, wettability of fabric plays a very important role in enhancing processes such as dyeing and printing. Although well-prepared cotton fabric has very good wettability, further enhancement of its wettability can effectively improve the subsequent dyeing and printing processes. Plasma treatment, especially atmospheric pressure plasma treatment (APPT, a continuous process, is now drawing attention of the industry. In this study, we investigated the effect of APPT under four operational parameters: (1 discharge power; (2 flow rate of oxygen; (3 jet travelling speed; and (4 jet-to-substrate distance on wettability (in terms of wickability and wetting area of cotton fabric. Experimental results revealed that the four parameters interact with each other in affecting the wettability of the cotton fabric. The results are discussed comprehensively.

  1. Complement activation in plasma before and after infliximab treatment in Crohn disease

    DEFF Research Database (Denmark)

    Zimmermann-Nielsen, E; Agnholt, J; Thorlacius-Ussing, O

    2003-01-01

    complicated by fistulizing ano-rectal disease was collected before and after three Infliximab infusions (5 mg kg(-1)). RESULTS: Before treatment, the C3-activation capacities (C3-AC) in plasma from patients with Crohn disease were comparable with values obtained from healthy controls. The classical C pathway......-mediated C3-AC, mannan-binding lectin C4-AC, leucocyte count, C-reactive protein concentration and Crohn Disease Activity Index decreased significantly 8 weeks after the first infusion of Infliximab (P ... in plasma from patients with Crohn disease; the decrease observed in the classical pathway-mediated C3-AC after treatment with Infliximab reflects a general down-regulation in immune activation....

  2. Changing the surface properties on naval steel as result of non-thermal plasma treatment

    Science.gov (United States)

    Hnatiuc, B.; Sabău, A.; Dumitrache, C. L.; Hnatiuc, M.; Crețu, M.; Astanei, D.

    2016-08-01

    The problem of corrosion, related to Biofouling formation, is an issue with very high importance in the maritime domain. According to new rules, the paints and all the technologies for the conditioning of naval materials must fulfil more restrictive environmental conditions. In order to solve this issue, different new clean technologies have been proposed. Among them, the use of non-thermal plasmas produced at atmospheric pressure plays a very important role. This study concerns the opportunity of plasma treatment for preparation or conditioning of naval steel OL36 type. The plasma reactors chosen for the experiments can operate at atmospheric pressure and are easy to use in industrial conditions. They are based on electrical discharges GlidArc and Spark, which already proved their efficiency for the surface activation or even for coatings of the surface. The non-thermal character of the plasma is ensured by a gas flow blown through the electrical discharges. One power supply has been used for reactors that provide a 5 kV voltage and a maximum current of 100 mA. The modifications of the surface properties and composition have been studied by XPS technique (X-ray Photoelectron Spectroscopy). There were taken into consideration 5 samples: 4 of them undergoing a Mini-torch plasma, a Gliding Spark, a GlidArc with dry air and a GlidArc with CO2, respectively the fifth sample which is the untreated witness. Before the plasma treatment, samples of naval steel were processed in order to obtain mechanical gloss. The time of treatment was chosen to 12 minutes. In the spectroscopic analysis, done on a ULVAC-PHI, Inc. PHI 5000 Versa Probe scanning XPS microprobe, a monocromated Al Kα X-ray source with a spot size of 100 μm2 was used to scan each sample while the photoelectrons were collected at a 45-degree take-off angle. Differences were found between atomic concentrations in each individual case, which proves that the active species produced by each type of plasma affects

  3. Plasma lipoproteins and renal function during simvastatin treatment in diabetic nephropathy

    DEFF Research Database (Denmark)

    Hommel, E; Andersen, P; Gall, M A

    1992-01-01

    The aim of this study was to assess the effect of simvastatin on plasma lipoproteins and renal function in hypercholesterolaemic Type 1 (insulin-dependent) diabetic patients with diabetic nephropathy. Twenty-six hypercholesterolaemic (total cholesterol greater than or equal to 5.5 mmol/l) Type 1....... Two patients receiving simvastatin treatment were withdrawn, one due to gastrointestinal side effects and one due to myalgia.(ABSTRACT TRUNCATED AT 250 WORDS)...

  4. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment

    International Nuclear Information System (INIS)

    Fu Qiang; Song Xuefeng; Gao Jingyun; Han Xiaobing; Zhao Qing; Yu Dapeng; Jin Yu; Jiang Xingyu

    2010-01-01

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  5. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment.

    Science.gov (United States)

    Fu, Qiang; Jin, Yu; Song, Xuefeng; Gao, Jingyun; Han, Xiaobing; Jiang, Xingyu; Zhao, Qing; Yu, Dapeng

    2010-03-05

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  6. Plasma cleaning: A new possible treatment for niobium superconducting cavity after nitrogen doping

    OpenAIRE

    Yang, Ziqin; Lu, Xiangyang; Xie, Datao; Lin, Lin; Zhou, Kui; Zhao, Jifei; Yang, Deyu; Tan, Weiwei

    2015-01-01

    Nitrogen doping treatment with the subsequent electropolishing (EP) of the niobium superconducting cavity can significantly increase the cavity's quality factor up to a factor of 3. But the process of the EP removal may reintroduce hydrogen in the cavity surface, which may influence the cavity's radio frequency performance. Plasma cleaning study on niobium samples with gas mixtures of argon and oxgen intended to remove contaminations (hydrocarbons and micronicdust particles) from cavity surfa...

  7. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Tomaz [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia); Stockel, Jan; Varju, Jozef; Panek, Radomir [Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Ze Slovankou 3, Praha 8 (Czech Republic); Balat-Pichelin, Marianne, E-mail: marianne.balat@promes.cnrs.fr [PROMES-CNRS Laboratory, 7 rue du four solaire, 66120 Font Romeu Odeillo (France)

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni{sub 60}Cr{sub 30}Mo{sub 10}Ni{sub 4}Nb{sub 1}) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr{sub 2}O{sub 4} compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al{sub 2}O{sub 3} crystals.

  8. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Science.gov (United States)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez; Gyergyek, Tomaz; Stockel, Jan; Varju, Jozef; Panek, Radomir; Balat-Pichelin, Marianne

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni60Cr30Mo10Ni4Nb1) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr2O4 compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al2O3 crystals.

  9. Treatment of lateral epicondylitis with platelet-rich plasma, glucocorticoid, or saline. A comparative study

    OpenAIRE

    Mahmoud El Tayeb Nasser; Ahmed Z El Yasaki; Reem M Ezz El Mallah; Amal S.M. Abdelazeem

    2017-01-01

    Background Lateral epicondylitis (LE) is the most common overuse syndrome and related to excessive wrist extension, known as tendonitis of the extensor muscles of the forearm, and refers to pain and tenderness over the lateral epicondyle of the humerus. Local corticosteroid injection has short-term benefits in pain reduction, global improvement, and grip strength compared with placebo (saline or lidocaine) and other conservative treatments. Autologous platelet-rich plasma (PRP) injection ...

  10. Process simulation and uncertainty analysis of plasma arc mixed waste treatment

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Welch, T.D.

    1994-01-01

    Innovative mixed waste treatment subsystems have been analyzed for performance, risk, and life-cycle cost as part of the U.S. Department of Energy's (DOE)'s Mixed Waste Integrated Program (MWIP) treatment alternatives development and evaluation process. This paper concerns the analysis of mixed waste treatment system performance. Performance systems analysis includes approximate material and energy balances and assessments of operability, effectiveness, and reliability. Preliminary material and energy balances of innovative processes have been analyzed using FLOW, an object-oriented, process simulator for waste management systems under development at Oak Ridge National Laboratory. The preliminary models developed for FLOW provide rough order-of-magnitude calculations useful for sensitivity analysis. The insight gained from early modeling of these technologies approximately will ease the transition to more sophisticated simulators as adequate performance and property data become available. Such models are being developed in ASPEN by DOE's Mixed Waste Treatment Project (MWTP) for baseline and alternative flow sheets based on commercial technologies. One alternative to the baseline developed by the MWIP support groups in plasma arc treatment. This process offers a noticeable reduction in the number of process operations as compared to the baseline process because a plasma arc melter is capable of accepting a wide variety of waste streams as direct inputs (without sorting or preprocessing). This innovative process for treating mixed waste replaces several units from the baseline process and, thus, promises an economic advantage. The performance in the plasma arc furnace will directly affect the quality of the waste form and the requirements of the off-gas treatment units. The ultimate objective of MWIP is to reduce the amount of final waste produced, the cost, and the environmental impact

  11. UV and plasma treatment of thin silver layers and glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hluschi, J.H. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Helmke, A. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Roth, P. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Boewer, R. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Herlitze, L. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Vioel, W. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany)]. E-mail: vioel@hawk-hhg.de

    2006-11-10

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of {lambda}=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers.

  12. Successful Treatment of Osgood–Schlatter Disease with Autologous-Conditioned Plasma in Two Patients

    Science.gov (United States)

    Danneberg, Dirk-Jonas

    2017-01-01

    Osgood–Schlatter Disease (OSD) is a painful, growth-related overuse condition of the tibial tuberosity, leading to inflammation of the patellar ligament at the tibial tuberosity. It primarily affects young adolescents, athletic population, and usually, resolves with age or skeletal maturity. Therapy is usually conservative, with surgery indicated in a minority of cases. For patients with treatment-resistant or refractory OSD, an alternative is the application of autologous platelet concentrate. Here, we describe two cases in which autologous-conditioned plasma therapy was used to treat OSD, and present the treatment protocol developed in our clinic. PMID:29270553

  13. Successful Treatment of Osgood-Schlatter Disease with Autologous-Conditioned Plasma in Two Patients.

    Science.gov (United States)

    Danneberg, Dirk-Jonas

    2017-09-01

    Osgood-Schlatter Disease (OSD) is a painful, growth-related overuse condition of the tibial tuberosity, leading to inflammation of the patellar ligament at the tibial tuberosity. It primarily affects young adolescents, athletic population, and usually, resolves with age or skeletal maturity. Therapy is usually conservative, with surgery indicated in a minority of cases. For patients with treatment-resistant or refractory OSD, an alternative is the application of autologous platelet concentrate. Here, we describe two cases in which autologous-conditioned plasma therapy was used to treat OSD, and present the treatment protocol developed in our clinic.

  14. UV and plasma treatment of thin silver layers and glass surfaces

    International Nuclear Information System (INIS)

    Hluschi, J.H.; Helmke, A.; Roth, P.; Boewer, R.; Herlitze, L.; Vioel, W.

    2006-01-01

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of λ=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers

  15. Plasma treatment effect on angiogenesis in wound healing process evaluated in vivo using angiographic optical coherence tomography

    Science.gov (United States)

    Kim, D. W.; Park, T. J.; Jang, S. J.; You, S. J.; Oh, W. Y.

    2016-12-01

    Non-thermal atmospheric pressure plasma holds promise for promoting wound healing. However, plasma-induced angiogenesis, which is important to better understand the underlying physics of plasma treatment effect on wound healing, remains largely unknown. We therefore evaluated the effect of non-thermal plasma on angiogenesis during wound healing through longitudinal monitoring over 30 days using non-invasive angiographic optical coherence tomography imaging in vivo. We demonstrate that the plasma-treated vascular wound area of mouse ear was noticeably decreased as compared to that of control during the early days in the wound healing process. We also observed that the vascular area density was increased in the plasma affected region near the wound as compared to the plasma unaffected region. The difference in the vascular wound area and the vascular area density peaked around day 3. This indicates that the plasma treatment induced additional angiogenic effects in the wound healing process especially during the early days. This non-invasive optical angiographic approach for in vivo time-lapse imaging provides further insights into elucidating plasma-induced angiogenesis in the wound healing process and its application in the biomedical plasma evaluation.

  16. Highly efficient low-temperature plasma-assisted modification of TiO2 nanosheets with exposed {001} facets for enhanced visible-light photocatalytic activity.

    Science.gov (United States)

    Li, Beibei; Zhao, Zongbin; Zhou, Quan; Meng, Bo; Meng, Xiangtong; Qiu, Jieshan

    2014-11-03

    Anatase TiO2 nanosheets with exposed {001} facets have been controllably modified under non-thermal dielectric barrier discharge (DBD) plasma with various working gas, including Ar, H2 , and NH3 . The obtained TiO2 nanosheets possess a unique crystalline core/amorphous shell structure (TiO2 @TiO2-x ), which exhibit the improved visible and near-infrared light absorption. The types of dopants (oxygen vacancy/surface Ti(3+) /substituted N) in oxygen-deficient TiO2 can be tuned by controlling the working gases during plasma discharge. Both surface Ti(3+) and substituted N were doped into the lattice of TiO2 through NH3 plasma discharge, whereas the oxygen vacancy or Ti(3+) (along with the oxygen vacancy) was obtained after Ar or H2 plasma treatment. The TiO2 @TiO2-x from NH3 plasma with a green color shows the highest photocatalytic activity under visible-light irradiation compared with the products from Ar plasma or H2 plasma due to the synergistic effect of reduction and simultaneous nitridation in the NH3 plasma. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Investigation of oxygen plasma treatment on the device performance of solution-processed a-IGZO thin film transistors

    International Nuclear Information System (INIS)

    Pu, Haifeng; Zhou, Qianfei; Yue, Lan; Zhang, Qun

    2013-01-01

    We reported the impact of oxygen plasma treatment on solution-processed amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs). Plasma-treated devices showed higher mobility, larger on/off current ratio, but a monotonically increased SS with plasma treatment time as well. The phenomenon was mainly due to two components in oxygen plasma, atomic oxygen and O 2 + , according to the photoluminescence (PL) measurement. Atomic oxygen reacted with oxygen vacancies in channel layer resulting in an improved mobility, and O 2 + tends to aggregated at the surface acting as trapping states simultaneously. Our study suggests that moderate oxygen plasma treatment can be adopted to improve the device performance, while O 2 + should be eliminated to obtain good interfacial states.

  18. Argon-plasma treatment in benign metastasizing leiomyoma of the lung: A case report

    Directory of Open Access Journals (Sweden)

    A. Bugalho

    2010-11-01

    Full Text Available Benign metastasizing leiomyomas of the lung are rare smooth muscle cells tumours. We report the case of a 48 year-old female who was evaluated due to persistent cough, progressive dyspnoea and constitutional symptoms. Chest computed tomography revealed a left endobronchial mass, multiple parenchyma nodules and a pleural effusion. Bronchial biopsy histological features were consistent with benign metastasizing leiomyoma. The patient was successfully treated with argon-plasma and mechanical debulking. There was no disease relapse in the last four years. Resumo: Os leiomiomas benignos metastizantes pulmonares são tumores raros de células musculares lisas. Uma doente de 48 anos foi avaliada devido a tosse persistente, dispneia progressiva e sintomas constitucionais. A tomografia computorizada do tórax revelou uma massa endobrônquica à esquerda, múltiplos nódulos do parênquima pulmonar e derrame pleural. As características histológicas da biopsia brônquica foram consistentes com o diagnóstico de leiomioma benigno metastizante. A doente foi submetida a coagulação árgon-plasma e desobstrução mecânica com eficácia terapêutica. Verificou-se estabilidade clínica nos últimos quatro anos. Keywords: Benign metastasizing leiomyoma, Lung neoplasms, Diagnosis, Bronchoscopy, Management, Argon-plasma treatment, Palavras-chave: Leiomioma benigno metastizante, Neoplasias pulmonares, Diagnóstico, Broncoscopia, Tratamento, Tratamento árgon-plasma

  19. Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye.

    Science.gov (United States)

    García, María C; Mora, Manuel; Esquivel, Dolores; Foster, John E; Rodero, Antonio; Jiménez-Sanchidrián, César; Romero-Salguero, Francisco J

    2017-08-01

    The degradation of methylene blue in aqueous solution as a model dye using a non thermal microwave (2.45 GHz) plasma jet at atmospheric pressure has been investigated. Argon has been used as feed gas and aqueous solutions with different concentrations of the dye were treated using the effluent from plasma jet in a remote exposure. The removal efficiency increased as the dye concentration decreased from 250 to 5 ppm. Methylene blue degrades after different treatment times, depending on the experimental plasma conditions. Thus, kinetic constants up to 0.177 min -1 were obtained. The higher the Ar flow, the faster the degradation rate. Optical emission spectroscopy (OES) was used to gather information about the species present in the gas phase, specifically excited argon atoms. Argon excited species and hydrogen peroxide play an important role in the degradation of the dye. In fact, the conversion of methylene blue was directly related to the density of argon excited species in the gas phase and the concentration of hydrogen peroxide in the aqueous liquid phase. Values of energy yield at 50% dye conversion of 0.296 g/kWh were achieved. Also, the use of two plasma applicators in parallel has been proven to improve energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Low temperature plasma vapor treatment of thermo-sensitive poly(N-isopropylacrylamide) and its application

    Science.gov (United States)

    Chen, Y.; Tang, X. L.; Chen, B. T.; Qiu, G.

    2013-03-01

    In this study, the novel methods of depositing poly(N-isopropylacrylamide) (PNIPAAm) coatings on the surface of glass slides and PS petri dish by plasma polymerization are provided. PNIPAAm can be obtained by plasma polymerization of N-isopropylacrylamide by using the self-made equipment of plasma vapor treatment. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. SEM analysis has revealed that the poly(N-isopropylacrylamide) (PNIPAAm) coatings were formed on the surface of the smooth glass slides. Further evaluation by using XPS, it has shown the presence of PNIPAAm. The wettability can be significantly modified by changing of the temperatures at above and below of the lower critical solution temperature (LCST) from the data of the contact angle test. These results have advantage for further application on the thermo-sensitive textile materials. On the deposition of PNIPAAm onto Polybutylene Terephthalate (PBT) melt-blown nonwovens in atmospheric pressure plasma, water permeability was significantly modified at around LCST. Due to the LCST is close to the temperature of human body, it has advantage on application of PBT melt-blown nonwovens.

  1. Response of perennial woody plants to seed treatment by electromagnetic field and low-temperature plasma.

    Science.gov (United States)

    Mildaziene, Vida; Pauzaite, Giedre; Malakauskiene, Asta; Zukiene, Rasa; Nauciene, Zita; Filatova, Irina; Azharonok, Viktor; Lyushkevich, Veronika

    2016-08-30

    Radiofrequency (5.28 MHz) electromagnetic radiation and low-temperature plasma were applied as short-term (2-15 min) seed treatments to two perennial woody plant species, including Smirnov's rhododendron (Rhododendron smirnowii Trautv.) and black mulberry (Morus nigra L.). Potential effects were evaluated using germination indices and morphometry. The results suggest that treatment with electromagnetic field stimulated germination of freshly harvested R. smirnowii seeds (increased germination percentage up to 70%), but reduced germination of fresh M. nigra seeds (by 24%). Treatment with low-temperature plasma negatively affected germination for R. smirnowii, and positively for M. nigra. The treatment-induced changes in germination depended on seed dormancy state. Longer-term observations revealed that the effects persisted for more than a year; however, even negative effects on germination came out as positive effects on plant morphometric traits over time. Treatments characterized as distressful based on changes in germination and seedling length increased growth of R. smirnowii after 13 months. Specific changes included stem and root branching, as well as increased leaf count and surface area. These findings imply that longer-term patterns of response to seed stressors may be complex, and therefore, commonly used stressor-effects estimates, such as germination rate or seedling morphology, may be insufficient for qualifying stress response. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. An engineering and economic analysis: Inductively coupled plasma mobile treatment of hazardous waste

    International Nuclear Information System (INIS)

    Detering, B.A.; McLlwain, M.E.

    1997-10-01

    This analysis considers the engineering and economic viability of an rf-plasma, mobile treatment process for remediation of hazardous waste located at remote sites in Alaska. A simple engineering process flowsheet is used to define the elements associated with the process and to identify major pieces of equipment. The proposed flowsheet and equipment are used to estimate capital and operational costs for four separate processing cases. These cases explore various operational situations, including moving equipment to a remote site, transporting wastes to a base site, and varying operational periods. Some cases consider variations in fuel costs known to exist across Alaska. Operational costs, capital equipment costs, and revenues are used to calculate pro-forma income statements. These income statements are used to predict economic viability. Based on the economic viability, the analysis suggests that processing of hydrocarbon-contaminated soils is more profitable when performed at remote sites as compared to at a home base. Processing of poly-chloro-biphenyl (PCB)-contaminated oil at a stationary site is more profitable as compared to remote treatment due to the cost of transporting the equipment. Over the range of fuel prices considered, higher fuel costs increase the per unit treatment price by ten percent. Based on the results of this analysis, an rf-plasma based process appears to be economically viable for remote treatment of hydrocarbon-contaminated soil, but less viable for treatment of PCB-contaminated oil

  3. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    International Nuclear Information System (INIS)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R.

    2015-01-01

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x10 17 m −3 is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with sufficient bond

  4. Polypropylene fibers modified by plasma treatment for preparation of Ag nanoparticles.

    Science.gov (United States)

    Tseng, Chun-Hao; Wang, Cheng-Chien; Chen, Chuh-Yung

    2006-03-09

    A novel method for preparing poly(propylene-graft-2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester)-silver fibers (PPG-IAg fibers) by plasma-induced grafting polymerization is presented in this study. The chelating groups, -N(CH2COO-)2 (GMA-IDA), on the surface of the PPG-I fibers are the coordination sites for chelating silver ions. At these sites, Ag nanoparticles were grown first by reduction with UV light with a wavelength of 366 nm, and second, through immersion in a 24% formaldehyde solution with pH values set variously at 2, 5, 8, and 11. The characteristics of the PPG-I fibers with differing durations of plasma treatment were monitored by using a Fourier transform infrared (FT-IR) spectroscope. Scanning electronic microscopy (SEM) and elemental analysis show that the percentage of GMA-IDA grafted onto PP fiber reaches a maximum when the plasma treatment time is 3 min. Plasma treatment time beyond a certain length of time results in an abundance of free radicals and causes considerable cross-linking on the fiber surface which thus decreases the extent of grafting. Moreover, the crystalline phase of Ag nanoparticles is identified by using X-ray diffraction (XRD). When the PPG-I fibers are reduced by the UV light method, SEM and TEM microscopes reveal that the size of the Ag nanoparticles on the fiber surface decreases significantly with the increase of pH values in aqueous solutions. Notably, in the reduction of formaldehyde solution, the particle size of Ag nanoparticles reaches a minimum at the lowest pH value. The TEM observations show that Ag nanoparticles are distributed both in the exterior and interior of the grafting layer. In addition, under high pH values the distribution of the Ag nanoparticles permeate more deeply in the GMA-IDA grafting layer due to the swelling effect of the GMA-IDA polymer.

  5. Characteristics of SiOx-containing hard film prepared by low temperature plasma enhanced chemical vapor deposition using hexamethyldisilazane or vinyltrimethylsilane and post oxygen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yi-Syuan; Liu, Wan-Yu; Wu, Hsin-Ming [Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China); Chen, Ko-Shao, E-mail: kschen@ttu.edu.tw [Department of Materials Engineering, Tatung University, Taipei, 104, Taiwan (China); Cech, Vladimir [Institute of Materials Chemistry, Brno University of Technology (Czech Republic)

    2017-03-01

    This study, monomers of hexamethyldisilazane (HMDSZ) and vinyltrimethylsilane (VTMS) were respectively used to deposit on the surface of polyethylene terephthalate (PET) substrate by plasma enhanced chemical vapor deposition. Oxygen plasma treatment follows the HMDSZ and VTMS deposition to produce a hydrophilic surface film on the deposited surface. Time for HMDSZ and VTMS plasma deposition was changed to investigate its influences on water contact angle, deposited film thickness, refractive index, and friction coefficient properties. The surface morphologies of the processed samples were observed by scanning electron microscope and their chemical compositions were measured by X-ray photoelectron spectroscopy. At 550 nm wavelength, the optical transmittance of PET after the HMDSZ treatment decreases from 89% to 83%, but increases from 89% to 95% for the VTMS treatment. With increase in HMDSZ and VTMS deposition times, the film thickness increases and the refractive index decreases. Result revealed by XPS, SiO{sub 2} film is formed on the sample surface after the O{sub 2} plasma treatment. The film adhesion capability by the HMDSZ+O{sub 2} and VTMS+O{sub 2} treatment was stronger than that by the HMDSZ and VTMS treatment only. The SiOx films produced by HMDSZ+O{sub 2} and VTMS+O{sub 2} treatment can increase the film hardness and improve light transmittance. - Highlights: • With increase in HMDSZ and VTMS deposition times, the film thickness increases and the refractive index decreases. • The optical transmittance of PET after the VTMS treatment increases from 89% to 95%. • The SiO{sub 2} films deposited by HMDSZ+O{sub 2} and VTMS+O{sub 2} plasma can increase the film hardness and improve light transmittance. • It is expected that they can be applied to the optical transmittance protective film on plastic substrate in the future.

  6. Mechanism of the immobilization of surfactants on polymeric surfaces by means of an argon plasma treatment: Influence of UV radiation

    NARCIS (Netherlands)

    Lens, J.P.; Spaay, B.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, Jan

    1999-01-01

    The mechanism of the immobilization of the surfactant sodium 10-undecenoate (C11(:)) on poly(ethylene) (PE) by means of an argon plasma treatment has been investigated. In particular, the influence of the vacuum ultraviolet (UV) radiation emitted by the argon plasma on the immobilization was

  7. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato

    Science.gov (United States)

    Jiafeng, JIANG; Jiangang, LI; Yuanhua, DONG

    2018-04-01

    The effects of cold plasma (CP) treatment on seed germination, seedling growth, root morphology, and nutrient uptake of a tomato were investigated. The results showed that 80 W of CP treatment significantly increased tomato nitrogen (N) and phosphorus (P) absorption by 12.7% and 19.1%, respectively. CP treatment significantly improved the germination potential of tomato seed by 11.1% and the germination rate by 13.8%. Seedling growth characteristics, including total dry weight, root dry weight, root shoot rate, and leaf area, significantly increased after 80 W of CP treatment. Root activity was increased by 15.7% with 80 W of CP treatment, and 12.6% with 100 W of CP treatment. CP treatment (80 W) markedly ameliorated tomato root morphology, and root length, surface area, and volume, which increased 21.3%, 23.6%, and 29.0%, respectively. Our results suggested that CP treatment improved tomato N and P absorption by promoting the accumulation of shoot and root biomass, increasing the leaf area and root activity, and improving the length, surface area, and volume of root growth. Thus, CP treatment could be used in an ameliorative way to improve tomato nutrient absorption.

  8. Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death

    Science.gov (United States)

    Wang, Yuyang; Cheng, Cheng; Gao, Peng; Li, Shaopeng; Shen, Jie; Lan, Yan; Yu, Yongqiang; Chu, Paul K.

    2017-02-01

    An atmospheric-pressure air plasma is employed to treat C6 glioma cells in vitro. To elucidate on the mechanism causing cell death and role of reactive species (RS) in the medium produced by the plasma, the concentration of the long-lived RS such as hydrogen peroxide, nitrate, and ozone in the plasma-treated liquid (phosphate-buffered saline solution) is measured. When vitamin C is added to the medium as a ROS quencher, the viability of C6 glioma cells after the plasma treatment is different from that without vitamin C. The results demonstrate that reactive oxygen species (ROS) such as H2O2, and O3 constitute the main factors for inactivation of C6 glioma cells and the reactive nitrogen species (RNS) may only play an auxiliary role in cell death.

  9. Plasma treatment of polymer dielectric films to improve capacitive energy storage

    Science.gov (United States)

    Yializis, A.; Binder, M.; Mammone, R. J.

    1994-01-01

    Demand for compact instrumentation, portable field equipment, and new electromagnetic weapons is creating a need for new dielectric materials with higher energy storage capabilities. Recognizing the need for higher energy storage capacitors, the Army Research Lab at Fort Monmouth, NJ, initiated a program a year ago to investigate potential methods for increasing the dielectric strength of polyvinylidene difluoride (PVDF) film, which is the highest energy density material commercially available today. Treatment of small area PVDF films in a CF4/O2 plasma showed that the dielectric strength of PVDF films can be increased by as much as 20 percent when treated in a 96 percent CF4/4 percent O2 plasma. This 44 percent increase in energy storage of a PVDF capacitor is significant considering that the treatment can be implemented in a conventional metallizing chamber, with minimum capital investment. The data shows that improved breakdown strength may be unique to PVDF film and the particular CF4/O2 gas mixture, because PVDF film treated with 100 percent CF4, 100 percent O2, Ar gas plasma, and electron irradiation shows no improvement in breakdown strength. Other data presented includes dissipation factor, dielectric constant, and surface tension measurements.

  10. A study on the effect of heat treatment on electrical properties of plasma sprayed YSZ

    International Nuclear Information System (INIS)

    Elshikh, S.S.M.

    2012-01-01

    Free standing samples of plasma sprayed (PS) zirconia partially stabilized with yettria (YSZ) were prepared with two machines of plasma spray deposition (Triplex gun- 100 kw, F-4 gun 64 kw) have different electrical power and spraying parameters, which produced different microstructures; contain different amounts and varieties of pores and micro-cracks.The study included heat treatment of samples at 1200 degree C for 1 h, 5 h, 10 h, 100 h and 500 h, to study the changes in macrostructure (pores and micro-cracks) which affect the electrical conductivity.The electrical properties (resistively, electrical conductivity) of plasma sprayed ZrO 2 stabilized by 8 wt. % Y 2 O 3 samples were determined by using electrical impedance spectroscopy (IS). Specimen's microstructure was examined by optical microscopy. By measuring electrical properties and connected porosity percent of the coatings obtained under various spraying conditions, it would be possible to select the optimum spraying condition to spray coatings which have high efficiency at high temperature.The results showed that the electrical conductivity of (YSZ) samples after heat treatment increased by a rate of (20%-30%) as compared to that of as sprayed.

  11. Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch

    International Nuclear Information System (INIS)

    Yonson, S; Coulombe, S; Leveille, V; Leask, R L

    2006-01-01

    A miniature atmospheric pressure glow discharge plasma torch was used to detach cells from a polystyrene Petri dish. The detached cells were successfully transplanted to a second dish and a proliferation assay showed the transplanted cells continued to grow. Propidium iodide diffused into the cells, suggesting that the cell membrane had been permeabilized, yet the cells remained viable 24 h after treatment. In separate experiments, hydrophobic, bacteriological grade polystyrene Petri dishes were functionalized. The plasma treatment reduced the contact angle from 93 0 to 35 0 , and promoted cell adhesion. Two different torch nozzles, 500 μm and 150 μm in internal diameter, were used in the surface functionalization experiments. The width of the tracks functionalized by the torch, as visualized by cell adhesion, was approximately twice the inside diameter of the nozzle. These results indicate that the miniature plasma torch could be used in biological micropatterning, as it does not use chemicals like the present photolithographic techniques. Due to its small size and manouvrability, the torch also has the ability to pattern complex 3D surfaces

  12. Superhydrophobic treatment using atmospheric-pressure He/C4F8 plasma for buoyancy improvement

    Science.gov (United States)

    Noh, Sooryun; Moon, A.-Young; Moon, Se Youn

    2015-04-01

    A superhydrophobic miniature boat was fabricated with aluminum alloy plates treated with atmospheric-pressure helium (He)/octafluorocyclobutane (C4F8) plasma using 13.56 MHz rf power. When only 0.13% C4F8 was added to He gas, the contact angle of the surface increased to 140° and the surface showed superhydrophobic properties. On the basis of chemical and morphological analyses, fluorinated functional groups (CF, CF2, and CF3) and nano-/micro-sized particles were detected on the Al surface. These features brought about superhydrophobicity similar to the lotus effect. While the miniature boat, assembled with plasma-treated plates, was immersed in water, a layer of air (i.e., a plastron) surrounded the superhydrophobic surfaces. This effect contributed to the development of a 4.7% increase in buoyancy. In addition, the superhydrophobic properties lasted for two months under the submerged condition. These results demonstrate that treatment with atmospheric-pressure He/C4F8 plasma is a promising method of improving the load capacity and antifouling properties, and reducing the friction of marine ships through a fast and low-cost superhydrophobic treatment process.

  13. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.

    Science.gov (United States)

    Ryu, Jeongeun; Kim, Kiwoong; Park, JooYoung; Hwang, Bae Geun; Ko, YoungChul; Kim, HyunJoo; Han, JeongSu; Seo, EungRyeol; Park, YongJong; Lee, Sang Joon

    2017-05-16

    Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0° ± 2.4°, with a sliding angle of 12.3° ± 6.4°. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9°, with a sliding angle less than 1°. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching.

  14. Treatment of ibuprofen intoxication in a dog via therapeutic plasma exchange.

    Science.gov (United States)

    Walton, Stuart; Ryan, Kirk A; Davis, Jennifer L; Acierno, Mark

    2017-07-01

    To describe the treatment of ibuprofen intoxication with therapeutic plasma exchange in a dog (TPE). A 13-year-old male neutered mixed breed dog presented after ingesting approximately 200 mg/kg of ibuprofen. Treatment consisted of supportive medical therapy with IV fluids, gastrointestinal protectants, antiemetics and prostaglandin analogs, and TPE. A cycle of TPE was performed over 180 minutes, achieving 1.5 plasma volume exchanges. During therapy, heparinized blood and effluent samples were collected. Ibuprofen concentrations were determined in the samples by high-pressure liquid chromatography. Post TPE, the dog was continued on supportive medical therapy and was discharged 96 hours after the overdose. This report describes the use of TPE as an adjunct for ibuprofen intoxication. An 85% reduction in plasma ibuprofen concentration occurred and recovery from a potentially lethal ingestion of ibuprofen was achieved with TPE and supportive care. TPE should be considered when presented with acute ibuprofen intoxication due to the rapid and efficacious nature of therapy. © Veterinary Emergency and Critical Care Society 2017.

  15. DISTRIBUSI SPASIAL KASUS DEMAM BERDARAH DENGUE (DBD, ANALISIS INDEKS JARAK DAN ALTERNATIF PENGENDALIAN VEKTOR DI KOTA SAMARINDA, PROVINSI KALIMANTAN TIMUR

    Directory of Open Access Journals (Sweden)

    Damar Tri Boewono

    2013-02-01

    Full Text Available Abstract Dengue hemorrhagic fever (DHF happens to be a public health problem in Samarinda city, East Kalimantan Province. Dengue was reported endemic in the entire six subdistricts of the city. Various vector control programs have been conducted by the Health Office, yet the dengue cases were still occurred on the previous years. Comprehensive research was conducted to determine the spatial distribution of DHF cases using geographical information system (GIS mapping, in relation to positive larvae of the breeding habitat distributions. The study was carried out in five endemic areas namely Pelita village Samarinda Utara Subdistrict, Sambutan village Samarinda Ilir Subdistrict, Sidodadi village Samarinda Ulu Subdistrict, Harapan Baru village Samarinda Seberang Subdistrict and Karang Asam Ilir village Sungai Kunjang Subdistrict. The aim of the study was to determine the specific vector control strategies based on spatial DHF cases and breeding habitat distributions and distance index analyses, larvae free index and insecticide susceptible status of dengue vector of Ae. aegypti against the insecticides which were used for vector control programs. The study revealed that average ABJ in the study areas was 35.85-64.16% and lower the national standar of 95%. Dengue vector of Ae. aegypti was found to be resistant to Malathion, Permethrin, Lambdasihalothrin and Bendiocarb insecticides. Thus an alternative insecticide should be considered. Dengue cases distribution in Samarinda city were found in  clusters/gregorious. Distance index analyses indicated that the transmissions were due to mosquito behaviour. Community empowement is needed to encourage the potential groups (PKK, Dasa Wisma, public health caders, posyandu, to participate on the vector control program.   Keywords: DHF, Spatial distribution, Cases Distance Index, Samarinda City.     Abstrak Demam Berdarah Dengue (DBD masih menjadi masalah kesehatan masyarakat Kota Samarinda, Provinsi

  16. Successful Use of Plasma Exchange in the Treatment of Corticosteroid-Refractory Eosinophilic Granulomatosis with Polyangiitis Associated with Gastrointestinal Manifestations

    Directory of Open Access Journals (Sweden)

    Kohei Tsujimoto

    2016-01-01

    Full Text Available We describe the case of a 33-year-old woman having corticosteroid-refractory eosinophilic granulomatosis with polyangiitis (EGPA who presented with abdominal pain and responded dramatically to plasma exchange. Eosinophilia, asthma history, neuropathy, pulmonary infiltrates, and paranasal sinus abnormalities confirmed the diagnosis of EGPA. Treatment was initiated with 1 g/day of methylprednisolone pulse therapy for 3 days followed by 60 mg/day of intravenous prednisolone without relieving abdominal pain. Then, plasma exchange was performed thrice. Abdominal pain disappeared after the first plasma exchange. Indication of plasma exchange for EGPA remains controversial; however, it may represent a valid option in cases with gastrointestinal involvement.

  17. Effects of H2/O2 mixed gas plasma treatment on electrical and optical property of indium tin oxide

    International Nuclear Information System (INIS)

    Kim, Jun Young; Lee, Dong-Min; Kim, Jae-Kwan; Yang, Su-Hwan; Lee, Ji-Myon

    2013-01-01

    Highlights: ► The specific resistivity of ITO was enhanced by H 2 + O 2 mixed gas plasma treatment. ► The transmittance was same as that of untreated ITO after plasma treatment. ► The process was carried out at room temperature without any step of post-treatment. - Abstract: This study examined the effects of H 2 and H 2 + O 2 mixed gas plasma treatment on the properties of ITO films. The films were deposited on corning glass by RF magnetron sputtering under Ar and Ar/O 2 mixed gas ambient. After a H 2 plasma treatment, the ITO films showed an improved specific resistance due to the formation of oxygen vacancies acting as shallow donors, but showed quenched transmittance due to the formation of agglomerated metals on the surface. After an H 2 + O 2 mixed gas plasma treatment, the specific resistance of the film was improved without deteriorating transmittance. The enhanced specific resistance by mixed gas plasma treatment was attributed to the formation of free electrons by the incorporation of H in the lattice.

  18. Mechanical strength and hydrophobicity of cotton fabric after SF6 plasma treatment

    International Nuclear Information System (INIS)

    Kamlangkla, K.; Paosawatyanyong, B.; Pavarajarn, V.; Hodak, Jose H.; Hodak, Satreerat K.

    2010-01-01

    Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF 6 plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF 6 pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF 6 pressure is higher than 0.3 Torr. The water contact angle (149 deg.) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.

  19. Mechanical strength and hydrophobicity of cotton fabric after SF{sub 6} plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kamlangkla, K. [Nanoscience and Nanotechnology Program, Center of Innovative Nanotechnology, Chulalongkorn University, Bangkok 10330 (Thailand); Paosawatyanyong, B. [Department of Physics, Faculty of Science, Chulalongkorn University, and ThEP Center, Commission on Higher Education, Bangkok 10330 (Thailand); Pavarajarn, V. [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand); Hodak, Jose H. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Hodak, Satreerat K., E-mail: Satreerat.H@Chula.ac.th [Department of Physics, Faculty of Science, Chulalongkorn University, and ThEP Center, Commission on Higher Education, Bangkok 10330 (Thailand)

    2010-08-01

    Surface treatments to tailor fabric properties are in high demand by the modern garment industry. We studied the effect of radio-frequency inductively coupled SF{sub 6} plasma on the surface characteristics of cotton fabric. The duration of the treatment and the SF{sub 6} pressure were varied systematically. We measured the hydrophobicity of treated cotton as a function of storage time and washing cycles. We used the weight loss (%) along with the etching rate, the tensile strength, the morphology changes and the hydrophobicity of the fabric as observables after treatments with different plasma conditions. The weight loss remains below 1% but it significantly increases when the treatment time is longer than 5 min. Substantial changes in the surface morphology of the fiber are concomitant with the increased etching rate and increased weight loss with measurable consequences in their mechanical characteristics. The measured water absorption time reaches the maximum of 210 min when the SF{sub 6} pressure is higher than 0.3 Torr. The water contact angle (149 deg.) and the absorption time (210 min) of cotton treated with extreme conditions appear to be durable as long as the fabric is not washed. X-ray photoelectron spectroscopy analysis reveals that the water absorption time of the fabric follows the same increasing trend as the fluorine/carbon ratio at the fabric surface and atom density of fluorine measured by Ar actinometer.

  20. Treatment of Egyptian Maghara coal by plasma ozone synthesized by silent discharge

    CERN Document Server

    Salem, M A; Garamoon, A A; Hassouba, M A

    2003-01-01

    A sample of pyrite rich bituminous coal collected from the main coal seam of Maghara mine, northern sinai, was treated by ozone plasma. The latter was synthesized using silent discharge method (10 kv a.c. and 50 hz). The room temperature Moessbauer spectra of untreated coal sample was easily fitted to two doublet, whose parameters matched those of pyrite (FeS sub 2) and sulfate (FeSO sub 4.H sub 2 O) in addition to hematite. After treatment by ozone plasma, a doublet ascribed to pyrite was observed. The extent of pyrite oxidation to jarosite (Fe sub 2 (SO sub 4) sub 3. nH sub 2 O) was monitored by their relative spectral areas, the incomplete oxidation of pyrite may be attributed to the presence of calcium sulfate layer which acts a screen of ozone.

  1. In-Package atmospheric cold plasma treatment of bulk grape tomatoes for their microbiological safety and preservation

    Science.gov (United States)

    Effects of dielectric barrier discharge atmospheric cold plasma (DACP) treatment on the inactivation of Salmonella and the storability of grape tomato were investigated. Grape tomatoes, with or without inoculation with Salmonella, were packaged in a polyethylene terephthalate (PET) commercial clamsh...

  2. Plasma treatment of carbon fibres and glass-fibre-reinforced polyesters at atmospheric pressure for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Toftegaard, Helmuth Langmaack

    2014-01-01

    Atmospheric pressure plasma treatment is useful for adhesion improvement, because cleaning, roughening and addition of polar functional groups can be expected at the surfaces. Its possible applications in the wind energy industry include plasma treatment of fibres and fibre-reinforced polymer....... The plasma treatment improved fracture toughness, indicating that adhesion between the fibres and the epoxy was enhanced by the treatment. In addition, glass-fibre-reinforced polyester plates are treated using a gliding arc and an ultrasound enhanced dielectric barrier discharge, improving the wettability...... composites before assembling them to build wind turbine blades. In the present work, unsized carbon fibres are continuously treated using a dielectric barrier discharge plasma in helium at atmospheric pressure, and carbon fibre reinforced epoxy composite plates are manufactured for the mechanical test...

  3. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations.

    Science.gov (United States)

    Nielsen, Tenna Ruest Haarmark; Fonvig, Cilius Esmann; Dahl, Maria; Mollerup, Pernille Maria; Lausten-Thomsen, Ulrik; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian

    2018-01-01

    The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during childhood obesity treatment. 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6-21.7), and median BMI SDS 2.8 (range 1.3-5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0.4-7.4). Height and weight, body composition measured by dual-energy X-ray absorptiometry, and fasting plasma lipid concentrations were assessed at baseline and at follow-up. Lipid concentrations (total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), non-HDL, and triglycerides (TG)) were available in 469 individuals (264 girls). Linear regressions were performed to investigate the associations between BMI SDS, body composition indices, and lipid concentrations. At baseline, BMI SDS was negatively associated with concentrations of HDL (p = 6.7*10-4) and positively with TG (p = 9.7*10-6). Reductions in BMI SDS were associated with reductions in total body fat percentage (pBMI SDS were associated with improvements in concentrations of TC, LDL, HDL, non-HDL, LDL/HDL-ratio, and TG (all p BMI SDS, 61% improved their body composition, and 80% improved their lipid concentrations. Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma lipid concentrations. Even in individuals increasing their BMI SDS, body composition and lipid concentrations may improve.

  4. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations

    Science.gov (United States)

    Fonvig, Cilius Esmann; Dahl, Maria; Mollerup, Pernille Maria; Lausten-Thomsen, Ulrik; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian

    2018-01-01

    Objective The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during childhood obesity treatment. Methods 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6–21.7), and median BMI SDS 2.8 (range 1.3–5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0.4–7.4). Height and weight, body composition measured by dual-energy X-ray absorptiometry, and fasting plasma lipid concentrations were assessed at baseline and at follow-up. Lipid concentrations (total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), non-HDL, and triglycerides (TG)) were available in 469 individuals (264 girls). Linear regressions were performed to investigate the associations between BMI SDS, body composition indices, and lipid concentrations. Results At baseline, BMI SDS was negatively associated with concentrations of HDL (p = 6.7*10−4) and positively with TG (p = 9.7*10−6). Reductions in BMI SDS were associated with reductions in total body fat percentage (pBMI SDS were associated with improvements in concentrations of TC, LDL, HDL, non-HDL, LDL/HDL-ratio, and TG (all p BMI SDS, 61% improved their body composition, and 80% improved their lipid concentrations. Conclusion Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma lipid concentrations. Even in individuals increasing their BMI SDS, body composition and lipid concentrations may improve. PMID:29444114

  5. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    Science.gov (United States)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  6. [Clinical study on continuous plasma filtration absorption treatment for burn sepsis].

    Science.gov (United States)

    Meng, Aihua; Ren, Yong; Yang, Lang; He, Lixin; Zeng, Sheng; Liu, Qiang

    2014-08-01

    To observe the therapeutic effects of continuous plasma filtration absorption (CPFA) treatment on burn sepsis. Thirty burn patients with sepsis hospitalized in Beijing Fengtai You'anmen Hospital from July 2009 to October 2012 were treated by CPFA for twice besides routine treatment. The blood samples were collected at five sites (A, B, C, D, and E, respectively) of blood purification equipment before and after CPFA, before and after hemoabsorption, and before hemofiltration. The plasma levels of TNF-α, IL-1β, IL-6, IL-10, interleukin-1 receptor antagonist (IL-1RA), soluble tumor necrosis factor receptor (sTNFR) I , and sTNFR-II from sites A, C, and E were determined with ELISA before CPFA was performed for the first time, and those from sites B and D were determined with ELISA after CPFA was performed for the first time. Plasma levels of the above-mentioned cytokines from sites A and B were determined with ELISA before CPFA and after CPFA was performed for the second time. The data of plasma levels of IL-1βP3, IL-1RA, sTNFR-I, sTNFR-II, and TNF-α before CPFA and after CPFA was performed for the second time were collected for calculation of the ratios of IL-1RA to IL-1β and sTNFR-I plus sTNFR-II to TNF-α. The expression rate of human leukocyte antigen DR (HLA-DR) on the CD14 positive monocytes, acute physiology and chronic health evaluation (APACHE) II score, body temperature, pulse, respiratory rate, and leukocyte count of patients were evaluated or recorded before CPFA and after CPFA was performed for the second time. Patients'condition was observed. Data were processed with paired t test. The plasma levels of TNF-α, IL-1β, IL-6 and IL-10 from site B after CPFA was performed for the second time were significantly lower than those from site A before CPFA was performed for the first time (with t values respectively 7.05, 5.23, 4.73, 2.37, P values below 0.01). After CPFA was performed for the first time, the plasma levels of TNF-α, IL-1β, and IL-6 from

  7. Development of non-thermal plasma jet and its potential application for color degradation of organic pollutant in wastewater treatment

    Science.gov (United States)

    Pirdo Kasih, Tota; Kharisma, Angel; Perdana, Muhammad Kevin; Murphiyanto, Richard Dimas Julian

    2017-12-01

    This paper presents the development of non-thermal plasma-based AOPs for color degradation in wastewater treatment. The plasma itself was generated by an in-house high voltage power supply (HVPS). Instead of gas-phase plasma system, we applied plasma jet system underwater during wastewater treatment without additional any chemicals (chemical-free processing). The method is thought to maximize the energy transfer and increase the efficient interaction between plasma and solution during the process. Our plasma jet system could proceed either by using helium (He), argon (Ar) and air as the medium in an open air atmosphere. Exploring the developed plasma to be applied in organic wastewater treatment, we demonstrated that the plasma jet could be generated underwater and yields in color degradation of methylene blue (MB) wastewater model. When using Ar gas as a medium, the color degradation of MB could be achieved within 90 minutes. Whereas, by using Ar with an admixing of oxygen (O2) gas, the similar result could be accomplished within 60 minutes. Additional O2 gas in the latter might produce more hydroxyl radicals and oxygen-based species which speed up the oxidative reaction with organic pollutants, and hence accelerate the process of color degradation.

  8. Effect of organic solar cells using various power O2 plasma treatments on the indium tin oxide substrate.

    Science.gov (United States)

    Ke, Jhong-Ciao; Wang, Yeong-Her; Chen, Kan-Lin; Huang, Chien-Jung

    2016-03-01

    The effect of organic solar cells (OSCs) by using different power O2 plasma treatments on indium tin oxide (ITO) substrate was studied. The power of O2 plasma treatment on ITO substrate was varied from 20W to 80W, and the power conversion efficiency of device was improved from 1.18% to 1.93% at 20W O2 plasma treatment. The function of O2 plasma treatment on ITO substrate was to remove the surface impurity and to improve the work function of ITO, which can reduce the energy offset between the ITO and SubPc layer and depress the leakage current of device, leading to the shunt resistance increased from 897 to 1100Ωcm(2). The surface roughness of ITO decreased from 3.81 to 3.33nm and the work function of ITO increased from 4.75 to 5.2eV after 20W O2 plasma treatment on ITO substrate. As a result, the open circuit voltage and the fill factor were improved from 0.46 to 0.70V and from 0.56 to 0.61, respectively. However, the series resistance of device was dramatically increased as the power of O2 plasma treatment exceeds 40W, leading to the efficiency reduction. The result is attributed to the variation of oxygen vacancies in ITO film after the 60, 80W O2 plasma treatment. As a consequence, the power of O2 plasma treatment on ITO substrate for the OSCs application should be controlled below 40W to avoid affecting the electricity of ITO film. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    Science.gov (United States)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250-1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  10. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    International Nuclear Information System (INIS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-01-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  11. Aqueous media treatment and decontamination of hazardous chemical and biological substances by contact plasma

    International Nuclear Information System (INIS)

    Pivovarov, A.; Kravchenko, A.; Kublanovsky, V.

    2009-01-01

    Usage of non-equilibrium contact plasma for processes of decontamination and neutralization in conditions of manifestation of chemical, biological and radiation terrorism takes on special significance due to portability of equipment and its mobility in places where toxic liquid media hazardous for people's health are located. Processes of decontamination of aqueous media, seminated with pathogenic microorganisms and viruses, treatment of water containing toxic heavy metals, cyanides, surface-active substances, and heavy radioactive elements, are investigated. Examples of activation processes in infected water and toxic aqueous solutions present convincing evidence of the way, how new quality technological approach for achievement of high enough degree of the said media treatment is used in each specific case. Among new properties of water activated as a result of action of non-equilibrium contact plasma, it is necessary to mention presence of cluster structure, confirmed by well-known spectral and physical-chemical methods, presence of peroxide compounds, active particles and radicals. Anti-microbial activity which is displayed under action of plasma in aqueous media (chemically pure water, drinking water, aqueous solutions of sodium chloride, potassium iodide, as well as other inorganic compounds) towards wide range of pathogenic and conventionally pathogenic microorganisms allows use them as reliable, accessible and low-cost preparations for increasing the degree of safety of food products. Combination of such processes with known methods of filtration and ultra-filtration gives an efficient and available complex capable of withstanding any threats, which may arise for population and living organisms. Present-day level of machine-building, electrical engineering, and electronics allows predict creation of industrial plasma installations, adapted to conditions of various terrorist threats, with minimized power consumption and optimized technological parameters

  12. The assessment of cold atmospheric plasma treatment of DNA in synthetic models of tissue fluid, tissue and cells

    Science.gov (United States)

    Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Kurita, Hirofumi; Oh, Jun-Seok; Ito, Masafumi; Mizuno, Akira; Hatta, Akimitsu; Cowin, Allison J.; Graves, David B.; Short, Robert D.

    2017-07-01

    There is a growing literature database that demonstrates the therapeutic potential of cold atmospheric plasma (herein referred to as plasma). Given the breadth of proposed applications (e.g. from teeth whitening to cancer therapy) and vast gamut of plasma devices being researched, it is timely to consider plasma interactions with specific components of the cell in more detail. Plasma can produce highly reactive oxygen and nitrogen species (RONS) such as the hydroxyl radical (OH•), peroxynitrite (ONOO-) and superoxide (\\text{O}2- ) that would readily modify essential biomolecules such as DNA. These modifications could in principle drive a wide range of biological processes. Against this possibility, the reported therapeutic action of plasmas are not underpinned by a particularly deep knowledge of the potential plasma-tissue, -cell or -biomolecule interactions. In this study, we aim to partly address this issue by developing simple models to study plasma interactions with DNA, in the form of DNA-strand breaks. This is carried out using synthetic models of tissue fluid, tissue and cells. We argue that this approach makes experimentation simpler, more cost-effective and faster than compared to working with real biological materials and cells. Herein, a helium plasma jet source was utilised for these experiments. We show that the plasma jet readily induced DNA-strand breaks in the tissue fluid model and in the cell model, surprisingly without any significant poration or rupture of the phospholipid membrane. In the plasma jet treatment of the tissue model, DNA-strand breaks were detected in the tissue mass after pro-longed treatment (on the time-scale of minutes) with no DNA-strand breaks being detected in the tissue fluid model underneath the tissue model. These data are discussed in the context of the therapeutic potential of plasma.

  13. Leading edge vortex control on a delta wing with dielectric barrier discharge plasma actuators

    Science.gov (United States)

    Shen, Lu; Wen, Chih-yung

    2017-06-01

    This paper presents an experimental investigation of the application of dielectric barrier discharge (DBD) plasma actuators on a slender delta wing to control the leading edge vortices (LEVs). The experiments are conducted in a wind tunnel with a Reynolds number of 50 000 based on the chord length. The smoke flow visualization reveals that the DBD plasma actuators at the leading edges significantly modify the vortical flow structure over the delta wing. It is noted that symmetric control at both semi-spans and asymmetric control at a single semi-span leads to opposite effects on the local LEVs. Particle image velocimetry (PIV) indicates that the shear layer is deformed by the actuators. Therefore, both the strength and the shape of the LEV cores are deeply affected. The six-component force measurement shows that the DBD plasma actuators have a limited effect on lift and drag while inducing relatively large moments. This suggests that the DBD plasma actuator is a promising technique for delta wing maneuvering.

  14. Plasma-induced high efficient synthesis of boron doped reduced graphene oxide for supercapacitors

    DEFF Research Database (Denmark)

    Li, Shaobo; Wang, Zhaofeng; Jiang, Hanmei

    2016-01-01

    In this work, we presented a novel route to synthesize boron doped reduced graphene oxide (rGO) by using the dielectric barrier discharge (DBD) plasma technology under ambient conditions. The doping of boron (1.4 at%) led to a significant improvement in the capacitance of rGO and supercapacitors...

  15. Optical emission spectroscopy of OH lines in N2 and Ar plasma during the treatments of cotton fabric

    Science.gov (United States)

    Skoro, Nikola; Puac, Nevena; Spasic, Kosta; Malovic, Gordana; Gorjanc, Marija; Petrovic, Zoran Lj

    2016-09-01

    Low pressure non-equilibrium plasmas are proven to be irreplaceable tool in material processing. Among other fields their applications in treatments of textiles are still diversifying, but the main role of plasma is activation of the surface of treated sample. After, or during, the treatments these surfaces can be covered with different materials or species (such as microcapsules) that enhance properties of the fabric. In order to investigate mechanisms how active species from plasma interact with the cotton surface, we studied both plasma and surface properties. Bleached cotton samples were treated in low-pressure nitrogen and argon plasma in a chamber with parallel-plate electrodes. The effect of the plasma treatment on the cotton samples was investigated with the colorimetric measurements on dyes absorption by a spectrophotometer. Optical emission spectroscopy was performed by using spectrometer with a sensitive CCD camera. We have recorded the evolution of the maximum of the intensity of OH and N2 second positive band lines. Measurement w