WorldWideScience

Sample records for datasets correlating 3d

  1. 3DSEM: A 3D microscopy dataset

    Directory of Open Access Journals (Sweden)

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. Keywords: 3D microscopy dataset, 3D microscopy vision, 3D SEM surface reconstruction, Scanning Electron Microscope (SEM

  2. 3D visualisation of the middle ear and adjacent structures using reconstructed multi-slice CT datasets, correlating 3D images and virtual endoscopy to the 2D cross-sectional images

    International Nuclear Information System (INIS)

    Rodt, T.; Ratiu, P.; Kacher, D.F.; Anderson, M.; Jolesz, F.A.; Kikinis, R.; Becker, H.; Bartling, S.

    2002-01-01

    The 3D imaging of the middle ear facilitates better understanding of the patient's anatomy. Cross-sectional slices, however, often allow a more accurate evaluation of anatomical structures, as some detail may be lost through post-processing. In order to demonstrate the advantages of combining both approaches, we performed computed tomography (CT) imaging in two normal and 15 different pathological cases, and the 3D models were correlated to the cross-sectional CT slices. Reconstructed CT datasets were acquired by multi-slice CT. Post-processing was performed using the in-house software ''3D Slicer'', applying thresholding and manual segmentation. 3D models of the individual anatomical structures were generated and displayed in different colours. The display of relevant anatomical and pathological structures was evaluated in the greyscale 2D slices, 3D images, and the 2D slices showing the segmented 2D anatomy in different colours for each structure. Correlating 2D slices to the 3D models and virtual endoscopy helps to combine the advantages of each method. As generating 3D models can be extremely time-consuming, this approach can be a clinically applicable way of gaining a 3D understanding of the patient's anatomy by using models as a reference. Furthermore, it can help radiologists and otolaryngologists evaluating the 2D slices by adding the correct 3D information that would otherwise have to be mentally integrated. The method can be applied to radiological diagnosis, surgical planning, and especially, to teaching. (orig.)

  3. A Large-Scale 3D Object Recognition dataset

    DEFF Research Database (Denmark)

    Sølund, Thomas; Glent Buch, Anders; Krüger, Norbert

    2016-01-01

    geometric groups; concave, convex, cylindrical and flat 3D object models. The object models have varying amount of local geometric features to challenge existing local shape feature descriptors in terms of descriptiveness and robustness. The dataset is validated in a benchmark which evaluates the matching...... performance of 7 different state-of-the-art local shape descriptors. Further, we validate the dataset in a 3D object recognition pipeline. Our benchmark shows as expected that local shape feature descriptors without any global point relation across the surface have a poor matching performance with flat...

  4. A framework for automatic creation of gold-standard rigid 3D-2D registration datasets.

    Science.gov (United States)

    Madan, Hennadii; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2017-02-01

    Advanced image-guided medical procedures incorporate 2D intra-interventional information into pre-interventional 3D image and plan of the procedure through 3D/2D image registration (32R). To enter clinical use, and even for publication purposes, novel and existing 32R methods have to be rigorously validated. The performance of a 32R method can be estimated by comparing it to an accurate reference or gold standard method (usually based on fiducial markers) on the same set of images (gold standard dataset). Objective validation and comparison of methods are possible only if evaluation methodology is standardized, and the gold standard  dataset is made publicly available. Currently, very few such datasets exist and only one contains images of multiple patients acquired during a procedure. To encourage the creation of gold standard 32R datasets, we propose an automatic framework. The framework is based on rigid registration of fiducial markers. The main novelty is spatial grouping of fiducial markers on the carrier device, which enables automatic marker localization and identification across the 3D and 2D images. The proposed framework was demonstrated on clinical angiograms of 20 patients. Rigid 32R computed by the framework was more accurate than that obtained manually, with the respective target registration error below 0.027 mm compared to 0.040 mm. The framework is applicable for gold standard setup on any rigid anatomy, provided that the acquired images contain spatially grouped fiducial markers. The gold standard datasets and software will be made publicly available.

  5. REM-3D Reference Datasets: Reconciling large and diverse compilations of travel-time observations

    Science.gov (United States)

    Moulik, P.; Lekic, V.; Romanowicz, B. A.

    2017-12-01

    A three-dimensional Reference Earth model (REM-3D) should ideally represent the consensus view of long-wavelength heterogeneity in the Earth's mantle through the joint modeling of large and diverse seismological datasets. This requires reconciliation of datasets obtained using various methodologies and identification of consistent features. The goal of REM-3D datasets is to provide a quality-controlled and comprehensive set of seismic observations that would not only enable construction of REM-3D, but also allow identification of outliers and assist in more detailed studies of heterogeneity. The community response to data solicitation has been enthusiastic with several groups across the world contributing recent measurements of normal modes, (fundamental mode and overtone) surface waves, and body waves. We present results from ongoing work with body and surface wave datasets analyzed in consultation with a Reference Dataset Working Group. We have formulated procedures for reconciling travel-time datasets that include: (1) quality control for salvaging missing metadata; (2) identification of and reasons for discrepant measurements; (3) homogenization of coverage through the construction of summary rays; and (4) inversions of structure at various wavelengths to evaluate inter-dataset consistency. In consultation with the Reference Dataset Working Group, we retrieved the station and earthquake metadata in several legacy compilations and codified several guidelines that would facilitate easy storage and reproducibility. We find strong agreement between the dispersion measurements of fundamental-mode Rayleigh waves, particularly when made using supervised techniques. The agreement deteriorates substantially in surface-wave overtones, for which discrepancies vary with frequency and overtone number. A half-cycle band of discrepancies is attributed to reversed instrument polarities at a limited number of stations, which are not reflected in the instrument response history

  6. The interactive presentation of 3D information obtained from reconstructed datasets and 3D placement of single histological sections with the 3D portable document format

    NARCIS (Netherlands)

    de Boer, Bouke A.; Soufan, Alexandre T.; Hagoort, Jaco; Mohun, Timothy J.; van den Hoff, Maurice J. B.; Hasman, Arie; Voorbraak, Frans P. J. M.; Moorman, Antoon F. M.; Ruijter, Jan M.

    2011-01-01

    Interpretation of the results of anatomical and embryological studies relies heavily on proper visualization of complex morphogenetic processes and patterns of gene expression in a three-dimensional (3D) context. However, reconstruction of complete 3D datasets is time consuming and often researchers

  7. How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks)

    OpenAIRE

    Bulat, Adrian; Tzimiropoulos, Georgios

    2017-01-01

    This paper investigates how far a very deep neural network is from attaining close to saturating performance on existing 2D and 3D face alignment datasets. To this end, we make the following 5 contributions: (a) we construct, for the first time, a very strong baseline by combining a state-of-the-art architecture for landmark localization with a state-of-the-art residual block, train it on a very large yet synthetically expanded 2D facial landmark dataset and finally evaluate it on all other 2...

  8. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets.

    Science.gov (United States)

    Scharfe, Michael; Pielot, Rainer; Schreiber, Falk

    2010-01-11

    Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE), a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  9. Fast multi-core based multimodal registration of 2D cross-sections and 3D datasets

    Directory of Open Access Journals (Sweden)

    Pielot Rainer

    2010-01-01

    Full Text Available Abstract Background Solving bioinformatics tasks often requires extensive computational power. Recent trends in processor architecture combine multiple cores into a single chip to improve overall performance. The Cell Broadband Engine (CBE, a heterogeneous multi-core processor, provides power-efficient and cost-effective high-performance computing. One application area is image analysis and visualisation, in particular registration of 2D cross-sections into 3D image datasets. Such techniques can be used to put different image modalities into spatial correspondence, for example, 2D images of histological cuts into morphological 3D frameworks. Results We evaluate the CBE-driven PlayStation 3 as a high performance, cost-effective computing platform by adapting a multimodal alignment procedure to several characteristic hardware properties. The optimisations are based on partitioning, vectorisation, branch reducing and loop unrolling techniques with special attention to 32-bit multiplies and limited local storage on the computing units. We show how a typical image analysis and visualisation problem, the multimodal registration of 2D cross-sections and 3D datasets, benefits from the multi-core based implementation of the alignment algorithm. We discuss several CBE-based optimisation methods and compare our results to standard solutions. More information and the source code are available from http://cbe.ipk-gatersleben.de. Conclusions The results demonstrate that the CBE processor in a PlayStation 3 accelerates computational intensive multimodal registration, which is of great importance in biological/medical image processing. The PlayStation 3 as a low cost CBE-based platform offers an efficient option to conventional hardware to solve computational problems in image processing and bioinformatics.

  10. Immersive Interaction, Manipulation and Analysis of Large 3D Datasets for Planetary and Earth Sciences

    Science.gov (United States)

    Pariser, O.; Calef, F.; Manning, E. M.; Ardulov, V.

    2017-12-01

    We will present implementation and study of several use-cases of utilizing Virtual Reality (VR) for immersive display, interaction and analysis of large and complex 3D datasets. These datasets have been acquired by the instruments across several Earth, Planetary and Solar Space Robotics Missions. First, we will describe the architecture of the common application framework that was developed to input data, interface with VR display devices and program input controllers in various computing environments. Tethered and portable VR technologies will be contrasted and advantages of each highlighted. We'll proceed to presenting experimental immersive analytics visual constructs that enable augmentation of 3D datasets with 2D ones such as images and statistical and abstract data. We will conclude by presenting comparative analysis with traditional visualization applications and share the feedback provided by our users: scientists and engineers.

  11. Multiline 3D beamforming using micro-beamformed datasets for pediatric transesophageal echocardiography

    Science.gov (United States)

    Bera, D.; Raghunathan, S. B.; Chen, C.; Chen, Z.; Pertijs, M. A. P.; Verweij, M. D.; Daeichin, V.; Vos, H. J.; van der Steen, A. F. W.; de Jong, N.; Bosch, J. G.

    2018-04-01

    Until now, no matrix transducer has been realized for 3D transesophageal echocardiography (TEE) in pediatric patients. In 3D TEE with a matrix transducer, the biggest challenges are to connect a large number of elements to a standard ultrasound system, and to achieve a high volume rate (>200 Hz). To address these issues, we have recently developed a prototype miniaturized matrix transducer for pediatric patients with micro-beamforming and a small central transmitter. In this paper we propose two multiline parallel 3D beamforming techniques (µBF25 and µBF169) using the micro-beamformed datasets from 25 and 169 transmit events to achieve volume rates of 300 Hz and 44 Hz, respectively. Both the realizations use angle-weighted combination of the neighboring overlapping sub-volumes to avoid artifacts due to sharp intensity changes introduced by parallel beamforming. In simulation, the image quality in terms of the width of the point spread function (PSF), lateral shift invariance and mean clutter level for volumes produced by µBF25 and µBF169 are similar to the idealized beamforming using a conventional single-line acquisition with a fully-sampled matrix transducer (FS4k, 4225 transmit events). For completeness, we also investigated a 9 transmit-scheme (3  ×  3) that allows even higher frame rates but found worse B-mode image quality with our probe. The simulations were experimentally verified by acquiring the µBF datasets from the prototype using a Verasonics V1 research ultrasound system. For both µBF169 and µBF25, the experimental PSFs were similar to the simulated PSFs, but in the experimental PSFs, the clutter level was ~10 dB higher. Results indicate that the proposed multiline 3D beamforming techniques with the prototype matrix transducer are promising candidates for real-time pediatric 3D TEE.

  12. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  13. 3D Printing of CT Dataset: Validation of an Open Source and Consumer-Available Workflow.

    Science.gov (United States)

    Bortolotto, Chandra; Eshja, Esmeralda; Peroni, Caterina; Orlandi, Matteo A; Bizzotto, Nicola; Poggi, Paolo

    2016-02-01

    The broad availability of cheap three-dimensional (3D) printing equipment has raised the need for a thorough analysis on its effects on clinical accuracy. Our aim is to determine whether the accuracy of 3D printing process is affected by the use of a low-budget workflow based on open source software and consumer's commercially available 3D printers. A group of test objects was scanned with a 64-slice computed tomography (CT) in order to build their 3D copies. CT datasets were elaborated using a software chain based on three free and open source software. Objects were printed out with a commercially available 3D printer. Both the 3D copies and the test objects were measured using a digital professional caliper. Overall, the objects' mean absolute difference between test objects and 3D copies is 0.23 mm and the mean relative difference amounts to 0.55 %. Our results demonstrate that the accuracy of 3D printing process remains high despite the use of a low-budget workflow.

  14. Effect of Task-Correlated Physiological Fluctuations and Motion in 2D and 3D Echo-Planar Imaging in a Higher Cognitive Level fMRI Paradigm.

    Science.gov (United States)

    Ladstein, Jarle; Evensmoen, Hallvard R; Håberg, Asta K; Kristoffersen, Anders; Goa, Pål E

    2016-01-01

    To compare 2D and 3D echo-planar imaging (EPI) in a higher cognitive level fMRI paradigm. In particular, to study the link between the presence of task-correlated physiological fluctuations and motion and the fMRI contrast estimates from either 2D EPI or 3D EPI datasets, with and without adding nuisance regressors to the model. A signal model in the presence of partly task-correlated fluctuations is derived, and predictions for contrast estimates with and without nuisance regressors are made. Thirty-one healthy volunteers were scanned using 2D EPI and 3D EPI during a virtual environmental learning paradigm. In a subgroup of 7 subjects, heart rate and respiration were logged, and the correlation with the paradigm was evaluated. FMRI analysis was performed using models with and without nuisance regressors. Differences in the mean contrast estimates were investigated by analysis-of-variance using Subject, Sequence, Day, and Run as factors. The distributions of group level contrast estimates were compared. Partially task-correlated fluctuations in respiration, heart rate and motion were observed. Statistically significant differences were found in the mean contrast estimates between the 2D EPI and 3D EPI when using a model without nuisance regressors. The inclusion of nuisance regressors for cardiorespiratory effects and motion reduced the difference to a statistically non-significant level. Furthermore, the contrast estimate values shifted more when including nuisance regressors for 3D EPI compared to 2D EPI. The results are consistent with 3D EPI having a higher sensitivity to fluctuations compared to 2D EPI. In the presence partially task-correlated physiological fluctuations or motion, proper correction is necessary to get expectation correct contrast estimates when using 3D EPI. As such task-correlated physiological fluctuations or motion is difficult to avoid in paradigms exploring higher cognitive functions, 2D EPI seems to be the preferred choice for higher

  15. MR neurography with multiplanar reconstruction of 3D MRI datasets: an anatomical study and clinical applications

    International Nuclear Information System (INIS)

    Freund, Wolfgang; Aschoff, Andrik J.; Stuber, Gregor; Schmitz, Bernd; Brinkmann, Alexander; Wagner, Florian; Dinse, Alexander

    2007-01-01

    Extracranial MR neurography has so far mainly been used with 2D datasets. We investigated the use of 3D datasets for peripheral neurography of the sciatic nerve. A total of 40 thighs (20 healthy volunteers) were examined with a coronally oriented magnetization-prepared rapid acquisition gradient echo sequence with isotropic voxels of 1 x 1 x 1 mm and a field of view of 500 mm. Anatomical landmarks were palpated and marked with MRI markers. After MR scanning, the sciatic nerve was identified by two readers independently in the resulting 3D dataset. In every volunteer, the sciatic nerve could be identified bilaterally over the whole length of the thigh, even in areas of close contact to isointense muscles. The landmark of the greater trochanter was falsely palpated by 2.2 cm, and the knee joint by 1 cm. The mean distance between the bifurcation of the sciatic nerve and the knee-joint gap was 6 cm (±1.8 cm). The mean results of the two readers differed by 1-6%. With the described method of MR neurography, the sciatic nerve was depicted reliably and objectively in great anatomical detail over the whole length of the thigh. Important anatomical information can be obtained. The clinical applications of MR neurography for the brachial plexus and lumbosacral plexus/sciatic nerve are discussed. (orig.)

  16. fCCAC: functional canonical correlation analysis to evaluate covariance between nucleic acid sequencing datasets.

    Science.gov (United States)

    Madrigal, Pedro

    2017-03-01

    Computational evaluation of variability across DNA or RNA sequencing datasets is a crucial step in genomic science, as it allows both to evaluate reproducibility of biological or technical replicates, and to compare different datasets to identify their potential correlations. Here we present fCCAC, an application of functional canonical correlation analysis to assess covariance of nucleic acid sequencing datasets such as chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). We show how this method differs from other measures of correlation, and exemplify how it can reveal shared covariance between histone modifications and DNA binding proteins, such as the relationship between the H3K4me3 chromatin mark and its epigenetic writers and readers. An R/Bioconductor package is available at http://bioconductor.org/packages/fCCAC/ . pmb59@cam.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  17. 3D Rigid Registration by Cylindrical Phase Correlation Method

    Czech Academy of Sciences Publication Activity Database

    Bican, Jakub; Flusser, Jan

    2009-01-01

    Roč. 30, č. 10 (2009), s. 914-921 ISSN 0167-8655 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/1593 Grant - others:GAUK(CZ) 48908 Institutional research plan: CEZ:AV0Z10750506 Keywords : 3D registration * correlation methods * Image registration Subject RIV: BD - Theory of Information Impact factor: 1.303, year: 2009 http://library.utia.cas.cz/separaty/2009/ZOI/bican-3d digit registration by cylindrical phase correlation method.pdf

  18. Web-Based Scientific Exploration and Analysis of 3D Scanned Cuneiform Datasets for Collaborative Research

    Directory of Open Access Journals (Sweden)

    Denis Fisseler

    2017-12-01

    Full Text Available The three-dimensional cuneiform script is one of the oldest known writing systems and a central object of research in Ancient Near Eastern Studies and Hittitology. An important step towards the understanding of the cuneiform script is the provision of opportunities and tools for joint analysis. This paper presents an approach that contributes to this challenge: a collaborative compatible web-based scientific exploration and analysis of 3D scanned cuneiform fragments. The WebGL -based concept incorporates methods for compressed web-based content delivery of large 3D datasets and high quality visualization. To maximize accessibility and to promote acceptance of 3D techniques in the field of Hittitology, the introduced concept is integrated into the Hethitologie-Portal Mainz, an established leading online research resource in the field of Hittitology, which until now exclusively included 2D content. The paper shows that increasing the availability of 3D scanned archaeological data through a web-based interface can provide significant scientific value while at the same time finding a trade-off between copyright induced restrictions and scientific usability.

  19. Generation of Ground Truth Datasets for the Analysis of 3d Point Clouds in Urban Scenes Acquired via Different Sensors

    Science.gov (United States)

    Xu, Y.; Sun, Z.; Boerner, R.; Koch, T.; Hoegner, L.; Stilla, U.

    2018-04-01

    In this work, we report a novel way of generating ground truth dataset for analyzing point cloud from different sensors and the validation of algorithms. Instead of directly labeling large amount of 3D points requiring time consuming manual work, a multi-resolution 3D voxel grid for the testing site is generated. Then, with the help of a set of basic labeled points from the reference dataset, we can generate a 3D labeled space of the entire testing site with different resolutions. Specifically, an octree-based voxel structure is applied to voxelize the annotated reference point cloud, by which all the points are organized by 3D grids of multi-resolutions. When automatically annotating the new testing point clouds, a voting based approach is adopted to the labeled points within multiple resolution voxels, in order to assign a semantic label to the 3D space represented by the voxel. Lastly, robust line- and plane-based fast registration methods are developed for aligning point clouds obtained via various sensors. Benefiting from the labeled 3D spatial information, we can easily create new annotated 3D point clouds of different sensors of the same scene directly by considering the corresponding labels of 3D space the points located, which would be convenient for the validation and evaluation of algorithms related to point cloud interpretation and semantic segmentation.

  20. Reconnaissance invariante d'objets 3-D et correlation SONG

    Science.gov (United States)

    Roy, Sebastien

    Cette these propose des solutions a deux problemes de la reconnaissance automatique de formes: la reconnaissance invariante d'objets tridimensionnels a partir d'images d'intensite et la reconnaissance robuste a la presence de bruit disjoint. Un systeme utilisant le balayage angulaire des images et un classificateur par trajectoires d'espace des caracteristiques permet d'obtenir la reconnaissance invariante d'objets tridimensionnels. La reconnaissance robuste a la presence de bruit disjoint est realisee au moyen de la correlation SONG. Nous avons realise la reconnaissance invariante aux translations, rotations et changements d'echelle d'objets tridimensionnels a partir d'images d'intensite segmentees. Nous utilisons le balayage angulaire et un classificateur a trajectoires d'espace des caracteris tiques. Afin d'obtenir l'invariance aux translations, le centre de balayage angulaire coincide avec le centre geometrique de l'image. Le balayage angulaire produit un vecteur de caracteristiques invariant aux changements d'echelle de l'image et il transforme en translations du signal les rotations autour d'un axe parallele a la ligne de visee. Le classificateur par trajectoires d'espace des caracteristiques represente une rotation autour d'un axe perpendiculaire a la ligne de visee par une courbe dans l'espace. La classification se fait par la mesure de la distance du vecteur de caracteristiques de l'image a reconnaitre aux trajectoires stockees dans l'espace. Nos resultats numeriques montrent un taux de classement atteignant 98% sur une banque d'images composee de 5 vehicules militaires. La correlation non-lineaire generalisee en tranches orthogonales (SONG) traite independamment les niveaux de gris presents dans une image. Elle somme les correlations lineaires des images binaires ayant le meme niveau de gris. Cette correlation est equivalente a compter le nombre de pixels situes aux memes positions relatives et ayant les memes intensites sur deux images. Nous presentons

  1. Magmatic Systems in 3-D

    Science.gov (United States)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  2. Respiratory correlated cone beam CT

    International Nuclear Information System (INIS)

    Sonke, Jan-Jakob; Zijp, Lambert; Remeijer, Peter; Herk, Marcel van

    2005-01-01

    A cone beam computed tomography (CBCT) scanner integrated with a linear accelerator is a powerful tool for image guided radiotherapy. Respiratory motion, however, induces artifacts in CBCT, while the respiratory correlated procedures, developed to reduce motion artifacts in axial and helical CT are not suitable for such CBCT scanners. We have developed an alternative respiratory correlated procedure for CBCT and evaluated its performance. This respiratory correlated CBCT procedure consists of retrospective sorting in projection space, yielding subsets of projections that each corresponds to a certain breathing phase. Subsequently, these subsets are reconstructed into a four-dimensional (4D) CBCT dataset. The breathing signal, required for respiratory correlation, was directly extracted from the 2D projection data, removing the need for an additional respiratory monitor system. Due to the reduced number of projections per phase, the contrast-to-noise ratio in a 4D scan reduced by a factor 2.6-3.7 compared to a 3D scan based on all projections. Projection data of a spherical phantom moving with a 3 and 5 s period with and without simulated breathing irregularities were acquired and reconstructed into 3D and 4D CBCT datasets. The positional deviations of the phantoms center of gravity between 4D CBCT and fluoroscopy were small: 0.13±0.09 mm for the regular motion and 0.39±0.24 mm for the irregular motion. Motion artifacts, clearly present in the 3D CBCT datasets, were substantially reduced in the 4D datasets, even in the presence of breathing irregularities, such that the shape of the moving structures could be identified more accurately. Moreover, the 4D CBCT dataset provided information on the 3D trajectory of the moving structures, absent in the 3D data. Considerable breathing irregularities, however, substantially reduces the image quality. Data presented for three different lung cancer patients were in line with the results obtained from the phantom study. In

  3. Comparison of global 3-D aviation emissions datasets

    Directory of Open Access Journals (Sweden)

    S. C. Olsen

    2013-01-01

    Full Text Available Aviation emissions are unique from other transportation emissions, e.g., from road transportation and shipping, in that they occur at higher altitudes as well as at the surface. Aviation emissions of carbon dioxide, soot, and water vapor have direct radiative impacts on the Earth's climate system while emissions of nitrogen oxides (NOx, sulfur oxides, carbon monoxide (CO, and hydrocarbons (HC impact air quality and climate through their effects on ozone, methane, and clouds. The most accurate estimates of the impact of aviation on air quality and climate utilize three-dimensional chemistry-climate models and gridded four dimensional (space and time aviation emissions datasets. We compare five available aviation emissions datasets currently and historically used to evaluate the impact of aviation on climate and air quality: NASA-Boeing 1992, NASA-Boeing 1999, QUANTIFY 2000, Aero2k 2002, and AEDT 2006 and aviation fuel usage estimates from the International Energy Agency. Roughly 90% of all aviation emissions are in the Northern Hemisphere and nearly 60% of all fuelburn and NOx emissions occur at cruise altitudes in the Northern Hemisphere. While these datasets were created by independent methods and are thus not strictly suitable for analyzing trends they suggest that commercial aviation fuelburn and NOx emissions increased over the last two decades while HC emissions likely decreased and CO emissions did not change significantly. The bottom-up estimates compared here are consistently lower than International Energy Agency fuelburn statistics although the gap is significantly smaller in the more recent datasets. Overall the emissions distributions are quite similar for fuelburn and NOx with regional peaks over the populated land masses of North America, Europe, and East Asia. For CO and HC there are relatively larger differences. There are however some distinct differences in the altitude distribution

  4. 3D Flow Field Measurements using Aerosol Correlation Velocimetry, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — AeroMancer Technologies proposes to develop a 3D Global Lidar Airspeed Sensor (3D-LGAS) using Aerosol Correlation Velocimetry for standoff sensing of high-resolution...

  5. SU-E-T-20: A Correlation Study of 2D and 3D Gamma Passing Rates for Prostate IMRT Plans

    International Nuclear Information System (INIS)

    Zhang, D; Wang, B; Ma, C; Deng, X

    2015-01-01

    Purpose: To investigate the correlation between the two-dimensional gamma passing rate (2D %GP) and three-dimensional gamma passing rate (3D %GP) in prostate IMRT quality assurance. Methods: Eleven prostate IMRT plans were randomly selected from the clinical database and were used to obtain dose distributions in the phantom and patient. Three types of delivery errors (MLC bank sag errors, central MLC errors and monitor unit errors) were intentionally introduced to modify the clinical plans through an in-house Matlab program. This resulted in 187 modified plans. The 2D %GP and 3D %GP were analyzed using different dose-difference and distance-toagreement (1%-1mm, 2%-2mm and 3%-3mm) and 20% dose threshold. The 2D %GP and 3D %GP were then compared not only for the whole region, but also for the PTVs and critical structures using the statistical Pearson’s correlation coefficient (γ). Results: For different delivery errors, the average comparison of 2D %GP and 3D %GP showed different conclusions. The statistical correlation coefficients between 2D %GP and 3D %GP for the whole dose distribution showed that except for 3%/3mm criterion, 2D %GP and 3D %GP of 1%/1mm criterion and 2%/2mm criterion had strong correlations (Pearson’s γ value >0.8). Compared with the whole region, the correlations of 2D %GP and 3D %GP for PTV were better (the γ value for 1%/1mm, 2%/2mm and 3%/3mm criterion was 0.959, 0.931 and 0.855, respectively). However for the rectum, there was no correlation between 2D %GP and 3D %GP. Conclusion: For prostate IMRT, the correlation between 2D %GP and 3D %GP for the PTV is better than that for normal structures. The lower dose-difference and DTA criterion shows less difference between 2D %GP and 3D %GP. Other factors such as the dosimeter characteristics and TPS algorithm bias may also influence the correlation between 2D %GP and 3D %GP

  6. Correlated electron pseudopotentials for 3d-transition metals

    International Nuclear Information System (INIS)

    Trail, J. R.; Needs, R. J.

    2015-01-01

    A recently published correlated electron pseudopotentials (CEPPs) method has been adapted for application to the 3d-transition metals, and to include relativistic effects. New CEPPs are reported for the atoms Sc − Fe, constructed from atomic quantum chemical calculations that include an accurate description of correlated electrons. Dissociation energies, molecular geometries, and zero-point vibrational energies of small molecules are compared with all electron results, with all quantities evaluated using coupled cluster singles doubles and triples calculations. The CEPPs give better results in the correlated-electron calculations than Hartree-Fock-based pseudopotentials available in the literature

  7. CAVAREV-an open platform for evaluating 3D and 4D cardiac vasculature reconstruction

    International Nuclear Information System (INIS)

    Rohkohl, Christopher; Hornegger, Joachim; Lauritsch, Guenter; Keil, Andreas

    2010-01-01

    The 3D reconstruction of cardiac vasculature, e.g. the coronary arteries, using C-arm CT (rotational angiography) is an active and challenging field of research. There are numerous publications on different reconstruction techniques. However, there is still a lack of comparability of achieved results for several reasons: foremost, datasets used in publications are not open to public and thus experiments are not reproducible by other researchers. Further, the results highly depend on the vasculature motion, i.e. cardiac and breathing motion patterns which are also not comparable across publications. We aim to close this gap by providing an open platform, called Cavarev (CArdiac VAsculature Reconstruction EValuation). It features two simulated dynamic projection datasets based on the 4D XCAT phantom with contrasted coronary arteries which was derived from patient data. In the first dataset, the vasculature undergoes a continuous periodic motion. The second dataset contains aperiodic heart motion by including additional breathing motion. The geometry calibration and acquisition protocol were obtained from a real-world C-arm system. For qualitative evaluation of the reconstruction results, the correlation of the morphology is used. Two segmentation-based quality measures are introduced which allow us to assess the 3D and 4D reconstruction quality. They are based on the spatial overlap of the vasculature reconstruction with the ground truth. The measures enable a comprehensive analysis and comparison of reconstruction results independent from the utilized reconstruction algorithm. An online platform (www.cavarev.com) is provided where the datasets can be downloaded, researchers can manage and publish algorithm results and download a reference C++ and Matlab implementation.

  8. Echocardiographic 3D-guided 2D planimetry in quantifying left-sided valvular heart disease.

    Science.gov (United States)

    Argulian, Edgar; Seetharam, Karthik

    2018-02-08

    Echocardiographic 3D-guided 2D planimetry can improve the accuracy of valvular disease assessment. Acquisition of 3D pyramidal dataset allows subsequent multiplanar reconstruction with accurate orthogonal plane alignment to obtain the correct borders of an anatomic orifice or flow area. Studies examining the 3D-guided 2D planimetry approach in left-sided valvular heart disease were identified and reviewed. The strongest evidence exists for estimating mitral valve area in patients with rheumatic mitral valve stenosis and vena contracta area in patients with mitral regurgitation (both primary and secondary). 3D-guided approach showed excellent feasibility and reproducibility in most studies, as well as time efficiency and good correlation with reference and comparator methods. Therefore, 3D-guided 2D planimetry can be used as an important clinical tool in quantifying left-sided valvular heart disease, especially mitral valve disorders. © 2018 Wiley Periodicals, Inc.

  9. 3D shape recovery from image focus using gray level co-occurrence matrix

    Science.gov (United States)

    Mahmood, Fahad; Munir, Umair; Mehmood, Fahad; Iqbal, Javaid

    2018-04-01

    Recovering a precise and accurate 3-D shape of the target object utilizing robust 3-D shape recovery algorithm is an ultimate objective of computer vision community. Focus measure algorithm plays an important role in this architecture which convert the color values of each pixel of the acquired 2-D image dataset into corresponding focus values. After convolving the focus measure filter with the input 2-D image dataset, a 3-D shape recovery approach is applied which will recover the depth map. In this document, we are concerned with proposing Gray Level Co-occurrence Matrix along with its statistical features for computing the focus information of the image dataset. The Gray Level Co-occurrence Matrix quantifies the texture present in the image using statistical features and then applies joint probability distributive function of the gray level pairs of the input image. Finally, we quantify the focus value of the input image using Gaussian Mixture Model. Due to its little computational complexity, sharp focus measure curve, robust to random noise sources and accuracy, it is considered as superior alternative to most of recently proposed 3-D shape recovery approaches. This algorithm is deeply investigated on real image sequences and synthetic image dataset. The efficiency of the proposed scheme is also compared with the state of art 3-D shape recovery approaches. Finally, by means of two global statistical measures, root mean square error and correlation, we claim that this approach -in spite of simplicity generates accurate results.

  10. On the utility of 3D hand cursors to explore medical volume datasets with a touchless interface.

    Science.gov (United States)

    Lopes, Daniel Simões; Parreira, Pedro Duarte de Figueiredo; Paulo, Soraia Figueiredo; Nunes, Vitor; Rego, Paulo Amaral; Neves, Manuel Cassiano; Rodrigues, Pedro Silva; Jorge, Joaquim Armando

    2017-08-01

    Analyzing medical volume datasets requires interactive visualization so that users can extract anatomo-physiological information in real-time. Conventional volume rendering systems rely on 2D input devices, such as mice and keyboards, which are known to hamper 3D analysis as users often struggle to obtain the desired orientation that is only achieved after several attempts. In this paper, we address which 3D analysis tools are better performed with 3D hand cursors operating on a touchless interface comparatively to a 2D input devices running on a conventional WIMP interface. The main goals of this paper are to explore the capabilities of (simple) hand gestures to facilitate sterile manipulation of 3D medical data on a touchless interface, without resorting on wearables, and to evaluate the surgical feasibility of the proposed interface next to senior surgeons (N=5) and interns (N=2). To this end, we developed a touchless interface controlled via hand gestures and body postures to rapidly rotate and position medical volume images in three-dimensions, where each hand acts as an interactive 3D cursor. User studies were conducted with laypeople, while informal evaluation sessions were carried with senior surgeons, radiologists and professional biomedical engineers. Results demonstrate its usability as the proposed touchless interface improves spatial awareness and a more fluent interaction with the 3D volume than with traditional 2D input devices, as it requires lesser number of attempts to achieve the desired orientation by avoiding the composition of several cumulative rotations, which is typically necessary in WIMP interfaces. However, tasks requiring precision such as clipping plane visualization and tagging are best performed with mouse-based systems due to noise, incorrect gestures detection and problems in skeleton tracking that need to be addressed before tests in real medical environments might be performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A recipe for consistent 3D management of velocity data and time-depth conversion using Vel-IO 3D

    Science.gov (United States)

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-04-01

    3D geological model production and related basin analyses need large and consistent seismic dataset and hopefully well logs to support correlation and calibration; the workflow and tools used to manage and integrate different type of data control the soundness of the final 3D model. Even though seismic interpretation is a basic early step in such workflow, the most critical step to obtain a comprehensive 3D model useful for further analyses is represented by the construction of an effective 3D velocity model and a well constrained time-depth conversion. We present a complex workflow that includes comprehensive management of large seismic dataset and velocity data, the construction of a 3D instantaneous multilayer-cake velocity model, the time-depth conversion of highly heterogeneous geological framework, including both depositional and structural complexities. The core of the workflow is the construction of the 3D velocity model using Vel-IO 3D tool (Maesano and D'Ambrogi, 2017; https://github.com/framae80/Vel-IO3D) that is composed by the following three scripts, written in Python 2.7.11 under ArcGIS ArcPy environment: i) the 3D instantaneous velocity model builder creates a preliminary 3D instantaneous velocity model using key horizons in time domain and velocity data obtained from the analysis of well and pseudo-well logs. The script applies spatial interpolation to the velocity parameters and calculates the value of depth of each point on each horizon bounding the layer-cake velocity model. ii) the velocity model optimizer improves the consistency of the velocity model by adding new velocity data indirectly derived from measured depths, thus reducing the geometrical uncertainties in the areas located far from the original velocity data. iii) the time-depth converter runs the time-depth conversion of any object located inside the 3D velocity model The Vel-IO 3D tool allows one to create 3D geological models consistent with the primary geological constraints (e

  12. Deep Correlated Holistic Metric Learning for Sketch-Based 3D Shape Retrieval.

    Science.gov (United States)

    Dai, Guoxian; Xie, Jin; Fang, Yi

    2018-07-01

    How to effectively retrieve desired 3D models with simple queries is a long-standing problem in computer vision community. The model-based approach is quite straightforward but nontrivial, since people could not always have the desired 3D query model available by side. Recently, large amounts of wide-screen electronic devices are prevail in our daily lives, which makes the sketch-based 3D shape retrieval a promising candidate due to its simpleness and efficiency. The main challenge of sketch-based approach is the huge modality gap between sketch and 3D shape. In this paper, we proposed a novel deep correlated holistic metric learning (DCHML) method to mitigate the discrepancy between sketch and 3D shape domains. The proposed DCHML trains two distinct deep neural networks (one for each domain) jointly, which learns two deep nonlinear transformations to map features from both domains into a new feature space. The proposed loss, including discriminative loss and correlation loss, aims to increase the discrimination of features within each domain as well as the correlation between different domains. In the new feature space, the discriminative loss minimizes the intra-class distance of the deep transformed features and maximizes the inter-class distance of the deep transformed features to a large margin within each domain, while the correlation loss focused on mitigating the distribution discrepancy across different domains. Different from existing deep metric learning methods only with loss at the output layer, our proposed DCHML is trained with loss at both hidden layer and output layer to further improve the performance by encouraging features in the hidden layer also with desired properties. Our proposed method is evaluated on three benchmarks, including 3D Shape Retrieval Contest 2013, 2014, and 2016 benchmarks, and the experimental results demonstrate the superiority of our proposed method over the state-of-the-art methods.

  13. SU-E-T-422: Correlation Between 2D Passing Rates and 3D Dose Differences for Pretreatment VMAT QA

    International Nuclear Information System (INIS)

    Jin, X; Xie, C

    2014-01-01

    Purpose: Volumetric modulated arc therapy (VMAT) quality assurance (QA) is typically using QA methods and action levels taken from fixedbeam intensity-modulated radiotherapy (IMRT) QA methods. However, recent studies demonstrated that there is no correlation between the percent gamma passing rate (%GP) and the magnitude of dose discrepancy between the planned dose and the actual delivered dose for IMRT. The purpose of this study is to investigate whether %GP is correlated with clinical dosimetric difference for VMAT. Methods: Twenty nasopharyngeal cancer (NPC) patients treated with dual-arc simultaneous integrated boost VMAT and 20 esophageal cancer patients treated with one-arc VMAT were enrolled in this study. Pretreatment VMAT QA was performed by a 3D diode array ArcCheck. Acceptance criteria of 2%/2mm, 3%/3mm, and 4%/4mm were applied for 2D %GP. Dose values below 10% of the per-measured normalization maximum dose were ignored.Mean DVH values obtained from 3DVH software and TPS were calculated and percentage dose differences were calculated. Statistical correlation between %GP and percent dose difference was studied by using Pearson correlation. Results: The %GP for criteria 2%/2mm, 3%/3mm, and 4%/4mm were 82.33±4.45, 93.47±2.31, 97.13±2.41, respectively. Dose differences calculated from 3DVH and TPS for beam isocenter, mean dose of PTV, maximum dose of PTV, D2 of PTV and D98 of PTV were -1.04±3.24, -0.74±1.71, 2.92±3.62, 0.89±3.29, -1.46±1.97, respectively. No correction were found between %GP and dose differences. Conclusion: There are weak correlations between the 2D %GP and dose differences calculated from 3DVH. The %GP acceptance criteria of 3%/3mm usually applied for pretreatment QA of IMRT and VMAT is not indicating strong clinical correlation with 3D dose difference. 3D dose reconstructions on patient anatomy may be necessary for physicist to predict the accuracy of delivered dose for VMAT QA

  14. 3D shape recovery from image focus using Gabor features

    Science.gov (United States)

    Mahmood, Fahad; Mahmood, Jawad; Zeb, Ayesha; Iqbal, Javaid

    2018-04-01

    Recovering an accurate and precise depth map from a set of acquired 2-D image dataset of the target object each having different focus information is an ultimate goal of 3-D shape recovery. Focus measure algorithm plays an important role in this architecture as it converts the corresponding color value information into focus information which will be then utilized for recovering depth map. This article introduces Gabor features as focus measure approach for recovering depth map from a set of 2-D images. Frequency and orientation representation of Gabor filter features is similar to human visual system and normally applied for texture representation. Due to its little computational complexity, sharp focus measure curve, robust to random noise sources and accuracy, it is considered as superior alternative to most of recently proposed 3-D shape recovery approaches. This algorithm is deeply investigated on real image sequences and synthetic image dataset. The efficiency of the proposed scheme is also compared with the state of art 3-D shape recovery approaches. Finally, by means of two global statistical measures, root mean square error and correlation, we claim that this approach, in spite of simplicity, generates accurate results.

  15. 3D correlation imaging of the vertical gradient of gravity data

    International Nuclear Information System (INIS)

    Guo, Lianghui; Meng, Xiaohong; Shi, Lei

    2011-01-01

    We present a new 3D correlation imaging approach for vertical gradient of gravity data for deriving a 3D equivalent mass distribution in the subsurface. In this approach, we divide the subsurface space into a 3D regular grid, and then at each grid node calculate a cross correlation between the vertical gradient of the observed gravity data and the theoretical gravity vertical gradient due to a point mass source. The resultant correlation coefficients are used to describe the equivalent mass distribution in a probability sense. We simulate a geological syncline model intruded by a dike and later broken by two vertical faults. The vertical gradient of gravity anomaly of the model is calculated and used to test the approach. The results demonstrate that the equivalent mass distribution derived by the approach reflects the basic geological structures of the model. We also test the approach on the transformed vertical gradient of real Bouguer gravity data from a geothermal survey area in Northern China. The thermal reservoirs are located in the lower portion of the sedimentary basin. From the resultant equivalent mass distribution, we produce the depth distribution of the bottom interface of the basin and predict possible hidden faults present in the basin

  16. SU-F-T-275: A Correlation Study On 3D Fluence-Based QA and 2D Dose Measurement-Based QA

    International Nuclear Information System (INIS)

    Liu, S; Mazur, T; Li, H; Green, O; Sun, B; Mutic, S; Yang, D

    2016-01-01

    Purpose: The aim of this paper was to demonstrate the feasibility and creditability of computing and verifying 3D fluencies to assure IMRT and VMAT treatment deliveries, by correlating the passing rates of the 3D fluence-based QA (P(ά)) to the passing rates of 2D dose measurementbased QA (P(Dm)). Methods: 3D volumetric primary fluencies are calculated by forward-projecting the beam apertures and modulated by beam MU values at all gantry angles. We first introduce simulated machine parameter errors (MU, MLC positions, jaw, gantry and collimator) to the plan. Using passing rates of voxel intensity differences (P(Ir)) and 3D gamma analysis (P(γ)), calculated 3D fluencies, calculated 3D delivered dose, and measured 2D planar dose in phantom from the original plan are then compared with those from corresponding plans with errors, respectively. The correlations of these three groups of resultant passing rates, i.e. 3D fluence-based QA (P(ά,Ir) and P(ά,γ)), calculated 3D dose (P(Dc,Ir) and P(Dc,γ)), and 2D dose measurement-based QA (P(Dm,Ir) and P(Dm,γ)), will be investigated. Results: 20 treatment plans with 5 different types of errors were tested. Spearman’s correlations were found between P(ά,Ir) and P(Dc,Ir), and also between P(ά,γ) and P(Dc,γ), with averaged p-value 0.037, 0.065, and averaged correlation coefficient ρ-value 0.942, 0.871 respectively. Using Matrixx QA for IMRT plans, Spearman’s correlations were also obtained between P(ά,Ir) and P(Dm,Ir) and also between P(ά,γ) and P(Dm,γ), with p-value being 0.048, 0.071 and ρ-value being 0.897, 0.779 respectively. Conclusion: The demonstrated correlations improve the creditability of using 3D fluence-based QA for assuring treatment deliveries for IMRT/VMAT plans. Together with advantages of high detection sensitivity and better visualization of machine parameter errors, this study further demonstrates the accuracy and feasibility of 3D fluence based-QA in pre-treatment QA and daily QA. Research

  17. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data

    International Nuclear Information System (INIS)

    Spiegel, M; Hornegger, J; Redel, T; Struffert, T; Doerfler, A

    2011-01-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.

  18. Computational optical tomography using 3-D deep convolutional neural networks

    Science.gov (United States)

    Nguyen, Thanh; Bui, Vy; Nehmetallah, George

    2018-04-01

    Deep convolutional neural networks (DCNNs) offer a promising performance for many image processing areas, such as super-resolution, deconvolution, image classification, denoising, and segmentation, with outstanding results. Here, we develop for the first time, to our knowledge, a method to perform 3-D computational optical tomography using 3-D DCNN. A simulated 3-D phantom dataset was first constructed and converted to a dataset of phase objects imaged on a spatial light modulator. For each phase image in the dataset, the corresponding diffracted intensity image was experimentally recorded on a CCD. We then experimentally demonstrate the ability of the developed 3-D DCNN algorithm to solve the inverse problem by reconstructing the 3-D index of refraction distributions of test phantoms from the dataset from their corresponding diffraction patterns.

  19. Northern Chinese dental ages estimated from southern Chinese reference datasets closely correlate with chronological age

    Directory of Open Access Journals (Sweden)

    Hai Ming Wong

    2016-12-01

    Full Text Available While northern and southern Chinese are genetically correlated, there exists notable environmental differences in their living conditions. This study aimed to evaluate validity of the southern Chinese reference dataset for dental age estimation applied to northern Chinese. Dental panoramic tomographs of 437 northern Chinese aged 3 to 21 years were analysed. All the left maxillary and mandibular permanent teeth plus the 2 third molars on the right side were scored based on Demirjian’s classification of tooth development stages. Mean and standard error of dental age were obtained for each tooth development stage, followed by random effect meta-analysis for mean dental age estimation. Validity of the method was examined through measures of agreement (95% limits of agreement, standard error of measurement, and Lin’s concordance correlation coefficient and measure of reliability (Intraclass correlation coefficient. On average, the estimated dental age overestimated chronological age by only around 1 month in both females and males. The Intraclass correlation coefficient values were 0.99 for both sexes, suggesting excellent reliability of the method. Reference dataset for dental age estimation developed on the basis of southern Chinese was applicable for use among the northern Chinese.

  20. Correlation of 3D Shift and 3D Tilt of the Patella in Patients With Recurrent Dislocation of the Patella and Healthy Volunteers: An In Vivo Analysis Based on 3-Dimensional Computer Models.

    Science.gov (United States)

    Yamada, Yuzo; Toritsuka, Yukiyoshi; Nakamura, Norimasa; Horibe, Shuji; Sugamoto, Kazuomi; Yoshikawa, Hideki; Shino, Konsei

    2017-11-01

    The concepts of lateral deviation and lateral inclination of the patella, characterized as shift and tilt, have been applied in combination to evaluate patellar malalignment in patients with patellar dislocation. It is not reasonable, however, to describe the 3-dimensional (3D) positional relation between the patella and the femur according to measurements made on 2-dimensional (2D) images. The current study sought to clarify the relation between lateral deviation and inclination of the patella in patients with recurrent dislocation of the patella (RDP) by redefining them via 3D computer models as 3D shift and 3D tilt. Descriptive laboratory study. Altogether, 60 knees from 56 patients with RDP and 15 knees from 10 healthy volunteers were evaluated. 3D shift and tilt of the patella were analyzed with 3D computer models created by magnetic resonance imaging scans obtained at 10° intervals of knee flexion (0°-50°). 3D shift was defined as the spatial distance between the patellar reference point and the midsagittal plane of the femur; it is expressed as a percentage of the interepicondylar width. 3D tilt was defined as the spatial angle between the patellar reference plane and the transepicondylar axis. Correlations between the 2 parameters were assessed with the Pearson correlation coefficient. The patients' mean Pearson correlation coefficient was 0.895 ± 0.186 (range, -0.073 to 0.997; median, 0.965). In all, 56 knees (93%) had coefficients >0.7 (strong correlation); 1 knee (2%), >0.4 (moderate correlation); 2 knees (3%), >0.2 (weak correlation); and 1 knee (2%), correlation). The mean correlation coefficient of the healthy volunteers was 0.645 ± 0.448 (range, -0.445 to 0.982; median, 0.834). A statistically significant difference was found in the distribution of the correlation coefficients between the patients and the healthy volunteers ( P = .0034). When distribution of the correlation coefficients obtained by the 3D analyses was compared with that by the 2

  1. The Correlation Between the GFR and the Renal Dimensions in Glomerulopathy Patients: Comparison of 2D and 3D Ultrasound

    International Nuclear Information System (INIS)

    Kim, Gyoung Min; Lee, Hak Jong; Hwang, Sung Il; Chin, Ho Jun

    2011-01-01

    We wanted to determine the correlation between the renal length as measured on two dimensional (2D) ultrasonography (US) and the renal parenchymal volume as measured with a new three-dimensional (3D) volume probe ultrasound system. We also wanted to determine the correlation between the renal length or renal parenchymal volume and the glomerular filtration rate (GFR) in patients with glomerulopathy. From July 2007 to December 2007, 26 patients who were pathologically confirmed to have glomerulopathy by biopsy were enrolled. Renal length was measured with 2D US and the renal parenchymal volume was measured with 3D US just prior to biopsy. The GFR was obtained from the electronic medical records. Pearson's correlation coefficients were used to analyze the correlation between the renal length and the renal parenchymal volume, the correlation between the renal length and the GFR and the correlation between the renal parenchymal volume and the GFR. The renal length and the renal parenchymal volume showed strong positive correlation (r = 0.850, p = 0.0001). The correlation coefficient between the renal length and the GFR was 0.623 (p = 0.0007) and the correlation coefficient between the renal volume and the GFR was 0.590 (p = 0.0015). Both the renal length and renal parenchymal volume showed apparently positive correlations with the GFR in glomerulopathy patients. The renal length showed strong positive correlations with the renal parenchymal volume. Both the renal length and the renal parenchymal volume showed apparently positive correlations with the GFR in glomerulopathy patients. In glomerulopathy patients, the renal dimensions measured by ultrasound can reflect the status of the GFR, and the measurement of the 2D renal length could be sufficient for follow up. Further studies are needed to evaluate the role of 3D US for assessing patients with renal disease

  2. Phylo_dCor: distance correlation as a novel metric for phylogenetic profiling.

    Science.gov (United States)

    Sferra, Gabriella; Fratini, Federica; Ponzi, Marta; Pizzi, Elisabetta

    2017-09-05

    Elaboration of powerful methods to predict functional and/or physical protein-protein interactions from genome sequence is one of the main tasks in the post-genomic era. Phylogenetic profiling allows the prediction of protein-protein interactions at a whole genome level in both Prokaryotes and Eukaryotes. For this reason it is considered one of the most promising methods. Here, we propose an improvement of phylogenetic profiling that enables handling of large genomic datasets and infer global protein-protein interactions. This method uses the distance correlation as a new measure of phylogenetic profile similarity. We constructed robust reference sets and developed Phylo-dCor, a parallelized version of the algorithm for calculating the distance correlation that makes it applicable to large genomic data. Using Saccharomyces cerevisiae and Escherichia coli genome datasets, we showed that Phylo-dCor outperforms phylogenetic profiling methods previously described based on the mutual information and Pearson's correlation as measures of profile similarity. In this work, we constructed and assessed robust reference sets and propose the distance correlation as a measure for comparing phylogenetic profiles. To make it applicable to large genomic data, we developed Phylo-dCor, a parallelized version of the algorithm for calculating the distance correlation. Two R scripts that can be run on a wide range of machines are available upon request.

  3. Spatial correlation in 3D MIMO channels using fourier coefficients of power spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for the standardized three-dimensional (3D) multiple-input multiple-output (MIMO) channel. This novel SCF is developed for a uniform linear array of antennas with non-isotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials to obtain a closed-form expression for the SCF for arbitrary angular distributions and antenna patterns. The resulting expression depends on the underlying angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. Numerical results validate the proposed analytical expression and study the impact of angular spreads on the correlation. The derived SCF will help evaluate the performance of correlated 3D MIMO channels in the future. © 2015 IEEE.

  4. Correlation between gamma index passing rate and clinical dosimetric difference for pre-treatment 2D and 3D volumetric modulated arc therapy dosimetric verification.

    Science.gov (United States)

    Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J; Xie, C

    2015-03-01

    To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose-volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time.

  5. Developing 3D SEM in a broad biological context

    Science.gov (United States)

    Kremer, A; Lippens, S; Bartunkova, S; Asselbergh, B; Blanpain, C; Fendrych, M; Goossens, A; Holt, M; Janssens, S; Krols, M; Larsimont, J-C; Mc Guire, C; Nowack, MK; Saelens, X; Schertel, A; Schepens, B; Slezak, M; Timmerman, V; Theunis, C; Van Brempt, R; Visser, Y; GuÉRin, CJ

    2015-01-01

    When electron microscopy (EM) was introduced in the 1930s it gave scientists their first look into the nanoworld of cells. Over the last 80 years EM has vastly increased our understanding of the complex cellular structures that underlie the diverse functions that cells need to maintain life. One drawback that has been difficult to overcome was the inherent lack of volume information, mainly due to the limit on the thickness of sections that could be viewed in a transmission electron microscope (TEM). For many years scientists struggled to achieve three-dimensional (3D) EM using serial section reconstructions, TEM tomography, and scanning EM (SEM) techniques such as freeze-fracture. Although each technique yielded some special information, they required a significant amount of time and specialist expertise to obtain even a very small 3D EM dataset. Almost 20 years ago scientists began to exploit SEMs to image blocks of embedded tissues and perform serial sectioning of these tissues inside the SEM chamber. Using first focused ion beams (FIB) and subsequently robotic ultramicrotomes (serial block-face, SBF-SEM) microscopists were able to collect large volumes of 3D EM information at resolutions that could address many important biological questions, and do so in an efficient manner. We present here some examples of 3D EM taken from the many diverse specimens that have been imaged in our core facility. We propose that the next major step forward will be to efficiently correlate functional information obtained using light microscopy (LM) with 3D EM datasets to more completely investigate the important links between cell structures and their functions. Lay Description Life happens in three dimensions. For many years, first light, and then EM struggled to image the smallest parts of cells in 3D. With recent advances in technology and corresponding improvements in computing, scientists can now see the 3D world of the cell at the nanoscale. In this paper we present the

  6. Effect of correlation in the 3d/sup n/ core on the resonance transition in Cu II

    International Nuclear Information System (INIS)

    Fischer, C.F.; Glass, R.

    1979-01-01

    A preliminary report is presented on the effect of correlation in the 3d/sup n/ core on the 3d 10 1 S → 3d 9 4p 1 P f value by use of the multiconfiguration (MC) Hartree-Fock procedure. A common orbital basis was used for correlation in the core, with virtual orbitals determined variationally for the initial state. Three different approximations were used: a single-configuration approximation for both initial and final state, a MC approximation for 3d 10 correlation in the initial state and a single configuration for the final state, and MC approximations for both initial and final states. Some preliminary f values for the 3d 10 1 S → 3d 9 4p 1 P transition are tabulated. Comparison of calculated with experimental values indicates that correlation in the 3d 9 core of the final state is needed to obtain the correct transition energy to bring the length and velocity forms into good agreement with themselves and experiment, and that the multiplet strength for the transition is not greatly affected by correlation. 1 table

  7. Gauge-invariant scalar and field strength correlators in 3d

    CERN Document Server

    Laine, Mikko

    1998-01-01

    Gauge-invariant non-local scalar and field strength operators have been argued to have significance, e.g., as a way to determine the behaviour of the screened static potential at large distances, as order parameters for confinement, as input parameters in models of confinement, and as gauge-invariant definitions of light constituent masses in bound state systems. We measure such "correlators" in the 3d pure SU(2) and SU(2)+Higgs models on the lattice. We extract the corresponding mass parameters and discuss their scaling and physical interpretation. We find that the finite part of the MS-bar scheme mass measured from the field strength correlator is large, more than half the glueball mass. We also determine the non-perturbative contribution to the Debye mass in the 4d finite T SU(2) gauge theory with a method due to Arnold and Yaffe, finding $\\delta m_D\\approx 1.06(4)g^2T$.

  8. A study on correlation between 2D and 3D gamma evaluation metrics in patient-specific quality assurance for VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Dhanabalan, E-mail: dhanabalanraj@gmail.com; Jeevanandam, Prakash; Sukumar, Prabakar; Ranganathan, Arulpandiyan; Johnjothi, Samdevakumar; Nagarajan, Vivekanandan

    2014-01-01

    In this study, we investigated the correlation between 2-dimensional (2D) and 3D gamma analysis using the new PTW OCTAVIUS 4D system for various parameters. For this study, we selected 150 clinically approved volumetric-modulated arc therapy (VMAT) plans of head and neck (50), thoracic (esophagus) (50), and pelvic (cervix) (50) sites. Individual verification plans were created and delivered to the OCTAVIUS 4D phantom. Measured and calculated dose distributions were compared using the 2D and 3D gamma analysis by global (maximum), local and selected (isocenter) dose methods. The average gamma passing rate for 2D global gamma analysis in coronal and sagittal plane was 94.81% ± 2.12% and 95.19% ± 1.76%, respectively, for commonly used 3-mm/3% criteria with 10% low-dose threshold. Correspondingly, for the same criteria, the average gamma passing rate for 3D planar global gamma analysis was 95.90% ± 1.57% and 95.61% ± 1.65%. The volumetric 3D gamma passing rate for 3-mm/3% (10% low-dose threshold) global gamma was 96.49% ± 1.49%. Applying stringent gamma criteria resulted in higher differences between 2D planar and 3D planar gamma analysis across all the global, local, and selected dose gamma evaluation methods. The average gamma passing rate for volumetric 3D gamma analysis was 1.49%, 1.36%, and 2.16% higher when compared with 2D planar analyses (coronal and sagittal combined average) for 3 mm/3% global, local, and selected dose gamma analysis, respectively. On the basis of the wide range of analysis and correlation study, we conclude that there is no assured correlation or notable pattern that could provide relation between planar 2D and volumetric 3D gamma analysis. Owing to higher passing rates, higher action limits can be set while performing 3D quality assurance. Site-wise action limits may be considered for patient-specific QA in VMAT.

  9. Ultrafast superpixel segmentation of large 3D medical datasets

    Science.gov (United States)

    Leblond, Antoine; Kauffmann, Claude

    2016-03-01

    Even with recent hardware improvements, superpixel segmentation of large 3D medical images at interactive speed (Gauss-Seidel like acceleration. The work unit partitioning scheme will however vary on odd- and even-numbered iterations to reduce convergence barriers. Synchronization will be ensured by an 8-step 3D variant of the traditional Red Black Ordering scheme. An attack model and early termination will also be described and implemented as additional acceleration techniques. Using our hybrid framework and typical operating parameters, we were able to compute the superpixels of a high-resolution 512x512x512 aortic angioCT scan in 283 ms using a AMD R9 290X GPU. We achieved a 22.3X speed-up factor compared to the published reference GPU implementation.

  10. Wavelengths of the 3p-3d transitions of the Co- and Fe-like ions: The effects of electron correlation

    International Nuclear Information System (INIS)

    Chen, Mau Hsiung.

    1987-01-01

    The experimental observations of the 3p 6 3d 9 2 D - 3p 5 3d 10 2 p transitions of the Co-like ions and 3p 6 3d 8 3 F 4 - 3p 5 3d 9 3 F 3 of the Fe-like ions have recently been extended to highly charged ions of heavy elements up to uranium (Z = 92). A comparison between the observed energies and calculated values from the Dirac-Fock model indicated persistent discrepancies of 3 to 4 eV for all ions. Systematic multiconfiguration Dirac-Fock calculations for these transitions have been carried out with emphases on the effects of electron correlation. The previously found discrepancies theory and experiment have mostly removed after the inclusion of the electron-electron correlation effects in the theoretical calculations. 13 refs

  11. A firm-level dataset for analyzing entry, exit, employment and R&D expenditures in the UK: 1997-2012.

    Science.gov (United States)

    Ugur, Mehmet; Trushin, Eshref; Solomon, Edna

    2016-09-01

    This data article is related to the research article entitled "Inverted-U relationship between R&D intensity and survival: Evidence on scale and complementarity effects in UK data" (Ugur et al., In press) [1]. It describes the trends in R&D expenditures, employment of R&D personnel and firm entry and exit rates in the UK from 1998 to 2012. We also provide statistics on net employment creation and net R&D investments due to firm entry and exits. In addition, we compute the correlation coefficients between entry and exit rates at the two digit industry level so as to examine whether the correlations are contemporaneous or inter-temporal. Finally, we provide information about the underlying dataset to which secure access is available through UK Data Service Archive 7716 at http://dx.doi.org/10.5255/UKDA-SN-7716-1.

  12. Sugar-to-base correlation in nucleic acids with a 5D APSY-HCNCH or two 3D APSY-HCN experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kraehenbuehl, Barbara; Hofmann, Daniela; Maris, Christophe; Wider, Gerhard, E-mail: gsw@mol.biol.ethz.ch [Institute of Molecular Biology and Biophysics (Switzerland)

    2012-02-15

    A five-dimensional (5D) APSY (automated projection spectroscopy) HCNCH experiment is presented, which allows unambiguous correlation of sugar to base nuclei in nucleic acids. The pulse sequence uses multiple quantum (MQ) evolution which enables long constant-time evolution periods in all dimensions, an improvement that can also benefit non-APSY applications. Applied with an RNA with 23 nucleotides the 5D APSY-HCNCH experiment produced a complete and highly precise 5D chemical shift list within 1.5 h. Alternatively, and for molecules where the out-and-stay 5D experiment sensitivity is not sufficient, a set of out-and-back 3D APSY-HCN experiments is proposed: an intra-base (3D APSY-b-HCN) experiment in an MQ or in a TROSY version, and an MQ sugar-to-base (3D APSY-s-HCN) experiment. The two 3D peak lists require subsequent matching via the N1/9 chemical shift values to one 5D peak list. Optimization of the 3D APSY experiments for maximal precision in the N1/9 dimension allowed matching of all {sup 15}N chemical shift values contained in both 3D peak lists. The precise 5D chemical shift correlation lists resulting from the 5D experiment or a pair of 3D experiments also provide a valuable basis for subsequent connection to chemical shifts derived with other experiments.

  13. Sugar-to-base correlation in nucleic acids with a 5D APSY-HCNCH or two 3D APSY-HCN experiments

    International Nuclear Information System (INIS)

    Krähenbühl, Barbara; Hofmann, Daniela; Maris, Christophe; Wider, Gerhard

    2012-01-01

    A five-dimensional (5D) APSY (automated projection spectroscopy) HCNCH experiment is presented, which allows unambiguous correlation of sugar to base nuclei in nucleic acids. The pulse sequence uses multiple quantum (MQ) evolution which enables long constant-time evolution periods in all dimensions, an improvement that can also benefit non-APSY applications. Applied with an RNA with 23 nucleotides the 5D APSY-HCNCH experiment produced a complete and highly precise 5D chemical shift list within 1.5 h. Alternatively, and for molecules where the out-and-stay 5D experiment sensitivity is not sufficient, a set of out-and-back 3D APSY-HCN experiments is proposed: an intra-base (3D APSY-b-HCN) experiment in an MQ or in a TROSY version, and an MQ sugar-to-base (3D APSY-s-HCN) experiment. The two 3D peak lists require subsequent matching via the N1/9 chemical shift values to one 5D peak list. Optimization of the 3D APSY experiments for maximal precision in the N1/9 dimension allowed matching of all 15 N chemical shift values contained in both 3D peak lists. The precise 5D chemical shift correlation lists resulting from the 5D experiment or a pair of 3D experiments also provide a valuable basis for subsequent connection to chemical shifts derived with other experiments.

  14. Interobserver variability of patient positioning using four different CT datasets for image registration in lung stereotactic body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Oechsner, Markus [Technical University of Munich, Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Technical University of Munich, Zentrum fuer Stereotaxie und personalisierte Hochpraezisionsstrahlentherapie (StereotakTUM), Munich (Germany); Chizzali, Barbara; Devecka, Michal; Muench, Stefan [Technical University of Munich, Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Combs, Stephanie Elisabeth; Wilkens, Jan Jakob; Duma, Marciana Nona [Technical University of Munich, Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Technical University of Munich, Zentrum fuer Stereotaxie und personalisierte Hochpraezisionsstrahlentherapie (StereotakTUM), Munich (Germany); Helmholtz Zentrum Muenchen, Institute of Innovative Radiotherapy (iRT), Munich (Germany)

    2017-10-15

    To assess the impact of different reference CT datasets on manual image registration with free-breathing three-dimensional (3D) cone beam CTs (FB-CBCT) for patient positioning by several observers. For 48 patients with lung lesions, manual image registration with FB-CBCTs was performed by four observers. A slow planning CT (PCT), average intensity projection (AIP), maximum intensity projection (MIP), and midventilation CT (MidV) were used as reference images. Couch shift differences between the four reference CT datasets for each observer as well as shift differences between the observers for the same reference CT dataset were determined. Statistical analyses were performed and correlations between the registration differences and the 3D tumor motion and the CBCT score were calculated. The mean 3D shift difference between different reference CT datasets was the smallest for AIPvsMIP (range 1.1-2.2 mm) and the largest for MidVvsPCT (2.8-3.5 mm) with differences >10 mm. The 3D shifts showed partially significant correlations to 3D tumor motion and CBCT score. The interobserver comparison for the same reference CTs resulted in the smallest ∇3D mean differences and mean ∇3D standard deviation for ∇AIP (1.5 ± 0.7 mm, 0.7 ± 0.4 mm). The maximal 3D shift difference between observers was 10.4 mm (∇MidV). Both 3D tumor motion and mean CBCT score correlated with the shift differences (R{sub s} = 0.336-0.740). The applied reference CT dataset impacts image registration and causes interobserver variabilities. The 3D tumor motion and CBCT quality affect shift differences. The smallest differences were found for AIP which might be the most appropriate CT dataset for image registration with FB-CBCT. (orig.) [German] Untersuchung des Einflusses verschiedener Referenz-CT-Datensaetze auf die manuelle Bildregistrierung mit dreidimensionaler (3D) ConeBeam-Computertomographie in freier Atmung (FB-CBCT) zur Patientenpositionierung durch verschiedene Observer. Bei 48 Patienten

  15. Specialized food composition dataset for vitamin D content in foods based on European standards: Application to dietary intake assessment.

    Science.gov (United States)

    Milešević, Jelena; Samaniego, Lourdes; Kiely, Mairead; Glibetić, Maria; Roe, Mark; Finglas, Paul

    2018-02-01

    A review of national nutrition surveys from 2000 to date, demonstrated high prevalence of vitamin D intakes below the EFSA Adequate Intake (AI) (d vitamin D) in adults across Europe. Dietary assessment and modelling are required to monitor efficacy and safety of ongoing strategic vitamin D fortification. To support these studies, a specialized vitamin D food composition dataset, based on EuroFIR standards, was compiled. The FoodEXplorer™ tool was used to retrieve well documented analytical data for vitamin D and arrange the data into two datasets - European (8 European countries, 981 data values) and US (1836 data values). Data were classified, using the LanguaL™, FoodEX2 and ODIN classification systems and ranked according to quality criteria. Significant differences in the content, quality of data values, missing data on vitamin D 2 and 25(OH)D 3 and documentation of analytical methods were observed. The dataset is available through the EuroFIR platform. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The 3D Reference Earth Model: Status and Preliminary Results

    Science.gov (United States)

    Moulik, P.; Lekic, V.; Romanowicz, B. A.

    2017-12-01

    In the 20th century, seismologists constructed models of how average physical properties (e.g. density, rigidity, compressibility, anisotropy) vary with depth in the Earth's interior. These one-dimensional (1D) reference Earth models (e.g. PREM) have proven indispensable in earthquake location, imaging of interior structure, understanding material properties under extreme conditions, and as a reference in other fields, such as particle physics and astronomy. Over the past three decades, new datasets motivated more sophisticated efforts that yielded models of how properties vary both laterally and with depth in the Earth's interior. Though these three-dimensional (3D) models exhibit compelling similarities at large scales, differences in the methodology, representation of structure, and dataset upon which they are based, have prevented the creation of 3D community reference models. As part of the REM-3D project, we are compiling and reconciling reference seismic datasets of body wave travel-time measurements, fundamental mode and overtone surface wave dispersion measurements, and normal mode frequencies and splitting functions. These reference datasets are being inverted for a long-wavelength, 3D reference Earth model that describes the robust long-wavelength features of mantle heterogeneity. As a community reference model with fully quantified uncertainties and tradeoffs and an associated publically available dataset, REM-3D will facilitate Earth imaging studies, earthquake characterization, inferences on temperature and composition in the deep interior, and be of improved utility to emerging scientific endeavors, such as neutrino geoscience. Here, we summarize progress made in the construction of the reference long period dataset and present a preliminary version of REM-3D in the upper-mantle. In order to determine the level of detail warranted for inclusion in REM-3D, we analyze the spectrum of discrepancies between models inverted with different subsets of the

  17. Non-model-based correction of respiratory motion using beat-to-beat 3D spiral fat-selective imaging.

    Science.gov (United States)

    Keegan, Jennifer; Gatehouse, Peter D; Yang, Guang-Zhong; Firmin, David N

    2007-09-01

    To demonstrate the feasibility of retrospective beat-to-beat correction of respiratory motion, without the need for a respiratory motion model. A high-resolution three-dimensional (3D) spiral black-blood scan of the right coronary artery (RCA) of six healthy volunteers was acquired over 160 cardiac cycles without respiratory gating. One spiral interleaf was acquired per cardiac cycle, prior to each of which a complete low-resolution fat-selective 3D spiral dataset was acquired. The respiratory motion (3D translation) on each cardiac cycle was determined by cross-correlating a region of interest (ROI) in the fat around the artery in the low-resolution datasets with that on a reference end-expiratory dataset. The measured translations were used to correct the raw data of the high-resolution spiral interleaves. Beat-to-beat correction provided consistently good results, with the image quality being better than that obtained with a fixed superior-inferior tracking factor of 0.6 and better than (N = 5) or equal to (N = 1) that achieved using a subject-specific retrospective 3D translation motion model. Non-model-based correction of respiratory motion using 3D spiral fat-selective imaging is feasible, and in this small group of volunteers produced better-quality images than a subject-specific retrospective 3D translation motion model. (c) 2007 Wiley-Liss, Inc.

  18. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2d Image Mosaics and 3d Canopy Surface Models

    Science.gov (United States)

    Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K.

    2015-08-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea, Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 > 73%) with the in-situ, ground truth LAI measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics. The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate LAI in cases with sparse, weak, unhealthy plants and canopy.

  19. Scanning cross-correlator for monitoring uniform 3D ellipsoidal laser beams

    CERN Document Server

    Zelenogorskii, V V; Gacheva, E I; Gelikonov, G V; Krasilnikov, M; Mart'yanov, M A; Mironov, S Yu; Potemkin, A K; Syresin, E M; Stephan, F; Khazanov, E A

    2014-01-01

    The specific features of experimental implementation of a cross-correlator with a scan rate above 1600 cm s(-1) and a spatial delay amplitude of more than 15 mm are considered. The possibility of measuring the width of femtosecond pulses propagating in a train 300 mu s in duration with a repetition rate of 1 MHz is demonstrated. A time resolution of 300 fs for the maximum time window of 50 ps is attained.The cross-correlator is aimed at testing 3D pulses of a laser driver of an electron photo-injector.

  20. Anisotropic magnification distortion of the 3D galaxy correlation. I. Real space

    International Nuclear Information System (INIS)

    Hui, Lam; LoVerde, Marilena; Gaztanaga, Enrique

    2007-01-01

    It has long been known that gravitational lensing, primarily via magnification bias, modifies the observed galaxy (or quasar) clustering. Such discussions have largely focused on the 2D angular correlation function. Here and in paper II [L. Hui, E. Gaztanaga, and M. LoVerde, arXiv:0710.4191] we explore how magnification bias distorts the 3D correlation function and power spectrum, as first considered by Matsubara [Astrophys. J. Lett. 537, L77 (2000).]. The interesting point is that the distortion is anisotropic. Magnification bias in general preferentially enhances the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. For instance, at a LOS separation of ∼100 Mpc/h, where the intrinsic galaxy-galaxy correlation is rather weak, the observed correlation can be enhanced by lensing by a factor of a few, even at a modest redshift of z∼0.35. This effect presents an interesting opportunity as well as a challenge. The opportunity: this lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification, and magnification-magnification correlations, without measuring galaxy shapes. The anisotropy is distinguishable from the well-known distortion due to peculiar motions, as will be discussed in paper II. The challenge: the magnification distortion of the galaxy correlation must be accounted for in interpreting data as precision improves. For instance, the ∼100 Mpc/h baryon acoustic oscillation scale in the correlation function is shifted by up to ∼3% in the LOS orientation, and up to ∼0.6% in the monopole, depending on the galaxy bias, redshift, and number count slope. The corresponding shifts in the inferred Hubble parameter and angular diameter distance, if ignored, could significantly bias measurements of the dark energy equation of state. Lastly, magnification distortion offers a plausible explanation for the well-known excess correlations seen in pencil beam surveys

  1. Reconstruction of the 3D representative volume element from the generalized two-point correlation function

    International Nuclear Information System (INIS)

    Staraselski, Y; Brahme, A; Inal, K; Mishra, R K

    2015-01-01

    This paper presents the first application of three-dimensional (3D) cross-correlation microstructure reconstruction implemented for a representative volume element (RVE) to facilitate the microstructure engineering of materials. This has been accomplished by developing a new methodology for reconstructing 3D microstructure using experimental two-dimensional electron backscatter diffraction data. The proposed methodology is based on the analytical representation of the generalized form of the two-point correlation function—the distance-disorientation function (DDF). Microstructure reconstruction is accomplished by extending the simulated annealing techniques to perform three term reconstruction with a minimization of the DDF. The new 3D microstructure reconstruction algorithm is employed to determine the 3D RVE containing all of the relevant microstructure information for accurately computing the mechanical response of solids, especially when local microstructural variations influence the global response of the material as in the case of fracture initiation. (paper)

  2. Using 3D spatial correlations to improve the noise robustness of multi component analysis of 3D multi echo quantitative T2 relaxometry data.

    Science.gov (United States)

    Kumar, Dushyant; Hariharan, Hari; Faizy, Tobias D; Borchert, Patrick; Siemonsen, Susanne; Fiehler, Jens; Reddy, Ravinder; Sedlacik, Jan

    2018-05-12

    We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1 + -inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. The proposed algorithm provides more noise

  3. RAG-3D: a search tool for RNA 3D substructures

    Science.gov (United States)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  4. Fusion of CT coronary angiography and whole-heart dynamic 3D cardiac MR perfusion: building a framework for comprehensive cardiac imaging.

    Science.gov (United States)

    von Spiczak, Jochen; Manka, Robert; Gotschy, Alexander; Oebel, Sabrina; Kozerke, Sebastian; Hamada, Sandra; Alkadhi, Hatem

    2018-04-01

    The purpose of this work was to develop a framework for 3D fusion of CT coronary angiography (CTCA) and whole-heart dynamic 3D cardiac magnetic resonance perfusion (3D-CMR-Perf) image data-correlating coronary artery stenoses to stress-induced myocardial perfusion deficits for the assessment of coronary artery disease (CAD). Twenty-three patients who underwent CTCA and 3D-CMR-Perf for various indications were included retrospectively. For CTCA, image quality and coronary diameter stenoses > 50% were documented. For 3D-CMR-Perf, image quality and stress-induced perfusion deficits were noted. A software framework was developed to allow for 3D image fusion of both datasets. Computation steps included: (1) fully automated segmentation of coronary arteries and heart contours from CT; (2) manual segmentation of the left ventricle in 3D-CMR-Perf images; (3) semi-automatic co-registration of CT/CMR datasets; (4) projection of the 3D-CMR-Perf values on the CT left ventricle. 3D fusion analysis was compared to separate inspection of CTCA and 3D-CMR-Perf data. CT and CMR scans resulted in an image quality being rated as good to excellent (mean scores 3.5 ± 0.5 and 3.7 ± 0.4, respectively, scale 1-4). 3D-fusion was feasible in all 23 patients, and perfusion deficits could be correlated to culprit coronary lesions in all but one case (22/23 = 96%). Compared to separate analysis of CT and CMR data, coronary supply territories of 3D-CMR-Perf perfusion deficits were refined in two cases (2/23 = 9%), and the relevance of stenoses in CTCA was re-judged in four cases (4/23 = 17%). In conclusion, 3D fusion of CTCA/3D-CMR-Perf facilitates anatomic correlation of coronary lesions and stress-induced myocardial perfusion deficits thereby helping to refine diagnostic assessment of CAD.

  5. Non Invasive 3D Characterization of Materials at Multi scale Resolution in Correlative and 4D microscopy

    International Nuclear Information System (INIS)

    Lau, S.H.

    2011-01-01

    We describe a suite of novel lab-based X-ray computed tomography (CT) systems for high contrast 3D characterization of hard to soft materials with resolution across length scales. The system has similar resolution and contrast range obtained from x-ray micro and nano tomography systems in synchrotron radiation facilities, except it makes use of conventional lab sources. Samples with dimensions from several cm to several microns may be imaged non invasively at varying resolution from tens of microns to 20 nm voxel. The novel multi scale CT helps bridge the resolution, scaling and 3D visualization gap in the traditional destructive 2D imaging modalities such as optical microscopes, AFM, SEM, SEM-FIB and TEM. It provides a direct non-invasive volumetric imaging technique at the macro to nano scale, making it ideal for accurate prediction and modeling of whole systems and components. For example, using 3D visualization, segmentation and computational analysis tools, pore networks, FEA, fluid, thermal and ionic transport in various systems and materials from ceramics, geo materials, composites, metals, and coatings may be characterized and modeled. The high resolution and unique phase contrast features of the novel CTs also lend themselves very well to characterize inherently low contrast soft materials such as polymers; membranes and biological tissue or to differentiate small differences in material and mineral phases in geo material and composites. Tomography of samples may be acquired at different volume vs resolution using local tomography technique, often without sample destruction. In the emerging field of 3D correlative microscopy, these larger CT volumetric data sets can be correlated at the different length scales with conventional 2D imaging modalities. For example, after a CT scan, specimen may undergo destructive sample sectioning at specific region of interest, to obtain the corresponding 2D slices with SEM and TEM or with X-ray microanalysis derive its

  6. Spatial correlation characterization of a uniform circular array in 3D MIMO systems

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Merouane; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we consider a uniform circular array (UCA) of directional antennas at the base station (BS) and the mobile station (MS) and derive an exact closed-form expression for the spatial correlation present in the 3D multiple-input multiple-output (MIMO) channel constituted by these arrays. The underlying method leverages the mathematical convenience of the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. In contrast to the existing results, this generalized closed-form expression is independent of the form of the underlying angular distributions and antenna patterns. Moreover, the incorporation of the elevation dimension into the antenna pattern and channel model renders the proposed expression extremely useful for the performance evaluation of 3D MIMO systems in the future. Verification is achieved with the help of simulation results, which highlight the dependence of the spatial correlation on channel and array parameters. An interesting interplay between the mean angle of departure (AoD), angular spread and the positioning of antennas in the array is demonstrated. © 2016 IEEE.

  7. Spatial correlation characterization of a uniform circular array in 3D MIMO systems

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2016-08-11

    In this paper, we consider a uniform circular array (UCA) of directional antennas at the base station (BS) and the mobile station (MS) and derive an exact closed-form expression for the spatial correlation present in the 3D multiple-input multiple-output (MIMO) channel constituted by these arrays. The underlying method leverages the mathematical convenience of the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. In contrast to the existing results, this generalized closed-form expression is independent of the form of the underlying angular distributions and antenna patterns. Moreover, the incorporation of the elevation dimension into the antenna pattern and channel model renders the proposed expression extremely useful for the performance evaluation of 3D MIMO systems in the future. Verification is achieved with the help of simulation results, which highlight the dependence of the spatial correlation on channel and array parameters. An interesting interplay between the mean angle of departure (AoD), angular spread and the positioning of antennas in the array is demonstrated. © 2016 IEEE.

  8. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications

    International Nuclear Information System (INIS)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes

    2014-01-01

    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCF max , spatial registration position in x–y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States. (paper)

  9. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications

    Science.gov (United States)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes

    2014-06-01

    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCFmax, spatial registration position in x-y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States.

  10. Targeted 2D/3D registration using ray normalization and a hybrid optimizer

    International Nuclear Information System (INIS)

    Dey, Joyoni; Napel, Sandy

    2006-01-01

    X-ray images are often used to guide minimally invasive procedures in interventional radiology. The use of a preoperatively obtained 3D volume can enhance the visualization needed for guiding catheters and other surgical devices. However, for intraoperative usefulness, the 3D dataset needs to be registered to the 2D x-ray images of the patient. We investigated the effect of targeting subvolumes of interest in the 3D datasets and registering the projections with C-arm x-ray images. We developed an intensity-based 2D/3D rigid-body registration using a Monte Carlo-based hybrid algorithm as the optimizer, using a single view for registration. Pattern intensity (PI) and mutual information (MI) were two metrics tested. We used normalization of the rays to address the problems due to truncation in 3D necessary for targeting. We tested the algorithm on a C-arm x-ray image of a pig's head and a 3D dataset reconstructed from multiple views of the C-arm. PI and MI were comparable in performance. For two subvolumes starting with a set of initial poses from +/-15 mm in x, from +/-3 mm (random), in y and z and +/-4 deg in the three angles, the robustness was 94% for PI and 91% for MI, with accuracy of 2.4 mm (PI) and 2.6 mm (MI), using the hybrid algorithm. The hybrid optimizer, when compared with a standard Powell's direction set method, increased the robustness from 59% (Powell) to 94% (hybrid). Another set of 50 random initial conditions from [+/-20] mm in x,y,z and [+/-10] deg in the three angles, yielded robustness of 84% (hybrid) versus 38% (Powell) using PI as metric, with accuracies 2.1 mm (hybrid) versus 2.0 mm (Powell)

  11. Correlates of Circulating 25-Hydroxyvitamin D

    Science.gov (United States)

    McCullough, Marjorie L.; Weinstein, Stephanie J.; Freedman, D. Michal; Helzlsouer, Kathy; Flanders, W. Dana; Koenig, Karen; Kolonel, Laurence; Laden, Francine; Le Marchand, Loic; Purdue, Mark; Snyder, Kirk; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Virtamo, Jarmo; Yang, Gong; Yu, Kai; Zheng, Wei; Albanes, Demetrius; Ashby, Jason; Bertrand, Kimberly; Cai, Hui; Chen, Yu; Gallicchio, Lisa; Giovannucci, Edward; Jacobs, Eric J.; Hankinson, Susan E.; Hartge, Patricia; Hartmuller, Virginia; Harvey, Chinonye; Hayes, Richard B.; Horst, Ronald L.; Shu, Xiao-Ou

    2010-01-01

    Low vitamin D status is common globally and is associated with multiple disease outcomes. Understanding the correlates of vitamin D status will help guide clinical practice, research, and interpretation of studies. Correlates of circulating 25-hydroxyvitamin D (25(OH)D) concentrations measured in a single laboratory were examined in 4,723 cancer-free men and women from 10 cohorts participating in the Cohort Consortium Vitamin D Pooling Project of Rarer Cancers, which covers a worldwide geographic area. Demographic and lifestyle characteristics were examined in relation to 25(OH)D using stepwise linear regression and polytomous logistic regression. The prevalence of 25(OH)D concentrations less than 25 nmol/L ranged from 3% to 36% across cohorts, and the prevalence of 25(OH)D concentrations less than 50 nmol/L ranged from 29% to 82%. Seasonal differences in circulating 25(OH)D were most marked among whites from northern latitudes. Statistically significant positive correlates of 25(OH)D included male sex, summer blood draw, vigorous physical activity, vitamin D intake, fish intake, multivitamin use, and calcium supplement use. Significant inverse correlates were body mass index, winter and spring blood draw, history of diabetes, sedentary behavior, smoking, and black race/ethnicity. Correlates varied somewhat within season, race/ethnicity, and sex. These findings help identify persons at risk for low vitamin D status for both clinical and research purposes. PMID:20562191

  12. Interactive 3D Visualization for Theoretical Virtual Observatories

    Science.gov (United States)

    Dykes, Tim; Hassan, A.; Gheller, C.; Croton, D.; Krokos, M.

    2018-04-01

    Virtual Observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of datasets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2d or volume rendering in 3d. We analyze the current state of 3d visualization for big theoretical astronomical datasets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3d visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based datasets allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.

  13. Grid-optimized Web 3D applications on wide area network

    Science.gov (United States)

    Wang, Frank; Helian, Na; Meng, Lingkui; Wu, Sining; Zhang, Wen; Guo, Yike; Parker, Michael Andrew

    2008-08-01

    Geographical information system has come into the Web Service times now. In this paper, Web3D applications have been developed based on our developed Gridjet platform, which provides a more effective solution for massive 3D geo-dataset sharing in distributed environments. Web3D services enabling web users could access the services as 3D scenes, virtual geographical environment and so on. However, Web3D services should be shared by thousands of essential users that inherently distributed on different geography locations. Large 3D geo-datasets need to be transferred to distributed clients via conventional HTTP, NFS and FTP protocols, which often encounters long waits and frustration in distributed wide area network environments. GridJet was used as the underlying engine between the Web 3D application node and geo-data server that utilizes a wide range of technologies including the one of paralleling the remote file access, which is a WAN/Grid-optimized protocol and provides "local-like" accesses to remote 3D geo-datasets. No change in the way of using software is required since the multi-streamed GridJet protocol remains fully compatible with existing IP infrastructures. Our recent progress includes a real-world test that Web3D applications as Google Earth over the GridJet protocol beats those over the classic ones by a factor of 2-7 where the transfer distance is over 10,000 km.

  14. Quantitative analysis of crystal/grain sizes and their distributions in 2D and 3D

    DEFF Research Database (Denmark)

    Berger, Alfons; Herwegh, Marco; Schwarz, Jens-Oliver

    2011-01-01

    data for grain size data are either 1D (i.e. line intercept methods), 2D (area analysis) or 3D (e.g., computed tomography, serial sectioning). These data have been used for different data treatments over the years, whereas several studies assume a certain probability function (e.g., logarithm, square......-piezometers or grain size sensitive flow laws. Such compatibility is tested for different data treatments using one- and two-dimensional measurements. We propose an empirical conversion matrix for different datasets. These conversion factors provide the option to make different datasets compatible with each other...... is important for studies of nucleation and growth of minerals. The shape of the crystal size distribution of garnet populations is compared between different 2D and 3D measurements, which are serial sectioning and computed tomography. The comparison of different direct measured 3D data; stereological data...

  15. A novel binary shape context for 3D local surface description

    Science.gov (United States)

    Dong, Zhen; Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Li, Bijun; Zang, Yufu

    2017-08-01

    3D local surface description is now at the core of many computer vision technologies, such as 3D object recognition, intelligent driving, and 3D model reconstruction. However, most of the existing 3D feature descriptors still suffer from low descriptiveness, weak robustness, and inefficiency in both time and memory. To overcome these challenges, this paper presents a robust and descriptive 3D Binary Shape Context (BSC) descriptor with high efficiency in both time and memory. First, a novel BSC descriptor is generated for 3D local surface description, and the performance of the BSC descriptor under different settings of its parameters is analyzed. Next, the descriptiveness, robustness, and efficiency in both time and memory of the BSC descriptor are evaluated and compared to those of several state-of-the-art 3D feature descriptors. Finally, the performance of the BSC descriptor for 3D object recognition is also evaluated on a number of popular benchmark datasets, and an urban-scene dataset is collected by a terrestrial laser scanner system. Comprehensive experiments demonstrate that the proposed BSC descriptor obtained high descriptiveness, strong robustness, and high efficiency in both time and memory and achieved high recognition rates of 94.8%, 94.1% and 82.1% on the considered UWA, Queen, and WHU datasets, respectively.

  16. 3D fast adaptive correlation imaging for large-scale gravity data based on GPU computation

    Science.gov (United States)

    Chen, Z.; Meng, X.; Guo, L.; Liu, G.

    2011-12-01

    In recent years, large scale gravity data sets have been collected and employed to enhance gravity problem-solving abilities of tectonics studies in China. Aiming at the large scale data and the requirement of rapid interpretation, previous authors have carried out a lot of work, including the fast gradient module inversion and Euler deconvolution depth inversion ,3-D physical property inversion using stochastic subspaces and equivalent storage, fast inversion using wavelet transforms and a logarithmic barrier method. So it can be say that 3-D gravity inversion has been greatly improved in the last decade. Many authors added many different kinds of priori information and constraints to deal with nonuniqueness using models composed of a large number of contiguous cells of unknown property and obtained good results. However, due to long computation time, instability and other shortcomings, 3-D physical property inversion has not been widely applied to large-scale data yet. In order to achieve 3-D interpretation with high efficiency and precision for geological and ore bodies and obtain their subsurface distribution, there is an urgent need to find a fast and efficient inversion method for large scale gravity data. As an entirely new geophysical inversion method, 3D correlation has a rapid development thanks to the advantage of requiring no a priori information and demanding small amount of computer memory. This method was proposed to image the distribution of equivalent excess masses of anomalous geological bodies with high resolution both longitudinally and transversely. In order to tranform the equivalence excess masses into real density contrasts, we adopt the adaptive correlation imaging for gravity data. After each 3D correlation imaging, we change the equivalence into density contrasts according to the linear relationship, and then carry out forward gravity calculation for each rectangle cells. Next, we compare the forward gravity data with real data, and

  17. Correlative nanoscale 3D imaging of structure and composition in extended objects.

    Directory of Open Access Journals (Sweden)

    Feng Xu

    Full Text Available Structure and composition at the nanoscale determine the behavior of biological systems and engineered materials. The drive to understand and control this behavior has placed strong demands on developing methods for high resolution imaging. In general, the improvement of three-dimensional (3D resolution is accomplished by tightening constraints: reduced manageable specimen sizes, decreasing analyzable volumes, degrading contrasts, and increasing sample preparation efforts. Aiming to overcome these limitations, we present a non-destructive and multiple-contrast imaging technique, using principles of X-ray laminography, thus generalizing tomography towards laterally extended objects. We retain advantages that are usually restricted to 2D microscopic imaging, such as scanning of large areas and subsequent zooming-in towards a region of interest at the highest possible resolution. Our technique permits correlating the 3D structure and the elemental distribution yielding a high sensitivity to variations of the electron density via coherent imaging and to local trace element quantification through X-ray fluorescence. We demonstrate the method by imaging a lithographic nanostructure and an aluminum alloy. Analyzing a biological system, we visualize in lung tissue the subcellular response to toxic stress after exposure to nanotubes. We show that most of the nanotubes are trapped inside alveolar macrophages, while a small portion of the nanotubes has crossed the barrier to the cellular space of the alveolar wall. In general, our method is non-destructive and can be combined with different sample environmental or loading conditions. We therefore anticipate that correlative X-ray nano-laminography will enable a variety of in situ and in operando 3D studies.

  18. Direct comparison of cardiac magnetic resonance feature tracking and 2D/3D echocardiography speckle tracking for evaluation of global left ventricular strain.

    Science.gov (United States)

    Obokata, Masaru; Nagata, Yasufumi; Wu, Victor Chien-Chia; Kado, Yuichiro; Kurabayashi, Masahiko; Otsuji, Yutaka; Takeuchi, Masaaki

    2016-05-01

    Cardiac magnetic resonance (CMR) feature tracking (FT) with steady-state free precession (SSFP) has advantages over traditional myocardial tagging to analyse left ventricular (LV) strain. However, direct comparisons of CMRFT and 2D/3D echocardiography speckle tracking (2/3DEST) for measurement of LV strain are limited. The aim of this study was to investigate the feasibility and reliability of CMRFT and 2D/3DEST for measurement of global LV strain. We enrolled 106 patients who agreed to undergo both CMR and 2D/3DE on the same day. SSFP images at multiple short-axis and three apical views were acquired. 2DE images from three levels of short-axis, three apical views, and 3D full-volume datasets were also acquired. Strain data were expressed as absolute values. Feasibility was highest in CMRFT, followed by 2DEST and 3DEST. Analysis time was shortest in 3DEST, followed by CMRFT and 2DEST. There was good global longitudinal strain (GLS) correlation between CMRFT and 2D/3DEST (r = 0.83 and 0.87, respectively) with the limit of agreement (LOA) ranged from ±3.6 to ±4.9%. Excellent global circumferential strain (GCS) correlation between CMRFT and 2D/3DEST was observed (r = 0.90 and 0.88) with LOA of ±6.8-8.5%. Global radial strain showed fair correlations (r = 0.69 and 0.82, respectively) with LOA ranged from ±12.4 to ±16.3%. CMRFT GCS showed least observer variability with highest intra-class correlation. Although not interchangeable, the high GLS and GCS correlation between CMRFT and 2D/3DEST makes CMRFT a useful modality for quantification of global LV strain in patients, especially those with suboptimal echo image quality. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  19. Embryonic staging using a 3D virtual reality system

    NARCIS (Netherlands)

    C.M. Verwoerd-Dikkeboom (Christine); A.H.J. Koning (Anton); P.J. van der Spek (Peter); N. Exalto (Niek); R.P.M. Steegers-Theunissen (Régine)

    2008-01-01

    textabstractBACKGROUND: The aim of this study was to demonstrate that Carnegie Stages could be assigned to embryos visualized with a 3D virtual reality system. METHODS: We analysed 48 3D ultrasound scans of 19 IVF/ICSI pregnancies at 7-10 weeks' gestation. These datasets were visualized as 3D

  20. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D.

    Science.gov (United States)

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron; Gümüs, Zeynep H

    2017-08-01

    Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. © The Authors 2017. Published by Oxford University Press.

  1. FLOWPLOT2, 2-D, 3-D Fluid Dynamic Plots

    International Nuclear Information System (INIS)

    Cobb, C.K.; Tunstall, J.N.

    1989-01-01

    1 - Description of program or function: FLOWPLOT2 is a plotting program used with numerical or analytical fluid dynamics codes to create velocity vector plots, contour plots of up to three fluid parameters (e.g. pressure, density, and temperature), two-dimensional profile plots, three-dimensional curve plots, and/or three-dimensional surface plots for either the u or v velocity components. If the fluid dynamics code computes a transient or simulated time related solution, FLOWPLOT2 can also be used to generate these plots for any specified time interval. Multiple cases generating different plots for different time intervals may be run in one execution of the program. In addition, plots can be created for selected two- dimensional planes of three-dimensional steady-state problems. The user has the option of producing plots on CalComp or Versatec plotters or microfiche and of creating a compressed dataset before plotting. 2 - Method of solution: FLOWPLOT2 reads a dataset written by the fluid dynamics code. This dataset must be written in a specified format and must contain parametric data at the nodal points of a uniform or non-uniform rectangular grid formed by the intersection of the grid lines of the model. 3 - Restrictions on the complexity of the problem - Maxima of: 2500 nodes, 40 y-values for 2-D profile plots and 3-D curve plots, 20 contour values, 3 fluid parameters

  2. Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach

    International Nuclear Information System (INIS)

    Ramazani, A.; Mukherjee, K.; Quade, H.; Prahl, U.; Bleck, W.

    2013-01-01

    A microstructure-based approach by means of representative volume elements (RVEs) is employed to evaluate the flow curve of DP steels using virtual tensile tests. Microstructures with different martensite fractions and morphologies are studied in two- and three-dimensional approaches. Micro sections of DP microstructures with various amounts of martensite have been converted to 2D RVEs, while 3D RVEs were constructed statistically with randomly distributed phases. A dislocation-based model is used to describe the flow curve of each ferrite and martensite phase separately as a function of carbon partitioning and microstructural features. Numerical tensile tests of RVE were carried out using the ABAQUS/Standard code to predict the flow behaviour of DP steels. It is observed that 2D plane strain modelling gives an underpredicted flow curve for DP steels, while the 3D modelling gives a quantitatively reasonable description of flow curve in comparison to the experimental data. In this work, a von Mises stress correlation factor σ 3D /σ 2D has been identified to compare the predicted flow curves of these two dimensionalities showing a third order polynomial relation with respect to martensite fraction and a second order polynomial relation with respect to equivalent plastic strain, respectively. The quantification of this polynomial correlation factor is performed based on laboratory-annealed DP600 chemistry with varying martensite content and it is validated for industrially produced DP qualities with various chemistry, strength level and martensite fraction.

  3. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion.

    Science.gov (United States)

    Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L

    2015-08-01

    Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  4. 3D roadmap in neuroangiography: technique and clinical interest

    International Nuclear Information System (INIS)

    Soederman, Michael; Andersson, T.; Babic, D.; Homan, R.

    2005-01-01

    We present the first clinical results obtained with a novel technique: the three-dimensional [3D] roadmap. The major difference from the standard 2D digital roadmap technique is that the newly developed 3D roadmap is based on a rotational angiography acquisition technique with the two-dimensional [2D] fluoroscopic image as an overlay. Data required for an accurate superimposition of the previously acquired 3D reconstructed image on the interactively made 2D fluoroscopy image, in real time, are stored in the 3D workstation and constitute the calibration dataset. Both datasets are spatially aligned in real time; thus, the 3D image is accurately superimposed on the 2D fluoroscopic image regardless of any change in C-arm position or magnification. The principal advantage of the described roadmap method is that one contrast injection allows the C-arm to be positioned anywhere in the space and allows alterations in the distance between the x-ray tube and the image intensifier as well as changes in image magnification. In the clinical setting, the 3D roadmap facilitated intravascular neuronavigation with concurrent reduction of procedure time and use of contrast medium. (orig.)

  5. 2D-Driven 3D Object Detection in RGB-D Images

    KAUST Repository

    Lahoud, Jean

    2017-12-25

    In this paper, we present a technique that places 3D bounding boxes around objects in an RGB-D scene. Our approach makes best use of the 2D information to quickly reduce the search space in 3D, benefiting from state-of-the-art 2D object detection techniques. We then use the 3D information to orient, place, and score bounding boxes around objects. We independently estimate the orientation for every object, using previous techniques that utilize normal information. Object locations and sizes in 3D are learned using a multilayer perceptron (MLP). In the final step, we refine our detections based on object class relations within a scene. When compared to state-of-the-art detection methods that operate almost entirely in the sparse 3D domain, extensive experiments on the well-known SUN RGB-D dataset [29] show that our proposed method is much faster (4.1s per image) in detecting 3D objects in RGB-D images and performs better (3 mAP higher) than the state-of-the-art method that is 4.7 times slower and comparably to the method that is two orders of magnitude slower. This work hints at the idea that 2D-driven object detection in 3D should be further explored, especially in cases where the 3D input is sparse.

  6. ROOFN3D: DEEP LEARNING TRAINING DATA FOR 3D BUILDING RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    A. Wichmann

    2018-05-01

    Full Text Available Machine learning methods have gained in importance through the latest development of artificial intelligence and computer hardware. Particularly approaches based on deep learning have shown that they are able to provide state-of-the-art results for various tasks. However, the direct application of deep learning methods to improve the results of 3D building reconstruction is often not possible due, for example, to the lack of suitable training data. To address this issue, we present RoofN3D which provides a new 3D point cloud training dataset that can be used to train machine learning models for different tasks in the context of 3D building reconstruction. It can be used, among others, to train semantic segmentation networks or to learn the structure of buildings and the geometric model construction. Further details about RoofN3D and the developed data preparation framework, which enables the automatic derivation of training data, are described in this paper. Furthermore, we provide an overview of other available 3D point cloud training data and approaches from current literature in which solutions for the application of deep learning to unstructured and not gridded 3D point cloud data are presented.

  7. LIME: 3D visualisation and interpretation of virtual geoscience models

    Science.gov (United States)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias

    2017-04-01

    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel

  8. USER–APPROPRIATE VIEWER FOR HIGH RESOLUTION INTERACTIVE ENGAGEMENT WITH 3D DIGITAL CULTURAL ARTEFACTS

    Directory of Open Access Journals (Sweden)

    D. Gillespie

    2013-07-01

    Full Text Available Three dimensional (3D laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008. The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013 and WebGL (Khronos, 2013, it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games

  9. User-Appropriate Viewer for High Resolution Interactive Engagement with 3d Digital Cultural Artefacts

    Science.gov (United States)

    Gillespie, D.; La Pensée, A.; Cooper, M.

    2013-07-01

    Three dimensional (3D) laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008). The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013) and WebGL (Khronos, 2013), it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games. This paper

  10. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Teo, S.-K. [Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632 (Singapore); Tan, C. H. [Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433 (Singapore); Tham, I. W. K. [Department of Radiation Oncology, National University Cancer Institute, Singapore 119082 (Singapore)

    2015-08-15

    Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  11. Quantitative elastic migration. Applications to 3D borehole seismic surveys; Migration elastique quantitative. Applications a la sismique de puits 3D

    Energy Technology Data Exchange (ETDEWEB)

    Clochard, V.

    1998-12-02

    3D VSP imaging is nowadays a strategic requirement by petroleum companies. It is used to precise in details the geology close to the well. Because of the lack of redundancy and limited coverage in the data. this kind of technology is more restrictive than surface seismic which allows an investigation at a higher scale. Our contribution was to develop an elastic quantitative imagine (GRT migration) which can be applied to 3 components borehole dataset. The method is similar to the Kirchhoff migration using sophistical weighting of the seismic amplitudes. In reality. GRT migration uses pre-calculated Green functions (travel time. amplitude. polarization). The maps are obtained by 3D ray tracing (wavefront construction) in the velocity model. The migration algorithm works with elementary and independent tasks. which is useful to process different kind of dataset (fixed or moving geophone antenna). The study has been followed with validations using asymptotic analytical solution. The ability of reconstruction in 3D borehole survey has been tested in the Overthrust synthetic model. The application to a real circular 3D VSP shows various problems like velocity model building, anisotropy factor and the preprocessing (deconvolution. wave mode separation) which can destroy seismic amplitudes. An isotropic 3 components preprocessing of the whole dataset allows a better lateral reconstruction. The choice of a big migration aperture can help the reconstruction of strong geological dip in spite of migration smiles. Finally, the methodology can be applied to PS converted waves. (author)

  12. 3-D interactive visualisation tools for Hi spectral line imaging

    NARCIS (Netherlands)

    van der Hulst, J. M.; Punzo, D.; Roerdink, J. B. T. M.

    2016-01-01

    Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is

  13. Mock Quasar-Lyman-α forest data-sets for the SDSS-III Baryon Oscillation Spectroscopic Survey

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Julian E.; Busca, Nicolas G. [APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue A. Domon and L. Duquet, Paris (France); Bailey, Stephen; Font-Ribera, Andreu; Schlegel, David [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA (United States); Pieri, Matthew M. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, 38 rue Frédéric Joliot-Curie, 13388, Marseille (France); Miralda-Escudé, Jordi; Gontcho, Satya Gontcho A. [Institut de Ciències del Cosmos, Universitat de Barcelona/IEEC, 1 Martí i Franquès, Barcelona 08028, Catalonia (Spain); Palanque-Delabrouille, Nathalie; Rich, James; Goff, Jean Marc Le [CEA, Centre de Saclay, Irfu/SPP, D128, F-91191 Gif-sur-Yvette (France); Dawson, Kyle [Department of Physics and Astronomy, University of Utah, 115 S 100 E, RM 201, Salt Lake City, UT 84112 (United States); Feng, Yu; Ho, Shirley [McWilliams Center for Cosmology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213 (United States); Ge, Jian [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Noterdaeme, Pasquier; Pâris, Isabelle [Université Paris 6 et CNRS, Institut d' Astrophysique de Paris, 98bis blvd. Arago, 75014 Paris (France); Rossi, Graziano, E-mail: bautista@astro.utah.edu [Department of Astronomy and Space Science, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 143-747 (Korea, Republic of)

    2015-05-01

    We describe mock data-sets generated to simulate the high-redshift quasar sample in Data Release 11 (DR11) of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The mock spectra contain Lyα forest correlations useful for studying the 3D correlation function including Baryon Acoustic Oscillations (BAO). They also include astrophysical effects such as quasar continuum diversity and high-density absorbers, instrumental effects such as noise and spectral resolution, as well as imperfections introduced by the SDSS pipeline treatment of the raw data. The Lyα forest BAO analysis of the BOSS collaboration, described in Delubac et al. 2014, has used these mock data-sets to develop and cross-check analysis procedures prior to performing the BAO analysis on real data, and for continued systematic cross checks. Tests presented here show that the simulations reproduce sufficiently well important characteristics of real spectra. These mock data-sets will be made available together with the data at the time of the Data Release 11.

  14. A Generalized Spatial Correlation Model for 3D MIMO Channels based on the Fourier Coefficients of Power Spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-05-07

    Previous studies have confirmed the adverse impact of fading correlation on the mutual information (MI) of two-dimensional (2D) multiple-input multiple-output (MIMO) systems. More recently, the trend is to enhance the system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the derivation and characterization of three-dimensional (3D) channels in the presence of spatial correlation. In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for 3D MIMO channels. This novel SCF is developed for a uniform linear array of antennas with nonisotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. The resulting expression depends on the underlying arbitrary angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. The developed SCF determines the covariance matrices at the transmitter and the receiver that form the Kronecker channel model. In order to quantify the effects of correlation on the system performance, the information-theoretic deterministic equivalents of the MI for the Kronecker model are utilized in both mono-user and multi-user cases. Numerical results validate the proposed analytical expressions and elucidate the dependence of the system performance on azimuth and elevation angular spreads and antenna patterns. Some useful insights into the behaviour of MI as a function of downtilt angles are provided. The derived model will help evaluate the performance of correlated 3D MIMO channels in the future.

  15. Residual stresses measurement by using ring-core method and 3D digital image correlation technique

    International Nuclear Information System (INIS)

    Hu, Zhenxing; Xie, Huimin; Zhu, Jianguo; Wang, Huaixi; Lu, Jian

    2013-01-01

    Ring-core method/three-dimensional digital image correlation (3D DIC) residual stresses measurement is proposed. Ring-core cutting is a mechanical stress relief method, and combining with 3D DIC system the deformation of the specimen surface can be measured. An optimization iteration method is proposed to obtain the residual stress and rigid-body motion. The method has the ability to cut an annular trench at a different location out of the field of view. A compression test is carried out to demonstrate how residual stress is determined by using 3D DIC system and outfield measurement. The results determined by the approach are in good agreement with the theoretical value. Ring-core/3D DIC has shown its robustness to determine residual stress and can be extended to application in the engineering field. (paper)

  16. ArtifactVis2: Managing real-time archaeological data in immersive 3D environments

    KAUST Repository

    Smith, Neil

    2013-10-01

    In this paper, we present a stereoscopic research and training environment for archaeologists called ArtifactVis2. This application enables the management and visualization of diverse types of cultural datasets within a collaborative virtual 3D system. The archaeologist is fully immersed in a large-scale visualization of on-going excavations. Massive 3D datasets are seamlessly rendered in real-time with field recorded GIS data, 3D artifact scans and digital photography. Dynamic content can be visualized and cultural analytics can be performed on archaeological datasets collected through a rigorous digital archaeological methodology. The virtual collaborative environment provides a menu driven query system and the ability to annotate, markup, measure, and manipulate any of the datasets. These features enable researchers to re-experience and analyze the minute details of an archaeological site\\'s excavation. It enhances their visual capacity to recognize deep patterns and structures and perceive changes and reoccurrences. As a complement and development from previous work in the field of 3D immersive archaeological environments, ArtifactVis2 provides a GIS based immersive environment that taps directly into archaeological datasets to investigate cultural and historical issues of ancient societies and cultural heritage in ways not possible before. © 2013 IEEE.

  17. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-01-01

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  18. 3D printing from MRI Data: Harnessing strengths and minimizing weaknesses.

    Science.gov (United States)

    Ripley, Beth; Levin, Dmitry; Kelil, Tatiana; Hermsen, Joshua L; Kim, Sooah; Maki, Jeffrey H; Wilson, Gregory J

    2017-03-01

    3D printing facilitates the creation of accurate physical models of patient-specific anatomy from medical imaging datasets. While the majority of models to date are created from computed tomography (CT) data, there is increasing interest in creating models from other datasets, such as ultrasound and magnetic resonance imaging (MRI). MRI, in particular, holds great potential for 3D printing, given its excellent tissue characterization and lack of ionizing radiation. There are, however, challenges to 3D printing from MRI data as well. Here we review the basics of 3D printing, explore the current strengths and weaknesses of printing from MRI data as they pertain to model accuracy, and discuss considerations in the design of MRI sequences for 3D printing. Finally, we explore the future of 3D printing and MRI, including creative applications and new materials. 5 J. Magn. Reson. Imaging 2017;45:635-645. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Comparison of recent SnIa datasets

    International Nuclear Information System (INIS)

    Sanchez, J.C. Bueno; Perivolaropoulos, L.; Nesseris, S.

    2009-01-01

    We rank the six latest Type Ia supernova (SnIa) datasets (Constitution (C), Union (U), ESSENCE (Davis) (E), Gold06 (G), SNLS 1yr (S) and SDSS-II (D)) in the context of the Chevalier-Polarski-Linder (CPL) parametrization w(a) = w 0 +w 1 (1−a), according to their Figure of Merit (FoM), their consistency with the cosmological constant (ΛCDM), their consistency with standard rulers (Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO)) and their mutual consistency. We find a significant improvement of the FoM (defined as the inverse area of the 95.4% parameter contour) with the number of SnIa of these datasets ((C) highest FoM, (U), (G), (D), (E), (S) lowest FoM). Standard rulers (CMB+BAO) have a better FoM by about a factor of 3, compared to the highest FoM SnIa dataset (C). We also find that the ranking sequence based on consistency with ΛCDM is identical with the corresponding ranking based on consistency with standard rulers ((S) most consistent, (D), (C), (E), (U), (G) least consistent). The ranking sequence of the datasets however changes when we consider the consistency with an expansion history corresponding to evolving dark energy (w 0 ,w 1 ) = (−1.4,2) crossing the phantom divide line w = −1 (it is practically reversed to (G), (U), (E), (S), (D), (C)). The SALT2 and MLCS2k2 fitters are also compared and some peculiar features of the SDSS-II dataset when standardized with the MLCS2k2 fitter are pointed out. Finally, we construct a statistic to estimate the internal consistency of a collection of SnIa datasets. We find that even though there is good consistency among most samples taken from the above datasets, this consistency decreases significantly when the Gold06 (G) dataset is included in the sample

  20. A comparison of daily evaporation downscaled using WRFDA model and GLEAM dataset over the Iberian Peninsula.

    Science.gov (United States)

    José González-Rojí, Santos; Sáenz, Jon; Ibarra-Berastegi, Gabriel

    2017-04-01

    GLEAM dataset was presented a few years ago and since that moment, it has just been used for validation of evaporation in a few places of the world (Australia and Africa). The Iberian Peninsula is composed of different soil types and it is affected by different weather regimes, with different climate regions. It is this feature which makes it a very interesting zone for the study of the meteorological cycle, including evaporation. For that purpose, a numerical downscaling exercise over the Iberian Peninsula was run nesting the WRF model inside ERA Interim. Two model configurations were tested in two experiments spanning the period 2010-2014 after a one-year spin-up (2009). In the first experiment (N), boundary conditions drive the model. The second experiment (D) is configured the same way as the N case, but 3DVAR data assimilation is run every six hours (00Z, 06Z, 12Z and 18Z) using observations obtained from the PREPBUFR dataset. For both N and D runs and ERA Interim, the evaporation of the model runs was compared to GLEAM v3.0b and v3.0c datasets over the Iberian Peninsula, both at the daily and monthly time scales. GLEAM v3.0a was not used for validation as it uses for forcing radiation and air temperature data from ERA Interim. Results show that the experiment with data assimilation (D) improve the results obtained for N experiment. Moreover, correlations values are comparable to the ones obtained with ERA Interim. However, some negative correlation values are observed at Portuguese and Mediterranean coasts for both WRF runs. All of these problematic points are considered as urban sites by the NOAH land surface model. Because of that, the model is not able to simulate a correct evaporation value. Even with these discrepancies, better results than for ERA Interim are observed for seasonal Biases and daily RMSEs over Iberian Peninsula, obtaining the best values inland. Minimal differences are observed for the two GLEAM datasets selected.

  1. Isotropic 3D cardiac cine MRI allows efficient sparse segmentation strategies based on 3D surface reconstruction.

    Science.gov (United States)

    Odille, Freddy; Bustin, Aurélien; Liu, Shufang; Chen, Bailiang; Vuissoz, Pierre-André; Felblinger, Jacques; Bonnemains, Laurent

    2018-05-01

    Segmentation of cardiac cine MRI data is routinely used for the volumetric analysis of cardiac function. Conventionally, 2D contours are drawn on short-axis (SAX) image stacks with relatively thick slices (typically 8 mm). Here, an acquisition/reconstruction strategy is used for obtaining isotropic 3D cine datasets; reformatted slices are then used to optimize the manual segmentation workflow. Isotropic 3D cine datasets were obtained from multiple 2D cine stacks (acquired during free-breathing in SAX and long-axis (LAX) orientations) using nonrigid motion correction (cine-GRICS method) and super-resolution. Several manual segmentation strategies were then compared, including conventional SAX segmentation, LAX segmentation in three views only, and combinations of SAX and LAX slices. An implicit B-spline surface reconstruction algorithm is proposed to reconstruct the left ventricular cavity surface from the sparse set of 2D contours. All tested sparse segmentation strategies were in good agreement, with Dice scores above 0.9 despite using fewer slices (3-6 sparse slices instead of 8-10 contiguous SAX slices). When compared to independent phase-contrast flow measurements, stroke volumes computed from four or six sparse slices had slightly higher precision than conventional SAX segmentation (error standard deviation of 5.4 mL against 6.1 mL) at the cost of slightly lower accuracy (bias of -1.2 mL against 0.2 mL). Functional parameters also showed a trend to improved precision, including end-diastolic volumes, end-systolic volumes, and ejection fractions). The postprocessing workflow of 3D isotropic cardiac imaging strategies can be optimized using sparse segmentation and 3D surface reconstruction. Magn Reson Med 79:2665-2675, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Arena3D: visualizing time-driven phenotypic differences in biological systems

    Directory of Open Access Journals (Sweden)

    Secrier Maria

    2012-03-01

    Full Text Available Abstract Background Elucidating the genotype-phenotype connection is one of the big challenges of modern molecular biology. To fully understand this connection, it is necessary to consider the underlying networks and the time factor. In this context of data deluge and heterogeneous information, visualization plays an essential role in interpreting complex and dynamic topologies. Thus, software that is able to bring the network, phenotypic and temporal information together is needed. Arena3D has been previously introduced as a tool that facilitates link discovery between processes. It uses a layered display to separate different levels of information while emphasizing the connections between them. We present novel developments of the tool for the visualization and analysis of dynamic genotype-phenotype landscapes. Results Version 2.0 introduces novel features that allow handling time course data in a phenotypic context. Gene expression levels or other measures can be loaded and visualized at different time points and phenotypic comparison is facilitated through clustering and correlation display or highlighting of impacting changes through time. Similarity scoring allows the identification of global patterns in dynamic heterogeneous data. In this paper we demonstrate the utility of the tool on two distinct biological problems of different scales. First, we analyze a medium scale dataset that looks at perturbation effects of the pluripotency regulator Nanog in murine embryonic stem cells. Dynamic cluster analysis suggests alternative indirect links between Nanog and other proteins in the core stem cell network. Moreover, recurrent correlations from the epigenetic to the translational level are identified. Second, we investigate a large scale dataset consisting of genome-wide knockdown screens for human genes essential in the mitotic process. Here, a potential new role for the gene lsm14a in cytokinesis is suggested. We also show how phenotypic

  3. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data

    Directory of Open Access Journals (Sweden)

    Elisee Ilunga-Mbuyamba

    2016-04-01

    Full Text Available In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUS s t a r t and after (3D-iCEUS e n d tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS s t a r t and 3D-iCEUS e n d data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation. Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified.

  4. Computationally efficient storage of 3D particle intensity and position data for use in 3D PIV and 3D PTV

    International Nuclear Information System (INIS)

    Atkinson, C; Buchmann, N A; Soria, J

    2013-01-01

    Three-dimensional (3D) volumetric velocity measurement techniques, such as tomographic or holographic particle image velocimetry (PIV), rely upon the computationally intensive formation, storage and localized interrogation of multiple 3D particle intensity fields. Calculation of a single velocity field typically requires the extraction of particle intensities into tens of thousands of 3D sub-volumes or discrete particle clusters, the processing of which can significantly affect the performance of 3D cross-correlation based PIV and 3D particle tracking velocimetry (PTV). In this paper, a series of popular and customized volumetric data formats are presented and investigated using synthetic particle volumes and experimental data arising from tomographic PIV measurements of a turbulent boundary layer. Results show that the use of a sub-grid ordered non-zero intensity format with a sub-grid size of 16 × 16 × 16 points provides the best performance for cross-correlation based PIV analysis, while a particle clustered non-zero intensity format provides the best format for PTV applications. In practical tomographic PIV measurements the sub-grid ordered non-zero intensity format offered a 29% improvement in reconstruction times, while providing a 93% reduction in volume data requirements and a 28% overall improvement in cross-correlation based velocity analysis and validation times. (paper)

  5. Dynamic 3D MR-defecography

    Energy Technology Data Exchange (ETDEWEB)

    Ratz, V.; Wech, T.; Schindele, A.; Dierks, A.; Sauer, A.; Reibetanz, J.; Borzi, A.; Bley, T.; Koestler, H.

    2016-09-15

    Epidemiological studies have estimated the incidence of chronic constipation to be up to 27% of the general population. The gold standard to evaluate affected patients is the dynamic entero-colpo-cysto-defecography. In the clinical routine 2 D MR-defecography is also performed, but only one to three 2 D slices at a temporal footprint of about one second are acquired. To improve the detection of lateral localized pathologies, we developed and implemented dynamic 3 D MR-defecography. Each 3 D block consisted of seven slices with an in-plane spatial resolution of 1.3 x 1.3 mm{sup 2} to 2.3 x 2.3 mm{sup 2} and an image update rate between 0.8 s and 1.3 s. We used a fast bSSFP sequence with a modified stack-of-stars sampling scheme for data acquisition and a modified FISTA compressed sensing algorithm to reconstruct the undersampled datasets. We performed a study including 6 patients to optimize the acquisition parameters with respect to image quality.

  6. Dynamic 3D MR-defecography

    International Nuclear Information System (INIS)

    Ratz, V.; Wech, T.; Schindele, A.; Dierks, A.; Sauer, A.; Reibetanz, J.; Borzi, A.; Bley, T.; Koestler, H.

    2016-01-01

    Epidemiological studies have estimated the incidence of chronic constipation to be up to 27% of the general population. The gold standard to evaluate affected patients is the dynamic entero-colpo-cysto-defecography. In the clinical routine 2 D MR-defecography is also performed, but only one to three 2 D slices at a temporal footprint of about one second are acquired. To improve the detection of lateral localized pathologies, we developed and implemented dynamic 3 D MR-defecography. Each 3 D block consisted of seven slices with an in-plane spatial resolution of 1.3 x 1.3 mm 2 to 2.3 x 2.3 mm 2 and an image update rate between 0.8 s and 1.3 s. We used a fast bSSFP sequence with a modified stack-of-stars sampling scheme for data acquisition and a modified FISTA compressed sensing algorithm to reconstruct the undersampled datasets. We performed a study including 6 patients to optimize the acquisition parameters with respect to image quality.

  7. Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy

    International Nuclear Information System (INIS)

    Tsunashima, Yoshikazu; Sakae, Takeji; Shioyama, Yoshiyuki; Kagei, Kenji; Terunuma, Toshiyuki; Nohtomi, Akihiro; Akine, Yasuyuki

    2004-01-01

    Purpose: The purpose of this study is to investigate the correlation between the respiratory waveform measured using a respiratory sensor and three-dimensional (3D) tumor motion. Methods and materials: A laser displacement sensor (LDS: KEYENCE LB-300) that measures distance using infrared light was used as the respiratory sensor. This was placed such that the focus was in an area around the patient's navel. When the distance from the LDS to the body surface changes as the patient breathes, the displacement is detected as a respiratory waveform. To obtain the 3D tumor motion, a biplane digital radiography unit was used. For the tumor in the lung, liver, and esophagus of 26 patients, the waveform was compared with the 3D tumor motion. The relationship between the respiratory waveform and the 3D tumor motion was analyzed by means of the Fourier transform and a cross-correlation function. Results: The respiratory waveform cycle agreed with that of the cranial-caudal and dorsal-ventral tumor motion. A phase shift observed between the respiratory waveform and the 3D tumor motion was principally in the range 0.0 to 0.3 s, regardless of the organ being measured, which means that the respiratory waveform does not always express the 3D tumor motion with fidelity. For this reason, the standard deviation of the tumor position in the expiration phase, as indicated by the respiratory waveform, was derived, which should be helpful in suggesting the internal margin required in the case of respiratory gated radiotherapy. Conclusion: Although obtained from only a few breathing cycles for each patient, the correlation between the respiratory waveform and the 3D tumor motion was evident in this study. If this relationship is analyzed carefully and an internal margin is applied, the accuracy and convenience of respiratory gated radiotherapy could be improved by use of the respiratory sensor.Thus, it is expected that this procedure will come into wider use

  8. 3D spatially-adaptive canonical correlation analysis: Local and global methods.

    Science.gov (United States)

    Yang, Zhengshi; Zhuang, Xiaowei; Sreenivasan, Karthik; Mishra, Virendra; Curran, Tim; Byrd, Richard; Nandy, Rajesh; Cordes, Dietmar

    2018-04-01

    Local spatially-adaptive canonical correlation analysis (local CCA) with spatial constraints has been introduced to fMRI multivariate analysis for improved modeling of activation patterns. However, current algorithms require complicated spatial constraints that have only been applied to 2D local neighborhoods because the computational time would be exponentially increased if the same method is applied to 3D spatial neighborhoods. In this study, an efficient and accurate line search sequential quadratic programming (SQP) algorithm has been developed to efficiently solve the 3D local CCA problem with spatial constraints. In addition, a spatially-adaptive kernel CCA (KCCA) method is proposed to increase accuracy of fMRI activation maps. With oriented 3D spatial filters anisotropic shapes can be estimated during the KCCA analysis of fMRI time courses. These filters are orientation-adaptive leading to rotational invariance to better match arbitrary oriented fMRI activation patterns, resulting in improved sensitivity of activation detection while significantly reducing spatial blurring artifacts. The kernel method in its basic form does not require any spatial constraints and analyzes the whole-brain fMRI time series to construct an activation map. Finally, we have developed a penalized kernel CCA model that involves spatial low-pass filter constraints to increase the specificity of the method. The kernel CCA methods are compared with the standard univariate method and with two different local CCA methods that were solved by the SQP algorithm. Results show that SQP is the most efficient algorithm to solve the local constrained CCA problem, and the proposed kernel CCA methods outperformed univariate and local CCA methods in detecting activations for both simulated and real fMRI episodic memory data. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Electron correlation effects on the d-d excitations in NiO

    NARCIS (Netherlands)

    de Graaf, C; Broer, R.; Nieuwpoort, WC

    1996-01-01

    The partly filled 3d shell in solid transition metal compounds is quite localized on the transition metal ion and gives rise to large electron correlation effects. With the recently developed CASSCF/CASPT2 approach electron correlation effects can be accounted for efficiently. The CASSCF step

  10. Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences

    Science.gov (United States)

    Hopp, T.; Dapp, R.; Zapf, M.; Kretzek, E.; Gemmeke, H.; Ruiter, N. V.

    2015-03-01

    3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.

  11. Multibeam 3D Underwater SLAM with Probabilistic Registration

    Directory of Open Access Journals (Sweden)

    Albert Palomer

    2016-04-01

    Full Text Available This paper describes a pose-based underwater 3D Simultaneous Localization and Mapping (SLAM using a multibeam echosounder to produce high consistency underwater maps. The proposed algorithm compounds swath profiles of the seafloor with dead reckoning localization to build surface patches (i.e., point clouds. An Iterative Closest Point (ICP with a probabilistic implementation is then used to register the point clouds, taking into account their uncertainties. The registration process is divided in two steps: (1 point-to-point association for coarse registration and (2 point-to-plane association for fine registration. The point clouds of the surfaces to be registered are sub-sampled in order to decrease both the computation time and also the potential of falling into local minima during the registration. In addition, a heuristic is used to decrease the complexity of the association step of the ICP from O ( n 2 to O ( n . The performance of the SLAM framework is tested using two real world datasets: First, a 2.5D bathymetric dataset obtained with the usual down-looking multibeam sonar configuration, and second, a full 3D underwater dataset acquired with a multibeam sonar mounted on a pan and tilt unit.

  12. Techniques and architectures for 3D interaction

    NARCIS (Netherlands)

    De Haan, G.

    2009-01-01

    Spatial scientific datasets are all around us, and 3D visualization is a powerful tool to explore details and structures within them. When dealing with complex spatial structures, interactive Virtual Reality (VR) systems can potentially improve exploration over desktop-based systems. However, from

  13. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    Science.gov (United States)

    Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.

    2015-06-01

    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.

  14. A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    International Nuclear Information System (INIS)

    Rockett, P; Karagadde, S; Guo, E; Kingsley, M; Lee, P D; Bent, J; Hazekamp, J; Vila-Comamala, J

    2015-01-01

    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20 o C) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials. (paper)

  15. Spatial access method for urban geospatial database management: An efficient approach of 3D vector data clustering technique

    DEFF Research Database (Denmark)

    Azri, Suhaibah; Ujang, Uznir; Rahman, Alias Abdul

    2014-01-01

    In the last few years, 3D urban data and its information are rapidly increased due to the growth of urban area and urbanization phenomenon. These datasets are then maintain and manage in 3D spatial database system. However, performance deterioration is likely to happen due to the massiveness of 3D...... datasets. As a solution, 3D spatial index structure is used as a booster to increase the performance of data retrieval. In commercial database, commonly and widely used index structure for 3D spatial database is 3D R-Tree. This is due to its simplicity and promising method in handling spatial data. However......D geospatial data clustering to be used in the construction of 3D R-Tree and respectively could reduce the overlapping among nodes. The proposed method is tested on 3D urban dataset for the application of urban infill development. By using several cases of data updating operations such as building...

  16. 3D shape representation with spatial probabilistic distribution of intrinsic shape keypoints

    Science.gov (United States)

    Ghorpade, Vijaya K.; Checchin, Paul; Malaterre, Laurent; Trassoudaine, Laurent

    2017-12-01

    The accelerated advancement in modeling, digitizing, and visualizing techniques for 3D shapes has led to an increasing amount of 3D models creation and usage, thanks to the 3D sensors which are readily available and easy to utilize. As a result, determining the similarity between 3D shapes has become consequential and is a fundamental task in shape-based recognition, retrieval, clustering, and classification. Several decades of research in Content-Based Information Retrieval (CBIR) has resulted in diverse techniques for 2D and 3D shape or object classification/retrieval and many benchmark data sets. In this article, a novel technique for 3D shape representation and object classification has been proposed based on analyses of spatial, geometric distributions of 3D keypoints. These distributions capture the intrinsic geometric structure of 3D objects. The result of the approach is a probability distribution function (PDF) produced from spatial disposition of 3D keypoints, keypoints which are stable on object surface and invariant to pose changes. Each class/instance of an object can be uniquely represented by a PDF. This shape representation is robust yet with a simple idea, easy to implement but fast enough to compute. Both Euclidean and topological space on object's surface are considered to build the PDFs. Topology-based geodesic distances between keypoints exploit the non-planar surface properties of the object. The performance of the novel shape signature is tested with object classification accuracy. The classification efficacy of the new shape analysis method is evaluated on a new dataset acquired with a Time-of-Flight camera, and also, a comparative evaluation on a standard benchmark dataset with state-of-the-art methods is performed. Experimental results demonstrate superior classification performance of the new approach on RGB-D dataset and depth data.

  17. Effect of out-of-plane specimen movement on strain measurement using digital-image-correlation-based video measurement in 2D and 3D

    DEFF Research Database (Denmark)

    Poling, Joel; Desai, Niranjan; Fischer, Gregor

    2018-01-01

    This study determined the effect of specimen out-of-plane movement relative to the sensor, on the accuracy of strains measured made applying 2D and 3D measurement approaches employing the state-of-the-art digital-image-correlation (DIC)-based tool iMETRUM. DIC provides a convenient and inexpensive...

  18. An efficient and accurate 3D displacements tracking strategy for digital volume correlation

    Science.gov (United States)

    Pan, Bing; Wang, Bo; Wu, Dafang; Lubineau, Gilles

    2014-07-01

    Owing to its inherent computational complexity, practical implementation of digital volume correlation (DVC) for internal displacement and strain mapping faces important challenges in improving its computational efficiency. In this work, an efficient and accurate 3D displacement tracking strategy is proposed for fast DVC calculation. The efficiency advantage is achieved by using three improvements. First, to eliminate the need of updating Hessian matrix in each iteration, an efficient 3D inverse compositional Gauss-Newton (3D IC-GN) algorithm is introduced to replace existing forward additive algorithms for accurate sub-voxel displacement registration. Second, to ensure the 3D IC-GN algorithm that converges accurately and rapidly and avoid time-consuming integer-voxel displacement searching, a generalized reliability-guided displacement tracking strategy is designed to transfer accurate and complete initial guess of deformation for each calculation point from its computed neighbors. Third, to avoid the repeated computation of sub-voxel intensity interpolation coefficients, an interpolation coefficient lookup table is established for tricubic interpolation. The computational complexity of the proposed fast DVC and the existing typical DVC algorithms are first analyzed quantitatively according to necessary arithmetic operations. Then, numerical tests are performed to verify the performance of the fast DVC algorithm in terms of measurement accuracy and computational efficiency. The experimental results indicate that, compared with the existing DVC algorithm, the presented fast DVC algorithm produces similar precision and slightly higher accuracy at a substantially reduced computational cost.

  19. An efficient and accurate 3D displacements tracking strategy for digital volume correlation

    KAUST Repository

    Pan, Bing

    2014-07-01

    Owing to its inherent computational complexity, practical implementation of digital volume correlation (DVC) for internal displacement and strain mapping faces important challenges in improving its computational efficiency. In this work, an efficient and accurate 3D displacement tracking strategy is proposed for fast DVC calculation. The efficiency advantage is achieved by using three improvements. First, to eliminate the need of updating Hessian matrix in each iteration, an efficient 3D inverse compositional Gauss-Newton (3D IC-GN) algorithm is introduced to replace existing forward additive algorithms for accurate sub-voxel displacement registration. Second, to ensure the 3D IC-GN algorithm that converges accurately and rapidly and avoid time-consuming integer-voxel displacement searching, a generalized reliability-guided displacement tracking strategy is designed to transfer accurate and complete initial guess of deformation for each calculation point from its computed neighbors. Third, to avoid the repeated computation of sub-voxel intensity interpolation coefficients, an interpolation coefficient lookup table is established for tricubic interpolation. The computational complexity of the proposed fast DVC and the existing typical DVC algorithms are first analyzed quantitatively according to necessary arithmetic operations. Then, numerical tests are performed to verify the performance of the fast DVC algorithm in terms of measurement accuracy and computational efficiency. The experimental results indicate that, compared with the existing DVC algorithm, the presented fast DVC algorithm produces similar precision and slightly higher accuracy at a substantially reduced computational cost. © 2014 Elsevier Ltd.

  20. Interactive visualization and analysis of multimodal datasets for surgical applications.

    Science.gov (United States)

    Kirmizibayrak, Can; Yim, Yeny; Wakid, Mike; Hahn, James

    2012-12-01

    Surgeons use information from multiple sources when making surgical decisions. These include volumetric datasets (such as CT, PET, MRI, and their variants), 2D datasets (such as endoscopic videos), and vector-valued datasets (such as computer simulations). Presenting all the information to the user in an effective manner is a challenging problem. In this paper, we present a visualization approach that displays the information from various sources in a single coherent view. The system allows the user to explore and manipulate volumetric datasets, display analysis of dataset values in local regions, combine 2D and 3D imaging modalities and display results of vector-based computer simulations. Several interaction methods are discussed: in addition to traditional interfaces including mouse and trackers, gesture-based natural interaction methods are shown to control these visualizations with real-time performance. An example of a medical application (medialization laryngoplasty) is presented to demonstrate how the combination of different modalities can be used in a surgical setting with our approach.

  1. METRIC EVALUATION PIPELINE FOR 3D MODELING OF URBAN SCENES

    Directory of Open Access Journals (Sweden)

    M. Bosch

    2017-05-01

    Full Text Available Publicly available benchmark data and metric evaluation approaches have been instrumental in enabling research to advance state of the art methods for remote sensing applications in urban 3D modeling. Most publicly available benchmark datasets have consisted of high resolution airborne imagery and lidar suitable for 3D modeling on a relatively modest scale. To enable research in larger scale 3D mapping, we have recently released a public benchmark dataset with multi-view commercial satellite imagery and metrics to compare 3D point clouds with lidar ground truth. We now define a more complete metric evaluation pipeline developed as publicly available open source software to assess semantically labeled 3D models of complex urban scenes derived from multi-view commercial satellite imagery. Evaluation metrics in our pipeline include horizontal and vertical accuracy and completeness, volumetric completeness and correctness, perceptual quality, and model simplicity. Sources of ground truth include airborne lidar and overhead imagery, and we demonstrate a semi-automated process for producing accurate ground truth shape files to characterize building footprints. We validate our current metric evaluation pipeline using 3D models produced using open source multi-view stereo methods. Data and software is made publicly available to enable further research and planned benchmarking activities.

  2. Metric Evaluation Pipeline for 3d Modeling of Urban Scenes

    Science.gov (United States)

    Bosch, M.; Leichtman, A.; Chilcott, D.; Goldberg, H.; Brown, M.

    2017-05-01

    Publicly available benchmark data and metric evaluation approaches have been instrumental in enabling research to advance state of the art methods for remote sensing applications in urban 3D modeling. Most publicly available benchmark datasets have consisted of high resolution airborne imagery and lidar suitable for 3D modeling on a relatively modest scale. To enable research in larger scale 3D mapping, we have recently released a public benchmark dataset with multi-view commercial satellite imagery and metrics to compare 3D point clouds with lidar ground truth. We now define a more complete metric evaluation pipeline developed as publicly available open source software to assess semantically labeled 3D models of complex urban scenes derived from multi-view commercial satellite imagery. Evaluation metrics in our pipeline include horizontal and vertical accuracy and completeness, volumetric completeness and correctness, perceptual quality, and model simplicity. Sources of ground truth include airborne lidar and overhead imagery, and we demonstrate a semi-automated process for producing accurate ground truth shape files to characterize building footprints. We validate our current metric evaluation pipeline using 3D models produced using open source multi-view stereo methods. Data and software is made publicly available to enable further research and planned benchmarking activities.

  3. Flank wear and I-kaz 3D correlation in ball end milling process of Inconel 718

    Directory of Open Access Journals (Sweden)

    M.A.S.M. Tahir

    2015-12-01

    Full Text Available Tool wear may deteriorate the machine product quality due to high surface roughness, dimension exceeding tolerance and also to machine tool itself. Tool wear monitoring system is vital to be used in machining process to achieve high quality of the machined product and at the same time improve the productivity. Nowadays, many monitoring system developed using various sensor and statistical technique to analyze the signals being used. In this paper, I-kaz 3D method is used to analyze cutting force signal in milling process of Inconel 718 for monitoring the status of tool wear in milling process. The results from analyzing cutting force show that I-kaz 3D coefficient has a correlation with cutting tool condition. Tool wear will generate high value of I-kaz 3D coefficient than the sharp cutting tool. Furthermore, the three dimension graphical representation of I-kaz 3D for all cutting condition shown that the degree of scattering data increases with tool wear progression.

  4. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    Science.gov (United States)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  5. 3D modelling of the Austroalpine-Penninic collisional wedge of the NW Alps: dataset management and preliminary results

    Science.gov (United States)

    Monopoli, Bruno; Bistacchi, Andrea; Bertolo, Davide; Dal Piaz, Giovanni; Gouffon, Yves; Massironi, Matteo; Sartori, Mario; Vittorio Dal Piaz, Giorgio

    2016-04-01

    We know since the beginning of the 20th century, thanks to mapping and structural studies by the Italian Regio Servizio Geologico (Franchi et al., 1908) and Argand's work (1909; 1911; 1916), that the Austroalpine-Penninic collisional wedge of the NW Alps is spectacularly exposed across the Aosta Valley and Valais ranges (Italy and Switzerland). In the 150th anniversary of the first ascent to Ruskin's "most noble cliff in Europe" - the Cervino/Matterhorn (Whymper, July 14th 1865), first described in a geological profile by Giordano (1869) and in a detailed map by Gerlach (1869; 1871), we have seen the conclusion of very detailed mapping projects carried out in the last years over the two regions, with collaborative efforts across the Italy-Switzerland border, constellated by 4000 m-high peaks. These projects have pictured with an unprecedented detail (up to 1:10.000 scale) the geology of this complex region, resulting from pre-Alpine events, Alpine subduction- and collision-related ductile deformations, and finally late-Alpine brittle deformations from the Oligocene to the Present. Based on this dataset, we use up-to-date technology and software to undertake a 3D modelling study aimed at: i) reconstructing the 3D geometry of the principal tectonic units, ii) detecting and unravelling problems and incongruences in the 2D geometrical models, iii) modelling the kinematics of the Oligocene and Miocene brittle fault network using 2D and 3D balancing and palinspastic restoration techniques. In this contribution we mainly discuss the prerequisites of the project. Common geomodelling paradigms (mainly developed for the hydrocarbon industry) cannot be applied in this project due to (i) the little scale, (ii) the source of the data - fieldwork, and (iii) the polyphase ductile and brittle deformations in the metamorphic nappe stack. Our goals at the moment are to model the post-metamorphic fault network and the boundaries of the principal tectonic units, which will be

  6. Relative Error Evaluation to Typical Open Global dem Datasets in Shanxi Plateau of China

    Science.gov (United States)

    Zhao, S.; Zhang, S.; Cheng, W.

    2018-04-01

    Produced by radar data or stereo remote sensing image pairs, global DEM datasets are one of the most important types for DEM data. Relative error relates to surface quality created by DEM data, so it relates to geomorphology and hydrologic applications using DEM data. Taking Shanxi Plateau of China as the study area, this research evaluated the relative error to typical open global DEM datasets including Shuttle Radar Terrain Mission (SRTM) data with 1 arc second resolution (SRTM1), SRTM data with 3 arc second resolution (SRTM3), ASTER global DEM data in the second version (GDEM-v2) and ALOS world 3D-30m (AW3D) data. Through process and selection, more than 300,000 ICESat/GLA14 points were used as the GCP data, and the vertical error was computed and compared among four typical global DEM datasets. Then, more than 2,600,000 ICESat/GLA14 point pairs were acquired using the distance threshold between 100 m and 500 m. Meanwhile, the horizontal distance between every point pair was computed, so the relative error was achieved using slope values based on vertical error difference and the horizontal distance of the point pairs. Finally, false slope ratio (FSR) index was computed through analyzing the difference between DEM and ICESat/GLA14 values for every point pair. Both relative error and FSR index were categorically compared for the four DEM datasets under different slope classes. Research results show: Overall, AW3D has the lowest relative error values in mean error, mean absolute error, root mean square error and standard deviation error; then the SRTM1 data, its values are a little higher than AW3D data; the SRTM3 and GDEM-v2 data have the highest relative error values, and the values for the two datasets are similar. Considering different slope conditions, all the four DEM data have better performance in flat areas but worse performance in sloping regions; AW3D has the best performance in all the slope classes, a litter better than SRTM1; with slope increasing

  7. Striatal D2/3 Binding Potential Values in Drug-Naïve First-Episode Schizophrenia Patients Correlate With Treatment Outcome

    Science.gov (United States)

    Wulff, Sanne; Pinborg, Lars Hageman; Svarer, Claus; Jensen, Lars Thorbjørn; Nielsen, Mette Ødegaard; Allerup, Peter; Bak, Nikolaj; Rasmussen, Hans; Frandsen, Erik; Rostrup, Egill; Glenthøj, Birte Yding

    2015-01-01

    One of best validated findings in schizophrenia research is the association between blockade of dopamine D2 receptors and the effects of antipsychotics on positive psychotic symptoms. The aim of the present study was to examine correlations between baseline striatal D2/3 receptor binding potential (BPp) values and treatment outcome in a cohort of antipsychotic-naïve first-episode schizophrenia patients. Additionally, we wished to investigate associations between striatal dopamine D2/3 receptor blockade and alterations of negative symptoms as well as functioning and subjective well-being. Twenty-eight antipsychotic-naïve schizophrenia patients and 26 controls were included in the study. Single-photon emission computed tomography (SPECT) with [123I]iodobenzamide ([123I]-IBZM) was used to examine striatal D2/3 receptor BPp. Patients were examined before and after 6 weeks of treatment with the D2/3 receptor antagonist amisulpride. There was a significant negative correlation between striatal D2/3 receptor BPp at baseline and improvement of positive symptoms in the total group of patients. Comparing patients responding to treatment to nonresponders further showed significantly lower baseline BPp in the responders. At follow-up, the patients demonstrated a negative correlation between the blockade and functioning, whereas no associations between blockade and negative symptoms or subjective well-being were observed. The results show an association between striatal BPp of dopamine D2/3 receptors in antipsychotic-naïve first-episode patients with schizophrenia and treatment response. Patients with a low BPp have a better treatment response than patients with a high BPp. The results further suggest that functioning may decline at high levels of dopamine receptor blockade. PMID:25698711

  8. Morphological Operations to Extract Urban Curbs in 3D MLS Point Clouds

    Directory of Open Access Journals (Sweden)

    Borja Rodríguez-Cuenca

    2016-06-01

    Full Text Available Automatic curb detection is an important issue in road maintenance, three-dimensional (3D urban modeling, and autonomous navigation fields. This paper is focused on the segmentation of curbs and street boundaries using a 3D point cloud captured by a mobile laser scanner (MLS system. Our method provides a solution based on the projection of the measured point cloud on the XY plane. Over that plane, a segmentation algorithm is carried out based on morphological operations to determine the location of street boundaries. In addition, a solution to extract curb edges based on the roughness of the point cloud is proposed. The proposed method is valid in both straight and curved road sections and applicable both to laser scanner and stereo vision 3D data due to the independence of its scanning geometry. The proposed method has been successfully tested with two datasets measured by different sensors. The first dataset corresponds to a point cloud measured by a TOPCON sensor in the Spanish town of Cudillero. The second dataset corresponds to a point cloud measured by a RIEGL sensor in the Austrian town of Horn. The extraction method provides completeness and correctness rates above 90% and quality values higher than 85% in both studied datasets.

  9. A bivariate contaminated binormal model for robust fitting of proper ROC curves to a pair of correlated, possibly degenerate, ROC datasets.

    Science.gov (United States)

    Zhai, Xuetong; Chakraborty, Dev P

    2017-06-01

    The objective was to design and implement a bivariate extension to the contaminated binormal model (CBM) to fit paired receiver operating characteristic (ROC) datasets-possibly degenerate-with proper ROC curves. Paired datasets yield two correlated ratings per case. Degenerate datasets have no interior operating points and proper ROC curves do not inappropriately cross the chance diagonal. The existing method, developed more than three decades ago utilizes a bivariate extension to the binormal model, implemented in CORROC2 software, which yields improper ROC curves and cannot fit degenerate datasets. CBM can fit proper ROC curves to unpaired (i.e., yielding one rating per case) and degenerate datasets, and there is a clear scientific need to extend it to handle paired datasets. In CBM, nondiseased cases are modeled by a probability density function (pdf) consisting of a unit variance peak centered at zero. Diseased cases are modeled with a mixture distribution whose pdf consists of two unit variance peaks, one centered at positive μ with integrated probability α, the mixing fraction parameter, corresponding to the fraction of diseased cases where the disease was visible to the radiologist, and one centered at zero, with integrated probability (1-α), corresponding to disease that was not visible. It is shown that: (a) for nondiseased cases the bivariate extension is a unit variances bivariate normal distribution centered at (0,0) with a specified correlation ρ 1 ; (b) for diseased cases the bivariate extension is a mixture distribution with four peaks, corresponding to disease not visible in either condition, disease visible in only one condition, contributing two peaks, and disease visible in both conditions. An expression for the likelihood function is derived. A maximum likelihood estimation (MLE) algorithm, CORCBM, was implemented in the R programming language that yields parameter estimates and the covariance matrix of the parameters, and other statistics

  10. Multi-sourced, 3D geometric characterization of volcanogenic karst features: Integrating lidar, sonar, and geophysical datasets (Invited)

    Science.gov (United States)

    Sharp, J. M.; Gary, M. O.; Reyes, R.; Halihan, T.; Fairfield, N.; Stone, W. C.

    2009-12-01

    Karstic aquifers can form very complex hydrogeological systems and 3-D mapping has been difficult, but Lidar, phased array sonar, and improved earth resistivity techniques show promise in this and in linking metadata to models. Zacatón, perhaps the Earth’s deepest cenote, has a sub-aquatic void space exceeding 7.5 x 106 cubic m3. It is the focus of this study which has created detailed 3D maps of the system. These maps include data from above and beneath the the water table and within the rock matrix to document the extent of the immense karst features and to interpret the geologic processes that formed them. Phase 1 used high resolution (20 mm) Lidar scanning of surficial features of four large cenotes. Scan locations, selected to achieve full feature coverage once registered, were established atop surface benchmarks with UTM coordinates established using GPS and Total Stations. The combined datasets form a geo-registered mesh of surface features down to water level in the cenotes. Phase 2 conducted subsurface imaging using Earth Resistivity Imaging (ERI) geophysics. ERI identified void spaces isolated from open flow conduits. A unique travertine morphology exists in which some cenotes are dry or contain shallow lakes with flat travertine floors; some water-filled cenotes have flat floors without the cone of collapse material; and some have collapse cones. We hypothesize that the floors may have large water-filled voids beneath them. Three separate flat travertine caps were imaged: 1) La Pilita, which is partially open, exposing cap structure over a deep water-filled shaft; 2) Poza Seca, which is dry and vegetated; and 3) Tule, which contains a shallow (<1 m) lake. A fourth line was run adjacent to cenote Verde. La Pilita ERI, verified by SCUBA, documented the existence of large water-filled void zones ERI at Poza Seca showed a thin cap overlying a conductive zone extending to at least 25 m depth beneath the cap with no lower boundary of this zone evident

  11. Coherence holography by achromatic 3-D field correlation of generic thermal light with an imaging Sagnac shearing interferometer.

    Science.gov (United States)

    Naik, Dinesh N; Ezawa, Takahiro; Singh, Rakesh Kumar; Miyamoto, Yoko; Takeda, Mitsuo

    2012-08-27

    We propose a new technique for achromatic 3-D field correlation that makes use of the characteristics of both axial and lateral magnifications of imaging through a common-path Sagnac shearing interferometer. With this technique, we experimentally demonstrate, for the first time to our knowledge, 3-D image reconstruction of coherence holography with generic thermal light. By virtue of the achromatic axial shearing implemented by the difference in axial magnifications in imaging, the technique enables coherence holography to reconstruct a 3-D object with an axial depth beyond the short coherence length of the thermal light.

  12. 3d-4f magnetic interaction with density functional theory plus u approach: local Coulomb correlation and exchange pathways.

    Science.gov (United States)

    Zhang, Yachao; Yang, Yang; Jiang, Hong

    2013-12-12

    The 3d-4f exchange interaction plays an important role in many lanthanide based molecular magnetic materials such as single-molecule magnets and magnetic refrigerants. In this work, we study the 3d-4f magnetic exchange interactions in a series of Cu(II)-Gd(III) (3d(9)-4f(7)) dinuclear complexes based on the numerical atomic basis-norm-conserving pseudopotential method and density functional theory plus the Hubbard U correction approach (DFT+U). We obtain improved description of the 4f electrons by including the semicore 5s5p states in the valence part of the Gd-pseudopotential. The Hubbard U correction is employed to treat the strongly correlated Cu-3d and Gd-4f electrons, which significantly improve the agreement of the predicted exchange constants, J, with experiment, indicating the importance of accurate description of the local Coulomb correlation. The high efficiency of the DFT+U approach enables us to perform calculations with molecular crystals, which in general improve the agreement between theory and experiment, achieving a mean absolute error smaller than 2 cm(-1). In addition, through analyzing the physical effects of U, we identify two magnetic exchange pathways. One is ferromagnetic and involves an interaction between the Cu-3d, O-2p (bridge ligand), and the majority-spin Gd-5d orbitals. The other one is antiferromagnetic and involves Cu-3d, O-2p, and the empty minority-spin Gd-4f orbitals, which is suppressed by the planar Cu-O-O-Gd structure. This study demonstrates the accuracy of the DFT+U method for evaluating the 3d-4f exchange interactions, provides a better understanding of the exchange mechanism in the Cu(II)-Gd(III) complexes, and paves the way for exploiting the magnetic properties of the 3d-4f compounds containing lanthanides other than Gd.

  13. Noncontact 3-D Speckle Contrast Diffuse Correlation Tomography of Tissue Blood Flow Distribution.

    Science.gov (United States)

    Huang, Chong; Irwin, Daniel; Zhao, Mingjun; Shang, Yu; Agochukwu, Nneamaka; Wong, Lesley; Yu, Guoqiang

    2017-10-01

    Recent advancements in near-infrared diffuse correlation techniques and instrumentation have opened the path for versatile deep tissue microvasculature blood flow imaging systems. Despite this progress there remains a need for a completely noncontact, noninvasive device with high translatability from small/testing (animal) to large/target (human) subjects with trivial application on both. Accordingly, we discuss our newly developed setup which meets this demand, termed noncontact speckle contrast diffuse correlation tomography (nc_scDCT). The nc_scDCT provides fast, continuous, portable, noninvasive, and inexpensive acquisition of 3-D tomographic deep (up to 10 mm) tissue blood flow distributions with straightforward design and customization. The features presented include a finite-element-method implementation for incorporating complex tissue boundaries, fully noncontact hardware for avoiding tissue compression and interactions, rapid data collection with a diffuse speckle contrast method, reflectance-based design promoting experimental translation, extensibility to related techniques, and robust adjustable source and detector patterns and density for high resolution measurement with flexible regions of interest enabling unique application-specific setups. Validation is shown in the detection and characterization of both high and low contrasts in flow relative to the background using tissue phantoms with a pump-connected tube (high) and phantom spheres (low). Furthermore, in vivo validation of extracting spatiotemporal 3-D blood flow distributions and hyperemic response during forearm cuff occlusion is demonstrated. Finally, the success of instrument feasibility in clinical use is examined through the intraoperative imaging of mastectomy skin flap.

  14. The Most Common Geometric and Semantic Errors in CityGML Datasets

    Science.gov (United States)

    Biljecki, F.; Ledoux, H.; Du, X.; Stoter, J.; Soon, K. H.; Khoo, V. H. S.

    2016-10-01

    To be used as input in most simulation and modelling software, 3D city models should be geometrically and topologically valid, and semantically rich. We investigate in this paper what is the quality of currently available CityGML datasets, i.e. we validate the geometry/topology of the 3D primitives (Solid and MultiSurface), and we validate whether the semantics of the boundary surfaces of buildings is correct or not. We have analysed all the CityGML datasets we could find, both from portals of cities and on different websites, plus a few that were made available to us. We have thus validated 40M surfaces in 16M 3D primitives and 3.6M buildings found in 37 CityGML datasets originating from 9 countries, and produced by several companies with diverse software and acquisition techniques. The results indicate that CityGML datasets without errors are rare, and those that are nearly valid are mostly simple LOD1 models. We report on the most common errors we have found, and analyse them. One main observation is that many of these errors could be automatically fixed or prevented with simple modifications to the modelling software. Our principal aim is to highlight the most common errors so that these are not repeated in the future. We hope that our paper and the open-source software we have developed will help raise awareness for data quality among data providers and 3D GIS software producers.

  15. 3D Deep Learning Angiography (3D-DLA) from C-arm Conebeam CT.

    Science.gov (United States)

    Montoya, J C; Li, Y; Strother, C; Chen, G-H

    2018-05-01

    Deep learning is a branch of artificial intelligence that has demonstrated unprecedented performance in many medical imaging applications. Our purpose was to develop a deep learning angiography method to generate 3D cerebral angiograms from a single contrast-enhanced C-arm conebeam CT acquisition in order to reduce image artifacts and radiation dose. A set of 105 3D rotational angiography examinations were randomly selected from an internal data base. All were acquired using a clinical system in conjunction with a standard injection protocol. More than 150 million labeled voxels from 35 subjects were used for training. A deep convolutional neural network was trained to classify each image voxel into 3 tissue types (vasculature, bone, and soft tissue). The trained deep learning angiography model was then applied for tissue classification into a validation cohort of 8 subjects and a final testing cohort of the remaining 62 subjects. The final vasculature tissue class was used to generate the 3D deep learning angiography images. To quantify the generalization error of the trained model, we calculated the accuracy, sensitivity, precision, and Dice similarity coefficients for vasculature classification in relevant anatomy. The 3D deep learning angiography and clinical 3D rotational angiography images were subjected to a qualitative assessment for the presence of intersweep motion artifacts. Vasculature classification accuracy and 95% CI in the testing dataset were 98.7% (98.3%-99.1%). No residual signal from osseous structures was observed for any 3D deep learning angiography testing cases except for small regions in the otic capsule and nasal cavity compared with 37% (23/62) of the 3D rotational angiographies. Deep learning angiography accurately recreated the vascular anatomy of the 3D rotational angiography reconstructions without a mask. Deep learning angiography reduced misregistration artifacts induced by intersweep motion, and it reduced radiation exposure

  16. Evaluating the intra- and interobserver reliability of three-dimensional ultrasound and power Doppler angiography (3D-PDA) for assessment of placental volume and vascularity in the second trimester of pregnancy.

    Science.gov (United States)

    Jones, Nia W; Raine-Fenning, Nick J; Mousa, Hatem A; Bradley, Eileen; Bugg, George J

    2011-03-01

    Three-dimensional (3-D) power Doppler angiography (3-D-PDA) allows visualisation of Doppler signals within the placenta and their quantification is possible by the generation of vascular indices by the 4-D View software programme. This study aimed to investigate intra- and interobserver reproducibility of 3-D-PDA analysis of stored datasets at varying gestations with the ultimate goal being to develop a tool for predicting placental dysfunction. Women with an uncomplicated, viable singleton pregnancy were scanned at 12, 16 or 20 weeks gestational age groups. 3-D-PDA datasets acquired of the whole placenta were analysed using the VOCAL software processing tool. Each volume was analysed by three observers twice in the A plane. Intra- and interobserver reliability was assessed by intraclass correlation coefficients (ICCs) and Bland Altman plots. At each gestational age group, 20 low risk women were scanned resulting in 60 datasets in total. The ICC demonstrated a high level of measurement reliability at each gestation with intraobserver values >0.90 and interobserver values of >0.6 for the vascular indices. Bland Altman plots also showed high levels of agreement. Systematic bias was seen at 20 weeks in the vascular indices obtained by different observers. This study demonstrates that 3-D-PDA data can be measured reliably by different observers from stored datasets up to 18 weeks gestation. Measurements become less reliable as gestation advances with bias between observers evident at 20 weeks. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Full 3D internal strain measurement for device packaging materials using synchrotron laminography and volumetric digital image correlation method

    International Nuclear Information System (INIS)

    Asada, Takashi; Kimura, Hidehiko; Yamaguchi, Satoshi; Kano, Taiki; Kajiwara, Kentaro

    2014-01-01

    In order to measure full 3D internal strain field of resin molding compound specimens, synchrotron computed tomography and laminography at SPring-8 were performed. Then the reconstructed images were applied to 3D digital image correlation method to compute internal strain field. The results showed that internal strains in resin molding compound could be visualized in this way. (author)

  18. GENERATION OF MULTI-LOD 3D CITY MODELS IN CITYGML WITH THE PROCEDURAL MODELLING ENGINE RANDOM3DCITY

    Directory of Open Access Journals (Sweden)

    F. Biljecki

    2016-09-01

    Full Text Available The production and dissemination of semantic 3D city models is rapidly increasing benefiting a growing number of use cases. However, their availability in multiple LODs and in the CityGML format is still problematic in practice. This hinders applications and experiments where multi-LOD datasets are required as input, for instance, to determine the performance of different LODs in a spatial analysis. An alternative approach to obtain 3D city models is to generate them with procedural modelling, which is – as we discuss in this paper – well suited as a method to source multi-LOD datasets useful for a number of applications. However, procedural modelling has not yet been employed for this purpose. Therefore, we have developed RANDOM3DCITY, an experimental procedural modelling engine for generating synthetic datasets of buildings and other urban features. The engine is designed to produce models in CityGML and does so in multiple LODs. Besides the generation of multiple geometric LODs, we implement the realisation of multiple levels of spatiosemantic coherence, geometric reference variants, and indoor representations. As a result of their permutations, each building can be generated in 392 different CityGML representations, an unprecedented number of modelling variants of the same feature. The datasets produced by RANDOM3DCITY are suited for several applications, as we show in this paper with documented uses. The developed engine is available under an open-source licence at Github at http://github.com/tudelft3d/Random3Dcity.

  19. IPCC IS92 Emissions Scenarios (A, B, C, D, E, F) Dataset Version 1.1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Intergovernmental Panel on Climate Change (IPCC) IS92 Emissions Scenarios (A, B, C, D, E, F) Dataset Version 1.1 consists of six global and regional greenhouse...

  20. CAMEX-4 NOAA WP-3D VIDEO V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 NOAA WP-3D Video dataset was collected during the fourth field campaign in the CAMEX series (CAMEX-4), which ran from 16 August to 25 September, 2001 and...

  1. Correlates of circulating 25-hydroxyvitamin D: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers.

    Science.gov (United States)

    McCullough, Marjorie L; Weinstein, Stephanie J; Freedman, D Michal; Helzlsouer, Kathy; Flanders, W Dana; Koenig, Karen; Kolonel, Laurence; Laden, Francine; Le Marchand, Loic; Purdue, Mark; Snyder, Kirk; Stevens, Victoria L; Stolzenberg-Solomon, Rachael; Virtamo, Jarmo; Yang, Gong; Yu, Kai; Zheng, Wei; Albanes, Demetrius; Ashby, Jason; Bertrand, Kimberly; Cai, Hui; Chen, Yu; Gallicchio, Lisa; Giovannucci, Edward; Jacobs, Eric J; Hankinson, Susan E; Hartge, Patricia; Hartmuller, Virginia; Harvey, Chinonye; Hayes, Richard B; Horst, Ronald L; Shu, Xiao-Ou

    2010-07-01

    Low vitamin D status is common globally and is associated with multiple disease outcomes. Understanding the correlates of vitamin D status will help guide clinical practice, research, and interpretation of studies. Correlates of circulating 25-hydroxyvitamin D (25(OH)D) concentrations measured in a single laboratory were examined in 4,723 cancer-free men and women from 10 cohorts participating in the Cohort Consortium Vitamin D Pooling Project of Rarer Cancers, which covers a worldwide geographic area. Demographic and lifestyle characteristics were examined in relation to 25(OH)D using stepwise linear regression and polytomous logistic regression. The prevalence of 25(OH)D concentrations less than 25 nmol/L ranged from 3% to 36% across cohorts, and the prevalence of 25(OH)D concentrations less than 50 nmol/L ranged from 29% to 82%. Seasonal differences in circulating 25(OH)D were most marked among whites from northern latitudes. Statistically significant positive correlates of 25(OH)D included male sex, summer blood draw, vigorous physical activity, vitamin D intake, fish intake, multivitamin use, and calcium supplement use. Significant inverse correlates were body mass index, winter and spring blood draw, history of diabetes, sedentary behavior, smoking, and black race/ethnicity. Correlates varied somewhat within season, race/ethnicity, and sex. These findings help identify persons at risk for low vitamin D status for both clinical and research purposes.

  2. WE-G-207-06: 3D Fluoroscopic Image Generation From Patient-Specific 4DCBCT-Based Motion Models Derived From Physical Phantom and Clinical Patient Images

    International Nuclear Information System (INIS)

    Dhou, S; Cai, W; Hurwitz, M; Rottmann, J; Myronakis, M; Cifter, F; Berbeco, R; Lewis, J; Williams, C; Mishra, P; Ionascu, D

    2015-01-01

    Purpose: Respiratory-correlated cone-beam CT (4DCBCT) images acquired immediately prior to treatment have the potential to represent patient motion patterns and anatomy during treatment, including both intra- and inter-fractional changes. We develop a method to generate patient-specific motion models based on 4DCBCT images acquired with existing clinical equipment and used to generate time varying volumetric images (3D fluoroscopic images) representing motion during treatment delivery. Methods: Motion models are derived by deformably registering each 4DCBCT phase to a reference phase, and performing principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated by optimizing the resulting PCA coefficients iteratively through comparison of the cone-beam projections simulating kV treatment imaging and digitally reconstructed radiographs generated from the motion model. Patient and physical phantom datasets are used to evaluate the method in terms of tumor localization error compared to manually defined ground truth positions. Results: 4DCBCT-based motion models were derived and used to generate 3D fluoroscopic images at treatment time. For the patient datasets, the average tumor localization error and the 95th percentile were 1.57 and 3.13 respectively in subsets of four patient datasets. For the physical phantom datasets, the average tumor localization error and the 95th percentile were 1.14 and 2.78 respectively in two datasets. 4DCBCT motion models are shown to perform well in the context of generating 3D fluoroscopic images due to their ability to reproduce anatomical changes at treatment time. Conclusion: This study showed the feasibility of deriving 4DCBCT-based motion models and using them to generate 3D fluoroscopic images at treatment time in real clinical settings. 4DCBCT-based motion models were found to account for the 3D non-rigid motion of the patient anatomy during treatment and have the potential

  3. The French Muséum national d'histoire naturelle vascular plant herbarium collection dataset

    Science.gov (United States)

    Le Bras, Gwenaël; Pignal, Marc; Jeanson, Marc L.; Muller, Serge; Aupic, Cécile; Carré, Benoît; Flament, Grégoire; Gaudeul, Myriam; Gonçalves, Claudia; Invernón, Vanessa R.; Jabbour, Florian; Lerat, Elodie; Lowry, Porter P.; Offroy, Bérangère; Pimparé, Eva Pérez; Poncy, Odile; Rouhan, Germinal; Haevermans, Thomas

    2017-02-01

    We provide a quantitative description of the French national herbarium vascular plants collection dataset. Held at the Muséum national d'histoire naturelle, Paris, it currently comprises records for 5,400,000 specimens, representing 90% of the estimated total of specimens. Ninety nine percent of the specimen entries are linked to one or more images and 16% have field-collecting information available. This major botanical collection represents the results of over three centuries of exploration and study. The sources of the collection are global, with a strong representation for France, including overseas territories, and former French colonies. The compilation of this dataset was made possible through numerous national and international projects, the most important of which was linked to the renovation of the herbarium building. The vascular plant collection is actively expanding today, hence the continuous growth exhibited by the dataset, which can be fully accessed through the GBIF portal or the MNHN database portal (available at: https://science.mnhn.fr/institution/mnhn/collection/p/item/search/form). This dataset is a major source of data for systematics, global plants macroecological studies or conservation assessments.

  4. 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 exert distinct effects on human skeletal muscle function and gene expression.

    Directory of Open Access Journals (Sweden)

    Zaki K Hassan-Smith

    Full Text Available Age-associated decline in muscle function represents a significant public health burden. Vitamin D-deficiency is also prevalent in aging subjects, and has been linked to loss of muscle mass and strength (sarcopenia, but the precise role of specific vitamin D metabolites in determining muscle phenotype and function is still unclear. To address this we quantified serum concentrations of multiple vitamin D metabolites, and assessed the impact of these metabolites on body composition/muscle function parameters, and muscle biopsy gene expression in a retrospective study of a cohort of healthy volunteers. Active serum 1,25-dihydroxyvitamin D3 (1α,25(OH2D3, but not inactive 25-hydroxyvitamin D3 (25OHD3, correlated positively with measures of lower limb strength including power (rho = 0.42, p = 0.02, velocity (Vmax, rho = 0.40, p = 0.02 and jump height (rho = 0.36, p = 0.04. Lean mass correlated positively with 1α,25(OH2D3 (rho = 0.47, p = 0.02, in women. Serum 25OHD3 and inactive 24,25-dihydroxyvitamin D3 (24,25(OH2D3 had an inverse relationship with body fat (rho = -0.30, p = 0.02 and rho = -0.33, p = 0.01, respectively. Serum 25OHD3 and 24,25(OH2D3 were also correlated with urinary steroid metabolites, suggesting a link with glucocorticoid metabolism. PCR array analysis of 92 muscle genes identified vitamin D receptor (VDR mRNA in all muscle biopsies, with this expression being negatively correlated with serum 25OHD3, and Vmax, and positively correlated with fat mass. Of the other 91 muscle genes analysed by PCR array, 24 were positively correlated with 25OHD3, but only 4 were correlated with active 1α,25(OH2D3. These data show that although 25OHD3 has potent actions on muscle gene expression, the circulating concentrations of this metabolite are more closely linked to body fat mass, suggesting that 25OHD3 can influence muscle function via indirect effects on adipose tissue. By contrast, serum 1α,25(OH2D3 has limited effects on muscle gene

  5. Electron correlation in CaRuO3 and SrRuO3

    International Nuclear Information System (INIS)

    Singh, Ravi Shankar; Maiti, Kalobaran

    2005-01-01

    We investigate the role of electron correlation in the electronic structure of 4d transition-metal oxides CaRuO 3 and SrRuO 3 . The photoemission spectra collected at different surface sensitivities reveal qualitatively different surface and bulk electronic structures in these systems. Extracted bulk spectra could be simulated using first principle approaches consistently with their thermodynamic parameters within the same model. The estimated electron correlation strength (U/W ∼ 0.2) is significantly weak as expected in 4d systems and resolves the long-standing issue that arose due to the prediction of large U/W similar to 3d systems. (author)

  6. Keterkaitan Panhisterektomi dan Suplemen 1,25- Dihidroksivitamin D3 dengan Risiko Urolitiasis pada Tikus (CORRELATION BETWEEN PANHISTERCTOMY AND 1.25-DIHYDROXYVITAMIN D3 SUPPLEMENTATION ON RATS UROLITHIASIS RISK

    Directory of Open Access Journals (Sweden)

    Hartiningsih .

    2013-07-01

    Full Text Available The objective of this research was to study the correlation of panhisterectomy and supplement 1.25-dihydroxyvitamin D3 on urolithiasis risk in Wistar rats. Twenty female Wistar rats at 8 weeks of age, weredivided into four groups (control fed standard diet, control fed standard diet+1,25-dihydroxyvitamin D3 supplement, panhisterectomy fed standard diet and panhisterectomy fed standard diet +1,25-dihydroxyvitamin D3 supplement. Eleven weeks after treatment, each of rats was placed into individualmetabolic cage for balance study for a week. From day 4 to 11 of the balance study, every morning theremaining food, feces, and urine were collected and recorded for calcium (Ca analysis. At the end ofbalance study, blood samples were taken from canthus retroorbitalis medialis for estrogen analysis. Theresults showed urinary and fecal Ca excretions were not significantly different compared to the controlgroup. Calcium consumption was significantly higher (P<0.05 in panhisterectomized rats compared withthose in control rats. While, estrogen in panhisterectomized group was not significantly different to thosein control rats. Calcium urinary and Ca consumption in rats consuming 1,25-dihydroxyvitamin D3 supplement were significantly higher (P<0.05 compared with those in without 1,25-dihydroxyvitamin D3 supplementation, but Ca excretion in feses was not significantly different. Estrogen in rats consuming1.25-dihydroxyvitamin D3 supplement was significantly lower (P<0.05 compared with the rats that without1,25-dihydroxyvitamin D3 supplemention. It can be concluded that panhisterectomy does not seem to affecturolithiasis risk, while 1,25-dihydroxyvitamin D3 supplement may affect urolithiasis risk. There is likelyno association between panhisterectomy and 1.25-dihydroxyvitamin D3 supplementation on urolithiasisrisk in Wistar rats.

  7. An Approach to Develop 3d Geo-Dbms Topological Operators by Re-Using Existing 2d Operators

    Science.gov (United States)

    Xu, D.; Zlatanova, S.

    2013-09-01

    Database systems are continuously extending their capabilities to store, process and analyse 3D data. Topological relationships which describe the interaction of objects in space is one of the important spatial issues. However, spatial operators for 3D objects are still insufficient. In this paper we present the development of a new 3D topological function to distinguish intersections of 3D planar polygons. The development uses existing 2D functions in the DBMS and two geometric transformations (rotation and projection). This function is tested for a real dataset to detect overlapping 3D city objects. The paper presents the algorithms and analyses the challenges. Suggestions for improvements of the current algorithm as well as possible extensions to handle more 3D topological cases are discussed at the end.

  8. SRV: an open-source toolbox to accelerate the recovery of metabolic biomarkers and correlations from metabolic phenotyping datasets.

    Science.gov (United States)

    Navratil, Vincent; Pontoizeau, Clément; Billoir, Elise; Blaise, Benjamin J

    2013-05-15

    Supervised multivariate statistical analyses are often required to analyze the high-density spectral information in metabolic datasets acquired from complex mixtures in metabolic phenotyping studies. Here we present an implementation of the SRV-Statistical Recoupling of Variables-algorithm as an open-source Matlab and GNU Octave toolbox. SRV allows the identification of similarity between consecutive variables resulting from the high-resolution bucketing. Similar variables are gathered to restore the spectral dependency within the datasets and identify metabolic NMR signals. The correlation and significance of these new NMR variables for a given effect under study can then be measured and represented on a loading plot to allow a visual and efficient identification of candidate biomarkers. Further on, correlations between these candidate biomarkers can be visualized on a two-dimensional pseudospectrum, representing a correlation map, helping to understand the modifications of the underlying metabolic network. SRV toolbox is encoded in MATLAB R2008A (Mathworks, Natick, MA) and in GNU Octave. It is available free of charge at http://www.prabi.fr/redmine/projects/srv/repository with a tutorial. benjamin.blaise@chu-lyon.fr or vincent.navratil@univ-lyon1.fr.

  9. Principal Component Analysis Based Two-Dimensional (PCA-2D) Correlation Spectroscopy: PCA Denoising for 2D Correlation Spectroscopy

    International Nuclear Information System (INIS)

    Jung, Young Mee

    2003-01-01

    Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra

  10. Correlation of accident statistics to whiplash performance parameters using the RID 3D and BioRID dummy

    NARCIS (Netherlands)

    Cappon, H.J.; Hell, W.; Hoschopf, H.; Muser, M.; Song, E.; Wismans, J.S.H.M.

    2005-01-01

    Injury criteria are crucial in whiplash protection evaluations. Therefore, the real-life rear impact performance of eight car seats was compared with various injury criteria using linear correlation techniques. Two dummies, BioRID and RID 3D, and two types of pulses were used: generic and car

  11. From 2D Silhouettes to 3D Object Retrieval: Contributions and Benchmarking

    Directory of Open Access Journals (Sweden)

    Napoléon Thibault

    2010-01-01

    Full Text Available 3D retrieval has recently emerged as an important boost for 2D search techniques. This is mainly due to its several complementary aspects, for instance, enriching views in 2D image datasets, overcoming occlusion and serving in many real-world applications such as photography, art, archeology, and geolocalization. In this paper, we introduce a complete "2D photography to 3D object" retrieval framework. Given a (collection of picture(s or sketch(es of the same scene or object, the method allows us to retrieve the underlying similar objects in a database of 3D models. The contribution of our method includes (i a generative approach for alignment able to find canonical views consistently through scenes/objects and (ii the application of an efficient but effective matching method used for ranking. The results are reported through the Princeton Shape Benchmark and the Shrec benchmarking consortium evaluated/compared by a third party. In the two gallery sets, our framework achieves very encouraging performance and outperforms the other runs.

  12. Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides

    Directory of Open Access Journals (Sweden)

    Stanislawski Jerzy

    2013-01-01

    Full Text Available Abstract Background Amyloids are proteins capable of forming fibrils. Many of them underlie serious diseases, like Alzheimer disease. The number of amyloid-associated diseases is constantly increasing. Recent studies indicate that amyloidogenic properties can be associated with short segments of aminoacids, which transform the structure when exposed. A few hundreds of such peptides have been experimentally found. Experimental testing of all possible aminoacid combinations is currently not feasible. Instead, they can be predicted by computational methods. 3D profile is a physicochemical-based method that has generated the most numerous dataset - ZipperDB. However, it is computationally very demanding. Here, we show that dataset generation can be accelerated. Two methods to increase the classification efficiency of amyloidogenic candidates are presented and tested: simplified 3D profile generation and machine learning methods. Results We generated a new dataset of hexapeptides, using more economical 3D profile algorithm, which showed very good classification overlap with ZipperDB (93.5%. The new part of our dataset contains 1779 segments, with 204 classified as amyloidogenic. The dataset of 6-residue sequences with their binary classification, based on the energy of the segment, was applied for training machine learning methods. A separate set of sequences from ZipperDB was used as a test set. The most effective methods were Alternating Decision Tree and Multilayer Perceptron. Both methods obtained area under ROC curve of 0.96, accuracy 91%, true positive rate ca. 78%, and true negative rate 95%. A few other machine learning methods also achieved a good performance. The computational time was reduced from 18-20 CPU-hours (full 3D profile to 0.5 CPU-hours (simplified 3D profile to seconds (machine learning. Conclusions We showed that the simplified profile generation method does not introduce an error with regard to the original method, while

  13. Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides.

    Science.gov (United States)

    Stanislawski, Jerzy; Kotulska, Malgorzata; Unold, Olgierd

    2013-01-17

    Amyloids are proteins capable of forming fibrils. Many of them underlie serious diseases, like Alzheimer disease. The number of amyloid-associated diseases is constantly increasing. Recent studies indicate that amyloidogenic properties can be associated with short segments of aminoacids, which transform the structure when exposed. A few hundreds of such peptides have been experimentally found. Experimental testing of all possible aminoacid combinations is currently not feasible. Instead, they can be predicted by computational methods. 3D profile is a physicochemical-based method that has generated the most numerous dataset - ZipperDB. However, it is computationally very demanding. Here, we show that dataset generation can be accelerated. Two methods to increase the classification efficiency of amyloidogenic candidates are presented and tested: simplified 3D profile generation and machine learning methods. We generated a new dataset of hexapeptides, using more economical 3D profile algorithm, which showed very good classification overlap with ZipperDB (93.5%). The new part of our dataset contains 1779 segments, with 204 classified as amyloidogenic. The dataset of 6-residue sequences with their binary classification, based on the energy of the segment, was applied for training machine learning methods. A separate set of sequences from ZipperDB was used as a test set. The most effective methods were Alternating Decision Tree and Multilayer Perceptron. Both methods obtained area under ROC curve of 0.96, accuracy 91%, true positive rate ca. 78%, and true negative rate 95%. A few other machine learning methods also achieved a good performance. The computational time was reduced from 18-20 CPU-hours (full 3D profile) to 0.5 CPU-hours (simplified 3D profile) to seconds (machine learning). We showed that the simplified profile generation method does not introduce an error with regard to the original method, while increasing the computational efficiency. Our new dataset

  14. Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks

    Science.gov (United States)

    Roth, Holger; Oda, Masahiro; Shimizu, Natsuki; Oda, Hirohisa; Hayashi, Yuichiro; Kitasaka, Takayuki; Fujiwara, Michitaka; Misawa, Kazunari; Mori, Kensaku

    2018-03-01

    Pancreas segmentation in computed tomography imaging has been historically difficult for automated methods because of the large shape and size variations between patients. In this work, we describe a custom-build 3D fully convolutional network (FCN) that can process a 3D image including the whole pancreas and produce an automatic segmentation. We investigate two variations of the 3D FCN architecture; one with concatenation and one with summation skip connections to the decoder part of the network. We evaluate our methods on a dataset from a clinical trial with gastric cancer patients, including 147 contrast enhanced abdominal CT scans acquired in the portal venous phase. Using the summation architecture, we achieve an average Dice score of 89.7 +/- 3.8 (range [79.8, 94.8])% in testing, achieving the new state-of-the-art performance in pancreas segmentation on this dataset.

  15. Finite-fault source inversion using adjoint methods in 3D heterogeneous media

    Science.gov (United States)

    Somala, Surendra Nadh; Ampuero, Jean-Paul; Lapusta, Nadia

    2018-04-01

    Accounting for lateral heterogeneities in the 3D velocity structure of the crust is known to improve earthquake source inversion, compared to results based on 1D velocity models which are routinely assumed to derive finite-fault slip models. The conventional approach to include known 3D heterogeneity in source inversion involves pre-computing 3D Green's functions, which requires a number of 3D wave propagation simulations proportional to the number of stations or to the number of fault cells. The computational cost of such an approach is prohibitive for the dense datasets that could be provided by future earthquake observation systems. Here, we propose an adjoint-based optimization technique to invert for the spatio-temporal evolution of slip velocity. The approach does not require pre-computed Green's functions. The adjoint method provides the gradient of the cost function, which is used to improve the model iteratively employing an iterative gradient-based minimization method. The adjoint approach is shown to be computationally more efficient than the conventional approach based on pre-computed Green's functions in a broad range of situations. We consider data up to 1 Hz from a Haskell source scenario (a steady pulse-like rupture) on a vertical strike-slip fault embedded in an elastic 3D heterogeneous velocity model. The velocity model comprises a uniform background and a 3D stochastic perturbation with the von Karman correlation function. Source inversions based on the 3D velocity model are performed for two different station configurations, a dense and a sparse network with 1 km and 20 km station spacing, respectively. These reference inversions show that our inversion scheme adequately retrieves the rise time when the velocity model is exactly known, and illustrates how dense coverage improves the inference of peak slip velocities. We investigate the effects of uncertainties in the velocity model by performing source inversions based on an incorrect

  16. A density-based segmentation for 3D images, an application for X-ray micro-tomography

    International Nuclear Information System (INIS)

    Tran, Thanh N.; Nguyen, Thanh T.; Willemsz, Tofan A.; Kessel, Gijs van; Frijlink, Henderik W.; Voort Maarschalk, Kees van der

    2012-01-01

    Highlights: ► We revised the DBSCAN algorithm for segmentation and clustering of large 3D image dataset and classified multivariate image. ► The algorithm takes into account the coordinate system of the image data to improve the computational performance. ► The algorithm solved the instability problem in boundaries detection of the original DBSCAN. ► The segmentation results were successfully validated with synthetic 3D image and 3D XMT image of a pharmaceutical powder. - Abstract: Density-based spatial clustering of applications with noise (DBSCAN) is an unsupervised classification algorithm which has been widely used in many areas with its simplicity and its ability to deal with hidden clusters of different sizes and shapes and with noise. However, the computational issue of the distance table and the non-stability in detecting the boundaries of adjacent clusters limit the application of the original algorithm to large datasets such as images. In this paper, the DBSCAN algorithm was revised and improved for image clustering and segmentation. The proposed clustering algorithm presents two major advantages over the original one. Firstly, the revised DBSCAN algorithm made it applicable for large 3D image dataset (often with millions of pixels) by using the coordinate system of the image data. Secondly, the revised algorithm solved the non-stability issue of boundary detection in the original DBSCAN. For broader applications, the image dataset can be ordinary 3D images or in general, it can also be a classification result of other type of image data e.g. a multivariate image.

  17. The next chapter in experimental petrology: Metamorphic dehydration of polycrystalline gypsum captured in 3D microtomographic time series datasets

    Science.gov (United States)

    Bedford, John; Fusseis, Florian; Leclere, Henry; Wheeler, John; Faulkner, Dan

    2016-04-01

    Nucleation and growth of new minerals in response to disequilibrium is the most fundamental metamorphic process. However, our current kinetic models of metamorphic reactions are largely based on inference from fossil mineral assemblages, rather than from direct observation. The experimental investigation of metamorphism has also been limited, typically to concealed vessels that restrict the possibility of direct microstructural monitoring. Here we present one of the first time series datasets that captures a metamorphic reaction, dehydration of polycrystalline gypsum to form hemihydrate, in a series of three dimensional x-ray microtomographic datasets. We achieved this by installing an x-ray transparent hydrothermal cell (Fusseis et al., 2014, J. Synchrotron Rad. 21, 251-253) in the microtomography beamline 2BM at the Advanced Photon Source (USA). In the cell, we heated a millimetre-sized sample of Volterra Alabaster to 388 K while applying an effective pressure of 5 MPa. Using hard x-rays that penetrate the pressure vessel, we imaged the specimen 40 times while it reacted for approximately 10 hours. Each microtomographic dataset was acquired in 300 seconds without interrupting the reaction. Our absorption microtomographic data have a voxel size of 1.3 μm, which suffices to analyse the reaction progress in 4D. Gypsum can clearly be distinguished from hemihydrate and pores, which form due to the large negative solid volume change. On the resolved scale, the first hemihydrate needles appear after about 2 hours. Our data allow tracking of individual needles throughout the entire experiment. We quantified their growth rates by measuring their circumference. While individual grains grow at different rates, they all start slowly during the initial nucleation stage, then accelerate and grow steadily between about 200 and 400 minutes before reaction rate decelerates again. Hemihydrate needles are surrounded by porous haloes, which grow with the needles, link up and

  18. Correlates of Circulating 25-Hydroxyvitamin D

    OpenAIRE

    McCullough, Marjorie L.; Weinstein, Stephanie J.; Freedman, D. Michal; Helzlsouer, Kathy; Flanders, W. Dana; Koenig, Karen; Kolonel, Laurence; Laden, Francine; Le Marchand, Loic; Purdue, Mark; Snyder, Kirk; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Virtamo, Jarmo; Yang, Gong

    2010-01-01

    Low vitamin D status is common globally and is associated with multiple disease outcomes. Understanding the correlates of vitamin D status will help guide clinical practice, research, and interpretation of studies. Correlates of circulating 25-hydroxyvitamin D (25(OH)D) concentrations measured in a single laboratory were examined in 4,723 cancer-free men and women from 10 cohorts participating in the Cohort Consortium Vitamin D Pooling Project of Rarer Cancers, which covers a worldwide geogra...

  19. Improvement of the Correlative AFM and ToF-SIMS Approach Using an Empirical Sputter Model for 3D Chemical Characterization.

    Science.gov (United States)

    Terlier, T; Lee, J; Lee, K; Lee, Y

    2018-02-06

    Technological progress has spurred the development of increasingly sophisticated analytical devices. The full characterization of structures in terms of sample volume and composition is now highly complex. Here, a highly improved solution for 3D characterization of samples, based on an advanced method for 3D data correction, is proposed. Traditionally, secondary ion mass spectrometry (SIMS) provides the chemical distribution of sample surfaces. Combining successive sputtering with 2D surface projections enables a 3D volume rendering to be generated. However, surface topography can distort the volume rendering by necessitating the projection of a nonflat surface onto a planar image. Moreover, the sputtering is highly dependent on the probed material. Local variation of composition affects the sputter yield and the beam-induced roughness, which in turn alters the 3D render. To circumvent these drawbacks, the correlation of atomic force microscopy (AFM) with SIMS has been proposed in previous studies as a solution for the 3D chemical characterization. To extend the applicability of this approach, we have developed a methodology using AFM-time-of-flight (ToF)-SIMS combined with an empirical sputter model, "dynamic-model-based volume correction", to universally correct 3D structures. First, the simulation of 3D structures highlighted the great advantages of this new approach compared with classical methods. Then, we explored the applicability of this new correction to two types of samples, a patterned metallic multilayer and a diblock copolymer film presenting surface asperities. In both cases, the dynamic-model-based volume correction produced an accurate 3D reconstruction of the sample volume and composition. The combination of AFM-SIMS with the dynamic-model-based volume correction improves the understanding of the surface characteristics. Beyond the useful 3D chemical information provided by dynamic-model-based volume correction, the approach permits us to enhance

  20. Data assimilation and model evaluation experiment datasets

    Science.gov (United States)

    Lai, Chung-Cheng A.; Qian, Wen; Glenn, Scott M.

    1994-01-01

    The Institute for Naval Oceanography, in cooperation with Naval Research Laboratories and universities, executed the Data Assimilation and Model Evaluation Experiment (DAMEE) for the Gulf Stream region during fiscal years 1991-1993. Enormous effort has gone into the preparation of several high-quality and consistent datasets for model initialization and verification. This paper describes the preparation process, the temporal and spatial scopes, the contents, the structure, etc., of these datasets. The goal of DAMEE and the need of data for the four phases of experiment are briefly stated. The preparation of DAMEE datasets consisted of a series of processes: (1) collection of observational data; (2) analysis and interpretation; (3) interpolation using the Optimum Thermal Interpolation System package; (4) quality control and re-analysis; and (5) data archiving and software documentation. The data products from these processes included a time series of 3D fields of temperature and salinity, 2D fields of surface dynamic height and mixed-layer depth, analysis of the Gulf Stream and rings system, and bathythermograph profiles. To date, these are the most detailed and high-quality data for mesoscale ocean modeling, data assimilation, and forecasting research. Feedback from ocean modeling groups who tested this data was incorporated into its refinement. Suggestions for DAMEE data usages include (1) ocean modeling and data assimilation studies, (2) diagnosis and theoretical studies, and (3) comparisons with locally detailed observations.

  1. Hybrid 3D printing: a game-changer in personalized cardiac medicine?

    Science.gov (United States)

    Kurup, Harikrishnan K N; Samuel, Bennett P; Vettukattil, Joseph J

    2015-12-01

    Three-dimensional (3D) printing in congenital heart disease has the potential to increase procedural efficiency and patient safety by improving interventional and surgical planning and reducing radiation exposure. Cardiac magnetic resonance imaging and computed tomography are usually the source datasets to derive 3D printing. More recently, 3D echocardiography has been demonstrated to derive 3D-printed models. The integration of multiple imaging modalities for hybrid 3D printing has also been shown to create accurate printed heart models, which may prove to be beneficial for interventional cardiologists, cardiothoracic surgeons, and as an educational tool. Further advancements in the integration of different imaging modalities into a single platform for hybrid 3D printing and virtual 3D models will drive the future of personalized cardiac medicine.

  2. Quantitative 3D ultrashort time-to-echo (UTE) MRI and micro-CT (μCT) evaluation of the temporomandibular joint (TMJ) condylar morphology

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Daniel [Sapienza University of Rome, Department of Radiological, Oncological and Pathological Sciences, Rome (Italy); Bae, Won C.; Statum, Sheronda; Du, Jiang; Chung, Christine B. [University of California-San Diego, Department of Radiology, San Diego, CA (United States)

    2014-01-15

    Temporomandibular dysfunction involves osteoarthritis of the TMJ, including degeneration and morphologic changes of the mandibular condyle. The purpose of this study was to determine the accuracy of novel 3D-UTE MRI versus micro-CT (μCT) for quantitative evaluation of mandibular condyle morphology. Nine TMJ condyle specimens were harvested from cadavers (2 M, 3 F; age 85 ± 10 years, mean ± SD). 3D-UTE MRI (TR = 50 ms, TE = 0.05 ms, 104-μm isotropic-voxel) was performed using a 3-T MR scanner and μCT (18-μm isotropic-voxel) was also performed. MR datasets were spatially registered with a μCT dataset. Two observers segmented bony contours of the condyles. Fibrocartilage was segmented on the MR dataset. Using a custom program, bone and fibrocartilage surface coordinates, Gaussian curvature, volume of segmented regions, and fibrocartilage thickness were determined for quantitative evaluation of joint morphology. Agreement between techniques (MRI vs. μCT) and observers (MRI vs. MRI) for Gaussian curvature, mean curvature, and segmented volume of the bone were determined using intraclass correlation coefficient (ICC) analysis. Between MRI and μCT, the average deviation of surface coordinates was 0.19 ± 0.15 mm, slightly higher than the spatial resolution of MRI. Average deviation of the Gaussian curvature and volume of segmented regions, from MRI to μCT, was 5.7 ± 6.5 % and 6.6 ± 6.2 %, respectively. ICC coefficients (MRI vs. μCT) for Gaussian curvature, mean curvature, and segmented volumes were 0.892, 0.893, and 0.972, respectively. Between observers (MRI vs. MRI), the ICC coefficients were 0.998, 0.999, and 0.997, respectively. Fibrocartilage thickness was 0.55 ± 0.11 mm, as previously described in the literature for grossly normal TMJ samples. 3D-UTE MR quantitative evaluation of TMJ condyle morphology ex-vivo, including surface, curvature, and segmented volume, shows high correlation against μCT and between observers. In addition, UTE MRI allows

  3. 2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy.

    Science.gov (United States)

    De Silva, Tharindu; Fenster, Aaron; Cool, Derek W; Gardi, Lori; Romagnoli, Cesare; Samarabandu, Jagath; Ward, Aaron D

    2013-02-01

    Three-dimensional (3D) transrectal ultrasound (TRUS)-guided systems have been developed to improve targeting accuracy during prostate biopsy. However, prostate motion during the procedure is a potential source of error that can cause target misalignments. The authors present an image-based registration technique to compensate for prostate motion by registering the live two-dimensional (2D) TRUS images acquired during the biopsy procedure to a preacquired 3D TRUS image. The registration must be performed both accurately and quickly in order to be useful during the clinical procedure. The authors implemented an intensity-based 2D-3D rigid registration algorithm optimizing the normalized cross-correlation (NCC) metric using Powell's method. The 2D TRUS images acquired during the procedure prior to biopsy gun firing were registered to the baseline 3D TRUS image acquired at the beginning of the procedure. The accuracy was measured by calculating the target registration error (TRE) using manually identified fiducials within the prostate; these fiducials were used for validation only and were not provided as inputs to the registration algorithm. They also evaluated the accuracy when the registrations were performed continuously throughout the biopsy by acquiring and registering live 2D TRUS images every second. This measured the improvement in accuracy resulting from performing the registration, continuously compensating for motion during the procedure. To further validate the method using a more challenging data set, registrations were performed using 3D TRUS images acquired by intentionally exerting different levels of ultrasound probe pressures in order to measure the performance of our algorithm when the prostate tissue was intentionally deformed. In this data set, biopsy scenarios were simulated by extracting 2D frames from the 3D TRUS images and registering them to the baseline 3D image. A graphics processing unit (GPU)-based implementation was used to improve the

  4. A 3-D mixed-reality system for stereoscopic visualization of medical dataset.

    Science.gov (United States)

    Ferrari, Vincenzo; Megali, Giuseppe; Troia, Elena; Pietrabissa, Andrea; Mosca, Franco

    2009-11-01

    We developed a simple, light, and cheap 3-D visualization device based on mixed reality that can be used by physicians to see preoperative radiological exams in a natural way. The system allows the user to see stereoscopic "augmented images," which are created by mixing 3-D virtual models of anatomies obtained by processing preoperative volumetric radiological images (computed tomography or MRI) with real patient live images, grabbed by means of cameras. The interface of the system consists of a head-mounted display equipped with two high-definition cameras. Cameras are mounted in correspondence of the user's eyes and allow one to grab live images of the patient with the same point of view of the user. The system does not use any external tracker to detect movements of the user or the patient. The movements of the user's head and the alignment of virtual patient with the real one are done using machine vision methods applied on pairs of live images. Experimental results, concerning frame rate and alignment precision between virtual and real patient, demonstrate that machine vision methods used for localization are appropriate for the specific application and that systems based on stereoscopic mixed reality are feasible and can be proficiently adopted in clinical practice.

  5. 3D-ICONS Ireland – fulfilling the potential of a rich 3D resource

    Directory of Open Access Journals (Sweden)

    Anthony Corns

    2017-03-01

    Full Text Available As a partner in the EU co-funded 3D-ICONS project, the Discovery Programme undertook the 3D documentation of some of the most iconic cultural heritage sites in Ireland. This pan-European project aimed to establish a complete pipeline for the production of 3D replicas of archaeological monuments and historic buildings, and to publish the content to Europeana for public access. The list of Irish icons range from wider cultural landscapes to smaller ornately carved stones and includes a wide range of chronological periods: from Neolithic rock art from 2500 BC to Derry's 17th-century fortifications. The primary digitisation methods include airborne laser scanning (ALS, phase-based terrestrial laser scanning (Faro Focus 3D and close range structured light scanning (Artec EVA. These are now mainstream approaches for surveying historic landscapes, structures and objects, generating precise, high-resolution point cloud data, primarily for viewing and interaction in proprietary software applications. The challenge was to convert these complex high-volume datasets into textured 3D models, retaining the geometric integrity of the original data. The article highlights the development of a pipeline to produce a lightweight 3D model that enables the public to interact with a photorealistic model based upon accurate survey and texture data. 3D-ICONS ended in January 2015, but a new website 3dicons.ie was launched to offer continued access to the Irish 3D models and associated content and media generated during the project. The article will consider the impact of this online content, particularly how it has been used as a teaching aid in secondary schools and how this may be extended in the future. It will also demonstrate how content from the project has been remodelled to develop an interactive and immersive experience for the great mound at Knowth, a development in partnership with the operators of the Brú na Bóinne visitor centre.

  6. 3D contrast-enhanced MR portography and direct X-ray portography: a correlation study

    International Nuclear Information System (INIS)

    Lin Jiang; Zhou Kangrong; Chen Zuang; Wang Jianhua; Yan Ziping; Wang Yixiang, J.

    2003-01-01

    Our objective was to compare 3D contrast-enhanced MR portography (3D CE MRP) on a 1.5-T MR imager with direct X-ray portography. Twenty-six consecutive patients underwent 3D CE MRP with in-plane resolution of 1.4 or 1.8 mm, and direct X-ray portography. The findings of these two methods were evaluated and compared. The main portal vein (PV), right PV with its anterior and posterior segmental branches, and left PV including its sagittal segment were shown clearly without diagnostic problem in all cases on MRP. The main PV appearance was accordant with MRP and X-ray. For intrahepatic PVs, the results agreed in 21 patients but disagreed in 5 patients. In 1 patient with a huge tumor in right liver, the right posterior PV was classified as occluded at MRP, but diffusely narrowed at X-ray. The findings of left intrahepatic PV were discordant in 3 patients with hepatocelluar carcinoma in the left lobe. The MRP demonstrated complete occlusion of the left PVs, whereas X-ray showed proximal narrowing and distal occlusion. In another patient with hepatocelluar carcinoma, a small non-occlusive thrombus involving the sagittal segment of the left PV was seen on MRP but not on X-ray. With demonstration of varices and portosystemic shunts, MRP showed results similar to those of X-ray, except one recanalized para-umbilical vein was excluded from the field of view at MRP due to the patient's limited ability of breathholding. The 3D CE MRP correlated well with direct X-ray portography in most cases, it was limited in distinguishing narrowing of an intrahepatic PV from occlusion, but it showed advantage in demonstrating small thrombus within PV. (orig.)

  7. High-accuracy and real-time 3D positioning, tracking system for medical imaging applications based on 3D digital image correlation

    Science.gov (United States)

    Xue, Yuan; Cheng, Teng; Xu, Xiaohai; Gao, Zeren; Li, Qianqian; Liu, Xiaojing; Wang, Xing; Song, Rui; Ju, Xiangyang; Zhang, Qingchuan

    2017-01-01

    This paper presents a system for positioning markers and tracking the pose of a rigid object with 6 degrees of freedom in real-time using 3D digital image correlation, with two examples for medical imaging applications. Traditional DIC method was improved to meet the requirements of the real-time by simplifying the computations of integral pixel search. Experiments were carried out and the results indicated that the new method improved the computational efficiency by about 4-10 times in comparison with the traditional DIC method. The system was aimed for orthognathic surgery navigation in order to track the maxilla segment after LeFort I osteotomy. Experiments showed noise for the static point was at the level of 10-3 mm and the measurement accuracy was 0.009 mm. The system was demonstrated on skin surface shape evaluation of a hand for finger stretching exercises, which indicated a great potential on tracking muscle and skin movements.

  8. Improving 3d Spatial Queries Search: Newfangled Technique of Space Filling Curves in 3d City Modeling

    Science.gov (United States)

    Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.

    2013-09-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its

  9. 3D-2D registration in endovascular image-guided surgery: evaluation of state-of-the-art methods on cerebral angiograms.

    Science.gov (United States)

    Mitrović, Uroš; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga

    2018-02-01

    Image guidance for minimally invasive surgery is based on spatial co-registration and fusion of 3D pre-interventional images and treatment plans with the 2D live intra-interventional images. The spatial co-registration or 3D-2D registration is the key enabling technology; however, the performance of state-of-the-art automated methods is rather unclear as they have not been assessed under the same test conditions. Herein we perform a quantitative and comparative evaluation of ten state-of-the-art methods for 3D-2D registration on a public dataset of clinical angiograms. Image database consisted of 3D and 2D angiograms of 25 patients undergoing treatment for cerebral aneurysms or arteriovenous malformations. On each of the datasets, highly accurate "gold-standard" registrations of 3D and 2D images were established based on patient-attached fiducial markers. The database was used to rigorously evaluate ten state-of-the-art 3D-2D registration methods, namely two intensity-, two gradient-, three feature-based and three hybrid methods, both for registration of 3D pre-interventional image to monoplane or biplane 2D images. Intensity-based methods were most accurate in all tests (0.3 mm). One of the hybrid methods was most robust with 98.75% of successful registrations (SR) and capture range of 18 mm for registrations of 3D to biplane 2D angiograms. In general, registration accuracy was similar whether registration of 3D image was performed onto mono- or biplanar 2D images; however, the SR was substantially lower in case of 3D to monoplane 2D registration. Two feature-based and two hybrid methods had clinically feasible execution times in the order of a second. Performance of methods seems to fall below expectations in terms of robustness in case of registration of 3D to monoplane 2D images, while translation into clinical image guidance systems seems readily feasible for methods that perform registration of the 3D pre-interventional image onto biplanar intra

  10. Impact of Different CT Slice Thickness on Clinical Target Volume for 3D Conformal Radiation Therapy

    International Nuclear Information System (INIS)

    Prabhakar, Ramachandran; Ganesh, Tharmar; Rath, Goura K.; Julka, Pramod K.; Sridhar, Pappiah S.; Joshi, Rakesh C.; Thulkar, Sanjay

    2009-01-01

    The purpose of this study was to present the variation of clinical target volume (CTV) with different computed tomography (CT) slice thicknesses and the impact of CT slice thickness on 3-dimensional (3D) conformal radiotherapy treatment planning. Fifty patients with brain tumors were selected and CT scans with 2.5-, 5-, and 10-mm slice thicknesses were performed with non-ionic contrast enhancement. The patients were selected with tumor volume ranging from 2.54 cc to 222 cc. Three-dimensional treatment planning was performed for all three CT datasets. The target coverage and the isocenter shift between the treatment plans for different slice thickness were correlated with the tumor volume. An important observation from our study revealed that for volume 25 cc, the target underdosage was less than 6.7% for 5-mm slice thickness and 8% for 10-mm slice thickness. For 3D conformal radiotherapy treatment planning (3DCRT), a CT slice thickness of 2.5 mm is optimum for tumor volume 25 cc

  11. 3D visualization of numeric planetary data using JMARS

    Science.gov (United States)

    Dickenshied, S.; Christensen, P. R.; Anwar, S.; Carter, S.; Hagee, W.; Noss, D.

    2013-12-01

    JMARS (Java Mission-planning and Analysis for Remote Sensing) is a free geospatial application developed by the Mars Space Flight Facility at Arizona State University. Originally written as a mission planning tool for the THEMIS instrument on board the MARS Odyssey Spacecraft, it was released as an analysis tool to the general public in 2003. Since then it has expanded to be used for mission planning and scientific data analysis by additional NASA missions to Mars, the Moon, and Vesta, and it has come to be used by scientists, researchers and students of all ages from more than 40 countries around the world. The public version of JMARS now also includes remote sensing data for Mercury, Venus, Earth, the Moon, Mars, and a number of the moons of Jupiter and Saturn. Additional datasets for asteroids and other smaller bodies are being added as they becomes available and time permits. In addition to visualizing multiple datasets in context with one another, significant effort has been put into on-the-fly projection of georegistered data over surface topography. This functionality allows a user to easily create and modify 3D visualizations of any regional scene where elevation data is available in JMARS. This can be accomplished through the use of global topographic maps or regional numeric data such as HiRISE or HRSC DTMs. Users can also upload their own regional or global topographic dataset and use it as an elevation source for 3D rendering of their scene. The 3D Layer in JMARS allows the user to exaggerate the z-scale of any elevation source to emphasize the vertical variance throughout a scene. In addition, the user can rotate, tilt, and zoom the scene to any desired angle and then illuminate it with an artificial light source. This scene can be easily overlain with additional JMARS datasets such as maps, images, shapefiles, contour lines, or scale bars, and the scene can be easily saved as a graphic image for use in presentations or publications.

  12. Measurement of the $CP$-even Fraction of the $D^0 \\rightarrow 2\\pi^+ 2\\pi^-$ Decay using Quantum Correlated ${D\\bar{D}}$ Pairs at CLEO-c, and Real-time Alignment of the LHCb RICH optical Systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00392372

    This thesis covers three subjects, namely the measurement of the $C\\!P$-even fraction of the $D^0\\rightarrow 2\\pi^+2\\pi^-$ decay, the real-time alignment of the LHCb RICH mirror systems and the estimation of the sensitivity to the CKM angle $\\gamma$ that can be obtained using $B^{\\pm}\\rightarrow D(\\rightarrow 2\\pi^+2\\pi^-)K^{\\pm}$ events at LHCb.\\\\ \\\\ The $C\\!P$-even fraction $F_{4\\pi}^{+}$ of the $D^0\\rightarrow 2\\pi^+2\\pi^-$ decay is measured using a dataset corresponding to 818$\\,pb^{-1}$ of quantum correlated $D\\bar{D}$ decays produced in electron-positron collisions at the $\\psi(3770)$ resonance collected by the CLEO-c experiment at Cornell University. In the analysis, one of the correlated $D$ mesons is reconstructed as $D\\rightarrow 2\\pi^+2\\pi^-$ while the other $D$ meson is reconstructed as $D^0\\rightarrow K^0_{S,L}\\pi^+\\pi^-$. Sensitivity to the $C\\!P$-even fraction of $D^0\\rightarrow 2\\pi^+2\\pi^-$ is obtained by determining the variation of yields over the $D^0\\rightarrow K^0_{S,L}\\pi^+\\pi^-$ phase ...

  13. Measuring the correlation between cell mechanics and myofibroblastic differentiation during maturation of 3D microtissues

    Science.gov (United States)

    Zhao, Ruogang; Wang, Weigang; Boudou, Thomas; Chen, Christopher; Reich, Daniel

    2013-03-01

    Tissue stiffness and cellular contractility are two of the most important biomechanical factors regulating pathological transitions of encapsulated cells, such as the differentiation of fibroblasts into myofibroblasts - a key event contributing to tissue fibrosis. However, a quantitative correlation between tissue stiffness and cellular contraction and myofibroblast differentiation has not yet been established in 3D environments, mainly due to the lack of suitable 3D tissue culture models that allow both tissue remodeling and simultaneous measurement of the cell/tissue mechanics. To address this, we have developed a magnetic microtissue tester system that allows the remodeling of arrays of cell-laden 3D collagen microtissues and the measurement of cell and tissue mechanics using magnetically actuated elastomeric microcantilevers. By measuring the development of cell/tissue mechanical properties and the expression level of α-smooth muscle actin (α-SMA, a marker for myofibroblast differentiation) during a 6 day culture period, we found microtissue stiffness increased by 45% and α-SMA expression increased by 38%, but tissue contraction forces only increased by 10%, indicating that tissue stiffness may be the predominant mechanical factor for regulation of myofibroblast differentiation. This study provides new quantitative insight into the regulatory effect of cell and tissue mechanics on cellular function. Supported in part by NIH grant HL090747

  14. 3D movies for teaching seafloor bathymetry, plate tectonics, and ocean circulation in large undergraduate classes

    Science.gov (United States)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.; Hamann, B.; Kellogg, L. H.; Kreylos, O.; Kronenberger, M.; Spero, H. J.; Streletz, G. J.; Weber, C.

    2015-12-01

    Geologic problems and datasets are often 3D or 4D in nature, yet projected onto a 2D surface such as a piece of paper or a projection screen. Reducing the dimensionality of data forces the reader to "fill in" that collapsed dimension in their minds, creating a cognitive challenge for the reader, especially new learners. Scientists and students can visualize and manipulate 3D datasets using the virtual reality software developed for the immersive, real-time interactive 3D environment at the KeckCAVES at UC Davis. The 3DVisualizer software (Billen et al., 2008) can also operate on a desktop machine to produce interactive 3D maps of earthquake epicenter locations and 3D bathymetric maps of the seafloor. With 3D projections of seafloor bathymetry and ocean circulation proxy datasets in a virtual reality environment, we can create visualizations of carbon isotope (δ13C) records for academic research and to aid in demonstrating thermohaline circulation in the classroom. Additionally, 3D visualization of seafloor bathymetry allows students to see features of seafloor most people cannot observe first-hand. To enhance lessons on mid-ocean ridges and ocean basin genesis, we have created movies of seafloor bathymetry for a large-enrollment undergraduate-level class, Introduction to Oceanography. In the past four quarters, students have enjoyed watching 3D movies, and in the fall quarter (2015), we will assess how well 3D movies enhance learning. The class will be split into two groups, one who learns about the Mid-Atlantic Ridge from diagrams and lecture, and the other who learns with a supplemental 3D visualization. Both groups will be asked "what does the seafloor look like?" before and after the Mid-Atlantic Ridge lesson. Then the whole class will watch the 3D movie and respond to an additional question, "did the 3D visualization enhance your understanding of the Mid-Atlantic Ridge?" with the opportunity to further elaborate on the effectiveness of the visualization.

  15. Vibrating sample magnetometer 2D and 3D magnetization effects associated with different initial magnetization states

    Directory of Open Access Journals (Sweden)

    Ronald E. Lukins

    2017-05-01

    Full Text Available Differences in VSM magnetization vector rotation associated with various initial magnetization states were demonstrated. Procedures and criteria were developed to select sample orientation and initial magnetization states to allow for the combination of two different 2D measurements runs (with the same field profiles to generate a dataset that can be representative of actual 3D magnetization rotation. Nickel, cast iron, and low moment magnetic tape media were used to demonstrate these effects using hysteresis and remanent magnetization test sequences. These results can be used to generate 2D and 3D magnetic properties to better characterize magnetic phenomena which are inherently three dimensional. Example applications are magnetic tape-head orientation sensitivity, reinterpretation of 3D coercivity and other standard magnetic properties, and multi-dimensional shielding effectiveness.

  16. Cardiac 3D Printing and its Future Directions.

    Science.gov (United States)

    Vukicevic, Marija; Mosadegh, Bobak; Min, James K; Little, Stephen H

    2017-02-01

    Three-dimensional (3D) printing is at the crossroads of printer and materials engineering, noninvasive diagnostic imaging, computer-aided design, and structural heart intervention. Cardiovascular applications of this technology development include the use of patient-specific 3D models for medical teaching, exploration of valve and vessel function, surgical and catheter-based procedural planning, and early work in designing and refining the latest innovations in percutaneous structural devices. In this review, we discuss the methods and materials being used for 3D printing today. We discuss the basic principles of clinical image segmentation, including coregistration of multiple imaging datasets to create an anatomic model of interest. With applications in congenital heart disease, coronary artery disease, and surgical and catheter-based structural disease, 3D printing is a new tool that is challenging how we image, plan, and carry out cardiovascular interventions. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. "3D fusion" echocardiography improves 3D left ventricular assessment: comparison with 2D contrast echocardiography.

    Science.gov (United States)

    Augustine, Daniel; Yaqub, Mohammad; Szmigielski, Cezary; Lima, Eduardo; Petersen, Steffen E; Becher, Harald; Noble, J Alison; Leeson, Paul

    2015-02-01

    Three-dimensional fusion echocardiography (3DFE) is a novel postprocessing approach that utilizes imaging data acquired from multiple 3D acquisitions. We assessed image quality, endocardial border definition, and cardiac wall motion in patients using 3DFE compared to standard 3D images (3D) and results obtained with contrast echocardiography (2DC). Twenty-four patients (mean age 66.9 ± 13 years, 17 males, 7 females) undergoing 2DC had three, noncontrast, 3D apical volumes acquired at rest. Images were fused using an automated image fusion approach. Quality of the 3DFE was compared to both 3D and 2DC based on contrast-to-noise ratio (CNR) and endocardial border definition. We then compared clinical wall-motion score index (WMSI) calculated from 3DFE and 3D to those obtained from 2DC images. Fused 3D volumes had significantly improved CNR (8.92 ± 1.35 vs. 6.59 ± 1.19, P echocardiography (1.06 ± 0.09 vs. 1.07 ± 0.15, P = 0.69), whereas unfused images produced significantly more variable results (1.19 ± 0.30). This was confirmed by a better intraclass correlation coefficient (ICC 0.72; 95% CI 0.32-0.88) relative to comparisons with unfused images (ICC 0.56; 95% CI 0.02-0.81). 3DFE significantly improves left ventricular image quality compared to unfused 3D in a patient population and allows noncontrast assessment of wall motion that approaches that achieved with 2D contrast echocardiography. © 2014, Wiley Periodicals, Inc.

  18. The Correlation of Regulatory T (TReg and Vitamin D3 in Pediatric Nephrotic Syndrome

    Directory of Open Access Journals (Sweden)

    Yunika Nurtyas

    2018-01-01

    Full Text Available Nephrotic syndrome (NS is an autoimmune disease that correlates to the imbalance of regulatory T cells (TReg. This study was aimed to investigate the effect of vitamin D as adjuvant therapy of TReg population in pediatric nephrotic syndrome. This study was designed randomized clinical trial, double blind, with pre- and post-test control groups involving 15 subjects newly diagnosed with NS. Subjects were divided into 2 groups, namely K1 for group treated with prednisone+vitamin D and K2 group for prednisone treatment only. The population of TReg in peripheral blood mononuclear cells (PBMC was analyzed using flowcytometry. Vitamin D serum level was measured through ELISA method. Results showed that there was a significant elevation of TReg (independent t-test, p = 0.010 in K1 group, which was higher than in K2 group. The Pearson test in the K1 group showed that vitamin D level was positively correlated with TReg (p = 0.039, r = 0.779.

  19. Design of an audio advertisement dataset

    Science.gov (United States)

    Fu, Yutao; Liu, Jihong; Zhang, Qi; Geng, Yuting

    2015-12-01

    Since more and more advertisements swarm into radios, it is necessary to establish an audio advertising dataset which could be used to analyze and classify the advertisement. A method of how to establish a complete audio advertising dataset is presented in this paper. The dataset is divided into four different kinds of advertisements. Each advertisement's sample is given in *.wav file format, and annotated with a txt file which contains its file name, sampling frequency, channel number, broadcasting time and its class. The classifying rationality of the advertisements in this dataset is proved by clustering the different advertisements based on Principal Component Analysis (PCA). The experimental results show that this audio advertisement dataset offers a reliable set of samples for correlative audio advertisement experimental studies.

  20. Development of an organ-specific insert phantom generated using a 3D printer for investigations of cardiac computed tomography protocols.

    Science.gov (United States)

    Abdullah, Kamarul A; McEntee, Mark F; Reed, Warren; Kench, Peter L

    2018-04-30

    An ideal organ-specific insert phantom should be able to simulate the anatomical features with appropriate appearances in the resultant computed tomography (CT) images. This study investigated a 3D printing technology to develop a novel and cost-effective cardiac insert phantom derived from volumetric CT image datasets of anthropomorphic chest phantom. Cardiac insert volumes were segmented from CT image datasets, derived from an anthropomorphic chest phantom of Lungman N-01 (Kyoto Kagaku, Japan). These segmented datasets were converted to a virtual 3D-isosurface of heart-shaped shell, while two other removable inserts were included using computer-aided design (CAD) software program. This newly designed cardiac insert phantom was later printed by using a fused deposition modelling (FDM) process via a Creatbot DM Plus 3D printer. Then, several selected filling materials, such as contrast media, oil, water and jelly, were loaded into designated spaces in the 3D-printed phantom. The 3D-printed cardiac insert phantom was positioned within the anthropomorphic chest phantom and 30 repeated CT acquisitions performed using a multi-detector scanner at 120-kVp tube potential. Attenuation (Hounsfield Unit, HU) values were measured and compared to the image datasets of real-patient and Catphan ® 500 phantom. The output of the 3D-printed cardiac insert phantom was a solid acrylic plastic material, which was strong, light in weight and cost-effective. HU values of the filling materials were comparable to the image datasets of real-patient and Catphan ® 500 phantom. A novel and cost-effective cardiac insert phantom for anthropomorphic chest phantom was developed using volumetric CT image datasets with a 3D printer. Hence, this suggested the printing methodology could be applied to generate other phantoms for CT imaging studies. © 2018 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical

  1. 3D Flow Field Measurements using Aerosol Correlation Velocimetry, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AeroMancer Technology proposes to develop a 3D Lidar Global Airspeed Sensor (3D-GLAS) for remote optical sensing of three-component airspeeds in wind tunnel...

  2. CCDC 1025419: Experimental Crystal Structure Determination : bisthieno[3,2-b:2',3'-d]thiophene

    KAUST Repository

    Castañ eda, Raú l; Khrustalev, Victor N.; Fonari, Alexandr; Bredas, Jean-Luc; Getmanenko, Yulia A.; Timofeeva, Tatiana V.

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  3. Recent mathematical developments in 2D correlation spectroscopy

    Science.gov (United States)

    Noda, I.

    2000-03-01

    Recent mathematical developments in the field of 2D correlation spectroscopy, especially those related to the statistical theory, are reported. The notion of correlation phase angle is introduced. The significance of correlation phase angle between dynamic fluctuations of signals measured at two different spectral variables may be linked to more commonly known statistical concepts, such as coherence and correlation coefficient. This treatment provides the direct mathematical connection between the synchronous 2D correlation spectrum with a continuous form of the variance-covariance matrix. Moreover, it gives the background for the formal definition of the disrelation spectrum, which may be used as a heuristic substitution for the asynchronous 2D spectrum. The 2D correlation intensity may be separated into two independent factors representing the normalized extent of signal fluctuation coherence (i.e., correlation coefficient) and the magnitude of spectral intensity changes (i.e., variance). Such separation offers a convenient way to artificially enhance the discriminating power of 2D correlation spectra.

  4. How to estimate the 3D power spectrum of the Lyman-α forest

    Science.gov (United States)

    Font-Ribera, Andreu; McDonald, Patrick; Slosar, Anže

    2018-01-01

    We derive and numerically implement an algorithm for estimating the 3D power spectrum of the Lyman-α (Lyα) forest flux fluctuations. The algorithm exploits the unique geometry of Lyα forest data to efficiently measure the cross-spectrum between lines of sight as a function of parallel wavenumber, transverse separation and redshift. We start by approximating the global covariance matrix as block-diagonal, where only pixels from the same spectrum are correlated. We then compute the eigenvectors of the derivative of the signal covariance with respect to cross-spectrum parameters, and project the inverse-covariance-weighted spectra onto them. This acts much like a radial Fourier transform over redshift windows. The resulting cross-spectrum inference is then converted into our final product, an approximation of the likelihood for the 3D power spectrum expressed as second order Taylor expansion around a fiducial model. We demonstrate the accuracy and scalability of the algorithm and comment on possible extensions. Our algorithm will allow efficient analysis of the upcoming Dark Energy Spectroscopic Instrument dataset.

  5. Correlations between D and D-bar mesons in high energy photoproduction

    International Nuclear Information System (INIS)

    Gottschalk, Erik E.; Link, J.; Reyes, M.; Yager, P.M.; Anjos, J.; Bediaga, I.; Gobel, C.; Magnin, J.; Massafferri, A.; Miranda, J.M. de; Pepe, I.M.; Reis, A.C. dos; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vasquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P.; O'Reilly, B.; Ramirez, J.E.; Segoni, I.; Butler, J.N.; Cheung, H.W.K.; Chiodini, G.; Gaines, I.; Garbincius, P.H.; Garren, L.A.; Gottschalk, E.E.; Kasper, P.H.; Kreymer, A.E.; Kutschke, R.; Benussi, L.; Bianco, S.; Fabbri, F.L.; Zallo, A.; Cawlfield, C.; Kim, D.Y.; Park, K.S.; Rahimi, A.; Wiss, J.; Gardner, R.; Kryemadhi, A.; Chang, K.H.; Chung, Y.S.; Kang, J.S.; Ko, B.R.; Kwak, J.W.; Lee, K.B.; Cho, K.; Park, H.; Alimonti, G.; Barberis, S.; Cerutti, A.; Boschini, M.; D'Angelo, P.; DiCorato, M.; Dini, P.; Edera, L.; Erba, S.; Giammarchi, M.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.; Davenport, T.F.; Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Merlo, M.M.; Pantea, D.; Ratti, S.P.; Vitulo, P.; Hernandez, H.; Lopez, A.M.; Mendez, H.; Mendez, L.; Montiel, E.; Olaya, D.; Paris, A.; Quinones, J.; Rivera, C.; Xiong, W.; Zhang, Y.; Wilson, J.R.; Handler, T.; Mitchell, R.; Engh, D.; Hosack, M.; Johns, W.E.; Nehring, M.; Sheldon, P.D.; Stenson, K.; Vaadering, E.W.; Webster, M.; Sheaff, M.

    2003-01-01

    Over 7000 events containing a fully reconstructed D D-bar pair have been extracted from data recorded by the FOCUS photoproduction experiment at Fermilab. Preliminary results from a study of correlations between D and D-bar mesons are presented. Correlations are used to study perturbative QCD predictions and investigate non-perturbative effects. We also present a preliminary result on the production of Ψ(3770)

  6. Ovarian morphology in polycystic ovary syndrome: estimates from 2D and 3D ultrasound and magnetic resonance imaging and their correlation to anti-Müllerian hormone.

    Science.gov (United States)

    Nylander, Malin; Frøssing, Signe; Bjerre, Anne H; Chabanova, Elizaveta; Clausen, Helle V; Faber, Jens; Skouby, Sven O

    2017-08-01

    Background Due to improved ultrasound scanners, new three-dimensional (3D) modalities, and novel Anti-Müllerian hormone (AMH)-assays, the ultrasound criteria for polycystic ovarian morphology are under debate and the appropriate thresholds are often requested. Purpose To quantify the differences in estimates of ovarian volume and antral follicle count (AFC) from two-dimensional (2D) and 3D transvaginal ultrasound (TVUS) and magnetic resonance imaging (MRI). Material and Methods A cross-sectional study on 66 overweight women with polycystic ovary syndrome (PCOS) according to Rotterdam criteria. Ovarian volume and AFC were estimated from MRI, 2D TVUS, and 3D TVUS, and serum AMH levels were assessed. Bland-Altman statistics were used for comparison. Results Participants had a median age of 29 years (age range, 19-44 years) with a mean BMI of 32.7 kg/m 2 (SD 4.5). Ovarian volume from 2D TVUS was 1.48 mL (95% confidence interval [CI], 0.94-2.03; P ovarian volume and AFC as compared with 3D TVUS and MRI. Serum AMH correlated best with AFC from 3D TVUS, followed by MRI and 2D TVUS. The advantage of 3D TVUS might be of minor clinical importance when diagnosing PCOS, but useful when the actual AFC are of interest, e.g. in fertility counseling and research.

  7. Structural dataset for the PPARγ V290M mutant

    Directory of Open Access Journals (Sweden)

    Ana C. Puhl

    2016-06-01

    Full Text Available Loss-of-function mutation V290M in the ligand-binding domain of the peroxisome proliferator activated receptor γ (PPARγ is associated with a ligand resistance syndrome (PLRS, characterized by partial lipodystrophy and severe insulin resistance. In this data article we discuss an X-ray diffraction dataset that yielded the structure of PPARγ LBD V290M mutant refined at 2.3 Å resolution, that allowed building of 3D model of the receptor mutant with high confidence and revealed continuous well-defined electron density for the partial agonist diclofenac bound to hydrophobic pocket of the PPARγ. These structural data provide significant insights into molecular basis of PLRS caused by V290M mutation and are correlated with the receptor disability of rosiglitazone binding and increased affinity for corepressors. Furthermore, our structural evidence helps to explain clinical observations which point out to a failure to restore receptor function by the treatment with a full agonist of PPARγ, rosiglitazone.

  8. Analysis of chronic aortic regurgitation by 2D and 3D echocardiography and cardiac MRI

    DEFF Research Database (Denmark)

    Stoebe, Stephan; Metze, Michael; Jurisch, Daniel

    2018-01-01

    ) were assessed retrospectively by 2D, 3D echocardiography and cMRI in 55 chronic AR patients. Semi-quantitative parameters were assessed by 2D echocardiography. RESULTS: 22 (40%) patients had mild, 25 (46%) moderate and 8 (14%) severe AR. The quantitative volumetric approach was feasible using 2D, 3D...... echocardiography and cMRI, whereas the feasibility of semi-quantitative parameters varied considerably. LV volume (LVEDV, LVESV, SVtot) analyses showed good correlations between the different imaging modalities, although significantly increased LV volumes were assessed by cMRI. RVol was significantly different...... between 2D/3D echocardiography and 2D echocardiography/cMRI but was not significantly different between 3D echocardiography/cMRI. RF was not statistically different between 2D echocardiography/cMRI and 3D echocardiography/cMRI showing poor correlations (r

  9. Postoperative 3D spine reconstruction by navigating partitioning manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Kadoury, Samuel, E-mail: samuel.kadoury@polymtl.ca [Department of Computer and Software Engineering, Ecole Polytechnique Montreal, Montréal, Québec H3C 3A7 (Canada); Labelle, Hubert, E-mail: hubert.labelle@recherche-ste-justine.qc.ca; Parent, Stefan, E-mail: stefan.parent@umontreal.ca [CHU Sainte-Justine Hospital Research Center, Montréal, Québec H3T 1C5 (Canada)

    2016-03-15

    Purpose: The postoperative evaluation of scoliosis patients undergoing corrective treatment is an important task to assess the strategy of the spinal surgery. Using accurate 3D geometric models of the patient’s spine is essential to measure longitudinal changes in the patient’s anatomy. On the other hand, reconstructing the spine in 3D from postoperative radiographs is a challenging problem due to the presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. Methods: This paper describes the reconstruction problem by searching for the optimal model within a manifold space of articulated spines learned from a training dataset of pathological cases who underwent surgery. The manifold structure is implemented based on a multilevel manifold ensemble to structure the data, incorporating connections between nodes within a single manifold, in addition to connections between different multilevel manifolds, representing subregions with similar characteristics. Results: The reconstruction pipeline was evaluated on x-ray datasets from both preoperative patients and patients with spinal surgery. By comparing the method to ground-truth models, a 3D reconstruction accuracy of 2.24 ± 0.90 mm was obtained from 30 postoperative scoliotic patients, while handling patients with highly deformed spines. Conclusions: This paper illustrates how this manifold model can accurately identify similar spine models by navigating in the low-dimensional space, as well as computing nonlinear charts within local neighborhoods of the embedded space during the testing phase. This technique allows postoperative follow-ups of spinal surgery using personalized 3D spine models and assess surgical strategies for spinal deformities.

  10. Postoperative 3D spine reconstruction by navigating partitioning manifolds

    International Nuclear Information System (INIS)

    Kadoury, Samuel; Labelle, Hubert; Parent, Stefan

    2016-01-01

    Purpose: The postoperative evaluation of scoliosis patients undergoing corrective treatment is an important task to assess the strategy of the spinal surgery. Using accurate 3D geometric models of the patient’s spine is essential to measure longitudinal changes in the patient’s anatomy. On the other hand, reconstructing the spine in 3D from postoperative radiographs is a challenging problem due to the presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. Methods: This paper describes the reconstruction problem by searching for the optimal model within a manifold space of articulated spines learned from a training dataset of pathological cases who underwent surgery. The manifold structure is implemented based on a multilevel manifold ensemble to structure the data, incorporating connections between nodes within a single manifold, in addition to connections between different multilevel manifolds, representing subregions with similar characteristics. Results: The reconstruction pipeline was evaluated on x-ray datasets from both preoperative patients and patients with spinal surgery. By comparing the method to ground-truth models, a 3D reconstruction accuracy of 2.24 ± 0.90 mm was obtained from 30 postoperative scoliotic patients, while handling patients with highly deformed spines. Conclusions: This paper illustrates how this manifold model can accurately identify similar spine models by navigating in the low-dimensional space, as well as computing nonlinear charts within local neighborhoods of the embedded space during the testing phase. This technique allows postoperative follow-ups of spinal surgery using personalized 3D spine models and assess surgical strategies for spinal deformities

  11. Automatic registration method for multisensor datasets adopted for dimensional measurements on cutting tools

    International Nuclear Information System (INIS)

    Shaw, L; Mehari, F; Weckenmann, A; Ettl, S; Häusler, G

    2013-01-01

    Multisensor systems with optical 3D sensors are frequently employed to capture complete surface information by measuring workpieces from different views. During coarse and fine registration the resulting datasets are afterward transformed into one common coordinate system. Automatic fine registration methods are well established in dimensional metrology, whereas there is a deficit in automatic coarse registration methods. The advantage of a fully automatic registration procedure is twofold: it enables a fast and contact-free alignment and further a flexible application to datasets of any kind of optical 3D sensor. In this paper, an algorithm adapted for a robust automatic coarse registration is presented. The method was originally developed for the field of object reconstruction or localization. It is based on a segmentation of planes in the datasets to calculate the transformation parameters. The rotation is defined by the normals of three corresponding segmented planes of two overlapping datasets, while the translation is calculated via the intersection point of the segmented planes. First results have shown that the translation is strongly shape dependent: 3D data of objects with non-orthogonal planar flanks cannot be registered with the current method. In the novel supplement for the algorithm, the translation is additionally calculated via the distance between centroids of corresponding segmented planes, which results in more than one option for the transformation. A newly introduced measure considering the distance between the datasets after coarse registration evaluates the best possible transformation. Results of the robust automatic registration method are presented on the example of datasets taken from a cutting tool with a fringe-projection system and a focus-variation system. The successful application in dimensional metrology is proven with evaluations of shape parameters based on the registered datasets of a calibrated workpiece. (paper)

  12. A hybrid organic-inorganic perovskite dataset

    Science.gov (United States)

    Kim, Chiho; Huan, Tran Doan; Krishnan, Sridevi; Ramprasad, Rampi

    2017-05-01

    Hybrid organic-inorganic perovskites (HOIPs) have been attracting a great deal of attention due to their versatility of electronic properties and fabrication methods. We prepare a dataset of 1,346 HOIPs, which features 16 organic cations, 3 group-IV cations and 4 halide anions. Using a combination of an atomic structure search method and density functional theory calculations, the optimized structures, the bandgap, the dielectric constant, and the relative energies of the HOIPs are uniformly prepared and validated by comparing with relevant experimental and/or theoretical data. We make the dataset available at Dryad Digital Repository, NoMaD Repository, and Khazana Repository (http://khazana.uconn.edu/), hoping that it could be useful for future data-mining efforts that can explore possible structure-property relationships and phenomenological models. Progressive extension of the dataset is expected as new organic cations become appropriate within the HOIP framework, and as additional properties are calculated for the new compounds found.

  13. LOTT RANCH 3D PROJECT

    International Nuclear Information System (INIS)

    Larry Lawrence; Bruce Miller

    2004-01-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  14. Single-lens 3D digital image correlation system based on a bilateral telecentric lens and a bi-prism: validation and application.

    Science.gov (United States)

    Wu, Lifu; Zhu, Jianguo; Xie, Huimin

    2015-09-10

    By using the principle of stereovision, 3D digital image correlation (3D-DIC) can determine the 3D morphology and deformation of a target and has been widely used in experimental mechanics as a noncontact 3D measurement technique. To eliminate the limitations of the conventional 3D-DIC system, this study proposes a calibration-free single-lens 3D-DIC system based on a bilateral telecentric lens and a bi-prism. The performance of the proposed system is verified by tests of rigid-body translation along the out-of-plane direction. As a comparison, the same rigid-body translations are measured using a single-entocentric-lens 3D-DIC system. The results show that the measurement accuracy of the proposed system is higher than that of the entocentric-lens-based one. As an application, the proposed system is used to measure the thermal linear expansion of a ceramic plate at elevated temperatures. The reasonable measurement results verify its applicability in deformation measurements, even in high-temperature environments.

  15. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    Directory of Open Access Journals (Sweden)

    Cemal Cagatay Bilgin

    Full Text Available BioSig3D is a computational platform for high-content screening of three-dimensional (3D cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i morphogenesis of a panel of human mammary epithelial cell lines (HMEC, and (ii heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation.

  16. Correlation between serum 25 hydroxy vitamin D3 and laboratory risk markers of cardiovascular diseases in type 2 diabetic patients

    International Nuclear Information System (INIS)

    Bonakdaran, Shokoufeh; Varasteh, AbdolReza

    2009-01-01

    To determine the association between vitamin D deficiency and cardiovascular risk markers among diabetic patients. This was a cross-sectional study conducted in Ghaem Hospital, Mashhad, Iran, from December 2007 to March 2008 in 119 type 2 diabetic patients. Coronary, cerebrovascular, and peripheral vascular diseases were confirmed. Blood biochemical parameters including laboratory risk markers of cardiovascular disease were determined. Serum 25 hydoxy (OH) D was measured during winter. The correlation between vitamin D deficiency and cardiovascular prevalence, and also laboratory variables was determined. The mean age of patients was 55.3 +/- 11.2 years. The mean 25(OH) D concentration was 32.4 +/- 21.6ng/ml. The prevalence of hypovitaminous D was 26.1% among the diabetic patients. The difference with the control group was not significant (p=0.12). Overall, 36 (30.3%) patients were positive for coronary vascular disease (CVD). The correlation between hypovitaminous D and CVD was not significant (p=0.11). Patients with vitamin D deficiency had significant differences in body mass index (p=0.003), metabolic syndrome (p=0.05), high sensitive C-reactive protein (p=0.009), microalbuminuria (p=0.04), and glumerular filtration rate (p=0.02), compared to patients with sufficient vitamin D. The fasting blood sugar, glycosylated hemoglobin, lipid profiles, homocysteine, uric acid, and insulin resistance were not related to vitamin D deficiency. There is an association between hypovitaminous D and inflammatory markers that contributed to CVD, so vitamin D may be important in maintaining cardiovascular health. (author)

  17. Comparison of 3D TOF-MRA and 3D CE-MRA at 3 T for imaging of intracranial aneurysms

    International Nuclear Information System (INIS)

    Cirillo, Mario; Scomazzoni, Francesco; Cirillo, Luigi; Cadioli, Marcello; Simionato, Franco; Iadanza, Antonella; Kirchin, Miles; Righi, Claudio; Anzalone, Nicoletta

    2013-01-01

    Purpose: To compare 3 T elliptical-centric CE MRA with 3 T TOF MRA for the detection and characterization of unruptured intracranial aneurysms (UIAs), by using digital subtracted angiography (DSA) as reference. Materials and methods: Twenty-nine patients (12 male, 17 female; mean age: 62 years) with 41 aneurysms (34 saccular, 7 fusiform; mean diameter: 8.85 mm [range 2.0–26.4 mm]) were evaluated with MRA at 3 T each underwent 3D TOF-MRA examination without contrast and then a 3D contrast-enhanced (CE-MRA) examination with 0.1 mmol/kg bodyweight gadobenate dimeglumine and k-space elliptic mapping (Contrast ENhanced Timing Robust Angiography [CENTRA]). Both TOF and CE-MRA images were used to evaluate morphologic features that impact the risk of rupture and the selection of a treatment. Almost half (20/41) of UIAs were located in the internal carotid artery, 7 in the anterior communicating artery, 9 in the middle cerebral artery and 4 in the vertebro-basilar arterial system. All patients also underwent DSA before or after the MR examination. Results: The CE-MRA results were in all cases consistent with the DSA dataset. No differences were noted between 3D TOF-MRA and CE-MRA concerning the detection and location of the 41 aneurysms or visualization of the parental artery. Differences were apparent concerning the visualization of morphologic features, especially for large aneurysms (>13 mm). An irregular sac shape was demonstrated for 21 aneurysms on CE-MRA but only 13/21 aneurysms on 3D TOF-MRA. Likewise, CE-MRA permitted visualization of an aneurismal neck and calculation of the sac/neck ratio for all 34 aneurysms with a neck demonstrated at DSA. Conversely, a neck was visible for only 24/34 aneurysms at 3D TOF-MRA. 3D CE-MRA detected 15 aneurysms with branches originating from the sac and/or neck, whereas branches were recognized in only 12/15 aneurysms at 3D TOF-MRA. Conclusion: For evaluation of intracranial aneurysms at 3 T, 3D CE-MRA is superior to 3D TOF

  18. Options in virtual 3D, optical-impression-based planning of dental implants.

    Science.gov (United States)

    Reich, Sven; Kern, Thomas; Ritter, Lutz

    2014-01-01

    If a 3D radiograph, which in today's dentistry often consists of a CBCT dataset, is available for computerized implant planning, the 3D planning should also consider functional prosthetic aspects. In a conventional workflow, the CBCT is done with a specially produced radiopaque prosthetic setup that makes the desired prosthetic situation visible during virtual implant planning. If an exclusively digital workflow is chosen, intraoral digital impressions are taken. On these digital models, the desired prosthetic suprastructures are designed. The entire datasets are virtually superimposed by a "registration" process on the corresponding structures (teeth) in the CBCTs. Thus, both the osseous and prosthetic structures are visible in one single 3D application and make it possible to consider surgical and prosthetic aspects. After having determined the implant positions on the computer screen, a drilling template is designed digitally. According to this design (CAD), a template is printed or milled in CAM process. This template is the first physically extant product in the entire workflow. The article discusses the options and limitations of this workflow.

  19. A novel PFIB sample preparation protocol for correlative 3D X-ray CNT and FIB-TOF-SIMS tomography

    Energy Technology Data Exchange (ETDEWEB)

    Priebe, Agnieszka, E-mail: agnieszka.priebe@gmail.com [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Audoit, Guillaume; Barnes, Jean-Paul [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)

    2017-02-15

    We present a novel sample preparation method that allows correlative 3D X-ray Computed Nano-Tomography (CNT) and Focused Ion Beam Time-Of-Flight Secondary Ion Mass Spectrometry (FIB-TOF-SIMS) tomography to be performed on the same sample. In addition, our invention ensures that samples stay unmodified structurally and chemically between the subsequent experiments. The main principle is based on modifying the topography of the X-ray CNT experimental setup before FIB-TOF-SIMS measurements by incorporating a square washer around the sample. This affects the distribution of extraction field lines and therefore influences the trajectories of secondary ions that are now guided more efficiently towards the detector. As the result, secondary ion detection is significantly improved and higher, i.e. statistically better, signals are obtained. - Highlights: • Novel sample preparation for correlative 3D X-ray CNT and FIB-TOF-SIMS is presented. • Two experiments are conducted on exactly the same sample without any modifications. • Introduction of a square washer around the sample leads to increased ion detection.

  20. Online C-arm calibration using a marked guide wire for 3D reconstruction of pulmonary arteries

    Science.gov (United States)

    Vachon, Étienne; Miró, Joaquim; Duong, Luc

    2017-03-01

    3D reconstruction of vessels from 2D X-ray angiography is highly relevant to improve the visualization and the assessment of vascular structures such as pulmonary arteries by interventional cardiologists. However, to ensure a robust and accurate reconstruction, C-arm gantry parameters must be properly calibrated to provide clinically acceptable results. Calibration procedures often rely on calibration objects and complex protocol which is not adapted to an intervention context. In this study, a novel calibration algorithm for C-arm gantry is presented using the instrumentation such as catheters and guide wire. This ensures the availability of a minimum set of correspondences and implies minimal changes to the clinical workflow. The method was evaluated on simulated data and on retrospective patient datasets. Experimental results on simulated datasets demonstrate a calibration that allows a 3D reconstruction of the guide wire up to a geometric transformation. Experiments with patients datasets show a significant decrease of the retro projection error to 0.17 mm 2D RMS. Consequently, such procedure might contribute to identify any calibration drift during the intervention.

  1. Deep 3D convolution neural network for CT brain hemorrhage classification

    Science.gov (United States)

    Jnawali, Kamal; Arbabshirani, Mohammad R.; Rao, Navalgund; Patel, Alpen A.

    2018-02-01

    Intracranial hemorrhage is a critical conditional with the high mortality rate that is typically diagnosed based on head computer tomography (CT) images. Deep learning algorithms, in particular, convolution neural networks (CNN), are becoming the methodology of choice in medical image analysis for a variety of applications such as computer-aided diagnosis, and segmentation. In this study, we propose a fully automated deep learning framework which learns to detect brain hemorrhage based on cross sectional CT images. The dataset for this work consists of 40,367 3D head CT studies (over 1.5 million 2D images) acquired retrospectively over a decade from multiple radiology facilities at Geisinger Health System. The proposed algorithm first extracts features using 3D CNN and then detects brain hemorrhage using the logistic function as the last layer of the network. Finally, we created an ensemble of three different 3D CNN architectures to improve the classification accuracy. The area under the curve (AUC) of the receiver operator characteristic (ROC) curve of the ensemble of three architectures was 0.87. Their results are very promising considering the fact that the head CT studies were not controlled for slice thickness, scanner type, study protocol or any other settings. Moreover, the proposed algorithm reliably detected various types of hemorrhage within the skull. This work is one of the first applications of 3D CNN trained on a large dataset of cross sectional medical images for detection of a critical radiological condition

  2. Cup Implant Planning Based on 2-D/3-D Radiographic Pelvis Reconstruction-First Clinical Results.

    Science.gov (United States)

    Schumann, Steffen; Sato, Yoshinobu; Nakanishi, Yuki; Yokota, Futoshi; Takao, Masaki; Sugano, Nobuhiko; Zheng, Guoyan

    2015-11-01

    In the following, we will present a newly developed X-ray calibration phantom and its integration for 2-D/3-D pelvis reconstruction and subsequent automatic cup planning. Two different planning strategies were applied and evaluated with clinical data. Two different cup planning methods were investigated: The first planning strategy is based on a combined pelvis and cup statistical atlas. Thereby, the pelvis part of the combined atlas is matched to the reconstructed pelvis model, resulting in an optimized cup planning. The second planning strategy analyzes the morphology of the reconstructed pelvis model to determine the best fitting cup implant. The first planning strategy was compared to 3-D CT-based planning. Digitally reconstructed radiographs of THA patients with differently severe pathologies were used to evaluate the accuracy of predicting the cup size and position. Within a discrepancy of one cup size, the size was correctly identified in 100% of the cases for Crowe type I datasets and in 77.8% of the cases for Crowe type II, III, and IV datasets. The second planning strategy was analyzed with respect to the eventually implanted cup size. In seven patients, the estimated cup diameter was correct within one cup size, while the estimation for the remaining five patients differed by two cup sizes. While both planning strategies showed the same prediction rate with a discrepancy of one cup size (87.5%), the prediction of the exact cup size was increased for the statistical atlas-based strategy (56%) in contrast to the anatomically driven approach (37.5%). The proposed approach demonstrated the clinical validity of using 2-D/3-D reconstruction technique for cup planning.

  3. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal

    International Nuclear Information System (INIS)

    Vedam, S S; Keall, P J; Kini, V R; Mostafavi, H; Shukla, H P; Mohan, R

    2003-01-01

    Four-dimensional (4D) methods strive to achieve highly conformal radiotherapy, particularly for lung and breast tumours, in the presence of respiratory-induced motion of tumours and normal tissues. Four-dimensional radiotherapy accounts for respiratory motion during imaging, planning and radiation delivery, and requires a 4D CT image in which the internal anatomy motion as a function of the respiratory cycle can be quantified. The aims of our research were (a) to develop a method to acquire 4D CT images from a spiral CT scan using an external respiratory signal and (b) to examine the potential utility of 4D CT imaging. A commercially available respiratory motion monitoring system provided an 'external' tracking signal of the patient's breathing. Simultaneous recording of a TTL 'X-Ray ON' signal from the CT scanner indicated the start time of CT image acquisition, thus facilitating time stamping of all subsequent images. An over-sampled spiral CT scan was acquired using a pitch of 0.5 and scanner rotation time of 1.5 s. Each image from such a scan was sorted into an image bin that corresponded with the phase of the respiratory cycle in which the image was acquired. The complete set of such image bins accumulated over a respiratory cycle constitutes a 4D CT dataset. Four-dimensional CT datasets of a mechanical oscillator phantom and a patient undergoing lung radiotherapy were acquired. Motion artefacts were significantly reduced in the images in the 4D CT dataset compared to the three-dimensional (3D) images, for which respiratory motion was not accounted. Accounting for respiratory motion using 4D CT imaging is feasible and yields images with less distortion than 3D images. 4D images also contain respiratory motion information not available in a 3D CT image

  4. Tables and figure datasets

    Data.gov (United States)

    U.S. Environmental Protection Agency — Soil and air concentrations of asbestos in Sumas study. This dataset is associated with the following publication: Wroble, J., T. Frederick, A. Frame, and D....

  5. 3D automatic segmentation method for retinal optical coherence tomography volume data using boundary surface enhancement

    Directory of Open Access Journals (Sweden)

    Yankui Sun

    2016-03-01

    Full Text Available With the introduction of spectral-domain optical coherence tomography (SD-OCT, much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, there is a critical need for the development of three-dimensional (3D segmentation methods for processing these data. We present here a novel 3D automatic segmentation method for retinal OCT volume data. Briefly, to segment a boundary surface, two OCT volume datasets are obtained by using a 3D smoothing filter and a 3D differential filter. Their linear combination is then calculated to generate new volume data with an enhanced boundary surface, where pixel intensity, boundary position information, and intensity changes on both sides of the boundary surface are used simultaneously. Next, preliminary discrete boundary points are detected from the A-Scans of the volume data. Finally, surface smoothness constraints and a dynamic threshold are applied to obtain a smoothed boundary surface by correcting a small number of error points. Our method can extract retinal layer boundary surfaces sequentially with a decreasing search region of volume data. We performed automatic segmentation on eight human OCT volume datasets acquired from a commercial Spectralis OCT system, where each volume of datasets contains 97 OCT B-Scan images with a resolution of 496×512 (each B-Scan comprising 512 A-Scans containing 496 pixels; experimental results show that this method can accurately segment seven layer boundary surfaces in normal as well as some abnormal eyes.

  6. A 3D visualization of spatial relationship between geological structure and groundwater chemical profile around Iwate volcano, Japan: based on the ARCGIS 3D Analyst

    Science.gov (United States)

    Shibahara, A.; Ohwada, M.; Itoh, J.; Kazahaya, K.; Tsukamoto, H.; Takahashi, M.; Morikawa, N.; Takahashi, H.; Yasuhara, M.; Inamura, A.; Oyama, Y.

    2009-12-01

    We established 3D geological and hydrological model around Iwate volcano to visualize 3D relationships between subsurface structure and groundwater profile. Iwate volcano is a typical polygenetic volcano located in NE Japan, and its body is composed of two stratovolcanoes which have experienced sector collapses several times. Because of this complex structure, groundwater flow around Iwate volcano is strongly restricted by subsurface construction. For example, Kazahaya and Yasuhara (1999) clarified that shallow groundwater in north and east flanks of Iwate volcano are recharged at the mountaintop, and these flow systems are restricted in north and east area because of the structure of younger volcanic body collapse. In addition, Ohwada et al. (2006) found that these shallow groundwater in north and east flanks have relatively high concentration of major chemical components and high 3He/4He ratios. In this study, we succeeded to visualize the spatial relationship between subsurface structure and chemical profile of shallow and deep groundwater system using 3D model on the GIS. In the study region, a number of geological and hydrological datasets, such as boring log data and groundwater chemical profile, were reported. All these paper data are digitized and converted to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. We also inputted digital elevation model (DEM) around Iwate volcano issued by the Geographical Survey Institute of Japan, and digital geological maps issued by Geological Survey of Japan, AIST. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer.

  7. 3D-MICE: integration of cross-sectional and longitudinal imputation for multi-analyte longitudinal clinical data.

    Science.gov (United States)

    Luo, Yuan; Szolovits, Peter; Dighe, Anand S; Baron, Jason M

    2018-06-01

    A key challenge in clinical data mining is that most clinical datasets contain missing data. Since many commonly used machine learning algorithms require complete datasets (no missing data), clinical analytic approaches often entail an imputation procedure to "fill in" missing data. However, although most clinical datasets contain a temporal component, most commonly used imputation methods do not adequately accommodate longitudinal time-based data. We sought to develop a new imputation algorithm, 3-dimensional multiple imputation with chained equations (3D-MICE), that can perform accurate imputation of missing clinical time series data. We extracted clinical laboratory test results for 13 commonly measured analytes (clinical laboratory tests). We imputed missing test results for the 13 analytes using 3 imputation methods: multiple imputation with chained equations (MICE), Gaussian process (GP), and 3D-MICE. 3D-MICE utilizes both MICE and GP imputation to integrate cross-sectional and longitudinal information. To evaluate imputation method performance, we randomly masked selected test results and imputed these masked results alongside results missing from our original data. We compared predicted results to measured results for masked data points. 3D-MICE performed significantly better than MICE and GP-based imputation in a composite of all 13 analytes, predicting missing results with a normalized root-mean-square error of 0.342, compared to 0.373 for MICE alone and 0.358 for GP alone. 3D-MICE offers a novel and practical approach to imputing clinical laboratory time series data. 3D-MICE may provide an additional tool for use as a foundation in clinical predictive analytics and intelligent clinical decision support.

  8. Bringing 3D Printing to Geophysical Science Education

    Science.gov (United States)

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  9. 3D digital image correlation investigation of PLC effect in a new Ni-Co base superalloy

    Science.gov (United States)

    Gao, Y.; Fu, S. H.; Cheng, T.; Huo, X.; Zhang, Q. C.

    2013-06-01

    Repeated plastic instability accompanying serrated yielding in stress-strain curves and localization of deformation is observed during plastic deformation of many metallic alloys when tensile specimens are deformed under certain experimental conditions of temperature, strain rate, and pre-deformation. This phenomenon is referred to as the Portevin- Le Chatelier (PLC) effect. TMW alloy, a newly developed Ni-Co base superalloy for aircraft engine application, also exhibit PLC effect during tensile test at temperatures ranging from 300 ° to 600 °, which are also the temperature range for engine working. In this paper, a 3D digital image correlation (3D DIC) measurement system was established to observe the localization of deformation (PLC band) in a tensile test performed on TMW alloy specimen at temperature of 400 °. The 3D DIC system, with displacement measurement accuracy up to 0.01 pixels and strain measurement accuracy up to 100 μɛ, has a high performance in displacement field calculation with more than 10000 points every second on a 3.1G Hz CPU computer. The test result shows that, the PLC bands are inclined at an angle of about 60° to the tensile axis. Unlike tensile test performed on aluminums alloy, the widths of PLC bands of TMW alloy specimen, ranging from 4 mm to 4.5 mm, are much greater than the specimen thickness (0.25 mm).

  10. Fine reservoir structure modeling based upon 3D visualized stratigraphic correlation between horizontal wells: methodology and its application

    Science.gov (United States)

    Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu

    2017-12-01

    As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.

  11. 3D Volumetry and its Correlation Between Postoperative Gastric Volume and Excess Weight Loss After Sleeve Gastrectomy.

    Science.gov (United States)

    Hanssen, Andrés; Plotnikov, Sergio; Acosta, Geylor; Nuñez, José Tomas; Haddad, José; Rodriguez, Carmen; Petrucci, Claudia; Hanssen, Diego; Hanssen, Rafael

    2018-03-01

    The volume of the postoperative gastric remnant is a key factor in excess weight loss (EWL) after sleeve gastrectomy (SG). Traditional methods to estimate gastric volume (GV) after bariatric procedures are often inaccurate; usually conventional biplanar contrast studies are used. Thirty patients who underwent SG were followed prospectively and evaluated at 6 months after the surgical procedure, performing 3D CT reconstruction and gastric volumetry, to establish its relationship with EWL. The gastric remnant was distended with effervescent sodium bicarbonate given orally. Helical CT images were acquired and reconstructed; GV was estimated with the software of the CT device. The relationship between GV and EWL was analyzed. The study allowed estimating the GV in all patients. A dispersion diagram showed an inverse relationship between GV and %EWL. 55.5% of patients with GV ≤ 100 ml had %EWL 25-75% and 38.8% had an %EWL above 75% and patients with GV ≥ 100 ml had an %EWL under 25% (50% of patients) or between 25 and 75% (50% of this group). The Pearson's correlation coefficient was R = 6.62, with bilateral significance (p ≤ .01). The Chi-square result correlating GV and EWL showed a significance of .005 (p ≤ .01). The 3D reconstructions showed accurately the shape and anatomic details of the gastric remnant. 3D volumetry CT scans accurately estimate GV after SG. A significant relationship between GV and EWL 6 months after SG was established, seeming that GV ≥ 100 ml at 6 months of SG is associated with poor EWL.

  12. 3D Wavelet-Based Filter and Method

    Science.gov (United States)

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  13. Terrestrial laser scanning point clouds time series for the monitoring of slope movements: displacement measurement using image correlation and 3D feature tracking

    Science.gov (United States)

    Bornemann, Pierrick; Jean-Philippe, Malet; André, Stumpf; Anne, Puissant; Julien, Travelletti

    2016-04-01

    Dense multi-temporal point clouds acquired with terrestrial laser scanning (TLS) have proved useful for the study of structure and kinematics of slope movements. Most of the existing deformation analysis methods rely on the use of interpolated data. Approaches that use multiscale image correlation provide a precise and robust estimation of the observed movements; however, for non-rigid motion patterns, these methods tend to underestimate all the components of the movement. Further, for rugged surface topography, interpolated data introduce a bias and a loss of information in some local places where the point cloud information is not sufficiently dense. Those limits can be overcome by using deformation analysis exploiting directly the original 3D point clouds assuming some hypotheses on the deformation (e.g. the classic ICP algorithm requires an initial guess by the user of the expected displacement patterns). The objective of this work is therefore to propose a deformation analysis method applied to a series of 20 3D point clouds covering the period October 2007 - October 2015 at the Super-Sauze landslide (South East French Alps). The dense point clouds have been acquired with a terrestrial long-range Optech ILRIS-3D laser scanning device from the same base station. The time series are analyzed using two approaches: 1) a method of correlation of gradient images, and 2) a method of feature tracking in the raw 3D point clouds. The estimated surface displacements are then compared with GNSS surveys on reference targets. Preliminary results tend to show that the image correlation method provides a good estimation of the displacement fields at first order, but shows limitations such as the inability to track some deformation patterns, and the use of a perspective projection that does not maintain original angles and distances in the correlated images. Results obtained with 3D point clouds comparison algorithms (C2C, ICP, M3C2) bring additional information on the

  14. 3D QSAR Studies of DAMNI Analogs as Possible Non-nucleoside Reverse Transcriptase Inhibitors

    Directory of Open Access Journals (Sweden)

    S. Ganguly

    2008-01-01

    Full Text Available The non-nucleoside inhibitors of HIV-1-reverse transcriptase (NNRTIs are an important class of drugs employed in antiviral therapy. Recently, a novel family of NNRTIs commonly referred to as 1-[2-diarylmethoxy] ethyl 2-methyl-5-nitroimidazoles (DAMNI derivatives have been discovered. The 3D-QSAR studies on DAMNI derivatives as NNRTIs was performed by comparative molecular field analysis (CoMFA and comparative molecular similarity indices analysis (CoMSIA methods to determine the factors required for the activity of these compounds. The global minimum energy conformer of the template molecule 15, the most active molecule of the series, was obtained by simulated annealing method and used to build the structures of the molecules in the dataset. The combination of steric and electrostatic fields in CoMSIA gave the best results with cross-validated and conventional correlation coefficients of 0.654 and 0.928 respectively. The predictive ability of CoMFA and CoMSIA were determined using a test set of ten DAMNI derivatives giving predictive correlation coefficients of 0.92 and 0.98 respectively indicating good predictive power. Further, the robustness of the models was verified by bootstrapping analysis. The information obtained from CoMFA and CoMSIA 3D contour maps may be of utility in the design of more potent DAMNI analogs as NNRTIs in future.

  15. Analysis of chronic aortic regurgitation by 2D and 3D echocardiography and cardiac MRI

    Science.gov (United States)

    Stoebe, Stephan; Metze, Michael; Jurisch, Daniel; Tayal, Bhupendar; Solty, Kilian; Laufs, Ulrich; Pfeiffer, Dietrich; Hagendorff, Andreas

    2018-01-01

    Purpose The study compares the feasibility of the quantitative volumetric and semi-quantitative approach for quantification of chronic aortic regurgitation (AR) using different imaging modalities. Methods Left ventricular (LV) volumes, regurgitant volumes (RVol) and regurgitant fractions (RF) were assessed retrospectively by 2D, 3D echocardiography and cMRI in 55 chronic AR patients. Semi-quantitative parameters were assessed by 2D echocardiography. Results 22 (40%) patients had mild, 25 (46%) moderate and 8 (14%) severe AR. The quantitative volumetric approach was feasible using 2D, 3D echocardiography and cMRI, whereas the feasibility of semi-quantitative parameters varied considerably. LV volume (LVEDV, LVESV, SVtot) analyses showed good correlations between the different imaging modalities, although significantly increased LV volumes were assessed by cMRI. RVol was significantly different between 2D/3D echocardiography and 2D echocardiography/cMRI but was not significantly different between 3D echocardiography/cMRI. RF was not statistically different between 2D echocardiography/cMRI and 3D echocardiography/cMRI showing poor correlations (r echocardiography and 2D echocardiography/cMRI and good agreement was observed between 3D echocardiography/cMRI. Conclusion Semi-quantitative parameters are difficult to determine by 2D echocardiography in clinical routine. The quantitative volumetric RF assessment seems to be feasible and can be discussed as an alternative approach in chronic AR. However, RVol and RF did not correlate well between the different imaging modalities. The best agreement for grading of AR severity by RF was observed between 3D echocardiography and cMRI. LV volumes can be verified by different approaches and different imaging modalities. PMID:29519957

  16. 3D Human cartilage surface characterization by optical coherence tomography

    International Nuclear Information System (INIS)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Jahr, Holger; Nebelung, Sven; Truhn, Daniel; Pufe, Thomas

    2015-01-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  17. Weighted f-values, A-values, and line strengths for the E1 transitions among 3d6, 3d54s, and 3d54p levels of Fe III

    International Nuclear Information System (INIS)

    Deb, Narayan C.; Hibbert, Alan

    2009-01-01

    Weighted oscillator strengths, weighted radiative rates, and line strengths for all the E1 transitions between 285 fine-structure levels belonging to the 3d 6 , 3d 5 4s, and 3d 5 4p configurations of Fe III are presented, in ascending order of wavelength. Calculations have been undertaken using the general configuration interaction (CI) code CIV3. The large configuration set is constructed by allowing single and double replacements from any of 3d 6 , 3d 5 4s, 3d 5 4p, and 3d 5 4d configurations to nl orbitals with n≤5,l≤3 as well as 6p. Additional selective promotions from 3s and 3p subshells are also included in the CI expansions to incorporate the important correlation effects in the n=3 shell. Results of some strong transitions between levels of 3d 6 , 3d 5 4s, and 3d 5 4p configurations are also presented and compared with other available calculations. It is found that large disagreements occur in many transitions among the existing calculations

  18. 3D DIGITAL CADASTRE JOURNEY IN VICTORIA, AUSTRALIA

    Directory of Open Access Journals (Sweden)

    D. Shojaei

    2017-10-01

    Full Text Available Land development processes today have an increasing demand to access three-dimensional (3D spatial information. Complex land development may need to have a 3D model and require some functions which are only possible using 3D data. Accordingly, the Intergovernmental Committee on Surveying and Mapping (ICSM, as a national body in Australia provides leadership, coordination and standards for surveying, mapping and national datasets has developed the Cadastre 2034 strategy in 2014. This strategy has a vision to develop a cadastral system that enables people to readily and confidently identify the location and extent of all rights, restrictions and responsibilities related to land and real property. In 2014, the land authority in the state of Victoria, Australia, namely Land Use Victoria (LUV, has entered the challenging area of designing and implementing a 3D digital cadastre focused on providing more efficient and effective services to the land and property industry. LUV has been following the ICSM 2034 strategy which requires developing various policies, standards, infrastructures, and tools. Over the past three years, LUV has mainly focused on investigating the technical aspect of a 3D digital cadastre. This paper provides an overview of the 3D digital cadastre investigation progress in Victoria and discusses the challenges that the team faced during this journey. It also addresses the future path to develop an integrated 3D digital cadastre in Victoria.

  19. Effortless assignment with 4D covariance sequential correlation maps.

    Science.gov (United States)

    Harden, Bradley J; Mishra, Subrata H; Frueh, Dominique P

    2015-11-01

    Traditional Nuclear Magnetic Resonance (NMR) assignment procedures for proteins rely on preliminary peak-picking to identify and label NMR signals. However, such an approach has severe limitations when signals are erroneously labeled or completely neglected. The consequences are especially grave for proteins with substantial peak overlap, and mistakes can often thwart entire projects. To overcome these limitations, we previously introduced an assignment technique that bypasses traditional pick peaking altogether. Covariance Sequential Correlation Maps (COSCOMs) transform the indirect connectivity information provided by multiple 3D backbone spectra into direct (H, N) to (H, N) correlations. Here, we present an updated method that utilizes a single four-dimensional spectrum rather than a suite of three-dimensional spectra. We demonstrate the advantages of 4D-COSCOMs relative to their 3D counterparts. We introduce improvements accelerating their calculation. We discuss practical considerations affecting their quality. And finally we showcase their utility in the context of a 52 kDa cyclization domain from a non-ribosomal peptide synthetase. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A robust post-processing workflow for datasets with motion artifacts in diffusion kurtosis imaging.

    Science.gov (United States)

    Li, Xianjun; Yang, Jian; Gao, Jie; Luo, Xue; Zhou, Zhenyu; Hu, Yajie; Wu, Ed X; Wan, Mingxi

    2014-01-01

    The aim of this study was to develop a robust post-processing workflow for motion-corrupted datasets in diffusion kurtosis imaging (DKI). The proposed workflow consisted of brain extraction, rigid registration, distortion correction, artifacts rejection, spatial smoothing and tensor estimation. Rigid registration was utilized to correct misalignments. Motion artifacts were rejected by using local Pearson correlation coefficient (LPCC). The performance of LPCC in characterizing relative differences between artifacts and artifact-free images was compared with that of the conventional correlation coefficient in 10 randomly selected DKI datasets. The influence of rejected artifacts with information of gradient directions and b values for the parameter estimation was investigated by using mean square error (MSE). The variance of noise was used as the criterion for MSEs. The clinical practicality of the proposed workflow was evaluated by the image quality and measurements in regions of interest on 36 DKI datasets, including 18 artifact-free (18 pediatric subjects) and 18 motion-corrupted datasets (15 pediatric subjects and 3 essential tremor patients). The relative difference between artifacts and artifact-free images calculated by LPCC was larger than that of the conventional correlation coefficient (pworkflow improved the image quality and reduced the measurement biases significantly on motion-corrupted datasets (pworkflow was reliable to improve the image quality and the measurement precision of the derived parameters on motion-corrupted DKI datasets. The workflow provided an effective post-processing method for clinical applications of DKI in subjects with involuntary movements.

  1. A 3D analysis of spatial relationship between geological structure and groundwater profile around Kobe City, Japan: based on ARCGIS 3D Analyst.

    Science.gov (United States)

    Shibahara, A.; Tsukamoto, H.; Kazahaya, K.; Morikawa, N.; Takahashi, M.; Takahashi, H.; Yasuhara, M.; Ohwada, M.; Oyama, Y.; Inamura, A.; Handa, H.; Nakama, J.

    2008-12-01

    Kobe city is located on the northern side of Osaka sedimentary basin, Japan, containing 1,000-2,000 m thick Quaternary sediments. After the Hanshin-Awaji Earthquake (January 17, 1995), a number of geological and geophysical surveys were conducted in this region. Then high-temperature anomaly of groundwater accompanied with high Cl concentration was detected along fault systems in this area. In addition, dissolved He in groundwater showed nearly upper mantle-like 3He/4He ratio, although there were no Quaternary volcanic activities in this region. Some recent studies have assumed that these groundwater profiles are related with geological structure because some faults and joints can function as pathways for groundwater flow, and mantle-derived water can upwell through the fault system to the ground surface. To verify these hypotheses, we established 3D geological and hydrological model around Osaka sedimentary basin. Our primary goal is to analyze spatial relationship between geological structure and groundwater profile. In the study region, a number of geological and hydrological datasets, such as boring log data, seismic profiling data, groundwater chemical profile, were reported. We converted these datasets to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. Furthermore, we projected seismic profiling data into three dimensional space and calculated distance between faults and sampling points, using Visual Basic for Applications (VBA) scripts. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer. This research project has been conducted under the research contract with the Japan Nuclear Energy Safety Organization (JNES).

  2. ArtifactVis2: Managing real-time archaeological data in immersive 3D environments

    KAUST Repository

    Smith, Neil; Knabb, Kyle; Defanti, Connor; Weber, Philip P.; Schulze, Jü rgen P.; Prudhomme, Andrew; Kuester, Falko; Levy, Thomas E.; Defanti, Thomas A.

    2013-01-01

    In this paper, we present a stereoscopic research and training environment for archaeologists called ArtifactVis2. This application enables the management and visualization of diverse types of cultural datasets within a collaborative virtual 3D

  3. Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis

    NARCIS (Netherlands)

    Moraal, Bastiaan; Roosendaal, Stefan; Pouwels, Petra; Vrenken, Hugo; Schijndel, van Ronald; Meier, Dominik; Guttmann, Charles; Geurts, Jeroen; Barkhof, Frederik

    2008-01-01

    To describe signal and contrast properties of an isotropic, single-slab 3D dataset [double inversion- recovery (DIR), fluid-attenuated inversion recovery (FLAIR), T2, and T1-weighted magnetization prepared rapid acquisition gradient-echo (MPRAGE)] and to evaluate its performance in detecting

  4. Exploratory Climate Data Visualization and Analysis Using DV3D and UVCDAT

    Science.gov (United States)

    Maxwell, Thomas

    2012-01-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, NASA, in collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UVCOAT) consortium, is developing exploratory climate data analysis and visualization tools which provide data analysis capabilities for the Earth System Grid (ESG). This paper describes DV3D, a UV-COAT package that enables exploratory analysis of climate simulation and observation datasets. OV3D provides user-friendly interfaces for visualization and analysis of climate data at a level appropriate for scientists. It features workflow inte rfaces, interactive 40 data exploration, hyperwall and stereo visualization, automated provenance generation, and parallel task execution. DV30's integration with CDAT's climate data management system (COMS) and other climate data analysis tools provides a wide range of high performance climate data analysis operations. DV3D expands the scientists' toolbox by incorporating a suite of rich new exploratory visualization and analysis methods for addressing the complexity of climate datasets.

  5. How 3D immersive visualization is changing medical diagnostics

    Science.gov (United States)

    Koning, Anton H. J.

    2011-03-01

    Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.

  6. EarthServer - 3D Visualization on the Web

    Science.gov (United States)

    Wagner, Sebastian; Herzig, Pasquale; Bockholt, Ulrich; Jung, Yvonne; Behr, Johannes

    2013-04-01

    EarthServer (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, is a project to enable the management, access and exploration of massive, multi-dimensional datasets using Open GeoSpatial Consortium (OGC) query and processing language standards like WCS 2.0 and WCPS. To this end, a server/client architecture designed to handle Petabyte/Exabyte volumes of multi-dimensional data is being developed and deployed. As an important part of the EarthServer project, six Lighthouse Applications, major scientific data exploitation initiatives, are being established to make cross-domain, Earth Sciences related data repositories available in an open and unified manner, as service endpoints based on solutions and infrastructure developed within the project. Clients technology developed and deployed in EarthServer ranges from mobile and web clients to immersive virtual reality systems, all designed to interact with a physically and logically distributed server infrastructure using exclusively OGC standards. In this contribution, we would like to present our work on a web-based 3D visualization and interaction client for Earth Sciences data using only technology found in standard web browsers without requiring the user to install plugins or addons. Additionally, we are able to run the earth data visualization client on a wide range of different platforms with very different soft- and hardware requirements such as smart phones (e.g. iOS, Android), different desktop systems etc. High-quality, hardware-accelerated visualization of 3D and 4D content in standard web browsers can be realized now and we believe it will become more and more common to use this fast, lightweight and ubiquitous platform to provide insights into big datasets without requiring the user to set up a specialized client first. With that in mind, we will also point out some of the limitations we encountered using current web technologies. Underlying the EarthServer web client

  7. THERMAL TEXTURE GENERATION AND 3D MODEL RECONSTRUCTION USING SFM AND GAN

    Directory of Open Access Journals (Sweden)

    V. V. Kniaz

    2018-05-01

    Full Text Available Realistic 3D models with textures representing thermal emission of the object are widely used in such fields as dynamic scene analysis, autonomous driving, and video surveillance. Structure from Motion (SfM methods provide a robust approach for the generation of textured 3D models in the visible range. Still, automatic generation of 3D models from the infrared imagery is challenging due to an absence of the feature points and low sensor resolution. Recent advances in Generative Adversarial Networks (GAN have proved that they can perform complex image-to-image transformations such as a transformation of day to night and generation of imagery in a different spectral range. In this paper, we propose a novel method for generation of realistic 3D models with thermal textures using the SfM pipeline and GAN. The proposed method uses visible range images as an input. The images are processed in two ways. Firstly, they are used for point matching and dense point cloud generation. Secondly, the images are fed into a GAN that performs the transformation from the visible range to the thermal range. We evaluate the proposed method using real infrared imagery captured with a FLIR ONE PRO camera. We generated a dataset with 2000 pairs of real images captured in thermal and visible range. The dataset is used to train the GAN network and to generate 3D models using SfM. The evaluation of the generated 3D models and infrared textures proved that they are similar to the ground truth model in both thermal emissivity and geometrical shape.

  8. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    International Nuclear Information System (INIS)

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-01

    gradient-based similarity measure. Finally, if needed, they obtain the position information of the liver lesion using the 3D preoperative image to which the registered 2D preoperative slice belongs. Results: The proposed method was applied to 23 clinical datasets and quantitative evaluations were conducted. With the exception of one clinical dataset that included US images of extremely low quality, 22 datasets of various liver status were successfully applied in the evaluation. Experimental results showed that the registration error between the anatomical features of US and preoperative MR images is less than 3 mm on average. The lesion tracking error was also found to be less than 5 mm at maximum. Conclusions: A new system has been proposed for real-time registration between 2D US and successive multiple 3D preoperative MR/CT images of the liver and was applied for indirect lesion tracking for image-guided intervention. The system is fully automatic and robust even with images that had low quality due to patient status. Through visual examinations and quantitative evaluations, it was verified that the proposed system can provide high lesion tracking accuracy as well as high registration accuracy, at performance levels which were acceptable for various clinical applications

  9. Multi Voxel Descriptor for 3D Texture Retrieval

    Directory of Open Access Journals (Sweden)

    Hero Yudo Martono

    2016-08-01

    Full Text Available In this paper, we present a new feature descriptors  which exploit voxels for 3D textured retrieval system when models vary either by geometric shape or texture or both. First, we perform pose normalisation to modify arbitrary 3D models  in order to have same orientation. We then map the structure of 3D models into voxels. This purposes to make all the 3D models have the same dimensions. Through this voxels, we can capture information from a number of ways.  First, we build biner voxel histogram and color voxel histogram.  Second, we compute distance from centre voxel into other voxels and generate histogram. Then we also compute fourier transform in spectral space.  For capturing texture feature, we apply voxel tetra pattern. Finally, we merge all features by linear combination. For experiment, we use standard evaluation measures such as Nearest Neighbor (NN, First Tier (FT, Second Tier (ST, Average Dynamic Recall (ADR. Dataset in SHREC 2014  and its evaluation program is used to verify the proposed method. Experiment result show that the proposed method  is more accurate when compared with some methods of state-of-the-art.

  10. Robust estimation of the correlation matrix of longitudinal data

    KAUST Repository

    Maadooliat, Mehdi

    2011-09-23

    We propose a double-robust procedure for modeling the correlation matrix of a longitudinal dataset. It is based on an alternative Cholesky decomposition of the form Σ=DLL⊤D where D is a diagonal matrix proportional to the square roots of the diagonal entries of Σ and L is a unit lower-triangular matrix determining solely the correlation matrix. The first robustness is with respect to model misspecification for the innovation variances in D, and the second is robustness to outliers in the data. The latter is handled using heavy-tailed multivariate t-distributions with unknown degrees of freedom. We develop a Fisher scoring algorithm for computing the maximum likelihood estimator of the parameters when the nonredundant and unconstrained entries of (L,D) are modeled parsimoniously using covariates. We compare our results with those based on the modified Cholesky decomposition of the form LD2L⊤ using simulations and a real dataset. © 2011 Springer Science+Business Media, LLC.

  11. A Dataset for Visual Navigation with Neuromorphic Methods

    Directory of Open Access Journals (Sweden)

    Francisco eBarranco

    2016-02-01

    Full Text Available Standardized benchmarks in Computer Vision have greatly contributed to the advance of approaches to many problems in the field. If we want to enhance the visibility of event-driven vision and increase its impact, we will need benchmarks that allow comparison among different neuromorphic methods as well as comparison to Computer Vision conventional approaches. We present datasets to evaluate the accuracy of frame-free and frame-based approaches for tasks of visual navigation. Similar to conventional Computer Vision datasets, we provide synthetic and real scenes, with the synthetic data created with graphics packages, and the real data recorded using a mobile robotic platform carrying a dynamic and active pixel vision sensor (DAVIS and an RGB+Depth sensor. For both datasets the cameras move with a rigid motion in a static scene, and the data includes the images, events, optic flow, 3D camera motion, and the depth of the scene, along with calibration procedures. Finally, we also provide simulated event data generated synthetically from well-known frame-based optical flow datasets.

  12. Improved correlation of histological data with DCE MRI parameter maps by 3D reconstruction, reslicing and parameterization of the histological images

    International Nuclear Information System (INIS)

    Kiessling, Fabian; Le-Huu, Martin; Semmler, Wolfhard; Kunert, Tobias; Thorn, Matthias; Meinzer, Hans-Peter; Vosseler, Silvia; Fusenig, Norbert E.; Schmidt, Kerstin; Hoffend, Johannes

    2005-01-01

    Due to poor correlation of slice thickness and orientation, verification of radiological methods with histology is difficult. Thus, a procedure for three-dimensional reconstruction, reslicing and parameterization of histological data was developed, enabling a proper correlation with radiological data. Two different subcutaneous tumors were examined by MR microangiography and DCE-MRI, the latter being post-processed using a pharmacokinetic two-compartment model. Subsequently, tumors were serially sectioned and vessels stained with immunofluorescence markers. A ray-tracing algorithm performed three-dimensional visualization of the histological data, allowing virtually reslicing to thicker sections analogous to MRI slice geometry. Thick slices were processed as parameter maps color coding the marker density in the depth of the slice. Histological 3D reconstructions displayed the diffuse angioarchitecture of malignant tumors. Resliced histological images enabled specification of high enhancing areas seen on MR microangiography as large single vessels or vessel assemblies. In orthogonally reconstructed histological slices, single vessels were delineated. ROI analysis showed significant correlation between histological parameter maps of vessel density and MR parameter maps (r=0.83, P=0.05). The 3D approach to histology improves correlation of histological and radiological data due to proper matching of slice geometry. This method can be used with any histological stain, thus enabling a multivariable correlation of non-invasive data and histology. (orig.)

  13. 3D Aware Correction and Completion of Depth Maps in Piecewise Planar Scenes

    KAUST Repository

    Thabet, Ali Kassem

    2015-04-16

    RGB-D sensors are popular in the computer vision community, especially for problems of scene understanding, semantic scene labeling, and segmentation. However, most of these methods depend on reliable input depth measurements, while discarding unreliable ones. This paper studies how reliable depth values can be used to correct the unreliable ones, and how to complete (or extend) the available depth data beyond the raw measurements of the sensor (i.e. infer depth at pixels with unknown depth values), given a prior model on the 3D scene. We consider piecewise planar environments in this paper, since many indoor scenes with man-made objects can be modeled as such. We propose a framework that uses the RGB-D sensor’s noise profile to adaptively and robustly fit plane segments (e.g. floor and ceiling) and iteratively complete the depth map, when possible. Depth completion is formulated as a discrete labeling problem (MRF) with hard constraints and solved efficiently using graph cuts. To regularize this problem, we exploit 3D and appearance cues that encourage pixels to take on depth values that will be compatible in 3D to the piecewise planar assumption. Extensive experiments, on a new large-scale and challenging dataset, show that our approach results in more accurate depth maps (with 20 % more depth values) than those recorded by the RGB-D sensor. Additional experiments on the NYUv2 dataset show that our method generates more 3D aware depth. These generated depth maps can also be used to improve the performance of a state-of-the-art RGB-D SLAM method.

  14. Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis

    NARCIS (Netherlands)

    Moraal, B.; Roosendaal, S.D.; Pouwels, P.J.W.; Vrenken, H.; van Schijndel, R.A.; Meier, D.S.; Guttmann, C.R.G.; Geurts, J.J.G.; Barkhof, F.

    2008-01-01

    To describe signal and contrast properties of an isotropic, single-slab 3D dataset [double inversion-recovery (DIR), fluid-attenuated inversion recovery (FLAIR), T2, and T1-weighted magnetization prepared rapid acquisition gradient-echo (MPRAGE)] and to evaluate its performance in detecting multiple

  15. 2D/3D Visual Tracker for Rover Mast

    Science.gov (United States)

    Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria

    2006-01-01

    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems

  16. Factor structure and dimensionality of the two depression scales in STAR*D using level 1 datasets

    DEFF Research Database (Denmark)

    Bech, P; Fava, M; Trivedi, M H

    2011-01-01

    the HAM-D(6) and IDS-C(6) were found to be unidimensional scales, i.e., their total scores are each a sufficient statistic for the measurement of depressive states. LIMITATIONS: STAR*D used only one medication in Level 1. CONCLUSIONS: The unidimensional HAM-D(6) and IDS-C(6) should be used when evaluating......BACKGROUND: The factor structure and dimensionality of the HAM-D(17) and the IDS-C(30) are as yet uncertain, because psychometric analyses of these scales have been performed without a clear separation between factor structure profile and dimensionality (total scores being a sufficient statistic......). METHODS: The first treatment step (Level 1) in the STAR*D study provided a dataset of 4041 outpatients with DSM-IV nonpsychotic major depression. The HAM-D(17) and IDS-C(30) were evaluated by principal component analysis (PCA) without rotation. Mokken analysis tested the unidimensionality of the IDS-C(6...

  17. Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D.

    Science.gov (United States)

    Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina

    2014-05-01

    A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent.

  18. 3D asthenopia in horizontal deviation.

    Science.gov (United States)

    Kim, Seung-Hyun; Suh, Young-Woo; Yun, Cheol-Min; Yoo, Eun-Joo; Yeom, Ji-Hyun; Cho, Yoonae A

    2013-05-01

    This study was conducted to investigate the asthenopic symptoms in patients with exotropia and esotropia while watching stereoscopic 3D (S3D) television (TV). A total 77 subjects who more than 9 years of age were enrolled in this study. We divided them into three groups; Thirty-four patients with exodeviation (Exo group), 11 patients with esodeviation (Eso group) and 32 volunteers with normal binocular vision (control group). The S3D images were shown to all patients with S3D high-definition TV for a period of 20 min. Best corrected visual acuity, refractive errors, angle of strabismus, stereopsis test and history of strabismus surgery, were evaluated. After watching S3D TV for 20 min, a survey of subjective symptoms was conducted with a questionnaire to evaluate the degree of S3D perception and asthenopic symptoms such as headache, dizziness and ocular fatigue while watching 3D TV. The mean amounts of deviation in the Exo group and Eso group were 11.2 PD and 7.73PD, respectively. Mean stereoacuity was 102.7 arc sec in the the Exo group and 1389.1 arc sec in the Eso group. In the control group, it was 41.9 arc sec. Twenty-nine patients in the Exo group showed excellent stereopsis (≤60 arc sec at near), but all 11 subjects of the Eso group showed 140 arc sec or worse and showed more decreased 3D perception than the Exo and the control group (p Kruskal-Wallis test). The Exo group reported more eye fatigue (p Kruskal-Wallis test) than the Eso and the control group. However, the scores of ocular fatigue in the patients who had undergone corrective surgery were less than in the patients who had not in the Exo group (p Kruskal-Wallis test) and the amount of exodeviation was not correlated with the asthenopic symptoms (dizziness, r = 0.034, p = 0.33; headache, r = 0.320, p = 0.119; eye fatigue, r = 0.135, p = 0.519, Spearman rank correlation test, respectively). Symptoms of 3D asthenopia were related to the presence of exodeviation but not to esodeviation. This may

  19. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dibildox, Gerardo, E-mail: g.dibildox@erasmusmc.nl; Baka, Nora; Walsum, Theo van [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Punt, Mark; Aben, Jean-Paul [Pie Medical Imaging, 6227 AJ Maastricht (Netherlands); Schultz, Carl [Department of Cardiology, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Niessen, Wiro [Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands and Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands)

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  20. 3D DOCUMENTATION OF 40 KILOMETERS OF HISTORICAL PORTICOES – THE CHALLENGE

    Directory of Open Access Journals (Sweden)

    F. Remondino

    2016-06-01

    Full Text Available In the last years the image-based pipeline for 3D reconstruction purposes has received large interest leading to fully automated methodologies able to process large image datasets and deliver 3D products with a level of detail and precision variable according to the applications. Different open issues still exist, in particular when dealing with the 3D surveying and modeling of large and complex scenarios, like historical porticoes. The paper presents an evaluation of various surveying methods for the geometric documentation of ca 40km of historical porticoes in Bologna (Italy. Finally, terrestrial photogrammetry was chosen as the most flexible and productive technique in order to deliver 3D results in form of colored point clouds or textured 3D meshes accessible on the web. The presented digital products are a complementary material for the final candidature of the porticoes as UNESCO WHS.

  1. 3D CISS, 3D MP-PAGE and 2D TSE for MRI prior to Cochlear implantation

    International Nuclear Information System (INIS)

    Seitz, J.; Held, P.; Voelk, M.; Lenhart, M.; Strotzer, M.; Waldeck, A.

    2000-01-01

    Purpose: The aim of this study was to determine the presurgical predictive value of high resolution MRI in patients scheduled for chochlear implantation. Method and material: The presurgical MRI (3D CISS, 3D MP-RAGE with and without i.v. contrast medium, 2D TSE) findings of 54 patients and the intraoperative situation reported by the surgeon were compared retrospectively. The surgical and functional success of the cochlear implantation was evaluated. Results: We found a high degree of correlation between MRI and intraoperative findings concerning the patency of the whole cochlea and anomalies as well as in the diagnosis of pathology of the cochlear, vestibular and facial nerves and in anomalies of the internal auditory canal. However, in four out of 54 patients there was a false negative prediction regarding the patency of the cochlea. The sensitivity was 50% (4/8), the specificity 100% (46/46). Concerning the surgical success the accuracy was 100%. In all patients MRI gave sufficient anatomical information to the surgeon concerning the jugular bulb and the facial nerve. Conclusion: A high-resolution MRI protocol consisting of coronal 2D T2w TSE, 3D T2*w transverse CISS; plain and contrast enhanced sagittal T1w 3D MP-RAGE is recommended for the evaluation of candidates scheduled for cochlear implantation. (orig.) [de

  2. Ricostruzione di una scena urbana 3D utilizzando VisualSfM.

    Directory of Open Access Journals (Sweden)

    Laura Inzerillo

    2013-10-01

    Full Text Available Le tecniche di computer vision oggi danno la possibilità di costruire in maniera rapida e automatica modelli 3D dettagliati a partire da dataset fotografici. La comunità accademica ha visto una crescente attenzione alla ricostruzione 3D a scala urbana. Tra i vari strumenti oggi a disposizione spicca VisualSfM sviluppato dall’università di Washingthon e Google. Si tratta di una Interfaccia grafica open source strutturata in algoritmi dedicati alla tecnica di Structure from Motion (SfM. VisualSfM utilizza un estrattore di features chiamato SIFTGPU e un algoritmo di Bundle Adjustment Multicore. Inoltre è possibile ottenere una nuvola di punti densa utilizzando gli algoritmi CMVS/PMVS2. La finalità di questo studio è di verificare l’accuratezza metrica delle ricostruzioni attraverso l’utilizzo integrato di VisualSfM e CMVS/PMVS2. L’approccio quindi è stato testato su diversi dataset di una certa entità strutturati da collezioni fotografiche ragionate. 

  3. Comparative 3D micro-CT and 2D histomorphometry analysis of dental implant osseointegration in the maxilla of minipigs.

    Science.gov (United States)

    Bissinger, Oliver; Probst, Florian Andreas; Wolff, Klaus-Dietrich; Jeschke, Anke; Weitz, Jochen; Deppe, Herbert; Kolk, Andreas

    2017-04-01

    The bone implant contact (BIC) has traditionally been evaluated with histological methods. Thereupon, strong correlations of two-dimensional (2D) BIC have been detected between μCT and destructive histology. However, due to the high intra-sample variability in BIC values, one histological slice is not sufficient to represent 3D BIC. Therefore, our aim has been to correlate the averaged values of 3-4 histological sections to 3D μCT. Fifty-four implants inserted into the maxilla of 14 minipigs were evaluated. Two different time points were selected to assess the 3D BIC (distance to implant: 2-5 voxels), an inner ring (6-30 voxels) and an outer ring (55-100 voxels) using μCT (voxel size: 10 μm) and to correlate the values to histomorphometry. Strong correlations (p implant, μCT values were higher compared with histomorphometry. Although 3-4 histological slices per implant seem to predict the 3D BIC, μCT might be advantageous because of its non-destructive 3D character. The healing time may not impact on the comparability. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Global Registration of 3D LiDAR Point Clouds Based on Scene Features: Application to Structured Environments

    Directory of Open Access Journals (Sweden)

    Julia Sanchez

    2017-09-01

    Full Text Available Acquiring 3D data with LiDAR systems involves scanning multiple scenes from different points of view. In actual systems, the ICP algorithm (Iterative Closest Point is commonly used to register the acquired point clouds together to form a unique one. However, this method faces local minima issues and often needs a coarse initial alignment to converge to the optimum. This paper develops a new method for registration adapted to indoor environments and based on structure priors of such scenes. Our method works without odometric data or physical targets. The rotation and translation of the rigid transformation are computed separately, using, respectively, the Gaussian image of the point clouds and a correlation of histograms. To evaluate our algorithm on challenging registration cases, two datasets were acquired and are available for comparison with other methods online. The evaluation of our algorithm on four datasets against six existing methods shows that the proposed method is more robust against sampling and scene complexity. Moreover, the time performances enable a real-time implementation.

  5. Facts and Misconceptions about 2D:4D, Social and Risk Preferences

    Science.gov (United States)

    Alonso, Judit; Di Paolo, Roberto; Ponti, Giovanni; Sartarelli, Marcello

    2018-01-01

    We study how the ratio between the length of the second and fourth digit (2D:4D) correlates with choices in social and risk preferences elicitation tasks by building a large dataset from five experimental projects with more than 800 subjects. Our results confirm the recent literature that downplays the link between 2D:4D and many domains of economic interest, such as social and risk preferences. As for the former, we find that social preferences are significantly lower when 2D:4D is above the median value only for subjects with low cognitive ability. As for the latter, we find that a high 2D:4D is not correlated with the frequency of subjects' risky choices. PMID:29487510

  6. Dataset of NRDA emission data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Emissions data from open air oil burns. This dataset is associated with the following publication: Gullett, B., J. Aurell, A. Holder, B. Mitchell, D. Greenwell, M....

  7. Gas Hydrate Characterization from a 3D Seismic Dataset in the Eastern Deepwater Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2017-10-26

    The presence of a gas hydrate petroleum system and seismic attributes derived from 3D seismic data are used for the identification and characterization of gas hydrate deposits in the deepwater eastern Gulf of Mexico. In the central deepwater Gulf of Mexico (GoM), logging while drilling (LWD) data provided insight to the amplitude response of gas hydrate saturation in sands, which could be used to characterize complex gas hydrate deposits in other sandy deposits. In this study, a large 3D seismic data set from equivalent and distal Plio-Pleistocene sandy channel deposits in the deepwater eastern Gulf of Mexico is screened for direct hydrocarbon indicators for gas hydrate saturated sands.

  8. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    Science.gov (United States)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  9. Comparison of 3D computer-aided with manual cerebral aneurysm measurements in different imaging modalities

    International Nuclear Information System (INIS)

    Groth, M.; Buhk, J.H.; Schoenfeld, M.; Goebell, E.; Fiehler, J.; Forkert, N.D.

    2013-01-01

    To compare intra- and inter-observer reliability of aneurysm measurements obtained by a 3D computer-aided technique with standard manual aneurysm measurements in different imaging modalities. A total of 21 patients with 29 cerebral aneurysms were studied. All patients underwent digital subtraction angiography (DSA), contrast-enhanced (CE-MRA) and time-of-flight magnetic resonance angiography (TOF-MRA). Aneurysm neck and depth diameters were manually measured by two observers in each modality. Additionally, semi-automatic computer-aided diameter measurements were performed using 3D vessel surface models derived from CE- (CE-com) and TOF-MRA (TOF-com) datasets. Bland-Altman analysis (BA) and intra-class correlation coefficient (ICC) were used to evaluate intra- and inter-observer agreement. BA revealed the narrowest relative limits of intra- and inter-observer agreement for aneurysm neck and depth diameters obtained by TOF-com (ranging between ±5.3 % and ±28.3 %) and CE-com (ranging between ±23.3 % and ±38.1 %). Direct measurements in DSA, TOF-MRA and CE-MRA showed considerably wider limits of agreement. The highest ICCs were observed for TOF-com and CE-com (ICC values, 0.92 or higher for intra- as well as inter-observer reliability). Computer-aided aneurysm measurement in 3D offers improved intra- and inter-observer reliability and a reproducible parameter extraction, which may be used in clinical routine and as objective surrogate end-points in clinical trials. (orig.)

  10. Refinements in the vibration frequencies of H3+ and D3+

    International Nuclear Information System (INIS)

    Carney, G.D.

    1980-01-01

    Refinements in vibration intervals of the order of 1 per cent are reported for H 3 + and D 3 + . These improved intervals result from the addition of polarization terms to the electronic wavefunction previously obtained with a complete configuration-interaction treatment of electron correlation using a 21 floating gaussian lobe basis. Twelve additional floating gaussian lobe orbitals were used to construct 78 additional configuration-interaction functions. Positions and exponents of these additional floating gaussian lobe orbitals were carefully chosen to allow for polarization of the correlated wavefunctions. Calculated vibrational state-averaged and observed geometries for H 3 + agree to within 0.01 A; refined fundamental frequencies are νsub(A) = 3220.48 and νsub(E) = 2545.99 cm -1 for H 3 + , and νsub(A) = 2332.94 and νsub(E) = 1848.12 cm -1 for D 3 + . Einstein coefficients for spontaneous emission of radiation from infrared active states of H 3 + and D 3 + are reported, and an alternative to the Carney-Porter method of vibration analysis is used to confirm the accuracy of their method for axial molecules such as H 3 + . (author)

  11. EEG datasets for motor imagery brain-computer interface.

    Science.gov (United States)

    Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan

    2017-07-01

    Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.

  12. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading

    Directory of Open Access Journals (Sweden)

    Freslier Marie

    2011-07-01

    Full Text Available Abstract Background Dynamic three-dimensional (3D deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better

  13. The D3 Middleware Architecture

    Science.gov (United States)

    Walton, Joan; Filman, Robert E.; Korsmeyer, David J.; Lee, Diana D.; Mak, Ron; Patel, Tarang

    2002-01-01

    DARWIN is a NASA developed, Internet-based system for enabling aerospace researchers to securely and remotely access and collaborate on the analysis of aerospace vehicle design data, primarily the results of wind-tunnel testing and numeric (e.g., computational fluid-dynamics) model executions. DARWIN captures, stores and indexes data; manages derived knowledge (such as visualizations across multiple datasets); and provides an environment for designers to collaborate in the analysis of test results. DARWIN is an interesting application because it supports high-volumes of data. integrates multiple modalities of data display (e.g., images and data visualizations), and provides non-trivial access control mechanisms. DARWIN enables collaboration by allowing not only sharing visualizations of data, but also commentary about and views of data. Here we provide an overview of the architecture of D3, the third generation of DARWIN. Earlier versions of DARWIN were characterized by browser-based interfaces and a hodge-podge of server technologies: CGI scripts, applets, PERL, and so forth. But browsers proved difficult to control, and a proliferation of computational mechanisms proved inefficient and difficult to maintain. D3 substitutes a pure-Java approach for that medley: A Java client communicates (though RMI over HTTPS) with a Java-based application server. Code on the server accesses information from JDBC databases, distributed LDAP security services, and a collaborative information system. D3 is a three tier-architecture, but unlike 'E-commerce' applications, the data usage pattern suggests different strategies than traditional Enterprise Java Beans - we need to move volumes of related data together, considerable processing happens on the client, and the 'business logic' on the server-side is primarily data integration and collaboration. With D3, we are extending DARWIN to handle other data domains and to be a distributed system, where a single login allows a user

  14. Comparison of 2-D and 3-D estimates of placental volume in early pregnancy.

    Science.gov (United States)

    Aye, Christina Y L; Stevenson, Gordon N; Impey, Lawrence; Collins, Sally L

    2015-03-01

    Ultrasound estimation of placental volume (PlaV) between 11 and 13 wk has been proposed as part of a screening test for small-for-gestational-age babies. A semi-automated 3-D technique, validated against the gold standard of manual delineation, has been found at this stage of gestation to predict small-for-gestational-age at term. Recently, when used in the third trimester, an estimate obtained using a 2-D technique was found to correlate with placental weight at delivery. Given its greater simplicity, the 2-D technique might be more useful as part of an early screening test. We investigated if the two techniques produced similar results when used in the first trimester. The correlation between PlaV values calculated by the two different techniques was assessed in 139 first-trimester placentas. The agreement on PlaV and derived "standardized placental volume," a dimensionless index correcting for gestational age, was explored with the Mann-Whitney test and Bland-Altman plots. Placentas were categorized into five different shape subtypes, and a subgroup analysis was performed. Agreement was poor for both PlaV and standardized PlaV (p < 0.001 and p < 0.001), with the 2-D technique yielding larger estimates for both indices compared with the 3-D method. The mean difference in standardized PlaV values between the two methods was 0.007 (95% confidence interval: 0.006-0.009). The best agreement was found for regular rectangle-shaped placentas (p = 0.438 and p = 0.408). The poor correlation between the 2-D and 3-D techniques may result from the heterogeneity of placental morphology at this stage of gestation. In early gestation, the simpler 2-D estimates of PlaV do not correlate strongly with those obtained with the validated 3-D technique. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Octree-based indexing for 3D pointclouds within an Oracle Spatial DBMS

    Science.gov (United States)

    Schön, Bianca; Mosa, Abu Saleh Mohammad; Laefer, Debra F.; Bertolotto, Michela

    2013-02-01

    A large proportion of today's digital datasets have a spatial component. The effective storage and management of which poses particular challenges, especially with light detection and ranging (LiDAR), where datasets of even small geographic areas may contain several hundred million points. While in the last decade 2.5-dimensional data were prevalent, true 3-dimensional data are increasingly commonplace via LiDAR. They have gained particular popularity for urban applications including generation of city-scale maps, baseline data disaster management, and utility planning. Additionally, LiDAR is commonly used for flood plane identification, coastal-erosion tracking, and forest biomass mapping. Despite growing data availability, current spatial information systems do not provide suitable full support for the data's true 3D nature. Consequently, one system is needed to store the data and another for its processing, thereby necessitating format transformations. The work presented herein aims at a more cost-effective way for managing 3D LiDAR data that allows for storage and manipulation within a single system by enabling a new index within existing spatial database management technology. Implementation of an octree index for 3D LiDAR data atop Oracle Spatial 11g is presented, along with an evaluation showing up to an eight-fold improvement compared to the native Oracle R-tree index.

  16. Anisotropic Diffusion based Brain MRI Segmentation and 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    M. Arfan Jaffar

    2012-06-01

    Full Text Available In medical field visualization of the organs is very imperative for accurate diagnosis and treatment of any disease. Brain tumor diagnosis and surgery also required impressive 3D visualization of the brain to the radiologist. Detection and 3D reconstruction of brain tumors from MRI is a computationally time consuming and error-prone task. Proposed system detects and presents a 3D visualization model of the brain and tumor inside which greatly helps the radiologist to effectively diagnose and analyze the brain tumor. We proposed a multi-phase segmentation and visualization technique which overcomes the many problems of 3D volume segmentation methods like lake of fine details. In this system segmentation is done in three different phases which reduces the error chances. The system finds contours for skull, brain and tumor. These contours are stacked over and two novel methods are used to find the 3D visualization models. The results of these techniques, particularly of interpolation based, are impressive. Proposed system is tested against publically available data set [41] and MRI datasets available from MRI aamp; CT center Rawalpindi, Pakistan [42].

  17. A Gridded Daily Min/Max Temperature Dataset With 0.1° Resolution for the Yangtze River Valley and its Error Estimation

    Science.gov (United States)

    Xiong, Qiufen; Hu, Jianglin

    2013-05-01

    The minimum/maximum (Min/Max) temperature in the Yangtze River valley is decomposed into the climatic mean and anomaly component. A spatial interpolation is developed which combines the 3D thin-plate spline scheme for climatological mean and the 2D Barnes scheme for the anomaly component to create a daily Min/Max temperature dataset. The climatic mean field is obtained by the 3D thin-plate spline scheme because the relationship between the decreases in Min/Max temperature with elevation is robust and reliable on a long time-scale. The characteristics of the anomaly field tend to be related to elevation variation weakly, and the anomaly component is adequately analyzed by the 2D Barnes procedure, which is computationally efficient and readily tunable. With this hybridized interpolation method, a daily Min/Max temperature dataset that covers the domain from 99°E to 123°E and from 24°N to 36°N with 0.1° longitudinal and latitudinal resolution is obtained by utilizing daily Min/Max temperature data from three kinds of station observations, which are national reference climatological stations, the basic meteorological observing stations and the ordinary meteorological observing stations in 15 provinces and municipalities in the Yangtze River valley from 1971 to 2005. The error estimation of the gridded dataset is assessed by examining cross-validation statistics. The results show that the statistics of daily Min/Max temperature interpolation not only have high correlation coefficient (0.99) and interpolation efficiency (0.98), but also the mean bias error is 0.00 °C. For the maximum temperature, the root mean square error is 1.1 °C and the mean absolute error is 0.85 °C. For the minimum temperature, the root mean square error is 0.89 °C and the mean absolute error is 0.67 °C. Thus, the new dataset provides the distribution of Min/Max temperature over the Yangtze River valley with realistic, successive gridded data with 0.1° × 0.1° spatial resolution and

  18. 3D visualization of geo-scientific data for research and development purposes

    International Nuclear Information System (INIS)

    Mangeot, A.; Tabani, P.; Yven, B.; Dewonck, S.; Napier, B.; Waston, C.J.; Baker, G.R.; Shaw, R.P.

    2012-01-01

    Document available in extended abstract form only. In recent years national geoscience organizations have increasingly utilized 3D model data as an output to the stakeholder community. Advances in both software and hardware have led to an increasing use of 3D depictions of geoscience data alongside the standard 2D data formats such as maps and GIS data. By characterizing geoscience data in 3D, knowledge transfer between geo-scientists and stakeholders is improved as the mindset and thought processes are communicated more effectively in a 3D model than in a 2D flat file format. 3D models allow the user to understand the conceptual basis of the 2D data and aids the decision making process at local, regional and national scales. In April 29 2009 a Memorandum of Understanding has been signed between BGS and Andra in order to provide an improved mechanism for technical cooperation and collaboration in the Earth sciences. A specific agreement was signed the 1 December 2009 to evaluate the capacity of a 3D software called GeoVisionary to represent the Underground research Laboratory and its environment. GeoVisionary is the result of collaboration between Virtalis and the British Geological Survey. Combining a powerful data engine with a virtual geological tool-kit enables geo-scientists to visualize, analyze and share large datasets seamlessly in an immersive, real time environment A typical GeoVisionary environment contains one or more the following: 3D terrain files, Aerial photography, Bitmap overlays of specialized data, Vector shapes and outlines, 3D object Models. The key benefits are: Continuously stream geometry and photography in real time, Visualise 2D GIS data in immersive 3D stereo, Diverse datasets in a single environment, 'Fly' to any part of the data in seconds, Infinitely scalable, Prepare and evaluate before you begin fieldwork, Enhance team-working and increased efficiency of field operations, Clearer communication of results. Now, the 3D model has been

  19. Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology.

    Science.gov (United States)

    Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter

    2015-12-01

    A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object's macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured.

  20. Accurate B-spline-based 3-D interpolation scheme for digital volume correlation

    Science.gov (United States)

    Ren, Maodong; Liang, Jin; Wei, Bin

    2016-12-01

    An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.

  1. Concise and Accessible Representations for Multidimensional Datasets: Introducing a Framework Based on the nD-EVM and Kohonen Networks

    Directory of Open Access Journals (Sweden)

    Ricardo Pérez-Aguila

    2015-01-01

    Full Text Available A new framework intended for representing and segmenting multidimensional datasets resulting in low spatial complexity requirements and with appropriate access to their contained information is described. Two steps are going to be taken in account. The first step is to specify (n-1D hypervoxelizations, n≥2, as Orthogonal Polytopes whose nth dimension corresponds to color intensity. Then, the nD representation is concisely expressed via the Extreme Vertices Model in the n-Dimensional Space (nD-EVM. Some examples are presented, which, under our methodology, have storing requirements minor than those demanded by their original hypervoxelizations. In the second step, 1-Dimensional Kohonen Networks (1D-KNs are applied in order to segment datasets taking in account their geometrical and topological properties providing a non-supervised way to compact even more the proposed n-Dimensional representations. The application of our framework shares compression ratios, for our set of study cases, in the range 5.6496 to 32.4311. Summarizing, the contribution combines the power of the nD-EVM and 1D-KNs by producing very concise datasets’ representations. We argue that the new representations also provide appropriate segmentations by introducing some error functions such that our 1D-KNs classifications are compared against classifications based only in color intensities. Along the work, main properties and algorithms behind the nD-EVM are introduced for the purpose of interrogating the final representations in such a way that it efficiently obtains useful geometrical and topological information.

  2. 3D movement correction of CT brain perfusion image data of patients with acute ischemic stroke

    International Nuclear Information System (INIS)

    Fahmi, Fahmi; Marquering, Henk A.; Streekstra, Geert J.; Borst, Jordi; Beenen, Ludo F.M.; Majoie, Charles B.L.; Niesten, Joris M.; Velthuis, Birgitta K.; VanBavel, Ed

    2014-01-01

    Head movement during CT brain perfusion (CTP) acquisition can deteriorate the accuracy of CTP analysis. Most CTP software packages can only correct in-plane movement and are limited to small ranges. The purpose of this study is to validate a novel 3D correction method for head movement during CTP acquisition. Thirty-five CTP datasets that were classified as defective due to head movement were included in this study. All CTP time frames were registered with non-contrast CT data using a 3D rigid registration method. Location and appearance of ischemic area in summary maps derived from original and registered CTP datasets were qualitative compared with follow-up non-contrast CT. A quality score (QS) of 0 to 3 was used to express the degree of agreement. Furthermore, experts compared the quality of both summary maps and assigned the improvement score (IS) of the CTP analysis, ranging from -2 (much worse) to 2 (much better). Summary maps generated from corrected CTP significantly agreed better with appearance of infarct on follow-up CT with mean QS 2.3 versus mean QS 1.8 for summary maps from original CTP (P = 0.024). In comparison to original CTP data, correction resulted in a quality improvement with average IS 0.8: 17 % worsened (IS = -2, -1), 20 % remained unchanged (IS = 0), and 63 % improved (IS = +1, +2). The proposed 3D movement correction improves the summary map quality for CTP datasets with severe head movement. (orig.)

  3. Striatal D2/3 Binding Potential Values in Drug-Naïve First-Episode Schizophrenia Patients Correlate With Treatment Outcome

    DEFF Research Database (Denmark)

    Wulff, Sanne; Pinborg, Lars Hageman; Svarer, Claus

    2015-01-01

    potential (BP(p)) values and treatment outcome in a cohort of antipsychotic-naïve first-episode schizophrenia patients. Additionally, we wished to investigate associations between striatal dopamine D(2/3) receptor blockade and alterations of negative symptoms as well as functioning and subjective well......-being. Twenty-eight antipsychotic-naïve schizophrenia patients and 26 controls were included in the study. Single-photon emission computed tomography (SPECT) with [(123)I]iodobenzamide ([(123)I]-IBZM) was used to examine striatal D(2/3) receptor BP(p). Patients were examined before and after 6 weeks...... of treatment with the D(2/3) receptor antagonist amisulpride. There was a significant negative correlation between striatal D(2/3) receptor BP(p) at baseline and improvement of positive symptoms in the total group of patients. Comparing patients responding to treatment to nonresponders further showed...

  4. 3D landslide motion from a UAV-derived time-series of morphological attributes

    Science.gov (United States)

    Valasia Peppa, Maria; Mills, Jon Philip; Moore, Philip; Miller, Pauline; Chambers, Jon

    2017-04-01

    -series at 6 cm spatial resolution. DEMs were georeferenced into a common reference frame using control information from surveyed ground control points. The accuracy of the co-registration was estimated from planimetric and vertical RMS errors at independent checkpoints as 4 cm and 3 cm respectively. Afterwards, various morphological attributes, including shaded relief, curvature and openness were calculated from the UAV-derived DEMs. These attributes are indicative of the local structures of discernible geomorphological features (e.g. scarps, ridges, cracks, etc.), the motion of which can be monitored using the cross-correlation algorithm. Multiple experiments were conducted to test the performance of the cross-correlation function implemented on successive epochs. Two benchmark datasets were used for validation of the cross-correlation results: a) the motion vectors generated from the surveyed 3D position of installed markers; b) the calculated displacements of features, manually tracked from successive UAV-derived orthomosaics. Both benchmark datasets detected a maximum planimetric displacement of approximately 1 m at the foot of the landslide, with a dominant N-S orientation, between December 2014 and May 2016. Preliminary cross-correlation results illustrated a similar planimetric motion in both magnitude and orientation, however user intervention was required to filter spurious displacement vectors.

  5. Microstructural Assessment of Cancellous Bone Using 3D Microtomography

    International Nuclear Information System (INIS)

    Silva A M H; Alves J M; Da Silva O L; Silva Junior N F; Gazziro M; Pereira J C; Lasso P R O; Vaz C M P; Pereira C A M; Leiva T P; Guarniero R

    2011-01-01

    Cancellous bones have a porous microstructure and can be modeled as linear elastic solid, heterogeneous and anisotropic. Few studies regarding the morphometric analysis of trabecular bone samples with 3D microtomography have been published so far. The technique has spread worldwide for the characterization of trabecular structures in studies related to bone quality and its relationship with metabolic diseases bone like osteoporosis. In our study cancellous bone samples with cubic and cylindrical geometry were extracted from bovine femur were used to investigate the structural arrangement of bone through high resolution x-ray 3D microtomography (μCT). Four trabecular microstructural parameters (tissue volume, bone volume, bone volume fraction and tissue surface) were measured by 2D (stereological method) and 3D morphometric analysis using the software CTan Analyser supplied by the manufacturer of the microtomograph (SkyScan, model 1172, Belgium). The measurements were done in three main directions (superior-inferior, medial-lateral and anterior-posterior) to investigate the correlation between the 2D and 3D morphometric analysis. The results show a high correlation between the analysis. The x-ray 3D microtomography technique has a great potential for the assessment of bone quality.

  6. Automatic registration using implicit shape representations: applications in intraoperative 3D rotational angiography to preoperative CTA registration

    International Nuclear Information System (INIS)

    Subramanian, Navneeth; Pichon, Eric; Solomon, Stephen B.

    2009-01-01

    A solution for automatic registration of 3D rotational angiography (XA) to CT/MR of the liver. Targeted for use in treatment planning of liver interventions. A shape-based approach to registration is proposed that does not require specification of landmarks nor is it prone to local minima like purely intensity-based registration methods. Through the use of vessel characteristics, accurate registration is possible even in the presence of deformations induced by catheters and respiratory motion. Registration was performed on eight pairs of multiphase CT angiography and 3D rotational digital angiography datasets. Quantitative validation of the registration accuracy using vessel landmarks was performed on these datasets. The validation study showed that the method has a registration error of 9.41±4.13 mm. In addition, the computation time is well below 60 s making it attractive for clinical application. A new method for fully automatic 3DXA to CT/MR image registration was developed and found to be efficient and accurate using clinically realistic datasets. (orig.)

  7. Statistical 2D and 3D shape analysis using Non-Euclidean Metrics

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Hilger, Klaus Baggesen; Wrobel, Mark Christoph

    2002-01-01

    We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition. Furtherm......We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition....... Furthermore, we study metrics based on repated annotations of a training set. We define a way of assessing the correlation between landmarks contrary to landmark coordinates. Finally, we apply the proposed methods to a 2D data set consisting of outlines of lungs and a 3D/(4D) data set consisting of sets...

  8. A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals

    Directory of Open Access Journals (Sweden)

    Claudiane A. Fukuchi

    2018-04-01

    Full Text Available In a typical clinical gait analysis, the gait patterns of pathological individuals are commonly compared with the typically faster, comfortable pace of healthy subjects. However, due to potential bias related to gait speed, this comparison may not be valid. Publicly available gait datasets have failed to address this issue. Therefore, the goal of this study was to present a publicly available dataset of 42 healthy volunteers (24 young adults and 18 older adults who walked both overground and on a treadmill at a range of gait speeds. Their lower-extremity and pelvis kinematics were measured using a three-dimensional (3D motion-capture system. The external forces during both overground and treadmill walking were collected using force plates and an instrumented treadmill, respectively. The results include both raw and processed kinematic and kinetic data in different file formats: c3d and ASCII files. In addition, a metadata file is provided that contain demographic and anthropometric data and data related to each file in the dataset. All data are available at Figshare (DOI: 10.6084/m9.figshare.5722711. We foresee several applications of this public dataset, including to examine the influences of speed, age, and environment (overground vs. treadmill on gait biomechanics, to meet educational needs, and, with the inclusion of additional participants, to use as a normative dataset.

  9. An efficient and accurate 3D displacements tracking strategy for digital volume correlation

    KAUST Repository

    Pan, Bing; Wang, Bo; Wu, Dafang; Lubineau, Gilles

    2014-01-01

    inverse compositional Gauss-Newton (3D IC-GN) algorithm is introduced to replace existing forward additive algorithms for accurate sub-voxel displacement registration. Second, to ensure the 3D IC-GN algorithm that converges accurately and rapidly and avoid

  10. Rotational Invariance of the 2d Spin - Spin Correlation Function

    Science.gov (United States)

    Pinson, Haru

    2012-09-01

    At the critical temperature in the 2d Ising model on the square lattice, we establish the rotational invariance of the spin-spin correlation function using the asymptotics of the spin-spin correlation function along special directions (McCoy and Wu in the two dimensional Ising model. Harvard University Press, Cambridge, 1973) and the finite difference Hirota equation for which the spin-spin correlation function is shown to satisfy (Perk in Phys Lett A 79:3-5, 1980; Perk in Proceedings of III international symposium on selected topics in statistical mechanics, Dubna, August 22-26, 1984, JINR, vol II, pp 138-151, 1985).

  11. Electric-dipole allowed and intercombination transitions among the 3d5, 3d44s and 3d44p levels of Fe IV

    International Nuclear Information System (INIS)

    Deb, Narayan C.; Hibbert, Alan

    2010-01-01

    Oscillator strengths and transition rates for the electric-dipole (E1) allowed and intercombination transitions among 3d 5 , 3d 4 4s and 3d 4 4p levels of Fe IV are calculated using the CIV3 code of Hibbert and coworkers. Using the Hartree-Fock functions up to 3d orbitals we have also optimized 4s, 4p, 4d, 4f, 5s, 5p and 5d orbitals of which 4s and 4p are taken to be spectroscopic and the remaining orbitals represent corrections to the spectroscopic orbitals or the correlation effects. The J-dependent levels of 108 LS states are included in the calculation and the relativistic effects are accounted for via the Breit-Pauli operator. Configurations are chosen in two steps: (a) two promotions were allowed from the 3p, 3d, 4s and 4p subshells, using all the orbitals; and (b) selective promotions from the 3s subshell are included, but only to the 3s and 4s orbitals. The ab initio fine-structure levels are then fine tuned to reproduce observed energy levels as closely as possible, and the resulting wavefunctions are used to calculate oscillator strengths and transition rates for all possible E1 transitions. For many of these transitions, the present results show good agreement between the length and velocity forms while for some transitions, some large disagreements are found with other available results. The complete list of weighted oscillator strengths, transition rates, and line strengths for transitions among the fine structure levels of the three lowest configurations are presented in ascending order of wavelength.

  12. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2015-11-01

    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  13. Cross-Modality 2D-3D Face Recognition via Multiview Smooth Discriminant Analysis Based on ELM

    Directory of Open Access Journals (Sweden)

    Yi Jin

    2014-01-01

    Full Text Available In recent years, 3D face recognition has attracted increasing attention from worldwide researchers. Rather than homogeneous face data, more and more applications require flexible input face data nowadays. In this paper, we propose a new approach for cross-modality 2D-3D face recognition (FR, which is called Multiview Smooth Discriminant Analysis (MSDA based on Extreme Learning Machines (ELM. Adding the Laplacian penalty constrain for the multiview feature learning, the proposed MSDA is first proposed to extract the cross-modality 2D-3D face features. The MSDA aims at finding a multiview learning based common discriminative feature space and it can then fully utilize the underlying relationship of features from different views. To speed up the learning phase of the classifier, the recent popular algorithm named Extreme Learning Machine (ELM is adopted to train the single hidden layer feedforward neural networks (SLFNs. To evaluate the effectiveness of our proposed FR framework, experimental results on a benchmark face recognition dataset are presented. Simulations show that our new proposed method generally outperforms several recent approaches with a fast training speed.

  14. Characterization and reconstruction of 3D stochastic microstructures via supervised learning.

    Science.gov (United States)

    Bostanabad, R; Chen, W; Apley, D W

    2016-12-01

    The need for computational characterization and reconstruction of volumetric maps of stochastic microstructures for understanding the role of material structure in the processing-structure-property chain has been highlighted in the literature. Recently, a promising characterization and reconstruction approach has been developed where the essential idea is to convert the digitized microstructure image into an appropriate training dataset to learn the stochastic nature of the morphology by fitting a supervised learning model to the dataset. This compact model can subsequently be used to efficiently reconstruct as many statistically equivalent microstructure samples as desired. The goal of this paper is to build upon the developed approach in three major directions by: (1) extending the approach to characterize 3D stochastic microstructures and efficiently reconstruct 3D samples, (2) improving the performance of the approach by incorporating user-defined predictors into the supervised learning model, and (3) addressing potential computational issues by introducing a reduced model which can perform as effectively as the full model. We test the extended approach on three examples and show that the spatial dependencies, as evaluated via various measures, are well preserved in the reconstructed samples. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  15. Galectin-3 and cyclin D1 expression in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gołecki Marcin

    2011-10-01

    Full Text Available Abstract Introduction Lung cancer is a major cause of mortality and morbidity worldwide. Galectin-3 is multifunctional protein, which is involved in regulation of cell growth, cell adhesion, cell proliferation, angiogenesis and apoptosis. Cyclin D1 together with other cyclin plays an important role in cell cycle control. Cyclin D1 regulates the G1-to-S phase transition. The aim of this study was the evaluation of correlations between clinicopathological findings and cyclin D1 and galectin-3 expression in non-small cell lung cancer (NSCLC. We wanted also to analyze the prognostic value of cyclin D1 and galectin-3 expression. Moreover we tried to evaluate the correlations between galectin-3 and cyclin D1 expression in tumor tissue. Materials and methods We used the immunochemistry method to investigate the expression of galectin-3 and cyclin D1 in the paraffin-embedded tumor tissue of 47 patients (32 men and 15 women; mean age 59.34 ± 8.90. years. We used monoclonal antibodies to cyclin D1 (NCL-L-cyclin D1-GM clone P2D11F11 NOVO CASTRA and to galectin-3 (mouse monoclonal antibody NCL-GAL3 NOVO CASTRA. Results Galectin-3 expression was positive in 18 cases (38.29% and cyclin D1 in 39 (82.97%. We showed only weak trend, that galectin-3 expression was lower in patients without lymph node involvement (p = 0.07 and cyclin D1 expression was higher in this group (p = 0.080. We didn't reveal differences in cyclin D1 and galectin-3 expression in SCC and adenocarcinoma patients. We didn't demonstrated also differences in galectin-3 and cyclin D1 expression depending on disease stage. Moreover we analyzed the prognostic value of cyclin D1 expression and galectin-3 in all examinated patients and separately in SCC and in adenocarcinoma and in all stages, but we didn't find any statistical differences. We demonstrated that in galectin-3 positive tumors cyclin D1 expression was higher (96.55% vs 61.11%, Chi2 Yatesa 7.53, p = 0.0061 and we revealed negative

  16. Correlates of vitamin D in psychotic disorders: A comprehensive systematic review.

    Science.gov (United States)

    Adamson, James; Lally, John; Gaughran, Fiona; Krivoy, Amir; Allen, Lauren; Stubbs, Brendon

    2017-03-01

    People with psychosis have high prevalence of low vitamin D levels but the correlates and relevance of this deficiency are unclear. A systematic search of major databases from inception to 03/2016 was undertaken investigating correlates of vitamin D in people with psychosis. Data was summarised with a best evidence synthesis. Across 23 included studies (n=1770 psychosis, n=8171 controls) a mean difference in vitamin D levels between both groups of -11.14ng/ml±0.59 was found. 53 unique correlations between vitamin D and outcomes in people with psychosis were identified. The evidence base was broadly equivocal although season of blood sampling (67% of studies found a positive correlation with warmer seasons) and parathyroid hormone (100% of studies found a negative correlation) were associated with vitamin D levels. The most commonly non-correlated variables were: BMI (83% found no correlation), age (73%), gender (86%), smoking (100%), duration of illness (100%) and general assessment of functioning score (100%). In conclusion, whilst many unique correlates have been investigated, there is weak and inconclusive evidence regarding the consistency and meaning of the correlates of vitamin D levels in people with psychosis. Future longitudinal studies should consider the correlates of vitamin D in people with psychosis. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography

    Science.gov (United States)

    Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup

    2015-01-01

    Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D. PMID:26406896

  18. Rigid 3D-3D registration of TOF MRA integrating vessel segmentation for quantification of recurrence volumes after coiling cerebral aneurysm

    International Nuclear Information System (INIS)

    Saering, Dennis; Forkert, Nils Daniel; Fiehler, Jens; Ries, Thorsten

    2012-01-01

    A fast and reproducible quantification of the recurrence volume of coiled aneurysms is required to enable a more timely evaluation of new coils. This paper presents two registration schemes for the semi-automatic quantification of aneurysm recurrence volumes based on baseline and follow-up 3D MRA TOF datasets. The quantification of shape changes requires a previous definition of corresponding structures in both datasets. For this, two different rigid registration methods have been developed and evaluated. Besides a state-of-the-art rigid registration method, a second approach integrating vessel segmentations is presented. After registration, the aneurysm recurrence volume can be calculated based on the difference image. The computed volumes were compared to manually extracted volumes. An evaluation based on 20 TOF MRA datasets (baseline and follow-up) of ten patients showed that both registration schemes are generally capable of providing sufficient registration results. Regarding the quantification of aneurysm recurrence volumes, the results suggest that the second segmentation-based registration method yields better results, while a reduction of the computation and interaction time is achieved at the same time. The proposed registration scheme incorporating vessel segmentation enables an improved quantification of recurrence volumes of coiled aneurysms with reduced computation and interaction time. (orig.)

  19. Dataset associated with the paper Nanoscale correlation of iron biochemistry with amyloid plaque morphology in Alzheimer’s disease transgenic mouse cortex" to be published in "Cell Chemical Biology"

    OpenAIRE

    Telling, ND; Everett, J; Collingwood, JF; Dobson, J; van der Laan, G; Gallagher, JJ; Wang, J; Hitchcock, AP

    2017-01-01

    This dataset is composed of images used to construct figures in the paper, as well as text files containing the spectral data plotted in these figures. In addition, images and plots showing the cross-correlation data used to determine the correlation co-efficients are included.

  20. MRI Volume Fusion Based on 3D Shearlet Decompositions.

    Science.gov (United States)

    Duan, Chang; Wang, Shuai; Wang, Xue Gang; Huang, Qi Hong

    2014-01-01

    Nowadays many MRI scans can give 3D volume data with different contrasts, but the observers may want to view various contrasts in the same 3D volume. The conventional 2D medical fusion methods can only fuse the 3D volume data layer by layer, which may lead to the loss of interframe correlative information. In this paper, a novel 3D medical volume fusion method based on 3D band limited shearlet transform (3D BLST) is proposed. And this method is evaluated upon MRI T2* and quantitative susceptibility mapping data of 4 human brains. Both the perspective impression and the quality indices indicate that the proposed method has a better performance than conventional 2D wavelet, DT CWT, and 3D wavelet, DT CWT based fusion methods.

  1. MRI Volume Fusion Based on 3D Shearlet Decompositions

    Directory of Open Access Journals (Sweden)

    Chang Duan

    2014-01-01

    Full Text Available Nowadays many MRI scans can give 3D volume data with different contrasts, but the observers may want to view various contrasts in the same 3D volume. The conventional 2D medical fusion methods can only fuse the 3D volume data layer by layer, which may lead to the loss of interframe correlative information. In this paper, a novel 3D medical volume fusion method based on 3D band limited shearlet transform (3D BLST is proposed. And this method is evaluated upon MRI T2* and quantitative susceptibility mapping data of 4 human brains. Both the perspective impression and the quality indices indicate that the proposed method has a better performance than conventional 2D wavelet, DT CWT, and 3D wavelet, DT CWT based fusion methods.

  2. The IROC Houston Quality Assurance Program: Potential benefits of 3D dosimetry

    International Nuclear Information System (INIS)

    Followill, D S; Molineu, H A; Lafratta, R; Ibbott, G S

    2017-01-01

    The IROC Houston QA Center has provided QA core support for NCI clinical trials by ensuring that radiation doses delivered to trial patients are accurate and comparable between participating institutions. Within its QA program, IROC Houston uses anthropomorphic QA phantoms to credential sites. It is these phantoms that have the highest potential to benefit from the use of 3D dosimeters. Credentialing is performed to verify that institutions that are using advanced technologies to deliver complex treatment plans that conform to targets. This makes it increasingly difficult to assure the intended calculated dose is being delivered correctly using current techniques that are 2D-based. A 3D dosimeter such as PRESAGE® is able to provide a complete 3D measured dosimetry dataset with one treatment plan delivery. In our preliminary studies, the 3D dosimeters in our H and N and spine phantoms were found to be appropriate for remote dosimetry for relative dose measurements. To implement 3D dosimetry in IROC Houston’s phantoms, the benefit of this significant change to its current infrastructure would have to be assessed and further work would be needed before bringing 3D dosimeters into the phantom dosimetry program. (paper)

  3. 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study.

    Science.gov (United States)

    Dolz, Jose; Desrosiers, Christian; Ben Ayed, Ismail

    2018-04-15

    This study investigates a 3D and fully convolutional neural network (CNN) for subcortical brain structure segmentation in MRI. 3D CNN architectures have been generally avoided due to their computational and memory requirements during inference. We address the problem via small kernels, allowing deeper architectures. We further model both local and global context by embedding intermediate-layer outputs in the final prediction, which encourages consistency between features extracted at different scales and embeds fine-grained information directly in the segmentation process. Our model is efficiently trained end-to-end on a graphics processing unit (GPU), in a single stage, exploiting the dense inference capabilities of fully CNNs. We performed comprehensive experiments over two publicly available datasets. First, we demonstrate a state-of-the-art performance on the ISBR dataset. Then, we report a large-scale multi-site evaluation over 1112 unregistered subject datasets acquired from 17 different sites (ABIDE dataset), with ages ranging from 7 to 64 years, showing that our method is robust to various acquisition protocols, demographics and clinical factors. Our method yielded segmentations that are highly consistent with a standard atlas-based approach, while running in a fraction of the time needed by atlas-based methods and avoiding registration/normalization steps. This makes it convenient for massive multi-site neuroanatomical imaging studies. To the best of our knowledge, our work is the first to study subcortical structure segmentation on such large-scale and heterogeneous data. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Correlative two-photon and serial block face scanning electron microscopy in neuronal tissue using 3D near-infrared branding maps.

    Science.gov (United States)

    Lees, Robert M; Peddie, Christopher J; Collinson, Lucy M; Ashby, Michael C; Verkade, Paul

    2017-01-01

    Linking cellular structure and function has always been a key goal of microscopy, but obtaining high resolution spatial and temporal information from the same specimen is a fundamental challenge. Two-photon (2P) microscopy allows imaging deep inside intact tissue, bringing great insight into the structural and functional dynamics of cells in their physiological environment. At the nanoscale, the complex ultrastructure of a cell's environment in tissue can be reconstructed in three dimensions (3D) using serial block face scanning electron microscopy (SBF-SEM). This provides a snapshot of high resolution structural information pertaining to the shape, organization, and localization of multiple subcellular structures at the same time. The pairing of these two imaging modalities in the same specimen provides key information to relate cellular dynamics to the ultrastructural environment. Until recently, approaches to relocate a region of interest (ROI) in tissue from 2P microscopy for SBF-SEM have been inefficient or unreliable. However, near-infrared branding (NIRB) overcomes this by using the laser from a multiphoton microscope to create fiducial markers for accurate correlation of 2P and electron microscopy (EM) imaging volumes. The process is quick and can be user defined for each sample. Here, to increase the efficiency of ROI relocation, multiple NIRB marks are used in 3D to target ultramicrotomy. A workflow is described and discussed to obtain a data set for 3D correlated light and electron microscopy, using three different preparations of brain tissue as examples. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. 3D super-virtual refraction interferometry

    KAUST Repository

    Lu, Kai

    2014-08-05

    Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.

  6. Evaluation of the Oh, Dubois and IEM Backscatter Models Using a Large Dataset of SAR Data and Experimental Soil Measurements

    Directory of Open Access Journals (Sweden)

    Mohammad Choker

    2017-01-01

    Full Text Available The aim of this paper is to evaluate the most used radar backscattering models (Integral Equation Model “IEM”, Oh, Dubois, and Advanced Integral Equation Model “AIEM” using a wide dataset of SAR (Synthetic Aperture Radar data and experimental soil measurements. These forward models reproduce the radar backscattering coefficients ( σ 0 from soil surface characteristics (dielectric constant, roughness and SAR sensor parameters (radar wavelength, incidence angle, polarization. The analysis dataset is composed of AIRSAR, SIR-C, JERS-1, PALSAR-1, ESAR, ERS, RADARSAT, ASAR and TerraSAR-X data and in situ measurements (soil moisture and surface roughness. Results show that Oh model version developed in 1992 gives the best fitting of the backscattering coefficients in HH and VV polarizations with RMSE values of 2.6 dB and 2.4 dB, respectively. Simulations performed with the Dubois model show a poor correlation between real data and model simulations in HH polarization (RMSE = 4.0 dB and better correlation with real data in VV polarization (RMSE = 2.9 dB. The IEM and the AIEM simulate the backscattering coefficient with high RMSE when using a Gaussian correlation function. However, better simulations are performed with IEM and AIEM by using an exponential correlation function (slightly better fitting with AIEM than IEM. Good agreement was found between the radar data and the simulations using the calibrated version of the IEM modified by Baghdadi (IEM_B with bias less than 1.0 dB and RMSE less than 2.0 dB. These results confirm that, up to date, the IEM modified by Baghdadi (IEM_B is the most adequate to estimate soil moisture and roughness from SAR data.

  7. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Cai, W; Rottmann, J; Williams, C; Wagar, M; Berbeco, R; Lewis, J H; Mishra, P; Li, R; Ionascu, D

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. (paper)

  8. Therapeutic response assessment using 3D ultrasound for hepatic metastasis from colorectal cancer: Application of a personalized, 3D-printed tumor model using CT images.

    Directory of Open Access Journals (Sweden)

    Ye Ra Choi

    Full Text Available To evaluate accuracy and reliability of three-dimensional ultrasound (3D US for response evaluation of hepatic metastasis from colorectal cancer (CRC using a personalized 3D-printed tumor model.Twenty patients with liver metastasis from CRC who underwent baseline and after chemotherapy CT, were retrospectively included. Personalized 3D-printed tumor models using CT were fabricated. Two radiologists measured volume of each 3D printing model using 3D US. With CT as a reference, we compared difference between CT and US tumor volume. The response evaluation was based on Response Evaluation Criteria in Solid Tumors (RECIST criteria.3D US tumor volume showed no significant difference from CT volume (7.18 ± 5.44 mL, 8.31 ± 6.32 mL vs 7.42 ± 5.76 mL in CT, p>0.05. 3D US provided a high correlation coefficient with CT (r = 0.953, r = 0.97 as well as a high inter-observer intraclass correlation (0.978; 0.958-0.988. Regarding response, 3D US was in agreement with CT in 17 and 18 out of 20 patients for observer 1 and 2 with excellent agreement (κ = 0.961.3D US tumor volume using a personalized 3D-printed model is an accurate and reliable method for the response evaluation in comparison with CT tumor volume.

  9. 75 FR 54627 - ICLUS v1.3 User's Manual: ArcGIS Tools and Datasets for Modeling U.S. Housing Density Growth

    Science.gov (United States)

    2010-09-08

    ...'s guide titled, ``ICLUS v1.3 User's Manual: ArcGIS Tools and Datasets for Modeling U.S. Housing...: ``ICLUS v1.3 User's Manual: ArcGIS Tools and Datasets for Modeling U.S. Housing Density Growth'' and the... final document title, ``ICLUS v1.3 User's Manual: ArcGIS Tools and Datasets for Modeling U.S. Housing...

  10. 2D to 3D transition of polymeric carbon nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Chamorro-Posada, Pedro [Dpto. de Teoría de la Señal y Comunicaciones e IT, Universidad de Valladolid, ETSI Telecomunicación, Paseo Belén 15, 47011 Valladolid (Spain); Vázquez-Cabo, José [Dpto. de Teoría de la Señal y Comunicaciones, Universidad de Vigo, ETSI Telecomunicación, Lagoas Marcosende s/n, Vigo (Spain); Sánchez-Arévalo, Francisco M. [Instituto de Investigaciones en Materiales (IIM), Universidad Nacional Autónoma de México, Apdo. Postal 70–360, Cd. Universitaria, México D.F. 04510 (Mexico); Martín-Ramos, Pablo [Dpto. de Teoría de la Señal y Comunicaciones e IT, Universidad de Valladolid, ETSI Telecomunicación, Paseo Belén 15, 47011 Valladolid (Spain); Laboratorio de Materiales Avanzados (Advanced Materials Laboratory) ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Martín-Gil, Jesús; Navas-Gracia, Luis M. [Laboratorio de Materiales Avanzados (Advanced Materials Laboratory) ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Dante, Roberto C., E-mail: rcdante@yahoo.com [Laboratorio de Materiales Avanzados (Advanced Materials Laboratory) ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain)

    2014-11-15

    The transition from a prevalent turbostratic arrangement with low planar interactions (2D) to an array of polymeric carbon nitride nanosheets with stronger interplanar interactions (3D), occurring for samples treated above 650 °C, was detected by terahertz-time domain spectroscopy (THz-TDS). The simulated 3D material made of stacks of shifted quasi planar sheets composed of zigzagged polymer ribbons, delivered a XRD simulated pattern in relatively good agreement with the experimental one. The 2D to 3D transition was also supported by the simulation of THz-TDS spectra obtained from quantum chemistry calculations, in which the same broad bands around 2 THz and 1.5 THz were found for 2D and 3D arrays, respectively. This transition was also in accordance with the tightening of the interplanar distance probably due to an interplanar π bond contribution, as evidenced also by a broad absorption around 2.6 eV in the UV–vis spectrum, which appeared in the sample treated at 650 °C, and increased in the sample treated at 700 °C. The band gap was calculated for 1D and 2D cases. The value of 3.374 eV for the 2D case is, within the model accuracy and precision, in a relative good agreement with the value of 3.055 eV obtained from the experimental results. - Graphical abstract: 2D lattice mode vibrations and structural changes correlated with the so called “2D to 3D transition”. - Highlights: • A 2D to 3D transition has been detected for polymeric carbon nitride. • THz-TDS allowed us to discover and detect the 2D to 3D transition of polymeric carbon nitride. • We propose a structure for polymeric carbon nitride confirming it with THz-TDS.

  11. 2D to 3D transition of polymeric carbon nitride nanosheets

    International Nuclear Information System (INIS)

    Chamorro-Posada, Pedro; Vázquez-Cabo, José; Sánchez-Arévalo, Francisco M.; Martín-Ramos, Pablo; Martín-Gil, Jesús; Navas-Gracia, Luis M.; Dante, Roberto C.

    2014-01-01

    The transition from a prevalent turbostratic arrangement with low planar interactions (2D) to an array of polymeric carbon nitride nanosheets with stronger interplanar interactions (3D), occurring for samples treated above 650 °C, was detected by terahertz-time domain spectroscopy (THz-TDS). The simulated 3D material made of stacks of shifted quasi planar sheets composed of zigzagged polymer ribbons, delivered a XRD simulated pattern in relatively good agreement with the experimental one. The 2D to 3D transition was also supported by the simulation of THz-TDS spectra obtained from quantum chemistry calculations, in which the same broad bands around 2 THz and 1.5 THz were found for 2D and 3D arrays, respectively. This transition was also in accordance with the tightening of the interplanar distance probably due to an interplanar π bond contribution, as evidenced also by a broad absorption around 2.6 eV in the UV–vis spectrum, which appeared in the sample treated at 650 °C, and increased in the sample treated at 700 °C. The band gap was calculated for 1D and 2D cases. The value of 3.374 eV for the 2D case is, within the model accuracy and precision, in a relative good agreement with the value of 3.055 eV obtained from the experimental results. - Graphical abstract: 2D lattice mode vibrations and structural changes correlated with the so called “2D to 3D transition”. - Highlights: • A 2D to 3D transition has been detected for polymeric carbon nitride. • THz-TDS allowed us to discover and detect the 2D to 3D transition of polymeric carbon nitride. • We propose a structure for polymeric carbon nitride confirming it with THz-TDS

  12. Correlating Trainee Attributes to Performance in 3D CAD Training

    Science.gov (United States)

    Hamade, Ramsey F.; Artail, Hassan A.; Sikstrom, Sverker

    2007-01-01

    Purpose: The purpose of this exploratory study is to identify trainee attributes relevant for development of skills in 3D computer-aided design (CAD). Design/methodology/approach: Participants were trained to perform cognitive tasks of comparable complexity over time. Performance data were collected on the time needed to construct test models, and…

  13. Soil chemistry in lithologically diverse datasets: the quartz dilution effect

    Science.gov (United States)

    Bern, Carleton R.

    2009-01-01

    National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.

  14. Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features.

    Science.gov (United States)

    Rios Velazquez, Emmanuel; Meier, Raphael; Dunn, William D; Alexander, Brian; Wiest, Roland; Bauer, Stefan; Gutman, David A; Reyes, Mauricio; Aerts, Hugo J W L

    2015-11-18

    Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.

  15. Variational 3D-PIV with sparse descriptors

    Science.gov (United States)

    Lasinger, Katrin; Vogel, Christoph; Pock, Thomas; Schindler, Konrad

    2018-06-01

    3D particle imaging velocimetry (3D-PIV) aims to recover the flow field in a volume of fluid, which has been seeded with tracer particles and observed from multiple camera viewpoints. The first step of 3D-PIV is to reconstruct the 3D locations of the tracer particles from synchronous views of the volume. We propose a new method for iterative particle reconstruction, in which the locations and intensities of all particles are inferred in one joint energy minimization. The energy function is designed to penalize deviations between the reconstructed 3D particles and the image evidence, while at the same time aiming for a sparse set of particles. We find that the new method, without any post-processing, achieves significantly cleaner particle volumes than a conventional, tomographic MART reconstruction, and can handle a wide range of particle densities. The second step of 3D-PIV is to then recover the dense motion field from two consecutive particle reconstructions. We propose a variational model, which makes it possible to directly include physical properties, such as incompressibility and viscosity, in the estimation of the motion field. To further exploit the sparse nature of the input data, we propose a novel, compact descriptor of the local particle layout. Hence, we avoid the memory-intensive storage of high-resolution intensity volumes. Our framework is generic and allows for a variety of different data costs (correlation measures) and regularizers. We quantitatively evaluate it with both the sum of squared differences and the normalized cross-correlation, respectively with both a hard and a soft version of the incompressibility constraint.

  16. Genetic and non-genetic correlates of vitamins K and D.

    Science.gov (United States)

    Shea, M K; Benjamin, E J; Dupuis, J; Massaro, J M; Jacques, P F; D'Agostino, R B; Ordovas, J M; O'Donnell, C J; Dawson-Hughes, B; Vasan, R S; Booth, S L

    2009-04-01

    To assess the genetic and nongenetic correlates of circulating measures of vitamins K and D status in a community-based sample of men and women. A cross-sectional study of 1762 participants of the Framingham Offspring Study (919 women; mean age 59 years). Vitamin K status was measured as plasma phylloquinone and serum percent undercarboxylated osteocalcin (ucOC), and vitamin D was measured using plasma 25-hydroxyvitamin D (25(OH)D). Associations between vitamin K status and vitamin D status with biologically plausible nongenetic factors were assessed using stepwise regression. Heritability and linkage were determined using Sequential Oligogenic Linkage Analysis Routines (SOLAR). Nongenetic factors accounted for 20.1 and 12.3% of the variability in plasma phylloquinone in men and women respectively, with triglycerides and phylloquinone intake being the primary correlates. In men 12.2% and in women 14.6% of the variability in %ucOC was explained by nongenetic factors in our models. Heritability estimates for these vitamin K status biomarkers were nonsignificant. Season, vitamin D intake, high-density lipoprotein (HDL) cholesterol and waist circumference explained 24.7% (men) and 24.2% (women) of the variability in plasma 25(OH)D. Of the three vitamins examined, only 25(OH)D was significantly heritable (heritability estimate=28.8%, Pvitamin K status was attributed to nongenetic factors, whereas plasma 25(OH)D was found to be significantly heritable. Further studies are warranted to investigate genetic loci influencing vitamin D status.

  17. Point Cluster Analysis Using a 3D Voronoi Diagram with Applications in Point Cloud Segmentation

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2015-08-01

    Full Text Available Three-dimensional (3D point analysis and visualization is one of the most effective methods of point cluster detection and segmentation in geospatial datasets. However, serious scattering and clotting characteristics interfere with the visual detection of 3D point clusters. To overcome this problem, this study proposes the use of 3D Voronoi diagrams to analyze and visualize 3D points instead of the original data item. The proposed algorithm computes the cluster of 3D points by applying a set of 3D Voronoi cells to describe and quantify 3D points. The decompositions of point cloud of 3D models are guided by the 3D Voronoi cell parameters. The parameter values are mapped from the Voronoi cells to 3D points to show the spatial pattern and relationships; thus, a 3D point cluster pattern can be highlighted and easily recognized. To capture different cluster patterns, continuous progressive clusters and segmentations are tested. The 3D spatial relationship is shown to facilitate cluster detection. Furthermore, the generated segmentations of real 3D data cases are exploited to demonstrate the feasibility of our approach in detecting different spatial clusters for continuous point cloud segmentation.

  18. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling

    Science.gov (United States)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  19. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling.

    Science.gov (United States)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  20. Contributions in compression of 3D medical images and 2D images; Contributions en compression d'images medicales 3D et d'images naturelles 2D

    Energy Technology Data Exchange (ETDEWEB)

    Gaudeau, Y

    2006-12-15

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  1. 3D ear identification based on sparse representation.

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    Full Text Available Biometrics based personal authentication is an effective way for automatically recognizing, with a high confidence, a person's identity. Recently, 3D ear shape has attracted tremendous interests in research field due to its richness of feature and ease of acquisition. However, the existing ICP (Iterative Closet Point-based 3D ear matching methods prevalent in the literature are not quite efficient to cope with the one-to-many identification case. In this paper, we aim to fill this gap by proposing a novel effective fully automatic 3D ear identification system. We at first propose an accurate and efficient template-based ear detection method. By utilizing such a method, the extracted ear regions are represented in a common canonical coordinate system determined by the ear contour template, which facilitates much the following stages of feature extraction and classification. For each extracted 3D ear, a feature vector is generated as its representation by making use of a PCA-based local feature descriptor. At the stage of classification, we resort to the sparse representation based classification approach, which actually solves an l1-minimization problem. To the best of our knowledge, this is the first work introducing the sparse representation framework into the field of 3D ear identification. Extensive experiments conducted on a benchmark dataset corroborate the effectiveness and efficiency of the proposed approach. The associated Matlab source code and the evaluation results have been made publicly online available at http://sse.tongji.edu.cn/linzhang/ear/srcear/srcear.htm.

  2. A Hybrid DE-RGSO-ELM for Brain Tumor Tissue Categorization in 3D Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    K. Kothavari

    2014-01-01

    Full Text Available Medical diagnostics, a technique used for visualizing the internal structures and functions of human body, serves as a scientific tool to assist physicians and involves direct use of digital imaging system analysis. In this scenario, identification of brain tumors is complex in the diagnostic process. Magnetic resonance imaging (MRI technique is noted to best assist tissue contrast for anatomical details and also carries out mechanisms for investigating the brain by functional imaging in tumor predictions. Considering 3D MRI model, analyzing the anatomy features and tissue characteristics of brain tumor is complex in nature. Henceforth, in this work, feature extraction is carried out by computing 3D gray-level cooccurence matrix (3D GLCM and run-length matrix (RLM and feature subselection for dimensionality reduction is performed with basic differential evolution (DE algorithm. Classification is performed using proposed extreme learning machine (ELM, with refined group search optimizer (RGSO technique, to select the best parameters for better simplification and training of the classifier for brain tissue and tumor characterization as white matter (WM, gray matter (GM, cerebrospinal fluid (CSF, and tumor. Extreme learning machine outperforms the standard binary linear SVM and BPN for medical image classifier and proves better in classifying healthy and tumor tissues. The comparison between the algorithms proves that the mean and standard deviation produced by volumetric feature extraction analysis are higher than the other approaches. The proposed work is designed for pathological brain tumor classification and for 3D MRI tumor image segmentation. The proposed approaches are applied for real time datasets and benchmark datasets taken from dataset repositories.

  3. MRI of the lumbar spine: comparison of 3D isotropic turbo spin-echo SPACE sequence versus conventional 2D sequences at 3.0 T.

    Science.gov (United States)

    Lee, Sungwon; Jee, Won-Hee; Jung, Joon-Yong; Lee, So-Yeon; Ryu, Kyeung-Sik; Ha, Kee-Yong

    2015-02-01

    Three-dimensional (3D) fast spin-echo sequence with variable flip-angle refocusing pulse allows retrospective alignments of magnetic resonance imaging (MRI) in any desired plane. To compare isotropic 3D T2-weighted (T2W) turbo spin-echo sequence (TSE-SPACE) with standard two-dimensional (2D) T2W TSE imaging for evaluating lumbar spine pathology at 3.0 T MRI. Forty-two patients who had spine surgery for disk herniation and had 3.0 T spine MRI were included in this study. In addition to standard 2D T2W TSE imaging, sagittal 3D T2W TSE-SPACE was obtained to produce multiplanar (MPR) images. Each set of MR images from 3D T2W TSE and 2D TSE-SPACE were independently scored for the degree of lumbar neural foraminal stenosis, central spinal stenosis, and nerve compression by two reviewers. These scores were compared with operative findings and the sensitivities were evaluated by McNemar test. Inter-observer agreements and the correlation with symptoms laterality were assessed with kappa statistics. The 3D T2W TSE and 2D TSE-SPACE had similar sensitivity in detecting foraminal stenosis (78.9% versus 78.9% in 32 foramen levels), spinal stenosis (100% versus 100% in 42 spinal levels), and nerve compression (92.9% versus 81.8% in 59 spinal nerves). The inter-observer agreements (κ = 0.849 vs. 0.451 for foraminal stenosis, κ = 0.809 vs. 0.503 for spinal stenosis, and κ = 0.681 vs. 0.429 for nerve compression) and symptoms correlation (κ = 0.449 vs. κ = 0.242) were better in 3D TSE-SPACE compared to 2D TSE. 3D TSE-SPACE with oblique coronal MPR images demonstrated better inter-observer agreements compared to 3D TSE-SPACE without oblique coronal MPR images (κ = 0.930 vs. κ = 0.681). Isotropic 3D T2W TSE-SPACE at 3.0 T was comparable to 2D T2W TSE for detecting foraminal stenosis, central spinal stenosis, and nerve compression with better inter-observer agreements and symptom correlation. © The Foundation Acta Radiologica 2014 Reprints and

  4. Fully digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo random number generators

    KAUST Repository

    Mansingka, Abhinav S.

    2012-10-07

    This paper introduces the first fully digital implementation of 1-D, 2-D and 3-D multiscroll chaos using the sawtooth nonlinearity in a 3rd order ODE with the Euler approximation. Systems indicate chaotic behaviour through phase space boundedness and positive Lyapunov exponent. Low-significance bits form a PRNG and pass all tests in the NIST SP. 800-22 suite without post-processing. Real-time control of the number of scrolls allows distinct output streams with 2-D and 3-D multiscroll chaos enabling greater controllability. The proposed PRNGs are experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.25%, throughput up to 5.25 Gbits/s and up to 512 distinct output streams with low cross-correlation.

  5. Holographic interferometric and correlation-based laser speckle metrology for 3D deformations in dentistry

    Science.gov (United States)

    Dekiff, Markus; Kemper, Björn; Kröger, Elke; Denz, Cornelia; Dirksen, Dieter

    2017-03-01

    The mechanical loading of dental restorations and hard tissue is often investigated numerically. For validation and optimization of such simulations, comparisons with measured deformations are essential. We combine digital holographic interferometry and digital speckle photography for the determination of microscopic deformations with a photogrammetric method that is based on digital image correlation of a projected laser speckle pattern. This multimodal workstation allows the simultaneous acquisition of the specimen's macroscopic 3D shape and thus a quantitative comparison of measured deformations with simulation data. In order to demonstrate the feasibility of our system, two applications are presented: the quantitative determination of (1) the deformation of a mandible model due to mechanical loading of an inserted dental implant and of (2) the deformation of a (dental) bridge model under mechanical loading. The results were compared with data from finite element analyses of the investigated applications. The experimental results showed close agreement with those of the simulations.

  6. Full-field wrist pulse signal acquisition and analysis by 3D Digital Image Correlation

    Science.gov (United States)

    Xue, Yuan; Su, Yong; Zhang, Chi; Xu, Xiaohai; Gao, Zeren; Wu, Shangquan; Zhang, Qingchuan; Wu, Xiaoping

    2017-11-01

    Pulse diagnosis is an essential part in four basic diagnostic methods (inspection, listening, inquiring and palpation) in traditional Chinese medicine, which depends on longtime training and rich experience, so computerized pulse acquisition has been proposed and studied to ensure the objectivity. To imitate the process that doctors using three fingertips with different pressures to feel fluctuations in certain areas containing three acupoints, we established a five dimensional pulse signal acquisition system adopting a non-contacting optical metrology method, 3D digital image correlation, to record the full-field displacements of skin fluctuations under different pressures. The system realizes real-time full-field vibration mode observation with 10 FPS. The maximum sample frequency is 472 Hz for detailed post-processing. After acquisition, the signals are analyzed according to the amplitude, pressure, and pulse wave velocity. The proposed system provides a novel optical approach for digitalizing pulse diagnosis and massive pulse signal data acquisition for various types of patients.

  7. Analysis of structural correlations in a model binary 3D liquid through the eigenvalues and eigenvectors of the atomic stress tensors

    International Nuclear Information System (INIS)

    Levashov, V. A.

    2016-01-01

    It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids’ structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectors of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ 1 ≥ λ 2 ≥ λ 3 ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ 2 /λ 1 ) and (λ 3 /λ 2 ) are essentially identical to each other in the liquids state. We also found that λ 2 tends to be equal to the geometric average of λ 1 and λ 3 . In our view, correlations between the eigenvalues may represent “the Poisson ratio effect” at the atomic scale.

  8. Analysis of structural correlations in a model binary 3D liquid through the eigenvalues and eigenvectors of the atomic stress tensors

    Energy Technology Data Exchange (ETDEWEB)

    Levashov, V. A. [Technological Design Institute of Scientific Instrument Engineering, Novosibirsk 630058 (Russian Federation)

    2016-03-07

    It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids’ structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectors of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ{sub 1} ≥ λ{sub 2} ≥ λ{sub 3} ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ{sub 2}/λ{sub 1}) and (λ{sub 3}/λ{sub 2}) are essentially identical to each other in the liquids state. We also found that λ{sub 2} tends to be equal to the geometric average of λ{sub 1} and λ{sub 3}. In our view, correlations between the eigenvalues may represent “the Poisson ratio effect” at the atomic scale.

  9. Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.

    Science.gov (United States)

    Jiang, Z; Chen, W; Burkhart, C

    2013-11-01

    Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  10. Valence correlation in the s2d/sup n/, sd/sup n/+1, and d/sup n/+2 states of the first-row transition metal atoms

    International Nuclear Information System (INIS)

    Botch, B.H.; Dunning, T.H. Jr.; Harrison, J.F.

    1981-01-01

    The major differential valence correlation effects of the lowest lying states arising from the s 2 d/sup n/, sd/sup n/+1, and d/sup n/+2 configurations of the first-row transition metal atoms have been characterized using MCSCF and CI procedures. The important correlation effects are found to be, first, angular correlation of the 4s 2 pair arising because of the near degeneracy of the 4s and 4p orbitals and, second, radial correlation of the 3d electron pairs. This large differential radial correlation of the 3d electrons can be interpreted as being due to nonequivalent d orbitals in the sd/sup n/+1 and d/sup n/+2 excited states. Both of these effects can be incorporated into a simple MCSCF wave function that reduces the error in the excited state atomic dissociation limits (approx.0.2 eV in Sc--Cr and approx.0.5 eV in Mn--Cu for the sd/sup n/+1--s 2 d/sup n/ excitation energy), yet still is of a form which lends itself easily to molecular calculations

  11. 3D molecular descriptors important for clinical success.

    Science.gov (United States)

    Kombo, David C; Tallapragada, Kartik; Jain, Rachit; Chewning, Joseph; Mazurov, Anatoly A; Speake, Jason D; Hauser, Terry A; Toler, Steve

    2013-02-25

    The pharmacokinetic and safety profiles of clinical drug candidates are greatly influenced by their requisite physicochemical properties. In particular, it has been shown that 2D molecular descriptors such as fraction of Sp3 carbon atoms (Fsp3) and number of stereo centers correlate with clinical success. Using the proteomic off-target hit rate of nicotinic ligands, we found that shape-based 3D descriptors such as the radius of gyration and shadow indices discriminate off-target promiscuity better than do Fsp3 and the number of stereo centers. We have deduced the relevant descriptor values required for a ligand to be nonpromiscuous. Investigating the MDL Drug Data Report (MDDR) database as compounds move from the preclinical stage toward the market, we have found that these shape-based 3D descriptors predict clinical success of compounds at preclinical and phase1 stages vs compounds withdrawn from the market better than do Fsp3 and LogD. Further, these computed 3D molecular descriptors correlate well with experimentally observed solubility, which is among well-known physicochemical properties that drive clinical success. We also found that about 84% of launched drugs satisfy either Shadow index or Fsp3 criteria, whereas withdrawn and discontinued compounds fail to meet the same criteria. Our studies suggest that spherical compounds (rather than their elongated counterparts) with a minimal number of aromatic rings may exhibit a high propensity to advance from clinical trials to market.

  12. Monoplane 3D-2D registration of cerebral angiograms based on multi-objective stratified optimization

    Science.gov (United States)

    Aksoy, T.; Špiclin, Ž.; Pernuš, F.; Unal, G.

    2017-12-01

    Registration of 3D pre-interventional to 2D intra-interventional medical images has an increasingly important role in surgical planning, navigation and treatment, because it enables the physician to co-locate depth information given by pre-interventional 3D images with the live information in intra-interventional 2D images such as x-ray. Most tasks during image-guided interventions are carried out under a monoplane x-ray, which is a highly ill-posed problem for state-of-the-art 3D to 2D registration methods. To address the problem of rigid 3D-2D monoplane registration we propose a novel multi-objective stratified parameter optimization, wherein a small set of high-magnitude intensity gradients are matched between the 3D and 2D images. The stratified parameter optimization matches rotation templates to depth templates, first sampled from projected 3D gradients and second from the 2D image gradients, so as to recover 3D rigid-body rotations and out-of-plane translation. The objective for matching was the gradient magnitude correlation coefficient, which is invariant to in-plane translation. The in-plane translations are then found by locating the maximum of the gradient phase correlation between the best matching pair of rotation and depth templates. On twenty pairs of 3D and 2D images of ten patients undergoing cerebral endovascular image-guided intervention the 3D to monoplane 2D registration experiments were setup with a rather high range of initial mean target registration error from 0 to 100 mm. The proposed method effectively reduced the registration error to below 2 mm, which was further refined by a fast iterative method and resulted in a high final registration accuracy (0.40 mm) and high success rate (> 96%). Taking into account a fast execution time below 10 s, the observed performance of the proposed method shows a high potential for application into clinical image-guidance systems.

  13. ATLAS File and Dataset Metadata Collection and Use

    CERN Document Server

    Albrand, S; The ATLAS collaboration; Lambert, F; Gallas, E J

    2012-01-01

    The ATLAS Metadata Interface (“AMI”) was designed as a generic cataloguing system, and as such it has found many uses in the experiment including software release management, tracking of reconstructed event sizes and control of dataset nomenclature. The primary use of AMI is to provide a catalogue of datasets (file collections) which is searchable using physics criteria. In this paper we discuss the various mechanisms used for filling the AMI dataset and file catalogues. By correlating information from different sources we can derive aggregate information which is important for physics analysis; for example the total number of events contained in dataset, and possible reasons for missing events such as a lost file. Finally we will describe some specialized interfaces which were developed for the Data Preparation and reprocessing coordinators. These interfaces manipulate information from both the dataset domain held in AMI, and the run-indexed information held in the ATLAS COMA application (Conditions and ...

  14. S-25-hydroxyvitamin D and C3-epimers in pregnancy and infancy

    DEFF Research Database (Denmark)

    Dreier Mydtskov, Nanne; Lykkedegn, Sine; Fruekilde, Palle Back Nielsen

    2017-01-01

    BACKGROUND: Analysis of serum 25-hydroxyvitamin D (s-25(OH)D) may be complicated by the less active or in-active vitamin D metabolite C3-epi-25(OH)D3 (C3-epimer). We aimed to explore the relationship between s-C3-epimer and s-25(OH)D and other determinants and describe the longitudinal course of ...... correlated to s-25(OH)D, season, maternal vitamin D supplementation, maternal and infant age. The C3-epimer fraction was only of clinical importance in early infancy, where it could lead to misclassification of the vitamin D status.......BACKGROUND: Analysis of serum 25-hydroxyvitamin D (s-25(OH)D) may be complicated by the less active or in-active vitamin D metabolite C3-epi-25(OH)D3 (C3-epimer). We aimed to explore the relationship between s-C3-epimer and s-25(OH)D and other determinants and describe the longitudinal course...... correlated with s-25(OH)D (all time points, pvitamin D supplementation at some time points. The C3-epimer fraction fluctuated between adjacent time points. By cosinor analyses, a season-dependent sinusoidal pattern for s-25(OH)D and C3-epimer fraction...

  15. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Gollaz Morales, Jose Alejandro

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  16. Audio-visual perception of 3D cinematography: an fMRI study using condition-based and computation-based analyses.

    Directory of Open Access Journals (Sweden)

    Akitoshi Ogawa

    Full Text Available The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard "condition-based" designs, as well as "computational" methods based on the extraction of time-varying features of the stimuli (e.g. motion. Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround, 3D with monaural sound (3D-Mono, 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG. The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life

  17. Audio-visual perception of 3D cinematography: an fMRI study using condition-based and computation-based analyses.

    Science.gov (United States)

    Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano

    2013-01-01

    The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard "condition-based" designs, as well as "computational" methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli.

  18. Potencies of vitamin D analogs, 1α-hydroxyvitamin D3 , 1α-hydroxyvitamin D2 and 25-hydroxyvitamin D3 , in lowering cholesterol in hypercholesterolemic mice in vivo.

    Science.gov (United States)

    Quach, Holly P; Dzekic, Tamara; Bukuroshi, Paola; Pang, K Sandy

    2018-04-01

    Vitamin D 3 and the synthetic vitamin D analogs, 1α-hydroxyvitamin D 3 [1α(OH)D 3 ], 1α-hydroxyvitamin D 2 [1α(OH)D 2 ] and 25-hydroxyvitamin D 3 [25(OH)D 3 ] were appraised for their vitamin D receptor (VDR) associated-potencies as cholesterol lowering agents in mice in vivo. These precursors are activated in vivo: 1α(OH)D 3 and 1α(OH)D 2 are transformed by liver CYP2R1 and CYP27A1 to active VDR ligands, 1α,25-dihydroxyvitamin D 3 [1,25(OH) 2 D 3 ] and 1α,25-dihydroxyvitamin D 2 [1,25(OH) 2 D 2 ] , respectively. 1α(OH)D 2 may also be activated by CYP24A1 to 1α,24-dihydroxyvitamin D 2 [1,24(OH) 2 D 2 ], another active VDR ligand. 25(OH)D 3 , the metabolite formed via CYP2R1 and or CYP27A1 in liver from vitamin D 3 , is activated by CYP27B1 in the kidney to 1,25(OH) 2 D 3 . In C57BL/6 mice fed the high fat/high cholesterol Western diet for 3 weeks, vitamin D analogs were administered every other day intraperitoneally during the last week of the diet. The rank order for cholesterol lowering, achieved via mouse liver small heterodimer partner (Shp) inhibition and increased cholesterol 7α-hydroxylase (Cyp7a1) expression, was: 1.75 nmol/kg 1α(OH)D 3  > 1248 nmol/kg 25(OH)D 3 (dose ratio of 0.0014) > > 1625 nmol/kg vitamin D 3 . Except for 1.21 nmol/kg 1α(OH)D 2 that failed to lower liver and plasma cholesterol contents, a significant negative correlation was observed between the liver concentration of 1,25(OH) 2 D 3 formed from the precursors and liver cholesterol levels. The composite results show that vitamin D analogs 1α(OH)D 3 and 25(OH)D 3 exhibit cholesterol lowering properties upon activation to 1,25(OH) 2 D 3 : 1α(OH)D 3 is rapidly activated by liver enzymes and 25(OH)D 3 is slowly activated by renal Cyp27b1 in mouse. Copyright © 2018 John Wiley & Sons, Ltd.

  19. A statistical comparison of cirrus particle size distributions measured using the 2-D stereo probe during the TC4, SPARTICUS, and MACPEX flight campaigns with historical cirrus datasets

    Science.gov (United States)

    Schwartz, M. Christian

    2017-08-01

    This paper addresses two straightforward questions. First, how similar are the statistics of cirrus particle size distribution (PSD) datasets collected using the Two-Dimensional Stereo (2D-S) probe to cirrus PSD datasets collected using older Particle Measuring Systems (PMS) 2-D Cloud (2DC) and 2-D Precipitation (2DP) probes? Second, how similar are the datasets when shatter-correcting post-processing is applied to the 2DC datasets? To answer these questions, a database of measured and parameterized cirrus PSDs - constructed from measurements taken during the Small Particles in Cirrus (SPARTICUS); Mid-latitude Airborne Cirrus Properties Experiment (MACPEX); and Tropical Composition, Cloud, and Climate Coupling (TC4) flight campaigns - is used.Bulk cloud quantities are computed from the 2D-S database in three ways: first, directly from the 2D-S data; second, by applying the 2D-S data to ice PSD parameterizations developed using sets of cirrus measurements collected using the older PMS probes; and third, by applying the 2D-S data to a similar parameterization developed using the 2D-S data themselves. This is done so that measurements of the same cloud volumes by parameterized versions of the 2DC and 2D-S can be compared with one another. It is thereby seen - given the same cloud field and given the same assumptions concerning ice crystal cross-sectional area, density, and radar cross section - that the parameterized 2D-S and the parameterized 2DC predict similar distributions of inferred shortwave extinction coefficient, ice water content, and 94 GHz radar reflectivity. However, the parameterization of the 2DC based on uncorrected data predicts a statistically significantly higher number of total ice crystals and a larger ratio of small ice crystals to large ice crystals than does the parameterized 2D-S. The 2DC parameterization based on shatter-corrected data also predicts statistically different numbers of ice crystals than does the parameterized 2D-S, but the

  20. A statistical comparison of cirrus particle size distributions measured using the 2-D stereo probe during the TC4, SPARTICUS, and MACPEX flight campaigns with historical cirrus datasets

    Directory of Open Access Journals (Sweden)

    M. C. Schwartz

    2017-08-01

    Full Text Available This paper addresses two straightforward questions. First, how similar are the statistics of cirrus particle size distribution (PSD datasets collected using the Two-Dimensional Stereo (2D-S probe to cirrus PSD datasets collected using older Particle Measuring Systems (PMS 2-D Cloud (2DC and 2-D Precipitation (2DP probes? Second, how similar are the datasets when shatter-correcting post-processing is applied to the 2DC datasets? To answer these questions, a database of measured and parameterized cirrus PSDs – constructed from measurements taken during the Small Particles in Cirrus (SPARTICUS; Mid-latitude Airborne Cirrus Properties Experiment (MACPEX; and Tropical Composition, Cloud, and Climate Coupling (TC4 flight campaigns – is used.Bulk cloud quantities are computed from the 2D-S database in three ways: first, directly from the 2D-S data; second, by applying the 2D-S data to ice PSD parameterizations developed using sets of cirrus measurements collected using the older PMS probes; and third, by applying the 2D-S data to a similar parameterization developed using the 2D-S data themselves. This is done so that measurements of the same cloud volumes by parameterized versions of the 2DC and 2D-S can be compared with one another. It is thereby seen – given the same cloud field and given the same assumptions concerning ice crystal cross-sectional area, density, and radar cross section – that the parameterized 2D-S and the parameterized 2DC predict similar distributions of inferred shortwave extinction coefficient, ice water content, and 94 GHz radar reflectivity. However, the parameterization of the 2DC based on uncorrected data predicts a statistically significantly higher number of total ice crystals and a larger ratio of small ice crystals to large ice crystals than does the parameterized 2D-S. The 2DC parameterization based on shatter-corrected data also predicts statistically different numbers of ice crystals than does the

  1. SatelliteDL: a Toolkit for Analysis of Heterogeneous Satellite Datasets

    Science.gov (United States)

    Galloy, M. D.; Fillmore, D.

    2014-12-01

    SatelliteDL is an IDL toolkit for the analysis of satellite Earth observations from a diverse set of platforms and sensors. The core function of the toolkit is the spatial and temporal alignment of satellite swath and geostationary data. The design features an abstraction layer that allows for easy inclusion of new datasets in a modular way. Our overarching objective is to create utilities that automate the mundane aspects of satellite data analysis, are extensible and maintainable, and do not place limitations on the analysis itself. IDL has a powerful suite of statistical and visualization tools that can be used in conjunction with SatelliteDL. Toward this end we have constructed SatelliteDL to include (1) HTML and LaTeX API document generation,(2) a unit test framework,(3) automatic message and error logs,(4) HTML and LaTeX plot and table generation, and(5) several real world examples with bundled datasets available for download. For ease of use, datasets, variables and optional workflows may be specified in a flexible format configuration file. Configuration statements may specify, for example, a region and date range, and the creation of images, plots and statistical summary tables for a long list of variables. SatelliteDL enforces data provenance; all data should be traceable and reproducible. The output NetCDF file metadata holds a complete history of the original datasets and their transformations, and a method exists to reconstruct a configuration file from this information. Release 0.1.0 distributes with ingest methods for GOES, MODIS, VIIRS and CERES radiance data (L1) as well as select 2D atmosphere products (L2) such as aerosol and cloud (MODIS and VIIRS) and radiant flux (CERES). Future releases will provide ingest methods for ocean and land surface products, gridded and time averaged datasets (L3 Daily, Monthly and Yearly), and support for 3D products such as temperature and water vapor profiles. Emphasis will be on NPP Sensor, Environmental and

  2. Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Fæster, Søren; Hansen, Niels

    2017-01-01

    Thick-walled ductile iron casts have been studied by applying (i) cooling rate calculations by FVM, (ii) microstructural characterization by 2D SEM and 3D X-ray tomography techniques and (iii) fatigue testing of samples drawn from components cast in sand molds and metal molds. An analysis has shown...... correlations between cooling rate, structure and fatigue strengths demonstrating the benefit of 3D structural characterization to identify possible causes of premature fatigue failure of ductile cast iron....

  3. Registration of 3D and Multispectral Data for the Study of Cultural Heritage Surfaces

    Science.gov (United States)

    Chane, Camille Simon; Schütze, Rainer; Boochs, Frank; Marzani, Franck S.

    2013-01-01

    We present a technique for the multi-sensor registration of featureless datasets based on the photogrammetric tracking of the acquisition systems in use. This method is developed for the in situ study of cultural heritage objects and is tested by digitizing a small canvas successively with a 3D digitization system and a multispectral camera while simultaneously tracking the acquisition systems with four cameras and using a cubic target frame with a side length of 500 mm. The achieved tracking accuracy is better than 0.03 mm spatially and 0.150 mrad angularly. This allows us to seamlessly register the 3D acquisitions and to project the multispectral acquisitions on the 3D model. PMID:23322103

  4. Model-Based Generation of Synthetic 3D Time-Lapse Sequences of Motile Cells with Growing Filopodia

    OpenAIRE

    Sorokin , Dmitry ,; Peterlik , Igor; Ulman , Vladimír ,; Svoboda , David; Maška , Martin

    2017-01-01

    International audience; The existence of benchmark datasets is essential to objectively evaluate various image analysis methods. Nevertheless, manual annotations of fluorescence microscopy image data are very laborious and not often practicable, especially in the case of 3D+t experiments. In this work, we propose a simulation system capable of generating 3D time-lapse sequences of single motile cells with filopodial protrusions, accompanied by inherently generated ground truth. The system con...

  5. Use of 3D reconstruction cloacagrams and 3D printing in cloacal malformations.

    Science.gov (United States)

    Ahn, Jennifer J; Shnorhavorian, Margarett; Amies Oelschlager, Anne-Marie E; Ripley, Beth; Shivaram, Giridhar M; Avansino, Jeffrey R; Merguerian, Paul A

    2017-08-01

    , cloacagram measurements are shown to correlate well with endoscopic and intraoperative findings with regards to level of cloaca and Müllerian development. Measurement discrepancies may be due to technical variation indicating a need for further evaluation. The translation of the cloacagram images into a 3D printed model demonstrates potential applications of these models for pre-operative planning and education of both families and trainees. In our series, 3D reconstruction cloacagrams yielded accurate measurements of urethral length and level of cloaca common channel and urethral length, similar to those found on endoscopy. Three-dimensional models can be printed from using cloacagram images, and may be useful for surgical planning and education. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  6. Quantitative analysis of thyroid tumors vascularity: A comparison between 3-D contrast-enhanced ultrasound and 3-D Power Doppler on benign and malignant thyroid nodules.

    Science.gov (United States)

    Caresio, Cristina; Caballo, Marco; Deandrea, Maurilio; Garberoglio, Roberto; Mormile, Alberto; Rossetto, Ruth; Limone, Paolo; Molinari, Filippo

    2018-05-15

    To perform a comparative quantitative analysis of Power Doppler ultrasound (PDUS) and Contrast-Enhancement ultrasound (CEUS) for the quantification of thyroid nodules vascularity patterns, with the goal of identifying biomarkers correlated with the malignancy of the nodule with both imaging techniques. We propose a novel method to reconstruct the vascular architecture from 3-D PDUS and CEUS images of thyroid nodules, and to automatically extract seven quantitative features related to the morphology and distribution of vascular network. Features include three tortuosity metrics, the number of vascular trees and branches, the vascular volume density, and the main spatial vascularity pattern. Feature extraction was performed on 20 thyroid lesions (ten benign and ten malignant), of which we acquired both PDUS and CEUS. MANOVA (multivariate analysis of variance) was used to differentiate benign and malignant lesions based on the most significant features. The analysis of the extracted features showed a significant difference between the benign and malignant nodules for both PDUS and CEUS techniques for all the features. Furthermore, by using a linear classifier on the significant features identified by the MANOVA, benign nodules could be entirely separated from the malignant ones. Our early results confirm the correlation between the morphology and distribution of blood vessels and the malignancy of the lesion, and also show (at least for the dataset used in this study) a considerable similarity in terms of findings of PDUS and CEUS imaging for thyroid nodules diagnosis and classification. © 2018 American Association of Physicists in Medicine.

  7. Factor structure and dimensionality of the two depression scales in STAR*D using level 1 datasets.

    Science.gov (United States)

    Bech, P; Fava, M; Trivedi, M H; Wisniewski, S R; Rush, A J

    2011-08-01

    The factor structure and dimensionality of the HAM-D(17) and the IDS-C(30) are as yet uncertain, because psychometric analyses of these scales have been performed without a clear separation between factor structure profile and dimensionality (total scores being a sufficient statistic). The first treatment step (Level 1) in the STAR*D study provided a dataset of 4041 outpatients with DSM-IV nonpsychotic major depression. The HAM-D(17) and IDS-C(30) were evaluated by principal component analysis (PCA) without rotation. Mokken analysis tested the unidimensionality of the IDS-C(6), which corresponds to the unidimensional HAM-D(6.) For both the HAM-D(17) and IDS-C(30), PCA identified a bi-directional factor contrasting the depressive symptoms versus the neurovegetative symptoms. The HAM-D(6) and the corresponding IDS-C(6) symptoms all emerged in the depression factor. Both the HAM-D(6) and IDS-C(6) were found to be unidimensional scales, i.e., their total scores are each a sufficient statistic for the measurement of depressive states. STAR*D used only one medication in Level 1. The unidimensional HAM-D(6) and IDS-C(6) should be used when evaluating the pure clinical effect of antidepressive treatment, whereas the multidimensional HAM-D(17) and IDS-C(30) should be considered when selecting antidepressant treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Multifractal modelling and 3D lacunarity analysis

    International Nuclear Information System (INIS)

    Hanen, Akkari; Imen, Bhouri; Asma, Ben Abdallah; Patrick, Dubois; Hedi, Bedoui Mohamed

    2009-01-01

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  9. The influence of core-valence electron correlations on the convergence of energy levels and oscillator strengths of ions with an open 3d shell using Fe VIII as an example

    International Nuclear Information System (INIS)

    Zeng Jiaolong; Jin Fengtao; Zhao Gang; Yuan Jianmin

    2003-01-01

    Accurate atomic data, such as fine structure energy levels and oscillator strengths of different ionization stages of iron ions, are important for astrophysical and laboratory plasmas. However, some important existing oscillator strengths for ions with an open 3d shell found in the literature might not be accurate enough for practical applications. As an example, the present paper checks the convergence behaviour of the energy levels and oscillator strengths of Fe VIII by systematically increasing the 3p n -3d n (n = 1, 2, 3 and 6) core-valence electron correlations using the multiconfiguration Hartree-Fock method. The results show that one should at least include up to 3p 3 -3d 3 core-valence electron correlations to obtain converged results. Large differences are found between the present oscillator strengths and other theoretical results in the literature for some strong transitions

  10. 3D MODELLING AND VISUALIZATION BASED ON THE UNITY GAME ENGINE – ADVANTAGES AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    I. Buyuksalih

    2017-11-01

    Full Text Available 3D City modelling is increasingly popular and becoming valuable tools in managing big cities. Urban and energy planning, landscape, noise-sewage modelling, underground mapping and navigation are among the applications/fields which really depend on 3D modelling for their effectiveness operations. Several research areas and implementation projects had been carried out to provide the most reliable 3D data format for sharing and functionalities as well as visualization platform and analysis. For instance, BIMTAS company has recently completed a project to estimate potential solar energy on 3D buildings for the whole Istanbul and now focussing on 3D utility underground mapping for a pilot case study. The research and implementation standard on 3D City Model domain (3D data sharing and visualization schema is based on CityGML schema version 2.0. However, there are some limitations and issues in implementation phase for large dataset. Most of the limitations were due to the visualization, database integration and analysis platform (Unity3D game engine as highlighted in this paper.

  11. 3D MRI Modeling of Thin and Spatially Complex Soft Tissue Structures without Shrinkage: Lamprey Myosepta as an Example.

    Science.gov (United States)

    Wood, Bradley M; Jia, Guang; Carmichael, Owen; McKlveen, Kevin; Homberger, Dominique G

    2018-05-12

    3D imaging techniques enable the non-destructive analysis and modeling of complex structures. Among these, MRI exhibits good soft tissue contrast, but is currently less commonly used for non-clinical research than x-ray CT, even though the latter requires contrast-staining that shrinks and distorts soft tissues. When the objective is the creation of a realistic and complete 3D model of soft tissue structures, MRI data are more demanding to acquire and visualize and require extensive post-processing because they comprise non-cubic voxels with dimensions that represent a trade-off between tissue contrast and image resolution. Therefore, thin soft tissue structures with complex spatial configurations are not always visible in a single MRI dataset, so that standard segmentation techniques are not sufficient for their complete visualization. By using the example of the thin and spatially complex connective tissue myosepta in lampreys, we developed a workflow protocol for the selection of the appropriate parameters for the acquisition of MRI data and for the visualization and 3D modeling of soft tissue structures. This protocol includes a novel recursive segmentation technique for supplementing missing data in one dataset with data from another dataset to produce realistic and complete 3D models. Such 3D models are needed for the modeling of dynamic processes, such as the biomechanics of fish locomotion. However, our methodology is applicable to the visualization of any thin soft tissue structures with complex spatial configurations, such as fasciae, aponeuroses, and small blood vessels and nerves, for clinical research and the further exploration of tensegrity. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  12. Deformable 3D–2D registration for CT and its application to low dose tomographic fluoroscopy

    International Nuclear Information System (INIS)

    Flach, Barbara; Brehm, Marcus; Sawall, Stefan; Kachelrieß, Marc

    2014-01-01

    Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D–3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D–2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D–3D registration method. The comparison is done for a range of 4–60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D–3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness

  13. Quantifying uncertainty in observational rainfall datasets

    Science.gov (United States)

    Lennard, Chris; Dosio, Alessandro; Nikulin, Grigory; Pinto, Izidine; Seid, Hussen

    2015-04-01

    rainfall datasets available over Africa on monthly, daily and sub-daily time scales as appropriate to quantify spatial and temporal differences between the datasets. We find regional wet and dry biases between datasets (using the ensemble mean as a reference) with generally larger biases in reanalysis products. Rainfall intensity is poorly represented in some datasets which demonstrates some datasets should not be used for rainfall intensity analyses. Using 10 CORDEX models we show in east Africa that the spread between observed datasets is often similar to the spread between models. We recommend that specific observational rainfall datasets datasets be used for specific investigations and also that where many datasets are applicable to an investigation, a probabilistic view be adopted for rainfall studies over Africa. Endris, H. S., P. Omondi, S. Jain, C. Lennard, B. Hewitson, L. Chang'a, J. L. Awange, A. Dosio, P. Ketiem, G. Nikulin, H-J. Panitz, M. Büchner, F. Stordal, and L. Tazalika (2013) Assessment of the Performance of CORDEX Regional Climate Models in Simulating East African Rainfall. J. Climate, 26, 8453-8475. DOI: 10.1175/JCLI-D-12-00708.1 Gbobaniyi, E., A. Sarr, M. B. Sylla, I. Diallo, C. Lennard, A. Dosio, A. Dhie ?diou, A. Kamga, N. A. B. Klutse, B. Hewitson, and B. Lamptey (2013) Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int. J. Climatol., DOI: 10.1002/joc.3834 Hernández-Díaz, L., R. Laprise, L. Sushama, A. Martynov, K. Winger, and B. Dugas (2013) Climate simulation over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim. Dyn. 40, 1415-1433. DOI: 10.1007/s00382-012-1387-z Kalognomou, E., C. Lennard, M. Shongwe, I. Pinto, A. Favre, M. Kent, B. Hewitson, A. Dosio, G. Nikulin, H. Panitz, and M. Büchner (2013) A diagnostic evaluation of precipitation in CORDEX models over southern Africa. Journal of Climate, 26, 9477-9506. DOI:10

  14. Acute effect of intravenously applied alcohol in the human striatal and extrastriatal D2 /D3 dopamine system.

    Science.gov (United States)

    Pfeifer, Philippe; Tüscher, Oliver; Buchholz, Hans Georg; Gründer, Gerhard; Vernaleken, Ingo; Paulzen, Michael; Zimmermann, Ulrich S; Maus, Stephan; Lieb, Klaus; Eggermann, Thomas; Fehr, Christoph; Schreckenberger, Mathias

    2017-09-01

    Investigations on the acute effects of alcohol in the human mesolimbic dopamine D 2 /D 3 receptor system have yielded conflicting results. With respect to the effects of alcohol on extrastriatal D 2 /D 3 dopamine receptors no investigations have been reported yet. Therefore we applied PET imaging using the postsynaptic dopamine D 2 /D 3 receptor ligand [ 18 F]fallypride addressing the question, whether intravenously applied alcohol stimulates the extrastriatal and striatal dopamine system. We measured subjective effects of alcohol and made correlation analyses with the striatal and extrastriatal D 2 /D 3 binding potential. Twenty-four healthy male μ-opioid receptor (OPRM1)118G allele carriers underwent a standardized intravenous and placebo alcohol administration. The subjective effects of alcohol were measured with a visual analogue scale. For the evaluation of the dopamine response we calculated the binding potential (BP ND ) by using the simplified reference tissue model (SRTM). In addition, we calculated distribution volumes (target and reference regions) in 10 subjects for which metabolite corrected arterial samples were available. In the alcohol condition no significant dopamine response in terms of a reduction of BP ND was observed in striatal and extrastriatal brain regions. We found a positive correlation for 'liking' alcohol and the BP ND in extrastriatal brain regions (Inferior frontal cortex (IFC) (r = 0.533, p = 0.007), orbitofrontal cortex (OFC) (r = 0.416, p = 0.043) and prefrontal cortex (PFC) (r = 0.625, p = 0.001)). The acute alcohol effects on the D 2 /D 3 dopamine receptor binding potential of the striatal and extrastriatal system in our experiment were insignificant. A positive correlation of the subjective effect of 'liking' alcohol with cortical D 2 /D 3 receptors may hint at an addiction relevant trait. © 2016 Society for the Study of Addiction.

  15. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    International Nuclear Information System (INIS)

    Wirtz, T; Philipp, P; Audinot, J-N; Dowsett, D; Eswara, S

    2015-01-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM). (paper)

  16. 2D or Not 2D? Testing the Utility of 2D Vs. 3D Landmark Data in Geometric Morphometrics of the Sculpin Subfamily Oligocottinae (Pisces; Cottoidea).

    Science.gov (United States)

    Buser, Thaddaeus J; Sidlauskas, Brian L; Summers, Adam P

    2018-05-01

    We contrast 2D vs. 3D landmark-based geometric morphometrics in the fish subfamily Oligocottinae by using 3D landmarks from CT-generated models and comparing the morphospace of the 3D landmarks to one based on 2D landmarks from images. The 2D and 3D shape variables capture common patterns across taxa, such that the pairwise Procrustes distances among taxa correspond and the trends captured by principal component analysis are similar in the xy plane. We use the two sets of landmarks to test several ecomorphological hypotheses from the literature. Both 2D and 3D data reject the hypothesis that head shape correlates significantly with the depth at which a species is commonly found. However, in taxa where shape variation in the z-axis is high, the 2D shape variables show sufficiently strong distortion to influence the outcome of the hypothesis tests regarding the relationship between mouth size and feeding ecology. Only the 3D data support previous studies which showed that large mouth sizes correlate positively with high percentages of elusive prey in the diet. When used to test for morphological divergence, 3D data show no evidence of divergence, while 2D data show that one clade of oligocottines has diverged from all others. This clade shows the greatest degree of z-axis body depth within Oligocottinae, and we conclude that the inability of the 2D approach to capture this lateral body depth causes the incongruence between 2D and 3D analyses. Anat Rec, 301:806-818, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Supraspinatus tendon tears: comparison of 3D US and MR arthrography with surgical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Ho [Kangwon National University Hospital, Department of Radiology, Kangwon-do (Korea); Korea University Anam Hospital, Korea University College of Medicine, Department of Radiology, Seoul (Korea); Kim, Sam Soo [Kangwon National University Hospital, Department of Radiology, Kangwon-do (Korea); Kim, Jung Hyuk; Chung, Kyoo Byung; Kim, Yun Hwan; Oh, Yu-Whan [Korea University Anam Hospital, Korea University College of Medicine, Department of Radiology, Seoul (Korea); Jeong, Woong-Kyo [Korea University Anam Hospital, Korea University College of Medicine, Orthopaedic Surgery, Seoul (Korea); Kim, Baek Hyun [Korea University Ansan Hospital, Korea University College of Medicine, Department of Radiology, Ansan City (Korea)

    2009-11-15

    The objective of the study was to compare the diagnostic reliability of 3D US with MR arthrography in diagnosing supraspinatus tendon tears, with arthroscopic findings used as the standard. In a prospective study 50 patients who later underwent arthroscopic surgery of the rotator cuff were examined pre-operatively by 3D US with MR arthrography. The presence or absence of a full- or partial-thickness supraspinatus tendon tear and the tear size as demonstrated by each imaging and arthroscopy was recorded. The tear size was divided into three grades: small (<1 cm), medium (1-3 cm), and large (>3 cm). The arthroscopic diagnosis was a full-thickness tear in 40 patients, partial-thickness tears in 5, and intact supraspinatus tendon in 5. 3D US correctly diagnosed 35 out of 40 full-thickness tears and MR arthrography 39 out of 40 full-thickness tears. Regarding partial-thickness tears, 3D US underestimated 2 cases as no tear and overestimated 1 case as a full-thickness tear. MR arthrography underestimated 1 case as a partial-thickness tear and overestimated 2 cases as full-thickness and partial-thickness tears respectively. 3D US and MR arthrography yield a sensitivity for full-thickness tears of 87.5% and 97.5% with specificity of 90.0% and 90.0%. Based on the grading system, 3D US measurements correctly predicted the tear size of 23 (65.7%) of the 35 full-thickness tears and MR arthrography 30 (75.0%) of the 39 full-thickness tears. Three-dimensional ultrasound seems to be a promising imaging modality comparable to MR arthrography for the assessment of the supraspinatus tendon tears. (orig.)

  18. Calcium scoring with prospectively ECG-triggered CT: Using overlapping datasets generated with MPR decreases inter-scan variability

    International Nuclear Information System (INIS)

    Rutten, A.; Isgum, I.; Prokop, M.

    2011-01-01

    Objective: To examine the feasibility of reducing the inter-scan variability of prospectively ECG-triggered calcium-scoring scans by using overlapping 3-mm datasets generated from multiplanar reformation (MPR) instead of non-overlapping 3-mm or 1.5-mm datasets. Patients and methods: Seventy-five women (59-79 years old) underwent two sequential prospectively ECG-triggered calcium-scoring scans with 16 mm x 1.5 mm collimation in one session. Between the two scans patients got off and on the table. We performed calcium scoring (Agatston and mass scores) on the following datasets: contiguous 3-mm sections reconstructed from the raw data (A), contiguous 3-mm sections from MPR (B), overlapping 3-mm sections from MPR (C) and contiguous 1.5-mm sections from the raw data (D). To determine the feasibility of the MPR approach, we compared MPR (B) with direct raw data reconstruction (A). Inter-scan variability was calculated for each type of dataset (A-D). Results: Calcium scores ranged from 0 to 1455 (Agatston) and 0 to 279 mg (mass) for overlapping 3-mm sections (C). Calcium scores (both Agatston and mass) were nearly identical for MPR (B) and raw data approaches (A), with inter-quartile ranges of 0-1% for inter-scan variability. Median inter-scan variability with contiguous 3-mm sections (B) was 13% (Agatston) and 11% (mass). Median variability was reduced to 10% (Agatston and mass) with contiguous 1.5-mm sections (D) and to 8% (Agatston) and 7% (mass) with overlapping 3-mm MPR (A). Conclusion: Calcium scoring on MPR yields nearly identical results to calcium scoring on images directly reconstructed from raw data. Overlapping MPR from prospectively ECG-triggered scans improve inter-scan variability of calcium scoring without increasing patient radiation dose.

  19. 3D liver segmentation using multiple region appearances and graph cuts

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jialin, E-mail: 2004pjl@163.com; Zhang, Hongbo [College of Computer Science and Technology, Huaqiao University, Xiamen 361021 (China); Hu, Peijun; Lu, Fang; Kong, Dexing [College of Mathematics, Zhejiang University, Hangzhou 310027 (China); Peng, Zhiyi [Department of Radiology, First Affiliated Hospital, Zhejiang University, Hangzhou 310027 (China)

    2015-12-15

    Purpose: Efficient and accurate 3D liver segmentations from contrast-enhanced computed tomography (CT) images play an important role in therapeutic strategies for hepatic diseases. However, inhomogeneous appearances, ambiguous boundaries, and large variance in shape often make it a challenging task. The existence of liver abnormalities poses further difficulty. Despite the significant intensity difference, liver tumors should be segmented as part of the liver. This study aims to address these challenges, especially when the target livers contain subregions with distinct appearances. Methods: The authors propose a novel multiregion-appearance based approach with graph cuts to delineate the liver surface. For livers with multiple subregions, a geodesic distance based appearance selection scheme is introduced to utilize proper appearance constraint for each subregion. A special case of the proposed method, which uses only one appearance constraint to segment the liver, is also presented. The segmentation process is modeled with energy functions incorporating both boundary and region information. Rather than a simple fixed combination, an adaptive balancing weight is introduced and learned from training sets. The proposed method only calls initialization inside the liver surface. No additional constraints from user interaction are utilized. Results: The proposed method was validated on 50 3D CT images from three datasets, i.e., Medical Image Computing and Computer Assisted Intervention (MICCAI) training and testing set, and local dataset. On MICCAI testing set, the proposed method achieved a total score of 83.4 ± 3.1, outperforming nonexpert manual segmentation (average score of 75.0). When applying their method to MICCAI training set and local dataset, it yielded a mean Dice similarity coefficient (DSC) of 97.7% ± 0.5% and 97.5% ± 0.4%, respectively. These results demonstrated the accuracy of the method when applied to different computed tomography (CT) datasets

  20. Contributions in compression of 3D medical images and 2D images; Contributions en compression d'images medicales 3D et d'images naturelles 2D

    Energy Technology Data Exchange (ETDEWEB)

    Gaudeau, Y

    2006-12-15

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  1. Multifractal modelling and 3D lacunarity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hanen, Akkari, E-mail: bettaieb.hanen@topnet.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Imen, Bhouri, E-mail: bhouri_imen@yahoo.f [Unite de recherche ondelettes et multifractals, Faculte des sciences (Tunisia); Asma, Ben Abdallah, E-mail: asma.babdallah@cristal.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Patrick, Dubois, E-mail: pdubois@chru-lille.f [INSERM, U 703, Lille (France); Hedi, Bedoui Mohamed, E-mail: medhedi.bedoui@fmm.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia)

    2009-09-28

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  2. Intrinsic functional brain mapping in reconstructed 4D magnetic susceptibility (χ) data space.

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince

    2015-02-15

    By solving an inverse problem of T2*-weighted magnetic resonance imaging for a dynamic fMRI study, we reconstruct a 4D magnetic susceptibility source (χ) data space for intrinsic functional mapping. A 4D phase dataset is calculated from a 4D complex fMRI dataset. The background field and phase wrapping effect are removed by a Laplacian technique. A 3D χ source map is reconstructed from a 3D phase image by a computed inverse MRI (CIMRI) scheme. A 4D χ data space is reconstructed by repeating the 3D χ source reconstruction for each time point. A functional map is calculated by a temporal correlation between voxel signals in the 4D χ space and the timecourse of the task paradigm. With a finger-tapping experiment, we obtain two 3D functional mappings in the 4D magnitude data space and in the reconstructed 4D χ data space. We find that the χ-based functional mapping reveals co-occurrence of bidirectional responses in a 3D activation map that is different from the conventional magnitude-based mapping. The χ-based functional mapping can also be achieved by a 3D deconvolution of a phase activation map. Based on a subject experimental comparison, we show that the 4D χ tomography method could produce a similar χ activation map as obtained by the 3D deconvolution method. By removing the dipole effect and other fMRI technological contaminations, 4D χ tomography provides a 4D χ data space that allows a more direct and truthful functional mapping of a brain activity. Published by Elsevier B.V.

  3. Long-period noise source inversion in a 3-D heterogeneous Earth

    Science.gov (United States)

    Sager, K.; Ermert, L. A.; Afanasiev, M.; Boehm, C.; Fichtner, A.

    2017-12-01

    We have implemented a new method for ambient noise source inversion that fully honors finite-frequency wave propagation and 3-D heterogeneous Earth structure.Here, we present results of its first application to the Earth's long-period background signal, the hum, in a period band of around 120 - 300 s. In addition to being a computationally convenient test case, the hum is also the topic of ongoing research in its own right, because different physical mechanisms have been proposed for its excitation. The broad patterns of this model for South and North hemisphere winter are qualitatively consistent with previous long-term studies of the hum sources; however, thanks to methodological improvements, the iterative refinement, and the use of a comparatively extensive dataset, we retrieve a more detailed model in certain locations. In particular, our results support findings that the dominant hum sources are focused along coasts and shelf areas, particularly in the North hemisphere winter, with a possible though not well-constrained contribution of pelagic sources. Additionally, our findings indicate that hum source locations in the ocean, tentatively linked to locally high bathymetry, are important contributors particularly during South hemisphere winter. These results, in conjunction with synthetic recovery tests and observed cross-correlation waveforms, suggest that hum sources are rather narrowly concentrated in space, with length scales on the order of few hundred kilometers. Future work includes the extension of the model to spring and fall season and to shorter periods, as well as its use in full-waveform ambient noise inversion for 3-D Earth structure.

  4. Lung metastases detection in CT images using 3D template matching

    International Nuclear Information System (INIS)

    Wang, Peng; DeNunzio, Andrea; Okunieff, Paul; O'Dell, Walter G.

    2007-01-01

    The aim of this study is to demonstrate a novel, fully automatic computer detection method applicable to metastatic tumors to the lung with a diameter of 4-20 mm in high-risk patients using typical computed tomography (CT) scans of the chest. Three-dimensional (3D) spherical tumor appearance models (templates) of various sizes were created to match representative CT imaging parameters and to incorporate partial volume effects. Taking into account the variability in the location of CT sampling planes cut through the spherical models, three offsetting template models were created for each appearance model size. Lung volumes were automatically extracted from computed tomography images and the correlation coefficients between the subregions around each voxel in the lung volume and the set of appearance models were calculated using a fast frequency domain algorithm. To determine optimal parameters for the templates, simulated tumors of varying sizes and eccentricities were generated and superposed onto a representative human chest image dataset. The method was applied to real image sets from 12 patients with known metastatic disease to the lung. A total of 752 slices and 47 identifiable tumors were studied. Spherical templates of three sizes (6, 8, and 10 mm in diameter) were used on the patient image sets; all 47 true tumors were detected with the inclusion of only 21 false positives. This study demonstrates that an automatic and straightforward 3D template-matching method, without any complex training or postprocessing, can be used to detect small lung metastases quickly and reliably in the clinical setting

  5. Correlating Intravital Multi-Photon Microscopy to 3D Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points

    Science.gov (United States)

    Karreman, Matthia A.; Mercier, Luc; Schieber, Nicole L.; Shibue, Tsukasa; Schwab, Yannick; Goetz, Jacky G.

    2014-01-01

    Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D) mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis. PMID:25479106

  6. Supraspinatus tendon tears: comparison of 3D US and MR arthrography with surgical correlation

    International Nuclear Information System (INIS)

    Kang, Chang Ho; Kim, Sam Soo; Kim, Jung Hyuk; Chung, Kyoo Byung; Kim, Yun Hwan; Oh, Yu-Whan; Jeong, Woong-Kyo; Kim, Baek Hyun

    2009-01-01

    The objective of the study was to compare the diagnostic reliability of 3D US with MR arthrography in diagnosing supraspinatus tendon tears, with arthroscopic findings used as the standard. In a prospective study 50 patients who later underwent arthroscopic surgery of the rotator cuff were examined pre-operatively by 3D US with MR arthrography. The presence or absence of a full- or partial-thickness supraspinatus tendon tear and the tear size as demonstrated by each imaging and arthroscopy was recorded. The tear size was divided into three grades: small ( 3 cm). The arthroscopic diagnosis was a full-thickness tear in 40 patients, partial-thickness tears in 5, and intact supraspinatus tendon in 5. 3D US correctly diagnosed 35 out of 40 full-thickness tears and MR arthrography 39 out of 40 full-thickness tears. Regarding partial-thickness tears, 3D US underestimated 2 cases as no tear and overestimated 1 case as a full-thickness tear. MR arthrography underestimated 1 case as a partial-thickness tear and overestimated 2 cases as full-thickness and partial-thickness tears respectively. 3D US and MR arthrography yield a sensitivity for full-thickness tears of 87.5% and 97.5% with specificity of 90.0% and 90.0%. Based on the grading system, 3D US measurements correctly predicted the tear size of 23 (65.7%) of the 35 full-thickness tears and MR arthrography 30 (75.0%) of the 39 full-thickness tears. Three-dimensional ultrasound seems to be a promising imaging modality comparable to MR arthrography for the assessment of the supraspinatus tendon tears. (orig.)

  7. Clinical feasibility and validation of 3D principal strain analysis from cine MRI: comparison to 2D strain by MRI and 3D speckle tracking echocardiography.

    Science.gov (United States)

    Satriano, Alessandro; Heydari, Bobak; Narous, Mariam; Exner, Derek V; Mikami, Yoko; Attwood, Monica M; Tyberg, John V; Lydell, Carmen P; Howarth, Andrew G; Fine, Nowell M; White, James A

    2017-12-01

    Two-dimensional (2D) strain analysis is constrained by geometry-dependent reference directions of deformation (i.e. radial, circumferential, and longitudinal) following the assumption of cylindrical chamber architecture. Three-dimensional (3D) principal strain analysis may overcome such limitations by referencing intrinsic (i.e. principal) directions of deformation. This study aimed to demonstrate clinical feasibility of 3D principal strain analysis from routine 2D cine MRI with validation to strain from 2D tagged cine analysis and 3D speckle tracking echocardiography. Thirty-one patients undergoing cardiac MRI were studied. 3D strain was measured from routine, multi-planar 2D cine SSFP images using custom software designed to apply 4D deformation fields to 3D cardiac models to derive principal strain. Comparisons of strain estimates versus those by 2D tagged cine, 2D non-tagged cine (feature tracking), and 3D speckle tracking echocardiography (STE) were performed. Mean age was 51 ± 14 (36% female). Mean LV ejection fraction was 66 ± 10% (range 37-80%). 3D principal strain analysis was feasible in all subjects and showed high inter- and intra-observer reproducibility (ICC range 0.83-0.97 and 0.83-0.98, respectively-p analysis is feasible using routine, multi-planar 2D cine MRI and shows high reproducibility with strong correlations to 2D conventional strain analysis and 3D STE-based analysis. Given its independence from geometry-related directions of deformation this technique may offer unique benefit for the detection and prognostication of myocardial disease, and warrants expanded investigation.

  8. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  9. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network.

    Directory of Open Access Journals (Sweden)

    Seung Seog Han

    Full Text Available Although there have been reports of the successful diagnosis of skin disorders using deep learning, unrealistically large clinical image datasets are required for artificial intelligence (AI training. We created datasets of standardized nail images using a region-based convolutional neural network (R-CNN trained to distinguish the nail from the background. We used R-CNN to generate training datasets of 49,567 images, which we then used to fine-tune the ResNet-152 and VGG-19 models. The validation datasets comprised 100 and 194 images from Inje University (B1 and B2 datasets, respectively, 125 images from Hallym University (C dataset, and 939 images from Seoul National University (D dataset. The AI (ensemble model; ResNet-152 + VGG-19 + feedforward neural networks results showed test sensitivity/specificity/ area under the curve values of (96.0 / 94.7 / 0.98, (82.7 / 96.7 / 0.95, (92.3 / 79.3 / 0.93, (87.7 / 69.3 / 0.82 for the B1, B2, C, and D datasets. With a combination of the B1 and C datasets, the AI Youden index was significantly (p = 0.01 higher than that of 42 dermatologists doing the same assessment manually. For B1+C and B2+ D dataset combinations, almost none of the dermatologists performed as well as the AI. By training with a dataset comprising 49,567 images, we achieved a diagnostic accuracy for onychomycosis using deep learning that was superior to that of most of the dermatologists who participated in this study.

  10. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network.

    Science.gov (United States)

    Han, Seung Seog; Park, Gyeong Hun; Lim, Woohyung; Kim, Myoung Shin; Na, Jung Im; Park, Ilwoo; Chang, Sung Eun

    2018-01-01

    Although there have been reports of the successful diagnosis of skin disorders using deep learning, unrealistically large clinical image datasets are required for artificial intelligence (AI) training. We created datasets of standardized nail images using a region-based convolutional neural network (R-CNN) trained to distinguish the nail from the background. We used R-CNN to generate training datasets of 49,567 images, which we then used to fine-tune the ResNet-152 and VGG-19 models. The validation datasets comprised 100 and 194 images from Inje University (B1 and B2 datasets, respectively), 125 images from Hallym University (C dataset), and 939 images from Seoul National University (D dataset). The AI (ensemble model; ResNet-152 + VGG-19 + feedforward neural networks) results showed test sensitivity/specificity/ area under the curve values of (96.0 / 94.7 / 0.98), (82.7 / 96.7 / 0.95), (92.3 / 79.3 / 0.93), (87.7 / 69.3 / 0.82) for the B1, B2, C, and D datasets. With a combination of the B1 and C datasets, the AI Youden index was significantly (p = 0.01) higher than that of 42 dermatologists doing the same assessment manually. For B1+C and B2+ D dataset combinations, almost none of the dermatologists performed as well as the AI. By training with a dataset comprising 49,567 images, we achieved a diagnostic accuracy for onychomycosis using deep learning that was superior to that of most of the dermatologists who participated in this study.

  11. Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers

    International Nuclear Information System (INIS)

    Chan, Mark K. H.; Kwong, Dora L. W.; Ng, Sherry C. Y.; Tong, Anthony S. M.; Tam, Eric K. W.

    2013-01-01

    Purpose: Due to the complexity of 4D target tracking radiotherapy, the accuracy of this treatment strategy should be experimentally validated against established standard 3D technique. This work compared the accuracy of 3D and 4D dose calculations in respiration tracking stereotactic body radiotherapy (SBRT). Methods: Using the 4D planning module of the CyberKnife treatment planning system, treatment plans for a moving target and a static off-target cord structure were created on different four-dimensional computed tomography (4D-CT) datasets of a thorax phantom moving in different ranges. The 4D planning system used B-splines deformable image registrations (DIR) to accumulate dose distributions calculated on different breathing geometries, each corresponding to a static 3D-CT image of the 4D-CT dataset, onto a reference image to compose a 4D dose distribution. For each motion, 4D optimization was performed to generate a 4D treatment plan of the moving target. For comparison with standard 3D planning, each 4D plan was copied to the reference end-exhale images and a standard 3D dose calculation was followed. Treatment plans of the off-target structure were first obtained by standard 3D optimization on the end-exhale images. Subsequently, they were applied to recalculate the 4D dose distributions using DIRs. All dose distributions that were initially obtained using the ray-tracing algorithm with equivalent path-length heterogeneity correction (3D EPL and 4D EPL ) were recalculated by a Monte Carlo algorithm (3D MC and 4D MC ) to further investigate the effects of dose calculation algorithms. The calculated 3D EPL , 3D MC , 4D EPL , and 4D MC dose distributions were compared to measurements by Gafchromic EBT2 films in the axial and coronal planes of the moving target object, and the coronal plane for the static off-target object based on the γ metric at 5%/3mm criteria (γ 5%/3mm ). Treatment plans were considered acceptable if the percentage of pixels passing γ 5%/3

  12. Saliency-Guided Detection of Unknown Objects in RGB-D Indoor Scenes.

    Science.gov (United States)

    Bao, Jiatong; Jia, Yunyi; Cheng, Yu; Xi, Ning

    2015-08-27

    This paper studies the problem of detecting unknown objects within indoor environments in an active and natural manner. The visual saliency scheme utilizing both color and depth cues is proposed to arouse the interests of the machine system for detecting unknown objects at salient positions in a 3D scene. The 3D points at the salient positions are selected as seed points for generating object hypotheses using the 3D shape. We perform multi-class labeling on a Markov random field (MRF) over the voxels of the 3D scene, combining cues from object hypotheses and 3D shape. The results from MRF are further refined by merging the labeled objects, which are spatially connected and have high correlation between color histograms. Quantitative and qualitative evaluations on two benchmark RGB-D datasets illustrate the advantages of the proposed method. The experiments of object detection and manipulation performed on a mobile manipulator validate its effectiveness and practicability in robotic applications.

  13. High spatial resolution free-breathing 3D late gadolinium enhancement cardiac magnetic resonance imaging in ischaemic and non-ischaemic cardiomyopathy: quantitative assessment of scar mass and image quality.

    Science.gov (United States)

    Bizino, Maurice B; Tao, Qian; Amersfoort, Jacob; Siebelink, Hans-Marc J; van den Bogaard, Pieter J; van der Geest, Rob J; Lamb, Hildo J

    2018-04-06

    To compare breath-hold (BH) with navigated free-breathing (FB) 3D late gadolinium enhancement cardiac MRI (LGE-CMR) MATERIALS AND METHODS: Fifty-one patients were retrospectively included (34 ischaemic cardiomyopathy, 14 non-ischaemic cardiomyopathy, three discarded). BH and FB 3D phase sensitive inversion recovery sequences were performed at 3T. FB datasets were reformatted into normal resolution (FB-NR, 1.46x1.46x10mm) and high resolution (FB-HR, isotropic 0.91-mm voxels). Scar mass, scar edge sharpness (SES), SNR and CNR were compared using paired-samples t-test, Pearson correlation and Bland-Altman analysis. Scar mass was similar in BH and FB-NR (mean ± SD: 15.5±18.0 g vs. 15.5±16.9 g, p=0.997), with good correlation (r=0.953), and no bias (mean difference ± SD: 0.00±5.47 g). FB-NR significantly overestimated scar mass compared with FB-HR (15.5±16.9 g vs 14.4±15.6 g; p=0.007). FB-NR and FB-HR correlated well (r=0.988), but Bland-Altman demonstrated systematic bias (1.15±2.84 g). SES was similar in BH and FB-NR (p=0.947), but significantly higher in FB-HR than FB-NR (pFB-NR (pFB-HR than FB-NR (p<0.01). Navigated free-breathing 3D LGE-CMR allows reliable scar mass quantification comparable to breath-hold. During free-breathing, spatial resolution can be increased resulting in improved sharpness and reduced scar mass. • Navigated free-breathing 3D late gadolinium enhancement is reliable for myocardial scar quantification. • High-resolution 3D late gadolinium enhancement increases scar sharpness • Ischaemic and non-ischaemic cardiomyopathy patients can be imaged using free-breathing LGE CMR.

  14. MULTI SENSOR DATA INTEGRATION FOR AN ACCURATE 3D MODEL GENERATION

    Directory of Open Access Journals (Sweden)

    S. Chhatkuli

    2015-05-01

    Full Text Available The aim of this paper is to introduce a novel technique of data integration between two different data sets, i.e. laser scanned RGB point cloud and oblique imageries derived 3D model, to create a 3D model with more details and better accuracy. In general, aerial imageries are used to create a 3D city model. Aerial imageries produce an overall decent 3D city models and generally suit to generate 3D model of building roof and some non-complex terrain. However, the automatically generated 3D model, from aerial imageries, generally suffers from the lack of accuracy in deriving the 3D model of road under the bridges, details under tree canopy, isolated trees, etc. Moreover, the automatically generated 3D model from aerial imageries also suffers from undulated road surfaces, non-conforming building shapes, loss of minute details like street furniture, etc. in many cases. On the other hand, laser scanned data and images taken from mobile vehicle platform can produce more detailed 3D road model, street furniture model, 3D model of details under bridge, etc. However, laser scanned data and images from mobile vehicle are not suitable to acquire detailed 3D model of tall buildings, roof tops, and so forth. Our proposed approach to integrate multi sensor data compensated each other’s weakness and helped to create a very detailed 3D model with better accuracy. Moreover, the additional details like isolated trees, street furniture, etc. which were missing in the original 3D model derived from aerial imageries could also be integrated in the final model automatically. During the process, the noise in the laser scanned data for example people, vehicles etc. on the road were also automatically removed. Hence, even though the two dataset were acquired in different time period the integrated data set or the final 3D model was generally noise free and without unnecessary details.

  15. Gridded 5km GHCN-Daily Temperature and Precipitation Dataset, Version 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gridded 5km GHCN-Daily Temperature and Precipitation Dataset (nClimGrid) consists of four climate variables derived from the GHCN-D dataset: maximum temperature,...

  16. WHIM-3D-QSPR APPROACH FOR PREDICTING AQUEOUS SOLUBILITY OF CHLORINATED HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    Oman Zuas

    2010-06-01

    Full Text Available The weighted holistic invariant molecular-three dimensional-quantitative structure property relationship (WHIM-3D-QSPR approach has been applied to the study of the aqueous solubility (- log Sw of chlorinated hydrocarbon compounds (CHC's. The obtained QSPR model is predictive and only requires four WHIM-3D descriptors in the calculation. The correlation equation of the model that is based on a training set of 50 CHC's compound has statistical parameters: standard coefficient correlation (R2 = 0.948; cross-validated correlation coefficients (Q2 = 0.935; Standard Error of Validation (SEV = 0.35; and average absolute error (AAE = 0.31. The application of the best model to a testing set of 50 CHC's demonstrates a reliable result with good predictability. Besides, it was possible to construct new model by applying WHIM-3D-QSPR approach without require any experimental physicochemical properties in the calculation of aqueous solubility.   Keywords: WHIM-3D; QSPR; aqueous solubility; - Log Sw, chlorinated hydrocarbons, CHC's

  17. Azimuthal correlations of D-mesons in p+p and p+Pb collisions at LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Younus, M.; Sahu, P.K. [Institute of Physics, Bhubaneswar (India); Tripathy, S.K. [Institute of Physics, Bhubaneswar (India); Sambalpur University, Burla (India); Naik, Z. [Sambalpur University, Burla (India)

    2017-05-15

    We study the correlations of D mesons produced in p+p and p+Pb collisions. These are found to be sensitive to the effects of the cold nuclear medium and the transverse momentum (p{sub T}) regions we are looking into. In order to put this on a quantitative footing, as a first step we analyse the azimuthal correlations of D meson-charged hadron (Dh), and then predict the same for D meson-anti D meson (D anti D) pairs in p+p and p+Pb collisions with strong coupling at leading order O(α{sub s}{sup 2}) and next-to-leading order O(α{sub s}{sup 3}), which includes space-time evolution (in both systems) as well as cold nuclear matter effects (in p+Pb). This also sets the stage and baseline for the identification and study of medium modification of azimuthal correlations in relativistic collision of heavy nuclei at the Large Hadron Collider. (orig.)

  18. Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5 observations through 3D spatial analyses

    Science.gov (United States)

    Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar

    The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.

  19. Clinical correlates of vitamin D deficiency in established psychosis.

    Science.gov (United States)

    Lally, J; Gardner-Sood, P; Firdosi, M; Iyegbe, C; Stubbs, B; Greenwood, K; Murray, R; Smith, S; Howes, O; Gaughran, F

    2016-03-22

    Suboptimal vitamin D levels have been identified in populations with psychotic disorders. We sought to explore the relationship between vitamin D deficiency, clinical characteristics and cardiovascular disease risk factors among people with established psychosis. Vitamin D levels were measured in 324 community dwelling individuals in England with established psychotic disorders, along with measures of mental health, cardiovascular risk and lifestyle choices. Vitamin D deficiency was defined as serum 25-hydroxyvitamin D (25-OHD) levels below 10 ng/ml (equivalent to Vitamin D as above 30 ng/ml (>50 nmol/L). The mean 25-OHD serum level was 12.4 (SD 7.3) ng/ml, (range 4.0-51.7 ng/ml). Forty nine percent (n = 158) were vitamin D deficient, with only 14 % (n = 45) meeting criteria for sufficiency. Accounting for age, gender, ethnicity and season of sampling, serum 25-OHD levels were negatively correlated with waist circumference (r = -0.220, p vitamin D deficiency. Lower vitamin D levels are associated with increased cardiovascular disease risk factors and in particular metabolic syndrome. Further research is needed to define appropriate protocols for vitamin D testing and supplementation in practice to see if this can improve cardiovascular disease risk. ISRCTN number is ISRCTN58667926 Date of registration: 23/04/2010.

  20. Assessment of average of normals (AON) procedure for outlier-free datasets including qualitative values below limit of detection (LoD): an application within tumor markers such as CA 15-3, CA 125, and CA 19-9.

    Science.gov (United States)

    Usta, Murat; Aral, Hale; Mete Çilingirtürk, Ahmet; Kural, Alev; Topaç, Ibrahim; Semerci, Tuna; Hicri Köseoğlu, Mehmet

    2016-11-01

    Average of normals (AON) is a quality control procedure that is sensitive only to systematic errors that can occur in an analytical process in which patient test results are used. The aim of this study was to develop an alternative model in order to apply the AON quality control procedure to datasets that include qualitative values below limit of detection (LoD). The reported patient test results for tumor markers, such as CA 15-3, CA 125, and CA 19-9, analyzed by two instruments, were retrieved from the information system over a period of 5 months, using the calibrator and control materials with the same lot numbers. The median as a measure of central tendency and the median absolute deviation (MAD) as a measure of dispersion were used for the complementary model of AON quality control procedure. The u bias values, which were determined for the bias component of the measurement uncertainty, were partially linked to the percentages of the daily median values of the test results that fall within the control limits. The results for these tumor markers, in which lower limits of reference intervals are not medically important for clinical diagnosis and management, showed that the AON quality control procedure, using the MAD around the median, can be applied for datasets including qualitative values below LoD.

  1. 3D printing of normal and pathologic tricuspid valves from transthoracic 3D echocardiography data sets.

    Science.gov (United States)

    Muraru, Denisa; Veronesi, Federico; Maddalozzo, Anna; Dequal, Daniele; Frajhof, Leonardo; Rabischoffsky, Arnaldo; Iliceto, Sabino; Badano, Luigi P

    2017-07-01

    To explore the feasibility of using transthoracic 3D echocardiography (3DTTE) data to generate 3D patient-specific models of tricuspid valve (TV). Multi-beat 3D data sets of the TV (32 vol/s) were acquired in five subjects with various TV morphologies from the apical approach and analysed offline with custom-made software. Coordinates representing the annulus and the leaflets were imported into MeshLab (Visual Computing Lab ISTICNR) to develop solid models to be converted to stereolithographic file format and 3D print. Measurements of the TV annulus antero-posterior (AP) and medio-lateral (ML) diameters, perimeter (P), and TV tenting height (H) and volume (V) obtained from the 3D echo data set were compared with those performed on the 3D models using a caliper, a syringe and a millimeter tape. Antero-posterior (4.2 ± 0.2 cm vs. 4.2 ± 0 cm), ML (3.7 ± 0.2 cm vs. 3.6 ± 0.1 cm), P (12.6 ± 0.2 cm vs. 12.7 ± 0.1 cm), H (11.2 ± 2.1 mm vs. 10.8 ± 2.1 mm) and V (3.0 ± 0.6 ml vs. 2.8 ± 1.4 ml) were similar (P = NS for all) when measured on the 3D data set and the printed model. The two sets of measurements were highly correlated (r = 0.991). The mean absolute error (2D - 3D) for AP, ML, P and tenting H was 0.7 ± 0.3 mm, indicating accuracy of the 3D model of printing of the TV from 3DTTE data is feasible with highly conserved fidelity. This technique has the potential for rapid integration into clinical practice to assist with decision-making, surgical planning, and teaching. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions, please email: journals.permissions@oup.com.

  2. Indoor Modelling Benchmark for 3D Geometry Extraction

    Science.gov (United States)

    Thomson, C.; Boehm, J.

    2014-06-01

    A combination of faster, cheaper and more accurate hardware, more sophisticated software, and greater industry acceptance have all laid the foundations for an increased desire for accurate 3D parametric models of buildings. Pointclouds are the data source of choice currently with static terrestrial laser scanning the predominant tool for large, dense volume measurement. The current importance of pointclouds as the primary source of real world representation is endorsed by CAD software vendor acquisitions of pointcloud engines in 2011. Both the capture and modelling of indoor environments require great effort in time by the operator (and therefore cost). Automation is seen as a way to aid this by reducing the workload of the user and some commercial packages have appeared that provide automation to some degree. In the data capture phase, advances in indoor mobile mapping systems are speeding up the process, albeit currently with a reduction in accuracy. As a result this paper presents freely accessible pointcloud datasets of two typical areas of a building each captured with two different capture methods and each with an accurate wholly manually created model. These datasets are provided as a benchmark for the research community to gauge the performance and improvements of various techniques for indoor geometry extraction. With this in mind, non-proprietary, interoperable formats are provided such as E57 for the scans and IFC for the reference model. The datasets can be found at: http://indoor-bench.github.io/indoor-bench.

  3. 3D-Reconstructions and Virtual 4D-Visualization to Study Metamorphic Brain Development in the Sphinx Moth Manduca Sexta.

    Science.gov (United States)

    Huetteroth, Wolf; El Jundi, Basil; El Jundi, Sirri; Schachtner, Joachim

    2010-01-01

    DURING METAMORPHOSIS, THE TRANSITION FROM THE LARVA TO THE ADULT, THE INSECT BRAIN UNDERGOES CONSIDERABLE REMODELING: new neurons are integrated while larval neurons are remodeled or eliminated. One well acknowledged model to study metamorphic brain development is the sphinx moth Manduca sexta. To further understand mechanisms involved in the metamorphic transition of the brain we generated a 3D standard brain based on selected brain areas of adult females and 3D reconstructed the same areas during defined stages of pupal development. Selected brain areas include for example mushroom bodies, central complex, antennal- and optic lobes. With this approach we eventually want to quantify developmental changes in neuropilar architecture, but also quantify changes in the neuronal complement and monitor the development of selected neuronal populations. Furthermore, we used a modeling software (Cinema 4D) to create a virtual 4D brain, morphing through its developmental stages. Thus the didactical advantages of 3D visualization are expanded to better comprehend complex processes of neuropil formation and remodeling during development. To obtain datasets of the M. sexta brain areas, we stained whole brains with an antiserum against the synaptic vesicle protein synapsin. Such labeled brains were then scanned with a confocal laser scanning microscope and selected neuropils were reconstructed with the 3D software AMIRA 4.1.

  4. Bose-Einstein correlations in pp and PbPb collisions with ALICE at the LHC

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    We report on the results of identical pion femtoscopy at the LHC. The Bose-Einstein correlation analysis was performed on the large-statistics ALICE p+p at sqrt{s}= 0.9 TeV and 7 TeV datasets collected during 2010 LHC running and the first Pb+Pb dataset at sqrt{s_NN}= 2.76 TeV. Detailed pion femtoscopy studies in heavy-ion collisions have shown that emission region sizes ("HBT radii") decrease with increasing pair momentum, which is understood as a manifestation of the collective behavior of matter. 3D radii were also found to universally scale with event multiplicity. In p+p collisions at 7 TeV one measures multiplicities which are comparable with those registered in peripheral AuAu and CuCu collisions at RHIC, so direct comparisons and tests of scaling laws are now possible. We show the results of double-differential 3D pion HBT analysis, as a function of multiplicity and pair momentum. The results for two collision energies are compared to results obtained in the heavy-ion collisions at similar multipl...

  5. Viking Seismometer PDS Archive Dataset

    Science.gov (United States)

    Lorenz, R. D.

    2016-12-01

    The Viking Lander 2 seismometer operated successfully for over 500 Sols on the Martian surface, recording at least one likely candidate Marsquake. The Viking mission, in an era when data handling hardware (both on board and on the ground) was limited in capability, predated modern planetary data archiving, and ad-hoc repositories of the data, and the very low-level record at NSSDC, were neither convenient to process nor well-known. In an effort supported by the NASA Mars Data Analysis Program, we have converted the bulk of the Viking dataset (namely the 49,000 and 270,000 records made in High- and Event- modes at 20 and 1 Hz respectively) into a simple ASCII table format. Additionally, since wind-generated lander motion is a major component of the signal, contemporaneous meteorological data are included in summary records to facilitate correlation. These datasets are being archived at the PDS Geosciences Node. In addition to brief instrument and dataset descriptions, the archive includes code snippets in the freely-available language 'R' to demonstrate plotting and analysis. Further, we present examples of lander-generated noise, associated with the sampler arm, instrument dumps and other mechanical operations.

  6. ECA&D and E-OBS: High-resolution datasets for monitoring climate change and effects on viticulture in Europe

    Directory of Open Access Journals (Sweden)

    Photiadou Christiana

    2017-01-01

    Full Text Available Climate change and climate variability profoundly affect the production of wine. When facing a changing climate, the characteristics of wine produced in each region will change while the natural year-to-year variations in climate will increase variability of income for wine businesses and therefore affect profitability and economic resilience. The challenge posed to the viticulture community is thus to closely monitor these changes to be able to adapt business practices. The European Climate Assessment and Dataset (ECA&D and its gridded version E-OBS are tools to monitor the changing climatic conditions over Europe, with an emphasis on changes in extreme climatic conditions. In this paper, the potential of ECA&D and E-OBS for viticulture is demonstrated by a few examples. The examples include the changing areal suitable for Chardonnay cultivation, showing an expansion to areas which have been too cold only a few decades ago and retraction of optimal conditions from areas which have been suitable in the recent past. Other examples show the change in the diurnal temperature range in the latter stages of the ripening process of grapes and the variability in heavy precipitation events. Finally, first results of a new dataset for South America are presented.

  7. The role of 3-D interactive visualization in blind surveys of H I in galaxies

    Science.gov (United States)

    Punzo, D.; van der Hulst, J. M.; Roerdink, J. B. T. M.; Oosterloo, T. A.; Ramatsoku, M.; Verheijen, M. A. W.

    2015-09-01

    Upcoming H I surveys will deliver large datasets, and automated processing using the full 3-D information (two positional dimensions and one spectral dimension) to find and characterize H I objects is imperative. In this context, visualization is an essential tool for enabling qualitative and quantitative human control on an automated source finding and analysis pipeline. We discuss how Visual Analytics, the combination of automated data processing and human reasoning, creativity and intuition, supported by interactive visualization, enables flexible and fast interaction with the 3-D data, helping the astronomer to deal with the analysis of complex sources. 3-D visualization, coupled to modeling, provides additional capabilities helping the discovery and analysis of subtle structures in the 3-D domain. The requirements for a fully interactive visualization tool are: coupled 1-D/2-D/3-D visualization, quantitative and comparative capabilities, combined with supervised semi-automated analysis. Moreover, the source code must have the following characteristics for enabling collaborative work: open, modular, well documented, and well maintained. We review four state of-the-art, 3-D visualization packages assessing their capabilities and feasibility for use in the case of 3-D astronomical data.

  8. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    Science.gov (United States)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  9. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples

    Energy Technology Data Exchange (ETDEWEB)

    Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics (United States); Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics (United States)

    2015-05-15

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living {sup 15}N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through {sup 15}N–{sup 15}N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish {sup 15}N–{sup 15}N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI–HETCOR and 3D PISEMAI–HETCOR-mixing experiments.

  10. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.

    Science.gov (United States)

    Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi

    2015-05-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.

  11. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples

    International Nuclear Information System (INIS)

    Gopinath, T.; Mote, Kaustubh R.; Veglia, Gianluigi

    2015-01-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living 15 N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through 15 N– 15 N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish 15 N– 15 N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI–HETCOR and 3D PISEMAI–HETCOR-mixing experiments

  12. Refined 3d-3d correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; Loon, Mark van [Mathematical Institute, University of Oxford, Andrew Wiles Building,Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom)

    2017-04-28

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N=2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N=2 theories constructed from boundary conditions and interfaces in a 4d N=2{sup ∗} theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-’t Hooft loops in the 4d N=2{sup ∗} theory. In the presence of a mass parameter for the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  13. 2D-3D Face Recognition Method Basedon a Modified CCA-PCA Algorithm

    Directory of Open Access Journals (Sweden)

    Patrik Kamencay

    2014-03-01

    Full Text Available This paper presents a proposed methodology for face recognition based on an information theory approach to coding and decoding face images. In this paper, we propose a 2D-3D face-matching method based on a principal component analysis (PCA algorithm using canonical correlation analysis (CCA to learn the mapping between a 2D face image and 3D face data. This method makes it possible to match a 2D face image with enrolled 3D face data. Our proposed fusion algorithm is based on the PCA method, which is applied to extract base features. PCA feature-level fusion requires the extraction of different features from the source data before features are merged together. Experimental results on the TEXAS face image database have shown that the classification and recognition results based on the modified CCA-PCA method are superior to those based on the CCA method. Testing the 2D-3D face match results gave a recognition rate for the CCA method of a quite poor 55% while the modified CCA method based on PCA-level fusion achieved a very good recognition score of 85%.

  14. Chest wall segmentation in automated 3D breast ultrasound scans.

    Science.gov (United States)

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Exploring massive, genome scale datasets with the genometricorr package

    KAUST Repository

    Favorov, Alexander; Mularoni, Loris; Cope, Leslie M.; Medvedeva, Yulia; Mironov, Andrey A.; Makeev, Vsevolod J.; Wheelan, Sarah J.

    2012-01-01

    We have created a statistically grounded tool for determining the correlation of genomewide data with other datasets or known biological features, intended to guide biological exploration of high-dimensional datasets, rather than providing immediate answers. The software enables several biologically motivated approaches to these data and here we describe the rationale and implementation for each approach. Our models and statistics are implemented in an R package that efficiently calculates the spatial correlation between two sets of genomic intervals (data and/or annotated features), for use as a metric of functional interaction. The software handles any type of pointwise or interval data and instead of running analyses with predefined metrics, it computes the significance and direction of several types of spatial association; this is intended to suggest potentially relevant relationships between the datasets. Availability and implementation: The package, GenometriCorr, can be freely downloaded at http://genometricorr.sourceforge.net/. Installation guidelines and examples are available from the sourceforge repository. The package is pending submission to Bioconductor. © 2012 Favorov et al.

  16. Exploring massive, genome scale datasets with the genometricorr package

    KAUST Repository

    Favorov, Alexander

    2012-05-31

    We have created a statistically grounded tool for determining the correlation of genomewide data with other datasets or known biological features, intended to guide biological exploration of high-dimensional datasets, rather than providing immediate answers. The software enables several biologically motivated approaches to these data and here we describe the rationale and implementation for each approach. Our models and statistics are implemented in an R package that efficiently calculates the spatial correlation between two sets of genomic intervals (data and/or annotated features), for use as a metric of functional interaction. The software handles any type of pointwise or interval data and instead of running analyses with predefined metrics, it computes the significance and direction of several types of spatial association; this is intended to suggest potentially relevant relationships between the datasets. Availability and implementation: The package, GenometriCorr, can be freely downloaded at http://genometricorr.sourceforge.net/. Installation guidelines and examples are available from the sourceforge repository. The package is pending submission to Bioconductor. © 2012 Favorov et al.

  17. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  18. Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets.

    Directory of Open Access Journals (Sweden)

    Ilya Belevich

    2016-01-01

    Full Text Available Understanding the structure-function relationship of cells and organelles in their natural context requires multidimensional imaging. As techniques for multimodal 3-D imaging have become more accessible, effective processing, visualization, and analysis of large datasets are posing a bottleneck for the workflow. Here, we present a new software package for high-performance segmentation and image processing of multidimensional datasets that improves and facilitates the full utilization and quantitative analysis of acquired data, which is freely available from a dedicated website. The open-source environment enables modification and insertion of new plug-ins to customize the program for specific needs. We provide practical examples of program features used for processing, segmentation and analysis of light and electron microscopy datasets, and detailed tutorials to enable users to rapidly and thoroughly learn how to use the program.

  19. CCDC 1024867: Experimental Crystal Structure Determination : tris(mu-3,4,5,6-tetrafluorobenzene-1,2-diyl)-tri-mercury bisthieno[3,2-b:2',3'-d]thiophene dichloromethane solvate

    KAUST Repository

    Castañ eda, Raú l; Khrustalev, Victor N.; Fonari, Alexandr; Bredas, Jean-Luc; Getmanenko, Yulia A.; Timofeeva, Tatiana V.

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. A machine learning pipeline for automated registration and classification of 3D lidar data

    Science.gov (United States)

    Rajagopal, Abhejit; Chellappan, Karthik; Chandrasekaran, Shivkumar; Brown, Andrew P.

    2017-05-01

    Despite the large availability of geospatial data, registration and exploitation of these datasets remains a persis- tent challenge in geoinformatics. Popular signal processing and machine learning algorithms, such as non-linear SVMs and neural networks, rely on well-formatted input models as well as reliable output labels, which are not always immediately available. In this paper we outline a pipeline for gathering, registering, and classifying initially unlabeled wide-area geospatial data. As an illustrative example, we demonstrate the training and test- ing of a convolutional neural network to recognize 3D models in the OGRIP 2007 LiDAR dataset using fuzzy labels derived from OpenStreetMap as well as other datasets available on OpenTopography.org. When auxiliary label information is required, various text and natural language processing filters are used to extract and cluster keywords useful for identifying potential target classes. A subset of these keywords are subsequently used to form multi-class labels, with no assumption of independence. Finally, we employ class-dependent geometry extraction routines to identify candidates from both training and testing datasets. Our regression networks are able to identify the presence of 6 structural classes, including roads, walls, and buildings, in volumes as big as 8000 m3 in as little as 1.2 seconds on a commodity 4-core Intel CPU. The presented framework is neither dataset nor sensor-modality limited due to the registration process, and is capable of multi-sensor data-fusion.

  1. Lensfree diffractive tomography for the imaging of 3D cell cultures

    Science.gov (United States)

    Berdeu, Anthony; Momey, Fabien; Dinten, Jean-Marc; Gidrol, Xavier; Picollet-D'hahan, Nathalie; Allier, Cédric

    2017-02-01

    New microscopes are needed to help reaching the full potential of 3D organoid culture studies by gathering large quantitative and systematic data over extended periods of time while preserving the integrity of the living sample. In order to reconstruct large volumes while preserving the ability to catch every single cell, we propose new imaging platforms based on lens-free microscopy, a technic which is addressing these needs in the context of 2D cell culture, providing label-free and non-phototoxic acquisition of large datasets. We built lens-free diffractive tomography setups performing multi-angle acquisitions of 3D organoid cultures embedded in Matrigel and developed dedicated 3D holographic reconstruction algorithms based on the Fourier diffraction theorem. Nonetheless, holographic setups do not record the phase of the incident wave front and the biological samples in Petri dish strongly limit the angular coverage. These limitations introduce numerous artefacts in the sample reconstruction. We developed several methods to overcome them, such as multi-wavelength imaging or iterative phase retrieval. The most promising technic currently developed is based on a regularised inverse problem approach directly applied on the 3D volume to reconstruct. 3D reconstructions were performed on several complex samples such as 3D networks or spheroids embedded in capsules with large reconstructed volumes up to 25 mm3 while still being able to identify single cells. To our knowledge, this is the first time that such an inverse problem approach is implemented in the context of lens-free diffractive tomography enabling to reconstruct large fully 3D volumes of unstained biological samples.

  2. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  3. Higher point spin field correlators in D=4 superstring theory

    International Nuclear Information System (INIS)

    Haertl, D.; Schlotterer, O.; Stieberger, S.

    2010-01-01

    Calculational tools are provided allowing to determine general tree-level scattering amplitudes for processes involving bosons and fermions in heterotic and superstring theories in four space-time dimensions. We compute higher-point superstring correlators involving massless four-dimensional fermionic and spin fields. In D=4 these correlators boil down to a product of two pure spin field correlators of left- and right-handed spin fields. This observation greatly simplifies the computation of such correlators. The latter are basic ingredients to compute multi-fermion superstring amplitudes in D=4. Their underlying fermionic structure and the fermionic couplings in the effective action are determined by these correlators.

  4. Virtual 3D planning of tracheostomy placement and clinical applicability of 3D cannula design: a three-step study.

    Science.gov (United States)

    de Kleijn, Bertram J; Kraeima, Joep; Wachters, Jasper E; van der Laan, Bernard F A M; Wedman, Jan; Witjes, M J H; Halmos, Gyorgy B

    2018-02-01

    We aimed to investigate the potential of 3D virtual planning of tracheostomy tube placement and 3D cannula design to prevent tracheostomy complications due to inadequate cannula position. 3D models of commercially available cannula were positioned in 3D models of the airway. In study (1), a cohort that underwent tracheostomy between 2013 and 2015 was selected (n = 26). The cannula was virtually placed in the airway in the pre-operative CT scan and its position was compared to the cannula position on post-operative CT scans. In study (2), a cohort with neuromuscular disease (n = 14) was analyzed. Virtual cannula placing was performed in CT scans and tested if problems could be anticipated. Finally (3), for a patient with Duchenne muscular dystrophy and complications of conventional tracheostomy cannula, a patient-specific cannula was 3D designed, fabricated, and placed. (1) The 3D planned and post-operative tracheostomy position differed significantly. (2) Three groups of patients were identified: (A) normal anatomy; (B) abnormal anatomy, commercially available cannula fits; and (C) abnormal anatomy, custom-made cannula, may be necessary. (3) The position of the custom-designed cannula was optimal and the trachea healed. Virtual planning of the tracheostomy did not correlate with actual cannula position. Identifying patients with abnormal airway anatomy in whom commercially available cannula cannot be optimally positioned is advantageous. Patient-specific cannula design based on 3D virtualization of the airway was beneficial in a patient with abnormal airway anatomy.

  5. Exploring massive, genome scale datasets with the GenometriCorr package.

    Directory of Open Access Journals (Sweden)

    Alexander Favorov

    2012-05-01

    Full Text Available We have created a statistically grounded tool for determining the correlation of genomewide data with other datasets or known biological features, intended to guide biological exploration of high-dimensional datasets, rather than providing immediate answers. The software enables several biologically motivated approaches to these data and here we describe the rationale and implementation for each approach. Our models and statistics are implemented in an R package that efficiently calculates the spatial correlation between two sets of genomic intervals (data and/or annotated features, for use as a metric of functional interaction. The software handles any type of pointwise or interval data and instead of running analyses with predefined metrics, it computes the significance and direction of several types of spatial association; this is intended to suggest potentially relevant relationships between the datasets.The package, GenometriCorr, can be freely downloaded at http://genometricorr.sourceforge.net/. Installation guidelines and examples are available from the sourceforge repository. The package is pending submission to Bioconductor.

  6. Full 3D Microwave Tomography enhanced GPR surveys: a case study

    Science.gov (United States)

    Catapano, Ilaria; Soldovieri, Francesco; Affinito, Antonio; Hugenschmidt, Johannes

    2014-05-01

    that, the use of a full 3D scattering model allows an improved estimation of the objects shape and size with respect to pseudo 3D imaging [5]. In this communication, the performance offered by the full 3D imaging approach is investigated by using a dataset from infrastructure inspection. Since the collapse of a car park in Switzerland killing 7 firemen, "punching", where a pile remains upright but the ceiling carried by the pile falls down, is considered a serious problem The 3D tomography approach was applied to a dataset acquired in a car park in the vicinity of piles. Such datasets can be used for an assessment of the safety of such structures and can therefore be considered as relevant test cases for innovative data processing and inversion strategies. REFERENCES [1] F. Soldovieri, J. Hugenschmidt, R. Persico and G. Leone, "A linear inverse scattering algorithm for realistic GPR applications, Near Surf. Geophys., vol. 5, pp.29-42, 2007. [2] I. Catapano, L. Crocco R. Di Napoli, F. Soldovieri, A. Brancaccio, F. Pesando, A. Aiello, "Microwave tomography enhanced GPR surveys in Centaur's Domus, Regio VI of Pompeii, Italy", J. Geophys. Eng., vol.9, S92-S99, 2012. [3] I. Catapano, R. Di Napoli, F. Soldovieri, M. Bavusi, A. Loperte, J. Dumoulin, Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site, J. Geophys. Eng., vol. 9, S100-S107, 2012 [4] J. Hugenschmidt, A. Kalogeropoulos, F. Soldovieri, G. Prisco (2010) Processing Strategies for high-resolution GPR Concrete Inspections, NDT & E International, Volume 43, Issue 4: 334-342. [5] I. Catapano, A. Affinito, G. Gennarelli, F. di Maio, A. Loperte, F. Soldovieri, Full three-dimensional imaging via ground penetrating radar: assessment in controlled conditions and on field for archaeological prospecting, Appl. Phys. A: Materials Science and Processing, pp. 1-8, Article in Press

  7. 3&4D Geomodeling Applied to Mineral Resources Exploration - A New Tool for Targeting Deposits.

    Science.gov (United States)

    Royer, Jean-Jacques; Mejia, Pablo; Caumon, Guillaume; Collon-Drouaillet, Pauline

    2013-04-01

    3 & 4D geomodeling, a computer method for reconstituting the past deformation history of geological formations, has been used in oil and gas exploration for more than a decade for reconstituting fluid migration. It begins nowadays to be applied for exploring with new eyes old mature mining fields and new prospects. We describe shortly the 3&4D geomodeling basic notions, concepts, and methodology when applied to mineral resources assessment and modeling ore deposits, pointing out the advantages, recommendations and limitations, together with new challenges they rise. Several 3D GeoModels of mining explorations selected across Europe will be presented as illustrative case studies which have been achieved during the EU FP7 ProMine research project. It includes: (i) the Cu-Au porphyry deposits in the Hellenic Belt (Greece); (ii) the VMS in the Iberian Pyrite Belt including the Neves Corvo deposit (Portugal) and (iii) the sediment-hosted polymetallic Cu-Ag (Au, PGE) Kupferschiefer ore deposit in the Foresudetic Belt (Poland). In each case full 3D models using surfaces and regular grid (Sgrid) were built from all dataset available from exploration and exploitation including geological primary maps, 2D seismic cross-sections, and boreholes. The level of knowledge may differ from one site to another however those 3D resulting models were used to pilot additional field and exploration works. In the case of the Kupferschiefer, a sequential restoration-decompaction (4D geomodeling) from the Upper Permian to Cenozoic was conducted in the Lubin- Sieroszowice district of Poland. The results help in better understanding the various superimposed mineralization events which occurred through time in this copper deposit. A hydro-fracturing index was then calculated from the estimated overpressures during a Late Cretaceous-Early Paleocene up-lifting, and seems to correlate with the copper content distribution in the ore-series. These results are in agreement with an Early Paleocene

  8. Lossy to lossless object-based coding of 3-D MRI data.

    Science.gov (United States)

    Menegaz, Gloria; Thiran, Jean-Philippe

    2002-01-01

    We propose a fully three-dimensional (3-D) object-based coding system exploiting the diagnostic relevance of the different regions of the volumetric data for rate allocation. The data are first decorrelated via a 3-D discrete wavelet transform. The implementation via the lifting steps scheme allows to map integer-to-integer values, enabling lossless coding, and facilitates the definition of the object-based inverse transform. The coding process assigns disjoint segments of the bitstream to the different objects, which can be independently accessed and reconstructed at any up-to-lossless quality. Two fully 3-D coding strategies are considered: embedded zerotree coding (EZW-3D) and multidimensional layered zero coding (MLZC), both generalized for region of interest (ROI)-based processing. In order to avoid artifacts along region boundaries, some extra coefficients must be encoded for each object. This gives rise to an overheading of the bitstream with respect to the case where the volume is encoded as a whole. The amount of such extra information depends on both the filter length and the decomposition depth. The system is characterized on a set of head magnetic resonance images. Results show that MLZC and EZW-3D have competitive performances. In particular, the best MLZC mode outperforms the others state-of-the-art techniques on one of the datasets for which results are available in the literature.

  9. Assignment of methyl NMR resonances of a 52 kDa protein with residue-specific 4D correlation maps

    International Nuclear Information System (INIS)

    Mishra, Subrata H.; Frueh, Dominique P.

    2015-01-01

    Methyl groups have become key probes for structural and functional studies by nuclear magnetic resonance. However, their NMR signals cluster in a small spectral region and assigning their resonances can be a tedious process. Here, we present a method that facilitates assignment of methyl resonances from assigned amide groups. Calculating the covariance between sensitive methyl and amide 3D spectra, each providing correlations to C α and C β separately, produces 4D correlation maps directly correlating methyl groups to amide groups. Optimal correlation maps are obtained by extracting residue-specific regions, applying derivative to the dimensions subject to covariance, and multiplying 4D maps stemming from different 3D spectra. The latter procedure rescues weak signals that may be missed in traditional assignment procedures. Using these covariance correlation maps, nearly all assigned isoleucine, leucine, and valine amide resonances of a 52 kDa nonribosomal peptide synthetase cyclization domain were paired with their corresponding methyl groups

  10. 3D-mallien muokkaus 3D-tulostamista varten CAD-ohjelmilla

    OpenAIRE

    Lehtimäki, Jarmo

    2013-01-01

    Insinöörityössäni käsitellään 3D-mallien tulostamista ja erityisesti 3D-mallien mallintamista niin, että kappaleiden valmistaminen 3D-tulostimella onnistuisi mahdollisimman hyvin. Työ tehtiin Prohoc Oy:lle, joka sijaitsee Vaasassa. 3D-tulostuspalveluun tuli jatkuvasti 3D-malleja, joiden tulostuksessa oli ongelmia. Työssäni tutkin näiden ongelmien syntyä ja tein ohjeita eri 3D-mallinnusohjelmille, joiden tarkoituksena on auttaa tekemään helpommin tulostettavia 3D-malleja. Työhön kuului myös et...

  11. AUTOMATIC TEXTURE RECONSTRUCTION OF 3D CITY MODEL FROM OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    J. Kang

    2016-06-01

    Full Text Available In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.

  12. Note: Coincidence measurements of 3He and neutrons from a compact D-D neutron generator

    Science.gov (United States)

    Ji, Q.; Lin, C.-J.; Tindall, C.; Garcia-Sciveres, M.; Schenkel, T.; Ludewigt, B. A.

    2017-05-01

    Tagging of neutrons (2.45 MeV) with their associated 3He particles from deuterium-deuterium (D-D) fusion reactions has been demonstrated in a compact neutron generator setup enabled by a high brightness, microwave-driven ion source with a high fraction of deuterons. Energy spectra with well separated peaks of the D-D fusion reaction products, 3He, tritons, and protons, were measured with a silicon PIN diode. The neutrons were detected using a liquid scintillator detector with pulse shape discrimination. By correlating the 3He detection events with the neutron detection in time, we demonstrated the tagging of emitted neutrons with 3He particles detected with a Si PIN diode detector mounted inside the neutron generator vacuum vessel.

  13. 3D imaging, 3D printing and 3D virtual planning in endodontics.

    Science.gov (United States)

    Shah, Pratik; Chong, B S

    2018-03-01

    The adoption and adaptation of recent advances in digital technology, such as three-dimensional (3D) printed objects and haptic simulators, in dentistry have influenced teaching and/or management of cases involving implant, craniofacial, maxillofacial, orthognathic and periodontal treatments. 3D printed models and guides may help operators plan and tackle complicated non-surgical and surgical endodontic treatment and may aid skill acquisition. Haptic simulators may assist in the development of competency in endodontic procedures through the acquisition of psycho-motor skills. This review explores and discusses the potential applications of 3D printed models and guides, and haptic simulators in the teaching and management of endodontic procedures. An understanding of the pertinent technology related to the production of 3D printed objects and the operation of haptic simulators are also presented.

  14. Augmented Reality Prototype for Visualizing Large Sensors’ Datasets

    Directory of Open Access Journals (Sweden)

    Folorunso Olufemi A.

    2011-04-01

    Full Text Available This paper addressed the development of an augmented reality (AR based scientific visualization system prototype that supports identification, localisation, and 3D visualisation of oil leakages sensors datasets. Sensors generates significant amount of multivariate datasets during normal and leak situations which made data exploration and visualisation daunting tasks. Therefore a model to manage such data and enhance computational support needed for effective explorations are developed in this paper. A challenge of this approach is to reduce the data inefficiency. This paper presented a model for computing information gain for each data attributes and determine a lead attribute.The computed lead attribute is then used for the development of an AR-based scientific visualization interface which automatically identifies, localises and visualizes all necessary data relevant to a particularly selected region of interest (ROI on the network. Necessary architectural system supports and the interface requirements for such visualizations are also presented.

  15. 2D/3D/4D ULTRASOUND IN INFERTILITY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Uršula Reš-Muravec

    2018-02-01

    CoSy (Hysterosal- pingo Contrast Sonografy or 3D HyCoSy. Examination of the ovary: With the 2D ultrasound the size of ovaries is measured and the morphology of ovaries is examined. With the 3D ultrasound the volume of the ovaries, follicles, cysts and tumors can be measured. Furthermore, position of the ovaries with re- gard to their surrounding can be defined. With the 3D surface mode we can see the surface view of the inner layer of the follicle or the cyst. The volume of the liquid structures can be measured with VOCAL or sonoAVC (sono automated volume count. The number of the antral follicles strongly correlates with fertility potential markers such as FSH and AMH. Examination of peritoneum: The position of gynaecological organs and ascites are defined. Examination of vagina: Endometriotic nodules can be excluded with ultrasound. A 3D ultrasound can define the exact position of the nodule. Ultrasound in the following of infertility treatment: Before the ovarian stimulation it is mandatory to exclude pelvic pathology that can influence the stimulation. Ovarian stimulation: We follow the natural or stimulated cycles with an ultrasound in view of follicular and endometrial growth. SonoAVC offers us automatic volume count of all follicles. This information enables us to change the stimulation protocol and avoid OHSS more accurately comparing to the standard 2D technology. Oocyte puncture: US puncture is done with ultrasound-guided needle. Great vessels around the vagina and on the needle line can be avoided if colour doppler is used. With 3D surface mode good quality follicles can be identified. Embryotransfer (ET: The angle between cervical canal and corpus uteri can be mea- sured before the embryotransfer. The introduction of the ET catheter can be followed with the 2D transabdominal probe. More exact location of the catheter can be visualized with 4D US. With this method we can avoid touching the uterine fundus with the catether and avoid bleeding in the foetus surroundings

  16. A 3d-3d appetizer

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Du; Ye, Ke [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125 (United States)

    2016-11-02

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T[L(p,1)] and the partition function of complex Chern-Simons theory on L(p,1). In particular, for p=1, we show how the familiar S{sup 3} partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p,1)] becomes a constant independent of p. In addition, we study T[L(p,1)] on the squashed three-sphere S{sub b}{sup 3}. This enables us to see clearly, at the level of partition function, to what extent G{sub ℂ} complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  17. Correlation between excited d-orbital electron lifetime in polaron dynamics and coloration of WO3 upon ultraviolet exposure

    Science.gov (United States)

    Lee, Young-Ahn; Han, Seung-Ik; Rhee, Hanju; Seo, Hyungtak

    2018-05-01

    Polarons have been suggested to explain the mechanism of the coloration of WO3 induced by UV light. However, despite the many experimental results that support small polarons as a key mechanism, direct observation of the carrier dynamics of polarons have yet to be reported. Here, we investigate the correlation between the electronic structure and the coloration of WO3 upon exposure to UV light in 5% H2/N2 gas and, more importantly, reveal photon-induced excited d-electron generation/relaxation via the W5+ oxidation state. The WO3 is fabricated by radio-frequency magnetron sputtering. X-ray diffraction patterns show that prepared WO3 is amorphous. Optical bandgap of 3.1 eV is measured by UV-vis before and after UV light. The results of Fourier transform infrared and Raman exhibit pristine WO3 is formed with surface H2O. The colored WO3 shows reduced state of W5+ state (34.3 eV) by using X-ray photoelectron spectroscopy. The valence band maximum of WO3 after UV light in H2 is shifted from mid gap to shallow donor by using ultraviolet photoelectron spectroscopy. During the exploration of the carrier dynamics, pump (700 nm)-probe (1000 nm) spectroscopy at the femtosecond scale was used. The results indicated that electron-phonon relaxation of UV-irradiated WO3, which is the origin of the polaron-induced local surface plasmonic effect, is dominant, resulting in slow decay (within a few picoseconds); in contrast, pristine WO3 shows fast decay (less than a picosecond). Accordingly, the long photoinduced carrier relaxation is ascribed to the prolonged hot-carrier lifetime in reduced oxides resulting in a greater number of free d-electrons and, therefore, more interactions with the W5+ sub-gap states.

  18. Neural correlates of olfactory and visual memory performance in 3D-simulated mazes after intranasal insulin application.

    Science.gov (United States)

    Brünner, Yvonne F; Rodriguez-Raecke, Rea; Mutic, Smiljana; Benedict, Christian; Freiherr, Jessica

    2016-10-01

    This fMRI study intended to establish 3D-simulated mazes with olfactory and visual cues and examine the effect of intranasally applied insulin on memory performance in healthy subjects. The effect of insulin on hippocampus-dependent brain activation was explored using a double-blind and placebo-controlled design. Following intranasal administration of either insulin (40IU) or placebo, 16 male subjects participated in two experimental MRI sessions with olfactory and visual mazes. Each maze included two separate runs. The first was an encoding maze during which subjects learned eight olfactory or eight visual cues at different target locations. The second was a recall maze during which subjects were asked to remember the target cues at spatial locations. For eleven included subjects in the fMRI analysis we were able to validate brain activation for odor perception and visuospatial tasks. However, we did not observe an enhancement of declarative memory performance in our behavioral data or hippocampal activity in response to insulin application in the fMRI analysis. It is therefore possible that intranasal insulin application is sensitive to the methodological variations e.g. timing of task execution and dose of application. Findings from this study suggest that our method of 3D-simulated mazes is feasible for studying neural correlates of olfactory and visual memory performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. GLEAM version 3: Global Land Evaporation Datasets and Model

    Science.gov (United States)

    Martens, B.; Miralles, D. G.; Lievens, H.; van der Schalie, R.; de Jeu, R.; Fernandez-Prieto, D.; Verhoest, N.

    2015-12-01

    Terrestrial evaporation links energy, water and carbon cycles over land and is therefore a key variable of the climate system. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to limitations in in situ measurements. As a result, several methods have risen to estimate global patterns of land evaporation from satellite observations. However, these algorithms generally differ in their approach to model evaporation, resulting in large differences in their estimates. One of these methods is GLEAM, the Global Land Evaporation: the Amsterdam Methodology. GLEAM estimates terrestrial evaporation based on daily satellite observations of meteorological variables, vegetation characteristics and soil moisture. Since the publication of the first version of the algorithm (2011), the model has been widely applied to analyse trends in the water cycle and land-atmospheric feedbacks during extreme hydrometeorological events. A third version of the GLEAM global datasets is foreseen by the end of 2015. Given the relevance of having a continuous and reliable record of global-scale evaporation estimates for climate and hydrological research, the establishment of an online data portal to host these data to the public is also foreseen. In this new release of the GLEAM datasets, different components of the model have been updated, with the most significant change being the revision of the data assimilation algorithm. In this presentation, we will highlight the most important changes of the methodology and present three new GLEAM datasets and their validation against in situ observations and an alternative dataset of terrestrial evaporation (ERA-Land). Results of the validation exercise indicate that the magnitude and the spatiotemporal variability of the modelled evaporation agree reasonably well with the estimates of ERA-Land and the in situ

  20. FEASIBILITY COMPARISON OF AIRBORNE LASER SCANNING DATA AND 3D-POINT CLOUDS FORMED FROM UNMANNED AERIAL VEHICLE (UAV-BASED IMAGERY USED FOR 3D PROJECTING

    Directory of Open Access Journals (Sweden)

    I. I. Rilskiy

    2017-01-01

    Full Text Available New, innovative methods of aerial surveys have changed the approaches to information provision of projecting dramatically for the last 15 years. Nowadays there are at least two methods that claim to be the most efficient way for collecting geospatial data intended for projecting – the airborne laser scanning (LIDAR data and photogrammetrically processed unmanned aerial vehicle (UAV-based aerial imagery, forming 3D point clouds. But these materials are not identical to each other neither in precision, nor in completeness.Airborne laser scanning (LIDAR is normally being performed using manned aircrafts. LIDAR data are very precise, they allow us to achieve data about relief even overgrown with vegetation, or to collect laser reflections from wires, metal constructions and poles. UAV surveys are normally being performed using frame digital cameras (lightweight, full-frame, or mid-size. These cameras form images that are being processed using 3D photogrammetric software in automatic mode that allows one to generate 3D point cloud, which is used for building digital elevation models, surfaces, orthomosaics, etc.All these materials are traditionally being used for making maps and GIS data. LIDAR data have been popular in design work. Also there have been some attempts to use for the same purpose 3D-point clouds, formed by photogrammetric software from images acquired from UAVs.After comparison of the datasets from these two different types of surveying (surveys were made simultaneously on the same territory, it became possible to define some specific, typical for LIDAR or imagery-based 3D data. It can be mentioned that imagery-based 3D data (3D point clouds, formed in automatic mode using photogrammetry, are much worse than LIDAR data – both in terms of precision and completeness.The article highlights these differences and makes attempts at explaining the origin of these differences. 

  1. Single-View 3D Scene Reconstruction and Parsing by Attribute Grammar.

    Science.gov (United States)

    Liu, Xiaobai; Zhao, Yibiao; Zhu, Song-Chun

    2018-03-01

    In this paper, we present an attribute grammar for solving two coupled tasks: i) parsing a 2D image into semantic regions; and ii) recovering the 3D scene structures of all regions. The proposed grammar consists of a set of production rules, each describing a kind of spatial relation between planar surfaces in 3D scenes. These production rules are used to decompose an input image into a hierarchical parse graph representation where each graph node indicates a planar surface or a composite surface. Different from other stochastic image grammars, the proposed grammar augments each graph node with a set of attribute variables to depict scene-level global geometry, e.g., camera focal length, or local geometry, e.g., surface normal, contact lines between surfaces. These geometric attributes impose constraints between a node and its off-springs in the parse graph. Under a probabilistic framework, we develop a Markov Chain Monte Carlo method to construct a parse graph that optimizes the 2D image recognition and 3D scene reconstruction purposes simultaneously. We evaluated our method on both public benchmarks and newly collected datasets. Experiments demonstrate that the proposed method is capable of achieving state-of-the-art scene reconstruction of a single image.

  2. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    International Nuclear Information System (INIS)

    Bäck, A

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK ® (Sun Nuclear), MatriXX Evolution (IBA Dosimetry) and OCTAVIOUS ® 1500 (PTW), 3D phantoms such as OCTAVIUS ® 4D (PTW), ArcCHECK ® (Sun Nuclear) and Delta 4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDose TM (Sun Nuclear) and Dosimetry Check TM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific

  3. A novel approach for a 2D/3D image registration routine for medical tool navigation in minimally invasive vascular interventions

    Energy Technology Data Exchange (ETDEWEB)

    Schwerter, Michael [Forschungszentrum Juelich (Germany). Inst. of Neuroscience and Medicine (INM-4) - Medical Imaging Physics; Lietzmann, Florian; Schad, Lothar R. [Heidelberg Univ., Medical Faculty Mannheim (Germany). Computer Assisted Clinical Medicine

    2016-11-01

    Minimally invasive interventions are frequently aided by 2D projective image guidance. To facilitate the navigation of medical tools within the patient, information from preoperative 3D images can supplement interventional data. This work describes a novel approach to perform a 3D CT data registration to a single interventional native fluoroscopic frame. The goal of this procedure is to recover and visualize a current 2D interventional tool position in its corresponding 3D dataset. A dedicated routine was developed and tested on a phantom. The 3D position of a guidewire inserted into the phantom could successfully be reconstructed for varying 2D image acquisition geometries. The scope of the routine includes projecting the CT data into the plane of the fluoroscopy. A subsequent registration of the real and virtual projections is performed with an accuracy within the range of 1.16 ± 0.17 mm for fixed landmarks. The interventional tool is extracted from the fluoroscopy and matched to the corresponding part of the projected and transformed arterial vasculature. A root mean square error of up to 0.56 mm for matched point pairs is reached. The desired 3D view is provided by backprojecting the matched guidewire through the CT array. Due to its potential to reduce patient dose and treatment times, the proposed routine has the capability of reducing patient stress at lower overall treatment costs.

  4. 3D-reconstructions and virtual 4D-visualization to study metamorphic brain development in the sphinx moth Manduca sexta

    Directory of Open Access Journals (Sweden)

    Wolf Huetteroth

    2010-03-01

    Full Text Available During metamorphosis, the transition from the larva to the adult, the insect brain undergoes considerable remodeling: New neurons are integrated while larval neurons are remodeled or eliminated. One well acknowledged model to study metamorphic brain development is the sphinx moth Manduca sexta. To further understand mechanisms involved in the metamorphic transition of the brain we generated a 3D standard brain based on selected brain areas of adult females and 3D reconstructed the same areas during defined stages of pupal development. Selected brain areas include for example mushroom bodies, central complex, antennal- and optic lobes. With this approach we eventually want to quantify developmental changes in neuropilar architecture, but also quantify changes in the neuronal complement and monitor the development of selected neuronal populations. Furthermore, we used a modeling software (Cinema 4D to create a virtual 4D brain, morphing through its developmental stages. Thus the didactical advantages of 3D visualization are expanded to better comprehend complex processes of neuropil formation and remodeling during development. To obtain datasets of the M. sexta brain areas, we stained whole brains with an antiserum against the synaptic vesicle protein synapsin. Such labeled brains were then scanned with a confocal laser scanning microscope and selected neuropils were reconstructed with the 3D software AMIRA 4.1.

  5. Technical note: Correlation of respiratory motion between external patient surface and internal anatomical landmarks

    Science.gov (United States)

    Fayad, Hadi; Pan, Tinsu; Clément, Jean-François; Visvikis, Dimitris

    2011-01-01

    Purpose Current respiratory motion monitoring devices used for motion synchronization in medical imaging and radiotherapy provide either 1D respiratory signals over a specific region or 3D information based on few external or internal markers. On the other hand, newer technology may offer the potential to monitor the entire patient external surface in real time. The main objective of this study was to assess the motion correlation between such an external patient surface and internal anatomical landmarks motion. Methods Four dimensional Computed Tomography (4D CT) volumes for ten patients were used in this study. Anatomical landmarks were manually selected in the thoracic region across the 4D CT datasets by two experts. The landmarks included normal structures as well as the tumour location. In addition, a distance map representing the entire external patient surface, which corresponds to surfaces acquired by a Time of Flight (ToF) camera or similar devices, was created by segmenting the skin of all 4D CT volumes using a thresholding algorithm. Finally, the correlation between the internal landmarks and external surface motion was evaluated for different regions (placement and size) throughout a patient’s surface. Results Significant variability was observed in the motion of the different parts of the external patient surface. The larger motion magnitude was consistently measured in the central regions of the abdominal and the thoracic areas for the different patient datasets considered. The highest correlation coefficients were observed between the motion of these external surface areas and internal landmarks such as the diaphragm and mediastinum structures as well as the tumour location landmarks (0.8 ± 0.18 and 0.72 ± 0.12 for the abdominal and the thoracic regions respectively). Worse correlation was observed when one considered landmarks not significantly influenced by respiratory motion such as the apex and the sternum. Discussion and conclusions There

  6. 3D Architecture and evolution of the Po Plain-Northern Adriatic Foreland basin during Plio-Pleistocene time

    Science.gov (United States)

    Amadori, Chiara; Toscani, Giovanni; Ghielmi, Manlio; Maesano, Francesco Emanuele; D'Ambrogi, Chiara; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Di Giulio, Andrea

    2017-04-01

    The Pliocene-Pleistocene tectonic and sedimentary evolution of the eastern Po Plain and northern Adriatic Foreland Basin (PPAF) (extended ca. 35,000 km2) was the consequence of severe Northern Apennine compressional activity and climate-driven eustatic changes. According with the 2D seismic interpretation, facies analysis and sequence stratigraphy approach by Ghielmi et al. (2013 and references therein), these tectono-eustatic phases generated six basin-scale unconformities referred as Base Pliocene (PL1), Intra-Zanclean (PL2), Intra-Piacenzian (PL3), Gelasian (PL4), Base Calabrian (PS1) and Late Calabrian (PS2). We present a basin-wide detailed 3D model of the PPAF region, derived from the interpretation of these unconformities in a dense network of seismic lines (ca. 6,000 km) correlated with more than 200 well stratigraphies (courtesy of ENI E&P). The initial 3D time-model has been time-to-depth converted using the 3D velocity model created with Vel-IO 3D, a tool for 3D depth conversions and then validated and integrated with depth domain dataset from bibliography and well log. Resultant isobath and isopach maps are produced to inspect step-by-step the basin paleogeographic evolution; it occurred through alternating stages of simple and fragmented foredeeps. Changes in the basin geometry through time, from the inner sector located in the Emilia-Romagna Apennines to the outermost region (Veneto and northern Adriatic Sea), were marked by repeated phases of outward migration of two large deep depocenters located in front of Emilia arcs on the west, and in front of Ferrara-Romagna thrusts on the east. During late Pliocene-early Pleistocene, the inner side of the Emilia-Romagna arcs evolved into an elongated deep thrust-top basin due to a strong foredeep fragmentation then, an overall tectono-stratigraphic analysis shows also a decreasing trend of tectonic intensity of the Northern Apennine since Pleistocene until present.

  7. 3D MR cisternography to identify distal dural rings. Comparison of 3D-CISS and 3D-SPACE sequences

    International Nuclear Information System (INIS)

    Watanabe, Yoshiyuki; Makidono, Akari; Nakamura, Miho; Saida, Yukihisa

    2011-01-01

    The distal dural ring (DDR) is an anatomical landmark used to distinguish intra- and extradural aneurysms. We investigated identification of the DDR using 2 three-dimensional (3D) magnetic resonance (MR) cisternography sequences-3D constructive interference in steady state (CISS) and 3D sampling perfection with application optimized contrasts using different flip angle evolutions (SPACE)-at 3.0 tesla. Ten healthy adult volunteers underwent imaging with 3D-CISS, 3D-SPACE, and time-of-flight (TOF) MR angiography (TOF-MRA) sequences at 3.0T. We analyzed DDR identification and internal carotid artery (ICA) signal intensity and classified the shape of the carotid cave. We identified the DDR using both 3D-SPACE and 3D-CISS, with no significant difference between the sequences. Visualization of the outline of the ICA in the cavernous sinus (CS) was significantly clearer with 3D-SPACE than 3D-CISS. In the CS and petrous portions, signal intensity was lower with 3D-SPACE, and the flow void was poor with 3D-CISS in some subjects. We identified the DDR with both 3D-SPACE and 3D-CISS, but the superior contrast of the ICA in the CS using 3D-SPACE suggests the superiority of this sequence for evaluating the DDR. (author)

  8. Evaluation of a modified IRMA for anti-D quantitation, using 3H protein A

    International Nuclear Information System (INIS)

    Dumasia, A.; Gupte, S.

    1993-01-01

    A modified immunoradiometric assay (IRMA) using tritiated ( 3 H) protein A was developed to estimate anti-D concentration. The main advantages of the assay were longer shelf life of the labelled reagent (more than two years); minimum radiation hazard and; low non specific binding. Levels of anti-D were estimated in 23 Rh (D) immunized women. A good correlation of anti-D concentration (μg/ml) with Rh antibody titre was observed (r=+ 0.89, P 3 H protein A IRMA correlated well with the severity of Rh-HDN. This assay could quantitate anti-D in sera having exclusively IgG 3 subtype. (author). 20 refs., 2 figs., 2 tabs

  9. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  10. 3D composite image, 3D MRI, 3D SPECT, hydrocephalus

    International Nuclear Information System (INIS)

    Mito, T.; Shibata, I.; Sugo, N.; Takano, M.; Takahashi, H.

    2002-01-01

    The three-dimensional (3D)SPECT imaging technique we have studied and published for the past several years is an analytical tool that permits visual expression of the cerebral circulation profile in various cerebral diseases. The greatest drawback of SPECT is that the limitation on precision of spacial resolution makes intracranial localization impossible. In 3D SPECT imaging, intracranial volume and morphology may vary with the threshold established. To solve this problem, we have produced complimentarily combined SPECT and helical-CT 3D images by means of general-purpose visualization software for intracranial localization. In hydrocephalus, however, the key subject to be studied is the profile of cerebral circulation around the ventricles of the brain. This suggests that, for displaying the cerebral ventricles in three dimensions, CT is a difficult technique whereas MRI is more useful. For this reason, we attempted to establish the profile of cerebral circulation around the cerebral ventricles by the production of combined 3D images of SPECT and MRI. In patients who had shunt surgery for hydrocephalus, a difference between pre- and postoperative cerebral circulation profiles was assessed by a voxel distribution curve, 3D SPECT images, and combined 3D SPECT and MRI images. As the shunt system in this study, an Orbis-Sigma valve of the automatic cerebrospinal fluid volume adjustment type was used in place of the variable pressure type Medos valve currently in use, because this device requires frequent changes in pressure and a change in pressure may be detected after MRI procedure. The SPECT apparatus used was PRISM3000 of the three-detector type, and 123I-IMP was used as the radionuclide in a dose of 222 MBq. MRI data were collected with an MAGNEXa+2 with a magnetic flux density of 0.5 tesla under the following conditions: field echo; TR 50 msec; TE, 10 msec; flip, 30ueK; 1 NEX; FOV, 23 cm; 1-mm slices; and gapless. 3D images are produced on the workstation TITAN

  11. Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery

    Directory of Open Access Journals (Sweden)

    Chih-Ju Chang

    2015-01-01

    Full Text Available C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell’s method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds.

  12. 3D Printing and 3D Bioprinting in Pediatrics.

    Science.gov (United States)

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  13. 3D Printing and 3D Bioprinting in Pediatrics

    OpenAIRE

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-01-01

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  14. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    International Nuclear Information System (INIS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies. (paper)

  15. TH-EF-BRA-03: Assessment of Data-Driven Respiratory Motion-Compensation Methods for 4D-CBCT Image Registration and Reconstruction Using Clinical Datasets

    Energy Technology Data Exchange (ETDEWEB)

    Riblett, MJ; Weiss, E; Hugo, GD [Virginia Commonwealth University, Richmond, VA (United States); Christensen, GE [University of Iowa, Iowa City, IA (United States)

    2016-06-15

    Purpose: To evaluate the performance of a 4D-CBCT registration and reconstruction method that corrects for respiratory motion and enhances image quality under clinically relevant conditions. Methods: Building on previous work, which tested feasibility of a motion-compensation workflow using image datasets superior to clinical acquisitions, this study assesses workflow performance under clinical conditions in terms of image quality improvement. Evaluated workflows utilized a combination of groupwise deformable image registration (DIR) and image reconstruction. Four-dimensional cone beam CT (4D-CBCT) FDK reconstructions were registered to either mean or respiratory phase reference frame images to model respiratory motion. The resulting 4D transformation was used to deform projection data during the FDK backprojection operation to create a motion-compensated reconstruction. To simulate clinically realistic conditions, superior quality projection datasets were sampled using a phase-binned striding method. Tissue interface sharpness (TIS) was defined as the slope of a sigmoid curve fit to the lung-diaphragm boundary or to the carina tissue-airway boundary when no diaphragm was discernable. Image quality improvement was assessed in 19 clinical cases by evaluating mitigation of view-aliasing artifacts, tissue interface sharpness recovery, and noise reduction. Results: For clinical datasets, evaluated average TIS recovery relative to base 4D-CBCT reconstructions was observed to be 87% using fixed-frame registration alone; 87% using fixed-frame with motion-compensated reconstruction; 92% using mean-frame registration alone; and 90% using mean-frame with motion-compensated reconstruction. Soft tissue noise was reduced on average by 43% and 44% for the fixed-frame registration and registration with motion-compensation methods, respectively, and by 40% and 42% for the corresponding mean-frame methods. Considerable reductions in view aliasing artifacts were observed for each

  16. TH-EF-BRA-03: Assessment of Data-Driven Respiratory Motion-Compensation Methods for 4D-CBCT Image Registration and Reconstruction Using Clinical Datasets

    International Nuclear Information System (INIS)

    Riblett, MJ; Weiss, E; Hugo, GD; Christensen, GE

    2016-01-01

    Purpose: To evaluate the performance of a 4D-CBCT registration and reconstruction method that corrects for respiratory motion and enhances image quality under clinically relevant conditions. Methods: Building on previous work, which tested feasibility of a motion-compensation workflow using image datasets superior to clinical acquisitions, this study assesses workflow performance under clinical conditions in terms of image quality improvement. Evaluated workflows utilized a combination of groupwise deformable image registration (DIR) and image reconstruction. Four-dimensional cone beam CT (4D-CBCT) FDK reconstructions were registered to either mean or respiratory phase reference frame images to model respiratory motion. The resulting 4D transformation was used to deform projection data during the FDK backprojection operation to create a motion-compensated reconstruction. To simulate clinically realistic conditions, superior quality projection datasets were sampled using a phase-binned striding method. Tissue interface sharpness (TIS) was defined as the slope of a sigmoid curve fit to the lung-diaphragm boundary or to the carina tissue-airway boundary when no diaphragm was discernable. Image quality improvement was assessed in 19 clinical cases by evaluating mitigation of view-aliasing artifacts, tissue interface sharpness recovery, and noise reduction. Results: For clinical datasets, evaluated average TIS recovery relative to base 4D-CBCT reconstructions was observed to be 87% using fixed-frame registration alone; 87% using fixed-frame with motion-compensated reconstruction; 92% using mean-frame registration alone; and 90% using mean-frame with motion-compensated reconstruction. Soft tissue noise was reduced on average by 43% and 44% for the fixed-frame registration and registration with motion-compensation methods, respectively, and by 40% and 42% for the corresponding mean-frame methods. Considerable reductions in view aliasing artifacts were observed for each

  17. CCDC 1024868: Experimental Crystal Structure Determination : tris(mu-3,4,5,6-tetrafluorobenzene-1,2-diyl)-tri-mercury bisthieno[3,2-b:2',3'-d]thiophene 1,2-dichloroethane solvate

    KAUST Repository

    Castañ eda, Raú l; Khrustalev, Victor N.; Fonari, Alexandr; Bredas, Jean-Luc; Getmanenko, Yulia A.; Timofeeva, Tatiana V.

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  18. 3D/2D model-to-image registration by imitation learning for cardiac procedures.

    Science.gov (United States)

    Toth, Daniel; Miao, Shun; Kurzendorfer, Tanja; Rinaldi, Christopher A; Liao, Rui; Mansi, Tommaso; Rhode, Kawal; Mountney, Peter

    2018-05-12

    In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application. This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images. Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases. Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions.

  19. 3D dictionary learning based iterative cone beam CT reconstruction

    Directory of Open Access Journals (Sweden)

    Ti Bai

    2014-03-01

    Full Text Available Purpose: This work is to develop a 3D dictionary learning based cone beam CT (CBCT reconstruction algorithm on graphic processing units (GPU to improve the quality of sparse-view CBCT reconstruction with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms of 3 × 3 × 3 was trained from a large number of blocks extracted from a high quality volume image. On the basis, we utilized cholesky decomposition based orthogonal matching pursuit algorithm to find the sparse representation of each block. To accelerate the time-consuming sparse coding in the 3D case, we implemented the sparse coding in a parallel fashion by taking advantage of the tremendous computational power of GPU. Conjugate gradient least square algorithm was adopted to minimize the data fidelity term. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with tight frame (TF by performing reconstructions on a subset data of 121 projections. Results: Compared to TF based CBCT reconstruction that shows good overall performance, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, remove more streaking artifacts and also induce less blocky artifacts. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppress the noise, and hence to achieve high quality reconstruction under the case of sparse view. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application.-------------------------------Cite this article as: Bai T, Yan H, Shi F, Jia X, Lou Y, Xu Q, Jiang S, Mou X. 3D dictionary learning based iterative cone beam CT reconstruction. Int J Cancer Ther Oncol 2014; 2(2:020240. DOI: 10

  20. Advanced prior modeling for 3D bright field electron tomography

    Science.gov (United States)

    Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.

    2015-03-01

    Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.

  1. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  2. Reducing 4D CT artifacts using optimized sorting based on anatomic similarity.

    Science.gov (United States)

    Johnston, Eric; Diehn, Maximilian; Murphy, James D; Loo, Billy W; Maxim, Peter G

    2011-05-01

    Four-dimensional (4D) computed tomography (CT) has been widely used as a tool to characterize respiratory motion in radiotherapy. The two most commonly used 4D CT algorithms sort images by the associated respiratory phase or displacement into a predefined number of bins, and are prone to image artifacts at transitions between bed positions. The purpose of this work is to demonstrate a method of reducing motion artifacts in 4D CT by incorporating anatomic similarity into phase or displacement based sorting protocols. Ten patient datasets were retrospectively sorted using both the displacement and phase based sorting algorithms. Conventional sorting methods allow selection of only the nearest-neighbor image in time or displacement within each bin. In our method, for each bed position either the displacement or the phase defines the center of a bin range about which several candidate images are selected. The two dimensional correlation coefficients between slices bordering the interface between adjacent couch positions are then calculated for all candidate pairings. Two slices have a high correlation if they are anatomically similar. Candidates from each bin are then selected to maximize the slice correlation over the entire data set using the Dijkstra's shortest path algorithm. To assess the reduction of artifacts, two thoracic radiation oncologists independently compared the resorted 4D datasets pairwise with conventionally sorted datasets, blinded to the sorting method, to choose which had the least motion artifacts. Agreement between reviewers was evaluated using the weighted kappa score. Anatomically based image selection resulted in 4D CT datasets with significantly reduced motion artifacts with both displacement (P = 0.0063) and phase sorting (P = 0.00022). There was good agreement between the two reviewers, with complete agreement 34 times and complete disagreement 6 times. Optimized sorting using anatomic similarity significantly reduces 4D CT motion

  3. Plasma and milk concentrations of vitamin D3 and 25-hydroxy vitamin D3 following intravenous injection of vitamin D3 or 25-hydroxy vitamin D3.

    OpenAIRE

    Hidiroglou, M; Knipfel, J E

    1984-01-01

    Plasma levels of vitamin D3 or 25-hydroxyvitamin D3 in ewes after administration of a single massive intravenous dose of vitamin D3 (2 X 10(6) IU) or 25-hydroxy vitamin D3 (5 mg) were determined at zero, one, two, three, five, ten and 20 days postinjection. In six ewes injected with vitamin D3 conversion of vitamin D3 to 25-hydroxy vitamin D3 resulted in a six-fold increase in the plasma 25-hydroxy vitamin D3 level within one day. Elevated levels were maintained until day 10 but by day 20 a s...

  4. The role of the cytoskeleton in cellular force generation in 2D and 3D environments

    International Nuclear Information System (INIS)

    Kraning-Rush, Casey M; Carey, Shawn P; Califano, Joseph P; Smith, Brooke N; Reinhart-King, Cynthia A

    2011-01-01

    To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments

  5. A Generalized Spatial Correlation Model for 3D MIMO Channels based on the Fourier Coefficients of Power Spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Merouane; Alouini, Mohamed-Slim

    2015-01-01

    Previous studies have confirmed the adverse impact of fading correlation on the mutual information (MI) of two-dimensional (2D) multiple-input multiple-output (MIMO) systems. More recently, the trend is to enhance the system performance

  6. A parallel implementation of 3D Zernike moment analysis

    Science.gov (United States)

    Berjón, Daniel; Arnaldo, Sergio; Morán, Francisco

    2011-01-01

    Zernike polynomials are a well known set of functions that find many applications in image or pattern characterization because they allow to construct shape descriptors that are invariant against translations, rotations or scale changes. The concepts behind them can be extended to higher dimension spaces, making them also fit to describe volumetric data. They have been less used than their properties might suggest due to their high computational cost. We present a parallel implementation of 3D Zernike moments analysis, written in C with CUDA extensions, which makes it practical to employ Zernike descriptors in interactive applications, yielding a performance of several frames per second in voxel datasets about 2003 in size. In our contribution, we describe the challenges of implementing 3D Zernike analysis in a general-purpose GPU. These include how to deal with numerical inaccuracies, due to the high precision demands of the algorithm, or how to deal with the high volume of input data so that it does not become a bottleneck for the system.

  7. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model

    Energy Technology Data Exchange (ETDEWEB)

    He, Baochun; Huang, Cheng; Zhou, Shoujun; Hu, Qingmao; Jia, Fucang, E-mail: fc.jia@siat.ac.cn [Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China); Sharp, Gregory [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Fang, Chihua; Fan, Yingfang [Department of Hepatology (I), Zhujiang Hospital, Southern Medical University, Guangzhou 510280 (China)

    2016-05-15

    Purpose: A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. Methods: The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods—3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration—are used to establish shape correspondence. Results: The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. Conclusions: The proposed automatic approach

  8. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.

    Science.gov (United States)

    He, Baochun; Huang, Cheng; Sharp, Gregory; Zhou, Shoujun; Hu, Qingmao; Fang, Chihua; Fan, Yingfang; Jia, Fucang

    2016-05-01

    A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods-3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration-are used to establish shape correspondence. The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. The proposed automatic approach achieves robust, accurate, and fast liver

  9. Learning weighted sparse representation of encoded facial normal information for expression-robust 3D face recognition

    KAUST Repository

    Li, Huibin

    2011-10-01

    This paper proposes a novel approach for 3D face recognition by learning weighted sparse representation of encoded facial normal information. To comprehensively describe 3D facial surface, three components, in X, Y, and Z-plane respectively, of normal vector are encoded locally to their corresponding normal pattern histograms. They are finally fed to a sparse representation classifier enhanced by learning based spatial weights. Experimental results achieved on the FRGC v2.0 database prove that the proposed encoded normal information is much more discriminative than original normal information. Moreover, the patch based weights learned using the FRGC v1.0 and Bosphorus datasets also demonstrate the importance of each facial physical component for 3D face recognition. © 2011 IEEE.

  10. 3-D Whole-Core Transport Calculation with 3D/2D Rotational Plane Slicing Method

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Han Jong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Use of the method of characteristics (MOC) is very popular due to its capability of heterogeneous geometry treatment and widely used for 2-D core calculation, but direct extension of MOC to 3-D core is not so attractive due to huge calculational cost. 2-D/1-D fusion method was very successful for 3-D calculation of current generation reactor types (highly heterogeneous in radial direction but piece-wise homogeneous in axial direction). In this paper, 2-D MOC concept is extended to 3-D core calculation with little modification of an existing 2-D MOC code. The key idea is to suppose 3-D geometry as a set of many 2-D planes like a phone-directory book. Dividing 3-D structure into a large number of 2-D planes and solving each plane with a simple 2-D SN transport method would give the solution of a 3-D structure. This method was developed independently at KAIST but it is found that this concept is similar with that of 'plane tracing' in the MCCG-3D code. The method developed was tested on the 3-D C5G7 OECD/NEA benchmark problem and compared with the 2-D/1-D fusion method. Results show that the proposed method is worth investigating further. A new approach to 3-D whole-core transport calculation is described and tested. By slicing 3-D structure along characteristic planes and solving each 2-D plane problem, we can get 3-D solution. The numerical test results indicate that the new method is comparable with the 2D/1D fusion method and outperforms other existing methods. But more fair comparison should be done in similar discretization level.

  11. Out of lab calibration of a rotating 2D scanner for 3D mapping

    Science.gov (United States)

    Koch, Rainer; Böttcher, Lena; Jahrsdörfer, Maximilian; Maier, Johannes; Trommer, Malte; May, Stefan; Nüchter, Andreas

    2017-06-01

    Mapping is an essential task in mobile robotics. To fulfil advanced navigation and manipulation tasks a 3D representation of the environment is required. Applying stereo cameras or Time-of-flight cameras (TOF cameras) are one way to archive this requirement. Unfortunately, they suffer from drawbacks which makes it difficult to map properly. Therefore, costly 3D laser scanners are applied. An inexpensive way to build a 3D representation is to use a 2D laser scanner and rotate the scan plane around an additional axis. A 3D point cloud acquired with such a custom device consists of multiple 2D line scans. Therefore the scanner pose of each line scan need to be determined as well as parameters resulting from a calibration to generate a 3D point cloud. Using external sensor systems are a common method to determine these calibration parameters. This is costly and difficult when the robot needs to be calibrated outside the lab. Thus, this work presents a calibration method applied on a rotating 2D laser scanner. It uses a hardware setup to identify the required parameters for calibration. This hardware setup is light, small, and easy to transport. Hence, an out of lab calibration is possible. Additional a theoretical model was created to test the algorithm and analyse impact of the scanner accuracy. The hardware components of the 3D scanner system are an HOKUYO UTM-30LX-EW 2D laser scanner, a Dynamixel servo-motor, and a control unit. The calibration system consists of an hemisphere. In the inner of the hemisphere a circular plate is mounted. The algorithm needs to be provided with a dataset of a single rotation from the laser scanner. To achieve a proper calibration result the scanner needs to be located in the middle of the hemisphere. By means of geometric formulas the algorithms determine the individual deviations of the placed laser scanner. In order to minimize errors, the algorithm solves the formulas in an iterative process. First, the calibration algorithm was

  12. Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors

    International Nuclear Information System (INIS)

    Sweeney, Reinhart A; Seubert, Benedikt; Stark, Silke; Homann, Vanessa; Müller, Gerd; Flentje, Michael; Guckenberger, Matthias

    2012-01-01

    To analyze the accuracy and inter-observer variability of image-guidance (IG) using 3D or 4D cone-beam CT (CBCT) technology in stereotactic body radiotherapy (SBRT) for lung tumors. Twenty-one consecutive patients treated with image-guided SBRT for primary and secondary lung tumors were basis for this study. A respiration correlated 4D-CT and planning contours served as reference for all IG techniques. Three IG techniques were performed independently by three radiation oncologists (ROs) and three radiotherapy technicians (RTTs). Image-guidance using respiration correlated 4D-CBCT (IG-4D) with automatic registration of the planning 4D-CT and the verification 4D-CBCT was considered gold-standard. Results were compared with two IG techniques using 3D-CBCT: 1) manual registration of the planning internal target volume (ITV) contour and the motion blurred tumor in the 3D-CBCT (IG-ITV); 2) automatic registration of the planning reference CT image and the verification 3D-CBCT (IG-3D). Image quality of 3D-CBCT and 4D-CBCT images was scored on a scale of 1–3, with 1 being best and 3 being worst quality for visual verification of the IGRT results. Image quality was scored significantly worse for 3D-CBCT compared to 4D-CBCT: the worst score of 3 was given in 19 % and 7.1 % observations, respectively. Significant differences in target localization were observed between 4D-CBCT and 3D-CBCT based IG: compared to the reference of IG-4D, tumor positions differed by 1.9 mm ± 0.9 mm (3D vector) on average using IG-ITV and by 3.6 mm ± 3.2 mm using IG-3D; results of IG-ITV were significantly closer to the reference IG-4D compared to IG-3D. Differences between the 4D-CBCT and 3D-CBCT techniques increased significantly with larger motion amplitude of the tumor; analogously, differences increased with worse 3D-CBCT image quality scores. Inter-observer variability was largest in SI direction and was significantly larger in IG using 3D-CBCT compared to 4D-CBCT: 0.6 mm versus 1.5 mm

  13. Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors

    Directory of Open Access Journals (Sweden)

    Sweeney Reinhart A

    2012-06-01

    Full Text Available Abstract Background To analyze the accuracy and inter-observer variability of image-guidance (IG using 3D or 4D cone-beam CT (CBCT technology in stereotactic body radiotherapy (SBRT for lung tumors. Materials and methods Twenty-one consecutive patients treated with image-guided SBRT for primary and secondary lung tumors were basis for this study. A respiration correlated 4D-CT and planning contours served as reference for all IG techniques. Three IG techniques were performed independently by three radiation oncologists (ROs and three radiotherapy technicians (RTTs. Image-guidance using respiration correlated 4D-CBCT (IG-4D with automatic registration of the planning 4D-CT and the verification 4D-CBCT was considered gold-standard. Results were compared with two IG techniques using 3D-CBCT: 1 manual registration of the planning internal target volume (ITV contour and the motion blurred tumor in the 3D-CBCT (IG-ITV; 2 automatic registration of the planning reference CT image and the verification 3D-CBCT (IG-3D. Image quality of 3D-CBCT and 4D-CBCT images was scored on a scale of 1–3, with 1 being best and 3 being worst quality for visual verification of the IGRT results. Results Image quality was scored significantly worse for 3D-CBCT compared to 4D-CBCT: the worst score of 3 was given in 19 % and 7.1 % observations, respectively. Significant differences in target localization were observed between 4D-CBCT and 3D-CBCT based IG: compared to the reference of IG-4D, tumor positions differed by 1.9 mm ± 0.9 mm (3D vector on average using IG-ITV and by 3.6 mm ± 3.2 mm using IG-3D; results of IG-ITV were significantly closer to the reference IG-4D compared to IG-3D. Differences between the 4D-CBCT and 3D-CBCT techniques increased significantly with larger motion amplitude of the tumor; analogously, differences increased with worse 3D-CBCT image quality scores. Inter-observer variability was largest in SI direction and was

  14. 2D Vis/NIR correlation spectroscopy of cooked chicken meats

    Science.gov (United States)

    Liu, Yongliang; Chen, Yud-Ren; Ozaki, Yukihiro

    2000-03-01

    Cooking of chicken meats was investigated by the generalized two-dimensional visible/near-infrared (2D Vis/NIR) correlation spectroscopy. Synchronous and asynchronous spectra in the 400-700 nm visible region suggested that the 445 and 560 nm bands be ascribed to deoxymyoglobin and oxymyoglobin, and at least one of the 475, 520, and 585 nm bands is assignable to the denatured species (metmyoglobin). The asynchronous 2D NIR correlation spectrum showed that CH bands change their spectral intensities before the OH/NH groups during the cooking process, indicating that CH fractions are easily oxidized and degraded. In addition, strong correlation peaks were observed correlating the bands in the visible and NIR spectral regions.

  15. Fast DRR generation for 2D to 3D registration on GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Tornai, Gabor Janos; Cserey, Gyoergy [Faculty of Information Technology, Pazmany Peter Catholic University, Prater u. 50/a, H-1083, Budapest (Hungary); Pappas, Ion [General Electric Healthcare, Akron u. 2, H-2040, Budaoers (Hungary)

    2012-08-15

    Purpose: The generation of digitally reconstructed radiographs (DRRs) is the most time consuming step on the CPU in intensity based two-dimensional x-ray to three-dimensional (CT or 3D rotational x-ray) medical image registration, which has application in several image guided interventions. This work presents optimized DRR rendering on graphical processor units (GPUs) and compares performance achievable on four commercially available devices. Methods: A ray-cast based DRR rendering was implemented for a 512 Multiplication-Sign 512 Multiplication-Sign 72 CT volume. The block size parameter was optimized for four different GPUs for a region of interest (ROI) of 400 Multiplication-Sign 225 pixels with different sampling ratios (1.1%-9.1% and 100%). Performance was statistically evaluated and compared for the four GPUs. The method and the block size dependence were validated on the latest GPU for several parameter settings with a public gold standard dataset (512 Multiplication-Sign 512 Multiplication-Sign 825 CT) for registration purposes. Results: Depending on the GPU, the full ROI is rendered in 2.7-5.2 ms. If sampling ratio of 1.1%-9.1% is applied, execution time is in the range of 0.3-7.3 ms. On all GPUs, the mean of the execution time increased linearly with respect to the number of pixels if sampling was used. Conclusions: The presented results outperform other results from the literature. This indicates that automatic 2D to 3D registration, which typically requires a couple of hundred DRR renderings to converge, can be performed quasi on-line, in less than a second or depending on the application and hardware in less than a couple of seconds. Accordingly, a whole new field of applications is opened for image guided interventions, where the registration is continuously performed to match the real-time x-ray.

  16. From 2D to 3D turbulence through 2D3C configurations

    Science.gov (United States)

    Buzzicotti, Michele; Biferale, Luca; Linkmann, Moritz

    2017-11-01

    We study analytically and numerically the geometry of the nonlinear interactions and the resulting energy transfer directions of 2D3C flows. Through a set of suitably designed Direct Numerical Simulations we also study the coupling between several 2D3C flows, where we explore the transition between 2D and fully 3D turbulence. In particular, we find that the coupling of three 2D3C flows on mutually orthogonal planes subject to small-scale forcing leads to a stationary 3D out-of-equilibrium dynamics at the energy containing scales where the inverse cascade is directly balanced by a forward cascade carried by a different subsets of interactions. ERC AdG Grant No 339032 NewTURB.

  17. Detection and 3d Modelling of Vehicles from Terrestrial Stereo Image Pairs

    Science.gov (United States)

    Coenen, M.; Rottensteiner, F.; Heipke, C.

    2017-05-01

    The detection and pose estimation of vehicles plays an important role for automated and autonomous moving objects e.g. in autonomous driving environments. We tackle that problem on the basis of street level stereo images, obtained from a moving vehicle. Processing every stereo pair individually, our approach is divided into two subsequent steps: the vehicle detection and the modelling step. For the detection, we make use of the 3D stereo information and incorporate geometric assumptions on vehicle inherent properties in a firstly applied generic 3D object detection. By combining our generic detection approach with a state of the art vehicle detector, we are able to achieve satisfying detection results with values for completeness and correctness up to more than 86%. By fitting an object specific vehicle model into the vehicle detections, we are able to reconstruct the vehicles in 3D and to derive pose estimations as well as shape parameters for each vehicle. To deal with the intra-class variability of vehicles, we make use of a deformable 3D active shape model learned from 3D CAD vehicle data in our model fitting approach. While we achieve encouraging values up to 67.2% for correct position estimations, we are facing larger problems concerning the orientation estimation. The evaluation is done by using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012).

  18. High End Visualization of Geophysical Datasets Using Immersive Technology: The SIO Visualization Center.

    Science.gov (United States)

    Newman, R. L.

    2002-12-01

    How many images can you display at one time with Power Point without getting "postage stamps"? Do you have fantastic datasets that you cannot view because your computer is too slow/small? Do you assume a few 2-D images of a 3-D picture are sufficient? High-end visualization centers can minimize and often eliminate these problems. The new visualization center [http://siovizcenter.ucsd.edu] at Scripps Institution of Oceanography [SIO] immerses users into a virtual world by projecting 3-D images onto a Panoram GVR-120E wall-sized floor-to-ceiling curved screen [7' x 23'] that has 3.2 mega-pixels of resolution. The Infinite Reality graphics subsystem is driven by a single-pipe SGI Onyx 3400 with a system bandwidth of 44 Gbps. The Onyx is powered by 16 MIPS R12K processors and 16 GB of addressable memory. The system is also equipped with transmitters and LCD shutter glasses which permit stereographic 3-D viewing of high-resolution images. This center is ideal for groups of up to 60 people who can simultaneously view these large-format images. A wide range of hardware and software is available, giving the users a totally immersive working environment in which to display, analyze, and discuss large datasets. The system enables simultaneous display of video and audio streams from sources such as SGI megadesktop and stereo megadesktop, S-VHS video, DVD video, and video from a Macintosh or PC. For instance, one-third of the screen might be displaying S-VHS video from a remotely-operated-vehicle [ROV], while the remaining portion of the screen might be used for an interactive 3-D flight over the same parcel of seafloor. The video and audio combinations using this system are numerous, allowing users to combine and explore data and images in innovative ways, greatly enhancing scientists' ability to visualize, understand and collaborate on complex datasets. In the not-distant future, with the rapid growth in networking speeds in the US, it will be possible for Earth Sciences

  19. 3D Space Shift from CityGML LoD3-Based Multiple Building Elements to a 3D Volumetric Object

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2017-01-01

    Full Text Available In contrast with photorealistic visualizations, urban landscape applications, and building information system (BIM, 3D volumetric presentations highlight specific calculations and applications of 3D building elements for 3D city planning and 3D cadastres. Knowing the precise volumetric quantities and the 3D boundary locations of 3D building spaces is a vital index which must remain constant during data processing because the values are related to space occupation, tenure, taxes, and valuation. To meet these requirements, this paper presents a five-step algorithm for performing a 3D building space shift. This algorithm is used to convert multiple building elements into a single 3D volumetric building object while maintaining the precise volume of the 3D space and without changing the 3D locations or displacing the building boundaries. As examples, this study used input data and building elements based on City Geography Markup Language (CityGML LoD3 models. This paper presents a method for 3D urban space and 3D property management with the goal of constructing a 3D volumetric object for an integral building using CityGML objects, by fusing the geometries of various building elements. The resulting objects possess true 3D geometry that can be represented by solid geometry and saved to a CityGML file for effective use in 3D urban planning and 3D cadastres.

  20. Accuracy and reliability of 3D stereophotogrammetry: A comparison to direct anthropometry and 2D photogrammetry.

    Science.gov (United States)

    Dindaroğlu, Furkan; Kutlu, Pınar; Duran, Gökhan Serhat; Görgülü, Serkan; Aslan, Erhan

    2016-05-01

    To evaluate the accuracy of three-dimensional (3D) stereophotogrammetry by comparing it with the direct anthropometry and digital photogrammetry methods. The reliability of 3D stereophotogrammetry was also examined. Six profile and four frontal parameters were directly measured on the faces of 80 participants. The same measurements were repeated using two-dimensional (2D) photogrammetry and 3D stereophotogrammetry (3dMDflex System, 3dMD, Atlanta, Ga) to obtain images of the subjects. Another observer made the same measurements for images obtained with 3D stereophotogrammetry, and interobserver reproducibility was evaluated for 3D images. Both observers remeasured the 3D images 1 month later, and intraobserver reproducibility was evaluated. Statistical analysis was conducted using the paired samples t-test, intraclass correlation coefficient, and Bland-Altman limits of agreement. The highest mean difference was 0.30 mm between direct measurement and photogrammetry, 0.21 mm between direct measurement and 3D stereophotogrammetry, and 0.5 mm between photogrammetry and 3D stereophotogrammetry. The lowest agreement value was 0.965 in the Sn-Pro parameter between the photogrammetry and 3D stereophotogrammetry methods. Agreement between the two observers varied from 0.90 (Ch-Ch) to 0.99 (Sn-Me) in linear measurements. For intraobserver agreement, the highest difference between means was 0.33 for observer 1 and 1.42 mm for observer 2. Measurements obtained using 3D stereophotogrammetry indicate that it may be an accurate and reliable imaging method for use in orthodontics.

  1. Correlations between channel probabilities in collisional dissociation of D3+

    International Nuclear Information System (INIS)

    Abraham, S.; Nir, D.; Rosner, B.

    1984-01-01

    Measurements of the dissociation of D 3 + ions at 300--600 keV under single- and multiple-collision conditions in Ar- and H 2 -gas targets have been performed. A complete separation of all dissociation channels was achieved, including the neutral channels, which were resolved using a fine-mesh technique. Data analysis in the multiple-collision regime confirms the validity of the rate equations governing the charge exchange processes. In the single-collision region the analysis yields constant relations between channel probabilities. Data rearrangement shows probability factorization and suggests that collisional dissociation is a two-stage process, a fast electron exchange followed by rearrangement and branching to the exit channels

  2. Feature relevance assessment for the semantic interpretation of 3D point cloud data

    Directory of Open Access Journals (Sweden)

    M. Weinmann

    2013-10-01

    Full Text Available The automatic analysis of large 3D point clouds represents a crucial task in photogrammetry, remote sensing and computer vision. In this paper, we propose a new methodology for the semantic interpretation of such point clouds which involves feature relevance assessment in order to reduce both processing time and memory consumption. Given a standard benchmark dataset with 1.3 million 3D points, we first extract a set of 21 geometric 3D and 2D features. Subsequently, we apply a classifier-independent ranking procedure which involves a general relevance metric in order to derive compact and robust subsets of versatile features which are generally applicable for a large variety of subsequent tasks. This metric is based on 7 different feature selection strategies and thus addresses different intrinsic properties of the given data. For the example of semantically interpreting 3D point cloud data, we demonstrate the great potential of smaller subsets consisting of only the most relevant features with 4 different state-of-the-art classifiers. The results reveal that, instead of including as many features as possible in order to compensate for lack of knowledge, a crucial task such as scene interpretation can be carried out with only few versatile features and even improved accuracy.

  3. 2D-3D registration for cranial radiation therapy using a 3D kV CBCT and a single limited field-of-view 2D kV radiograph.

    Science.gov (United States)

    Munbodh, Reshma; Knisely, Jonathan Ps; Jaffray, David A; Moseley, Douglas J

    2018-05-01

    We present and evaluate a fully automated 2D-3D intensity-based registration framework using a single limited field-of-view (FOV) 2D kV radiograph and a 3D kV CBCT for 3D estimation of patient setup errors during brain radiotherapy. We evaluated two similarity measures, the Pearson correlation coefficient on image intensity values (ICC) and maximum likelihood measure with Gaussian noise (MLG), derived from the statistics of transmission images. Pose determination experiments were conducted on 2D kV radiographs in the anterior-posterior (AP) and left lateral (LL) views and 3D kV CBCTs of an anthropomorphic head phantom. In order to minimize radiation exposure and exclude nonrigid structures from the registration, limited FOV 2D kV radiographs were employed. A spatial frequency band useful for the 2D-3D registration was identified from the bone-to-no-bone spectral ratio (BNBSR) of digitally reconstructed radiographs (DRRs) computed from the 3D kV planning CT of the phantom. The images being registered were filtered accordingly prior to computation of the similarity measures. We evaluated the registration accuracy achievable with a single 2D kV radiograph and with the registration results from the AP and LL views combined. We also compared the performance of the 2D-3D registration solutions proposed to that of a commercial 3D-3D registration algorithm, which used the entire skull for the registration. The ground truth was determined from markers affixed to the phantom and visible in the CBCT images. The accuracy of the 2D-3D registration solutions, as quantified by the root mean squared value of the target registration error (TRE) calculated over a radius of 3 cm for all poses tested, was ICC AP : 0.56 mm, MLG AP : 0.74 mm, ICC LL : 0.57 mm, MLG LL : 0.54 mm, ICC (AP and LL combined): 0.19 mm, and MLG (AP and LL combined): 0.21 mm. The accuracy of the 3D-3D registration algorithm was 0.27 mm. There was no significant difference in mean TRE for the 2D-3D registration

  4. Effect of 24,25-dihydroxyvitamin D3 on 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] metabolism in vitamin D-deficient rats infused with 1,25-(OH)2D3

    International Nuclear Information System (INIS)

    Yamato, H.; Matsumoto, T.; Fukumoto, S.; Ikeda, K.; Ishizuka, S.; Ogata, E.

    1989-01-01

    Previous studies revealed that administration of 24,25-dihydroxyvitamin D3 [24,25-(OH)2D3] to calcium (Ca)-deficient rats causes a dose-dependent reduction in markedly elevated serum 1,25-(OH)2D3 level. Although the results suggested that the metabolism of 1,25-(OH)2D3 was accelerated by 24,25-(OH)2D3, those experiments could not define whether the enhanced metabolism of 1,25-(OH)2D3 played a role in the reduction in the serum 1,25-(OH)2D3 level. In the present study, in order to address this issue more specifically, serum 1,25-(OH)2D3 was maintained solely by exogenous administration through miniosmotic pumps of 1,25-(OH)2D3 into vitamin D-deficient rats. Thus, by measuring the serum 1,25-(OH)2D3 concentration, the effect of 24,25-(OH)2D3 on the MCR of 1,25-(OH)2D3 could be examined. Administration of 24,25-(OH)2D3 caused a dose-dependent enhancement in the MCR of 1,25-(OH)2D3, and 1 microgram/100 g rat.day 24,25-(OH)2D3, which elevated serum 24,25-(OH)2D3 to 8.6 +/- 1.3 ng/ml, significantly increased MCR and suppressed serum levels of 1,25-(OH)2D3. The effect of 24,25-(OH)2D3 on 1,25-(OH)2D3 metabolism developed with a rapid time course, and the recovery of iv injected [1 beta-3H]1,25-(OH)2D3 in blood was significantly reduced within 1 h. In addition, there was an increase in radioactivity in the water-soluble fraction of serum as well as in urine, suggesting that 1,25-(OH)2D3 is rapidly degraded to a water-soluble metabolite(s). Furthermore, the reduction in serum 1,25-(OH)2D3 was associated with a reduction in both serum and urinary Ca levels. Because the conversion of [3H]24,25-(OH)2D3 to [3H]1,24,25-(OH)2D3 or other metabolites was minimal in these rats, 24,25-(OH)2D3 appears to act without being converted into other metabolites. These results demonstrate that 24,25-(OH)2D3 rapidly stimulates the metabolism of 1,25-(OH)2D3 and reduces its serum level

  5. Relationship of frontal D2/3 binding potentials to cognition

    DEFF Research Database (Denmark)

    Fagerlund, Birgitte; Pinborg, Lars H; Mortensen, Erik Lykke

    2013-01-01

    for set shifting. The main findings indicated a relation between D2/3 receptor binding in the frontal cortex and set shifting, planning and attention, but also support a differential involvement of cortical dopamine D2/3 receptor binding in at least some cognitive functions, perhaps particularly attention......Studies of in vivo dopamine receptors in schizophrenia have mostly focused on D2 receptors in striatal areas or on D1 receptors in cortex. No previous study has examined the correlation between cortical dopamine D2/3 receptor binding potentials and cognition in schizophrenia patients. The objective......, in schizophrenia patients compared to healthy people. The results suggest that cortical D2/3 receptor function may be more involved in some cognitive functions (i.e. attention, fluency and planning) in patients with schizophrenia than in healthy people, suggesting that information processing in schizophrenia may...

  6. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling

    Directory of Open Access Journals (Sweden)

    H. E. Beck

    2017-12-01

    Full Text Available We undertook a comprehensive evaluation of 22 gridded (quasi-global (sub-daily precipitation (P datasets for the period 2000–2016. Thirteen non-gauge-corrected P datasets were evaluated using daily P gauge observations from 76 086 gauges worldwide. Another nine gauge-corrected datasets were evaluated using hydrological modeling, by calibrating the HBV conceptual model against streamflow records for each of 9053 small to medium-sized ( <  50 000 km2 catchments worldwide, and comparing the resulting performance. Marked differences in spatio-temporal patterns and accuracy were found among the datasets. Among the uncorrected P datasets, the satellite- and reanalysis-based MSWEP-ng V1.2 and V2.0 datasets generally showed the best temporal correlations with the gauge observations, followed by the reanalyses (ERA-Interim, JRA-55, and NCEP-CFSR and the satellite- and reanalysis-based CHIRP V2.0 dataset, the estimates based primarily on passive microwave remote sensing of rainfall (CMORPH V1.0, GSMaP V5/6, and TMPA 3B42RT V7 or near-surface soil moisture (SM2RAIN-ASCAT, and finally, estimates based primarily on thermal infrared imagery (GridSat V1.0, PERSIANN, and PERSIANN-CCS. Two of the three reanalyses (ERA-Interim and JRA-55 unexpectedly obtained lower trend errors than the satellite datasets. Among the corrected P datasets, the ones directly incorporating daily gauge data (CPC Unified, and MSWEP V1.2 and V2.0 generally provided the best calibration scores, although the good performance of the fully gauge-based CPC Unified is unlikely to translate to sparsely or ungauged regions. Next best results were obtained with P estimates directly incorporating temporally coarser gauge data (CHIRPS V2.0, GPCP-1DD V1.2, TMPA 3B42 V7, and WFDEI-CRU, which in turn outperformed the one indirectly incorporating gauge data through another multi-source dataset (PERSIANN-CDR V1R1. Our results highlight large differences in estimation accuracy

  7. 3D-Printed masks as a new approach for immobilization in radiotherapy - a study of positioning accuracy.

    Science.gov (United States)

    Haefner, Matthias Felix; Giesel, Frederik Lars; Mattke, Matthias; Rath, Daniel; Wade, Moritz; Kuypers, Jacob; Preuss, Alan; Kauczor, Hans-Ulrich; Schenk, Jens-Peter; Debus, Juergen; Sterzing, Florian; Unterhinninghofen, Roland

    2018-01-19

    We developed a new approach to produce individual immobilization devices for the head based on MRI data and 3D printing technologies. The purpose of this study was to determine positioning accuracy with healthy volunteers. 3D MRI data of the head were acquired for 8 volunteers. In-house developed software processed the image data to generate a surface mesh model of the immobilization mask. After adding an interface for the couch, the fixation setup was materialized using a 3D printer with acrylonitrile butadiene styrene (ABS). Repeated MRI datasets (n=10) were acquired for all volunteers wearing their masks thus simulating a setup for multiple fractions. Using automatic image-to-image registration, displacements of the head were calculated relative to the first dataset (6 degrees of freedom). The production process has been described in detail. The absolute lateral (x), vertical (y) and longitudinal (z) translations ranged between -0.7 and 0.5 mm, -1.8 and 1.4 mm, and -1.6 and 2.4 mm, respectively. The absolute rotations for pitch (x), yaw (y) and roll (z) ranged between -0.9 and 0.8°, -0.5 and 1.1°, and -0.6 and 0.8°, respectively. The mean 3D displacement was 0.9 mm with a standard deviation (SD) of the systematic and random error of 0.2 mm and 0.5 mm, respectively. In conclusion, an almost entirely automated production process of 3D printed immobilization masks for the head derived from MRI data was established. A high level of setup accuracy was demonstrated in a volunteer cohort. Future research will have to focus on workflow optimization and clinical evaluation.

  8. A 3D virtual reality simulator for training of minimally invasive surgery.

    Science.gov (United States)

    Mi, Shao-Hua; Hou, Zeng-Gunag; Yang, Fan; Xie, Xiao-Liang; Bian, Gui-Bin

    2014-01-01

    For the last decade, remarkable progress has been made in the field of cardiovascular disease treatment. However, these complex medical procedures require a combination of rich experience and technical skills. In this paper, a 3D virtual reality simulator for core skills training in minimally invasive surgery is presented. The system can generate realistic 3D vascular models segmented from patient datasets, including a beating heart, and provide a real-time computation of force and force feedback module for surgical simulation. Instruments, such as a catheter or guide wire, are represented by a multi-body mass-spring model. In addition, a realistic user interface with multiple windows and real-time 3D views are developed. Moreover, the simulator is also provided with a human-machine interaction module that gives doctors the sense of touch during the surgery training, enables them to control the motion of a virtual catheter/guide wire inside a complex vascular model. Experimental results show that the simulator is suitable for minimally invasive surgery training.

  9. Spectral properties of waves in superlattices with 2D and 3D inhomogeneities

    International Nuclear Information System (INIS)

    Ignatchenko, V. A.; Tsikalov, D. S.

    2011-01-01

    We investigate the dynamic susceptibility and one-dimensional density of states in an initially sinusoidal superlattice containing simultaneously 2D phase inhomogeneities simulating correlated rough-nesses of superlattice interfaces and 3D amplitude inhomogeneities of the superlattice layer materials. The analytic expression for the averaged Green’s function of the sinusoidal superlattice with two phase inhomogeneities is derived in the Bourret approximation. It is shown that the effect of increasing asymmetry in the peak heights of dynamic susceptibility at the Brillouin zone boundary of the superlattice, which was discovered earlier [15] upon an increase in root-mean-square (rms) fluctuations, also takes place upon an increase in the correlation wavenumber of inhomogeneities. However, the peaks in this case also become closer, and the width and depth of the gap in the density of states decrease thereby. It is shown that the enhancement of rms fluctuations of 3D amplitude inhomogeneities in a superlattice containing 2D phase inhomogeneities suppresses the effect of dynamic susceptibility asymmetry and leads to a slight broadening of the gap in the density of states and a decrease in its depth. Targeted experiments aimed at detecting the effects studied here would facilitate the development of radio-spectroscopic and optical methods for identifying the presence of inhomogeneities of various dimensions in multilayer magnetic and optical structures.

  10. Emergence of non-Fermi liquid behaviors in 5d perovskite SrIrO3 thin films: Interplay between correlation, disorder, and spin-orbit coupling

    Science.gov (United States)

    Biswas, Abhijit; Kim, Ki-Seok; Jeong, Yoon H.

    2016-02-01

    We investigate the effects of compressive strain on the electrical resistivity of 5d iridium based perovskite SrIrO3 by depositing epitaxial films of thickness 35 nm on various substrates such as GdScO3 (110), DyScO3 (110), and SrTiO3 (001). Surprisingly, we find anomalous transport behaviors as expressed by ρ∝Tε in the temperature dependent resistivity, where the temperature exponent ε evolves continuously from 4/5 to 1 and to 3/2 with an increase of compressive strain. Furthermore, magnetoresistance always remains positive irrespective of resistivity upturns at low temperatures. These observations imply that the delicate interplay between correlation and disorder in the presence of strong spin-orbit coupling is responsible for the emergence of the non-Fermi liquid behaviors in 5d perovskite SrIrO3 thin films. We offer a theoretical framework for the interpretation of the experimental results.

  11. Determination of the 3d34d and 3d35s configurations of Fe V

    International Nuclear Information System (INIS)

    Azarov, V.I.

    2001-01-01

    The analysis of the spectrum of four times ionized iron, Fe V, has led to the determination of the 3d 3 4d and 3d 3 5s configurations. From 975 classified lines in the region 645-1190 A we have established 123 of 168 theoretically possible 3d 3 4d levels and 26 of 38 possible 3d 3 5s levels. The estimated accuracy of values of energy levels of these two configurations is about 0.7 cm -1 and 1.0 cm -1 , respectively. The level structure of the system of the 3d 4 , 3d 3 4s, 3d 3 4d and 3d 3 5s configurations has been theoretically interpreted and the energy parameters have been determined by a least squares fit to the observed levels. A comparison of parameters in Cr III and Fe V ions is given. (orig.)

  12. Critical Point Cancellation in 3D Vector Fields: Robustness and Discussion.

    Science.gov (United States)

    Skraba, Primoz; Rosen, Paul; Wang, Bei; Chen, Guoning; Bhatia, Harsh; Pascucci, Valerio

    2016-02-29

    Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of the essential components of vector field topology, play an important role in describing the complexity of the extracted structure. Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with a guaranteed minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. We apply our method to synthetic and simulation datasets to demonstrate its effectiveness.

  13. Context-Aware AAL Services through a 3D Sensor-Based Platform

    Directory of Open Access Journals (Sweden)

    Alessandro Leone

    2013-01-01

    Full Text Available The main goal of Ambient Assisted Living solutions is to provide assistive technologies and services in smart environments allowing elderly people to have high quality of life. Since 3D sensing technologies are increasingly investigated as monitoring solution able to outperform traditional approaches, in this work a noninvasive monitoring platform based on 3D sensors is presented providing a wide-range solution suitable in several assisted living scenarios. Detector nodes are managed by low-power embedded PCs in order to process 3D streams and extract postural features related to person’s activities. The feature level of details is tuned in accordance with the current context in order to save bandwidth and computational resources. The platform architecture is conceived as a modular system suitable to be integrated into third-party middleware to provide monitoring functionalities in several scenarios. The event detection capabilities were validated by using both synthetic and real datasets collected in controlled and real-home environments. Results show the soundness of the presented solution to adapt to different application requirements, by correctly detecting events related to four relevant AAL services.

  14. 3D indoor modeling using a hand-held embedded system with multiple laser range scanners

    Science.gov (United States)

    Hu, Shaoxing; Wang, Duhu; Xu, Shike

    2016-10-01

    Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.

  15. Association of serum vitamin D3 with newly diagnosed type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Taznuva Anwar

    2018-03-01

    Full Text Available Vitamin D has an important role and supposed to be a risk factor in the development of pathogenesis of type 2 diabetes mellitus by affecting either insulin sensitivity or β-cell function, or both. The present study was conducted to evaluate the relation of serum vitamin D3  and type 2 diabetes mellitus. Total 80 individuals were enrolled in this study. Forty newly diagnosed type 2 diabetic individual were enrolled as cases and 40 healthy glucose tolerant subjects were enrolled as controls. Serum vitamin D3 was measured by chemiluminescence microparticle immunoassay. Fasting and 2 hours plasma glucose level were measured by hexokinase method using the Dimension clinical chemistry system. The mean serum vitamin D3 level was significantly low in type 2 diabetes mellitus than in controls (p= 0,007. The individual with vitamin D3 deficiency showed 3.4 times higher chances to develop type 2 diabetes mellitus compare to the individual with normal vitamin D status. Correlation test showed significant (r= -0.351 negative correlation (p=0.026  between serum vitamin D3 and type 2 diabetes mellitus. It can be concluded that vitamin D3 deficiency is related to type 2 diabetes mellitus.

  16. Passive Containment DataSet

    Science.gov (United States)

    This data is for Figures 6 and 7 in the journal article. The data also includes the two EPANET input files used for the analysis described in the paper, one for the looped system and one for the block system.This dataset is associated with the following publication:Grayman, W., R. Murray , and D. Savic. Redesign of Water Distribution Systems for Passive Containment of Contamination. JOURNAL OF THE AMERICAN WATER WORKS ASSOCIATION. American Water Works Association, Denver, CO, USA, 108(7): 381-391, (2016).

  17. The usefulness of 3D quantitative analysis with using MRI for measuring osteonecrosis of the femoral head

    International Nuclear Information System (INIS)

    Hwang, Ji Young; Lee, Sun Wha; Park, Youn Soo

    2006-01-01

    We wanted to evaluate the usefulness of MRI 3D quantitative analysis for measuring osteonecrosis of the femoral head in comparison with MRI 2D quantitative analysis and quantitative analysis of the specimen. For 3 months at our hospital, 14 femoral head specimens with osteonecrosis were obtained after total hip arthroplasty. The patients preoperative MRIs were retrospectively reviewed for quantitative analysis of the size of the necrosis. Each necrotic fraction of the femoral head was measured by 2D quantitative analysis with using mid-coronal and mid-sagittal MRIs, and by 3D quantitative analysis with using serial continuous coronal MRIs and 3D reconstruction software. The necrotic fraction of the specimen was physically measured by the fluid displacement method. The necrotic fraction according to MRI 2D or 3D quantitative analysis was compared with that of the specimen by using Spearman's correlation test. On the correlative analysis, the necrotic fraction by MRI 2D quantitative analysis and quantitative analysis of the specimen showed moderate correlation (r = 0.657); on the other hand, the necrotic fraction by MRI 3D quantitative analysis and quantitative analysis of the specimen demonstrated a strong correlation (r = 0.952) (ρ < 0.05). MRI 3D quantitative analysis was more accurate than 2D quantitative analysis using MRI for measuring osteonecrosis of the femoral head. Therefore, it may be useful for predicting the clinical outcome and deciding the proper treatment option

  18. 2D-3D crossover effects on the vortex-glass phase transition in thin YBa2Cu3O7-δ films

    International Nuclear Information System (INIS)

    Woeltgens, P.J.M.; Dekker, C.; Koch, R.H.; Hussey, B.W.; Gupta, A.

    1994-01-01

    Nonlinear current-voltage characteristics have been measured for ultrathin (16-400 A) YBa 2 Cu 3 O 7-δ films in high magnetic fields. A scaling analysis of these data reveals deviations from the universal vortex-glass critical scaling behavior observed for thick films. This is argued to be a dimensionality effect: At large currents, one probes length scales smaller than the film thickness, i.e., the three-dimensional (3d) vortex-glass behavior, whereas at low currents the vortex excitations involve typical length scales which exceed the film thickness, hence the 2d behavior is exhibited. Further evidence for this picture is found from the 3d vortex-glass correlation length, which appears to be cut off by the film thickness. (orig.)

  19. Automatic detection of patient identification and positioning errors in radiotherapy treatment using 3D setup images

    OpenAIRE

    Jani, Shyam

    2015-01-01

    The success of modern radiotherapy treatment depends on the correct alignment of the radiation beams with the target region in the patient. In the conventional paradigm of image-guided radiation therapy, 2D or 3D setup images are taken immediately prior to treatment and are used by radiation therapy technologists to localize the patient to the same position as defined from the reference planning CT dataset. However, numerous reports in the literature have described errors during this step, wh...

  20. Fast globally optimal segmentation of 3D prostate MRI with axial symmetry prior.

    Science.gov (United States)

    Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron

    2013-01-01

    We propose a novel global optimization approach to segmenting a given 3D prostate T2w magnetic resonance (MR) image, which enforces the inherent axial symmetry of the prostate shape and simultaneously performs a sequence of 2D axial slice-wise segmentations with a global 3D coherence prior. We show that the proposed challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. With this regard, we introduce a novel coupled continuous max-flow model, which is dual to the studied convex relaxed optimization formulation and leads to an efficient multiplier augmented algorithm based on the modern convex optimization theory. Moreover, the new continuous max-flow based algorithm was implemented on GPUs to achieve a substantial improvement in computation. Experimental results using public and in-house datasets demonstrate great advantages of the proposed method in terms of both accuracy and efficiency.

  1. Axionic D3-D7 Inflation

    CERN Document Server

    Burgess, C P; Postma, M

    2009-01-01

    We study the motion of a D3 brane moving within a Type IIB string vacuum compactified to 4D on K3 x T_2/Z_2 in the presence of D7 and O7 planes. We work within the effective 4D supergravity describing how the mobile D3 interacts with the lightest bulk moduli of the compactification, including the effects of modulus-stabilizing fluxes. We seek inflationary solutions to the resulting equations, performing our search numerically in order to avoid resorting to approximate parameterizations of the low-energy potential. We consider uplifting from D-terms and from the supersymmetry-breaking effects of anti-D3 branes. We find examples of slow-roll inflation (with anti-brane uplifting) with the mobile D3 moving along the toroidal directions, falling towards a D7-O7 stack starting from the antipodal point. The inflaton turns out to be a linear combination of the brane position and the axionic partner of the K3 volume modulus, and the similarity of the potential along the inflaton direction with that of racetrack inflat...

  2. A phylogenetic framework for root lesion nematodes of the genus Pratylenchus (Nematoda): Evidence from 18S and D2-D3 expansion segments of 28S ribosomal RNA genes and morphological characters.

    Science.gov (United States)

    Subbotin, Sergei A; Ragsdale, Erik J; Mullens, Teresa; Roberts, Philip A; Mundo-Ocampo, Manuel; Baldwin, James G

    2008-08-01

    The root lesion nematodes of the genus Pratylenchus Filipjev, 1936 are migratory endoparasites of plant roots, considered among the most widespread and important nematode parasites in a variety of crops. We obtained gene sequences from the D2 and D3 expansion segments of 28S rRNA partial and 18S rRNA from 31 populations belonging to 11 valid and two unidentified species of root lesion nematodes and five outgroup taxa. These datasets were analyzed using maximum parsimony and Bayesian inference. The alignments were generated using the secondary structure models for these molecules and analyzed with Bayesian inference under the standard models and the complex model, considering helices under the doublet model and loops and bulges under the general time reversible model. The phylogenetic informativeness of morphological characters is tested by reconstruction of their histories on rRNA based trees using parallel parsimony and Bayesian approaches. Phylogenetic and sequence analyses of the 28S D2-D3 dataset with 145 accessions for 28 species and 18S dataset with 68 accessions for 15 species confirmed among large numbers of geographical diverse isolates that most classical morphospecies are monophyletic. Phylogenetic analyses revealed at least six distinct major clades of examined Pratylenchus species and these clades are generally congruent with those defined by characters derived from lip patterns, numbers of lip annules, and spermatheca shape. Morphological results suggest the need for sophisticated character discovery and analysis for morphology based phylogenetics in nematodes.

  3. 3D Volume Rendering and 3D Printing (Additive Manufacturing).

    Science.gov (United States)

    Katkar, Rujuta A; Taft, Robert M; Grant, Gerald T

    2018-07-01

    Three-dimensional (3D) volume-rendered images allow 3D insight into the anatomy, facilitating surgical treatment planning and teaching. 3D printing, additive manufacturing, and rapid prototyping techniques are being used with satisfactory accuracy, mostly for diagnosis and surgical planning, followed by direct manufacture of implantable devices. The major limitation is the time and money spent generating 3D objects. Printer type, material, and build thickness are known to influence the accuracy of printed models. In implant dentistry, the use of 3D-printed surgical guides is strongly recommended to facilitate planning and reduce risk of operative complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  5. Interactions of dopaminergic agonists and antagonists with dopaminergic D3 binding sites in rat striatum. Evidence that [3H]dopamine can label a high affinity agonist-binding state of the D1 dopamine receptor

    International Nuclear Information System (INIS)

    Leff, S.E.; Creese, I.

    1985-01-01

    The interactions of dopaminergic agonists and antagonists with 3 H-agonist labeled D3 dopaminergic binding sites of rat striatum have been characterized by radioligand-binding techniques. When the binding of [ 3 H]dopamine and [ 3 H]apomorphine to D2 dopamine receptors is blocked by the inclusion of D2 selective concentrations of unlabeled spiroperidol or domperidone, these ligands appear to label selectively the previously termed D3 binding site. Antagonist/[ 3 H]dopamine competition curves are of uniformly steep slope (nH . 1.0), suggesting the presence of a single D3 binding site. The relative potencies of antagonists to inhibit D3 specific [ 3 H]dopamine binding are significantly correlated with their potencies to block D1 dopamine receptors as measured by the inhibition of both dopamine-stimulated adenylate cyclase and [ 3 H]flupentixol-binding activities. The affinities of agonists to inhibit D3 specific [ 3 H]dopamine binding are also correlated with estimates of these agonists affinities for the high affinity binding component of agonist/[ 3 H]flupentixol competition curves. Both D3 specific [ 3 H] dopamine binding and the high affinity agonist-binding component of dopamine/[ 3 H]flupentixol competition curves show a similar sensitivity to guanine nucleotides. Taken together, these data strongly suggest that the D3 binding site is related to a high affinity agonist-binding state of the D1 dopamine receptor

  6. 3D Protein Dynamics in the Cell Nucleus.

    Science.gov (United States)

    Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E

    2017-01-10

    The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. 3D Convolutional Neural Network for Automatic Detection of Lung Nodules in Chest CT.

    Science.gov (United States)

    Hamidian, Sardar; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria

    2017-01-01

    Deep convolutional neural networks (CNNs) form the backbone of many state-of-the-art computer vision systems for classification and segmentation of 2D images. The same principles and architectures can be extended to three dimensions to obtain 3D CNNs that are suitable for volumetric data such as CT scans. In this work, we train a 3D CNN for automatic detection of pulmonary nodules in chest CT images using volumes of interest extracted from the LIDC dataset. We then convert the 3D CNN which has a fixed field of view to a 3D fully convolutional network (FCN) which can generate the score map for the entire volume efficiently in a single pass. Compared to the sliding window approach for applying a CNN across the entire input volume, the FCN leads to a nearly 800-fold speed-up, and thereby fast generation of output scores for a single case. This screening FCN is used to generate difficult negative examples that are used to train a new discriminant CNN. The overall system consists of the screening FCN for fast generation of candidate regions of interest, followed by the discrimination CNN.

  8. CUDA based Level Set Method for 3D Reconstruction of Fishes from Large Acoustic Data

    DEFF Research Database (Denmark)

    Sharma, Ojaswa; Anton, François

    2009-01-01

    Acoustic images present views of underwater dynamics, even in high depths. With multi-beam echo sounders (SONARs), it is possible to capture series of 2D high resolution acoustic images. 3D reconstruction of the water column and subsequent estimation of fish abundance and fish species identificat...... of suppressing threshold and show its convergence as the evolution proceeds. We also present a GPU based streaming computation of the method using NVIDIA's CUDA framework to handle large volume data-sets. Our implementation is optimised for memory usage to handle large volumes....

  9. Towards 3C-3D digital holographic fluid velocity vector field measurement—tomographic digital holographic PIV (Tomo-HPIV)

    International Nuclear Information System (INIS)

    Soria, J; Atkinson, C

    2008-01-01

    Most unsteady and/or turbulent flows of geophysical and engineering interest have a highly three-dimensional (3D) complex topology and their experimental investigation is in pressing need of quantitative velocity measurement methods that are robust and can provide instantaneous 3C-3D velocity field data over a significant volumetric domain of the flow. This paper introduces and demonstrates a new method that uses multiple digital CCD array cameras to record in-line digital holograms of the same volume of seed particles from multiple orientations. This technique uses the same basic equipment as Tomo-PIV minus the camera lenses, it overcomes the depth-of-field problem of digital in-line holography and does not require the complex optical calibration of Tomo-PIV. The digital sensors can be oriented in an optimal manner to overcome the depth-of-field limitation of in-line holograms recorded using digital CCD or CMOS array cameras, resulting in a 3D reconstruction of the seed particles within the volume of interest, which can subsequently be analysed using 3D cross-correlation PIV analysis to yield a 3C-3D velocity field. A demonstration experiment of Tomo-HPIV using uniform translation with nominally 11 µm diameter seed particles shows that the 3D displacement derived from 3D cross-correlation Tomo-HPIV analysis can be measured within 5% of the imposed uniform translation, where the imposed uniform translation has an estimated standard uncertainty of 4.3%. So this paper proposes a multi-camera digital holographic imaging 3C-3D PIV method, which is identified as tomographic digital holographic PIV or Tomo-HPIV

  10. 3D Ultrashort TE MRI for Evaluation of Cartilaginous Endplate of Cervical Disk In Vivo: Feasibility and Correlation With Disk Degeneration in T2-Weighted Spin-Echo Sequence.

    Science.gov (United States)

    Kim, Yeo Ju; Cha, Jang Gyu; Shin, Yoon Sang; Chaudhari, Akshay S; Suh, Young Ju; Hwan Yoon, Seung; Gold, Garry E

    2018-05-01

    The purpose of this study was to evaluate the feasibility of 3D ultrashort TE (UTE) MRI in depicting the cartilaginous endplate (CEP) and its abnormalities and to investigate the association between CEP abnormalities and disk degeneration on T2-weighted spin-echo (SE) MR images in cervical disks in vivo. Eight healthy volunteers and 70 patients were examined using 3-T MRI with the 3D UTE cones trajectory technique (TR/TE, 16.1/0.032, 6.6). In the volunteer study, quantitative and qualitative assessments of CEP depiction were conducted for the 3D UTE and T2-weighted SE imaging. In the patient study, CEP abnormalities were analyzed. Intersequence agreement between the images obtained with the first-echo 3D UTE sequence and the images created by subtracting the second-echo from the first-echo 3D UTE sequence (subtracted 3D UTE) and the intraobserver and interobserver agreements for 3D UTE overall were also tested. The CEP abnormalities on the 3D UTE images correlated with the Miyazaki grading of the T2-weighted SE images. In the volunteer study, the CEP was well visualized on 3D UTE images but not on T2-weighted SE images (p evaluation of CEP abnormalities, intersequence agreements were substantial to almost perfect, intraobserver agreements were substantial to almost perfect, and interobserver agreements were moderate to substantial (p T2-weighted SE MRI.

  11. Prevalence and correlates of vitamin D status in African American men

    Science.gov (United States)

    Tseng, Marilyn; Giri, Veda; Bruner, Deborah W; Giovannucci, Edward

    2009-01-01

    Background Few studies have examined vitamin D insufficiency in African American men although they are at very high risk. We examined the prevalence and correlates of vitamin D insufficiency among African American men in Philadelphia. Methods Participants in this cross-sectional analysis were 194 African American men in the Philadelphia region who were enrolled in a risk assessment program for prostate cancer from 10/96–10/07. All participants completed diet and health history questionnaires and provided plasma samples, which were assessed for 25-hydroxyvitamin D (25(OH)D) concentrations. We used linear regression models to examine associations with 25(OH)D concentrations and logistic regression to estimate odds ratios (OR) for having 25(OH)D ≥ 15 ng/mL. Results Mean 25(OH)D was 13.7 ng/mL, and 61% of men were classified as having vitamin D insufficiency (25(OH)D 400 vs. 0 IU/day), milk consumption (OR 5.9, 95% CI 2.2, 16.0 for ≥ 3.5 vs. <1 time per week), and blood collection in the summer. Additionally, 25(OH)D concentrations increased with more recreational physical activity (OR 1.3, 95% CI 1.1, 1.6 per hour). A significant inverse association of body mass index with 25(OH)D concentrations in bivariate analyses was attenuated with adjustment for season of blood collection. Conclusion The problem of low vitamin D status in African American men may be more severe than previously reported. Future efforts to increase vitamin D recommendations and intake, such as through supplementation, are warranted to improve vitamin D status in this particularly vulnerable population. PMID:19534831

  12. Comparison of 3D Scanning Versus 2D Photography for the Identification of Facial Soft-Tissue Landmarks.

    Science.gov (United States)

    Zogheib, T; Jacobs, R; Bornstein, M M; Agbaje, J O; Anumendem, D; Klazen, Y; Politis, C

    2018-01-01

    Three dimensional facial scanning is an innovation that provides opportunity for digital data acquisition, smile analysis and communication of treatment plan and outcome with patients. To assess the applicability of 3D facial scanning as compared to 2D clinical photography. Sample consisted of thirty Caucasians aged between 25 and 50 years old, without any dentofacial deformities. Fifteen soft-tissue facial landmarks were identified twice by 3 observers on 2D and 3D images of the 30 subjects. Five linear proportions and nine angular measurements were established in the orbital, nasal and oral regions. These data were compared to anthropometric norms of young Caucasians. Furthermore, a questionnaire was completed by 14 other observers, according to their personal judgment of the 2D and 3D images. Quantitatively, proportions linking the three facial regions in 3D were closer to the clinical standard (for 2D 3.3% and for 3D 1.8% error rate). Qualitatively, in 67% of the cases, observers were as confident about 3D as they were about 2D. Intra-observer Correlation Coefficient (ICC) revealed a better agreement between observers in 3D for the questions related to facial form, lip step and chin posture. The laser facial scanning could be a useful and reliable tool to analyze the circumoral region for orthodontic and orthognathic treatments as well as for plastic surgery planning and outcome.

  13. Exploring personality traits related to dopamine D2/3 receptor availability in striatal subregions of humans.

    Science.gov (United States)

    Caravaggio, Fernando; Fervaha, Gagan; Chung, Jun Ku; Gerretsen, Philip; Nakajima, Shinichiro; Plitman, Eric; Iwata, Yusuke; Wilson, Alan; Graff-Guerrero, Ariel

    2016-04-01

    While several studies have examined how particular personality traits are related to dopamine D2/3 receptor (D2/3R) availability in the striatum of humans, few studies have reported how multiple traits measured in the same persons are differentially related to D2/3R availability in different striatal sub-regions. We examined how personality traits measured with the Karolinska Scales of Personality are related to striatal D2/3R availability measured with [(11)C]-raclopride in 30 healthy humans. Based on previous the literature, five personality traits were hypothesized to be most likely related to D2/3R availability: impulsiveness, monotony avoidance, detachment, social desirability, and socialization. We found self-reported impulsiveness was negatively correlated with D2/3R availability in the ventral striatum and globus pallidus. After controlling for age and gender, monotony avoidance was also negatively correlated with D2/3R availability in the ventral striatum and globus pallidus. Socialization was positively correlated with D2/3R availability in the ventral striatum and putamen. After controlling for age and gender, the relationship between socialization and D2/3R availability in these regions survived correction for multiple comparisons (p-threshold=.003). Thus, within the same persons, different personality traits are differentially related to in vivo D2/3R availability in different striatal sub-regions. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  14. Technical feasibility of 2D-3D coregistration for visualization of self-expandable microstents to facilitate coil embolization of broad-based intracranial aneurysms: an in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Gregor [University of Erlangen-Nuernberg, Department of Neuroradiology, Erlangen (Germany); Kreisklinikum Siegen, Department of Radiology and Neuroradiology, Siegen (Germany); Pfister, Marcus [Siemens AG, Healthcare Sector, Forchheim (Germany); Struffert, Tobias; Engelhorn, Tobias; Doelken, Marc; Doerfler, Arnd [University of Erlangen-Nuernberg, Department of Neuroradiology, Erlangen (Germany); Spiegel, Martin; Hornegger, Joachim [University of Erlangen, Department of Informatics 5, Erlangen (Germany)

    2009-12-15

    The use of self-expandable microstents for treatment of broad-based intracranial aneurysms is widely spread. However, poor fluoroscopic visibility of the stents remains disadvantageous during the coiling procedure. Flat detector angiographic computed tomography (ACT) provides high resolution imaging of microstents even though integration of this imaging modality in the neurointerventional workflow has not been widely reported. An acrylic glass model was used to simulate the situation of a broad-based sidewall aneurysm. After insertion of a self-expandable microstent, ACT was performed. The resulting 3D dataset of the Microstent was subsequently projected into a conventional 2D fluoroscopic roadmap. This 3D visualization of the stent supported the coil embolization procedure of the in vitro aneurysm. In vitro 2D-3D coregistration with integration of 3D ACT data of a self-expandable microstent in a conventional 2D roadmap is feasible. Unsatisfying stent visibility constrains clinical cases with complex parent vessel anatomy and challenging aneurysm geometry; hence, this technique potentially may be useful in such cases. In our opinion, the clinical feasibility and utility of this new technique should be verified in a clinical aneurysm embolization study series using 2D-3D coregistration. (orig.)

  15. Technical feasibility of 2D-3D coregistration for visualization of self-expandable microstents to facilitate coil embolization of broad-based intracranial aneurysms: an in vitro study

    International Nuclear Information System (INIS)

    Richter, Gregor; Pfister, Marcus; Struffert, Tobias; Engelhorn, Tobias; Doelken, Marc; Doerfler, Arnd; Spiegel, Martin; Hornegger, Joachim

    2009-01-01

    The use of self-expandable microstents for treatment of broad-based intracranial aneurysms is widely spread. However, poor fluoroscopic visibility of the stents remains disadvantageous during the coiling procedure. Flat detector angiographic computed tomography (ACT) provides high resolution imaging of microstents even though integration of this imaging modality in the neurointerventional workflow has not been widely reported. An acrylic glass model was used to simulate the situation of a broad-based sidewall aneurysm. After insertion of a self-expandable microstent, ACT was performed. The resulting 3D dataset of the Microstent was subsequently projected into a conventional 2D fluoroscopic roadmap. This 3D visualization of the stent supported the coil embolization procedure of the in vitro aneurysm. In vitro 2D-3D coregistration with integration of 3D ACT data of a self-expandable microstent in a conventional 2D roadmap is feasible. Unsatisfying stent visibility constrains clinical cases with complex parent vessel anatomy and challenging aneurysm geometry; hence, this technique potentially may be useful in such cases. In our opinion, the clinical feasibility and utility of this new technique should be verified in a clinical aneurysm embolization study series using 2D-3D coregistration. (orig.)

  16. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  17. 3D IBFV : hardware-accelerated 3D flow visualization

    NARCIS (Netherlands)

    Telea, A.C.; Wijk, van J.J.

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique presented by van Wijk (2001) for 2D flow visualization in two main directions. First, we decompose the 3D

  18. 3D RISM theory with fast reciprocal-space electrostatics

    Energy Technology Data Exchange (ETDEWEB)

    Heil, Jochen; Kast, Stefan M., E-mail: stefan.kast@tu-dortmund.de [Physikalische Chemie III, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund (Germany)

    2015-03-21

    The calculation of electrostatic solute-solvent interactions in 3D RISM (“three-dimensional reference interaction site model”) integral equation theory is recast in a form that allows for a computational treatment analogous to the “particle-mesh Ewald” formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.

  19. 3D RISM theory with fast reciprocal-space electrostatics.

    Science.gov (United States)

    Heil, Jochen; Kast, Stefan M

    2015-03-21

    The calculation of electrostatic solute-solvent interactions in 3D RISM ("three-dimensional reference interaction site model") integral equation theory is recast in a form that allows for a computational treatment analogous to the "particle-mesh Ewald" formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.

  20. 3D RISM theory with fast reciprocal-space electrostatics

    International Nuclear Information System (INIS)

    Heil, Jochen; Kast, Stefan M.

    2015-01-01

    The calculation of electrostatic solute-solvent interactions in 3D RISM (“three-dimensional reference interaction site model”) integral equation theory is recast in a form that allows for a computational treatment analogous to the “particle-mesh Ewald” formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems

  1. 3D 14N/1H Double Quantum/1H Single Quantum Correlation Solid-State NMR for Probing Parallel and Anti-Parallel Beta-Sheet Arrangement of Oligo-Peptides at Natural Abundance.

    Science.gov (United States)

    Hong, You-Lee; Asakura, Tetsuo; Nishiyama, Yusuke

    2018-05-08

    β-sheet structure of oligo- and poly-peptides can be formed in anti-parallel (AP)- and parallel (P)-structure, which is the important feature to understand the structures. In principle, P- and AP-β-sheet structures can be identified by the presence (AP) and absence (P) of the interstrand 1HNH/1HNH correlations on a diagonal in 2D 1H double quantum (DQ)/1H single quantum (SQ) spectrum due to the different interstrand 1HNH/1HNH distances between these two arrangements. However, the 1HNH/1HNH peaks overlap to the 1HNH3+/1HNH3+ peaks, which always give cross peaks regardless of the β-sheet arrangement. The 1HNH3+/1HNH3+ peaks disturb the observation of the presence/absence of 1HNH/1HNH correlations and the assignment of 1HNH and 1HNH3+ is not always available. Here, 3D 14N/1H DQ/1H SQ correlation solid-state NMR experiments at fast magic angle spinning (70 kHz) are introduced to distinguish AP and P β-sheet structure. The 14N dimension allows the separate observation of 1HNH/1HNH peaks from 1HNH3+/1HNH3+ peaks with clear assignment of 1HNH and 1HNH3+. In addition, the high natural abundance of 1H and 14N enables 3D 14N/1H DQ/1H SQ experiments of oligo-alanines (Ala3-6) in four hours without any isotope labelling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Acute D2/D3 dopaminergic agonism but chronic D2/D3 antagonism prevents NMDA antagonist neurotoxicity.

    Science.gov (United States)

    Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K

    2006-09-15

    Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.

  3. Large 3D resistivity and induced polarization acquisition using the Fullwaver system: towards an adapted processing methodology

    Science.gov (United States)

    Truffert, Catherine; Leite, Orlando; Gance, Julien; Texier, Benoît; Bernard, Jean

    2017-04-01

    Driven by needs in the mineral exploration market for ever faster and ever easier set-up of large 3D resistivity and induced polarization, autonomous and cableless recorded systems come to the forefront. Opposite to the traditional centralized acquisition, this new system permits a complete random distribution of receivers on the survey area allowing to obtain a real 3D imaging. This work presents the results of a 3 km2 large experiment up to 600m of depth performed with a new type of autonomous distributed receivers: the I&V-Fullwaver. With such system, all usual drawbacks induced by long cable set up over large 3D areas - time consuming, lack of accessibility, heavy weight, electromagnetic induction, etc. - disappear. The V-Fullwavers record the entire time series of voltage on two perpendicular axes, for a good determination of the data quality although I-Fullwaver records injected current simultaneously. For this survey, despite good assessment of each individual signal quality, on each channel of the set of Fullwaver systems, a significant number of negative apparent resistivity and chargeability remains present in the dataset (around 15%). These values are commonly not taken into account in the inversion software although they may be due to complex geological structure of interest (e.g. linked to the presence of sulfides in the earth). Taking into account that such distributed recording system aims to restitute the best 3D resistivity and IP tomography, how can 3D inversion be improved? In this work, we present the dataset, the processing chain and quality control of a large 3D survey. We show that the quality of the data selected is good enough to include it into the inversion processing. We propose a second way of processing based on the modulus of the apparent resistivity that stabilizes the inversion. We then discuss the results of both processing. We conclude that an effort could be made on the inclusion of negative apparent resistivity in the inversion

  4. Study of thermal behavior of vitamin D3 by pyrolysis-GC-MS in combination with boiling point-retention time correlation.

    Science.gov (United States)

    Sun, Yu'an; Liu, Baoxia; Wang, Guoqing; Zhang, Rongjie; Xie, Bing

    2005-01-01

    The thermal behavior of vitamin D3 was studied based on pyrolysis-GC-MS technique. It was pyrolyzed at 600 degrees C, 750 degrees C, 900 degrees C, respectively. The pyrolysis product were separated With an HP-5 column and identified by the NIST mass spectral search program in combination with the correlation of boiling point and retention time (BP-RT). There are totally 50 components, including mono aromatics and polycyclic aromatic hydrocarbons (PAHs), were determined. It is shown that the contents of the PAHs are increasing with the increasing of the pyrolysis temperature. The contents of the determined components vary from 0.04% to 37.08%.

  5. Monitoring tumor motion by real time 2D/3D registration during radiotherapy.

    Science.gov (United States)

    Gendrin, Christelle; Furtado, Hugo; Weber, Christoph; Bloch, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Bergmann, Helmar; Stock, Markus; Fichtinger, Gabor; Georg, Dietmar; Birkfellner, Wolfgang

    2012-02-01

    In this paper, we investigate the possibility to use X-ray based real time 2D/3D registration for non-invasive tumor motion monitoring during radiotherapy. The 2D/3D registration scheme is implemented using general purpose computation on graphics hardware (GPGPU) programming techniques and several algorithmic refinements in the registration process. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the planned target volume (PTV). The phantom motion is measured with an rms error of 2.56 mm. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is shown. Videos show a good match between X-ray and digitally reconstructed radiographs (DRR) displacement. Mean registration time is 0.5 s. We have demonstrated that real-time organ motion monitoring using image based markerless registration is feasible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Characterizing 3D sensors using the 3D modulation transfer function

    Science.gov (United States)

    Kellner, Timo; Breitbarth, Andreas; Zhang, Chen; Notni, Gunther

    2018-03-01

    The fields of optical 3D measurement system applications are continuously expanding and becoming more and more diverse. To evaluate appropriate systems for various measurement tasks, comparable parameters are necessary, whereas the 3D modulation transfer function (3D-MTF) has been established as a further criterion. Its aim is the determination of the system response between the measurement of a straight, sharp-edged cube and its opposite ideal calculated one. Within the scope of this work simulations and practical investigations regarding the 3D-MTF’s influences and its main issues are specifically investigated. Therefore, different determined edge radii representing the high-frequency spectra lead to various decreasing 3D-MTF characteristics. Furthermore, rising sampling frequencies improve its maximum transfer value to a saturation point in dependence of the radius. To approve these results of previous simulations, three fringe projection scanners were selected to determine the diversity. As the best 3D-MTF characteristic, a saturated transfer value of H_3D( f_N, 3D) = 0.79 has been identified at a sufficient sampling frequency, which is reached at four times the Nyquist limit. This high 3D resolution can mainly be achieved due to an improved camera projector interaction. Additionally, too small sampling ratios lead to uncertainties in the edge function determination, while higher ratios do not show major improvements. In conclusion, the 3D-MTF algorithm has thus been practically verified and its repeatability as well as its robustness have been confirmed.

  7. Practical 3-D Beam Pattern Based Channel Modeling for Multi-Polarized Massive MIMO Systems.

    Science.gov (United States)

    Aghaeinezhadfirouzja, Saeid; Liu, Hui; Balador, Ali

    2018-04-12

    In this paper, a practical non-stationary three-dimensional (3-D) channel models for massive multiple-input multiple-output (MIMO) systems, considering beam patterns for different antenna elements, is proposed. The beam patterns using dipole antenna elements with different phase excitation toward the different direction of travels (DoTs) contributes various correlation weights for rays related towards/from the cluster, thus providing different elevation angle of arrivals (EAoAs) and elevation angle of departures (EAoDs) for each antenna element. These include the movements of the user that makes our channel to be a non-stationary model of clusters at the receiver (RX) on both the time and array axes. In addition, their impacts on 3-D massive MIMO channels are investigated via statistical properties including received spatial correlation. Additionally, the impact of elevation/azimuth angles of arrival on received spatial correlation is discussed. Furthermore, experimental validation of the proposed 3-D channel models on azimuth and elevation angles of the polarized antenna are specifically evaluated and compared through simulations. The proposed 3-D generic models are verified using relevant measurement data.

  8. Aspects of defects in 3d-3d correspondence

    International Nuclear Information System (INIS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-01-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A_N_−_1 on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T_N[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T_N[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  9. Remote laboratory for phase-aided 3D microscopic imaging and metrology

    Science.gov (United States)

    Wang, Meng; Yin, Yongkai; Liu, Zeyi; He, Wenqi; Li, Boqun; Peng, Xiang

    2014-05-01

    In this paper, the establishment of a remote laboratory for phase-aided 3D microscopic imaging and metrology is presented. Proposed remote laboratory consists of three major components, including the network-based infrastructure for remote control and data management, the identity verification scheme for user authentication and management, and the local experimental system for phase-aided 3D microscopic imaging and metrology. The virtual network computer (VNC) is introduced to remotely control the 3D microscopic imaging system. Data storage and management are handled through the open source project eSciDoc. Considering the security of remote laboratory, the fingerprint is used for authentication with an optical joint transform correlation (JTC) system. The phase-aided fringe projection 3D microscope (FP-3DM), which can be remotely controlled, is employed to achieve the 3D imaging and metrology of micro objects.

  10. D3-??????????????????????? ? ???? ?????????? ?2 ?????? ?????? ?????

    OpenAIRE

    ?????????, ????; ???????, ???????; ??????, ?????????; ?????????????, ????; ??????, ??????

    2011-01-01

    ????? ?????? ??????? ????? ????? ??????????? ?????? ?????? ????? ? ?????? ? ???????? ????? ?????????. ?????????? ???????????? ?????? ?? ?2 ?????? ?????? ????? ??????? ?? D3 ???????????????? ??????? ??????????? ?????? ????????? ????? ?????????? ??? ??? ??????????. ? ????? ????????????? ??????????? ??? ????????? ????????????? ?????????? ???? ?????????? ?????????? ????? ????????? ?????? ???????? ?? D3-????????????????? ???????.

  11. Correlation between follicular fluid levels of sRAGE and vitamin D in women with PCOS.

    Science.gov (United States)

    Garg, Deepika; Grazi, Richard; Lambert-Messerlian, Geralyn M; Merhi, Zaher

    2017-11-01

    The pro-inflammatory advanced glycation end products (AGEs) and their anti-inflammatory soluble receptors, sRAGE, play a role in the pathogenesis of PCOS. There is a correlation between vitamin D (vit D) and sRAGE in the serum, whereby vit D replacement increases serum sRAGE levels in women with PCOS, thus incurring a protective anti-inflammatory role. This study aims to compare levels of sRAGE, N-carboxymethyl-lysine (CML; one of the AGEs), and 25-hydroxy-vit D in the follicular fluid (FF) of women with or without PCOS, and to evaluate the correlation between sRAGE and 25-hydroxy-vit D in the FF. Women with (n = 12) or without (n = 13) PCOS who underwent IVF were prospectively enrolled. Women with PCOS had significantly higher anti-Mullerian hormone levels, higher number of total retrieved and mature oocytes, and higher number of day 3 and day 5 embryos formed. Compared to women without PCOS, women with PCOS had significantly lower FF sRAGE levels. In women with PCOS, in women without PCOS, and in all participants together, there was a significant positive correlation between sRAGE and 25-hydroxy-vit D. sRAGE positively correlated with CML in women without PCOS but not in women with PCOS. In women with PCOS, the low ovarian levels of the anti-inflammatory sRAGE suggest that sRAGE could represent a biomarker and a potential therapeutic target for ovarian dysfunction in PCOS. Whether there is a direct causal relationship between sRAGE and vit D in the ovaries remains to be determined.

  12. Extraction of Urban Trees from Integrated Airborne Based Digital Image and LIDAR Point Cloud Datasets - Initial Results

    Science.gov (United States)

    Dogon-yaro, M. A.; Kumar, P.; Rahman, A. Abdul; Buyuksalih, G.

    2016-10-01

    Timely and accurate acquisition of information on the condition and structural changes of urban trees serves as a tool for decision makers to better appreciate urban ecosystems and their numerous values which are critical to building up strategies for sustainable development. The conventional techniques used for extracting tree features include; ground surveying and interpretation of the aerial photography. However, these techniques are associated with some constraint, such as labour intensive field work, a lot of financial requirement, influences by weather condition and topographical covers which can be overcome by means of integrated airborne based LiDAR and very high resolution digital image datasets. This study presented a semi-automated approach for extracting urban trees from integrated airborne based LIDAR and multispectral digital image datasets over Istanbul city of Turkey. The above scheme includes detection and extraction of shadow free vegetation features based on spectral properties of digital images using shadow index and NDVI techniques and automated extraction of 3D information about vegetation features from the integrated processing of shadow free vegetation image and LiDAR point cloud datasets. The ability of the developed algorithms shows a promising result as an automated and cost effective approach to estimating and delineated 3D information of urban trees. The research also proved that integrated datasets is a suitable technology and a viable source of information for city managers to be used in urban trees management.

  13. Photoaffinity labeling of serum vitamin D binding protein by 3-deoxy-3-azido-25-hydroxyvitamin D3

    International Nuclear Information System (INIS)

    Link, R.P.; Kutner, A.; Schnoes, H.K.; DeLuca, H.F.

    1987-01-01

    3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3

  14. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.

    Science.gov (United States)

    Valverde, Sergi; Cabezas, Mariano; Roura, Eloy; González-Villà, Sandra; Pareto, Deborah; Vilanova, Joan C; Ramió-Torrentà, Lluís; Rovira, Àlex; Oliver, Arnau; Lladó, Xavier

    2017-07-15

    In this paper, we present a novel automated method for White Matter (WM) lesion segmentation of Multiple Sclerosis (MS) patient images. Our approach is based on a cascade of two 3D patch-wise convolutional neural networks (CNN). The first network is trained to be more sensitive revealing possible candidate lesion voxels while the second network is trained to reduce the number of misclassified voxels coming from the first network. This cascaded CNN architecture tends to learn well from a small (n≤35) set of labeled data of the same MRI contrast, which can be very interesting in practice, given the difficulty to obtain manual label annotations and the large amount of available unlabeled Magnetic Resonance Imaging (MRI) data. We evaluate the accuracy of the proposed method on the public MS lesion segmentation challenge MICCAI2008 dataset, comparing it with respect to other state-of-the-art MS lesion segmentation tools. Furthermore, the proposed method is also evaluated on two private MS clinical datasets, where the performance of our method is also compared with different recent public available state-of-the-art MS lesion segmentation methods. At the time of writing this paper, our method is the best ranked approach on the MICCAI2008 challenge, outperforming the rest of 60 participant methods when using all the available input modalities (T1-w, T2-w and FLAIR), while still in the top-rank (3rd position) when using only T1-w and FLAIR modalities. On clinical MS data, our approach exhibits a significant increase in the accuracy segmenting of WM lesions when compared with the rest of evaluated methods, highly correlating (r≥0.97) also with the expected lesion volume. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. 3D for free using the Mac's standard apps : converting raw 3D text files to QuickDraw 3D's 3DMF format using AppleScript

    NARCIS (Netherlands)

    Djajadiningrat, J.P.

    2003-01-01

    This article introduces you to the basics of 3D files in general and the 3D Metafile (3DMF), QuickDraw 3D's native 3D format, in particular. It shows how you can use AppleScript to easily convert a raw 3D text file into a 3DMF readable by the QuickDraw 3D Viewer or any other QuickDraw 3D compatible

  16. Front instabilities and invasiveness of simulated 3D avascular tumors.

    Directory of Open Access Journals (Sweden)

    Nikodem J Poplawski

    2010-05-01

    Full Text Available We use the Glazier-Graner-Hogeweg model to simulate three-dimensional (3D, single-phenotype, avascular tumors growing in an homogeneous tissue matrix (TM supplying a single limiting nutrient. We study the effects of two parameters on tumor morphology: a diffusion-limitation parameter defined as the ratio of the tumor-substrate consumption rate to the substrate-transport rate, and the tumor-TM surface tension. This initial model omits necrosis and oxidative/hypoxic metabolism effects, which can further influence tumor morphology, but our simplified model still shows significant parameter dependencies. The diffusion-limitation parameter determines whether the growing solid tumor develops a smooth (noninvasive or fingered (invasive interface, as in our earlier two-dimensional (2D simulations. The sensitivity of 3D tumor morphology to tumor-TM surface tension increases with the size of the diffusion-limitation parameter, as in 2D. The 3D results are unexpectedly close to those in 2D. Our results therefore may justify using simpler 2D simulations of tumor growth, instead of more realistic but more computationally expensive 3D simulations. While geometrical artifacts mean that 2D sections of connected 3D tumors may be disconnected, the morphologies of 3D simulated tumors nevertheless correlate with the morphologies of their 2D sections, especially for low-surface-tension tumors, allowing the use of 2D sections to partially reconstruct medically-important 3D-tumor structures.

  17. Perioperative vitamin D levels correlate with clinical outcomes after ankle fracture fixation.

    Science.gov (United States)

    Warner, Stephen J; Garner, Matthew R; Nguyen, Joseph T; Lorich, Dean G

    2016-03-01

    Hypovitaminosis D is common in patients undergoing orthopaedic trauma surgery. While previous studies have shown that vitamin D levels correlate with functional outcome after hip fracture surgery, the significance of vitamin D levels on outcomes after surgery in other orthopaedic trauma patients is unknown. The purpose of this study was to determine if vitamin D levels correlated with outcomes in ankle fracture patients. We reviewed a prospective registry of patients who underwent operative treatment for ankle fractures from 2003 to 2012. Preoperative serum 25-hydroxyvitamin D (25[OH]D) levels were measured, and the primary and secondary outcomes included foot and ankle outcome scores (FAOS) and ankle range of motion. Data were also collected on patient comorbidities, articular malreductions, and wound complications. Included patients had at least 12 months of clinical outcome data. Ninety-eight patients operatively treated for ankle fractures met our inclusion criteria. Of these 98 patients, 36 (37%) were deficient in vitamin D (ankle fractures, preoperative vitamin D deficiency correlated with inferior clinical outcomes at a minimum of 1 year follow-up. Our study suggests that deficient vitamin D levels may result in worse outcomes in orthopaedic trauma patients recovering from fracture fixation.

  18. A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples.

    Science.gov (United States)

    Abudayyeh, Islam; Gordon, Brent; Ansari, Mohammad M; Jutzy, Kenneth; Stoletniy, Liset; Hilliard, Anthony

    2018-06-01

    The advent of more advanced 3D image processing, reconstruction, and a variety of three-dimensional (3D) printing technologies using different materials has made rapid and fairly affordable anatomically accurate models much more achievable. These models show great promise in facilitating procedural and surgical planning for complex congenital and structural heart disease. Refinements in 3D printing technology lend itself to advanced applications in the fields of bio-printing, hemodynamic modeling, and implantable devices. As a novel technology with a large variability in software, processing tools and printing techniques, there is not a standardized method by which a clinician can go from an imaging data-set to a complete model. Furthermore, anatomy of interest and how the model is used can determine the most appropriate technology. In this over-view we discuss, from the standpoint of a clinical professional, image acquisition, processing, and segmentation by which a printable file is created. We then review the various printing technologies, advantages and disadvantages when printing the completed model file, and describe clinical scenarios where 3D printing can be utilized to address therapeutic challenges. © 2017, Wiley Periodicals, Inc.

  19. Recovering the 3d Pose and Shape of Vehicles from Stereo Images

    Science.gov (United States)

    Coenen, M.; Rottensteiner, F.; Heipke, C.

    2018-05-01

    The precise reconstruction and pose estimation of vehicles plays an important role, e.g. for autonomous driving. We tackle this problem on the basis of street level stereo images obtained from a moving vehicle. Starting from initial vehicle detections, we use a deformable vehicle shape prior learned from CAD vehicle data to fully reconstruct the vehicles in 3D and to recover their 3D pose and shape. To fit a deformable vehicle model to each detection by inferring the optimal parameters for pose and shape, we define an energy function leveraging reconstructed 3D data, image information, the vehicle model and derived scene knowledge. To minimise the energy function, we apply a robust model fitting procedure based on iterative Monte Carlo model particle sampling. We evaluate our approach using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012). Our approach can deal with very coarse pose initialisations and we achieve encouraging results with up to 82 % correct pose estimations. Moreover, we are able to deliver very precise orientation estimation results with an average absolute error smaller than 4°.

  20. Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI

    DEFF Research Database (Denmark)

    Kjaergaard, Jesper; Petersen, Claus Leth; Kjaer, Andreas

    2005-01-01

    : Thirty-four subjects with (a) prior inferior ST-elevation myocardial infarction (n=17), (b) a history of pulmonary embolism and persistent dyspnea (n=7) or (c) normal subjects (n=10) had 2D and 3D echocardiography, SPECT and MRI within 24h. End-diastolic volume and peak tricuspid regurgitation velocity...... were increased in patients with a history of pulmonary embolism compared to healthy subjects, 130+/-26 ml vs. 94+/-26 ml, P... volume showed significant correlation to RV volumes by MRI. Tricuspid annular plane systolic excursion (TAPSE) had the better correlation to RVEF by MRI, r=0.48, P